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1. Introduction 

 

1.1. Influenza A virus 

1.1.1. Taxonomy and classification 

The influenza A virus (IAV) is a single species of the genus Alphainfluenzavirus that 

together with six other genera – Betainfluenzavirus (Influenza B virus, IBV), 

Deltainfluenzavirus (Influenza D virus, IDV), Gammainfluenzavirus (Influenza C virus, ICV), 

Isavirus (Salmon isavirus), Quaranjavirus (Johnston Atoll quaranjavirus, Quaranfil 

quaranjavirus) and Thogotovirus (Dhori thogotovirus, Thogoto thogotovirus) belongs to the 

family Orthomixoviridae1. The family includes enveloped viruses containing a segmented, 

negative-sense, single-stranded RNA genome that is replicated in the nucleus of infected cells. 

The classification of influenza viruses to IAV, IBV, ICV and IDV is based on the antigenic 

variations of the internal viral proteins – the nucleoprotein (NP) and the matrix protein 1 (M1)2. 

Furthermore, IAVs are subdivided into subtypes according to the serological (antigenic) 

properties of their two major surface glycoproteins – hemagglutinin (HA) and neuraminidase 

(NA). Until now 16 different antigenic subtypes of HA (H1-H16) and 9 serotypes of NA have 

been isolated from aquatic avian species that are considered as a main natural pool of IAVs. 

Additionally, two influenza A-like viruses (H17N10 and H18N11) were isolated from bats3-5. 

IAVs mainly circulate in wild birds, marine mammals, poultry and domestic mammals (swine, 

horses, dogs, cats)6. Only three IAV subtypes have been found to circulate in the human 

population – H1N1, H2N2 (1957 – 1968) and H3N2. 

 

1.1.2. Virion structure and morphology 

The IAV virion has a pleomorphic nature; therefore, different shapes of the virus particles 

can be described. Most of the clinically isolated viruses demonstrate a filamentous phenotype 

with an approximate diameter of 80-100 nm, and an average length of 250 nm that can 

sometimes have a maximum of 30 µm7,8. During adaptation to in vitro cultivation conditions, 

clinical isolates are losing their filamentous shape and become more spherical.9 Spherical and 

elliptical virion shapes are described for the majority of laboratory-adapted IAV strains. The 

diameter of spherical particles is slightly bigger than the filamentous and reaches 80-120 nm. 

The lipid envelope of IAVs originates from the plasma membrane of the cells, in which the 
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virus was replicating and contains the incorporated viral transmembrane glycoproteins, HA and 

NA, and the ion channel protein – matrix protein 2 (M2) (Fig. 1-1). HA is evenly distributed 

within the virus particle, whereas NA forms clusters on the proximal end of the budding virion9. 

The HA/NA ratio in the IAV particle is usually 4-5 to 12. Underneath of the membrane-derived 

envelope localizes the most abundant viral protein – the M1, which is arranged as a helical 

matrix composed by multiple copies of M1-monomers. M1 is associated with the viral envelope 

and/or cytoplasmic tails of HA, NA, M2 and the viral ribonucleoprotein complexes (vRNPs)10-

12. vRNPs comprise the three subunits of the RNA-dependent-RNA-polymerase (RdRP) 

complex including polymerase basic 2 (PB2), polymerase basic 1 (PB1) and polymerase acidic 

(PA) subunits, and NP-coated viral RNA segments. IAV contains eight RNA genome segments, 

as well as IBV, whereas ICV and IDV genomes consist of seven gene segments. In IAV virions 

the vRNPs are organized in a specific “1+7” configuration and localize on the distal end of the 

virus particle opposite to the NA clusters. The non-structural protein 1 (NS1) and nuclear export 

protein (NEP)/ non-structural protein 2 (NS2) also have been detected in spherical virions of 

IAV13. The virion of IAV also includes host cell proteins in minor amount13. 

 

 

 

 

 

 

 

 

Figure 1-1 Schematic representation of an influenza virus particle, adapted from13. A cross-section of an 

influenza A virion indicating the NA accumulation at the proximal end (A) and an enlarged section (B), showing 

the locations and relative abundance of viral proteins (colorful) and host membrane and proteins (brown) at the 

distal end. 

 

1.1.3. Genome structure and protein characterization 

The genome of IAV consists of eight segments of negative-sense, single-stranded RNA. 

Each single RNA molecule is coiled in a hairpin structure and via its phosphate groups binds 
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to a basic amino-acid groove of the double-helical-oligomerized NP protein with a ratio of one 

NP per 26 nucleotides of RNA14-16. NP (550 aa) is encoded by gene segment 5, containing 1565 

nt. The terminal noncoding 5 ́- and the 3 ́ends of each vRNA segment contain 13 and 12 

nucleotides, respectively, that are highly conserved and partially complementary. This leads to 

the formation of a double-stranded ‘panhandle’ structure17-19. The duplex region between the 

5 -́ and the 3 énds associates with a heterotrimeric complex of the viral RdRP composed by 

PB2, PB1 and PA and functions as a viral promoter for RdRP-dependent replication and 

transcription6. The polymerase subunit proteins are the largest viral proteins (PB2 759 aa, PB1 

757 aa and PA 716 aa), and are encoded by genome segments 1 (2341 nt), 2 (2341 nt) and 3 

(2233 nt), respectively. PB2 recognizes and binds the 5' cap of host pre-mRNAs20. PA protein 

demonstrates cap binding, endonuclease and promoter binding activities, resulting in the 

cleavage of the host pre-mRNA shortly behind the cap structure. This “primer” is transferred 

onto the vRNA and leads to initiation of genome transcription21-23 exerted by the PB1, which is 

the catalytic subunit of RdRP24,25 (also see 1.1.4).  

Apart from the RdRP subunits, segment 1, 2 and 3 of certain IAV strains encode additional 

proteins that are translated from the same mRNA26-28. Among these, the PB2-S1 protein (508 

aa), which is encoded by a spliced version of the PB2 mRNA that comprises a deletion from 

nucleotide (nt) 1513 to 189429. PB2-S1 protein interferes with polymerase activity and inhibits 

RIG-I-dependent signaling29,30. The PB1 gene can encode an alternate open reading frame 

(ORF) resulting in the PB1-F2 protein that is 87 to 101 amino acid (aa) long (strain 

dependent)31. PB1-F2 is a multifunction protein that is involved in regulation of polymerase 

activity, activation of innate immune response and induction of apoptosis26,32-34. PB1-N40 is 

the third protein encoded by the PB1 gene. It is translated from the 5th AUG initiation codon 

within the ORF1 of the full-size PB1 gene28. PB1-N40 is 718 aa long and involved in the 

regulation of viral transcription and replication by interaction with the polymerase complex and 

host factors28,35. Gene segment 3 as well has an alternative +1 ORF, the “X-ORF” of PA that 

results in a translation of a conserved PA-X protein among IAVs via ribosomal frame shift36,37. 

PA-X protein consists of 191 N-terminal aa identical to those of the PA protein and 61 C-

terminal aa translated from the X-ORF36. PA-X possesses an endonuclease activity and plays a 

role in host protein synthesis shutoff leading to the inhibition of immune response, resulting in 

viral virulence36,38,39. The PA-N155 (562 aa) and the PA-N182 (535 aa) proteins are universal 

among most of IAVs, representing truncated forms of PA protein, transcribed from 11th and 

13th initiating AUG codon within the PA mRNA, respectively40,41. Both proteins are involved 

in the control of virus replication by interaction with host proteins42.  
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Segment 4 of IAV encodes only one described protein – the HA. HA (550 aa) is translated 

as an inactive precursor molecule HA0, folded as a trimer on the virion surface. It possess two 

structural regions - a membrane-proximal stalk domain, presented by triple-stranded coiled-coil 

α-helices and a globular receptor-binding domain, formed by antiparallel β-sheets43-45. HA is 

the main surface glycoprotein of the IAV virion. It binds to sialic-acid moieties (receptor 

determinant) on surface glycoproteins of the target cells (in contrast, the HA of bat IAVs can 

use the major histocompatibility complex (MHC) class II from different species dissimilar from 

sialic-acid receptor)46,47. Furthermore, it is responsible for the membrane fusion between the 

viral envelope and vesicular membranes of the cell during endosome-dependent virus entry. To 

perform its fusion activity HA0 requires proteolytic activation into the HA1 and the HA2 

subunits, linked by disulfide bonding48. This cleavage generates a new amino terminus with 

fusion activity. Most of the HA molecules of human and zoonotic IAV possess a monobasic 

cleavage site. In such a case the HA0 is cleaved at a single arginine (R) or a lysine (K) residue 

in a Q(E)-T/X-R motif by extracellular (trypsin-like or other) proteases48-50. Highly pathogenic 

IAV (HPAI) possess polybasic cleavage site motifs (R-X-K/R-R or K-X-K/R-R), which are 

cleaved by ubiquitously present intracellular processing trans Golgi network (TGN) proteases, 

like furin or pro-protein convertases (PCs)5/644,49,51,52. After the HA0 cleavage, IAV is capable 

of infecting a new host cell. The main receptor for IAVs is a sialic (N-acetylneuraminic) acid 

(SA) in the oligosaccharide chain of host N-glycans, O-glycans or glycosphingolipids53,54. SAs 

are usually bound to galactose residues within the oligosaccharide over a α-2,3 or α-2,6 

bondage10,53. The type of SA linkage determines in great part the IAV host tropism. Thus, avian 

IAV strains preferentially bind to α-2,3 SA, since this type of IAV receptor is mainly distributed 

in avian enteric tract where these strains replicate55,56. Human IAVs predominantly utilize α-

2,6 SA due to its high concentration in the upper respiratory tract of humans55,57,58. 

NA (454 aa) is another surface protein representing 20% of the surface glycoproteins that 

is encoded by segment 6 of the IAV genome59. NA is an integral membrane glycoprotein 

consisting of a cytoplasmic segment, a transmembrane domain, a stalk and a head domain, and 

forms a homotetrameric mushroom-shaped 60-100 Å long structure60,61. NA possesses an exo-

sialidase activity and its active site is localized in the globular head domain62. Like HA, the NA 

recognizes α-2,3 and α-2,6 SA, but cleaves the α-2,3 linkage between SA and galactose more 

efficiently56,59-61. NA plays a major role in the process of targeting the virus to epithelial cells 

by promoting degradation of sialylated O-glycans of mucin molecules in mucus layer that lines 

the target cells63,64. Furthermore, NA is involved in amplification of the fusogenic activity of 
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the HA, promotes budding of new virions and prevents the aggregation of progeny virions with 

each other and to the host cells by cleavage of SA on cellular and viral glycoproteins65,66.  

Genome segment 7 encodes also more than one protein. The M1 protein (252 aa) is the 

primary transcript of the unspliced mRNA. The M2 protein (97 aa), the potentially encoded 

(undiscovered) M3 peptide (9 aa) and the occasionally expressed M4 (99 aa) proteins are the 

result of alternative splicing67-69. M1 has an essential structural role by forming a rigid matrix 

layer underneath the membrane-derived viral envelope12,70-72. M1 is also involved in the viral 

uncoating process, the nuclear export of newly synthesized vRNP and it inhibits vRNA 

synthesis at the late stage of virus genome replication6,10,73,74. M2, is a product of alternative 

splicing of the M1 mRNA and consist of three domains – an N-terminal ectodomain domain, a 

transmembrane segment and a C-terminal domain. Four identical M2 monomers form a single-

pass, pH-regulated, proton-selective ion channel, which is activated by low exterior pH in the 

range pH 4.5-5.067,69,75,76. M2 function is necessary during virus entry, leading to a proton influx 

lowering the virion-internal pH needed for the M1 dissociation from the vRNP complexes, 

allowing these to enter into the cytoplasm75-77. Functional activity of M2 is also required during 

virus replication, since the M2 is integrated into cellular membranes resulting in an proton 

efflux and increasing of the lumenal pH in the TGN to prevent conformational changes of (intra-

cellular-cleaved) pH-sensitive HA proteins76,78. M2 also facilitates virus budding and 

scission11,79-81. Until now the function of the M3 mRNA transcript during the IAV life cycle is 

not described, but it was shown that M3 mRNA is not required for efficient virus replication in 

cell culture82. The M4 mRNA is translated into the M42 protein and it can be a functional 

alternative for M2 in M2-deficient virus83,84  

The shortest IAV genome segment 8 encodes the non-structural protein 1 (NS1, 230 aa), 

the nuclear export protein (NEP, 121 aa) and the non-structural protein 3 (NS3, 187 aa). NS1 

is transcribed from the full length mRNA and has two functional domains - an N-terminal RNA-

binding domain and a C-terminal effector domain85-87. NS1 is one of the early-expressed virus 

proteins during IAV-infection; it exists as a homodimer and has multiple functions, including 

antagonizing the host innate immune response and regulating the viral replication85,87-90. NEP 

is expressed from the spliced NS mRNA and is involved in the export of vRNP from the host 

cell nucleus, in the regulation of virus replication and the budding processes89,91-93. The last 

described protein encoded by alternative splicing of NS1 mRNA is the NS3 protein. NS3 is 

similar to the NS1 protein, but contains an internal deletion and is associated with the adaptation 

of avian IAV to a mammalian host, such as mouse, human, swine or dogs94. 
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 Table 1. IAV RNA segments and encoded proteins 

 

RNA segment 

number 

vRNA 

(nt) 

Gene product Number of 

amino acids 

Main functions 

1 2341 PB2 759 RdRP subunit, recognition and binding to cellular 

mRNA cap    

PB2-S1 508 Inhibition of RIG-I dependent interferon (IFN) 

signaling 

2 2341 PB1 757 Catalytic subunit of RdRP (elongation ) with 

endonuclease activity 

PB1-F2 87-101 Apoptosis induction activity, regulation of host IFN 

response  

PB1-N40 718 Regulation of PB1/PB1-F2 expression ratio 

3 2233 PA 716 RdRP subunit with endonuclease activity, Cleaves 

capped RNA fragments off of the host’s pre-RNA 

PA-X 61 In vitro – involved in regulation of veirus replication 

and inhibition of host innate immune response 

PA-N115 561 Possible role in virus replication, but function is not 

determined 

PA-N182 534 Function is not determined 

4 1778 HA 566 Attachment to the receptor, membrane fusion 

5 1565 NP 498 Binds to ssRNA, protection function within vRNP 

complex, nuclear import/export of vRNA 

6 1413 NA 454 Degradation of mucus layer, receptor disruption, 

involved in virion release  

7 1027 M1 252 Contribution in virion morphology and structure, 

nuclear import/export of vRNA , budding   

M2 97 Contribution in uncoating process and stability of 

HA conformation during protein-syntesis 

M3 9 Function is not determined 

M42 99 Function is not fully established, can serve as M2 

complements 

8 890 NS1 230 Suppressing of host mRNAs production, post-

transcription regulation, innate immune response 

antagonist 

NEP 121 Regulation transcription/regulation timing, vRNP 

nuclear export 

NS3 187 May be important for adaptation to a new host 
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1.1.4. Virus life cycle 

The first step in the IAV replication cycle is represented by virus binding to the host cell 

receptor determinant mediated by the HA (Fig. 1-2). The HA receptor binding domain is 

localized on the distal end of the globular head of the HA1 subdomain and is highly conserved 

among IAV subtypes92, 93. HA binds with low affinity to the SA on the host cell glycoproteins 

or glycolipids, but due to the attachment by other HAs to several SAs, the binding efficiency is 

increased95. Upon attachment, the IAV particle enters the cell by receptor-mediated endocytosis 

via clathrin-coated or uncoated vesicles or macropinocytosis96-99. After uptake, IAV undergoes 

endosomal trafficking from the early endosome (EE) to the late endosome (LE), involving the 

activity of many host factors, including small GTPases, Rab5, Rab7, focal adhesion kinase, 

actin filaments and microtubules (MT)100-105. In the late endosome at low pH, HA undergoes 

an irreversible conformational change that leads to the exposure of ‘fusion peptide’ of the HA2 

subunit and later to its insertion into the endosomal membrane resulting in the fusion of the 

endosomal and the viral membrane106-109. M2 mediated proton influx into the virion in the late 

endosome acidifies the inside of the virus particle to induce a conformational change in the M1, 

resulting in its dissociation from the NP associated with the vRNPs110-113. In the next step, 

vRNPs are released into the cytoplasm to be imported into the nucleus where the genome 

replication and transcription takes place. Nuclear vRNP import is dependent on the host 

karyopherin (importin) α1, α5, β import system and nuclear localization signals (NLS) in the 

NP, whereas NLSs of PB2, PB1 and PA are used later in the life cycle for the single protein 

nuclear import91,114-118.  

Viral transcription of a negative-sense vRNA starts by a primer-dependent mechanism 

(Fig. 1-3). For this, IAV retrieves host cell pre-mRNA cap structures by a process also known 

as ‘cap-snatching’119. The PB2 subunit of the RdRP recognizes the 5’-m7GpppXm cap structure 

of a nascent host transcript and the endonuclease activity of the PA subunit cleaves the host 

pre-mRNA 10-13 nucleotides downstream of the PB2-bound 5’-end20,120,121. Next, this capped 

primer engages the catalytic center of the PB1 subunit by rotation of the PB2 cap-binding 

domain and viral mRNA elongation takes place based on vRNA template-defined addition of 

nucleotides122. Generation of the viral mRNA is finalized by auto-polyadenylation through 

RdRP stuttering at a specific oligo-U stretch 17-22 nt upstream from 5’-end of the vRNA123-126. 

Synthesis of PB2, PB1, PA, NP and NS1 mRNAs takes place at the early stage of virus 

replication, whereas HA, NA and M1 mRNAs are more dominant at the late stage. 
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Figure 1-2 Schematic representation of the IAV life cycle, modified from127. The virion attaches to the 

apical plasma membrane receptors and enters the cells via receptor-mediated endocytosis. After fusion and 

uncoating in late endosomes, vRNPs are released into the cytosol and are then transported into the nucleus via 

importins. vRNA replication and transcription takes place in the nucleus. Nuclear export of mRNA and newly 

synthesized vRNAs is mediated by exportins. Viral proteins are translated in the cytoplasm by cytosolic and ER-

associated ribosomes. PB2, PB1, PA, NP, M1, NS1 and NEP are reimported into the nucleus where assembly of 

new vRNPs takes place. By recruitment of the exportin Crm1 via NEP and M1, vRNP are exported from nucleus 

followed by Rab11-associated microtubule-dependent transport to the apical membrane where budding process 

takes place. HA, NA and M2 proteins take the ER-GA- associated transport pathway. (EE: early endosome, LE: 

late endosome, ER: endoplasmic reticulum, GA: Golgi apparatus, MTOC: microtubule-organizing center). 

 

Before nuclear export, mRNAs encoded by M and NS segment undergo splicing by 

recruiting the cellular spliceosome67,87,128. For viral protein production, IAV then utilizes the 

translation machinery of the host cell. Membrane-associated proteins (HA, NA and M2) are 

translated by endoplasmic reticulum (ER)-associated ribosomes, translation of other viral 

proteins is situated at cytosolic ribosomes. In order to generate new vRNPs, subunits of the 

RdRP and NP protein are imported back into the nucleus by utilizing host α-importin for the 

PB2 import, importin-5 and karyopherin-β for import of the PB1:PA heterodimer and importin 

α1, α3 and α5 for NP import14. M1, NS1 and NEP as well are transported back to the nucleus129. 

In the nucleus, NP, PB2, PB1 and PA are associating with newly synthesized cRNA (see below) 

and are involved in the generation of new vRNA molecules. Replication of vRNA is carried out 

by the RdRP and includes two processes - first, an unprimed generation of a positive-sense 

complementary RNA (cRNA), followed by the second step – synthesis of a new negative-sense 

Receptor binding and 
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EE LE 

Cytoplasm
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Figure 1-3 Influenza A virus RNA replication/transcription, adapted from134. Simplified scheme of 

transcription and replication of vRNAs during the life cycle of influenza A virus. (vRNA: viral (negative-sense) 

RNA, cRNA: (positive-sense viral) complementary RNA). 

Newly generated vRNAs associate with NP and RdRP subunits to form the vRNP complex. 

vRNPs of different genome segments are aggregating in multi-structures (2-3-4 vRNPs) and 

are then actively transported from the nucleus through nuclear pores at the early stage of virus 

replication via the cellular β-exportin / chromosome region maintenance 1 (CRM1)-dependent 

pathway with the help of NEP and M1 proteins74,92,135-141. M1 protein associates with NP within 

vRNP and with NEP, which contains two nuclear export signals (NES) recognizable by the 

exportin CRM1 and its cofactor Ran-GTP91,142,143. At the late stage of virus replication vRNPs 

are exported passively from the nucleus due to the caspase3/7-dependent enlargement of 

nuclear pores144. The cellular Y box binding protein 1 (YB-1) also binds to vRNPs in the 

nucleus and is exported together with M1-NEP-vRNPs complex into the cytoplasm, where it 

facilitates vRNP association with microtubules around the microtubule-organizing center 

(MTOC)145. From the MTOC to the cell surface vRNPs are transported via the endocytic 

recycling compartment by the Rab11-dependent pathway146-149. Ras-related protein Rab11 is a 

marker of recycling endosomes (RE). It belongs to the family of small GTPase and mediates 

several processes of intracellular vesicle trafficking, including delivery of plasma membrane 

proteins to the apical or perinuclear endosomes, exocytic processes of the TGN and motility of 

RE towards the cell surface150,151. Rab11 can form complexes with different molecular motors, 

which enables the vesicular transport along microtubules in direction of their (-) and (+) end, 
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as well as actin-dependent transport151. In respect to molecular motors, Rab11 can associate 

with KIF5A, KIF3, KIF13 of the kinesin-1, kinesin-2 and kinesin-3 families providing (+) end 

microtubule (MT)-directed transport. The association with dynein light chains 1 and 2 enables 

(-) end MT-directed transport and an association with the myosin motor protein - myosin Vb, 

provides actin-dependent transport152-158. The transport efficiency is facilitated by the Rab11-

family interacting proteins (FIPs), that are used either as an adaptor molecules between Rab11 

and different molecular motors or as an effector of motor protein affinity to the Rab11-positive 

vesicle membranes151,159. KIF13 is the only until now described molecular motor that is 

facilitating Rab11-dependent vRNP transport and presence of FIPs was described to be 

dispensable for IAV infection148,160,161. Transport of vRNA to the cell surface was described as 

dependent on both - the actin- and the MT cytoskeleton, since a pharmacological disruption of 

actin or MT networks led to impaired shuttling of vRNP to the cell surface and reduced virus 

titer 100,146,161-164. Post-translational acetylation of microtubules also influences vRNP transport 

to the apical cell membrane, since activation of histone deacetylase 6 (HDAC6) that possesses 

a tubulin deacetylase activity, decreases vRNP trafficking and virus titer165. GTP-bound 

(activated) Rab11 associates with vRNPs by interaction with PB2146,162. Binding of vRNPs to 

Rab11 induces its redistribution and impairs recycling endosome sorting efficiency by an 

undescribed mechanism149. Clusters of Rab11-vRNP vesicles form hotspots containing eight 

distinct vRNPs under the plasma membrane in the region of virus budding. Approximately 500 

nm from the cell surface vRNPs are then dissociating from Rab11166. The mechanism of vRNPs 

transport into the budding zone stays unclear. During the vRNP transport to the cell surface, 

M1 and NEP are also co-transported together by Rab11-vesicles.  

HA, NA and M2 are synthesized at the rough ER (rER) and transported to the cell surface 

via the secretory pathway167. HA and NA contain apical sorting signals and their transport from 

the rER to the Golgi apparatus (GA) where they obtain required post-translational sugar 

modifications, is associated with the coat protein I (COPI) complex168. An apical localization 

signal in the M2 protein is not yet identified, but COPI is also involved in M2 transport from 

the rER to the GA168. Already in the TGN, NA and HA are associated with lipid raft 

microdomains that contribute to the apical shuttling of the glycoproteins and organization of 

the viral budding zone169,170. Acetylated microtubules are also involved in the trafficking of the 

HA to the plasma membrane165. M2 protein is excluded from lipid rafts, but is targeted to the 

apical membrane in an actin-dependent manner, where it associates with HA clusters171,172. 

Transport of M2 to the apical plasma membrane requires the host factors ubuiquitin protein 

ligase E3 component N-recognin 4 (UBR4), transport protein particle complex 6A 



Introduction 

17 

(TRAPPC6AΔ) and Rab11, since the knockdown of these proteins reduces M2 surface 

expression, but does not have a negative effect of HA and NA distribution75. Accumulation of 

HA and NA in lipid drafts in plasma membrane induces formation of the budding zones11,173 

and triggers nuclear vRNP export via Raf/MEK/ERK signaling174. M2 associates with lipid 

rafts at the edges of the budding zones, due to the cholesterol recognition/interaction amino acid 

consensus (CRAC) motif, allowing cholesterol binding and membrane integration. 

Palmitoylation of the Cys50 residue allows lipid raft association175-177. Each vRNP contains 

identified packaging signal sequences, but the mechanism of the formation a “1+7” pattern in 

a budding zone and its uptake into the virus particle remains elusive178. M1 protein oligomerizes 

below the plasma membrane providing the structure of the progeny virion and is believed to 

interact with HA, NA, M2, NEP and vRNPs179-181. When the virion is completely formed, M2 

protein becomes localized at the neck of the growing bud where it generates a negative Gaussian 

curvature resulting in membrane constriction and pinching off of the virus particle34. Finally, 

NA cleaves off sialic acids from cellular and virus glycoproteins promoting virion release129 

 

1.2. Influenza A virus infection  

1.2.1. Influenza A virus epidemiology and clinical symptoms 

Influenza viruses cause an acute infectious respiratory disease in humans. Outbreaks occur 

in form of seasonal influenza epidemics, caused by IAV and IBV, and sporadic pandemics 

caused by IAV. Antigenic drift and antigenic shift are two distinct mechanisms of virus surface 

glycoproteins modification that lead to formation of epidemiological influenza virus variants. 

Antigenic drift is a gradual accumulation of mutations in the HA and NA, induced by the error 

prone genome replication as the RdRP does not possess a proof-reading function and by 

antibody-mediated selective pressure in the hosts182,183. It occurs in both IAV and IBV and 

results in seasonal epidemics182,183. Antigenic shift is described only for IAV and refers to the 

exchange of vRNPs upon co-infection with different IAVs (reassortment). This can result in an 

introduction of IAVs with novel characteristics and possibly HAs with new antigenic properties 

into the human population183,184. Such viruses can rapidly spread, as there is no pre-existing 

human immunity that could counteract, and can therefore lead to worldwide pandemics. Five 

pandemic outbreaks have been documented in the last 100 years – the Spanish influenza in 

1918/1919 (H1N1), the Asian influenza in 1957 (H2N2), the Hong Kong influenza in 1968 

(H3N2), the re-emergence of H1N1 in 1977 (Russian influenza) and swine origin influenza in 

2009 (H1N1, Mexico influenza). Spread of new IAVs variants in an immunologically naïve 
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human population causes increased morbidity and mortality due to severe acute pulmonary 

hemorrhage and edema183,185. HA of seasonal IAVs preferentially binds to α-2,6 SAs, which 

are mainly distributed on the surface of epithelial cells in the upper respiratory tract of 

humans186. Seasonal viruses can spread easy and fast via aerosol and droplets of nasal 

discharges, but the infection is normally limited to the upper respiratory tract (URT) – nasal 

cavity, pharynx and larynx187,188. Seasonal viruses often cause disease characterized by fever, 

headache, myalgia, malaise accompanied by non-productive cough, nasal discharge, and sore 

throat183,189.  

Human infections with pandemic viruses was often associated with a severe infection of 

lower respiratory tract (LRT), including infection of bronchioles and type II pneumocytes 

expressing α-2,3 SA receptors preferable used by avian IAV186,187. Sequence analysis of HA 

genes in the IAVs of 1918/1919 H1N1, 1957 (H2N2), 1968 (H3N2), and 2009 (H1N1) revealed 

changes in the HA receptor binding site, allowing α-2,6, α-2,3, or α-2,3/α-2,6 sialic acid 

specificity190-196. Due to the fact, that the primary target of α-2,3 SA-dependent IAVs is located 

in LRT, the spread of these viruses in the human population is limited, but LRT infections are 

more sever and associated with acute pneumonia, necrotizing bronchitis, intestinal 

inflammation and alveolar lumen flooding with edema fluid, leading to development of acute 

respiratory distress syndrome (ARDS)187,197-199. 

 

1.2.2. Influenza A virus induced lung injury  

IAV directly induces lung injury by infecting lung epithelial cells, disrupting the tight 

junctions among them and by activation of the intrinsic apoptosis/necrosis pathway in infected 

cells187,200-202. Additionally, IAV infection of alveolar epithelial cells leads to the insufficiently 

controlled production of pro-inflammatory cytokines and chemokines, including IP-10, IFNβ, 

IL-1β, IL-6, RANTES, CCR2, TNFα. This results in recruitment of inflammatory cells 

followed by abundant immune cell infiltration and tissue damage, that cannot be resolved in 

severe cases187,197,200-203. Disruption of the epithelial-endothelial barrier leads to protein-rich 

fluid leakage into the alveolar lumen resulting in respiratory insufficiency. Under the normal 

conditions, clearance of the lung edema strongly depends on the limited protein transport across 

the epithelium out of the alveolar lumen, and on the presence of an osmotic gradient allowing 

water transport via aquaporins and intracellular pathways in alveolar epithelial cells towards 

the interstitial lumen 202. Alveolar epithelium is composed by squamous, flat type I 

pneumocytes (alveolar epithelial cells (AEC) type I, AT I), that comprise 90% of the alveolar 
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surface and which are actively involved in gas exchange and ions and water transport204. The 

second type of alveolar epithelial cells – cuboidal type II pneumocytes (alveolar epithelial cells 

type II, AT II) also play an important role in fluid homeostasis and ions transport, and are 

involved in pathogens recognition and activation of the immune response205. ATs II possess a 

progenitor cell function during lung repair and IAVs are almost exclusively replicating in AT 

II197,206. 

Barrier function of the alveolar epithelium is based on the tight interconnection of the cells 

and their high polarization (Fig. 1-4). Within the epithelium, cells are attached to each other via 

the adherent junctions, which are intracellular linked to the actin cytoskeleton and formed by 

the transmembrane protein E-cadherin and intracellular components of the catenin protein 

family207. Tight junctions (TJ) are composed by the transmembrane proteins occludin, claudin 

and by scaffolding proteins zona-occludens (ZO-1,-2,-3), localized in cytoplasm207. TJs 

regulate paracellular transport of ions and solutes, providing a low epithelial permeability and 

cellular polarity, described as an intrinsic asymmetry in distribution of structures within the 

cell. Asymmetric expression of membrane ion-channels and pumps results in the establishment 

of an osmotic gradient. Amiloride-sensitive epithelial sodium channel (ENaC) is expressed on 

the apical cell membrane of AT I and AT II and is responsible for sodium ions uptake (Na+), 

that is accompanied by the chloride ion (Cl-) transport via the cystic fibrosis transmembrane 

conductance regulator (CFTR)202,204. Sodium-potassium adenosine triphosphatase (Na+,K+-

ATPase, NKA) is located on the basolateral cell membrane and actively transports three Na+ 

ions to the interstitial space against the concentration gradient creating an osmotic force for 

passive water transport from alveolar airspace to the lung lymphatic and microvascular 

vessels202,204,208. Both AT I and AT II express aquaporins – membrane water channels, involved 

in water transfer across the membrane209. 

 

 

 

 

 

 

 

Figure 1-4 Schematic representation of alveolar epithelium. Alveolar epithelia consist of alveolar 

epithelial cells type I (AT I) and alveolar epithelial cells type II (AT II), connected with each other via adherent 
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and tight junctions. Epithelial cells possess an asymmetric expression of ion channels and pumps. (ENaC: 

epithelial sodium channel, CFTR: cystic fibrosis transmembrane conductance regulator, AQP: aquaporin, NKA: 

sodium-potassium adenosine triphosphatase, H2O: water) 

 

IAV infection affects the alveolar epithelium integrity by inducing the loss of the TJ protein 

claudin-4, resulting in increased epithelial permeability (Fig. 1-5)201. IAVs also negatively 

regulate expression and function of ENaC and CFTR and thus further impair alveolar fluid 

clearance210-213. Additionally, IAV-induced paracrine cross-talk between infected epithelial 

cells and macrophages leads to the reduction of the NKA basolateral amount in non-infected 

alveolar epithelial cells negatively affecting edema resolution214. 

 

 

 

 

 

 

      

 

 

 

 

 

 

Figure 1-5 Pathological effect of IAV on lung edema resolution. (A). Schematic representation of alveolar 

edema formation induced by influenza virus. (B). IAV-induced decrease of ion channel and transporter plasma 

membrane expression resulting in disruption of vectoral water transport. Alveolar epithelia consist of  AT I and 

AT II, connected with each other via adherent and tight junctions. AECs possess asymmetric expression of ion 

channel and pumps. 
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1.3. Na+,K+-ATPase 

1.3.1. Structure of Na+,K+-ATPase 

The NKA is a heterodimeric integral membrane protein that belongs to the largest and most 

diverse family of the ATP-dependent ion transporters, the P-type ATPases. NKA consists of 

the catalytic α-subunit, the β-subunit and a FXYD protein (Fig.1-6). 

The catalytic α-subunit has a molecular weight of 100-110 kDa, composed by ten 

transmembrane helices, five extracellular loops, three cytosolic domains, the N-(nucleotide 

binding)-, the P-(phosphorylation) and the A-(actuator) domain. The N- and C-terminus have 

an intracellular localization215. Four distinct isoforms of the α-subunit have been identified and 

they have only minor differences in aa sequence, despite of being encoded by different genes216. 

The α-subunit displays binding domains for Na+,K+, ATP, phosphate and for the cardioactive 

glycoside ouabain – the inhibitor of the NKA.  

 

 

 

 

 

 

 

Figure 1-6 The molecular structure of Na+,K+-ATPase, modified from217. The catalytic α subunit (pink) 

is composed of ten transmembrane helices and five exposed extracellular loops. The β subunit (light blue) contains 

a short intracellular N-terminal domain (30 amino acid residues), a single transmembrane domain and an 

extracellular domain, which is interacting with the extracellular loop of the α subunit between the M7 and M8 

transmembrane helices. The FXYD protein is a tissue specific protein associated with M9 α-helix and may interact 

with the β subunit. 

The β-subunit is a type II glycoprotein (app. 55 kDa) with a short intracellular domain, a 

single transmembrane span and a large extracellular, highly glycosylated C-terminus domain. 

Three different isoforms of the β-subunit have been described218. The β-subunit is involved in 

maturation of the NKA by acting as a molecular chaperone, has an influence on the functional 

activity of NKA by changing Na/K affinity of the α-subunit and has an important role in 

establishment of cell polarity217-221. 
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The tissue-specific FXYD protein consists of a single transmembrane helix and an N-

terminal extracellular domain with a PFXYD motif. It associates with the extracellular and the 

transmembrane domains of the β subunit218. Seven isoforms of the FXYD protein are described 

in mammals and they regulate substrate affinities of NKA as well as a maximal ion 

conductance222. 

Functional expression of NKA in the plasma membrane requires assembly of α- and β-

subunits in the ER and only the α/β-assembled complex may exit the ER to the Golgi complex, 

where enzyme maturation takes place223-225. In absence of the β-subunit, the α-subunit 

associates with β-COP protein, a component of the coat protein II (COPII) complex, that leads 

to ER-retention followed by degradation226. Basolateral localization of NKA in most of the 

epithelia is strongly dependent on the adhesive properties of the β1-subunit224,227,228. 

Association of α1-and β2-subunits leads to apical NKA mislocalization under the pathological 

condition of autosomal dominant polycystic kidney disease (ADPKD) or under normal 

conditions in the retinal pigment epithelium (RPE)229,230. The stoichiometry of α- and β-

subunits in the active membrane integrated enzyme is 1:1, but α- and β-subunits are as well 

independently involved in different cellular functions225,231,232.  

 

1.3.2. Functions of the Na+,K+-ATPase 

The NKA is an omnipresent ion pump that is actively involved in the establishment and 

the maintenance of the Na+ and K+ gradient across plasma membrane. Most of mammalian cells 

have a low intracellular concentration of Na+ (5-15 mM), and a high concentration of K+ (140 

mM), whereas extracellular concentrations of these ions is reversed (Na+ -145 -150 mM and K+ 

- 5 mM)233. NKA transfers 3 Na+ out of the cell and 2 K+ into the cell against the concentration 

gradient using energy by ATP hydrolysis. More than 40% of total produced energy in mammals 

is spend for NKA activity234. By the regulation of ion concentration, the NKA maintains a stable 

osmolarity of the cells preventing swelling and it creates a driving force for the secondary 

transport of glucose, amino acids or phosphates and generates an electrical transmembrane 

potential218,221. The osmotic Na+ gradient by NKA is crucial for the reabsorption processes of 

the kidney and the gut tissue, as well as in the vectorial paracellular water transport in the 

alveolar airspace to enable normal gas exchange216,235,236.. Thus, ARDS and acute lung injury 

(ALI) are associated with impaired edema clearance due to the decreased function of epithelial 

NKA236. Functional activity of the enzyme is also required for the formation of tight junctions 

and desmosomes leading to development of polarized epithelial cells237-239. NKA is further 
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involved in regulation of actin dynamics and stress fibers formation235,238-240. Although, NKA 

does not have kinase or phosphatase activities, it plays an important role as a signal transducer 

in cell signaling241. NKA directly interacts with regulatory proteins, such as membrane-

associated non-receptor tyrosine kinase Scr, B-cell lymphoma 2 (BCL-2), phosphoinositide 3-

kinase (PI3K), protein phosphatase 2 and EGFR. Therefore, NKA is involved in cell 

proliferation, differentiation, apoptosis and homeostasis via participation in control of 

Raf/MEK/ERK, PI3K/Akt, PLC/PKC, Ca2+-signaling and generation of reactive oxygen 

species (ROS)241-244. 

 

1.3.3. Regulation of the Na+,K+-ATPase 

Regulation of NKA abundance and function occurs at the transcriptional, post- 

transcriptional, translational and post-translational level. As it was mentioned above, expression 

of the NKA subunits is tissue specific and the level of subunit expression changes during 

development, cellular activity and ion homeostasis245. A long-term regulation of NKA 

expression in a response to extracellular stimuli includes several DNA-binding transcription 

factors, including histone deacetylase 2 (HDAC2), Snail, specificity protein (Sp) and hormone 

receptors, that activate or repress the enzyme production245-248. A short-term regulation that 

leads to a quick response to extracellular stimuli, involves changes of the enzyme kinetic, of its 

ion affinity and of NKA trafficking between the plasma membrane and the intracellular pool, 

which contains 30-70% of all cellular NKA249. During ALI induced by mechanical lung 

ventilation, hypoxia, hypercapnia, alcohol, endotoxin or oleic acid, the abundance of the 

membrane located NKA is reduced due to endocytosis of the enzyme249,250. This process is 

reversible upon the abrogation of the extracellular stimulation, while a sustained stimulation 

leads to the lysosomal degradation of NKA, as a part of the phosphorylation-ubiquitination-

recognition-endocytosis-degradation (PURED) regulatory mechanism249. Phosphorylation of 

the residue Ser18 in the α1-subunit of NKA by the AMP-activated protein kinase (AMPK)-

activated protein kinase C (PKC-ζ) is a pre-requisite for its clathrin-dependent endocytosis. 

Subsequent NKA dephosphorylation takes place in late endosomes251,252. Phosphorylation of 

Ser18 is also necessary for NKA ubiquitination at the positions Lys16, 17, 19 and 20 of the α1-

subunit N-terminus253. NKA translocation from the plasma membrane is further regulated by 

the Rho-associated coiled-coil containing serin/threonine kinase (ROCK), as well as by protein 

kinase A (PKA) that are both controlling rapid reorganization of the actin cytoskeleton, 
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allowing NKA endocytosis254-256. Phosphorylated and ubiquitinated NKA undergoes lysosomal 

degradation, leading to the reduction of its intracellular and plasma membrane abundance.  

IAV-infection of primary human and murine alveolar epithelial cells decreases the NKA 

amount on the basolateral membrane of neighboring, non-infected cells214. IAV-infection also 

induces host type I IFN production of infected alveolar macrophages that leads to release of 

TNF-related apoptosis–inducing ligand (TRAIL) expression and subsequent activation of PKC-

ζ signaling in non-infected cells, resulting in NKA degradation and impaired lung edema 

resolution214. Interestingly, in IAV-infected cells, the amount of the plasma membrane-

associated NKA was unchanged214, but it was found to be mistargeted to the apical cell 

membrane (Peteranderl et al., under submission). 

In contrast, other extracellular stimuli, such as β-Adrenergic agonists, dopamine or insulin 

can improve alveolar fluid reabsorption by increasing the plasma abundance of NKA via its 

recruitment from the intracellular pool to the plasma membrane257-260. Dopamine or insulin 

treatment of alveolar cells leads to the dephosphorylation of the α1-subunit residue Ser18 by 

protein phosphatase 2A (PP2A) and to microtubule-dependent transport of NKA containing 

vesicles to the plasma membrane, facilitated by microtubule-associated molecular motor 

kinesin I257,261-263. Activation of atypical protein kinases C (aPKCs: aPKC-ϵ and aPKC-δ, 

protein kinase B (PKB) also known as Akt) and activity of the Ras-related protein Rab10, a 

regulator of the apical and the basolateral recycling pathways, is also required for NKA 

recruitment to the plasma membrane259,261. 
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2. Methods 

 

2.1. Cell cultures  

2.1.1. Cell Culture cultivation 

All cell lines were cultivated in 75 cm2 or 165 cm2 tissue culture flask at 37 °C in a 95% 

humidified atmosphere of 5% CO2. When cell monolayers reached 90% confluence cells (except 

Calu3 cells which do not reach 100% confluence, maximum 50%) were washed once with PBS 

-/- and detached with Trypsin-EDTA. Cells were resuspended in a suitable media (see table 

below) and seeded in 6-well, 12-well, 24-well tissue plates, in 15 cm tissue dishes or on sterile 

glass-cover slips placed within a culture well 24 hours prior of each experiment.  

Cell culture Origin Source Media composition 
A549 human lung 

adenocarcinoma 
epithelial cells 

American Type Culture 
Collection, Manassas, VA, 
USA 

DMEM, 10% heat 
inactivated (hi, 56 ºC for 
1 h) FCS, 25mM Glucose, 
4mM L-Glutamine 

BEAS 2B human bronchial 
epithelial cells 

Cell culture collection, 
Institute of Medical 
Virology, Justus-Liebig 
University Giessen, 
Germany 

BEGM, 10% hi FCS, 
BEGM BulletKit 

CaCo2 human colon 
adenocarcinoma 
epithelial cells 

Cell culture collection, 
Institute of Medical 
Virology, Justus-Liebig 
University Giessen, 
Germany 

DMEM-F12, 10% hi 
FCS, 
2mM GlutaMax 

Calu3 human adenocarcinoma 
bronchial epithelial cells 

American Type Culture 
Collection, Manassas, VA, 
USA 

MEM, 15% hi FCS, 4mM 
GlutaMax, 1mM Sodium 
Pyruvate, 1% Non-
Essential Amino Acids 
Solution 

MLE 15 Murine lung epithelial 
cells 

Cell culture collection, 
Institute of Medical 
Virology, Justus-Liebig 
University Giessen, 
Germany 

DMEM, 10% hi FCS, 
25mM Glucose, 4mM L-
Glutamine 

MDCK II canine kidney epithelial 
cells, subclone II.   

Cell culture collection, 
Institute of Medical 
Virology, Justus-Liebig 
University Giessen, 
Germany 

DMEM, 10% hi FCS, 
25mM Glucose, 4mM L-
Glutamine 
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2.1.2. Polarization of Calu3 cells  

In order to obtain highly polarized Calu3 cells, the cell monolayer in a 175 cm2 tissue 

culture flask grown to 50 % confluence was washed once with PBS -/- and treated with Trypsin-

EDTA. Cells were resuspended in 10 ml culture medium and centrifuged for 15 min at 300 x 

g, 24 °C. Supernatant was discarded and cells were resuspended in 5 ml of culture medium. 30 

µl of cell suspension were mixed with 30 µl of 0.4% trypan blue dye and cell concentration was 

calculated in Neubauer chamber according manufacturer’s instruction. Cells were dilute to a 

concentration of 2 × 106 viable cells/ml in Calu3 culture medium and 250 µl/125 µl of the cell 

suspension containing 0.5 × 106 / 0.25 × 106 viable cells were placed to the apical compartment 

of each Transwells® insert in a 12/24 well plate. 1/0.3 ml of Calu-3 culture medium was added 

into the basolateral compartments, avoiding the introduction of air bubbles and cells were 

cultivated at 37 °C, 5% CO2. For the cells grown under the Liquid-Liquid Interface (LLI) 

condition, medium was replaced in both compartments each second day. For Air-Liquid 

Interface (ALI), culture medium was aspirated from the apical compartment on the day two, 

whereas medium was replaced every 2 days in the basolateral compartments. 

 

2.1.3. Transepithelial electrical resistance (TEER) measurements 

In order to measure trans-epithelial electrical resistance Millicell®ERS-2 epithelial Volt-

Ohm meter was used. First, cells were allowed to come to the room temperature (RT). For ALI 

culture – 300 µl of culture medium was added to the apical compartment prior measurement.  

The electrode of the Volt-Ohm meter was washed once with 70% ethanol, then with sterile 

ddH2O and once with culture medium at RT. Then, the electrode was placed in Transwells® so 

that the shorter tip did not contact the cell layer on the membrane in the upper compartment and 

the longer tip touched just a bottom of the outer well. TEER was calculated as a difference 

between the resistances obtained for the Transwells® with cells and blank -Transwells® 

without cells per one square centimeter. The unit of TEER is Ωcm2. 

 

2.1.4. Cell viability assay  

In order to check a cytotoxicity of applied inhibitors a commercial available reagent -

PrestoBlue™ has been used. The reagent – resazurin (7-hydroxy-10-oxidophenoxazin-10-ium-
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3-one)-based compound is converted into the reduced form by the mitochondrial enzymes of 

viable cells with a change of color and can be quantified using either spectrophotometric or 

fluorometric approach. The viability assay was performed according to the manufacturer’s 

protocol. Calu3 cells were seeded on a 96-well plate in a concentration 1 × 104/well in 90 µl of 

culture medium 24 h later were treated with media containing the inhibitors at different 

concentrations and 24 h later 10 µl of 10-fold ready-to-use PrestoBlue™ reagent were added to 

each well. The plate was then incubated 30 min at 37°C in darkness and subsequently the 

absorbance was measured at 570 nm wavelength by Tecan Spark® 10M multimode microplate 

reader to determine the amount of resazurin conversion. 

 

2.1.5. Vectorial water transport  

Vectorial water transport (VWT) as a characteristic of the physiological status of the Calu3 

cell monolayer was measured by changes of FITC-dextran concentrations in apical and basal 

cell culture medium of polarized Calu3 cells grown on Transwells® inserts for 14 days under 

Liquid-Liquid Interface conditions. For this, the cells were either mock infected or infected 

with PR8 at a multiplicity of infection (MOI): 2 for 1 hour at 37 °C. Inoculum was removed 

and cells were supplied with the Infection medium #2 containing 1 mg/ml of 70 kDa FITC-

dextran and 5 µM Rho-kinase inhibitor RKI-1447 (XIII) in DMSO or just the equal amount of 

DMSO (solvent). Cells were incubated at 37 °C for 8 and 24 h. 30 µl of cell culture medium 

from apical and basal side were collected, diluted 1:1 with PBS -/- and placed on 96 well flat 

bottom black plates. The fluorescence intensity of the samples was measured at excitation 

wavelength 480 nm and emission wavelength 535 nm by Tecan Spark® 10M multimode 

microplate reader. VWT was calculated using the formula: 

C0 = [1 – (C0/Ca)] – [1-(C0/Cb)] 

, where  

C0- fluorescence value of culture medium at starting point; 

Ca - fluorescence value of culture medium in apical side of Transwells® inserts; 

Cb - fluorescence value of culture medium in basal side of Transwells® inserts 
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2.2. Viruses  

2.2.1. Virus propagation 

All viruses were propagated in MDCK II cells in 165 cm2 culture flask. For this a 24-hr-

old 85% confluent monolayer of cells was washed once with PBS -/- and 5 ml of PBS 

+/+/BA/PS containing virus dilution corresponding to MOI equal to 0.01 were added, followed 

by 45 min of incubation at a room temperature. Subsequently, inoculum was removed, cells 

were washed with PBS -/- and were incubated in Infection medium #1 containing 1 mg TPCK-

treated trypsin ml-1 at 37 °C for 2 days. Supernatant was collected and virus titer was determined 

by a foci-forming assay.  

 

2.2.2.  Foci forming assay  

For the foci forming assay, MDCK II cells were seeded in 96-well plates at a concentration 

of 3 × 106 cells/plate. The next day, 10-fold dilutions in duplicates (from 10-1 to 10-8) in PBS 

+/+/BA/PS  was prepared from each virus sample in U-shaped 96-well. Importantly, during the 

preparation of the dilutions the pipet tips were changed after each dilution step. The MDCK II 

cells in the 96-well plate(s) were washed once with PBS+/+. Then 50 μl of the according 

dilutions for each sample in the U-shaped plate were transferred onto the MDCK II cells in an 

according well of the 96-well plate, which were then incubated for 45 min. After incubation, 

inoculum was removed starting with the 10-8 dilution row without changing the pipet tips and 

100 µl of Avicel medium containing 1 mg TPCK-treated trypsin ml-1 were added to each well. 

Cells were incubated at 37 °C, 5% CO2 for 30 hours followed by the immunocytochemical 

analysis to detect virus-infected cells. For this, cells were washed twice with 200 µl of PBS +/+, 

were fixed and permeabilized in 4% (w/v) paraformaldehyde (PFA) containing 1% (v/v) Triton-

X-100 for 30 minutes at room temperature. Next, cells were trice washed with 400 µl of washing 

buffer (PBS +/+ with 0.05% (v/v) Tween® 20) and overlaid with 50 µl of primary anti-NP 

antibody solution (3% (w/v) BSA in PBS +/+) for 2 hours at room temperature. Then, cells 

were washed tree times with washing buffer followed by incubation with 50 µl of secondary 

Horse-Radish Peroxidase (HRP) labeled anti-mouse antibody. 1 hour later, cells again were 

washed with 400 µl of washing buffer and 40 µl AEC-staining buffer were added to each well. 

Following incubation for 30 min at 37 °C until foci could be detected, the staining buffer was 

removed and cells were washed twice with dH2O. Air-dried plates were scanned by using the 
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Epson Perfection V500 Photo scan (Epson) at 1200 dpi and total number of foci was determined 

per well. Since Avicel-medium has a high viscosity that prevents diffusion of virus particles in 

surrounding media, virus can spread only from one cell to other forming foci. The viral titer per 

1 ml was determined by formula: 

Number of foci per well×
ଵ଴଴଴ µ௟

ହ଴ µ௟
× dilution factor-1= ffu/ml 

, where ffu is foci forming unit.  

2.2.3. Preparation of lung homogenate for virus titration 

For analysis of the virus titer in infected lung epithelial cells by foci assay, mice were 

sacrificed by exsanguinations. The pulmonary circulation was flushed with sterile PBS -/-via 

the right ventricle. Flushed blanched lungs were removed and washed with cold PBS -/-. Lobes 

were sheared with scissors and remaining tissue was dissociated by pipeting in 1 ml PBS -/- to 

single cell suspensions. Cells were pelleted by centrifugation at 400 x g for 10 min at 4 °C and 

supernatant was subjected to foci assay as described earlier. 

 

2.3. Microsopy 

2.3.1. Fixation of cells for immunofluorescence assay  

For immunofluorescence assay cells were washed ones with PBS +/+ and fixed with or 

without extra permeabilization at the indicated time points. Depending on the primary 

antibodies used cells were either fixed and permeabilzed with organic solvents or fixed with 

the cross-linking reagent paraformaldehyde. As organic solvents either pre-cooled (-20 °C) 1:1 

(v/v) aceton:methanol solution (for NKA α1 staining) or pre-cooled (-20 °C) 100% methanol 

(for tubulin staining) was used for 3 min at -20 °C followed by three times washing with 

washing buffer and blocked with blocking buffer for one hour at RT or overnight at 4 °C. As a 

cross-linking reagent 4% (w/v) PFA solution was used to fix the cells for 10 min at RT, followed 

by washing thrice with PBS +/+ containing 30 mM glycine (G-PBS) and subsequently 

permeabilized with 0.25 % (v/w) Triton X-100 for 7 min. Then cells were washed three times 

with G-PBS and were overlaid with blocking solution (3 % (w/v) BSA in G-PBS, G-PBS/BSA) 

for 30 min at RT. Fixed cells were then treated with 0.25% (v/w) Triton X-100 in G-PBS for 

15 minutes, washed with G-PBS three times followed by blocking in G-PBS/BSA for 30 min.  



Methods 

30 

2.3.2. Antibody staining and confocal laser-scanning microscopy  

For antibody staining cells were then incubated with specific primary antibody (dilution 

given in 2.1.4) in antibody diluting solution. The antibody dilution was added to the fixed cells 

(+/- permebilization) for 2 h at RT, followed by washing twice with PBS +/+. The cells were 

then incubated for 1 h with secondary antibody conjugated to Alexa Fluor 488, Alexa Fluor 

568, Alexa Fluor 594 or Alexa Fluor 647 diluted in antibody diluting solution. Then cells were 

washed thrice with PBS -/-, once with ddH2O and cover slips or polyester membrane from 

Transwells® were mounted on a glass slide with ProLong™ Gold antifade mountant with DAPI 

(conc. not given by the manufacture) overnight. Signals were visualized by using a Leica TCS-

SP5 confocal laser-scanning microscope with HCX PL Apo 63x/1.30 GLYC objective and a 

pinhole – 1 airy unit (AU). Z-Stack was acquired using 0.25 µm step size and results were 

analyzed by Imaris software (Bitplane).  

 

2.3.3. Preparation of polarized cells for Epon embedding and semi-thin section. 

Calu3 cells cultured on Transwells® inserts were fixed with 1.5% (v/v) glutaraldehyde in 

0.1 M cacodylate buffer (pH 7.4) for 5 h at RT and were washed in 0.5 M phosphate buffer (pH 

7.4) overnight at 4°C. Then the cells were treated with 1% (v/v) osmium tetroxide in 0.1 M 

cacodylate buffer for 1 h at RT, three times washed with 0.1 M cacodylate buffer for 5 min at 

RT followed by two times washing with ddH2O. The cells were then dehydrated on ice in a 

graded ethanol series: 

Ethanol concentration Time  °C 

30% 15 min RT 

50% 15 min RT 

70% 15 min RT 

80% 10 min RT 

90% 10 min RT 

96% 10 min RT 

100% 10 min RT 

100% with molecular sieve 0.3 nm overnight  4°C 

The cells on the Transwells® membranes were then treated with Epon in following procedure: 
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100% ethanol: Epon ratio Time  °C 

2:1 3 h RT 

1:1 overnight + 4  

1:2 4 h RT 

Pure Epon 2 h RT 

 

The cells were then embedded in Epon in plastic flat embedding molds and dried at 60 °C for 

24 h. Semi-thin cross-sections (300 nm) of the cells were cut on Reichter Ultracut R ultratome 

and stained during 2 min by 0.5 % Toluidine blue in ddH2O.  

 

2.4. Analysis of protein expression 

2.4.1. Cell lysis and detection of protein concentration 

To analyze quantitative changes in protein expression levels under different conditions, 

cells were washed ones with ice-colds PBS +/+ and then treated with cold NP40-lysis buffer 

(50 µl per one well of 12 well plate, 100 µl per one well of 6 well plate) containing 

proteases/phosphatases inhibitors for 2 min. Next, cells in NP40-lysis buffer were detached 

from plastic with a cell scraper and incubated in a reaction tube (Eppendorf) on ice for 20 min 

with pulse-vortex each 5 min.  Cell debris was precipitated by centrifugation at 16,200 x g for 

15 min at 4 °C. Quantification of protein concentration in the supernatants was performed by 

colorimetric Bradford assay according to the manufacturer’s instruction. The Bradford assay is 

based on an absorbance shift after complex formation between the Brilliant Blue G-250 dye 

and proteins in solution. Briefly, 2 µl of cell lysate were diluted 1:10 in PBS -/-. Next, 5 µl of 

this dilution was mixed with 250 µl of the Bradford reagent in 96-well plates with flat bottom 

and incubated for 15 min at RT. The absorbance of the samples was measured at wavelength 

of 595 nm using Tecan Spark® 10M multimode microplate reader. As a standard dilutions of 

BSA (0-0.3 mg/ml) in PBS -/- were used. Each sample and the standard were measured in 

triplicates. Protein concentrations were determined by comparison to the standard curve and 

recalculated according to the used dilution. 20 µg of protein per sample were used for SDS-

PAGE. 
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2.4.2. SDS-PAGE and Immunoblotting assay  

The gel percentage required was dependent on the molecular weight of protein of interest. 

Protein molecular weight Gel percentage 

10 – 45 kDa 15% 
10–70 kDa 12.5% 

15-100 kDa 10% 

25-250 kDa 8% 

A sample volume containing 20 µg of protein was mixed with SLAB-loading buffer, incubated 

for 5 min at 95 °C and cooled on ice for 1 min, then shortly centrifuged at 16,000xg for 10 sec. 

To detect the Na+,K+-ATPase, samples containing 30 µg of protein after mixing with SLAB-

loading buffer were incubated for 30 min at 37 °C with shacking at 650 rpm in order to prevent 

agglutination of the highly hydrophobic Na+,K+-ATPase α1 subunit. Then, samples were 

shortly centrifuged at 16,000 x g for 10 sec, were loaded into the pockets of the SDS-gel and 

electrophoresis was performed under denaturing reducing condition for 2 h at 35 mA and 100V. 

Next, washed for 30 sec in 100% methanol 0.45 µm PVDF-membrane was laid on the layer of 

two blotting papers soaked with Anode buffer on Semi Dry Blotter Unit. SDS-PAGE gel was 

placed on the membrane and covered with two blotting papers soaked in Cathode buffer. 

Proteins were transferred onto a PVDF membrane for 1.5 h at 0.8 mA/cm2 under semi-dry 

conditions. Subsequently, unspecific epitopes were blocked by incubation of the membranes in 

TBS containing 0.05% (v/v) Tween®20 (TBS-T) and 5% (w/v) nonfat dry milk for 1 h. The 

membranes were then washed once for 5 min in TBS-T buffer at RT and then were incubated 

with primary antibody (see 6.2.4) in TBS-T containing 2% (w/v) nonfat dry milk overnight at 

4 °C. After washing thrice for 5 min with TBS-T, membranes were incubated for 1 h at RT with 

the corresponding fluorescent-dye- or HRP-conjugated secondary antibodies (see 2.1.4). Then 

membrane were washed thrice for 5 min with TBS-T. The immunoblots with fluorescent-dye 

conjugated secondary antibodies were scanned on the Odyssey Classic Infrared Imaging 

System. The membranes blotted with HRP-conjugated secondary antibodies were incubate with 

SuperSignal West Femto Substrate for 5 min and the signal was visualized and quantified with 

ChemoCam Imager. 

2.4.3. On-Cell-Western blot assay 

For the On-Cell Western blot assay, Calu3 cells were seeded in 96-well with optically clear 

flat bottom plates at a concentration of 6 × 104 cells/well. 24 hours later when the cell monolayer 

was 95% confluent, cells were infected with specified strain of influenza A virus at an MOI of 
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2. After 45 min of incubation at 37 °C the inoculum was replaced by the Infection medium #2 

containing inhibitor at indicated concentration (see 6.2.5.1) or solvent of the inhibitor as a 

control. 24 hours later medium containing either inhibitor or solvent was removed and primary 

antibody that recognize an extracellular epitope of HA, M2 or the Na+,K+-ATPase β1 subunit 

diluted in PBS +/+ (see 6.2.4) were added and plates were further incubated for 1.5 h at 37 °C 

at 5% CO2. Cells were then washed three times with PBS+/+, fixed with 4% PFA for 20 min at 

RT followed by washing thrice with PBS +/+ for 5 min each. Then, cells were treated with 

blocking buffer containing 3% BSA (w/v) for 45 min at RT and then incubated in dark with the 

secondary IRDye 800-conjugated anti-mouse, rabbit or goat antibody (accordingly to the host 

of primary antibody) diluted in blocking buffer containing 5 µM DRAQ5™ (a far-red DNA 

stain) for 1 h at RT. Cells were then washed three times with TBS-T and scanned on the LI-Cor 

Odyssay Infrared Imager (100 µm resolution, 0.5 mm focus offset). Data were analyzed using 

Image Studio, Excel and GraphPad Prism 5 software. 

 

2.4.4. Surface Biotinylation  

To analyze plasma membrane localized proteins, cells were incubated with membrane-

impermeant EZ-link Sulfo-NHS-SS-Biotin, which binds to primary amino groups (-NH2) on 

surface proteins, forming covalent bonds. In order to prevent endocytosis and degradation of 

the labeled proteins all steps were performed with pre-cooled reagents on ice. Cells were 

washed thrice with ice-cold PBS +/+ and then incubated with Biotinylation buffer containing 1 

mg/ml of biotin for 20 min at 4°C with regular shaking. Next, cells were washed three times 

with10 mM glycine in PBS +/+ for 10 min each time, followed by one washing step with ice-

cold PBS +/+. After complete aspiration of remaining PBS +/+ cells were lysed with NP-40 

lysis buffer. Cell lysates were incubated on ice for 30 min with pulse-vortexing each 5 min and 

then centrifuged at 95,600 x g for 10 min at 4°C in order to pellet cellular debris. The 

supernatant was collected and the protein concentration of the samples was measured by 

Bradford assay as described in above. 300 μg of protein in 300 μl of lysis buffer were mixed 

with 60 μl streptavidin-coupled beads and incubated on a rotating mixer at a rotation speed of 

40 rpm at 4°C overnight, allowing biotinylated proteins to bind. 16 hours later, beads were 

washed once with washing solution A, twice with washing solution B and three times with 

washing solution C, each time using a volume of 300 μl of ice-cold solutions after centrifuging 

the sample at 95,600 x g for 3 min at 4 °C. In order to release bound proteins, beads were 

resuspended in 35 µl of SLAB-loading buffer, containing 100 µM 1,4-dithiothreitol-reducing 
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agent that breaks the disulfide bridges in the spacer arm of EZ-linked Sulfo-NHS-SS-Biotin 

allowing protein elution from the beads, and heated up to 37 °C for 30 min. Beads were then 

precipitated by centrifugation and the supernatant was loaded onto an 10% SDS-PAGE. 

 

2.4.5. Subcellular fractionation by differential centrifugation 

A discontinuous sucrose gradient was prepared 24 h prior the experiment. For this, 70% 

(w/w) sucrose solution in ddH2O was prepared and it has been used for preparation of the next 

sucrose fractions in following procedure: 

% of sucrose 70% sucrose stock, ml ddH2O, ml 

30 4.29 5.71 

35 5 5 

40 5.71 4.29 

45 6.43 3.57 

50 7.14 2.86 

60 8.57 1.43 

65 9.29 0.71 

70 10 0 

 

0.5 ml of each sucrose fraction was loaded in ultra-clean 14 x 89 mm tubes starting with the 

70% fraction from the tube’s bottom and tubes were incubated overnight at 4 °C. Calu3 cells 

grown in 152 cm2 tissue culture dishes were infected mock or with PR8 at an MOI: 2 and 

incubated for 24 h at 37 °C. Cells were scraped from the dish bottom, resuspendent in 2 ml of 

hypotonic buffer and incubated for 30 min on ice followed by homogenization by using a pre-

chilled Dounce homogenizer. Nuclei and unbroken cells were precipitated by centrifugation at 

800 x g for 10 min at 4 °C. The PNS was added to the top of a discontinuous (30% to 70%) 

sucrose gradient. The tubes were placed in SW41 Ti Swinging-Bucket rotor for Beckmann LE-

80 Ultracentrifuge and centrifuged at 130000 x g for 4 h at 4 °C with the break switched off. 

Twelve fractions (each 500 µl) were collected from the top to the bottom and analyzed by 

immunoblotting using antibodies against membrane proteins (E-Cadherine, α1 NKA, luminal 

endoplasmic reticulum (ER) protein - ERp72, Golgi protein – RCAS1, early endosomal marker 

– EEA1 and Rab5, late endosomal marker – Rab7, recycling endosomal marker – Rab11) and 

against the viral NP.  
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2.4.6. Caspase activity assay  

To determine the proteolytic caspase activity in lysates of Calu3 cells, a commercially 

available colorimetric protease assay kit was used. The caspase activity assay is based on the 

proteolytic cleavage of the colorimetric substrate, which is composed of the chromophore, p-

nitroanilide (pNA), and a synthetic tetrapeptide substrate: DEVD (Asp-Glu-Val-Asp-(cut)-pNA) 

for caspase 3, LEHD (Leu-Gly-His-Asp-(cut)-pNA) for caspase 9 or IETD (Ile-Glu-Thr-Asp-(cut)-

pNA) for caspase 8, which is upstream of caspase cleavage site. A spectrophotometer or a 

microplate reader at 400/405 nm can detect light absorbance of free pNA. Calu3 cells grown 

on 6-well plates were infected with PR8 at an MOI of 2 and overlaid with the Infection medium 

#2 containing either 5 µM Rho-kinase inhibitor XIII, DMSO or 1µM staurosporine (strong 

inducer of caspase activity) as positive control. 0, 6, 16 and 24 h post infection/treatment cells 

were washed ones with ice-cold PBS +/+, scraped, vortexed and centrifuged at 200xg for 5 min 

at 4 °C. The cell pellet was resuspended in 50 µl of chilled cell lyses buffer (provided in the kit) 

and incubated 10 min on ice followed centrifugation at 10000 x g for 1 min. Protein 

concentration of samples was determined by Bradford assay. 200 µg of protein per sample were 

incubated with 5 µl of 5 mM pNA substrate at 37 °C for 2 h in darkness.  The absorbance of 

the samples was measured at a wavelength of 400 nm using Tecan Spark® 10M multimode 

microplate reader. pNA light absorbance in the sample of mock infected, untreated cells was 

used as baseline activity.  

 

2.5. In vivo experiments 

2.5.1. Animal in vivo experiment 

All animal experiments were performed by Balachandar Selvakumar, PhD, according to 

the latest guidelines of the ‘‘Federation of European Laboratory Animal Science Associations 

(FELASA)” and approved by the local committee of the Max-Planck Laboratory for Heart & 

Lung Research Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA). Six-

week-old BALB/c mice (n = 5 per group) were infected by intra-tracheal inoculation of 500 

plaque-forming units (pfu) /mouse of PR8 in a volume of 30 µl. Fasudil HCl was diluted in 

sterile PBS -/- and was daily applied intraperitoneally (IP) at a concentration of 10 mg/kg 24 h 

p.i. during the next 7 days. As a control IP injection of sterile PBS -/- were applied. Body weight 
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was monitored every day until day 8 p.i.. On the day 7 after treatment start (= day 8 p.i.) mice 

were sacrificed by an overdose of isoflurane. 

 

2.5.2. Wet-to-dry lung weight ratio  

The lung wet-to-dry (W/D) weight ratio was used to analyze lung water accumulation after 

IAV infection. The animals were sacrificed, dissected, and the lung ‘wet’ weight was measured 

immediately after its excision. The lungs were then dried in an oven at 60 °C for 5 days and re-

weighed as dry weight. The W/D weight ratio was calculated by dividing the wet by the dry 

weight. 

 

2.5.3.  Preparation of lungs for histologic processing  

The animals were sacrificed, lungs were perfused via the right ventricle with PBS -/-, 

removed from chest cavity, fixed in 4% PFA for 24 h and were then embedded in Paraffin 

(Leica ASP200S). Paraffin embedded lungs were cut into thin sections (3.5 µm) using a 

Microtome RM2125 (Leica). Slices were mounted on to charged slides and dried overnight at 

37 °C. Next day, lung sections were stained by Hematoxilin/Eosin by following procedure: 

Step Time 

Xylene 5 min 

Xylene 5 min 

100% ethanol 30 s 

100% ethanol 30 s 

100% ethanol 30 s 

96% ethanol 30 s 

96% ethanol 30 s 

70% ethanol 30 s 

70% ethanol 30 s 

Hematoxylin 3-5 min 

0,1 % HCL 2 s 

Flowing tap water  5 min 

0,5% Eosin G solution 3 min 

Tap water 30s 

70% ethanol 30 s 

96% ethanol 30 s 
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100% ethanol 30 s 

100% ethanol 30 s 

100% ethanol 30 s 

Xylene 5 min 

Xylene 5 min 

 

Microscopic analysis was performed by EVOS FL Auto Cell Imaging System. A total amount 

of cells in histological cuts was quantified by Aperio CS2 Scanner (Leica Biosystems Imaging 

Inc., CA, USA) using „Aperio v9 nuclear count algorithm“ software (Leica Biosystems 

Imaging Inc., CA, USA) in collaboration group of Univ.-Prof. Dr. Achim Gruber (Freie 

Universität Berlin). 

 

2.6. Statistics 

Statistical analysis was performed by GraphPad Prism 5 software. The data are given as a 

mean + either standard error of mean (SEM) or standard deviation of the mean (SD) (indicated 

in figure legend). The statistical significance of two groups was tested by a two-tailed unpaired 

Student’s t test. The statistical significance of three or more groups was analyzed by one-way 

ANOVA followed by Tukey's post hoc test. A p value was considered as a significant, if it was 

less than 0.05, *p<0.05; **p<0.01; ***p<0.005 
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3. Results 

 

3.1. Establishment of a suitable cell line model to investigate the Na+,K+-ATPase 

mislocalization during influenza A virus infection 

Recently, the important observation was made that in IAV-infected murine primary 

alveolar epithelial cells the Na+,K+-ATPase (NKA) is not only found at the “normal” basolateral 

site, but is also mistargeted to the apical membrane (Peteranderl et al., under submission). As 

this might well have a great impact on IAV-induced edema formation, this work presented here 

aimed to investigate the underlying molecular mechanisms and cellular/viral factors involved.  

In a first step a suitable cell system, representing all, important characteristics of lung 

alveolar epithelia cells had to be established. Due to the limited lifespan, a finite expansion 

capacity and a high sensitivity to growth conditions of primary cells, which strongly impairs an 

intensive investigation of the observed phenomenon using such cells, human (A549, BEAS, 

Calu3, CaCo2, and H441), canine (MDCK II) and murine (MLE15) permanent cell cultures 

were tested to identify a cell line model capable to reproduce the results that have been observed 

with primary cells.  

First, the selected cells were analyzed for they ability to support influenza virus A/Puerto 

Rico/8/34 (H1N1, PR8) replication. All cell lines except H441 (data not shown) supported virus 

replication and demonstrated the maximum of virus titer 48 h p.i.. The highest virus titer (7.8 

log10 FFU/ml) was observed by infection of MLE-15 cells, whereas human bronchial 

epithelium cells (BEAS) demonstrated the lowest virus titer (3.5 log10 FFU/ml). (Fig. 4-1). 
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Figure 4-1 Growth kinetic of PR8 on different permanent cell lines. A 24-hours-old monolayers of A549, 

BEAS, CaCo2,Calu3, MDCK II and MLE-15 cells were infected with IAV PR8 (MOI: 0.01). Virus titer was 

determined by foci assay in MDCK II cells at the indicated time points post infection (p.i.). Data represents means 

+ standard deviation (SD), n = 6.  

Next, the permissive cell lines were screened for their NKA α1-subunit expression level 

after IAV infection. As it was previously shown on primary murine and human alveolar 

epithelial cells, that IAV infection leads to the reduction of the total NKAα1 amount in non-

infected cells214 the selected cells were infected with PR8 at an multiplicity of infection (MOI) 

=: 0.1. Only Calu3 and MDCK II cells demonstrated a significant reduction of the total NKAα1 

amount in the course of viral infection (Fig. 4-2, A, B, C). The maximal decrease of total 

NKAα1 expression of 3.2- and 2.1-fold at 24 h p.i. and 16 h p.i. was observed in Calu3 and in 

MDCK II cells, respectively. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2 Total Na+,K+-ATPase α1-subunit expression in different IAV-infected cell lines. A549 and 

BEAS (A), CaCo2 and Calu3 (B), MDCK II and MLE15 (C) cells were infected with PR8 (MOI: 0.1) and 0, 6, 

16 and 24 h p.i. whole-cell extracts were separated by SDS-PAGE and analyzed by immunoblotting using a 

monoclonal anti-NKAα1 antibody. The values represent relative density of the bands normalized to β-actin + 

standard error of mean (SEM), n=4. 

To determine whether IAV infection induces apical mislocalization of NKA in the selected 

cell lines, Calu3 and MDCK II cells were subjected to immunofluorescence analysis followed 

by confocal microscopy. At the early stage of the viral life cycle, a change in the localization 

A 

C 

B 
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A 
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pattern of NKA could not be observed and the majority of the protein was localized in the 

basolateral membrane (BLM) of infected cells (Fig. 4-3, A, B). Viral NP protein was detectable 

in the nuclei of the cells already 6 h p.i., where replication and transcription of viral genome 

takes place indicating formation of progeny viral ribonucleoprotein complexes (vRNPs) (Fig. 

4-3, A, B). At later times (24 h p.i.), the NP protein was mainly distributed in the apical cell 

compartment where the budding process of IAV takes place. Interestingly, apical NP 

localization correlated with apical NKA appearance in infected cells. Mislocalization of 

NKAα1 was detected in Calu3 cells and in MDCK II cells (Fig. 4-3, A, B). 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3 Redistribution of NKAα1 within the plasma membrane of infected cells. MDCK II (A) and 

Calu3 (B) cells were infected with PR8 IAV at an MOI 1. At 0, 6 and 24 h p.i. cells were fixed in aceton:methanol 

(1:1 v/v) and subjected to the immunofluorescence assay with NKAα1- (red) and nucleoprotein (NP) (green)-

specific antibodies. Merge – yellow. xy: top view and xz: intersection. 

Based on the obtained results of viral growth kinetics, IAV induced reduction of the 

NKAα1 total amount and detection of IAV-induced apical distribution of NKA in the plasma 
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membrane of infected cells, the human Calu3 cell line was chosen as the model cell line for the 

further investigation of the underlying molecular mechanisms of NKA apical mistargeting.  

 

3.2. Calu3 cell line exhibits features of polarized primary alveolar cell 

To study the membrane protein redistribution full cell differentiation is required. This is 

characterized by polarization, e.g. intrinsic asymmetry of the cellular structure and 

organization, including formation of apical and basolateral cell surfaces separated by tight 

junctions (TJ). Such apical-basolateral polarization of epithelial cells can be obtained by 

cultivation of cells on a permeable support264. In order to evaluate these characteristics of Calu3 

cells as a model of a polarized cell line, cells were cultivated on permeable Transwell® cell 

culture inserts, either as a liquid-covered culture (Liquid-Liquid Interface – LLI) or as an air-

exposed culture (Air-Liquid Interface – ALI). Trans-epithelial electrical resistance (TEER) was 

measured as a functional parameter of cell monolayer integrity and permeability of tight 

junctions. 14 days post seeding, cells cultivated at LLI condition showed higher TEER in 

comparison with those cultivated at ALI conditions, 608 ×cm2 and 515 ×cm2, (Fig. 4-4). 

Maximal TEER of ALI Calu3 culture (577 ×cm2) was observed on day 21 of cultivation 

(Fig.4-4). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-4 Development of TEER in Calu3 cells cultivated at LLI or ALI conditions. (A) Schematic 

representation of Transwells® inserts cultivation setup of Calu3 cells at LLI and ALI condition. (B) Calu3 cells 
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were cultured on Transwells® inserts at LLI or ALI for 14 days. TEER was measured at the indicated time point. 

Control - Transwells® inserts without cells. Results represent mean of two independent experiments + SEM, 

(n=11). PET – polyester. 

Morphologically, Calu3 cell cultured at LLI formed a simple columnar epithelium after 14 

days of incubation, and pseudostratified columnar epithelial after 21 days at ALI condition 

(Fig.4-5, A). Interestingly, independent of the cultivation methods, both LLI and ALI cells 

secreted mucus, which was detected during medium changes and by immunofluorescence 

analysis with an antibody against mucin 5AC, a glycoprotein that is commonly expressed on 

apical surface of mucosal (goblet) cell in the respiratory tract (Fig. 4-5, B). ALI culture 

conditions led to a greater amount of mucus production in comparison to LLI cultivated cells. 

Localization of β-Tubulin IV – a cytoskeletal protein that is used as a marker of ciliated cell 

differentiation was investigated in LLI and ALI Calu3 culture. Cells grown at LLI and ALI 

demonstrated both a diffuse staining pattern of β-Tubulin IV without presence of cilia-like 

structures on the apical surface (Fig. 4-5, C) indicating that cilia is not formed by Calu3 cells 

independently of cultivation condition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-5 Calu3 cells cultivated at LLI or ALI conditions. (A) Thin layer section of 0.5 % Toluidine 

Blue stained Calu3 cells grown 14 days on permeable membrane at LLI or 21 days at ALI. Section size: 300 nm, 
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scale bar: 50 µm. The picture of ALI cells was kindly provided by Ms. Jessica Schulze, Division of Influenza and 

other Respiratory Viruses, Robert Koch-Institute. (B) Expression of MUC 5AC protein and (C) β-Tubulin IV by 

Calu3 cells cultivated at LLI (14 days) or ALI (21 days). Cells were fixed with 4% PFA, Optical section thickness: 

0.25 µm, scale bar: 10 µm.  

As markers of epithelial integrity and tight junction formation, the distribution patterns of TJ 

proteins occluding and ZO-1 (zonula occludens-1 / tight junction protein-1) were analyzed in 

LLI- and ALI cultured Calu3 cells, as well as in Calu3 cell monolayer grown on glass cover 

slips. Z-stack scanning confocal microscopy of polarized LLI and ALI cells revealed a strong 

fluorescent signal of occludin and ZO-1 only in the first optical sections, when cells were 

scanned from the top to the bottom (Fig. 4-6, A, B). The signal was distributed as a ring on the 

perimeter of cells in close proximity to the apical cell membrane (Fig. 4-6, A, B). In the 

confluent Calu3 cell monolayer cultured on cover slips for 24 hours, ZO1 was detected in the 

apical cell compartment, whereas occludin was localized to the lateral membrane of the cells 

(Fig. 4-6, A, B). Taking together, independent of the cultivation conditions (LLI, ALI) Calu3 

cells exhibited many characteristics of polarized primary cells, e.g. high TEER, localized 

expression of tight junction markers and differentiation molecules. Notably, non-differentiated 

Calu3 cells also demonstrated a polarized distribution pattern of NKA and tight junction 

markers (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-6 Distribution of tight junction proteins in membrane of Calu3 cells cultivated under different 

conditions. (A) ZO-1 and (B) occludin localization in membrane of Calu3 cells grown 14 days at LLI, 21 days at 

A 

xy 

xz 

LLI 

xy 

ALI 

xz 

xy 

CS 

xz 

B LLI ALI CS 

xy 

xz 

xy 

xz 

xy 

xz 

apical 

basal 

apical 

basal 

Nuclei 
ZO-1 

Nuclei 
Occludin 



Results 

44 

0 2 4 6 8 20
0

2

4

6

8
non pol

ALI

LLI

time post-infection, hours

v
ir

u
s

 t
it

e
r,

 (
lo

g
1

0f
fu

/m
l)

ALI conditions or 24 h on cover slips (CS). Cells were fixed in 4% PFA; protein localization was addressed by 

immunostaining and confocal microscopy. Single optical section represents maximum of observed signal. Section 

thickness: 0.25 µm , scale bar: 10 µm 

 

3.3. Detection of Na+,K+-ATPase mislocalization during influenza A virus infection of 

Calu3 cells 

To determine whether cultivation conditions of Calu3 cells affect IAV replication 

properties, the growth kinetics of PR8 virus were analyzed. Calu3 cells grown on 12-well plate 

or on Transwell® inserts at LLI /ALI conditions were infected with PR8 at an MOI: 2 or 5, 

respectively. An increased MOI: 5 was used to overcome the reduced infection efficiency in 

highly polarized Calu3 cells due to the mucus production, which traps the virus particles265. 

Interestingly, neither the growth conditions of Calu3 cells, nor the MOI had a negative effect 

on the virus titer observed at 20 h p.i.. The virus grew to a titer of 6.2 log10 FFU/ml in Calu3 

cells that had been cultivated on culture plate and was not significant different form the virus 

titer observed in Calu3 cell at LLI or ALI conditions, which was found to be 6.65 log10 FFU/ml 

and 6.57 log10 FFU/ml, respectively (Fig. 4-7). The increased virus titer at early stage of virus 

infection of LLI or ALI cells could be explained by a release of not internalized, but mucus/cell-

attached virus particles of the inoculum into the culture medium. 

 

 

 

 

 

 

 

 

Figure 4-7 Replication of PR8 virus in Calu3 cells cultivated in Transwell ® inserts at liquid-liquid 

interface (LLI), air-liquid interface (ALI) or in a culture plate. 14-days-old LLI Calu3 cells, 21-days-old ALI 

Calu3 cells or 24-hours-old monolayer of Calu3 cells were infected with PR8 virus at an MOI: 5 (cells on the 

Transwell® inserts) or MOI: 2 (cells on tissue plate) and virus titers were detected at the indicated time points by 

foci assay. Data represent means ± SD, (n = 4). 
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To test whether NKA mistargeting indeed takes place also in IAV infected, highly 

polarized Calu3 cells, ALI cultivated cells were subjected to immunofluorescence analysis with 

anti- NKAα1 antibody 20 h p.i. followed by 3D modeling. Due to the increased height of 

polarized columnar epithelial cells in comparison to non-differentiated round polygonal cells 

(app. 10.25 µm vs 4.5 – 5 µm), the apical NKA expression in infected Calu3 cells at ALI was 

more prominent. 3D-reconstruction of whole Z-stack image revealed a strong change in the α1 

NKA localization pattern – a strong, diffused signal was now also found localized on apical 

side of infected cells. (Fig. 4-8).  

 

 

 

 

 

 

 

Figure 4-8 Redistribution of NKAα1 within the plasma membrane of infected cells. Highly polarized 

monolayers of Calu3 cells grown on Transwell® inserts at ALI were infected with influenza virus PR8 at an MOI 

5. 20 h p.i. NKAα1 localization was assessed by an indirect immunofluorescence analysis and subsequent 3D-

modeling using Imaris® software (NKAα- (red), viral nucleoprotein (NP) (green), nucleus (blue)). Section 

thickness –0.25 µm, scale bar – 10 µm. 

 

To quantify the NKA amount in the apical membrane of Calu3 cells at the late stage of 

IAV infection, biotinylation of apical cell membrane proteins followed by subsequent 

precipitation and Western-blot analysis was performed. As depicted in Figure 4-9, IAV 

infection did not affect the amount of apical plasma membrane acid-sensitive ion channel 3 

(ASIC3), but induced a significant apical membrane presentation of NKA (Fig. 4-9, A, B).  

Previously, it has been described that a polarized distribution of NKA takes place already 

at an early stage of cell monolayer development and after formation of a cell-cell junction 

leading to the accumulation of the majority of NKA on the lateral membrane of connected 

cells224,228,266. Therefore, another method to quantify NKA apical localization - “On Cell 

Western Blotting” (OCWB) - was utilized. Therefore, anti-NKA antibody recognizing only the 

extracellular domain of the auxiliary β1-subunit was applied to non-permeabilized Calu3 cells 

cultivated for only 24 h on 96-well tissue plate. In agreement with the immunofluorescence 
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analysis (Fig. 4-8) and apical cell membrane protein biotinylation (Fig. 4-9), mislocalization of 

NKAβ1 to the apical site was detected also by OCWB assay (Fig. 4-9, C). Despite of being less 

sensitive when compared to membrane protein biotinylation, OCWB assay generated data were 

more reproducible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-9 NKA quantification on the apical plasma membrane of IAV infected Calu3 cells. Highly 

polarized monolayer of Calu3 cells grown on Transwell® inserts at ALI condition was infected with influenza A 

virus PR8 at an MOI 5 and were subjected to (A) to surface labeling of apical proteins via biotinylation, cell lysis 

and Western-blot analysis using antibodies against NKAα1, ERK2 (cytoplasmic protein control), ASIC3 (apical 

cellular membrane control). (B) Graphical representation of the relative amount of apical presented NKAα1 

analyzed by surface biotinylation. Data represent the mean +SD, n=3. (C) Graphical representation of the relative 

amount of apical presented NKAβ1 analyzed by “On-cell Western blotting” (OCWB). 24 h old H1N1-infected 

(MOI: 2) Calu3 cells in 96 well plates were analyzed 20 h p.i. by OCWB assay using anti-NKAβ1 (extracellular 

domain) antibody to quantified apical amount of NKA. Bar graph represents mean + SD, n=32. 

Taken together, IAV-induced mistargeting of NKA, which was previously shown only in 

primary cells, could also be successfully detected and quantified in the human Calu3 cell line 

by three different methods, independent from the cultivation conditions.  
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3.4.  IAV-induced redistribution of Na+, K+-ATPase in Calu3 cells does not dependent on 

the viral replication efficiency or the virus subtype 

To determine whether the NKA misdistribution during IAV infection is a general 

characteristic of IAV pathogenicity or is only specific for the tested PR8 virus, different IAV 

subtypes were screened for their ability to induce an apical NKA presentation. Firstly, the 

growth kinetics of influenza virus A/Victoria/3/75 (H3N2), A/Thailand/1 (KAN-1)/2004 

(H5N1) or A/Anhui/1/2013 (H7N9) in Calu3 cells were compared. No significant differences 

in the replication efficiency of the analyzed IAV subtypes and the previously tested PR8 virus 

were detected. Highly pathogenic viruses of the H5N1- and H7N9 subtype demonstrated 

maximal virus titer equal to 6.1 log10 FFU/ml and 7.5 log10 FFU/ml, respectively, 48 h p.i., 

whereas the less pathogenic H3N2 strain reached a maximal titer of 6.9 log10 FFU/ml 24 h p.i. 

(Fig. 4-10, A) 

 

 

 

 

 

 

 

 

 

 

Figure 4-10 Redistribution of NKAβ1 within the plasma membrane of Calu3 cells infected with 

different IAV subtypes. (A) Growth of different IAV subtypes in Calu3 cells. Cells were infected with the 

indicated viruses at MOI 0.01 and virus titers were determined by foci assay at the indicated time points. Bar graph 

represents mean + SD, n=3. (B) Quantification of NKAβ1 on the apical membrane of Calu3 cells infected with 

different strains of IAV. Monolayer of Calu3 cells on 96-well plate were infected with the indicated viruses (MOI: 

2) and 20 h p.i. OCWB analysis was performed. Data represent the mean +SD, n=16 

All tested viruses were able to induce apical NKA mislocalization at the late stage of viral 

infection as demonstrated by OCWB analysis (Fig. 4-10, B). There was no significant 

difference in the capacity to cause apical NKA appearance between the different IAV strains, 

indicating that this is general effect caused by IAV infection of polarized epithelia cells.  
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3.5. IAV infection does not induce actin-dependent endocytosis of Na+,K+-ATPase from 

basolateral membrane and manipulation of the actin cytoskeleton and its regulatory 

molecules does not prevent Na+, K+-ATPase mislocalization 

Previously, it has been shown that 50% of cellular NKA is distributed within the plasma 

membrane267. The membrane-located NKA undergoes rapid ROCK and ERK coordinated 

actin-dependent endocytosis from plasma membrane into an intracellular pool during hypoxia-

induced generation of ROS or acute hypercapnia, respectively254,255,268. IAV infection induces 

production of ROS in host cells, activates the Ras/Raf/MEK/ERK pathway, ROCK and myosin 

light chain kinase (MLCK), which is a regulator of contraction and relaxation of the actin 

cytoskeleton174,269-277. Activation of the mentioned pathways was indeed detected in Calu3 cells 

after infection with PR8 virus (Fig. 4-11, A). A gradual increase of phosphorylated ERK level, 

the substrate of mitogen-activated protein kinase kinase (MEK), was observed during viral 

replication (Fig. 4-11, A). Phosphorylated myosin light chain (pMLC), a substrate for a direct 

phosphorylation by MLCK and ROCK, was also detected in infected Calu3 cells with a 

maximum at 6 h p.i. (Fig. 4-11, A). Activity of ROCK was further confirmed by detection of 

the phosphorylated form of the ROCK target myosin phosphatase target subunit 1 (pMYPT1) 

16 and 24 h p.i.. Next, in order to determine whether IAV-induced apical NKA is derived from 

the BLM-located NKA by actin-dependent endocytosis, the NKA amount on the BLM was 

analyzed by surface protein biotinylation of the BLM after IAV infection. Interestingly, no 

reduction of the NKA membrane abundance was observed at late stage of IAV replication (Fig. 

4-11, B, C). By contrast, rather a tendency of an increase in the NKAα1 amount was detected 

(Fig. 4-11, B, C). To test, whether manipulation of the actin organization or inhibition of 

MEK/ERK, ROCK or MLCK activity can prevent IAV-induced NKA mispolarization, Calu3 

cells were treated with either U0126 (,4-diamino-2,3-dicyano-1,4-bis (2-aminophenylthio) 

butadiene, MEK inhibitor)278, fasudil HCl (HA-1077, ROCK inhibitor)279,280 or ML7 (MLCK 

inhibitor)281 at non-toxic concentrations after infection with PR8 virus. The actin-filament 

disrupting drug cytochalasin D and actin polymerization enhancer jasplakinolide were also 

used282,283. As shown in Figure 4-11 D, inhibition of MEK/ERK, MLCK as well as 

manipulation of the actin cytoskeleton did not prevent apical mislocalization of NKAβ1 (Fig. 

4-12, D). By contrast, activity of Rho kinase was essential for IAV-induced NKA mistargeting. 

Collectively, these data indicate that BLM localized NKA cannot be a source for apically 

misguided NKA and the process of NKA mispolarization does not depend on actin cytoskeleton 

integrity, but is controlled by ROCK activity. 
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Figure 4-11 Effect of actin targeting reagents and MEK-, MLCK- and ROCK inhibitors on IAV-

induced NKA mistargeting. (A) Influenza A virus infection induces phosphorylation of ERK1/2, MYPT-1, and 

MLC. 24-hours-old monolayers of Calu3 cells were infected with PR8 at an MOI: 2 and were lysed at the indicated 

times points. Immunoblotting was performed with antibodies against phosphorylated ERK (pERK), MLC (pMLC) 

and MYPT (pMYPT1). Bars represent mean +SD, n=3. (B, C) Effect of IAV-infection on BLM-abundance of 

NKA. Highly polarized monolayer of Calu3 (ALI) cells were infected with PR8 virus at a MOI: 5 and analyzed 

for NKAα1 subunit amount in the surface-biotinylated BLM protein fraction by immunobloting. A representative 

Western-blot for each time point is shown. Bars represent mean +SEM, n=4. (D) Detection of NKAβ1 subunit on 

the apical surface of IAV-infected Calu3 cells treated with different inhibitors. 24-hours-old Calu3 cell monolayers 

were infected with PR8 at an MOI: 2 and treated either with DMSO (control), MEK inhibitor - U0126 (50µM), 
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MLCK-inhibitor – ML7 (10 µM), cytochalasin D (20µM), jasplakinolide (1µM) or Rho-kinase inhibitor –fasudil 

HCl (5 µM). “On cell Western-blotting analysis” was performed with anti-NKAβ1 antibody. Data represent mean 

+SD, n=16. 

 

3.6. Maturation inhibition of newly produced Na+,K+-ATPase does not prevent its 

mistargeting to the apical membrane of IAV infected Calu3 cells 

Another potential source for the apical cell-surface expressed NKA in IAV-infected cells might 

be the newly synthesized protein subunits of the ion pump. The catalytic α- and the auxiliary β- 

subunits assemble into the αβ-complex in the endoplasmic reticulum (ER) followed by transport 

to the Golgi apparatus where they undergo further sugar modification225. An inhibition of 

ER/Golgi transport prevents maturation of newly generated NKA complexes. Therefore, after 

infection with IAV Calu3 cells were treated with Brefeldin A (BFA), an inhibitor of ER/Golgi 

vesicular transport284, and the amount of apically localized NKA was determined. As a control, 

the amounts of the viral HA and M2 proteins were analyzed, as they are both synthesized in the 

ER and transported through the trans-Golgi network (TGN) to the apical cell membrane. As 

presented in Figure 4-12, application of BFA resulted in 2- and 3,7-fold decrease of apical 

localized M2 and HA, respectively, whereas the amount of detected NKA was not changed in 

comparison with untreated infected cells. This indicates that the apical presented NKA in IAV-

infected cells is not derived from newly produced subunits. 

 

 

 

 

 

 

 

 

 

Figure 4-12 Influence of ER/Golgi transport inhibition on NKAβ1 mistargeting to the apical plasma 

membrane of IAV-infected cells. Calu3 cells were infected with PR8 virus and BFA (1 µl/ml of provided stock, 

according to the manufactures’ protocol) was added 6 h p.i. Amount of NKAβ1, M2 and HA protein was 

determined with “On cell Western-blotting assay” 20 h p.i.. Bar graphs represent means +SD, n=32. 
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3.7. IAV infection modifies subcellular Na+,K+-ATPase compartmentalization 

A further potential source of mistargeted NKA might be the cellular endosome-enriched 

fraction, since app. 30% of NKA is localized there251,267,285. To test this assumption, cellular 

NKA compartmentalization in post-nuclear supernatant (PNS) of PR8-infected Calu3 cells was 

analyzed. Western-blot analysis of all fractions was performed with compartment specific 

antibodies (E Cadherin: a marker of plasma membrane; ERp72: a marker of the luminal 

endoplasmic reticulum; RCAS1: a Golgi associated protein; Rab11: a recycling endosomal 

marker and Rab7: a late endosome marker). The intracellular NKA distribution pattern detected 

was comparable with the distribution pattern for the cytosolic heavy (plasma membrane, ER,) 

and light (Golgi apparatus) membranes (Fig. 4-13). Interestingly, there was almost no 

difference in PNS fraction content between infected and non-infected cells, except of recycling 

endosomal marker distribution - IAV-infection increased the amount number of Rab11-positive 

fractions (Fig. 4-13). Moreover, NKA and the viral protein NP were presented in the same 

fractions as Rab11 protein of IAV-infected cells (Fig. 4-13). These results indicate a potential 

co-localization of NKA, NP and Rab11-positive recycling endosomes that might be involved 

in the apical membrane transport of NKA during IAV infection.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-13 Subcellular NKA distribution in IAV-infected Calu3 cells. Cytosolic and plasma membrane 

proteins were isolated from Calu3 cells infected with PR8 virus (MOI: 2) 24 h p.i. and subjected to density-gradient 
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centrifugation. 500 µl volume samples were collected and analyzed by SDS-PAGE following by immunoblotting 

for indicated marker proteins.  

 

3.8. Microtubules are involved in mistargeting of Na+,K+-ATPase IAV-infected Calu3 

cells 

Several reports demonstrated that during IAV infection vRNPs are transported to the cell 

surface attached to Rab11-containing vesicles along a microtubule network146-148,152,161,286. 

Since the density-gradient centrifugation analysis revealed that NKA and the recycling 

endosomal marker Rab11 had a similar distribution pattern in the PNS fractions of infected 

Calu3 cells (Fig. 4-13), involvement of the tubulin cytoskeleton in mistargeting of NKA was 

investigated. For this, PR8-infected Calu3 cells were treated either with an inhibitor of 

microtubule polymerization (nocodazole: methyl [5-(2-thienylcarbonyl)-1H-benzimidazol-2-

yl)287 or with a stabilizer of microtubule polymers (paclitaxel: taxol)288. A disruption of 

microtubules by nocodazole as well as the protection from disassembly by paclitaxel prevented 

apical mistargeting of NKA induced by IAV infection (Figure 4-14). Stabilization of the 

basolateral NKA distribution at the late stage of virus replication was confirmed by “On cell 

Western-blotting analysis” and indirect immunofluorescence analysis followed by 3D modeling 

(Fig. 4-14).  

  

 

 

 

 

  

 

 

 

Figure 4-14 Effect of microtubule targeting reagents application on IAV-induced Na+, K+-ATPase 

mistargeting. (A) 24-hours-old monolayers of Calu3 cells were either mock-infected or with PR8-infected (MOI: 

2) and treated with either DMSO, nocodazole (1µM) or paclitaxel (2 µM) at non-toxic concentrations for 24 hours. 

“On cell Western-blotting analysis” was performed using anti-NKAβ1 antibody. Data represent mean +SD, n=16. 

(B) Highly polarized Calu3 ALI cells were either mock-infected or PR8–infected (MOI: 5) and treated with either 

DMSO (control), nocodazole (1µM) or paclitaxel (2µM) for 20 h. NKAα1 localization was assessed by an indirect 
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immunofluorescence analysis and subsequent 3D-modeling using Imaris® software (NKAα1- (red), viral 

nucleoprotein (NP) (green), nucleus (blue)). Section thickness: 0.25 µm, scale bar: 10µm. 

These data demonstrate a crucial role of the tubulin cytoskeleton integrity and plasticity in 

mistargeting of NKA. 

 

3.9. Inhibition of Na+,K+-ATPase mistargeting in Calu3 cells correlates with reduced IAV 

titer under ALI culture conditions 

To determine whether virus-induced apical cell surface localization of NKA is affecting virus 

titer, PR8 infected Calu3 cells were treated with nocodazole, paclitaxel or with ROCK inhibitor 

(fasudil HCl), since all of three substances were able to prevent NKA mispolarization as shown 

above. Surprisingly, stabilization of NKA at the BLM by affecting microtubules stability or by 

ROCK inhibition reduced virus titer only at early times of multicycle replication in Calu3 cells 

cultivated in 12-well tissue plates (Fig. 4-15, A). At late time points (24 and 48 h p.i.) the 

decrease of virus production caused by the agents tested was negligible. In contrast, application 

of nocodazole, paclitaxel and fasudil HCl to the infected ALI-cultured Calu3 cells resulted in a 

significant reduction of virus titer at each indicated time point, with a maximal virus titer 

difference observed 24 h p.i. for the nocodozole-treated group (5.3 log10 FFU/ml) compared to 

the control (6.7 log10 FFU/ml) (Fig. 4-15, B). This indicates that inhibition of NKA mistargeting 

has a strong effect on virus titer only when Calu3 cells are cultivated under ALI conditions 

presumably via a decreased water accumulation on apical cell surface leading to an increased 

viscosity of cell-produced mucus that impedes virus spread.  
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Figure 4-15 Effect of microtubule targeting agents and Rho-kinase inhibitor on the IAV titer. (A) Calu3 

cells grown in 12-well plate were infected with PR8 at an MOI 0.1 and virus titers were determined by foci assay 

at indicated time points. Data represent means +SD, n=3. (B) Highly polarized Calu3 cells cultivated on 

Transwell® inserts at ALI condition were infected with PR8 at an MOI 5. At the indicated time points 200 µl of 

the infection medium was added to the apical chamber and cells were incubated for 15 min at 37 ºC. Supernatants 

were collected, virus yield was analyzed by foci assay and is presented as means +SD, n = 4 

 

3.10. Inhibition of kinesin-1 prevents IAV-induced apical distribution of Na+,K+-

ATPase 

Previously, it has been reported that plasma membrane recruitment of NKA dependents on 

the kinasin-1-implicated transport of NKA-containing vesicles257,263. To examine the 

involvement of microtubule-associated molecular motor kinesin-1 in the virus-induced NKA 

mislocalization, Calu3 cells were infected with PR8 and treated with the competitive kinesin-1 

inhibitor adenosine 5′-(β,γ-imido)triphosphate (AMP-PNP), a non-hydrolyzable ATP analogue 

that stabilizes the molecular motor tightly bound to the microtubule289-292. As depicted in Figure 

4-16, A, inhibition of kinesin-1 did not have a negative effect on virus titer since no significant 

difference in virus yield between untreated and AMP-PNP-treated group was detected. 

Nevertheless, application of AMP-PNP significantly reduced amount of apically mislocalized 

NKA without affecting an apical distribution of viral HA and M2 protein (Fig. 4-16, B).  

 

 

 

 

 

 

 

 

Figure 4-16 Effect of kinesine-1 inhibition on IAV titer and NKA mistargeting in Calu3 cells. (A) Calu3 

cells grown on 12-well plate were infected with PR8 at an MOI 0.1, treated with AMP-PNP (500nM) and virus 

titers were determined by foci assay at 8, 24 and 48 h p.i.. Data represent means +SD, n=3. (B) 24-hours-old 

monolayers of Calu3 cells were either mock-infected or PR8-infected at an MOI 2 and treated with either DMSO 
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(solvent) or AMP-PNP (500 nM) at non-toxic concentration for 24 hours. OCWB analysis was performed with 

anti-NKAβ1-, anti-influenza HA- and anti-influenza M2 antibodies. Data represent mean +SEM, n=24. 

These results indicate that the microtubule-associated molecular motor kinesine-1 is actively 

involved in NKA mistargeting during IAV infection, but is not implicated in the transport of 

viral proteins or RNPs to the apical membrane of infected cell.  

 

3.11. Rho-kinase inhibition decreases amount of acetylated α-tubulin during IAV 

infection 

Previous in vivo motility analysis of fluorescently labeled kinesin indicated that kinesin-1 

preferably moves along acetylated microtubules293-295. Acetylation of the residue K40 of α-

tubulin is one of the several post-translation modifications that regulate dynamic organization 

of tubulin cytoskeleton and affects intracellular transport events296-298. Previously, it has been 

reported that IAV infection increases α-tubulin acetylation in epithelial cells165,299. Therefore, 

the amount of acetylated α-tubulin (AcTub), as a potential factor that might increase a kinesin-

1-dependent transport of NKA-containing vesicles, was evaluated in infected Calu3 cells. In 

line with published data that indicated an elevated level of AcTub in IAV-infected MDCK and 

normal human bronchial epithelial (NHBE) cells299, it could also be demonstrate for Calu3 cells 

that IAV infection increased amount of AcTub (Fig. 4-17). The peak of AcTub increase (2.8-

fold) was observed at 24 h p.i. (Fig. 4-17, B).  

As the acetylation status of tubulin is partially regulated by ROCK (Fig. 4-18, A)300,301 the 

Rho-kinase inhibitor RKI-1447 (XIII)302 was applied either to mock-infected or IAV-infected 

Calu3 cells. In non-treated infected cells the amount of AcTub was increased (Fig. 4-17, A, B), 

indicating a reduced HDAC6 activity. Nevertheless, XIII inhibitor treatment of IAV-infected 

cells led to a significant reduction of AcTub amount at the late stage of viral replication (Fig. 

4-17, A, B). This indicates that in IAV-infected Calu3 cells ROCK activity is needed for tubulin 

acetylation, which is pivotal for the kinesin 1-dependent NKA transport/mistargeting in IAV-

infected polarized cells (see 3.10). 
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Figure 4-17 Rho-kinase inhibition reduces the amount of acetylated α-tubulin during IAV replication 

in Calu3 cells. Calu3 cells were infected with PR8 at an MOI 2 and treated either with DMSO (control) or with 

Rho-kinase inhibitor RKI-1447 (XIII, 5 µM). Cells were lysed at the indicated time points and lysates were 

analyzed by immunoblotting with anti-acetylated α-tubulin- and anti-β-actin antibodies. (A) A representative 

western blot for each time point is shown. (B) Bars represent mean of signal intensity + SEM, n=5. 

 

3.12. Influence of HDAC6 activity on IAV-induced Na+,K+-ATPase mistargeting 

Earlier it has been demonstrated, that IAV infection induces caspase-3-mediated 

degradation of histone deacetylase 6 (HDAC6)303, one of the enzymes that catalyzes tubulin 

deacetylation and which is partially regulated by ROCK303-306 (Fig. 4-18, A). Interestingly, 

HDAC6 inhibition also improved vRNP-and HA transport to the cell surface, increasing the 

release of IAV particles from infected cells165. As caspase-3-mediated HDAC6-degradation 

results in increased acetylation of microtubules303, the role of HDAC6 in the virus-induced 

NKA mistargeting was analyzed. OCWB assay was performed with PR8-infected Calu3 cells 

(+/-) treatment with the selective HDAC6 inhibitor tubacin304. Inhibition of HDAC6 slightly 

raised the apical membrane NKA amount of infected Calu3 cells (1.45 to 1.53 relative units) 

while the amount of viral HA and M2 protein was significantly elevated (Fig. 4-18, C).  

The fact that HA and M2 transport is not negatively affected by HDAC6 inhibition was 

also reflected in the virus titer of tubacin-treated cells, which was not reduced by HDAC6 

inhibition 24 and 48 h p.i.. A maximal virus titer difference between infected non-treated and 

infected and tubacin-treated cells of 6.7 log10 FFU/ml vs 7.3 log10 FFU/ml, respectively, was 

observed at 48 h p.i. (Fig. 4-18, B). In contrast, 8 h p.i. tubacin application resulted in reduced 

virus titers, which could be related to the fact that HDAC6 also participates in the fusion and 

uncoating process early in infection305. 
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Figure 4-18 Influence of HDAC6 activity on IAV replication and mistargeting of NKAβ1 within the 

plasma membrane of infected cells. (A) Schematic representation of HDAC6 regulation by ROCK and caspase-

3 (B) Calu3 cells grown on 12-well plate were infected with PR8 at an MOI 0.1, treated with tubacin (10 µM) and 

virus titers were determined by foci assay at the indicated time points. Data represent means +SD, n=3. (C) Calu3 

cells were infected at an MOI 2 with PR8, treated with HDAC6-inhibitor – tubacin (10 µM) and the apical 

membrane NKA amount was analyzed by OCWB assay with anti-NKAβ1-, anti-HA- and anti- M2 antibodies 24 

h p.i.. Data represent mean +SEM, n=24. Solid line – a direct interaction, dashed line – indirect interaction. 

 

3.14 Effect of ROCK inhibition on IAV-induced caspase-3-dependent HDAC6-

degradation  

As in IAV-infected cells HDAC6 is degraded by virus-induced caspase-3299,303, the total 

amount of cellular HDAC6 and of activated caspase-3 during the time course of IAV infection 
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of Calu3 cells was analyzed. As indicated (Fig. 4-19, A), IAV-infection induces proteolytic 

cleavage of HDAC6 late in the replication cycle, at 16 and 24 h p.i.. This is consistent with the 

above observation of increased α-tubulin acetylation in IAV-infected Calu3 cells (Fig. 4-17). 

Concurrently, the large (17/19-kDa), active subunit of caspase-3 was detected in lysates of the 

infected cells at 16 and 24 h p.i., (Fig. 4-19, B). Comparing the results regarding the reduced 

amount of HDAC6 with the increased activation status of caspase-3 over time, demonstrates 

that the presence of cleaved/active caspase-3 correlated with the degradation of HDAC6. These 

results support the assumption that also in IAV-infected Calu3 cells the amount of active 

HDAC6 is (in part) regulated by virus-induced caspase-3. 

 

 

 

 

 

 

 

 

 

 

Figure 4-19 Effect of ROCK inhibition on cellular HDAC6 amount and caspase-3 activation during IAV 

infection. Calu3 cells were infected with PR8 at an MOI 2 and treated either with DMSO (control) or with Rho-

kinase inhibitor XIII (5 µM). Cells were lysed at the indicated time points and lysates were analyzed by 

immunoblotting with anti-caspase3, anti-HDAC6 and anti-β-actin antibody.  

As ROCK can indirectly activate caspase-3 by various pathways,306 the effect of ROCK 

inhibition on IAV-induced caspase-3 activation was investigated. When infected cells were 

treated with the ROCK-inhibitor XIII, proteolytic caspase-3 activation was weak and delayed 

to 24 h p.i. compared to the infected non-treated cells (Fig. 4-19). Likewise, cleavage of 

HDAC6 was also delayed, as a prominent truncated form of HDAC6 could only be detected at 

control 
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24 h p.i. (Fig. 4-19). This indicates that also in IAV-infected Calu-3 cells HDAC6 activity is 

partially affected via ROCK-regulated caspase-3 activity. 

Interestingly, the addition of the specific, irreversible caspase-3 inhibitor Z-DEVD-

FMK307,308 as well as the ROCK inhibitor XIII, to IAV-infected Calu3 cells had the same effect 

on caspase-3 activity, measured 24 h p.i. by an activity assay. The 1.35-fold increased caspase-

3 activity in PR8-infected non-treated Calu3 cells was reduced to 1.07- and 1.08- fold after 

treatment with Z-DEVD-FMK or XIII, respectively (Fig. 4-20). Taken together the results 

indicate that the ROCK inhibitor impaired IAV-induced activity of caspase-3. This further 

points out that in IAV-infected cells caspase-3 activity is involved in promoting α-tubulin 

acetylation via degradation of HDAC6 and thereby supporting NKA mislocalization.  

 

 

 

 

 

 

Figure 4-20 Influence of ROCK inhibition on caspase-3 activity in IAV-infected cells. Calu3 cells were 

either mock-infected or PR8-infected (MOI: 2) and subsequently treated either with DMSO, caspase activator 

(staurosporine,1 µM), Rho-kinase inhibitor (XIII, 5 µM) or caspase-3 inhibitor (Z-DEVD-FMK, 40 µM). Cells 

were lysed 24h p.i. and lysates were analyzed for caspase-3 activity with Caspase-3 Colorimetric Protease Assay 

Kit. Data represent mean +SEM, n=4. 

 

3.13. Influence of caspase-3 inhibition on IAV-induced apical distribution of Na+,K+-

ATPase.  

The results so far indicated, that in virus-infected Calu3 cells IAV-induced caspase-3 

activity regulates the amount of HDAC6 (Fig. 4-19), and that HDAC6 activity affects NKA 

mistargeting (Fig. 4-18). In order to further elucidate a role of caspase-3 activity in NKA 

mistargeting during IAV infection, the caspase-3 inhibitor - Z-DEVD-FMK (40 µM) was added 

to Calu3 cells after infection with PR8 and the amount of NKA on the apical cell membrane 

was analyzed by OCWB assay. Z-DEVD-FMK treatment slightly reduced amount of apically 

localized NKAβ1, but the level of reduction was not significantly different from non-treated 
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PR8-infected cells – 1.3 vs 1.41 relative units, respectively, whereas the abundance of the viral 

HA and M2 proteins on the cell surface was significantly reduced (Fig. 4-21). It should be noted 

that caspase-3 can also activate ROCK306 (Fig. 4-18, A). The inhibition of caspase-3 could 

therefore lead to less active ROCK and this should result in less free/active HDAC6 (Fig.4-18, 

A). This might explain the modest reduction of NKA mistargeting after caspase-3 inhibition.  

 

 

 

 

 

 

 

Figure 4-21 Effect of caspase-3 inhibition on IAV-induced NKA mislocalization in Calu3 cells. Calu3 

cells infected with PR8 at an MOI 2, were either treated with caspase-3-inhibitor (Z-DEVD-FMK, 40 µM) or left 

untreated and apical redistribution of NKA was analyzed by OCWB assay with anti-NKAβ1-, anti-HA- and anti-

M2 antibodies. Data represent mean +SEM, n=24. 

 

3.14. ROCK-inhibition improves vectorial water transport during IAV infection  

The basolateral distribution pattern of NKA is one of the major determinants in 

establishment of the osmotic sodium gradient that plays an important role in effective vectorial 

fluid transport. To determine whether prevention of apical NKA distribution during IAV-

infection could improve vectorial water transport, highly polarized LLI cultures of Calu3 cells 

were infected with IAV and overlaid with culture medium, containing FITC-dextran +/- 

inhibitors that had demonstrated to reduce IAV-induced NKA mistargeting. The concentration 

difference of FITC-dextran between the apical and basal chamber of the Transwell® chamber 

was analyzed 8 and 24 h p.i.. As a control, cells were treated with amiloride, an inhibitor of 

most plasmatic sodium transport systems 309. IAV-infection induced a drastic drop in the 

efficiency of water transport through the monolayer of cells as well as the amiloride treatment 

(Fig. 4-22). Application of kinesin-1 inhibitor (AMP-PNP) had a tendency to increase the 

capability of IAV-infected Calu3 cells for vectorial water transport (Fig. 4-22). Treatment of 

the cells with ROCK-inhibitor XIII significantly improved vectorial water transport at 8 and 24 

h p.i. (Fig. 4-22). This indicates that prevention of NKA mistargeting has a positive effect on 

physiological characteristics of the IAV-infected Calu3 cell monolayer.  
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Figure 4-22 Inhibition of Na+, K+-ATPase mispolarization in IAV-infected Calu3 cells improves 

vectorial water transport. 14-days-old monolayers of Calu3 cells on Transwell® inserts were infected with PR8 

(MOI 2) and treated with either DMSO (control), Rho-kinase inhibitor XIII (10 µM), kinesin-1 inhibitor (AMP-

PMP) or amiloride (a negative regulator of water transport) (0.5 µM). Vectorial transport of water through the 

monolayer of Calu3 cells was determined by changes of FITC-dextran (70 kDa) concentrations in apical and basal 

cell culture media 8 and 24 h p.i.. Data represent mean +SEM, n=3. 

Interestingly, application of the ROCK-inhibitor (XIII) to Calu3 cells infected with a high dose 

of IAV (MOI: 5) improved the structure of cell monolayer, which is illustrated by Figure 4-23. 

 

 

 

 

 

 

 

Figure 4-23 Inhibition of ROCK reduced IAV-induced damage of the Calu3 cell monolayer. Highly 

polarized Calu3 cells cultivated under LLI conditions were either mock-infected or PR8-infected, treated with 

DMSO or XIII and stained with 2.5% Coomassie-dye 24 h p.i. Pictures obtained with EVOS FL Auto Cell Imaging 

System, objective magnification ×10, scale bar: 100 µm.  

 

3.15. Application of ROCK-inhibitor reduces virus titer and improves IAV-induced 

lung injury in vivo  

Next, to investigate whether the ROCK inhibition could improve alveolar fluid clearance 

during IAV-induced acute lung injury in vivo, mice were infected with PR8 by intra-tracheal 

(IT) inoculation of 500 plaque-forming units (pfu) per mouse (work performed in collaboration 
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with Prof. Dr. S. Herold, by Balachandar Selvakumar, PhD). During the next 6 days, the mice 

were daily treated with the clinically approved ROCK-inhibitor “fasudil HCL”. Intra-peritoneal 

(IP) injections of fasudil did not lead to a significant change in the body weight loss induced by 

IAV-infection during a seven days observation period (Figure 4-24). 

 

 

 

 

 

 

 

 

Figure 4-24 Effect of fasudil HCl treatment on body weight of IAV-infected mice. C57BL/6 mice were 

IT-infected with 500 pfu of PR8 per mouse and on day 1, 2, 3, 4, 5, 6 p.i. 10 mg/kg of fasudil HCl in 100 µl of 

sterile saline was administrated by IP injection. Body weight was measured daily before fasudil administration. 

Data represent mean +SD, n=5. 

 

Nevertheless, ROCK inhibition had a significant effect on pulmonary edema, defined as the 

wet/dry weight ratio of lung tissue. The values of wet/dry ratios were significantly increased in 

the PR8-infected group, indicating a fluid accumulation (Fig. 4-25). However, the application 

of fasudil significantly decreased these values compared with the non-treated IAV-infected 

group (Fig. 4-25).  

 

 

 

 

 

Figure 4-25 Effect of fasudil HCl treatment on IAV-induced alveolar edema. Six-week-old C57BL/6 

mice were anesthetized, either mock-infected or PR8-infected (500 pfu) by IT inoculation and were treated with 

sterile saline or fasudil HCl during the next 6 days. (A) Wet/dry weight ratio of lung tissues were analyzed 7 days 

p.i.. Data represent mean + SEM, n=5. 
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Furthermore, virus titer analysis of the lungs from infected mice revealed a reduction of virus 

titer in the lung homogenates of infected mice when fasudil was applied (Fig. 4-26, A, B). The 

titer of PR8 virus in control group was equal to 2, 9 log10 FFU/ml (100%), whereas in fasudil-

treated group the virus only reached a titer 0, 8 log10 FFU/ml (1, 3 %) (Fig. 4-26, A, B). 

 

 

 

 

 

 

 

 

Figure 4-26 Effect of fasudil HCl treatment on IAV replication in vivo. Six-week-old C57BL/6 mice were 

IT mock-infected or PR8-infected (500 pfu) under narcosis and were treated with sterile saline or fasudil HCl 

during the next 6 days. On the day 7, lungs were isolated and the virus titer in lungs of infected mice was quantified 

by foci assay and represented as a log10ffu/ml (A) or as percent from control (B) – infected not-treated group. Data 

represent mean + SD, n=3. 

 

Histological analysis of lung tissues (work performed in collaboration with Univ.-Prof. Dr. 

Achim Gruber) demonstrated massive pathological changes – necrosis of alveolar walls, 

desquamated type II pneumocytes and multiple leukocyte infiltrates in PR8-infected mice (Fig. 

4-27, A,). Interestingly, lung injury in the PR8-infected fasudil-treated animals was less 

pronounced and less severe than in untreated IAV-infected mice (Fig. 4-27, A).  
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Figure 4-27 Effect of fasudil HCl treatment IAV-induced lung infiltration. Six-week-old C57BL/6 mice 

were anesthetized, either mock-infected or PR8-infected (500 pfu) by IT inoculation and were treated with sterile 

saline or fasudil HCl during the next 6 days. (A) Representative hematoxylin-eosin-stained mouse lung sections 

are shown. Section thickness - 3.5 µm, scale bar – upper row – 200 µm (objective magnification - ×4), lower row 

– 100 µm (objective magnification: ×20). (B) Total amount of cells per mm2 of mouse lung specimens. Data 

represent mean + SEM, n=5.  

 

Moreover, when a total cell count per square millimeter of lung specimens was analyzed, the 

fasudil-treated group demonstrated a reduction in infiltrated cell amount (5450.8 cells per mm2) 

when compared with non-treated group (6404.7 cells per mm2), supporting the optical 

observation of lung infiltration reduction (Fig. 4-27, B). 

Collectively, these data demonstrate that inhibition of IAV-induced ROCK activity 

prevents tubulin-dependent mistargeting of the Na+, K+-ATPase, reduces virus titer, increases 

alveolar fluid clearance capacity and reduces IAV pathogenesis in vivo.  
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4. Discussion 

 

In severe cases, human IAV infection can lead to development of ARDS that is 

characterized by accumulation of a protein-reach fluid within the alveolar lumen in its exudative 

phase. ARDS is generally associated with high mortality. Alveolus flooding is a result of IAV-

induced immune cell-mediated damage of the alveolar epithelial-endothelial barrier and an 

infringement of the osmotic gradients, especially the Na+ gradient, in the alveolar 

microenvironment that negatively affects pulmonary fluid homeostasis.  

In the present work, IAV-induced apical mistargeting of the epithelial NKA at the late stage 

of viral infection was investigated since NKA is usually localized on the basolateral plasma 

membrane and plays an important role in alveolar edema clearance, as it was described 

earlier197,204,236,249,310. Previously, it has been shown that IAV negatively regulates the activity 

and the abundance of the apical membrane-localized ion channels – ENaC and CFTR that are 

involved in the establishment of an osmotic gradient210-213,311-314. IAV membrane attachment 

and replication induces activation of protein kinase C (PKC) that results in ENaC internalization 

and degradation, whereas impairment of the CFTR amount and function is depending on an 

IAV M2 protein-associated alternation of the cellular trafficking machinery210,213,311,313,314 and 

this is currently believed that these changes are a major factor for fluid accumulation 

contributing to pulmonary edema formation. An active Na+ transport over NKA that is localized 

on the basolateral membrane of alveolar epithelial cells creates the main driving force of 

pulmonary fluid clearance. It has been demonstrated before that IAV-infection of primary 

human and murine alveolar epithelial cells (AECs) decreases the NKA amount on the 

basolateral membrane of neighboring, non-infected cells via paracrine signaling of type I IFN 

that leads to the degradation of the transporter214. In infected AECs a reduction of the expression 

of plasma membrane-associated NKA was not observed214, but the transporter was found to be 

mislocalized to the apical cell membrane (Peteranderl et al., under submission). The regulation 

of NKA includes a constant translocation of the enzyme between the plasma membrane and 

intracellular storage vesicles249,250,267,315. NKA endocytosis from the basolateral membrane, 

regulated by PKC, ERK, Rho kinase (ROCK) and actin cytoskeleton reorganization, is one of 

the main mechanism of impaired function of the enzyme during acute lung injury (ALI)250. 

Activation of PKCs, ERK and ROCK, as well as a remodeling of the actin cytoskeleton during 

IAV entry and replication is well described277,316-322. Therefore, I originally suspected that IAV 

induces endocytosis of the basolateral NKA and by alteration of the cellular trafficking 

machinery, which could lead to NKA mistargeting to the apical plasma membrane. In the 
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present study, IAV infection of bronchial epithelial Calu3 cells also led to the activation of 

ERK, ROCK signaling and MLCK that regulates actin cytoskeleton reorganization. 

Interestingly, although IAV induced activation of these pathways that are involved in 

internalization of NKA (based on the literature analysis), IAV infection of primary murine and 

human AECs did not induce a decrease of plasma membrane-associated NKA, when its amount 

was analyzed by flow cytometry214. Flow cytometry requires a single cell suspension that is not 

allowing an analysis of protein redistribution from the basolateral to the apical cell membrane. 

Therefore, in this work basolateral NKA membrane abundance of highly polarized Calu3 cells 

during IAV infection was analyzed by surface protein biotinylation of polarized cell cultures. 

Surface protein biotinylation analysis revealed no reduction of either total NKA α1 subunit 

amount or its abundance in the basolateral cell membrane in IAV-infected Calu3 cells, but its 

mislocalization to the apical cell membrane was clearly detected. Moreover, when inhibitors of 

MEK/ERK, ROCK, MLCK and actin polymerization effectors were administered, only 

inhibition of ROCK prevented apical localization of NKA α1 and β1 subunits, as shown by 

immunofluorescence analysis and “On Cell Western Blotting” (OCWB). Notably, this 

mistargeting of NKA was found not to dependent on the IAV subtype, but is generally IAV-

induced.  

An effect of ROCK activity on NKA membrane abundance in alveolar epithelial cells is 

controversially described in the literature. Stimulation of primary rat AEC and human alveolar 

epithelial cell line A549 with the β–adrenergic agonist isoproterenol activates RhoA/ROCK 

and leads to the recruitment of NKA α subunits into the plasma membrane from the intracellular 

compartment258,323. In contrast, hypoxia (1.5% O2)-induced activation of RhoA/ROCK in A549 

cells induced endocytosis of the α1 subunit of NKA from the plasma membrane254. The 

mechanism that is involved in RhoA/ROCK regulation of NKA endocytosis is presumably 

based on the regulation of actin cytoskeleton reorganization254. In the current study, inhibition 

of MEK/ERK and MLCK or destruction of actin fibers by cytochalasin D as well as 

enhancement of actin polymerization by jasplakinolide application did not prevent IAV-

induced apical mistargeting of NKA in infected Calu3 cells. Thus, despite the fact that IAV 

infection induced an activation of signals involved in endocytosis of NKA in Calu3 cells, the 

amount of the basolateral membrane-associated ion transporter was not reduced during the 

course of infection. Nevertheless, I was able to show conclusively that virus-induced ROCK 

activity plays an important role in the process NKA mislocalization.  

Mislocalization of the NKA to the apical cell domain was described in the retinal pigment 

epithelium (RPE) during cell re-morphogenesis and in kidney epithelial cells during autosomal 
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dominant polycystic kidney disease (ADPKD) and is correlated with increased transcription 

and translation of the β2 isoform of the NKA β subunit229,230. The β2 subunit contains five N-

glycosylation sites promoting the apical membrane sorting, whereas the β1 subunit contains 

only basolateral membrane sorting signals266. The apically mislocalized pump in the RPE 

consists of α2 and β2 subunit dimers, whereas α1 subunit was only presented in basolateral 

membrane as well as the majority of β1 subunit229. In ADPKD epithelium, α1 and β2 subunits 

were localized in the apical cell domain, whereas the β1 subunit was detected only in the 

basolateral membrane230. Nevertheless, during IAV-induced mistargeting of NKA in Calu3 

cells I could detect both, α1 and β1 subunits on the apical cell membrane. Furthermore, IAV 

infection of primary human and murine AEC did not increase amount of β2 subunit mRNA 

(Peteranderl, unpublished). Since only assembled α1/β1-α1/β2 dimers are able to be exported 

from the endoplasmic reticulum to the Golgi apparatus and later transported to the plasma 

membrane, an inhibition of the ER-Golgi transport is supposed to inhibit a transport of newly 

synthesized α1/β2 dimers223. Interestingly, application of an inhibitor of ER-Golgi vesicular 

transport (Brefeldin A) to the IAV-infected Calu3 cells did not prevent mistargeting of NKA to 

the apical cell membrane, but - as expected - reduced an amount of apical membrane-associated 

viral proteins HA and M2 that are known be transported via the ER/Golgi pathway324. 

Therefore, it seems likely that IAV infection induces apical mislocalization of NKA via an 

alteration of plasma membrane protein recycling and protein trafficking, rather than via increase 

of β2 subunit expression. Nevertheless, further analysis of the abundance of β2 and α2 subunits 

in the apical membrane of IAV-infected Calu3 cells, as well as an investigation of IAV effects 

on β1/ β2 subunits glycosylation are required.  

30-70% of cellular NKA is localized within the cytoplasmic vesicular storage, allowing a 

quick response to extracellular stimuli267,285. Analysis of NKA-containing vesicles motion and 

incorporation of the transporter into the plasma membrane demonstrated that these processes 

are dependent on structural and functional integrity of the microtubule cytoskeleton257,263. I 

could show that administration of the microtubule polymerization inhibitor – nocodazole, or 

the microtubule polymer stabilizer – paclitaxel (in non-toxic concentrations) to IAV-infected 

Calu3 cells indeed prevented the apical mislocalization of α1 and β1 NKA subunits at the late 

stage of the virus replication cycle. Previously it was described, that the movement of NKA-

containing vesicles along the microtubule network in A549 cells utilizes kinesin-1 as a 

molecular motor, providing tubulin-dependent transport263,325. Notably, I could also show that 

application of a competitive kinesin-1 inhibitor (adenosine 5′-(β,γ-imido)triphosphate (AMP-

PNP)) to IAV-infected Calu3 cells prohibited mistargeting of NKA to the apical cell membrane 
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at the late stage of the viral infection. The fact that inhibition of kinesin-1 did not have a negative 

effect on apical localization of the viral HA and M2, indicates potentially different transport 

mechanisms for apical membrane-associated virus proteins and NKA. 

The late phase of IAV replication includes virus particle assembly and virion budding from 

the apical plasma membrane of infected cells. Although, a clear picture how IAV utilizes host 

actin filaments and microtubule networks for the transport of its own proteins and virus 

components is not described, an involvement of microtubules in the transport of vRNPs to the 

apical plasma membrane by recruitment of Rab11-recycling endosomes is well demonstrated 
14,146,148,149,152,158,160-163,166,286,326. The GTPase Rab11 is one of the major regulators of the 

endocytic recycling compartment and it allows actin- and microtubule-dependent vesicular 

transport via binding to the different effectors molecules, including molecular motors such as 

myosin V, kinesin-1, kinesin-2 and kinesin-3150,151,157,159. During IAV infection, newly 

synthesized vRNPs compete with Rab11-family-interacting proteins (FIPs) for the binding to 

Rab11, resulting on one hand in impaired sorting efficiency of recycling endosomes and on the 

other hand in efficient vRNP transport148,149,286. The cytoplasmic NKA storage vesicles include 

clathrin-coated vesicles, early- / late endosomes and lysosomes. Comellas et al. demonstrated 

in A549 cells the co-localization of the NKAα1 subunit with the Rab10 protein that is regulating 

a vesicular transport from the Golgi apparatus to the basolateral membrane261. In the present 

study, subcellular fragmentation of IAV-infected Calu3 cells revealed that the viral NP protein 

(an indicator for vRNPs327), cellular Rab11 and the NKAα1 subunit are distributed in the same 

fractions. This finding allows me to suggest that for the apical transport of its vRNPs IAV 

recruit Rab11-positive vesicles that also contain NKA. Transport of such vesicles might be 

facilitated by the microtubule molecular motor kinesin-1 that was reported to be involved in the 

transport of NKA-containing vesicles to the plasma membrane and interacts with Rab11. 

Nevertheless, so far only one molecular motor – KIF13A, that belongs to the kinesin-3 family, 

is described to mediate the vRNP transport152,161,263,328. 

Previously, it was shown that IAV infection increases acetylation of lysine 40 (K40) in α-

tubulin of microtubules via post-translational modification to generate stable, long-lived 

microtubules and thereby to improve the apical vRNP and HA transport165,299,329-331. Hence, late 

in the viral replication cycle, IAV infection leads to the activation of caspase-3 that cleaves and 

inactivates histone deacetylase 6 (HDAC6), a cytoplasmic multifunctional enzyme, responsible 

for microtubules deacetylation165,166,303. Accordingly, depletion of HDAC6 or its inhibition by 

tubacin or by trichostatin A increased the virus titer in A549 cells165,299. In the present work, 

application of tubacin to IAV-infected Calu3 cells also led to elevated HA and M2 protein 
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abundance on the apical plasma membrane and slightly increased amounts of apically 

mislocalized NKA. Acetylated microtubules have been shown to promote kinasin-1 binding 

and transport in vivo293-295. Therefore, it seems likely, that IAV-induced elevation of 

microtubule acetylation (by virus-induced, caspase-dependent HDAC6-degradation) results in 

an increase of kinesin-1-dependent transport of NKA-containing vesicles. Nevertheless, my 

results show that tubacin application did not significantly affect the apical mistargeting of NKA. 

This might be explained by exhaustion of the NKA amount within cellular vesicular storage 

during IAV-infection. Therefore, NKA abundance on the apical membrane cannot be further 

increased by HDAC6 inhibition. In agreement with the fact that nocodazole reduces 

microtubule acetylation, the here observed negative effect of nocodazole administration on 

IAV-induced NKA mislocalization is also in line with the importance of microtubule 

acetylation for NKA-containing vesicles trafficking166,299 

Husain et al. demonstrated a requirement of the RhoA GTPase for the signaling and 

regulation of HDAC6 activity during IAV infection of canine kidney epithelial cells (MDCK 

II)299. Knockdown of RhoA by siRNA further increased acetylation of microtubules in IAV-

infected cells299. One of the downstream effectors of RhoA is ROCK that is involved in 

regulation of the HDAC6 activity via phosphorylation of its inhibitor - tubulin polymerization-

promoting protein-1 (TPPP1)332,333. Dephosphorylated TPPP1 binds to HDAC6 and inhibits its 

activity, while phosphorylation of TPPP1 by ROCK impairs this binding and allows HDAC6 

activity. Surprisingly, I found that inhibition of ROCK activity in IAV-infected Calu3 cells did 

not increase the amount of acetylated α-tubulin, but in contrast, rather a reduction of acetylated 

microtubules was observed at the late phase of IAV replication. This might in part be explained 

by the fact that ROCK inhibits activity of ERK, which is activated during IAV infection and 

can increase the deacetylase activity of HDAC6 by its direct phosphorylation334-336. This 

observed decrease of microtubule acetylation by ROCK-inhibition might therefore impair the 

NKA mislocalization.  

As mentioned earlier, HDAC6 is a substrate for the proteolytic cleavage by caspase-3, 

which is activated during infection and is essential for efficient IAV-propagation144,303,337. 

Notably, several ROCK-activated substrates are found to be involved in the intrinsic and the 

extrinsic caspase activation, promoting apoptosis306. In IAV-infected Calu3 cells, I observed 

that activation of caspase-3 at the late stage of the infection was correlated with the degradation 

of HDAC6 and the activation of ROCK. Interestingly, the inhibition of caspase-3 did not 

prevent apical mistargeting of NKA. Here it should be noted that since caspase-3 can also 

directly activate ROCK (ROCK1)306, inhibition of caspase-3 and as a result - a reduced activity 
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of ROCK, might lead to the decreased amount of TPPPP1-free active HDAC6 that increases 

tubulin acetylation. Therefore, caspase inhibition might not have a prominent negative effect 

on NKA mislocalisation. Nevertheless, further experiments to confirm this speculation are 

needed.  

Taken together, I propose the following mechanism for the NKA mislocalization during 

IAV-infection At the late stage of virus replication, one of the IAV-triggered pathways leads to 

(i) activation of ROCK, that results in the (ii) stimulation of caspase-3, leading to (iii) HDAC6 

degradation. Reduction of the HDAC6 amount correlates with an (iv) increase of microtubule 

acetylation that (v) promotes tubulin-dependent trafficking of the viral proteins and vRNPs and 

(vi) increase of motility of NKA-containing vesicles due to the high affinity of kinesin-1 

molecular motor to acetylated microtubules. Presumably, for the transport of vRNPs the virus 

“recruits” NKA-containing vesicles, which are co-delivered to the apical cell membrane by a 

piggy-back mechanism.  

The osmotic gradient, which is generated by NKA is important for the maintenance of the 

optimal volume and composition of the airway surface fluid (ASF) that consists of mucus and 

the periciliary liquid layer (PCL)313. The PCL surrounds underlying epithelial cells providing 

the ideal conditions for the ciliary beating that is required for the mucus clearance338,339. The 

mucus layer traps environmental pollution agents and respiratory pathogens, including 

IAV63,64,313,338,339. The efficiency of mucus clearance in the airway is determined by the rate of 

cilia beating and mucus hydration that strongly depends on an active ion transport338,339. 

Infringement of the Na+ gradient disturbs the fluid homeostasis resulting either in pulmonary 

edema or in high-viscosity of the PCL, impairing the normal cilia beating339. The cell line that 

has been used in the present work (Calu3) is producing mucus when cultivated on permeable 

Transwell® cell culture inserts at liquid- or air-liquid-interfaces (LLI/ALI). Interestingly, when 

mispolarization of NKA during IAV-infection was prevented by an administration of 

nocodazole, paclitaxel or a ROCK-inhibitor to IAV-infected ALI culture of Calu3 cells, the 

virus titer was significantly reduced at each measured time point post infection. When 

nocodazole, paclitaxel or a ROCK-inhibitor was applied to the Calu3 cells cultivated 

submerged in tissue plates the virus yield was not affected. Interestingly, under these conditions 

the mucus layer above the Calu3 cells was not detectable This indicates that a strong hydration 

of the mucus due to the culture medium results in a low mucosal viscosity. Taken together, 

these results could suggest that the apical mistargeting of NKA leads to a more efficient IAV 

spread by reduced viscosity of the muscus produced from the infected cells. Down-regulation 
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of the Na+ transport allows accumulation of fluids on the apical side that increases hydration of 

the mucus and could therefore provide easier virus spread. 

Previously it was demonstrated that an increase of the Na+ transport by up-regulation of 

NKA amount enhances alveolar fluid clearance during ALI214,236,260. The preclusion of the IAV-

induced apical NKA mistargeting by ROCK inhibition restored IAV-compromised vectorial 

water transport through the highly polarized monolayer of infected Calu3 cells and reduced 

lung edema formation in IAV-infected mice. The positive effect of ROCK inhibition on the 

vectorial water transport and edema resolution during IAV-infection might also be explained 

by the increased NKA activity. Arce et al. summarized data on the NKA activity inhibition by 

its interaction with submembraneous acetylated tubulin340. The reviewed data allows to 

speculate that inhibition of ROCK during IAV-infection that results in a decreased level of 

acetylated tubulin might lead to the dissociation of NKA from tubulin and by this stimulates its 

activity. Further experiments that could support this speculation are therefore needed.  

A clinical application of ROCK inhibitors is currently only approved in Japan and China 

for the treatment of cerebral vasospasm and glaucoma341. Nevertheless, due to the broad 

spectrum of downstream-regulated molecules, ROCK-inhibitors might have a potential benefit 

during the treatment of different pathological conditions such as cancer, kidney failure, 

osteoporosis and neuronal degeneration342-350. Several publications demonstrated a protective 

effect of ROCK inhibition during indirect acute lung injury (iALI) induced either by sepsis or 

by chemical agent351-355. The application of ROCK-inhibitors was associated with the 

improvement of endothelial permeability, reduction of lung inflammation, cell infiltration and 

pulmonary alveolar flooding351-355. The mechanism of action was considered as the 

maintenance of the barrier function of the pulmonary microvascular endothelial cells by 

inhibition of actin-dependent cell contraction induced by active ROCK and decrease of cell 

death by inhibition of caspase-3 activity351-355.  

In the murine model of the current study, ALI was induced by direct impact of IAV on 

alveolar epithelial cells. Administration of a ROCK-inhibitor at low concentration resulted in 

the reduction of IAV-induced pulmonary edema evaluated as wet/dry lung weight ratio. IAV 

titer declined more rapidly in the murine lungs when a ROCK-inhibitor was administered to the 

animals. Histopathologic analysis of lungs from the IAV-infected group compared to the IAV-

infected, and ROCK-inhibitor treated group also revealed a difference in the amounts of 

infiltrated inflammatory cells and damage of the lung tissue. It might be possible that a more 

efficient virus spread in the lungs due to the apical NKA translocation (see above), could 

induced more acute damage of the alveolar epithelial cells and result in an intensified release 
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of inflammatory mediators. This again might lead to an increased damage of the pulmonary 

architecture. The animal group treated with a ROCK-inhibitor after IAV-infection 

demonstrated lower levels of alveolar tissue infiltration and damage. Nevertheless, to better 

understand the influence of ROCK-inhibition on the immune response during IAV-infection 

additionally experiments are needed. 

Taking together, this work presented here demonstrates a novel mechanism of IAV-

induced pathogenesis affecting the NKA membrane localization that leads to an imbalance of 

the pulmonary fluid homeostasis. Targeting of this pathway with ROCK-kinase inhibitors 

might be a therapeutic strategy to maintain normal fluid regulation and to reduce IAV-induced 

pathological conditions in patients with ARDS. 
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One of the fatal complication of influenza A virus (IAV) infection is the acute respiratory 

distress syndrome (ARDS) associated with sever formation of alveolar edema. Impaired 

resolution of pulmonary edema is a result of a direct destruction of the alveolar epithelium 

induced by IAV replication and an infringement of the osmotic gradient in the alveolar 

microenvironment, which is the main driving force of alveolar fluid clearance. IAV infection 

down-regulates the amount and function of several membrane ion-channels and pumps that are 

needed to establish the osmotic gradient.  

In the present work a novel mechanism of IAV pathogenicity affecting the basolateral 

membrane-located Na+,K+-ATPase (NKA), the major regulator of fluid homeostasis, is 

described. IAV infection did not reduce the overall amount of membrane-associated NKA, but 

induced a mislocalization of the enzyme to the apical site of infected polarized human bronchial 

epithelial cells (Calu3), as well as canine kidney epithelial cells (MDCK II). The 

mislocalization of NKA was not dependent on the IAV subtype or viral replication efficiency, 

but seems to be induced by IAV in general. The results of the present work indicate that the 

source of apically localized NKA is the vesicular intracellular NKA depot, since no decrease of 

NKA in the basolateral cell membrane was observed during IAV-infection, as well as inhibition 

of newly synthesized NKA maturation did not prevent its apical distribution. Application of the 

actin polymerization inhibitor cytochalasin D, the actin polymerization enhancer jasplakinolide, 

the inhibitor of microtubule polymerization nocodazole or the stabilizer of microtubule polymer 

paclitaxel, indicated that NKA mistargeting to the apical cell membrane depends on the 

integrity of the tubulin network. Moreover, a post-translational modification of α-tubulin 

(acetylation of residue K40), is needed for IAV-induced NKA mistargeting. This modification 

seems to be is indirectly regulated by Rho-kinase (ROCK) as NKA mislocalization in IAV-

infected cells can be prevented by ROCK inhibition, which impairs IAV-induced caspase-3-

dependent degradation of histone deacetylase 6 (HDAC6), resulting in a reduced amount of 

acetylated α-tubulin needed for apical NKA transport. In addition, ROCK inhibition not only 

prevented mistargeting of NKA to the apical membrane, but also reduced virus titer and restored 

vectorial water transport through the monolayer of highly polarized infected Calu3 cells. 

Application of Fasudil HCl to IAV-infected mice improved pulmonary edema clearance and 

reduced the virus titer and immune cell infiltration in the lungs. Taking together, an 

administration of ROCK inhibitors might be a potential treatment scenario for the patients with 

IAV-induced ARDS
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6. Zusammenfassung 

 

Eine der gefürchtetsten Komplikationen bei einer Influenza-A-Virus (IAV)-Infektion ist 

die Entwicklung eines „Akuten Atemnotsyndroms“ (ARDS), welches durch ein schweres 

alveoläres Ödem bedingt ist. Die Störung in der Auflösung des pulmonaren Ödems liegt zum 

einem in der direkten Zerstörung der Alveolarepithelzellen, bedingt durch die IAV-Replikation, 

und zum anderen in der Veränderung der alveolaren Mikro-Umgebung und damit in einer 

Störung des osmotischen Gradienten, einer der wichtigsten Faktoren zur Ödembeseitigung. Im 

Rahmen einer IAV-Infektion kommt es zu einer funktionellen als auch quantitativen 

Modulation verschiedener membranständiger Ionenkanäle bzw. –pumpen, welche zur 

Aufrechterhaltung des osmotischen Gradient benötigt werden. 

In der hier vorgestellten Arbeit wird ein neuer Mechanismus der IAV-Pathogenität 

beschrieben, welcher die Lokalisation, der in der basolateralen Membran verankerten 

Natrium/Kalium-ATPase (NKA), dem Hauptregulator der Flüssigkeitshomöostase, beeinflusst. 

IAV-Infektion humaner Bronchialepithelzellen (Calu3) oder Hunde-Nierenepithelzellen 

(MDCK II) führte nicht zu einer Veränderung in der Gesamtmenge der membranständigen 

NKA, löste aber eine NKA-Fehllokalisation in den apikalen Membranbereich aus. Die 

Fehllokalisation war dabei weder vom IAV-Subtyp noch von der Effizienz der viralen 

Replikation abhängig, sondern scheint generell von IAV ausgelöst zu werden. Die Ergebnisse 

der Arbeit zeigen, dass vermutlich intrazelluläre Vesikel die Quelle der apikalen NKA 

darstellen, da es zu keiner Abnahme der NKA-Menge in der basolateralen Membran im Sinne 

einer Translokalisation kam und auch die Hemmung der NKA-Neusynthese die NKA-

Fehllokalisation nicht verhinderte. Allerdings konnte durch die Hemmung der Polymerisation 

(Nocodazol) oder der Stabilisierung (Paclitaxel) der Mikrotubuli die apikale Fehllokalisation 

der NKA vermindert werden. Zudem konnte nachgewiesen werden, dass eine posttranslationale 

Acetylierung von α-Tubulin ebenfalls für die Fehllokalisation notwendig ist. Diese 

Modifikation scheint indirekt durch die Rho-Kinase (ROCK) reguliert zu werden, da eine 

ROCK-Hemmung (Fasudil-HCl) die NKA-Fehllokalisation vermindert. Die ROCK-Hemmung 

führt zu einer Reduktion der IAV-induzierten, Caspase-3-abhängigen Degradierung der Histon-

Deacetylase 6 (HDAC6). Dies wiederum führt zu einer verminderten Menge an acetyliertem 

Tubulin. Durch eine Hemmung von ROCK konnte aber nicht nur die NKA-Fehllokalisation in 

die apikale Membran reduziert werden, sondern auch der Virustiter. Gleichzeitig wurde der 
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vektoriale Wassertransport durch hochpolarisierte, IAV-infizierte Calu-3-Zellen 

wiederhergestellt. Im Mausmodell führte die Behandlung mit Fasudil-HCl zu einer verbesserten 

Resorption des pulmonalen Ödems, einem verminderten Virustiter und zu einer Abnahme der 

Immunzellinfiltration der Lunge. Zusammenfassend könnte die Hemmung von ROCK eine 

mögliche Therapieoption für ein IAV-induziertes ARDS darstellen. 
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8.2. List of Tables 

Table 1. IAV RNA segments and encoded proteins                                                                   10 

 

8.3. Materials 

8.3.1. Instruments 

Autoclave Syste 

Cell culture incubator Labotect; Panasonic 

Cell culture microscope CK2 Olympus 

Confocal laser scanning microscope (TCS SP5)  Leica  

Culture Hood (HERA safe KS)  ThermoScintific 

ddH2O generator  SG Edwin DAMM 

EVOS FL Auto Cell Imaging System  Life Technologies 

Heat block  Steute 

Magnetic stirrer IKA Labortechnik  

Microtome RM2125 Leica 

Millicell®ERS-2 epithelial Volt-Ohm meter Millipore 

Mini centrifuge Biofuge 13, Heraeus 

Neubauer chamber Optik Labor  

Odyssay Infrared Imager LI-COR 

pH meter (Type 632)  Metrohm 

Power Supply Powerpack P24 Biometra 

Scale (MDS 580) Kern 

Scale (PM460) DeltaRange Mettler  

Scanner Epson Perfection V500 Photo scan Epson 

Science Imaging ChemoCam INTAS 

SDS-PAGE Gelsystem Bio-Rad 

Semi Dry Blotter Unit Scie-PLAS 

Shaker (Type 3013)  MSGV GmbH  

Sterile needles BD Microlance 3 BD  
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Syringe (microliter, serial 700)  Hamilton  

Tecan Spark® 10M multimode microplate reader Tecan 

Typhoon 9200 scanner GE Healthcare 

Ultracentrifuge LE-80 Beckman Coulter 

Reichter Ultracut R  Leica 

Vacuum tissue processorASP200 Leica 

Vacuum sealer  CIATRONIC 

Vortex (Vibrofix VF1)  IKA Labortechnik  

Water bath (SW-20C)  Julabo, GFL 

 

8.3.2. Reagents and chemicals  

1,2,3-Propanetriol glycidyl ethe (Epon 812) Serva 

1,4-Dithiothreit (C4H10O2S2) (DTT)  Roth  

2,4,6-Tris(dimethylaminomethyl)phenol (DMP 30) Serva 

2'-[4-Ethoxyphenyl]-5-[4-Methyl-1-Piperazinyl]-2,5'-bi-1H-
Benzimidazol-Trihydrochlorid-Trihydrat, Höchst 33342 

TermoScintific/Invitrogen 

2-Dodecenylsuccinic acid anhydride (DDSA) Serva 

3-Amino-9-ethylcarbazole (AEC) Sigma Aldrich 

Accutase PAA  

Acrylamide/Bisacrylamide 37, 5:1 premixedsolution Roth 

Ammonium acetate Serva 

Ammonium persulfate (APS)  Serva 

Annexin V PE Biolegend 

Antifade ProGold mounting medium TermoScintific/Invitrogen 

Aprotinin Roth  

Benzamidin Sigma  

Blotting papers (GB004)  Scheicher&Schuell 

Bradford reagent Sigma Aldrich 

Brefeldin 1000× eBioscience 

Bromophenol blue Merck  

BSA (Powder)  Roth  

BSA (Solution, 30%)  Sigma Aldrich 

Calcium chloride dihydrate (CaCl2·2H2O) Sigma Aldrich 

Cycloheximide (C15H23NO4) Sigma Aldrich 

DAPI (stock 1mg/ml)  Roth  

DEAE Dextran (MW: 500,000)  PharmaciaBiotech 

Dimethylsulfoxid (DMSO)  Sigma Aldrich 



Supplement 

98 

DRAQ5™ Fluorescent Probe Solution (5 mM) TermoScintific/Invitrogen 

D-Sucrose Roth 

Eosin G-Solution, 0,5 %  in H2O Roth 

Ethanol (absolute)  Roth  

Ethidiumbromide Roche  

Ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic 
acid (EGTA) 

Sigma Aldrich 

Ethylenediaminetetraaceticacid (EDTA)  Fluka 

EZ-link Sulfo-NHS-SS-Biotin Thermo Scintific 

Falcon centrifuge tube Falcon  

FITC-Dextran, 70 kDa Sigma Aldrich 

Formaldehyde solution, 37 % Roth 

Glutaraldehyde, 25% Sigma Aldrich 

Glycerol Sigma Aldrich 

Glycine Roth  

Hematoxylin Solution, Mayer’s Sigma Aldrich 

Hydrochloride (HCl)  Roth  
Hydrogen peroxide (H2O2) Roth 

Imidazole (C3N2H4) Sigma Aldrich 

Isopropanol Roth  

Leupeptin Sigma Aldrich 

Magnesium chloride hexahydrate (MgCl2·6H2O)  Merck  

Methanol  Roth  

Methylnadic anhydride (MNA) Serva 

N-N-dimethylformamide (DMF) Sigma Aldrich 

Osmium tetroxide solution,4% in H2O Sigma Aldrich 

Paraformaldehyde (PFA)  Merck  

Pefablock Roth  

Potassium chloride (KCl)  Roth  

Potassium dihydrogen phosphate (KH2PO4)  Roth  

PVDF-Membrane Immobilon-F transfe rmembrane Millipore 

Roti®-Blot A, 10x Roth 

Roti®-Blot K, 10x Roth 

Silicon rhodamine (SiR)-tubulin Spirochrome AG 

Skimmed milk, powder Roth 

Sodium acetate (C2H3NaO2) Sigma Aldrich 

Sodium azide (NaN3) Sigma Aldrich 

Sodium cacodylate trihydrate ((CH3)2AsO2Na · 3H2O) Sigma Aldrich 

Sodium chloride (NaCl)  Roth  

Sodium dodecylsulfate (SDS)  Merck  

Sodium fluoride (NaF) Sigma Aldrich 
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Sodium hydrogen carbonate (NaHCO3)  Fluka 

Sodium hydrogenphosphate ( Na2HPO4) Sigma Aldrich 

Sodium hydroxide (NaOH)  Merck  

Sodium orthovanadate, Na₃VO₄ Sigma Aldrich 

Sodium-β-glycerophosphate Sigma Aldrich 

Spectra™ Multicolor Broad Range Protein ThermoFisher  

TEMED (N,N,N',N'-Tetramethyl-ethylene diamine)  Serva 

TERGITOL™ Type NP-40 (NP-40) Merck 

Tetrasodium pyrophosphate (Na4P2O7) Sigma Aldrich 

Trichloroacetic acid (TCA) Merck/ Sigma Aldrich 

Triethanolamin Sigma Aldrich 

TRIS hydrochloride (TRIS HCl, NH2C(CH2OH)3·HCl) Roth 

Trisaminomethane (Tris) Roth 

Triton X-100 (t-Octylphenoxypolyethoxyethanol)  Sigma Aldrich 

Trypan blue solution, 0.4 % TermoScintific/Invitrogen 

Tween-20  Sigma Aldrich 

Ultacentrifugation tubes Beckman Coulter 

Whatman 3MM Paper  Schleicher &Schüll 

Xylene, histological grade Sigma Aldrich 
 

8.3.3. Inhibitors 

Name Company 

 

Working 
concentration 

Adenosine 5′-(3-thiotriphosphate) tetralithium 
salt 

Sigma Aldrich 500 nM 

Cytochalasin D Sigma Aldrich 20 µM 

Fasudil HCl Selleckchem 10µM 

Jasplakinolide Sigma Aldrich 1µM 

ML-7 Sigma Aldrich 1µM 

Nocodazole Sigma Aldrich 1µM 

Paclitaxel Sigma Aldrich 2µM 

Raf1 kinase inhibitor I Calbiochem 10µM 

Rho kinase inhibitor RKI-1447(XIII) Millipore 5µM 

Tubacin Sigma Aldrich 10µM 
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U0126 Sigma Aldrich 15 µM 

 

 

8.3.4. Antibodies 

Name Cat.N Company Dilution 

Acetyl-α-Tubulin (Lys40) 
(D20G3) 

#5335 Cell Signaling 
Technology 

1:2000 

Alexa Fluor 488 anti-goat # A11055 ThermoScintific/ 
Invitrogen/Gibco 

1:1000 

Alexa Fluor 488 anti-rabbit # A21441 ThermoScintific/ 
Invitrogen/Gibco 

1:1000 

Alexa Fluor 568 anti-goat # A11057 ThermoScintific/ 
Invitrogen/Gibco 

1:1000 

Alexa Fluor 594 anti-goat # A11080 ThermoScintific/ 
Invitrogen/Gibco 

1:1000 

Alexa Fluor 594 anti-rabbit # A11012 ThermoScintific/ 
Invitrogen/Gibco 

1:1000 

Alexa Fluor 647 anti-mouse # A21237 ThermoScintific/ 
Invitrogen/Gibco 

1:1000 

Alexa Fluor 647anti-mouse # A21463 ThermoScintific/ 
Invitrogen/Gibco 

1:1000 

Anti-Actin # MA515739 ThermoScintific/ 
Invitrogen/Gibco 

1:1000 

Anti-ASIC3 (K-13) # sc-21845 SantaCruz 
Biotechnology 

1:200 

Anti-beta IV Tubulin # ab179509 Abcam 1:1000 

Anti-Caspase3 (8G10) # 9665 Cell Signaling 
Technology 

1:500 

Anti-E-cadherin # sc-7870 SantaCruz 
Biotechnology 

1:200 

Anti-EEA1 # ab2900 Abcam 1:200 

Anti-ERp72 (D70D12) # 5033 Cell Signaling 
Technology 

1:1000 
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Anti-HDAC6 (D2E5) # 7558 Cell Signaling 
Technology 

1:1000 

Anti-influenza A HA # ab20841 Abcam 1:2000 

Anti-Influenza A M2 # MA1-082 ThermoScintific/ 
Invitrogen/Gibco 

1:1000 

Anti-Influenza A NP # PA5-32242 ThermoScintific/ 
Invitrogen/Gibco 

1:2000 

Anti-Influenza A NP  S. Ludwig, Münster 1:100 

Anti-Influenza A NP (FITC) #ab20921 Abcam 1:20 

Anti-KIF5B # ab167429 Abcam 1:500IF 

1:1000 WB 

Anti-LAMP1 (D2D11) # 9091 Cell Signaling 
Technology 

1:200 

Anti-Mucin 5AC # ab198294 Abcam 1:1000 

Anti-Myosin light chain # ab11082 Abcam 1:200 

Anti-Myosin light chain (phospho 
S1) 

# ab157747 Abcam 1:1000 

Anti-Myosin light chain kinase # ab76092 Abcam 1:200 

Anti-p44/42 MAPK (Erk1/2) 
(L34F12) 

# 4696 Cell Signaling 
Technology 

1:1000 

 

Anti-Phospho-Ezrin 
(Thr567)/Radixin 
(Thr564)/Moesin  (Thr558) 
(48G2) 

# 3726 Cell Signaling 
Technology 

1:1000 

Anti-Phospho-p44/42 MAPK 
(Erk1/2) (Thr202/Tyr204) 
(D13.14.4E) 

# 4370 Cell Signaling 
Technology 

1:1000 

Anti-Rab11 # 700184 ThermoScintific/ 
Invitrogen/Gibco 

1:1000 

 

Anti-Rab5 # ab66746 Abcam 1:1000 

Anti-Rab7 # ab50533 Abcam 1:1000 

Anti-RCAS1 (D2B6N) # 12290 Cell Signaling 
Technology 

1:1000 
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Anti-ZO1 # 40-2200 ThermoScintific/ 
Invitrogen/Gibco 

1:100 IF 

1:1000 WB 

Anti-α1 NKA # 05-369 Millipore/ Sigma 
Aldrich 

1:1000 

Anti-α-Tubulin # T8328 Sigma Aldrich 1:2000 

Anti-β1 NKA # MA3-930 ThermoScintific/ 
Invitrogen/Gibco 

1:1000 

APC/Cy7 anti-mouse CD326 (Ep-
CAM) 

# 118218 Biolegend 1:100 

Cy3 anti-rabbit # 711-165-152 Jackson 
ImmunoResearch 

1:10000 

Cy5 anti-rabbit # 715-175-150 Jackson 
ImmunoResearch 

1:10000 

HRP conjugated anti-goat # sc-2354 SantaCruz 
Biotechnology 

1:1000 

HRP conjugated anti-mouse # sc-2314 SantaCruz 
Biotechnology 

1:1000 

HRP conjugated anti-rabbit  # sc-2313 SantaCruz 
Biotechnology 

1:1000 

IRDye®800CW anti-goat # 926-32214 Licor 1:10000 

IRDye®800CW anti-mouse # 92632210 Licor 1:10000 

IRDye®800CW anti-rabbit # 92632211  Licor 1:10000 

Pacific Blue™ anti-mouse CD31 # 102422 Biolegend 1:100 

Pacific Blue™ anti-mouse CD45 # 103126 Biolegend 1:100 

 

8.3.5. Materials for cell culture and infection  

8.3.5.1. Media 

Bronchial Epithelial Growth Medium (BEGM™) Lonza 

Bronchial Epithelial Growth Medium Bullet Kit BEGM™ Lonza 

Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 (DMEM-
F12) 

ThermoScintific/ 
Invitrogen/Gibco 
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Dulbecco's Modified Eagle's medium (DMEM)  ThermoScintific/ 
Invitrogen/Gibco 

Minimum Essential Media (MEM), (10×)  ThermoScintific/ 
Invitrogen/Gibco 

Minimum Essential Medium Eagle (MEM) ThermoScintific/ 
Invitrogen/Gibco 

Bovine Albumin, liquid, for cell culture (BSA) 30% Sigma Aldrich 

Trypsin- EDTA,0.05%  ThermoScintific/ 
Invitrogen/Gibco 

Fetal calf serum (FCS)  ThermoScintific/ 
Invitrogen/Gibco 

Non-Essential Amino Acids Solution , (100×) ThermoScintific/ 
Invitrogen/Gibco 

Penicillin/Streptomycin solution, (10,000 U/10mg/mL,100×) ThermoScintific/ 
Invitrogen/Gibco 

Sodium Pyruvate, (100 mM) ThermoScintific/ 
Invitrogen/Gibco 

TPCK-treated Trypsin  Sigma Aldrich 

 

PBS+/+/BA/PS (500 ml)  

492 ml PBS +/+ 

5 ml Penicillin/streptomycin (100×)  

3 ml Bovine Albumin (BA) (30%)  

 

Infection media #1 for MDCK, A549, MLE15 (100 ml)  

98.5 ml DMEM (1×)  

500 µl BSA (30%)  

1μg/μl TPCK-Trypsin 

 

Infection media #2 for Calu3 (100 ml)  

96.5 ml MEM (1×) 

1 ml Sodium Pyruvate (100×) 

1 ml Non-Essential Amino Acids (100×) 
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500 µl BSA (30%)  

 

Infection media #3 for CaCo2 (100 ml) 

98.5 ml DMEM-F12 (1×)  

500 µl BSA (30%) 

1μg/μl TPCK-Trypsin 

 

8.3.5.2.Plastics 

96 Well Special Optics Microplate, clear flat bottom Corning 

Tissue culture flask Greiner Bio-one 

Tissue culture plates Greiner Bio-one 

Transwells® inserts Corning 

 

8.3.6. Kits  

Caspase-3 activity  ThermoFisher Scintific 

ECL (enhanced chemiluminescence) solution Kit Amersham/GE  

SuperSignal™ West Femto Maximum Sensitivity Substrate ThermoFisher Scintific 

BD Cytofix/Cytoperm™ Fixation/Permeabilization Solution Kit  BD 
Cytofix/Cytoperm™ 

 

8.3.7. Buffers and solutions  

8.3.7.1.Buffers and solutions for foci assay 

 

PBS +/+ /BA/antibiotic (200ml)  

20 ml 10×PBS 

174.8 ml ddH2O (sterile)  

2 ml Penicillin/Streptomycin (100×)  

1.2 ml BSA (35%)  

2 ml Ca2+/Mg2(100×)  
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Avicel Medium (100 ml)  

10 ml 10× MEM  

33 ml ddH2O  

1 ml Penicillin/Strepromycin liquid (100×)  

1 ml BSA solution (30%)  

50 ml Avicell Stock (2.5%)  

1 ml DEAE-Dextran (1%)  

4 ml NaHCO3 (7.5%)  

100 μl of 1 mg/ml TPCK-trypsin  

 

Avicel Stock (2.5%)  

5 g Avicel-Powder  

200 ml ddH2O  

Autoclaved  

 

Cell fixing buffer (100ml) 

95 ml PBS +/+  

4 ml Formaldehyde  (37%)  

1 ml Triton X-100 (t-Octylphenoxypolyethoxyethanol) 

 

Antibody diluting solution for foci assay 

Bovine serum albumin 3% (w/v) in 1×PBS +/+ 

 

AEC solution (20×) 

20 g AEC 

12,5 ml DMF 

 

Acetate buffer (2 L)   

7.708 g (50 mM) Ammonium acetate  
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534 µl (8.8 mM) H2O2 

1950 ml ddH2O 

Adjust pH to 5.0 and fill up till 2 L 

 

8.3.7.2.Buffers and solutions for biotinylation assay  

Biotinylation buffer 

10mM Triethanolamin 

2mM CaCl2 

150mM sucrose 

Adjust pH to 9 

 

Beads washing solution A 

150mM NaCl 

50mM Tris, pH 7.4 

5mM EDTA, pH 8.0 

 

Beads washing solution B 

500mM NaCl 

50mM Tris, pH 7.4 

5mM EDTA, pH 8.0 

 

Beads washing solution C 

500mM NaCl  

20mM Tris, pH 7.4 

0.2% BSA 

 

8.3.7.3. Buffers and solutions for SDS-PAGE and Immunoblotting assay 

Tris buffer pH6.8 (100 ml) 

6.05 g Tris 
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50 ml ddH2O 

Adjust pH to 6.8 and fill up to 100ml with ddH2O 

Tris buffer pH 8.8 (100 ml) 

18.8 g Tris 

50 ml ddH2O 

Adjust pH to 8.8 and fill up to 100ml with ddH2O 

 

SDS-PAGE stacking gel 

2.9 ml ddH2O  

750 μl Acrylamide/Bisacrylamide (30%)  

1.25 ml Tris, pH 6.8  

50 μl SDS (10%)  

50 μl APS (10%)  

4 μl TEMED  

 

SDS-PAGE resolving gel (10%)  SDS-PAGE resolving gel (15%) 

4 ml ddH2O  

3.3 ml Acrylamide/Bisacrylamide (30%)  

2.5 ml Tris, pH 8.8  

100 μl SDS (10%)  

50 μl APS (10%)  

6 μl TEMED 

2.35 ml ddH2O  

4.95 ml Acrylamide/Bisacrylamide (30%)  

2.5 ml Tris HCl, pH 8.8 

100 μl SDS (10%)  

50 μl APS (10%)  

6 μl TEMED 

 

 

SLAB-loading Buffer, 5× 

150 mM Tris, pH 6.8 

7.5 % SDS 

37.5 % Glycerol (99%) 

0.2 % Bromphenol blue 

 

4M DTT stock solution (5 ml) 
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3.086 g dissolve in 5 ml dd H2O 

 

SDS-PAGE running buffer (10×) (1 L)  

2.5 g SDS  

15 g Tris HCl 

72.5 g Glycin 

adjust total volume to 1 L with ddH2O  

 

Anode buffer 

100 ml of Roti®-Blot A 

200 ml of 100% methanol 

700 ml ddH2O 

 

Cathode buffer 

100 ml of Roti®-Blot K 

200 ml of 100% methanol 

700 ml ddH2O 

 

NP40 Lysis buffer 

20 mM Tris, pH 7.5 

150 mM NaCl, 

1 mM EDTA, pH 8.0, 

1 mM EGTA, pH 8.0 

0.5% NP40 

2 mM Na₃VO₄, pH10.0 

10 μl Pefablock (200 mM)  

10 μl Aprotinin (5 mg/ml)  

10 μl Leupeptin (5 mg/ml)  

 

Tris-Buffered Saline (10X TBS) (1 L) 

24.2 g Tris-HCl  
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80 g NaCl  

dissolve by adding 900 ml ddH2O  

adjust pH to 7.6 and total volume to 1 L with ddH2O 

 

TBS/Tween (0.05%) (1XTBS-T) (1 L) 

100 ml 10X TBS  

900 ml ddH2O  

0.5 ml Tween 20 

 

Blocking buffer 

Non-fat dry milk 5% (w/v) in 1×TBS-T 

 

Antibody diluting solution for Western Blot 

Non-fat dry milk 2% (w/v) in 1×TBS-T 

 

8.3.7.4.Buffers and solutions for Immunofluorescence 

Washing solution for Immunofluorescence 

Bovine serum albumin 0.3% (w/v) in 1×PBS +/+ 

 

Blocking solution for Immunofluorescence 

Bovine serum albumin 3% (w/v) in 1×PBS +/+ 

 

Antibody diluting solution for Immunofluorescence 

Bovine serum albumin 2% (w/v) in 1×PBS +/+ 

 

4 % (w/v) Paraformaldehyde (100ml)  

4 g Paraformaldehyde, EM grade 

10 ml PBS -/-, 10× 

ddH2O 

Dissolve PFA in 50 ml of ddH2O and 1 ml of 1 M NaOH, warm up until 60°C.  
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Add 10 ml of 10×PBS -/- and allow cooling to room temperature.  

Adjust pH to 7.4 with 1M HCl, and then adjust final volume to 100 ml with ddH2O. 

filtered through 0,45-μm membrane filtered 

 

8.3.7.5.Buffers and solutions for differential centrifugation 

 

Homogenization buffer 

250 mMSucrose  

3 mM Imidazole (pH 7.4) 

1 mM EDTA 

0.03 mMCycloheximide 

Protease inhibitors 

10 μg/mL Aprotinin 

1 μg/mL Pepstatin 

10 μg/mL Leupeptin 

1 mM Pefabloc 

Phosphatase inhibitors 

1 mM Na3OV4 

5 mM Na4P2O7 

50 mMNaF 

10 mM β-Glycerophosphate 

 

Hypotonic buffer 

20 mM Tris (pH 8) 

1.5 mM MgCl2 

10 mM CH₃COONa 

 

8.3.7.6. Buffers and solutions for Epon embedding semi-thin section 
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Cacodilate buffer 0.2 M (10 ml) 

428 mg Sodium cacodylate trihydrate 

10 ml ddH 

1.5% Glutaraldehyde in 0.2 M Cacodilate buffer 

600 µl 25% Glutaraldehyde 

5 ml 0.2M Cacodilate buffer 

4.4 ml ddH2O 

Epon mixture 

12 g Epon 812 

4.5 g DDSA 

7.5 g MNA 

0.7 g DMP 

steer at app 300 rpm for 10 min 

8.3.7.7.Buffers and solutions flow cytometry 

 

FACS-buffer 

PBS -/- 

1 mM EDTA, 

2% (v/v) FCS 

0,01% (w/v) NaN3 

pH 7.2 

8.3.7.8.General Buffers and solutions 

 

1×PBS buffer (1L) 

800 ml ddH2O 

8 g NaCl 

0.2 g KCl 

1.44 g Na2HPO4 

0.24 g KH2PO4 
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adjust the pH to 7.4 with HCl 

10×PBS buffer (10L) 

800 g NaCl 

20 g KCl 

144 g Na2HPO4·2H2O 

24 g KH2PO4 

8 L ddH2O 

 

1×PBS +/+ buffer (0,5L)  

495 ml 1×PBS (autoclaved)  

5 ml Ca2+/Mg2+ solution (100×)  

 

Ca2+/Mg2+ solution (100×) (100ml) 

1.32 g CaCl2·2H2O 

2.133 g MgCl2·6H2O 

100 ml ddH2O 

autoclaved 

 

8.3.8. Viruses 

Virus strain Source BSL 

level 

A/Puerto Rico/8/1934 H1N1 Virus collection, Institute of Medical Virology,   

Justus-Liebig University Giessen, Germany 

2 

A/Victoria/3/75 H3N2 Virus collection, Institute of Medical Virology,   

Justus-Liebig University Giessen, Germany 

2 

A/Thailand/1(KAN-1)/2004 

H5N1 

Virus collection, Institute of Medical Virology,   

Justus-Liebig University Giessen, Germany 

3 

A/Anhui/1/2013 H7N9 Virus collection, Institute of Medical Virology,   

Justus-Liebig University Giessen, Germany 

3 
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8.4. List of Abbreviations 

A Ampere 
ASF Airway surface fluid 
AEC Alveolar epithelial cells  
AEC Aminoethyl carbazole 
ALI Acute lung injury 
ALI Air-Liquid Interface  
AQP Aquaporin 
ARDS Acute respiratory distress syndrome 
ASIC3 Acid-sensing ion channel 3 
AT I Alveolar epithelial cells type I 
AT II Alveolar epithelial cells type II 
ATPases Adenosine triphosphatase 
BA Bovine albumin 
°C  Celsius 
Ca Calcium 
CFTR Cyctic fibrosis transmembrane conductance regulator 
Cl Chloride 
cm Centimetre 
CO2  Carbon dioxide 
DAPI 4′,6-diamidino-2-phenylindole 
ddH2O  Double-distilled water 

dH2O Distilled water 
DMEM  Dulbecco’s modified Eagle’s medium 
DMEM-F-12  Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 
DMSO Dimethylsulfoxide 
dpi Dots per inch 
DTT  Dithiotreitol 
EDTA Ethylendinitrilotetraacetic acid 
EE Early endosome  
ENaC Epithelial sodium channel  
ER Endoplasmic reticulum 
ERK  Extracellular signal–regulated kinases 
FCS  Fetal calf serum 
ffu Foci forming unit 
FIPs Rab11-family interacting proteins 
G Gauge 
g  Gramms 
g  Earth's gravitational force 
GTPase Guanosine triphosphatase 
GA Golgi apparatus 
h Hours 
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H2O Water 
HA Hemagglutinin 
HB Homogenization buffer 
HCl Hydrochloric acid 
HDAC Histone deacetylase  
HPAI Highly pathogenic IAV  
HRP Horseradish peroxidase 
IAV Influenza A virus 
IFN Interferon 
IL Interleukin 
K Potassium 
kDa Kilodalton 
KIF Kinesin superfamily proteins 

l Liter 
LE Late endosome  
LLI Liquid-Liquid Interface  
LRT Lower respiratory tract  
μ Micro 
m Milli 
M Molar 
M2 Matrixprotein 2 
MCDK II Madin Darbey Canine Kidney subclone II 
MEK Mitogen-activated protein kinase kinase 

MEM Minimum Essential Medium 
min Minute 
MLCK Myosin light-chain kinase 
MLE 15 Murine lung epithelialuim clone 15 
MOI Multiplicity of infection 
MT Microtubules  
n Nano 
Na Sodium 
NKAα1 Sodium-potassium adenosine triphosphatase alpha 1 subunit  
NKAβ1 Sodium-potassium adenosine triphosphatase beta 1 subunit  
nm Nanometer 
NP Nucleoprotein 
OCWB On cell western blot 
PAGE  Polyacrylamidgelelectrophoresis 
PBS Phosphate buffered saline 
PCL Periciliary liquid layer  
PFA Paraformaldehyde 
pH Potentia hydrogenii 
PKC Protein kinase C 
pNA P-nitroanilide 
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PNS Post-nuclear supernatant  
PS Senicillin streptomycin 
PVDF Polyvinylidene difluoride 
Rab "Ras-related in brain" protein 

Raf 
Rapidly Accelerated Fibrosarcoma serine/threonine-specific 
protein kinase 

RE Recycling endosomes  
rER Rough ER  
RNA Ribonucleic acid 
ROCK Rho-associated coiled-coil containing serin/threonine kinase  
ROS Reactive oxygen species 
rpm Round per minute 
RT Room temperature 
SDS Sodiumdodecylsulfate 
TBS Tris-buffered saline 
TEER Transepithelial electrical resistance  
TGN Trans-Golgi network  
TPCK L-1-Tosylamide-2-phenylethyl chloromethyl ketone 
TRAIL Tumor necrosis factor-related apoptosis-inducing ligand  
Tris Trishydroxymethylaminomethane 
URT Upper respiratory tract  
v Volume 
vRNP Viral Ribonucleoprotein  
VWT Vectorial water transport  
w Weight 
ZO Zona-occludens 
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