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1 

ZUSAMMENFASSUNG 

Ketose zählt zu einer der bedeutendsten Stoffwechselerkrankungen hochleistender Milchkühe 

in der Frühlaktation. In Abhängigkeit von mit einer Ketose assoziierten schwerwiegenden 

Sekundärerkrankungen, daraus resultierenden Behandlungskosten, sowie reduzierter 

Milchleistung, verursacht diese Erkrankung bereits im subklinischen Stadium hohe 

ökonomische Verluste im Milchviehbetrieb. Hohe wirtschaftliche Defizite verdeutlichen die 

Wichtigkeit der Einbeziehung von Management- und Zuchtstrategien zur Überwachung und 

Vorbeugung von Ketose in der Milchviehhaltung. Um Stoffwechselerkrankungen frühzeitig 

erkennen und vermeiden zu können, kann die Überwachung von Stoffwechselmetaboliten im 

Blut herangezogen werden. Eine kosteneffiziente, schnelle und zuverlässige Alternative zur 

Blutuntersuchung stellt die Analyse von Stoffwechselindikatoren der Testtagsmilch dar. Mit 

Hilfe der Fourier-Transformations-Infrarot Spektroskopie (FTIR) lassen sich neben den 

routinemäßig analysierten Milchleistungsmerkmalen, neue, innovative Indikatormerkmale der 

Stoffwechsellage in der Frühlaktation determinieren. Insbesondere für solche innovativen 

Gesundheitsmerkmale stehen historische Daten lediglich in begrenztem Umfang zur 

Verfügung. Die genomische Selektion hinsichtlich dieser Merkmale ist im Vergleich zu 

Milchleistungsmerkmalen, aufgrund der bestehenden kleinen Bullenreferenzstichprobe, 

erschwert. Die Genotypisierung weiblicher Tiere in Betrieben mit zuverlässiger 

Gesundheitsdatenerfassung wirkt dieser Herausforderung entgegen und ermöglicht eine 

Verbesserung der Genauigkeit genomischer Zuchtwerte hinsichtlich innovativer Gesundheits- 

sowie Indikatormerkmale. Die simultane Einbeziehung neuer Phänotypen, wie auch 

genomischer Informationen weiblicher Tiere im Rahmen einer Kuh-Lernstichprobe, offeriert 

neue Perspektiven in der Milchrinderzucht, besonders im Hinblick auf eine verbesserte 

Krankheitsresistenz. 

Vor diesem Hintergrund eruiert die vorliegende Arbeit die Beziehung zwischen Ketose, 

innovativen Biomarkern der Milch, sowie dem Fruchtbarkeitsmerkmal Rastzeit auf 

verschiedenen Analyseebenen und unter Verwendung einer Kuh-Lernstichprobe: 1) Analyse 

der Beziehungen zwischen Ketose und Milchindikatoren auf phänotypischer Ebene; 2) 

Schätzung von (Ko-)Varianzkomponenten für diese Merkmale unter Berücksichtigung 

verschiedener Verwandtschaftsmatrizen auf quantitativ-genetischer Ebene; 3) Durchführung 

genomweiter Assoziationsstudien (GWAS), Identifikation assoziierter Einzelnukleotid-

Polymorphismen (SNP) sowie Kandidatengene der Ketosediagnose, Milchindikatoren und der 

Rastzeit bei Holstein Kühen in der Frühlaktation.
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Um in das übergeordnete Thema dieser Dissertation einzuführen, dient Kapitel 1 als allgemeine 

Einleitung. Eine Literaturübersicht hinsichtlich Ätiologie und Pathogenese, des ökonomischen 

Einflusses von Ketose, der Beziehung zu weiteren Erkrankungen, Milchindikatoren und zur 

Fruchtbarkeit, sowie der Implementierung von Ketose in die Zuchtwertschätzung wird in 

diesem Kapitel gegeben. Des Weiteren stellt Kapitel 1 die genetische und genomische 

Architektur der in dieser Arbeit analysierten Merkmale heraus und betrachtet die Perspektiven 

einer Kuh-Lernstichprobe.  

 

Die mittels Infrarot Spektroskopie detektierten innovativen Milchindikatoren gliedern die 

Arbeit in drei Studien (Kapitel 2, 3, 4), welche jeweils, die zuvor benannten 

Forschungsbereiche bearbeiten. Die vorliegenden Studien umfassen eine eingehende 

Evaluation der Stoffwechselerkrankung Ketose, innovativer Milchindikatormerkmale und der 

Rastzeit frühlaktierender Holstein-Friesian Kühe. 

 

Kapitel 2 adressiert Assoziationsanalysen hinsichtlich des Fett-Eiweiß-Quotienten (FPR) der 

Milch und Ketose erstlaktierender Holstein Kühe. Die Assoziationsanalysen basieren auf einem 

umfassenden Datensatz genotypisierter Kühe großer Testherden Deutschlands. Neben diversen 

Blutindikatoren dient ein erhöhter FPR als Indikator für eine energiedefizitäre Stoffwechsellage 

und Ketose. Die Beziehung zwischen Ketose und dem FPR auf phänotypischer Ebene wurde 

unter Anwendung generalisierter linearer gemischter Modelle eruiert. Die Ergebnisse 

indizierten einen wechselseitigen signifikanten Einfluss zwischen einer Ketosediagnose und 

dem FPR in der Frühlaktation. Eine steigende Ketoseinzidenz war signifikant mit einem 

erhöhten FPR, und umgekehrt, assoziiert. Weiterhin erfolgte die Schätzung von 

Varianzkomponenten anhand eines univariaten Tiermodells und unter Verwendung 

verschiedener Verwandtschaftsmatrizen. Die mittels Pedigree-basierter Verwandtschaftsmatrix 

geschätzte Heritabilität für Ketose lag tendenziell höher als bei Anwendung einer SNP-

basierten Verwandtschaftsmatrix (Pedigree-basiert: 0,17; SNP-basiert: 0,11). Im Vergleich zu 

der Pedigree-Heritabilität des binär verteilten FPR (Grenzwert = 1,5) wurde eine höhere 

Heritabilität basierend auf der genomischen Verwandtschaftsmatrix geschätzt (Pedigree-

basiert: 0,09; SNP-basiert: 0,15). Für den normalverteilten FPR zeigten sich annähernd 

identische Pedigree- und SNP-Heritabilitäten (Pedigree-basiert: 0,14; SNP-basiert: 0,15). 

Anhand bivariater linearen Tiermodelle wurden außerdem moderate Pedigree-basierte und 

genomische Korrelationen zwischen Ketose und dem FPR (0,39 - 0,71) geschätzt. Die 

Ergebnisse deuten darauf hin, dass sich der FPR ebenfalls auf genetischer Ebene als Indikator 
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für Ketose in der Frühlaktation eignet. Zur Identifizierung von SNP-Markern und 

Kandidatengenen, welche mit Ketose und dem FPR assoziiert sind, wurden GWAS 

durchgeführt. Der mit Ketose assoziierte SNP rs109896020 (Bos taurus Autosom (BTA) 5, 

115.456.438 bp) ist in der Nähe des Kandidatengens PARVB lokalisiert, welches beim 

Menschen im Zusammenhang mit der nicht-alkoholischen Fettlebererkrankung steht. Der am 

signifikantesten assoziierte SNP für den FPR ist im DGAT1 Gen auf BTA 14 lokalisiert. Die 

detektierten SNP Assoziationen hinsichtlich einer Ketose und des FPR weisen auf 

unterschiedliche, zugrundeliegende genomische Mechanismen beider Merkmale hin. 

 

Aufgrund der leichteren Erfassbarkeit klinischer Ketosen im Vergleich zu subklinischen 

Ketosen wurden vorwiegend klinische Ketoseaufzeichnungen zur Schätzung quantitativ-

genetischer und genomischer Parameter genutzt. Die Einbeziehung subklinischer Ketosefälle 

könnte aufgrund höherer Inzidenzen und präziserer Phänotypen zu einem Informationsgewinn 

führen. Zur Detektion subklinischer Ketosen werden jedoch detaillierte Aufzeichnungen von 

Indikatoren, wie beispielsweise Ketonkörperkonzentrationen in Blut oder Milch, benötigt. Die 

zweite Studie, Kapitel 3, fokussiert sich deshalb auf die Analyse der Beziehung zwischen 

Ketose und der mittels FTIR detektierten Aceton- und β-Hydroxybutyrat- (BHB) 

Milchkonzentration in der Frühlaktation bei Holstein Kühen der ersten drei Laktationen. Um 

den phänotypischen Effekt von Ketose auf die Aceton- und BHB-Konzentration des ersten 

Testtages, und zudem den Einfluss von Aceton sowie BHB auf Milchproduktionsmerkmale zu 

untersuchen, wurden generalisierte lineare gemischte Modelle verwendet. Eine erhöhte 

Ketoseinzidenz war dabei mit einer signifikant erhöhten Aceton- und BHB-Konzentration der 

Milch am ersten Testtag assoziiert. Die deutlichen phänotypischen Assoziationen zwischen 

Ketose, Aceton und BHB am ersten Testtag induzieren eine routinemäßige Bestimmung und 

Nutzung von Ketonkörperkonzentrationen der Milch, zur Verbesserung und Erleichterung des 

Gesundheitsmanagements in der Milchviehhaltung. Zudem wurden positive Korrelationen 

zwischen Aceton, BHB und dem Fettgehalt, dem FPR und auch dem somatischen Zellscore der 

Milch detektiert. Des Weiteren dienten bivariate lineare Tiermodelle der Schätzung genetischer 

Varianzkomponenten innerhalb einzelner Laktationen sowie unter Berücksichtigung aller 

Laktationen im Rahmen von Wiederholbarkeitsmodellen. Pedigree-basierte Heritabilitäten für 

Aceton rangierten auf einem niedrigen Niveau zwischen 0,01 in der dritten Laktation und 0,07 

in der ersten Laktation sowie zwischen 0,03 und 0,04 für BHB. Basierend auf dem 

Wiederholbarkeitsmodell betrugen die Heritabilitäten 0,05 für Aceton und 0,03 für BHB. 

Genetische Korrelationen zwischen Aceton und BHB innerhalb einzelner Laktationen sowie 
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über die ersten drei Laktationen hinweg lagen in einem moderaten bis hohen Bereich (0,69 – 

0,98). Ebenfalls hohe genetische Korrelationen konnten zwischen Aceton, BHB und Ketose 

einzelner Laktationen geschätzt werden (0,71 – 0,99). Genetische Korrelationen zwischen 

Aceton einzelner Laktationen sowie BHB einzelner Laktationen lagen zwischen 0,55 und 0,66 

und suggerieren eine frühe Selektion hinsichtlich FTIR Ketonkörperkonzentrationen in der 

ersten Laktation. Zwischen Ketose, Aceton, BHB und dem FPR sowie dem Fettgehalt des ersten 

Testtages der Milch konnten hohe positive genetische Korrelationen geschätzt werden. 

Zwischen Ketose, sowie Ketonkörperkonzentrationen und der Milchleistung hingegen, 

identifizierten wir negative Korrelationen. Basierend auf diesen Ergebnissen ist eine 

Implementierung der Ketonkörperkonzentrationen des ersten Testtages in Selektionsindizes für 

Stoffwechselerkrankungen aus züchterischer Sicht empfehlenswert. Im Rahmen der GWAS 

eruierten wir Kandidaten-SNP für Aceton auf BTA 4, 10, 11 und 29, sowie für BHB auf BTA 

1 und 16. Identifizierte Kandidatengene NRXN3, ACOXL, BCL2L11, HIBADH, KCNJ1 und 

PRG4 sind in Lipid- und Glucosestoffwechselwege involviert. 

 

Auf phänotypischer Ebene konnten bereits Beziehungen zwischen dem Fettsäureprofil der 

Milch sowie dem Energie- und Fruchtbarkeitsstatus der Kuh postpartum detektiert werden. 

Erstmalig wurden in der dritten durchgeführten Studie, Kapitel 4, die Beziehungen zwischen 

Ketose in der Frühlaktation, dem Fettsäureprofil der Milch am ersten Testtag und dem 

Fruchtbarkeitsmerkmal Rastzeit erstlaktierender Holstein Kühe auf genetischer und 

genomischer Ebene evaluiert. In diesem Zusammenhang wurde ein single-step best linear 

unbiased predictor (BLUP) Verfahren der genomischen Zuchtwertschätzung (ssGBLUP) 

angewendet, welches die gleichzeitige Berücksichtigung genotypisierter und nicht 

genotypisierter Kühe in der Analyse ermöglicht. Varianzkomponenten und Heritabilitäten für 

die normalverteilten Merkmale wie die Fettsäuren (FA) der Milch, die Rastzeit und für die binär 

verteilte Ketose, wurden unter Verwendung von Linearen- und Schwellenwertmodellen mittels 

ssGBLUP geschätzt. Die Schätzung genetischer Korrelationen umfasste bivariate Rechenläufe. 

Die Heritabilitäten für die Milch-FA waren moderat und rangierten zwischen 0,09 und 0,20, 

die Heritabilität für die Rastzeit (0,08) und Ketose (0,05) hingegen lagen auf einem niedrigen 

Niveau. Genetische Korrelationen zwischen Ketose, der Konzentration ungesättigter FA 

(UFA), einfach ungesättigter FA (MUFA) und der Stearinsäure (C18:0) waren hoch (0,74 – 

0,85) und leicht positiv zwischen Ketose und der Rastzeit (0,17). Genetische Korrelationen 

zwischen UFA, MUFA, C18:0 und der Rastzeit rangierten zwischen 0,34 und 0,46. Diese 

Ergebnisse suggerieren, dass sich die mittels FTIR detektierte FA-Konzentration des ersten 
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Testtages als nützlicher Prädiktor für Ketose und die Rastzeit eignen. Ferner legen die für die 

FA determinierten, moderaten Heritabilitäten eine Einbeziehung der FA-Konzentrationen in 

Selektionsindizes der Stoffwechselgesundheit und der Rastzeit nahe. Die mit Hilfe von 

ssGBLUP geschätzten genomischen Zuchtwerte bildeten die abhängigen Variablen der single-

step GWAS (ssGWAS). Ein großer Anteil identischer genomischer Regionen für die 

verschiedenen FA, insbesondere für UFA, MUFA sowie für gesättigte FA und die 

Palmitinsäure, konnte unter Verwendung der ssGWAS identifiziert werden. Ein spezifischer 

SNP auf BTA 15 war dabei signifikant mit C18:0 und Ketose assoziiert.  

Es konnte keine Region auf dem Genom detektiert werden, welche gleichzeitig Einfluss 

auf alle Merkmale besaß. Dennoch sind einige der annotierten Kandidatengene, wie 

beispielsweise DGKA, IGFBP4 und CXCL8 in den Lipidstoffwechsel, 

Fruchtbarkeitsmechanismen und Produktionskrankheiten in der Frühlaktation involviert. Auf 

genomischer Ebene identifizierten wir signifikant assoziierte SNP und annotierten potenzielle 

Kandidatengene, die auf gemeinsame physiologische Mechanismen hinsichtlich der FA-

Konzentrationen der Milch, Ketose und der Rastzeit hindeuten. Zusammenfassend zeigte diese 

Studie, dass die Anwendung von ssGBLUP zur Schätzung genetischer Parameter und der 

ssGWAS im Vergleich zu früheren Ansätzen, basierend auf reinen Pedigree- oder genomischen 

Verwandtschaftsmatrizen, deutliche genetische Mechanismen für die drei Merkmalskategorien 

FA, Stoffwechselerkrankung Ketose und das Fruchtbarkeitsmerkmal Rastzeit verifizierten. 

 

Kapitel 5 evaluiert in einer allgemeinen Diskussion die wichtigsten Ergebnisse der drei 

durchgeführten Studien (Kapitel 2, 3, 4). Darüber hinaus werden erstmalig detaillierte 

phänotypische Beziehungen zwischen der spezifischen FA-Konzentration am ersten Testtag 

und Ketose abgeleitet, welche praktische Auswirkungen auf das Ketosemonitoring im 

Milchviehbetrieb besitzen. Des Weiteren werden Aspekte epigenetischer Auswirkungen einer 

Ketose sowie die Nutzbarkeit von FTIR-Messungen in der Milchrinderzucht diskutiert. Auf der 

Grundlage unserer Studienergebnisse (Kapitel 2, 3, 4) werden Schlussfolgerungen gezogen 

und Empfehlungen für künftige Ketose Überwachungs-, Präventions- und Zuchtstrategien unter 

Berücksichtigung der analysierten innovativen Milchindikatoren abgeleitet. 
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SUMMARY 

Metabolic disorders display a major part of early lactation disease complexes including ketosis 

as one of the most common metabolic disorder and an access condition for other diseases in 

high-yielding dairy cattle i.e., Holstein cows. High economic losses for dairy farmers due to 

ketosis highlighted the importance of incorporating management and breeding strategies to 

monitor and prevent ketosis. Today, routine milk sampling using Fourier-transform infrared 

spectroscopy (FTIR) allows the determination of novel innovative traits of practical interest 

for dairy farmers in metabolic disease prevention. In particular, new health traits limited 

historical data and genomic selection regarding those traits is challenging. A smaller reference 

population is available to be used in genomic predictions compared with e.g., milk production 

traits. Genotyping of cows in herds with reliable health records may be one strategy to enhance 

the accuracy of genomic predictions for health and novel indicator traits. Thus, cow reference 

groups offer new prospects in dairy cattle breeding for improved disease resistance by 

combining phenotypes for novel traits with high-density genetic markers. Against this 

background, we assessed the usability of common and novel milk measurements i.e., the 

relation between novel functional FTIR measurements, fertility trait interval from calving to 

first insemination and ketosis diagnosis on the basis of cow reference groups on different scales:     

1) Examination of relations between milk indicator traits and ketosis, phenotypically;                   

2) Estimation of (co)variance components for such traits considering different relationship 

matrices on quantitative genetic scales; 3) Genome-wide association studies (GWAS), 

identification of associated single nucleotide polymorphisms (SNP) and candidate genes for the 

ketosis diagnosis, innovative milk indicator traits and the fertility interval trait in Holstein cattle. 

 

In order to introduce the overall topic of the present thesis chapter 1 displays the general 

introduction. Accordingly, a literature overview on metabolic disease ketosis is provided here. 

The etiology and pathogenesis of ketosis, economic impacts, ketosis implementation in 

breeding programs, genomic architecture, and the relation to novel milk indicator traits as well 

as a fertility interval trait are examined.  

 

The different innovative milk indicator traits measured via routine milk sampling by infrared 

spectroscopy divides this thesis into three studies (chapter 2, 3, 4), respectively, addressing the 

previously mentioned research areas. The present studies are an in-depth evaluation of 

metabolic disease ketosis and innovative milk indicator traits in Holstein cattle. 
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Chapter 2 addresses association analysis between first test-day fat-to-protein ratio (FPR), a 

metabolic deficit indicator, and ketosis in first-lactation German Holstein cows based on a large 

data set of genotyped cows from large scale co-operator herds. In addition to several blood 

indicators, the FPR is suggested as an indicator for ketosis, because a FPR > 1.5 refers to high 

lipolysis. Phenotypic trait associations were inferred through the application of generalized 

linear mixed models and indicate to a strong relationship between ketosis and the FPR. 

Increasing ketosis incidences were significantly associated with higher FPR and vice versa.  

Univariate and bivariate linear animal models were used to estimate genetic (co)variance 

components, heritabilities and genetic correlations between the traits using pedigree-based or 

genomic relationship matrix. The ketosis heritability was slightly larger when modeling the 

pedigree-based relationship matrix (pedigree-based: 0.17; SNP-based: 0.11). For the binary 

distributed FPR (threshold = 1.5), heritabilities were larger when modeling the genomic 

relationship matrix (pedigree-based: 0.09; SNP-based: 0.15). For Gaussian-distributed FPR 

heritabilities were almost identical for both pedigree and genomic relationship matrices 

(pedigree-based: 0.14; SNP-based: 0.15). Genetic correlations between ketosis with FPR using 

either pedigree- or genomic-based relationship matrices were in a moderate range from 0.39 to 

0.71. Results lead to suggest the utilization of FPR from the first test-day as an indicator for 

genetic ketosis predictions. Applying GWAS we identified the specific SNP rs109896020 (Bos 

taurus autosomes (BTA) 5, 115,456,438 bp) contributing to ketosis. The identified potential 

candidate gene PARVB in close chromosomal distance was associated with nonalcoholic fatty 

liver disease in humans. The most important SNP contributing to the FPR was located within 

the DGAT1 gene. Different SNP significantly contributed to ketosis and FPR indicating 

different mechanisms for both traits genomically. 

 

As accurate population-wide binary health trait recording is difficult to implement proper 

Gaussian indicator traits which can be routinely measured in milk are needed. Consequently, 

the second scientific study, chapter 3, focused on the ketone bodies acetone and β-

hydroxybutyrate (BHB) measured via FTIR in milk in first- to third-parity Holstein cows. 

Associations between FTIR acetone and BHB with ketosis and with test-day traits were studied 

phenotypically and quantitative genetically. Generalized linear mixed models were applied to 

infer the influence of binary ketosis on Gaussian-distributed acetone and BHB (definition of an 

identity link function) and vice versa i.e., the influence of acetone and BHB on ketosis 

(definition of a logit link function). Additionally, linear models were applied to study 

associations between BHB, acetone and test-day traits (milk yield, fat percentage, protein 
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percentage, FPR, and somatic cell score) from the first test-day after calving. An increasing 

ketosis incidence was statistically significant associated with increasing FTIR acetone and BHB 

milk concentrations. The strong phenotypic associations between first test-day FTIR acetone 

and FTIR BHB with ketosis suggested routine determination and utilization of ketone bodies 

in milk to improve the dairy cow health management. Acetone and BHB concentrations were 

positively associated with fat percentage, FPR and somatic cell score. Bivariate linear animal 

models were applied to estimate genetic (co)variance components for ketosis, acetone, BHB, 

and test-day traits within parities one to three and considering all parities simultaneously in 

repeatability models. Pedigree-based heritabilities were quite small i.e., in the range from 0.01 

in parity three to 0.07 in parity one for acetone and from 0.03 to 0.04 for BHB. Heritabilites 

from repeatability models were 0.05 for acetone and 0.03 for BHB. Genetic correlations 

between acetone and BHB were moderate to large within parities and considering all parities 

simultaneously (0.69 to 0.98). Genetic correlations between acetone and BHB with ketosis from 

different parities ranged from 0.71 to 0.99. Genetic correlations between acetone across parities 

and between BHB across parities ranged from 0.55 to 0.66. Genetic correlations between 

ketosis, acetone, and BHB with FPR and with fat percentage being large and positive but 

negative with milk yield. Furthermore, we identified pronounced favorable genetic correlations 

among ketosis, FTIR acetone, FTIR BHB and FPR within parities one to three, and moderate 

genetic correlations from the repeatability model. Hence, from a breeding perspective results 

proposed a consideration of milk ketone bodies in selection indices for metabolic disorders. The 

strong genetic correlations between FTIR acetone and BHB from first lactation with the 

respective traits in later lactations indicated the usefulness of early selection in first parity cows. 

In GWAS, we identified SNP on BTA 4, 10, 11, and 29 significantly influencing acetone and 

on BTA 1 and 16 significantly influencing BHB. The identified potential candidate genes 

NRXN3, ACOXL, BCL2L11, HIBADH, KCNJ1, and PRG4 were involved in lipid and glucose 

metabolism pathways.  

Furthermore, milk fatty acids (FA) have been suggested as novel biomarkers for early lactation 

metabolic diseases and for the female fertility status. Thus, the evaluation of genetic and 

genomic associations between ketosis, milk FA and the fertility interval trait, the interval from 

calving to first insemination (ICF) in first-lactation Holstein cows referred to chapter 4. In this 

regard, we focused on a single-step genomic best linear unbiased predictor (ssGBLUP) 

approach allowing a simultaneous consideration of genotyped and ungenotyped cows. Variance 

components and heritabilities for all Gaussian-distributed FA, for ICF, and for binary ketosis 

were estimated by applying single-step genomic BLUP single-trait linear and threshold models, 
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respectively. Genetic correlations were estimated in series of bivariate runs. Heritabilities for 

FA were moderate in the range from 0.09 to 0.20 but quite small for ICF (0.08) and for ketosis 

(0.05 on the underlying liability scale). Genetic correlations between ketosis and unsaturated 

FA (UFA), monounsaturated FA (MUFA), stearic acid (C18:0) were large (0.74 to 0.85) and 

low positive between ketosis and ICF (0.17). Genetic correlations between UFA, MUFA, and 

C18:0 with ICF ranged from 0.34 to 0.46. The results indicated that first test-day FTIR FA 

concentrations in milk were valuable predictors for ketosis and for ICF. Furthermore, the 

estimated moderate heritabilities for FTIR FA concentrations suggested a consideration of FA 

in selection indices for female fertility trait ICF and health. Genomic breeding values from the 

ssGBLUP estimations were dependent traits in single-step GWAS (ssGWAS). In ssGWAS, we 

identified a large proportion of overlapping genomic regions for the different FA, especially for 

UFA and MUFA, and for saturated FA and palmitic acid. One significantly identical associated 

SNP was identified for C18:0 and ketosis on BTA 15. However, there was no genomic segment 

that simultaneously affected significantly all trait categories ICF, FA and ketosis. Nevertheless, 

some of the annotated potential candidate genes DGKA, IGFBP4 and CXCL8 played a role in 

lipid metabolism and fertility mechanisms and influenced production diseases in early lactation. 

Genomically, we identified significantly associated SNP and annotated potential candidate 

genes indicating shared physiological mechanisms on FA concentrations, ketosis and ICF. In 

conclusion, the application of single-step GBLUP genetic parameter estimations and single-

step GWAS inferred closer genetic mechanisms of the three trait categories FA, metabolic 

disorders and female fertility trait ICF compared to previous approaches based on either pure 

pedigree or pure genomic relationship matrices. 

In chapter 5, a general discussion evaluated the results presented in this thesis. Additionally, 

phenotypic relations between first test-day FA concentration and ketosis based on the data set 

described in chapter 4, were inferred and revealed practical implications for on-farm detection 

of metabolic disease ketosis. Furthermore, aspects regarding epigenetic impacts of ketosis in 

dairy cows and the usefulness of FTIR measurements were discussed. Based on our study 

results conclusions were drawn and recommendations for future ketosis monitoring, prevention 

and breeding strategies considering analyzed novel milk traits were provided. 
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Negative energy balance in high-yielding dairy cows 

During early lactation of high-yielding dairy cows the increase of nutrient demand for milk 

production exceeds the slow increase in dry matter intake and causes a state of negative energy 

balance (NEB). The rapidly increasing milk production in the first weeks after calving lead to 

elevated requirements in glucose, amino- and fatty acids (FA) which were two to five times 

higher postpartum than prepartum (Bell, 1995). This energy deficiency resulted in metabolic 

stress and increased susceptibility to i.e., mastitis, claw diseases and metabolic disorders (e.g., 

ketosis (KET), Buttchereit et al., 2012). Figure 1.1 displays the relationship between energy 

intake and energy requirements for a lactation of high producing dairy cows and the increased 

early lactation disease incidences of first lactating cows. 

 

 

Figure 1.1. (A) Milk yield (kg/day), net energy intake (Mcal/day), net energy balance 

(Mcal/day) of high-yielding cows, and (B) incidences (%) for mastitis, metabolic disorders and 

claw and leg diseases of first lactating cows (modified according to Bauman and Currie, 1980; 

Buttchereit et al., 2012). 

 

Metabolic disorders displayed a major part of early lactation disease complexes including KET 

as one of the most common metabolic disorders and an access condition for other diseases in 

dairy cattle (Oetzel, 2004). 

 

Ketogenesis and ketosis  

Glucose and FA are usually metabolized to the enzyme acetyl-coenzyme A (acetyl-CoA) in 

hepatocytes which normally enters the citric acid cycle by condensing with oxaloacetate (Figure 

1.2, Laffel, 1999). Glycolysis produces pyruvate, functioning as a precursor of oxaloacetate. 
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Caused by the lack of energy in early lactation glycolysis falls to a very low level and 

oxaloacetate is preferentially utilized in the process of gluconeogenesis (Figure 1.2, Laffel, 

1999). Furthermore, the state of NEB triggers lipolysis and cows adipose tissue mobilization. 

The mobilized FA are oxidized in the liver via β-oxidation to acetyl-CoA (Zhang and Ametaj, 

2020). Throughout the NEB oxaloacetate is not available to condense with acetyl-CoA 

produced by the FA β-oxidation. Thus, acetyl-CoA becomes diverted from the citric acid cycle 

to mitochondrial ketone body formation by ketogenesis (Figure 1.2, Laffel, 1999).  

 

During the first step of ketogenesis thiolase condensates two molecules of acetyl-CoA into 

acetoacetyl-CoA. Acetoacetyl-CoA functions as a substrate for β-hydroxy-β-methylglutaryl-

CoA (HMG-CoA) synthase conducting the synthesis of HMG-CoA (Harvey et al., 2019). 

Afterwards, HMG-CoA lyase metabolizes HMG-CoA to the unstable ketone body acetoacetate. 

The acetoacetate is converted to stable ketone body β-hydroxybutyrate (BHB) by D-β-

hydroxybutyrate dehydrogenase and a proportion of the acetoacetate is decarboxylized to 

acetone due to a spontaneous non-enzymatic decarboxylation (Harvey et al., 2019). 

The two ketone bodies acetoacetate and BHB function as a short term source of energy 

for several organs like heart, brain and also skeletal muscle in the physiological state 

characterized by limited availability of carbohydrates (Robinson and Williamson, 1980). For 

the usage in extrahepatic tissue BHB is converted to acetoacetate by the enzyme β-

hydroxybutyrate dehydrogenase and acetoacetate is converted back to acetyl-CoA by β-

ketoacyl-CoA transferase and acetoacetyl-CoA-thiolase (Dhillon and Gupta, 2021). This 

conversion of the ketone bodies to usable acetyl-CoA occurs exclusively extrahepatic. The 

resultant acetyl-CoA could then be used in citric acid cycle in previously mentioned tissues. 

Throughout the oxidation of BHB to acetoacetate and the following usage of acetyl-CoA in the 

citric acid cycle these processes produce 22 ATP per molecule (Dhillon and Gupta, 2021). The 

ketone body acetone is not usable for energy provision and, thus, excreted from the body with 

urine and exhaled by the lungs causing the characteristically sweet, fruity breath (Harvey et al., 

2019). 
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Figure 1.2. Mitochondrial fatty acid β-oxidation, citric acid cycle and ketogenesis in the 

hepatocyte (modified according to Bergman, 1971; Laffel, 1999). 

 

Also the digestive tract displayed a site of ketone body production in ruminants (Bergman, 

1971). In the healthy ruminant ketone bodies were produced by the rumen epithelium from 

dietary FA, especially from butyrate. But during KET and reduced feed intake the hepatic 

ketogenesis bases on FA mobilized from body tissue accounts for the majority of ketone body 

formation in animals (Bergman, 1971).  

An excessive concentration of the circulating ketone bodies in extrahepatic tissue caused 

intoxication and metabolic disease KET in dairy cows. Typical clinical signs of KET were 

depressed milk yield and feed intake, weight loss, lethargy. Also nervous disturbances e.g., 

obsessive licking and excess salivation could be observed in some cases (Benedet et al., 2019a). 
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The metabolic disease KET is reflected by high concentrations of ketone bodies in blood, milk 

and urine (Enjalbert et al., 2001; Benedet et al., 2019a). As summarized by Benedet et al. 

(2019a) a blood BHB level greater than 1.2 mmol/l was generally defined as the KET threshold 

value. The additional classification of BHB blood levels between 1.2 mmol/l and 2.9 mmol/l 

was considered to define subclinical KET without any clinical disease signs while a BHB value 

higher than 3.0 mmol/l reflected clinical KET (Benedet et al., 2019a). The measurement of 

BHB concentration in blood displayed the gold standard in KET diagnostics (Benedet et al., 

2019a). Furthermore, different types of KET were distinguished in literature (Zhang and 

Ametaj, 2020). Type I KET, primary KET, occured within six weeks postpartum according to 

the increasing milk production in early lactation. Type II KET, secondary KET, appeared early 

after calving and was coincident with further diseases. Obesity and overfeeding during the dry 

period could lead to this type of KET. Another type of KET not related to early lactation energy 

balance arised due to the intake of ketogenic precursors i.e., the consumption of silage with 

high amounts of butyrate (Zhang and Ametaj, 2020). 

Incidences for clinical KET ranged between 0.7% and 3.5% in European dairy herds (Berge 

and Vertenten, 2014). However, regarding the high incidences for subclinical KET (up to 49%) 

in early lactation and the relationship to further cost-intensive diseases, KET is one of the most 

important metabolic disorders in dairy farms (Suthar et al., 2013; Berge and Vertenten, 2014; 

Vanholder et al., 2015). 

 

Relationship of ketosis with health and fertility 

Besides other metabolic disorders, KET is considered as an access condition for further cost-

intensive metabolic diseases such as retained placenta, metritis, laminitis, and displaced 

abomasum. Suthar et al. (2013) assessed the relationship of subclinical KET with postpartum 

diseases in European dairy farms. Multivariate binary logistic regression models revealed that 

cows with subclinical KET had 1.5, 9.5, and 5.0 times greater odds of developing metritis, 

clinical KET, and displaced abomasum in early lactation, respectively (Suthar et al., 2013). 

According to that, Duffield et al. (2009) estimated the influence of serum BHB concentrations 

on subsequent diseases. Elevated BHB concentration (≥ 1,200 µmol/l) in the first week after 

calving was associated with an increased risk of displaced abomasum and metritis. Duffield et 

al. (2009) presumed that a similar etiology of KET and displaced abomasum could be the reason 

for the disease association. Due to the reduced feed intake and the anorexia during KET, the 

deficit in the rumen fill probably caused displaced abomasum (Shaver, 1997). The association 

between elevated BHB concentration and metritis might be based on the influence of increased 
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BHB concentrations on the immune function (Hammon et al., 2006). Recent study results by 

Lei and Simões (2021) associated average milk BHB concentration with left displaced 

abomasum in Holstein cows. Cows suffering from displaced abomasum showed significantly 

higher BHB milk concentrations (0.18 ± 0.02 mmol/l) in the first month postpartum than 

healthy cows (0.07 ± 0.02 mmol/l). Results of Lei and Simões (2021) confirmed the thesis by 

Duffield et al. (2009) that KET contributed to the etio-pathophysiology of displaced abomasum. 

A significant correlation between high blood BHB concentrations, oxidative stress and liver 

apoptosis in bovine hepatocytes was described by Song et al. (2016). Excessive ketone bodies 

accumulated in blood and liver cells and induced KET. Song et al. (2016) showed that BHB 

levels were positively related to oxidative indicators (e.g., malondialdehyde, glutathione 

disulfide) while a negative relationship was detected between BHB levels and total antioxidant 

capacity indicating that high BHB levels induced hepatocyte oxidative stress. Furthermore, the 

hepatocyte apoptotic rate was significantly elevated in cells exposed to subclinical and clinical 

KET BHB concentrations confirming that high BHB concentrations caused hepatocyte 

apoptosis and hence liver damage due to oxidative stress (Song et al., 2016).  

Furtheron, negative impact of KET on cows fertility complex was detected. Negative 

energy balance generated an endocrine environment that depressed the growth of the follicle 

and reduced its functionality (Lucy, 2019). The increase of circulating ketone bodies, especially 

BHB, and FA caused minor fertility of the oocyte and immune dysfunction with detrimental 

impact on uterine recovery (Wathes et al., 2009). Holstein cows with increased blood BHB had 

a significantly delayed interval from calving to first observed oestrus and interval from calving 

to first insemination (ICF) (Rutherford et al., 2016). Thus, KET reduced intensity and duration 

of oestrus activity. The fertility trait ICF measures the days from calving to a cow’s ability to 

resume cyclicity after calving and to show oestrus behaviour. Hence, the ICF displays an 

integral part of cows fertility complex (Mehtiö et al., 2020). Recent results of Li et al. (2019) 

confirmed that BHB induced oxidative stress which caused upregulated release of pro-

inflammatory factors in bovine endometrial cells. The enhanced reliance on FA as an energy 

source postpartum induced oxidative damage to mitochondria in metabolically active tissues 

including the liver and also the reproductive system. The excess lipid accumulation in oocytes 

and the regenerating endometrium reduced fertility due to increased inflammatory alterations 

(Wathes et al., 2013). 
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Genetic correlation of ketosis to dairy cattle breeding goal and health traits 

Genetic correlations between KET and milk production traits were not consistent among 

different studies. While Belay et al. (2017) estimated positive genetic correlations of 0.17 

between clinical KET (veterinarian-recorded) and milk yield in first- to fourth-lactation 

Norwegian Red cows, Koeck et al. (2013) found a negative genetic correlation (-0.07) between 

the traits in early first-lactation Canadian Holsteins. Low positive genetic correlations of 0.15, 

0.002 and 0.16 were detected among KET, fat, protein and lactose yield, respectively (Belay et 

al., 2017). Fat, protein and lactose percentage were negative genetically correlated to KET, with 

-0.02, -0.33 and -0.04, respectively (Belay et al., 2017). Again, early first lactation correlations 

between KET, fat percentage (0.33) and protein percentage (-0.06) (Koeck et al., 2013) differed 

to correlations detected by Belay et al. (2017). Vosman et al. (2015) exposed correlations 

between breeding values for KET (based on milk BHB and acetone concentrations), production, 

health traits, and fertility. Thereby, a higher breeding value for KET resulted in less KET. 

Breeding values for KET were negative correlated to breeding values for milk (-0.28), fat (-

0.15), and protein yield (-0.08) and positive correlated to fat (0.16) and protein (0.39) 

percentage. Correlations with fertility (0.29), udder health (0.19), mastitis (0.19-0.21), and 

somatic cell score (0.16) were positive, which means less KET results in better fertility and 

udder health (Vosman et al., 2015). 

Generally, studies analyzing genetic correlations between KET and other diseases 

suggested positive genetic correlations. Strong positive genetic correlations were determined 

between first lactation KET and displaced abomasum (0.79) and low to moderate correlations 

were found for retained placenta (0.07 - 0.21), metritis (0.62), clinical mastitis (0.26) and milk 

fever (0.19) in Canadian Holsteins and Norwegian Red cattle (Heringstad et al., 2005; Jamrozik 

et al., 2016). Also for second- and third-lactation dairy cows genetic correlations of KET to 

described diseases stayed positive (Heringstad et al., 2005).  

 

Economic impact of ketosis 

Clinical and also subclinical KET were associated with lower milk production, increased 

probability of production diseases, lower reproductive performance, and thus increased culling 

of dairy cows (Steeneveld et al., 2020). Mostert et al. (2018) estimated the economic impact of 

subclinical KET in dairy cattle using a dynamic stochastic simulation model in consideration 

of the reduced milk production, treatment, culling, related diseases, and different parities during 

the first 30 days after calving. Estimations revealed total costs of €130 per case per year, ranging 

between €39 and €348 (5 to 95 percentiles) while those costs increased from €83 per year in 
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parity one up to €175 in parity three (Mostert et al., 2018). Previous studies of McArt et al. 

(2015) and Gohary et al. (2016) verified the high economic impacts or rather losses induced by 

KET for dairy farmers. A recent study by Steeneveld et al. (2020) quantified the losses due to 

KET in order to support decision making regarding prevention and treatment of the disease by 

veterinarians and farmers. Taking into consideration the different treatment strategies for 

clinical and subclinical KET, the occurrence of clinical, subclinical KET, displaced abomasum, 

mastitis, and the effect of KET on reproduction, culling and milk yield a cow simulation model 

was applied (Steeneveld et al., 2020). The biological output results of the simulation study 

showed average annual milk production losses due to six clinical KET cases of 1,199 kg and 

due to 36 subclinical KET cases of 6,126 kg in high risk scenarios. Additionally, an increase in 

the number of displaced abomasum cases, mastitis cases, of inseminations and culled cows was 

observed with an increased KET risk. The economic output results indicated overall costs for 

clinical and subclinical KET in a 130 cow herd of €7,371 per year in the high risk scenario due 

to decreased milk revenues, higher culling costs, higher insemination costs, and costs for related 

diseases (Steeneveld et al., 2020). These high economic losses highlighted the importance of 

incorporating all possibilities to prevent KET which means considering breeding aspects 

besides management aspects to generate more disease resistant animals. 

 

Ketosis related milk indicators 

Aside from the gold standard (blood BHB measurement) several milk indicators were suggested 

for KET monitoring and prevention in early lactation. The increased body fat mobilization in 

state of NEB and KET lead to an increased milk fat synthesis and thus an elevated fat content 

of milk (Duffield et al., 2009). According to Zhang et al. (2015) ketone body BHB facilitated 

the FA synthesis in the mammary epithelial cells. The treatment of mammary epithelial cells 

with different concentrations of BHB induced a significant increase in the expression of genes 

involved in FA synthesis resulting in an enhanced triglyceride secretion. In contrast to this the 

inadequate feed intake during the first third of lactation caused insufficient protein provision 

from ruminal bacteria leading to decreased milk protein content (Gürtler and Schweigert, 2005). 

Hence, the milk fat-to-protein ratio (FPR) higher than 1.5 referred to high lipolysis and could 

serve as a valuable, easily available indicator for the energy status postpartum and KET (Heuer 

et al., 1999). 

As a non-invasive, rapid and inexpensive method Fourier-transform infrared spectroscopy 

(FTIR) is globally used to analyze milk samples in dairy herds. Besides milk fat, protein and 

lactose concentrations infrared spectroscopy enabled the prediction of additional valuable novel 
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phenotypes of importance to breeding programs (Tiplady et al., 2020). Milk recording 

organizations around the world already provide novel milk phenotypes such as milk ketone 

body concentration for monitoring metabolic health status in early lactations (Schwarz, 2017). 

With regard to the economic consequences of KET in dairy herds (Steeneveld et al., 2020) early 

detection of metabolic milk indicators via FTIR might be effective in disease and, therefore, 

treatment costs prevention (Benedet et al., 2019a). Although the determination of blood BHB 

concentration was considered as the gold standard to predict subclinical and clinical KET, the 

detection of milk ketone body concentrations is a promising approach to assess the metabolic 

status of a cow (Schwarz, 2017; Gross and Bruckmaier, 2019). High correlations between blood 

and milk ketone body concentrations were identified. Enjalbert et al. (2001) analyzed the 

relationship between ketone body concentration in milk and blood and detected strong 

phenotypic correlations for acetone of 0.96 and BHB of 0.66. The primary use of BHB by 

mammary gland for FA synthesis in ruminants is a possible reason for a lower correlation 

coefficient between blood and milk BHB (Smith et al., 1974). In general, due to the usage of 

ketone bodies for FA synthesis in the mammary gland the concentrations of milk ketones were 

approximately ten times smaller than blood concentrations (Enjalbert et al., 2001). Furthermore, 

a high correlation between milk acetone and milk BHB of 0.68 was found (Enjalbert et al., 

2001) and the detected prediction accuracy of FTIR milk BHB and acetone concentration was 

high with 71% and 73%, respectively (Grelet et al., 2016). Santschi et al. (2016) exposed the 

usefulness of the routine infrared measurement of ketones in milk via FTIR and confirmed the 

usability of milk ketone body concentration evaluated in monthly milk samples as monitoring 

tool in early lactation Holstein cows. The FTIR technic reflects a cost-efficient, fast and reliable 

alternative to the blood ketone analysis due to the implementation in routine monthly milk 

recording.  

Different thresholds for KET monitoring by milk ketone body concentrations were 

recommended. A threshold of 0.15 mmol/l for milk acetone and of 0.10 mmol/l for milk BHB 

was defined as threshold for subclinical KET by de Roos et al. (2007). In contrast to that, 

Santschi et al. (2016) suggested higher milk BHB thresholds of 0.15 mmol/l to 0.19 mmol/l to 

detect suspect cows and milk BHB ≥ 0.20 mmol/l as KET positive. Recent study results by 

Churakov et al. (2021) proposed a milk BHB threshold of 0.19 mmol/l as a predictor for severe 

NEB in dairy cows. According to Schwarz (2017) FTIR KET screening on herd level is already 

implemented in Belgium (MCC Flanders), Canada (Ketoscreen, Ketolab, CanWest DHI), 

Denmark (Danish Cattle Federation), Germany (KetoMIR), Netherlands (Qlip, CRV), France 

(CetoDetect, CLASEL), Japan (Tokachi DHI), Poland (Polish Breeders Association), Spain 
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(LIGAL), Sweden (Eurofins), and the United States (KetoMonitor, AgSource), where the Dairy 

Herd Improvement (DHI) reports inform farmers about the herd KET risk. 

Furthermore, changes in the FA profile of milk allowed conclusions about cows metabolic 

health in early lactation (Gross and Bruckmaier, 2019). Since the analysis of milk FA by gas 

chromatography is expensive recent studies investigated the potential of FTIR milk FA as novel 

biomarkers for dairy cows health (Jorjong et al., 2015; Dettmann et al., 2020). With regard to 

high prediction accuracies for milk FA composition analyzed by mid-infrared spectroscopy 

(Fleming et al., 2017) and recommended by Gross and Bruckmaier (2019) an incorporation of 

FA besides milk ketone body concentrations would possibly lead to higher accuracies in 

detecting KET in early lactation dairy cows. Strong phenotypic associations between NEB and 

increased ketone bodies with specific milk FA concentration in early lactation Holstein cows 

were detected in previous studies (Gross et al., 2011; Nogalski et al., 2015). Due to high body 

fat mobilization during NEB, especially, unsaturated (UFA) and monounsaturated FA (MUFA) 

milk concentration significantly increased (Nogalski et al., 2015). In contrast to that, proportion 

of most de novo synthesized milk FA ≤ palmitic acid (C16:0) was decreased during the NEB 

(Gross et al., 2011). Accordingly, Dettmann et al. (2020) explained that the proportions of short 

chain saturated FA (SFA, C10:0 to C14:0) were significantly lower in early lactation than in 

mid lactation suggesting an inhibition of the de novo synthesis of short chain FA by the long 

chain FA from mobilized body fat. Proportions of stearic acid (C18:0), MUFA and oleic acid 

(C18:1) were increased and C16:0 was decreased in the early-lactation period (Dettmann et al., 

2020). The contrasting decrease of C16:0 in milk in early lactation might be due to the double 

origin of the FA derived from mobilization of body fat reserves and partly originated from de 

novo synthesis in the mammary gland (Grummer, 1991).  

In general, results of Bastin et al. (2011) revealed that UFA and especially MUFA were more 

variable than SFA throughout the lactation. The changes in milk FA contents could be related 

to the underlying physiology and energy balance of the cows in early lactation (Bastin et al., 

2011). At the beginning of the lactation the mobilization of adipose FA and the incorporation 

of FA in milk occured due to the NEB (Palmquist et al., 1993; Bastin et al., 2011). The NEB 

and KET caused catabolism of adipose tissue and thus, the release of particular long-chain FA 

from mobilized tissue (Kay et al., 2005). Major mobilized FA from adipose tissue are MUFA, 

C18:1, C18:0, and C16:0. This explains the increase in MUFA and C18:0 milk FA at the 

beginning of lactation. Park et al. (2020) observed low levels of SFA content during the phase 

of NEB in early lactation and increasing SFA afterwards. Those findings suggested that a 

synthesis of SFA requires sufficient energy provision. Milk FA profiles did not only differ with 
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lactation stages but also with parity (Dettmann et al., 2020). Dettmann et al. (2020) confirmed 

that the concentration of FA increased with increasing parity. The rise might be due to the 

greater milk fat production induced by a stronger body fat mobilization and a stronger NEB in 

later parity cows (Dettmann et al., 2020).  

First cut-off values for specific FTIR FA regarding NEB detection were identified by Churakov 

et al. (2021). According to their study results a C18:0 concentration ≥ 0.47 g/100 g of milk or 

a C18:1 concentration ≥ 1.16 g/100 g of milk displayed a state of severe NEB in early lactation. 

Furthermore, an influence of FA on cows fertility was discussed. Stádník et al. (2015) described 

an antagonistic relationship between milk MUFA and female fertility whereas increased SFA 

levels were associated with improved fertility traits. Significantly increased number of services 

per conception and days open were observed with rising MUFA and decreasing SFA milk 

contents in Fleckvieh cows (Stádník et al., 2015).  

How successful incorporation of new innovative FTIR predicted traits as indicator traits in 

breeding programs will be depends on the heritability on the one hand and on genetic correlation 

with the real trait values on the other hand (Miglior et al., 2017; Tiplady et al., 2020). Thus, the 

next sections deal with the implementation of KET in dairy cattle breeding goals as well as the 

genetic and genomic background of KET, indicator traits and fertility trait ICF. 

 

Ketosis in dairy cattle breeding goals 

In the past, breeding goals in dairy cattle mainly focused on increasing milk production. Due to 

ascending health and fertility problems the selection shifted away from pure production oriented 

selection towards more balanced breeding goals by considering health, fertility and longevity 

in selection indices (Miglior et al., 2017). The Nordic countries have recorded health data since 

1974. And also Finland, Schweden and Denmark established a health recording system in 1980. 

A routine genetic health trait evaluation has taken place, for example, in Austria and Germany 

since 2010, in France since 2012, and in Canada since 2013 (Egger-Danner et al., 2015). The 

following section describes the implementation of KET in dairy cattle breeding goals in 

Germany as well as different breeding organizations and countries of great importance for dairy 

cattle breeding. 

In Germany, most health data are collected in herds participating in dairy cattle health 

related projects e.g., KUH-L and KuhVision. In these herds standardized direct health trait 

recording has been performed and cows have been genotyped. That led to an unselected cow 

reference population for direct health traits comprising 100,000 cows and 6,500 bulls in April 

2019 (VIT, 2021). In the same year, genomic breeding values for direct metabolic health traits, 



CHAPTER 1 

21 

e.g., displaced abomasum, milk fever, and KET were implemented in German Holsteins. The 

three traits were combined to direct health composite RZmetabol being part of the RZhealth. In 

the total breeding value RZhealth the four sub-values, RZudderfit (clinical and subclinical 

mastitis), RZhoof (hoof diseases), RZmetabol (metabolic diseases), and RZrepro (reproduction 

disorders) were weighted according to their economic importance. Correspondingly, the 

RZmetabol was weighted with 25%, thereby KET was weighted with 30% into the index 

(Figure 1.3, VIT, 2021). The reliability of RZmetabol was 55% and will increase with rising 

data basis in the future (Rensing, 2019). Until now, no additional milk records e.g., the milk 

ketone body concentrations have been used in breeding value estimation regarding KET in 

Germany but an integration is planned.  

 

Figure 1.3. Complexes in the genetic evaluation for (A) RZhealth and (B) individual traits in 

the RZmetabol with corresponding index weights (modified according to VIT, 2021). 

 

The Council of Dairy Cattle Breeding (CDCB) in the United States introduced new genetic 

evaluations for the six most common health traits, KET, mastitis, metritis, displaced abomasum, 

milk fever, and retained placenta in Holsteins in April 2018 (CDCB, 2018). As described by 

CDCB (2018) genetic and genomic KET evaluations were based on producer-recorded health 

data collected by the DHI organization across the United States. Moreover, evaluations were 

provided for males and females and expressed as percentage points of resistance above or below 

the breed average. Estimated KET predicted transmitting ability represented the resistance of 

the offspring to KET, whereby, larger positive values are more favorable. So far, average 

genomic reliabilities of the health traits ranged from 40 to 49 in young animals and from 44 to 

56 in progeny-tested animals. The average genomic reliability for KET ranged between 41 

(young animals) and 46 (progeny-tested animals) (CDCB, 2018). Since August 2018, disease 

resistance traits were included in the Net Merit $, a measure of lifetime profit, through the new 
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Health $ trait sub-index with a weighting value of 2.3% (Figure 1.4). KET was considered in 

Health $ with a weighting of 4.7% (Figure 1.4, VanRaden et al., 2021). 

 

Figure 1.4. Weighting of individual traits in (A) the Net Merit $ and (B) the Health $ index 

(modified according to CDCB, 2020; VanRaden et al., 2021). 

 

Furthermore, several breeding organizations and countries already considered KET milk 

indicators in breeding value estimation. In December 2016, the Canadian Dairy Network 

(CDN) introduced genetic evaluations for the Metabolic Disease Resistance (MDR) index 

including the traits subclinical KET, clinical KET, and displaced abomasum (Beavers and Van 

Doormaal, 2016). Already since 2007, voluntarily health event recording have taken place in 

Canadian herds which are used for genetic disease evaluations. Additionally, DHI laboratories 

provide milk BHB levels which are incorporated in genetic evaluations for subclinical KET. 

The overall MDR index combined the traits into a single value for genetic selection with a 
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weighting of 50% for subclinical KET, 25% for clinical KET and displaced abomasum, 

respectively (Figure 1.5., Beavers and Van Doormaal, 2016). 

 

Figure 1.5. Weight on each trait in the Metabolic Disease Resistance (MDR) index. 

 

Moreover, since 2016, Genex in Canada has included the sub-index subclinical KET with a 

weighting of 6% in the health trait HLTH$ which is part (with 24%) of the ICC$, the ideal 

commercial cow index in Holsteins (Figure 1.6).  

 

Figure 1.6. (A) Sub-indexes included in the ideal commercial cow index (ICC$) and (B) health 

traits included in the health (HLTH$) sub-index with respective weights (modified according 

to Genex, 2016). 

CABL$ = calving ability, FYFT$ = fertility and fitness, HLTH$ = health, MABL$ = milking 

ability, PREF$ = production efficiency, SCK = subclinical ketosis, BCS = body condition score, 

SCS = somatic cell score. 

 

Since 2014, the breeding organization CRV has presented breeding values for KET for each 

Holstein bull. A value higher than 100 means that the progeny of the bull will have a lower risk 

for KET. Thus, using bulls with a higher breeding value for KET will cause less KET 
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susceptible cows. Besides breeding values for udder health, claw health, calving ease, birth 

ease, viability, and daughter fertility the KET breeding value is part of the Better Life Health 

index (CRV, 2017). Weighting is not applied to the breeding values in the index. The expression 

of the breeding value in percentages less mastitis, lameness, difficult birth etc. determines the 

weight in Better Life Health. For example, a bull with all breeding values that were included in 

the Better Life Health index equal to 104, udder health, claw health, fertility and livability has 

a weight of about 20%, respectively, the birth traits have a weight of 13% and KET is weighted 

with 9% (personal correspondence with CRV, July, 22, 2021). Three milk indicators, milk 

acetone, BHB levels and the FPR from milk recording (day five to day 60), are included in KET 

breeding value estimations. Thereby, traits were corrected for herd, season, days in lactation, 

age of calves, parity, heterosis, recombination, cow and permanent environmental effect in the 

animal model based on best linear unbiased predictor (BLUP) technic (CRV, 2017). 

In 2008, the joint Nordic genetic evaluation for health traits was implemented for 

Denmark, Finland and Sweden (Rius-Vilarrasa et al., 2018). Until 2017, these breeding value 

estimations were based on veterinary treatment records for reproduction disorders, metabolic 

diseases, feet and leg problems in sire models. However, with the availability of metabolic 

biomarkers (e.g., BHB, acetone) and genomic prediction models for inclusion of the cow 

reference population the application of an animal model for health evaluation is preferred. The 

health evaluation included early and late reproductive disorders, feet and leg problems and 

metabolic disorders. Due to the inclusion of BHB and acetone concentrations (10 to 60 days in 

milk (DIM)) as indicator traits for KET the trait metabolic disorders was divided into KET and 

other metabolic disorders. The additional indicator trait information improved the reliability of 

breeding values for KET and other metabolic disorders, from 0.29 to 0.34 and 0.36 in Holstein 

cows, respectively (Rius-Vilarrasa et al., 2018). The Nordic Total Merit (NTM) index includes 

the trait complex health and reproduction (45%), production efficiency (40%), conformation 

and workability (15%). The health and reproduction complex considers the general health 

index, which describes a bull’s daughters genetic potential to resist reproduction, metabolic and 

feet diseases and also includes the breeding value for KET (Vikinggenetics, 2021). The traits 

are weighted in NTM according to their economic value which quantify the value of a marginal 

change in the trait i.e., the value of one unit improvement of the trait while the remaining traits 

are constant. The overview on the incorporation of KET in breeding programs displays 

differences among its implementation (usage of direct health traits, usage of indicator traits e.g., 

BHB concentrations) and reflects the increasing importance of cows metabolic health in dairy 

cattle breeding. 
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Genetic and genomic architecture of ketosis, milk indicators and fertility interval trait 

Heritabilities 

Ketosis 

Heritabilities for KET ranged between 0.02 and 0.16 depending on the used genetic-statistical 

modeling approach (Table 1.1). Heritabilities for KET based on linear models were situated 

between 0.01 and 0.08 while heritability estimates using threshold models ranged from 0.02 up 

to 0.16 (Table 1.1, Pryce et al., 2016). Thereby, estimates based on farmer-recorded data were 

similar to those based on veterinarian records (Pryce et al., 2016). The majority of heritability 

estimates for KET was based on pedigree relationship (A) matrices (Table 1.1). Only a few 

studies additionally considered genomic information and genomic relationship matrices (G) in 

a combined relationship (H) matrix. The single-step genomic BLUP (ssGBLUP) approach 

combining genomic and pedigree relationships has been shown to increase reliability and 

reduce bias of breeding values of young animals for test-day traits compared to traditional 

BLUP in dairy cattle (Oliveira et al., 2019). Furthermore, single-step methodology has been 

proven to enhance prediction accuracy, especially, for complex traits with lower heritability 

(Guarini et al., 2018) and to be valuable for complex data sets where only a proportion of 

pedigreed animals were genotyped (Aguilar et al., 2019). Hence, ssGBLUP is routinely used 

for genomic evaluation in many livestock species and currently under implementation for dairy 

cattle (Misztal et al., 2020). In general, the small heritabilities for KET (Table 1.1) might base 

on the complex nature of disease traits (Kemper and Goddard, 2012). The pathogenesis of 

complex diseases is often regulated by intermediate phenotypes with quantitative inheritance. 

Blanco-Gómez et al. (2016) argued that not-detectable intermediate phenotypes explain a major 

part of the missing heritability. Consideration of continuous KET indicators such as FTIR milk 

BHB concentration might contribute to a clear detection of subclinical cases, higher disease 

incidences and increasing heritability estimates (Belay et al., 2017).  

 

Interval from calving to first insemination  

Heritabilities for the ICF ranged on low levels between 0.03 and 0.11 (Table 1.2). Also for ICF, 

heritability estimates considering G or combined H matrix were scarce (Table 1.2). Although 

the heritabilities for KET and ICF were low a genetic improvement of metabolic health and 

fertility traits was possible due to sufficient genetic variability, high accuracy and intensity of 

selection (Berry et al., 2019). Hence, breeding programs for improved animal health and disease 

resistance should be an integral part of the disease control approach (Berry et al., 2011).  
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Table 1.1. Heritabilities for producer/veterinarian-recorded ketosis in dairy cattle. 

Model1 RM2 Breed3 Parity DIM Heritability Reference 

T A HOL All 1 - 305 0.08 Uribe et al., 1995 

L, T A HOL 1 - 5 1 - 305 0.01, 0.02 Kadarmideen et al., 2000 

T A HOL 1, All 1 - 50 0.11, 0.06 Zwald et al., 2004 

T A RDC 1, 2, 3 -15 - 120 0.14, 0.16, 0.15 Heringstad et al., 2005 

T A HOL 1 - 4+ 1 - 60 0.09 Neuenschwander et al., 2012 

L A HOL 1 1 - 100 0.02 Koeck et al., 2013 

L A HOL 1 1 - 100 0.02 Koeck et al., 2014 

T A 

H 

HOL 1, 2 - 5 1 - 400 0.09, 0.04 

0.14, 0.08 

Parker Gaddis et al., 2014 

L A RDC 1 - 4 -15 - 120 0.08 Belay et al., 2017 

T H JER 1 - 5 1 - 60 0.08 Parker Gaddis et al., 2018 

T H JER 1 - 5 All 0.10 Gonzalez-Peña et al., 2020 
1 L = linear model, T = threshold model. 
2 RM = relationship matrix, A = pedigree relationship matrix, H = combined pedigree and 

genomic relationship matrix. 
3 HOL = Holstein-Friesian, JER = Jersey, RDC = Red dairy cattle (Norwegian Red). 

 

Table 1.2. Heritabilities for the interval from calving to first insemination in dairy cattle. 

Model1 RM2 Breed3 Parity DIM Heritability Reference 

L A HOL 1 - 5 20 - 200 0.03 Kadarmideen et al., 2000 

L A HOL 1 30 - 190 0.06 Weigel and Rekaya, 2000 

L A HOL 1 10 - 200 0.11 Berry et al., 2012 

L A RDC 1 20 - 230 0.04 Negussie et al., 2013 

L A HOL 1 - 4+ 30 - 250 0.10 Tenghe et al., 2016 

L A HOL 1, 2, 3 20 - 230 0.10, 0.08, 0.07 Liu et al., 2017a 

L H RDC 1, 2, 3 20 - 230 0.04 Matilainen et al., 2018 

L A HOL 1 - 3 ≤ 230 0.07 Häggman et al., 2019 

L A HOL 

RDC 

1, 2, 3 20 - 230 0.06, 0.05, 0.07 

0.05, 0.02, 0.03 

Muuttoranta et al., 2019 

L A 

H 

HOL 1 - 3 20 - 230 0.06 

0.05 - 0.09 

Zhang et al., 2019 

L A RDC 1 20 - 230 0.03 Mehtiö et al., 2020 
1 L = linear model. 
2 RM = relationship matrix, A = pedigree relationship matrix, H = combined pedigree and 

genomic relationship matrix. 
3 HOL = Holstein-Friesian, RDC = Red dairy cattle (Norwegian Red). 
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Milk fat-to-protein ratio and ketone bodies 

In most studies clinical KET cases were the trait basis for genetic parameter estimations because 

clinical cases are quite easy to detect (Pryce et al., 2016). Nevertheless, consideration of more 

precise phenotypes in genetic analyses i.e., of subclinical KET cases contributed to increasing 

incidence rates and more accurate breeding value estimations. The detection of subclinical KET 

implied detailed recording of biomarkers, e.g., ketone body concentrations in blood or in milk 

(König and May, 2018). Alternatively, test-day FPR is suggested for indirect selection 

strategies on subclinical KET (van Knegsel et al., 2010). Estimated heritabilities for the FPR 

were larger than for the complex disease trait KET and ranged from 0.07 to 0.31 (Table 1.3). 

Thereby, differences in heritabilities were observed depending on the distribution of the trait. 

While Gaussian-distributed FPR heritability was 0.15, a lower heritability of 0.07 for binary 

FPR was identified (Koeck et al., 2013). Additionally, several studies determined an influence 

of the lactation period on FPR heritability. Higher heritabilities for the FPR were assigned later 

in lactation than in earlier periods (Negussie et al., 2013; Mehtiö et al., 2020). Estimated genetic 

correlations between FPR in different lactation stages ranged from 0.61 to 0.97 suggesting that 

the FPR in early lactation and in mid to late lactation were not exactly the same traits (Negussie 

et al., 2013).  

Correspondingly, estimated heritabilities for milk BHB and acetone varied in dependence of 

lactation number and period between low and moderate levels (Table 1.3). Heritabilities for 

milk ketone bodies ranged from 0.03 to 0.36 and 0.002 to 0.36 for milk BHB and acetone, 

respectively. According to Koeck et al. (2014) and Lee et al. (2016) early lactation heritability 

estimates for milk BHB and acetone were lower than estimates based on later lactation periods 

probably caused by large phenotypic variances during the early lactation (Table 1.3). 

Furthermore, decreasing early lactation heritabilities were observed with increasing parity due 

to lower additive genetic and higher permanent environmental variances in later lactations (Lee 

et al., 2016). Häggman et al. (2019) also estimated low heritabilities of 0.07 for milk BHB traits 

with linear models and of 0.12 with threshold models on the underlying liability scale.  
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Table 1.3. Heritabilities for potential ketosis milk indicator traits fat-to-protein ratio and ketone 

bodies in dairy cattle. 

Trait1 Model2 RM3 Breed4 Parity DIM Heritability Reference 

FPR L, T A HOL 1 5 - 30 

31 - 60  

0.07 - 0.15 

0.03 - 0.14 

Koeck et al., 2013 

L A RDC 1 30, 60, 110 

160, 260, 310 

0.16, 0.19, 0.23 

0.25, 0.25, 0.24 

Negussie et al., 2013 

L A HOL 1 11 - 180 0.30 Buttchereit et al., 2012 

L A HOL 1 5 0.17 Bastin et al., 2014 

L A FL 1 - 2 8 - 49, 40 - 90 0.16, 0.14 Ederer et al., 2014 

L A HOL 1 5 - 40 0.12 Koeck et al., 2014 

L A HOL 1 - 3 5 - 305 0.31, 0.27, 0.24 Satoła and Ptak, 2019 

L A RDC 1 8 - 35, 36 - 63, 64 - 91 0.08, 0.07, 0.09 Mehtiö et al., 2020 

ACE 

 

L, T A HOL 1 - 4+ 5 - 305 0.002 - 0.009 Wood et al., 2004 

L A HOL 1 - 4+ 5 - 60 0.10 Van der Drift et al., 2012 

L A HOL 1, 2, 3 30 

150 

250 

0.18, 0.16, 0.05 

0.29, 0.30, 0.30 

0.36, 0.35, 0.27 

Lee et al., 2016 

L A HOL 1, 2, 3 

4, All 

5 - 305 0.23, 0.29, 0.31 

0.29, 0.29 

Ranaraja et al., 2018 

L G HOL 1 - 2 3 - 517 0.10 Gebreyesus et al., 2020 

L A RDC 1 8 - 35, 36 - 63, 64 - 91 0.18, 0.15, 0.15 Mehtiö et al., 2020 

BHB 

 

L A HOL 1 - 4+ 5 - 60 0.16 Van der Drift et al., 2012 

L A HOL 1 5 - 20, 21 - 40 

41 - 60 

61 - 80 

81 - 100 

0.14, 0.14 

0.17 

0.22 

0.29 

Koeck et al., 2014 

L A HOL 1, 2, 3 30 

150 

250 

0.10, 0.10, 0.04 

0.07, 0.09, 0.12 

0.09, 0.14, 0.11 

Lee et al., 2016 

L A RDC 1 - 4 11 - 30, 1 - 60 

61 - 90, 91 - 120 

All 

0.25, 0.28 

0.32, 0.36 

0.27 

Belay et al., 2017 

L A HOL 1, 2, 3 

4, All 

5 - 305 0.14, 0.11, 0.09 

0.09, 0.19 

Ranaraja et al., 2018 

L A RDC 1 5 - 70 0.04 - 0.09 Häggman et al., 2019 

L G HOL 1 - 2 3 - 517 0.03 Gebreyesus et al., 2020 

L A RDC 1 8 - 35, 36 - 63, 64 - 91 0.16, 0.15, 0.15 Mehtiö et al., 2020 
1 ACE = acetone, BHB = β-hydroxybutyrate, FPR = fat-to-protein ratio. 
2 L = linear model, T = threshold model. 
3 RM = relationship matrix, A = pedigree relationship matrix, G = genomic relationship 

matrix. 
4 FL = Fleckvieh, HOL = Holstein-Friesian, RDC = Red dairy cattle (Norwegian Red). 
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Milk fatty acid profile 

Heritability estimates for milk FA indicated higher heritabilities for SFA (0.09 – 0.47) than for 

UFA (0.08 – 0.33) (Table 1.4, Bastin et al., 2011). This might be due to the fact that most of 

the SFA in milk originates from de novo synthesis by acetyl-CoA carboxylase and FA synthase 

in the mammary gland while the long chain UFA derived from preformed circulating blood 

lipids from intestinal absorption and body fat mobilization (Grummer, 1991; Bastin et al., 

2012). The metabolic enzymes involved in de novo synthesis seemed to be under stronger 

genomic control (Bastin et al., 2011; Knutsen et al., 2018). Nevertheless, heritabilities for UFA, 

MUFA, and C18:0 were smaller than for the SFA group and for C16:0 but still moderate (Table 

1.4) indicating that processes involved in the intake of these FA in milk fat i.e., mobilization of 

FA from adipose tissue may be partly under genetic control. Narayana et al. (2017) and Freitas 

et al. (2020) identified FA heritability alterations by reason of the lactation stage. Smaller early 

lactation heritabilities of SFA and UFA were originated by the increased residual variance 

(Narayana et al., 2017). Residual variances for FA concentrations decreased in mid and late 

lactation (Narayana et al., 2017). Heritability estimates of milk FA concentration by Soyeurt et 

al. (2008) also varied through the dairy cows lactation. Soyeurt et al. (2008) described large 

changes in heritabilities for SFA and MUFA across the lactation. In this study heritability values 

ranged from 0.09 to 0.42 for SFA and from 0.14 to 0.43 for MUFA. In contrast to estimates by 

Narayana et al. (2017) the greatest heritability estimates were observed at the early stage and at 

the end of lactation.  

Soyeurt et al. (2008) assumed that the lipid mobilization from adipose tissue at the beginning 

of the lactation is based on genetically regulated mechanisms and the greater heritability at the 

end of lactation might be related to lactation persistency. Moderate heritabilities (0.09 – 0.34) 

for FA based on G matrix using a small number of genotyped Holsteins were estimated by Krag 

et al. (2013). In this study, higher heritabilities were observed for groups of UFA (0.33), MUFA 

(0.34) and PUFA (0.28) than for groups of SFA (0.09) although individual SFA had higher 

heritability estimates compared to individual UFA reflecting the general pattern (Krag et al., 

2013). So far, studies considering combined H matrix in variance estimations for milk FA are 

scarce (Table 1.4). According to results of Petrini et al. (2016) the whole lactation heritabilities 

for different milk FA were quite similar when A or H matrix was used (Table 1.4). If the 

difference between A and G matrix is low, an addition of genomic information in genetic 

predictions will only cause small gains in accuracy (Petrini et al., 2016). However, as outlined 

above, the combination of pedigree and genomic information in genetic evaluation was 

recommended to enhance genomic predictions (Guarini et al., 2018). 
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Table 1.4. Heritabilities for potential ketosis milk indicator fatty acid profile in dairy cattle. 

Trait1 Model2 RM3 Breed4 Parity DIM Heritabilities Reference 

SFA L A HOL 1 5 - 365 0.24 - 0.42 Soyeurt et al., 2008 

L A HOL 1 5, 5 - 305 0.25, 0.42 Bastin et al., 2011 

L G HOL 1 - 3 129 - 227 0.09 Krag et al., 2013 

L A, H HOL 1 - 6 5 - 305 0.25, 0.25 Petrini et al., 2016 

L A HOL, JER 1 8 - 305 0.15, 0.10 Hein et al., 2018 

L A HOL 1 5 - 305 0.50 Fleming et al., 2018 

L A HOL 1 - 4+ 5 - 480 0.20 Bobbo et al., 2020 

L A HOL 1 5 - 305 0.47 Freitas et al., 2020 

UFA L A HOL 1 5, 5 - 305 0.13, 0.22 Bastin et al., 2011 

L G HOL 1 - 3 129 - 227 0.33 Krag et al., 2013 

L A, H HOL 1 - 6 5 - 305 0.08, 0.08 Petrini et al., 2016 

L A HOL 1 5 - 305 0.26 Fleming et al., 2018 

L A HOL 1 5 - 305 0.24 Freitas et al., 2020 

MUFA L A HOL 1 5 - 365 0.14 - 0.27 Soyeurt et al., 2008 

L A HOL 1 5, 5 - 305 0.13, 0.21 Bastin et al., 2011 

L G HOL 1 - 3 129 - 227 0.34 Krag et al., 2013 

L A, H HOL 1 - 6 5 - 305 0.07, 0.07 Petrini et al., 2016 

L A HOL, JER 1 8 - 305 0.15, 0.10 Hein et al., 2018 

L A HOL 1 - 4+ 5 - 480 0.07 Bobbo et al., 2020 

PUFA L A HOL 1 5, 5 - 305 0.20, 0.29 Bastin et al., 2011 

L G HOL 1 - 3 129 - 227 0.28 Krag et al., 2013 

L A, H HOL 1 - 6 5 - 305 0.11, 0.11 Petrini et al., 2016 

L A HOL, JER 1 8 - 305 0.08, 0.11 Hein et al., 2018 

L A HOL 1 - 4+ 5 - 480 0.07 Bobbo et al., 2020 

C16:0 L A HOL 1 5, 5 - 305 0.24, 0.40 Bastin et al., 2011 

L G HOL 1 - 3 129 - 227 0.14 Krag et al., 2013 

L A, H HOL 1 - 6 5 - 305 0.26, 0.26 Petrini et al., 2016 

L A HOL, JER 1 8 - 305 0.14, 0.16 Hein et al., 2018 

L G HOL 1 - 6 60+ 0.34 Gebreyesus et al., 

2019 

L A HOL 1 - 4+ 5 - 480 0.21 Bobbo et al., 2020 

C18:0 L A HOL 1 5, 5 - 305 0.14, 0.23 Bastin et al., 2011 

L G HOL 1 - 3 129 - 227 0.19 Krag et al., 2013 

L A, H HOL 1 - 6 5 - 305 0.13, 0.14 Petrini et al., 2016 

L A HOL, JER 1 8 - 305 0.11, 0.09 Hein et al., 2018 

L G HOL 1 - 6 60+ 0.25 Gebreyesus et al., 

2019 

L A HOL 1 - 4+ 5 - 480 0.08 Bobbo et al., 2020 
1 SFA = saturated fatty acids, UFA = unsaturated fatty acids, MUFA = monounsaturated fatty 

acids, PUFA = polyunsaturated fatty acids, C16:0 = palmitic acid, C18:0 = stearic acid.  
2 L = linear model. 
3 RM = relationship matrix, A = pedigree relationship matrix, G = genomic relationship matrix, 

H = combined relationship matrix. 
4 HOL = Holstein-Friesian, JER = Jersey. 



CHAPTER 1 

31 

Genetic correlations between ketosis, milk indicator traits and the interval from calving 

to first insemination 

According to phenotypic correlations genetic correlations between KET and potential milk 

indicator traits the FPR and ketone body concentrations were positively moderate to high. 

Favorable genetic correlations based on A matrix for KET diagnosis with FPR and with milk 

BHB concentration of 0.56 and 0.47 to 0.70, respectively, were observed in first-lactation 

Canadian Holsteins (Koeck et al., 2014; Koeck et al., 2016). In consideration of the strong 

genetic correlation between KET diagnosis and milk BHB concentration Koeck et al. (2016) 

proposed the usage of BHB as an indicator trait for indirect selection for KET. Also genetic 

correlation among KET and milk acetone concentration was described as highly positive with 

0.74 to 0.76 in Holstein and Red Dairy Cattle (Rius-Vilarrasa et al., 2018). 

So far and in contrast to phenotypic analyses, studies regarding genetic correlation estimations 

between producer-recorded KET and the specific milk FA profile in early lactation are scarce. 

Previous studies focused on blood non-esterified FA (NEFA) concentration and did not base 

on specific milk FA profile. Preceding estimated genetic correlation between KET indicator 

blood BHB and NEFA concentration in Holstein cows was high at the early beginning of 

lactation (0.78). Results suggested that both traits should be taken into account in selection 

strategies against metabolic diseases (Benedet et al., 2020). 

Furthermore, moderate genetic correlations between cows energy balance and fertility 

interval traits have been detected by Mehtiö et al. (2020). Genetic correlation between early 

lactation milk ketone body and NEFA concentration with ICF were positive with 0.38 and 0.39, 

respectively (Mehtiö et al., 2020). Genetic correlation estimations of the KET breeding value 

with breeding values for fertility traits also revealed positive correlations between 0.26 and 

0.33, meaning less KET results in better fertility (Vosman et al., 2015). Additionally, Bastin et 

al. (2012) estimated positive genetic correlations between early lactation milk UFA, MUFA, 

C18:0 and interval fertility trait days open and negative genetic correlations for those traits after 

100 DIM in first lactating Holstein cows. Among SFA, C16:0 and days open the genetic 

correlations were negatively across the whole lactation (Bastin et al., 2012). These results 

suggest an association between NEB, KET, the milk FA profile, and female fertility interval 

traits on genetic levels. Thus, profound investigations on genetic relationships between these 

traits are needed.  

In general, just a few studies focused on quantitative genetic parameter estimation for KET milk 

indicators in early-lactation periods. There is a need to focus on this early-lactation period in 

genetic (co)variance estimations to reflect its association with KET during the NEB. 
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Additionally, most studies put their focus on analyses based on A matrix and genomic 

investigations considering single nucleotide polymorphism (SNP) information, G matrix or 

combined H matrix were rare. 

 

Genome-wide associations for ketosis, milk indicator traits and the interval from calving 

to first insemination 

Genome-wide association studies (GWAS) identified associated genomic variants and thus 

revealed insights into the genomic architecture of complex traits e.g., diseases (Freebern et al., 

2020). The following section provides an overview on genomic regions and candidate genes 

related to KET, indicator traits, and the ICF. 

 

Ketosis 

Only a limited number of studies focused on GWAS and potential candidate gene identification 

for producer-recorded KET (Table 1.5). Using GWAS, genomic regions mainly located on Bos 

taurus autosomes (BTA) 2, 3, 6, 10, 11, 13, 14, 16, 23, 25, 27, and 29 were identified for binary 

distributed KET. Parker Gaddis et al. (2018) identified SNP significantly associated with 

producer-recorded KET on BTA 10, 11, 14, and 23 in US Jersey cattle. Genes i.e., ATP6V1B1, 

RASGRP3, DDHD1, CYP11B1, NLRC4 involved in insulin regulation, lipid metabolism, and 

immune response were located near to the associated regions (Parker Gaddis et al., 2018). Six 

KET candidate genes FN1, ACSL1, CPT1A, IDH3B, PC, HMGCS2 on BTA 2, 3, 13, 27, and 

29 involved in FA metabolism, gluconeogenesis, citric acid cycle, and ketogenesis were 

identified in a study of Kroezen et al. (2018). Also six genomic regions on BTA 10, 13, 14, and 

25 showed association with KET in Chinese Holstein cattle in a single-step GWAS (ssGWAS) 

by Huang et al. (2019). Detected candidate genes e.g., BMP4, HNF4A, APOBR, SOCS4, GCH1, 

ATG14, RGS6, CYP7A1, and MAPK3 involved in insulin or lipid metabolism implicated the 

contribution of energy metabolism-associated genes to the genetic background of KET (Huang 

et al., 2019). Furthermore, Freebern et al. (2020) assigned potential candidate regions on BTA 

14 and BTA 16 associated with KET using GWAS, fine mapping, and analyses of multi-tissue 

transcriptome data in Holstein cattle. Candidate genes LY6K and KCNT2 were participating in 

milk and fat metabolism (Freebern et al., 2020). The large number of identified significant SNP 

indicated that KET is a polygenic trait, influenced by numerous genomic regions, with 

comparatively small but additive effect. 
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Table 1.5. Potential candidate genes for producer-recorded ketosis. 

Breed1 Parity BTA2 Candidate gene Reference 

HOL 1 13 IDH3B Kroezen et al., 2018 

27 ACSL1 

29 PC, CPT1A 

2 - 5 2 FN1 

3 HMGCS2 

JER 1 - 5 3 TTLL7 Parker Gaddis et al., 2018 

6 ARAP2 

10 FERMT2, DDHD1, BMP4,  

11 CYP26B1, EXOC6B, NAGK, ATP6V1B1, 

CD207, CLEC4F, ZNF638, XDH, SRD5A2, 

SPAST, SLC30A6, NLRC4, RASGRP3, FAM98A 

14 SULF1, SLCO5A1 

23 PRP1, PRP4, PRP6, PRP8 

25 CLCN7, PTX4, TELO2, MAPK8IP3, UBE21 

HOL 1 - 5 10 BMP4, SOCS4, GCH1, ATG14, RGS6 Huang et al., 2019 

13 HNF4A 

14 CYP7A1 

25 APOBR, MAPK3 

HOL 

sires 

 14 LY6K, PARP10, DGAT1  Freebern et al., 2020 

16 KCNT2, LOC783947 
1 HOL = Holstein-Friesian, JER = Jersey. 
2 BTA = Bos taurus autosome. 

 

Milk fat-to-protein ratio and ketone bodies 

Also for the milk indicator traits i.e., the milk FPR and BHB concentrations, SNP located in 

genomic regions related to lipid metabolism, energy balance, immune system, and milk 

production were identified. As displayed in Table 1.6, GWAS for the FPR mainly identified 

associated SNP on BTA 1, 11, 13, 14, 16, and 27. The strongest effect on FPR showed SNP 

rs109421300 located in the well-known candidate gene DGAT1 on BTA 14 (Tetens et al., 

2012). Gene DGAT1 was associated with milk yield, fat, protein percentage, FA composition, 

and also energy balance in Holstein cows (Oikonomou et al., 2009; Bovenhuis et al., 2016). 

Further candidate genes for the FPR contributed to steroid hormone synthesis (CYP11B1), 

alanine, aspartate, glutamate metabolism (GLUL), and FA biosynthesis (OXSM) (Table 1.6, 

Tetens et al., 2012). 

Genome-wide associations for milk ketone body BHB were located on BTA 3, 6, 11, 14, 17, 

19, 20, 22, and 25 (Table 1.6). A first GWAS for FTIR BHB in milk was conducted by Nayeri 

et al. (2019). Nayeri et al. (2019) identified significantly associated SNP marker on BTA 6, 14, 

and a novel region on BTA 20. According to results of Tetens et al. (2012) regarding the FPR 

the determined SNP on BTA 14 was located within the DGAT1 gene. Candidate genes e.g., 
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CXCL8 and CSN1S1 close to SNP on BTA 6 were reported to influence the innate immune 

system and milk production traits.  

 

Table 1.6. Potential candidate genes for ketosis milk indicators the fat-to-protein ratio and 

ketone body β-hydroxybutyrate. 

Trait1 Breed2 Parity BTA3 Candidate gene Reference 

FPR HOL - 13 SRC Liu et al., 2010 

 HOL 1 14 DGAT1, CYP11B1 Tetens et al., 

2012 16 GLUL 

27 OXSM 

BHB HOL 1 6 CXCL8, SLC4A4, FAM47E, GC, NPFFR2, 

ADAMTS3, FRAS1, RASSF6, MTHFD2L, SLC4A4, 

FAM47E  

Nayeri et al., 

2019 

2+ 3 KIAA1324 

6 GNRHR, SLC4A4, UGT2A1, BTC, FAM47E, 

SDAD1, CSN1S1, NPFFR2, EPHA5, RASSF6, 

SULT1E1, DCK, GC, LOC781988, YTHDC1, 

CXCL8, UGT2B10, MTHFD2L  

11 BIRC6, TTC27  

14 LY6K, GRINA, WDR97, C14H8orf33, RHPN1, 

GRHL2, GML, FOXH1, ARHGAP39, TONSL, 

NRBP2, SCRIB, LY6H, SHARPIN, MAF1, ZNF34, 

MROH1, SMPD5, SLURP1, LYPD2, OPLAH, 

RNF19A, ZNF7, RGS22, HSF1, ZC3H3, DGAT1, 

CYHR1, PUF60, CCDC166, MIR1839, PTP4A3, 

PSCA 

17 ORAI1 

20 OTULINL, FBXL7, TRIO, ANKH, MYO10, DNAH5 

25 IL4R, XPO6, PSPH, CLN3, APOBR, IL2 

HOL 1 6 ACOX3 Soares et al., 

2021 22 SLC26A6, SLC25A20 

2 - 5 14 RASSF6, CXCL8 

19 HADHA, HADHB 
1 BHB = β-hydroxybutyrate, FPR = fat-to-protein ratio. 
2 HOL = Holstein-Friesian. 
3 BTA = Bos taurus autosome. 

 

Genomic studies regarding milk ketone body concentrations are scarce, thus, a GWAS study of 

Pralle et al. (2020) comprising blood BHB concentrations is outlined in the following. Analysis 

of blood BHB concentrations in early lactation Holstein cows annotated candidate genes that 

had important roles in hyperketonaemia etiology. Several candidate genes on BTA 6 and BTA 

14 contributed to adipogenesis, obesity or fatty liver disease i.e., NPFFR2, ENPP2, DEPTOR, 

COL14A1, MRPL13, and SLC4A4. Additionally, SNP on BTA 6, 10, and 14 close to genes i.e., 

GC, TRIM36, and ENPP2 associated with type-2 diabetes mellitus and insulin resistance were 
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detected (Pralle et al., 2020). To the best of our knowledge not any study focused on GWAS 

regarding the milk acetone concentration. 

 

Milk fatty acid profile  

For the FA profile in milk candidate genes involved in oxidative stress (i.e., MGST1), glucose 

homeostasis (i.e., MFSD4A) and FA synthesis (i.e., PAEP, CEL) were detected (Iung et al., 

2019). Multi-population GWAS results by Gebreyesus et al. (2019) based on a sample 

population of Chinese, Danish, and Dutch Holsteins detected 56 genomic regions significantly 

associated with at least one milk FA. Candidate genes in novel regions e.g., OSBPL6, AGPS on 

BTA 2, PRLH on BTA 3, SLC51B on BTA 10, ABCG5/8 on BTA 11, and ALG5 on BTA 12 

were involved in lipid binding, lipid biosynthesis, or lipid transport processes. Also in this study 

DGAT1 gene was found to be significantly associated with several de novo synthesized FA 

(C8:0, C10:0, C14:0), medium to long chain FA (C15:0, C16:0), and also UFA (C14:1, C16:1, 

C18:1c9, C18:2n6, C18_3n3, CLA). Cruz et al. (2019) conducted a GWAS for milk FA in 

North American Holstein cattle accounting for the DGAT1 gene effect. Results suggested that 

DGAT1 accounted for the most of the variability in milk FA. When fitting the DGAT1 gene 

effect as a covariate in the GWAS model additional important identified candidate genes for 

the majority of FA groups were PLBD1 and MGST1 on BTA 5. The gene PLBD1 was related 

to milk fat percentage and MGST1 metabolized lipid and FA hydroperoxides, lipid peroxidation 

products and oxidized phospholipids (Cruz et al., 2019).  

Genomic regions ascertained by Freitas et al. (2020) for milk long, medium, short chain 

FA, SFA, and UFA were located on BTA 5, 13, and 14 in North American Holstein cows. The 

main biological pathways related to the candidate genes are carbohydrate, lipid metabolism, 

cellular lipid metabolic, and catabolic processes. Despite its important function in the synthesis 

of triacylglycerol DGAT1 was not found in this study, probably, due to the absence of marker 

located in its proximity (Freitas et al., 2020). An overview on identified candidate genes for the 

FA profile, including SFA, UFA, MUFA, PUFA, C16:0, and C18:0 is given in Table 1.7. 
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Table 1.7. Potential candidate genes for the fatty acid profile in milk. 

Trait1 Breed2 Parity BTA3 Candidate gene Reference 

SFA, MUFA, 

PUFA 

HOL 1 - 2 2 INSIG2 Rincon et al., 2012 

SFA, MUFA 4 SCD5, INSIG1 

PUFA 14 DGAT1 

SFA, MUFA 22 SCAP 

MUFA 26 SCD 

C18:0 JER 1 - 3 10 TDP, KCNK13, TTC7B, CASC4, 

CTTDSPL2 

Buitenhuis et al., 

2014 

C16:0 14 DGAT1 

C16:0, C18:0 27 SUPT3H, RUNX2 

C18:0 HOL All 1 SI Li et al., 2014 

 C18:0 2 RUNX3, FABP3, IFFO2 

C18:0 5 USP44, CHST11 

SFA, UFA 10 SLC38A6 

SFA, UFA 14 DGAT1 

C18:0 11 REG3A, LRRTM4 

C18:0 12 DCT, ABCC4  

C18:0 16 LOC101902340 

C18:0 17 MYO18B 

C18:0 24 CDH7 

C16:0 HOL 1 5 MGST1 Maurice-Van 

Eijndhoven et al., 

2015 

C16:0, C18:0 14 DGAT1 

SFA, MUFA HOL 1 - 5 6 TACR3 Ibeagha-Awemu et 

al., 2016 SFA 14 TONSL 

MUFA 19 ITGB4 

SFA, MUFA 25 ACHE 

PUFA RDC 1 - 4 1 SLC37A1, ABCG1, AGPAT3 Olsen et al., 2017 

C18:0 15 APOA1, APOA3, APOA4, APOA5 

C16:0, C18:0 HOL, 

JER 

1 - 6 5 MGST1 Benedet et al., 

2019b C16:0, C18:0 14 DGAT1 

C16:0 20 GHR 

SFA HOL 1 5 MGST1 Cruz et al., 2019 

SFA, UFA 14 DGAT1, FOXH1, CYHR1 

C16:0, C18:0 HOL 1 - 6 2 OSBPL6, AGPS Gebreyesus et al., 

2019 C16:0   2 MOGAT1, FABP3, MECR 

C16:0   5 MGST1, PLBD1, LRP6 

C16:0   14 DGAT1, GPAA1 

C18:0   15 APOA1, APOA4, APOA5, DPAGT1 

C16:0   19 ACLY, BRCA1, FASN, STAT5A 

C18:0   20 PRKAA1 

C16:0, C18:0   26 SCD, ELOVL3, ACSL5, GPAM 

C16:0   29 TKFC 
1 SFA = saturated fatty acids, UFA = unsaturated fatty acids, MUFA = monounsaturated fatty 

acids, PUFA = polyunsaturated fatty acids, C16:0 = palmitic acid, C18:0 = stearic acid.  
2 HOL = Holstein-Friesian, JER = Jersey, RDC = Red dairy cattle (Norwegian Red). 
3 BTA = Bos taurus autosome. 
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Table 1.7. Potential candidate genes for the fatty acid profile in milk (continued). 

Trait1 Breed2 Parity BTA3 Candidate gene Reference 

SFA HOL 1 - 6 5 MGST1 Iung et al., 2019 

MUFA, 

PUFA 

11 LTBP1, PAEP, CEL, GBGT1, ABCA2, 

PTGDS 

SFA, UFA, 

MUFA, 

C16:0, C18:0 

14 DGAT1, CYHR1, VPS28, MROH1, 

OPLAH, GPR20 

C18:0 16 MFSD4A, SLC41A1, SLC45A3 

SFA HOL 1 5 RERGL, EPS8, RERG, ARHGDIB, 

GUCY2C 

Freitas et al., 2020 

SFA, UFA 14 LY6D, LYNX1, LYPD2, SLURP1, 

TSNARE1, ARC, JRK, SLC45A4, 

PTK2, AGO2, TRAPPC9, KCNK9 

SFA, UFA, 

C18:0 

HOL 1 5 CPM Shi et al., 2020 

UFA, SFA, 

C16:0, C18:0  

HOL 1 - 4 1 AGPAT3 Shi et al., 2021 

1 SFA = saturated fatty acids, UFA = unsaturated fatty acids, MUFA = monounsaturated fatty 

acids, PUFA = polyunsaturated fatty acids, C16:0 = palmitic acid, C18:0 = stearic acid.  
2 HOL = Holstein-Friesian. 
3 BTA = Bos taurus autosome. 

 

Interval from calving to first insemination 

Also for the fertility trait ICF SNP close to candidate genes related to immunity, energy, lipid 

metabolism, and fertility were detected on BTA 4 - 6, 10, 11, 13, 15, 16 - 18, 20, 21, 23, 24, 29 

(Table 1.8). Zhang et al. (2019) analyzed genotype-by-environment interaction of fertility traits 

in Danish Holsteins using a single-step genomic reaction norm model. They identified two 

genomic regions associated with both fertility traits ICF and the interval from first to last 

insemination on BTA 23 and on BTA 17. The corresponding candidate genes IL17, IL17F, and 

LIF were immunity related genes (Table 1.8, Zhang et al., 2019). Candidate genes IGF1 and 

TGFB2 on BTA 5 and 16 contributed to ICF were detected by Minozzi et al. (2013). These 

genes were associated with milk production, body condition, involved in follicular development 

and the interaction with reproductive hormones. Chebel and Santos (2011) significantly 

associated the energy metabolism and feed intake related leptin genotype (located in LEP gene) 

with the proportion of cows classified as oestrous cyclic at 49 ± 3 DIM (Table 1.8). According 

to Wathes et al. (2013) polymorphisms in many genes including DGAT1, SCD1, DECR1, CRH, 

CBFA2T1, GH, LEP, and NPY affecting lipid metabolism also showed associations with 

fertility traits i.e., ICF. Thus, genomic investigations regarding KET, KET indicator traits and 

also cows fertility would provide further insights into genomic relationships and shared genes. 
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Table 1.8. Potential candidate genes for the interval from calving to first insemination. 

Breed1 Parity BTA2 Candidate gene Reference 

HOL 

sires 

 18 NDRG4 Pimentel et al., 2010 

20 CCNB1 

HOL 1 - 3 23 TNFa Shirasuna et al., 

2011 

HOL All 4 LEP Chebel and Santos, 

2011 

HOL 

sires 

 5 IGF1 Minozzi et al., 2013 

 16 TGFB2 

RDC, 

JER sires 

 4 ADCY1 Höglund et al., 2014 

 11 PPM1B, SLC1A4 

   

RDC 

sires 

 6 KCNIP4 Höglund et al., 2015 

13 ANKRD60 

15 GRAMD1B 

HOL 

sires 

 5 ABCC9 Nayeri et al., 2016 

 13 FAM188A, MRC1 

 21 FAM181A, ASB2, SLC24A4, NKX2-1 

BS sires  29 PYGM, PLCB3 Frischknecht et al., 

2017 

HOL 

sires 

 4 CHN2 Liu et al., 2017b 

 10 ENSBTAG00000021414, ENSBTAG00000025634 

 11 FAM84A, ENSBTAG00000019284, TRIB2, LPIN1 

 13 RSU1, SLC39A12, CACNB2 

 15 CADM1, BUD13 

 16 SLC25A34, PLEKHM2, ENSBTAG00000027809, 

GPR52 

 17 PISD 

 18 SIPA1L3 

 21 PRKD1, G2E3, NKX2-8, PAX9 

 24 AQP4, KCTD1 

HOL  

sires 

 6 EREG, AREG Zhang et al., 2019 

 16 TPR, NMNATI 

 17 LIF 

 23 IL17, IL17F 
1 BS = Brown Swiss, HOL = Holstein-Friesian, JER = Jersey, RDC = Red dairy cattle 

(Norwegian Red).  
2 BTA = Bos taurus autosome. 

 

Prospects of cow reference groups 

Cow reference groups offered new prospects in dairy cattle breeding for improved disease 

resistance by combining phenotypes for novel traits with high-density genetic markers (Naderi 

et al., 2016). In general, the direct genomic value (dGV) was combined with the classical 

breeding value, based on own and offspring performance, to the combined genomic enhanced 
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breeding value (gEBV) since 2010 for Holsteins and Red Holsteins in Germany. For dGV 

calculation knowledge about the relationship between marker and the trait is obligatory. For 

genomic evaluations a formula summarising the marker effects of any animal according to its 

specific marker information estimated the dGV (VIT, 2021). According to VIT (2021) well 

proven animals were daughter proven bulls with known genetic based performances. The 

formula for the genomic estimations was based on those bulls displaying the reference 

population. The greater the number of animals in the reference population and the more reliable 

their EBV were the more reliable were the genomic estimations and the dGV. Hence, the 

reference population was enhanced by genotyped bulls from France, Netherlands, Denmark, 

Sweden, Finland, and Poland to the EuroGenomics reference population. However, due to the 

strong preselection of young genotyped bulls in this reference population the number of new 

daughter proven bulls decreased and the reference bulls did not represent the population 

anymore.  

Thus, the breeding organizations and the IT solutions for animal production (VIT) in Germany 

initiated projects (e.g., KUH-L, KuhVision) to build a cow reference population by genotyping 

whole German Holstein herds. The reference population is genetically closer to the current 

selection candidates due to the inclusion of young cows. The lower the genetic differences 

between the reference population and the selection candidates are, the better are the reliabilities 

of genomic breeding values of the young selection candidates. Especially, for breeding 

programs regarding animal health the focus on pure bull reference population was not usable. 

Selection was based on performance data and recorded health data were not sufficient for 

effective evaluations with a bull reference population because just a low number of older bulls 

had enough daughter records regarding animal health (Reinhardt, 2019). As a result, older 

progeny tested bulls did not have reliable estimated breeding values for new traits. Especially, 

novel health traits had limited historical data and thus genomic selection regarding those traits 

was challenging (Heringstad et al., 2018). For health traits a smaller reference population was 

available to be used in genomic predictions compared with e.g., production traits. According to 

Heringstad et al. (2018) genotyping cows in herds with reliable health records (e.g., claw 

trimming records) might have been one strategy to enhance the accuracy of genomic predictions 

for those traits. The genetic evaluation e.g., for claw health in the Nordic countries included 

cows in the reference population for several years. In 2014, the addition of 10,000 cows to 7,800 

bulls in the reference population resulted in an increase in reliability for Norwegian Red cattle 

of 0.09 (Heringstad et al., 2018). Hence, a cow reference population including unselected 

genotyped cows with their own records (inclusive new health traits) will be advantageous in 
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health evaluations. According to Alkhoder et al. (2017) and Liu et al. (2019) an increase in 

accuracy of genomic predictions for all regular traits (e.g., milk yield) and also low heritable 

novel health traits (e.g., disease traits, calf fitness) was found for a combined cow and bull 

reference population. Therefore, since 2019 the combined reference population has been used 

for routine genomic breeding value estimation for health traits in German Holsteins (Liu et al., 

2019).  

 

Study objectives 

The present thesis deals with phenotypic, quantitative genetic and genomic analyses 

considering a cow reference group to infer relationships between KET, the FPR, novel, 

innovative milk indicator traits, i.e., ketone body concentrations, the FA profile, and the fertility 

interval trait ICF. 

 

The aims are summarized as follows: 

Chapter 2 analyzes associations between the first test-day FPR and KET in first-lactation 

German Holstein cows based on a large data set of genotyped cows from large scale co-operator 

herds. This aim implies the application of generalized linear mixed models to infer phenotypic 

trait associations, the estimation of pedigree- and SNP-based (co)variance components, GWAS 

to detect significantly associated SNP marker for KET and the FPR, as well as the annotation 

and physiological explanation of potential candidate genes. 

Chapter 3 investigates associations between KET and first test-day FTIR milk acetone and 

BHB concentrations in Holstein cows. Further aim was to study associations between acetone, 

BHB and KET with test-day traits from the very early-lactation period. Against this 

background, we applied generalized linear mixed models to study phenotypic trait relationships, 

we estimated genetic (co)variance components, we performed GWAS based on SNP marker 

data for acetone and BHB in milk, and we identified potential candidate genes influencing 

related metabolic pathways. 

Chapter 4 specifies relationships among milk FA groups (SFA, UFA, MUFA, PUFA) as well 

as specific C16:0 and C18:0 FA concentrations, KET diagnoses and ICF in a comprehensive 

ssGBLUP approach. We applied ssGBLUP to estimate genetic (co)variance components for 

KET, first test-day FTIR milk FA profiles and ICF, and we conducted ssGWAS to identify SNP 

marker associations and potential candidate genes for the traits.  
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Abstract 

Energy demand for milk production in early lactation exceeds energy intake, especially in high-

yielding Holstein cows. Energy deficiency causes increasing susceptibility to metabolic 

disorders. In addition to several blood parameters, the fat-to-protein ratio (FPR) is suggested as 

an indicator for ketosis, because a FPR > 1.5 refers to high lipolysis. The aim of this study was 

to analyze phenotypic, quantitative genetic, and genomic associations between FPR and ketosis. 

In this regard, 8,912 first-lactation Holstein cows were phenotyped for ketosis according to a 

veterinarian diagnosis key. Ketosis was diagnosed if the cow showed an abnormal carbohydrate 

metabolism with increased content of ketone bodies in the blood or urine. At least one entry for 

ketosis in the first 6 wk after calving implied a score = 1 (diseased); otherwise, a score = 0 

(healthy) was assigned. The FPR from the first test-day was defined as a Gaussian-distributed 

trait (FPRgauss), and also as a binary response trait (FPRbin), considering a threshold of FPR 

= 1.5. After imputation and quality controls, 40,993 and 41,017 SNP markers from the 8,912 

genotyped cows were used for genomic studies for ketosis and FPR, respectively. 

Phenotypically, an increasing ketosis incidence was associated with significantly higher FPR, 

and vice versa. Hence, from a practical trait recording perspective, first test-day FPR is 

suggested as an indicator for ketosis. The ketosis heritability was slightly larger when modeling 

the pedigree-based relationship matrix (pedigree-based: 0.17; SNP-based: 0.11). For FPRbin, 

heritabilities were larger when modeling the genomic relationship matrix (pedigree-based: 0.09; 

SNP-based: 0.15). For FPRgauss, heritabilities were almost identical for both pedigree and 

genomic relationship matrices (pedigree-based: 0.14; SNP-based: 0.15). Genetic correlations 

between ketosis with FPRbin and FPRgauss using either pedigree- or genomic-based 

relationship matrices were in a moderate range from 0.39 to 0.71. Applying genome-wide 

association studies, we identified the specific SNP rs109896020 (BTA 5, 115,456,438 bp) 

significantly contributing to ketosis. The identified potential candidate gene PARVB in close 

chromosomal distance is associated with nonalcoholic fatty liver disease in humans. The most 

important SNP contributing to FPRbin was located within the DGAT1 gene. Different SNP 

significantly contributed to ketosis and FPRbin, indicating different mechanisms for both traits 

genomically. 

Key words: ketosis, fat-to-protein ratio, genetic parameter, genome-wide association, potential 

candidate gene 
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Introduction 

During early lactation, nutrient demand for milk production exceeds the slow increase in DMI, 

causing a negative energy balance (NEB). Energy deficiency is a major component explaining 

susceptibility to metabolic disorders, such as ketosis (KET; Buttchereit et al., 2012). Ketosis 

induces further cost-intensive diseases (e.g., metritis, mastitis, laminitis, or displaced 

abomasum; Suthar et al., 2013). During the NEB period, ketone bodies serve as short-term 

energy sources for several organs (Robinson and Williamson, 1980). However, excessive 

concentrations of circulating ketone bodies cause ketoacidosis, and an increase of ketone bodies 

in blood, milk, and urine (Bashir et al., 2016). To overcome energy deficiency periods, fat 

mobilization from body fat depots is associated with increasing milk fat synthesis. Furthermore, 

reduced feed intake in the first third of lactation causes insufficient ruminal bacteria protein 

production, implying a decline in milk protein content (Gürtler and Schweigert, 2005). Hence, 

a fat-to-protein ratio (FPR) larger than 1.5 refers to high lipolysis. The trait FPR is available on 

the basis of routinely recorded test-day data, and consequently, suggested as a KET indicator 

(Heuer et al., 1999).  

Phenotypically, Kessel et al. (2008) analyzed metabolic processes in high-yielding Red 

Holstein cows during the transition period. The cows under study were kept under identical 

housing and feeding systems. They clustered the cows according to their ketone body 

concentration in plasma, and identified significant cow differences for metabolite 

concentrations (e.g., BHB, acetone, glucose) and for hormone levels. Such individual 

differences for cows kept in the same herd environment suggest genetic or epigenetic influence 

on physiological mechanisms coping with metabolic stress (Kessel et al., 2008). 

Quantitative genetic, heritabilities for KET ranged between 0.01 (SE = 0.006) and 0.14 

(SE = 0.03) for Holstein cows, depending on the genetic-statistical modeling approach (Pryce 

et al., 2016). In most studies, clinical KET cases were the trait basis for genetic parameter 

estimations because clinical cases are quite easy to detect (Pryce et al., 2016). Nevertheless, 

consideration of more precise phenotypes in genetic analyses (i.e., of subclinical KET cases) 

contribute to increasing incidence rates and more accurate breeding value estimations. 

Detection of subclinical KET implies detailed recording of biomarkers (e.g., ketone body 

concentrations in blood or in milk; König and May, 2018). As an alternative, test-day FPR is 

suggested for indirect selection strategies on subclinical KET (van Knegsel et al., 2010). Koeck 

et al. (2013) estimated a heritability of 0.15 (SE = 0.015) for Gaussian FPR, 0.07 (SE = 0.012) 

for binary FPR, and a favorable genetic correlation between FPR and KET of 0.35 (SE = 0.16). 
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So far, only a limited number of studies have focused on genome-wide association 

studies (GWAS) and potential candidate gene identification for KET. Parker Gaddis et al. 

(2018) estimated SNP effects for producer-recorded KET, including 1,750 medium-density 

genotyped US Jersey cows. They identified SNP significantly associated with KET on BTA 10, 

11, 14 and 23. Genes involved in insulin regulation, lipid metabolism, and immune response 

were located in close distance to the associated SNP markers (Parker Gaddis et al., 2018). The 

large number of identified significant SNP indicate that KET is a polygenic trait, influenced by 

numerous genomic regions. These results are confirmed by Kroezen et al. (2018), who 

identified 6 KET candidate genes on BTA 2, 3, 13, 27, and 29 involved in fatty acid metabolism, 

gluconeogenesis, and citric acid cycle. Considering 248 genotyped Holstein cows, Tetens et al. 

(2015) conducted a GWAS for the KET indicator, ratio of glycerophosphocholin to 

phosphocholine, in milk. Via ongoing candidate gene and sequence analyses, Tetens et al. 

(2015) identified a QTL on BTA 25 for the ratio of glycerophosphocholin to phosphocholine.  

The aim of the present study was to study phenotypic, quantitative genetic and genomic 

associations between first test-day FPR and KET in first-lactation German Holstein cows, based 

on a large data set of genotyped cows from large scale co-operator herds. This aim includes 1) 

the application of generalized linear mixed models to infer phenotypic trait associations, 2) the 

estimation of pedigree- and SNP-based (co)variance components, 3) GWAS to detect 

significantly associated SNP markers, and 4) the annotation and physiological explanation of 

potential candidate genes. 

 

Materials and Methods 

Data 

Phenotypes 

We considered 8,912 first-lactation German Holstein cows kept in 27 large-scale co-operator 

herds, located in the federal states of Mecklenburg-West Pommerania and Brandenburg, 

Germany. Calving dates of cows spanned the years 2014 to 2016. Health data recording 

including KET was accomplished by veterinarians within the first 6 wk after calving, using an 

electronic recording systems. The recording system has a hierarchical structure with several 

disease levels (from overall disease categories up to specific diseases), following the 

International Committee for Animal Recording diagnosis key (Stock et al., 2013). According 

to the recording guidelines, a KET diagnosis reflects disturbance of carbohydrate metabolism 

with increased content of ketone bodies in blood or urine (measured via handheld ketometers 

or urine test strips). Only herds with at least one KET entry in the 6-wk interval were considered. 
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Cows with at least one KET diagnosis during the 6-wk interval were coded as diseased (KET 

= 1), whereas cows without any KET diagnosis in the 6-wk interval were coded as healthy 

(KET = 0). Cows with a culling date within the 6-wk interval have “no further chance” to get 

the disease. Hence, these cows with no KET entry until the culling date are considered as 

healthy. This is a general problem with health data (i.e., cullings within the defined time period). 

The early lactation interval definition was used for other disease categories, such as claw 

disorders (König et al., 2005). Nevertheless, KET has only a minor effect on statistic or genetic 

parameter estimations because (1) KET is diagnosed very early after calving (60% within the 

first 10 d after calving), and (2) the number of cullings is very small within the 6-wk interval 

after calving. Most of the cullings occur later in lactation. In our data set, only 0.75% of the 

cows diagnosed as healthy had a culling date before second test-day. Descriptive statistics for 

KET are given in Table 2.1. Most of the KET-diagnosed cows (~80% of the cows) were 

diagnosed for another disease, such as claw disorders or mastitis. Test-day records included 

milk yield, fat percentage, protein percentage, FPR, and SCS from the first test-day after 

calving. The first test-day was within the period from 5 to 42 DIM. Descriptive statistics for all 

test-day traits are given in Table 2.2. According to Hein et al. (2018), extremely low values for 

milk yield (2 kg) were considered, because very strong KET cases might cause a sudden milk 

yield decline. The data editing threshold for milk yield as used in official genetic evaluations is 

5 kg, but only 14 test-day records were in the range from 2 to 5 kg. Somatic cell count was log-

transformed into SCS as follows: SCS = log2(SCC/100)+5 (Ali and Shook, 1980). The number 

of SCS records was slightly smaller than for milk yield or percentage traits because of a few 

missing records for SCC. 

Furthermore, we calculated lactation persistency, using the formula by Visscher and Mason 

(2016): 

Persistency (%) = [1-
(milk yield (kg) earlier test-day  - milk yield (kg) later test-day) × 

30 days

days between test-days 

milk yield (kg) earlier test-day
 ]×100.  

In this regard, the earlier test-day was test-day 3, and the later test-day was test-day 5. Test-day 

3 was within 50 and 140 DIM, and test-day 5 reflected the lactation period from 150 to 220 

DIM. Data editing excluded records with persistency values lower than 65% or larger than 

120%. Fat-to-protein ratio was defined as a Gaussian-distributed trait (FPRgauss) and as a 

binary response trait (FPRbin). A FPR > 1.5 at the first test-day implied a score of 1 for FPRbin 

(diseased); otherwise, a score of 0 (healthy) was assigned. The incidences for the binary trait 

definitions are in Table 2.1. 
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Table 2.1. Descriptive statistics for ketosis (KET) and fat-to-protein ratio (FPR) of first 

lactating Holstein cows. 

Characteristic Analyzed data 

Total no. of herds 27 

Total no. of animals 8,912 

Mean no. of cows per herd 330 

Healthy animals KET, no. (%) 8,750 (98.18) 

Diseased animals KET, no. (%) 162 (1.82) 

Healthy animals FPR ≤ 1.5, no. (%) 7,688 (86.27) 

Diseased animals FPR > 1.5, no. (%) 1,224 (13.73) 

 

Table 2.2. Descriptive statistics for first official test-day traits of first lactating Holstein cows. 

Trait No. of records Mean SD Minimum Maximum 

Milk yield (kg) 8,912 28.88 6.58 2 53.8 

Fat percentage (%) 8,912 4.10 0.78 1.62 9.26 

Protein percentage (%) 8,912 3.22 0.32 2.24 4.89 

Fat-to-protein ratio 8,912 1.28 0.23 0.43 2.91 

Fat-to-protein ratio > 1.5 1,224 1.70 0.21 1.50 2.91 

Somatic cell score 8,893 4.85 1.69 0.94 11.64 

Persistency (%) 8,549 99.14 5.09 66.87 119.86 

 

Genotypes  

A total of 2,374 cows were genotyped with the Illumina BovineSNP50 v2 BeadChip (Illumina 

Inc., San Diego, CA), and 6,538 cows with the EuroGenomics 10K chip (Illumina Inc., San 

Diego, CA). Low-density genotypes were imputed by the project partner VIT (Vereinigte 

Informationssysteme Tierhaltung w.V, Verden, Germany) to the 50K panel, applying the 

algorithm as outlined by Segelke et al. (2012). The SNP data set considered 45,613 SNP from 

the 8,912 phenotyped cows. Quality control of the genotype data was performed using the 

software package PLINK (Purcell et al., 2007). The SNP with more than 1% missing genotype 

data, with a minor allele frequency lower than 5%, and deviation from Hardy-Weinberg 

equilibrium (P-value < 10-8), were discarded. Thus, due to different cows in case and control 

groups for both traits, 40,993 and 41,017 SNP from the 8,912 cows were available for genomic 

studies for KET and FPRbin, respectively.  
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Statistical Models 

Phenotypic associations between fat-to-protein ratio and ketosis 

A generalized linear mixed model (GLMM) with a binomial distribution and a logit link 

function was applied to analyze the effect of FPRbin on binary KET. For this purpose, the 

Glimmix procedure in SAS (version 9.4, SAS Institute Inc., Cary, NC) was used. The statistical 

model [1] was:  

logit (π) = log [πrstuv/(1− πrstuv)] = φ + Herdr + CYears+ CMont + CAgeu + FPRbinv [1] 

where πrstuv = probability of a KET occurrence; φ = overall mean effect; Herdr = fixed herd 

effect (27 herds); CYears = fixed effect of calving year (3 yr, 2014-2016); CMont = fixed effect 

of calving month (12 mo); CAgeu = covariate age at first calving (linear regression); FPRbinv 

= fixed effect of FPRbin (2 classes, FPR ≤ 1.5 or FPR >1.5). 

The recursive effect (i.e., of KET on the Gaussian-distributed test-day traits milk yield, fat 

percentage, protein percentage, FPR, SCS, and persistency) also was analyzed using the 

Glimmix procedure in SAS (SAS Institute Inc., Cary, NC). In this regard, a GLMM with an 

identity link function was defined. The statistical model [2] was: 

yijklm = φ + Herdi + CYearj + CMonk + CAgel + KET × Diffdatm + eijklm [2] 

where yijklm = observation for the test-day traits; Herdi = fixed herd effect (27 herds); CYearj = 

fixed effect of calving year (3 yr, 2014–2016); CMonk = fixed effect of calving month (12 mo); 

CAgel = covariate age at first calving (linear regression); KET×Diffdatm = combined fixed 

effect of KET (healthy or diseased) × period between the first test-date and the KET diagnosis 

date [9 classes considering the following periods: 31 to 21 d (n = 5 cows), 20 to 11 d (n = 8 

cows), 10 to 5 d (n = 13 cows), 4 to 1 d (n = 15 cows) before the diagnosis date; 0 to 4 d (n = 

13 cows), 5 to 10 d (n = 33 cows), 11 to 20 d (n = 43 cows) and 21 to 31 d (n = 32 cows) after 

the diagnosis date; and a “dummy” class for healthy cows (n = 8,750 cows)]; and eijklm = random 

residual. A multiple comparison adjustment for the effect of the KET×Diffdat effect was 

accomplished using the Dunnett correction as implemented in the Glimmix procedure (Dunnett, 

1955). 

 

Pedigree- and genomic-based genetic parameter estimation 

Pedigree-based variance components and heritabilities for KET and FPR were estimated using 

the AI-REML algorithm as implemented in the DMU software package (Madsen and Jensen, 

2013). The pedigree file comprised 93,446 animals. The GLMM (model [3]) considered the 

same fixed effects as specified in model [1] and model [2], but we (1) excluded the explanatory 
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variables FPRbin and KET×Diffdat, and (2) we included the random additive-genetic animal 

effect. 

Genetic correlations between KET and FPRgauss and FPRbin were estimated via bivariate 

linear animal models.  

The SNP-based variance components, heritabilities, and genomic correlations were estimated 

with GCTA (Yang et al., 2011), using the GREML function. Fixed effects were identical to the 

pedigree-based analyses, but instead of using the pedigree-based relationship matrix, the 

genomic relationship matrix (GRM) was constructed. 

 

Genome-wide association studies  

The data set used for FPRbin included 1,224 cases (FPR > 1.5) and 7,688 controls (FPR ≤ 1.5). 

Regarding KET, 162 cases (diseased) and 8,750 controls (healthy) were available. Also for 

GWAS, the GCTA software (Yang et al., 2011) was applied. In GCTA, we used the option 

mlma-loco (i.e., to perform a mixed linear model via the “leaving one chromosome out” 

strategy). The model [4] was: 

yij = Xβ + Zu + Sksjk + eij [4] 

where yij represents the vector of phenotypic observations from the ith cow (i = 1 - 8,912) for 

the jth trait (j = KET or FPRbin), X is the incidence matrix relating fixed effects in β (as 

specified in model [3]) with observations in yij; Z is the incidence matrix relating random 

additive polygenic effects in u with observations in yij, Sk is the vector of genotypes for the kth 

SNP across all animals; sjk represents the additive effect of the kth SNP on the jth trait; and eij 

is the vector of random residual effects. 

For the trait FPRbin, Manhattan plots from model [4] suggested a strong effect of the single 

SNP rs109421300 which is located in the DGAT1 gene. It was our intention to account for a 

major DGAT1 gene effect on the traits of interest. Hence, as an extension of model [4] an 

additional model [5] was chosen for both traits KET and FPRbin. In model [5] we considered 

the genotype for the DGAT1 SNP rs109421300 as a further fixed effect. 

The effective number of independent SNP (NSNP = 29,548) was calculated using the software 

Genetic type 1 Error Calculator (Li et al., 2012), to define the genome-wide significance level 

according to Bonferroni (pBF = 0.05 / NSNP = 1.69e-06). In addition, a less conservative 

normative significance threshold was used to identify potential candidate SNP, considering 

pCD = 1e-04 (Kurz et al., 2018). Annotated genes located in 250 kb upstream or downstream 

from the significantly associated candidate SNP were detected using Ensembl release 91 

(Zerbino et al., 2018).  
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Results and Discussion 

Phenotypic associations between ketosis and test-day traits 

Phenotypically, increasing KET incidences were associated with significantly higher FPR (P < 

0.001, model [1]). The probability for KET occurrence was 3-fold higher for cows with a FPR 

larger than 1.5 (predicted incidence = 0.050, SE = 0.022) compared to cows with a FPR lower 

or equal 1.5 (predicted incidence = 0.017, SE = 0.007). Vice versa, we also identified a 

significant influence of a KET diagnosis on FPR, but depending on the intervals between the 

test date and the diagnosis date (model [2]). Table 2.3 addresses the influence from KET 

diagnoses recorded before and after the test date. Cows with a KET diagnosis had a significant 

higher first test-day FPR and fat percentage compared with healthy cows. Differences between 

sick and healthy cows were most obvious for diagnosis days in close distance to the test-day 

(i.e., test-day 4 to 1 d before and 0 to 10 d after the diagnosis date). Hence, FPR is a very useful 

KET indicator for a dense data structure (i.e., in the optimal case for records on a daily level 

from automatic milking systems; Santos et al., 2018). Increased FPR and fat percentage for 

cows with a KET diagnosis reflect the increased milk fat synthesis caused by elevated body fat 

mobilization during the energy deficiency period (Bell, 1995).  

Milk yield was significantly lower for KET-diagnosed cows in the period from 10 d before to 

20 d after the diagnosis date (Table 2.3). Accordingly, Koeck et al. (2013) confirmed the decline 

in milk yield during the disease period for cows with a KET diagnosis. In our study, protein 

percentage was significantly lower from d 11 to 31 after the diagnosis date (Table 2.3), 

compared with protein percentage of healthy cows. The decrease of test-day protein percentage 

after the KET diagnosis date is in agreement with Duffield et al. (2009). The insufficient intake 

of carbohydrates in the state of NEB decreases the microbial protein synthesis, causing the 

decline in milk protein percentage (Gürtler and Schweigert, 2005).  

Phenotypically, in our study, there was no significant effect of KET on SCS and persistency. 
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Table 2.3. Differences for least squares means (LSM) of first test-day traits for the cow group 

comparison of ketosis healthy cows minus ketosis diseased cows [considered time periods: test-

day dates before (b) or after (a) the ketosis diagnosis date]. 

 

Trait1 

Time period 

 

31 to 21 d 20 to 11 d 10 to 5 d 4 to 0 d2 

Difference 

of LSM 

P- 

value 

Difference 

of LSM 

P- 

value 

Difference 

of LSM 

P- 

value 

Difference 

of LSM 

P- 

value 

MY (kg) b 0.96 NS 4.00 NS 4.69 * 7.45 *** 

a -1.58 NS 2.60 * 3.46 ** 6.90 *** 

F (%) b -0.66 NS -0.64 NS -0.63 * -1.39 *** 

a 0.41 * 0.14 NS -0.43 ** -0.84 *** 

P (%) b -0.01 NS -0.11 NS -0.17 NS 0.00 NS 

a 0.21 ** 0.17 ** 0.11 NS 0.07 NS 

FPR b -0.20 NS -0.15 NS -0.13 NS -0.45 *** 

a 0.04 NS -0.04 NS -0.20 *** -0.30 *** 

SCS b -0.69 NS -0.31 NS -0.51 NS -1.05 NS 

a 0.36 NS -0.07 NS -0.40 NS 0.09 NS 

PER (%) b 1.21 NS -2.53 NS -0.37 NS -0.57 NS 

a 0.62 NS 0.96 NS 0.35 NS -1.30 NS 

1MY = Milk yield, F = fat percentage, P = protein percentage, FPR = fat-to-protein ratio, SCS 

= somatic cell score, PER = persistency. 

24 to 0 d: 4 to 1 d before the ketosis diagnosis date, 0 to 4 d after the ketosis diagnosis date. 

*** P ≤ 0.001; ** P ≤ 0.01; *P ≤ 0.05; NS = nonsignificant. 

 

Heritabilities and genetic correlations 

Heritabilities were 0.17 and 0.11 for KET, 0.09 and 0.15 for FPRbin, and 0.14 and 0.15 for 

FPRgauss, when applying pedigree-based or genomic models, respectively (Table 2.4, model 

[3]). In other studies using producer data, pedigree-based heritabilities for KET ranged between 

0.02 and 0.14 (Heringstad et al., 2005; Koeck et al., 2014). In general, low heritabilities for 

KET might be due to the complex disease trait character, showing the phenomenon of the 

missing heritability (Blanco-Gómez et al., 2016). The pathogenesis of complex diseases is often 

regulated by intermediate phenotypes with quantitative inheritance. Blanco-Gómez et al. (2016) 

argued that not-detectable intermediate phenotypes explain a major part of the missing 
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heritability. An application of more precise continuous phenotypes for KET, such as Fourier 

transform mid-infrared blood or milk BHB concentration, may lead to detection of subclinical 

cases, higher disease incidences, and higher heritability estimates (Belay et al., 2017). For KET 

we estimated smaller SNP-based heritabilities than pedigree-based heritabilities, indicating that 

the 40,993 SNP marker panel did not fully explain the genetic trait variation. Accordingly, Yang 

et al. (2017) assumed smaller SNP heritabilities for complex diseases for low- or medium-

density SNP chips because not all causal variants are in linkage disequilibrium with the 

available SNP. McNeel et al. (2017) defined KET as a wellness trait and suggested a reduction 

of disease incidences and improvements of farm profitability through the implementation of 

direct genetic selection strategies on low heritability wellness traits. 

In analogy to KET, heritabilities for FPRbin and FPRgauss were quite small (Table 2.4). 

Koeck et al. (2013) estimated a pedigree heritability of 0.15 for first test-day FPRgauss, and of 

0.07 for FPRbin. We detected slight differences between the SNP- and pedigree-based 

heritability for FPRbin. Opposite to KET, the pedigree heritability for FPRbin (0.09) was lower 

than the SNP-based estimation (0.15). Low estimates for pedigree-based heritabilities point to 

erroneous or missing pedigree information. However, the same pedigree was used for KET and 

FPR genetic analyses. On the other hand, FPRgauss heritabilities were almost identical for both 

pedigree and genomic relationship matrices, probably due to the Gaussian trait character (Golan 

et al., 2014; Ge et al., 2017).  

Genetic correlations between KET and FPRgauss and between KET and FPRbin are 

given in Table 2.4. Genetic correlations from different methods (i.e., SNP- versus pedigree-

based) ranged from moderate to high levels. Genetic correlations between KET and FPRgauss 

were 0.39 (SNP-based) and 0.52 (pedigree-based), and 0.50 (SNP-based) and 0.71 (pedigree-

based) between KET and FPRbin (model [3]). Genetic correlations based on the GRM were 

lower than pedigree-based genetic correlations. This refers to the missing correlation 

phenomenon, caused by the fact that the covariance between KET and FPR was not fully 

explained by the used SNP marker (Momen et al., 2017). As estimates for complex traits may 

differ between pedigree-based and genomic approaches, Momen et al. (2017) suggested 

utilization of both information sources simultaneously. 
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Table 2.4. Heritabilities for ketosis (KET), binary distributed fat-to-protein ratio (FPRbin) and 

Gaussian-distributed fat-to-protein ratio (FPRgauss; diagonal elements), and their genetic 

correlations (off-diagonal elements) considering pedigree-based or genomic-based relationship 

matrices (corresponding SE in parentheses). 

Method Trait KET FPRbin FPRgauss 

Pedigree-based KET 0.17 (0.08) 0.71 (0.18) 0.52 (0.16) 

FPRbin  0.09 (0.02)  

FPRgauss   0.14 (0.02) 

Genomic-based KET 0.11 (0.06) 0.50 (0.21) 0.39 (0.17) 

FPRbin  0.15 (0.02)  

FPRgauss   0.15 (0.01) 

 

Genome-wide association studies 

Ketosis  

Applying GWAS, we identified 5 suggestively associated candidate SNP on BTA 5, 8, 9, and 

15 contributing to KET (Figure 2.1, model [4]). Twenty-three genes in the interval of 250 kb 

surrounding the suggestive SNP were retrieved from the Ensembl database (Zerbino et al., 

2018; Table 2.5). The SNP rs109896020 with strongest association was located on BTA 5, and 

4 potential candidate genes involved in physiological processes were located in the defined 

interval: EF-hand calcium binding domain 6 (EFCAB6), parvin beta (PARVB), parvin gamma 

(PARVG) and shisa like 1 (SHISAL1/KIAA1644). Eckel-Passow et al. (2014) identified 

downregulations of EFCAB6 expressions in obese individuals. In their study, EFCAB6 

expression profiles were associated with obesity-related renal cell carcinoma in humans, 

suggesting a relationship with mechanisms of the lipid metabolism. The PARVB gene, located 

in close chromosomal distance (61,382 bp) to the SNP rs109896020, contributes to 

nonalcoholic fatty liver disease in humans (Kitamoto et al., 2013). Applying a genome-wide 

case-control association study, a haplotype in the PARVB gene was strongly associated with 

nonalcoholic fatty liver disease, suggesting an involvement of PARVB in the lipid metabolism. 

In addition, PARVB encodes a member of the parvin family of actin-binding proteins which 

inhibits the activity of integrin-linked kinase (NCBI, 2017). Integrins in turn play a crucial role 

regarding the progression of fibrosing liver diseases (Patsenker and Stickel, 2011). The 

increased influx of fatty acids in the liver, caused by the elevated body fat mobilization in the 

state of NEB, exceeds the metabolic capacity. An increase of the metabolic capacity contributes 
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to hepatocyte accumulations of triglycerides and causes the fatty liver disease. Ketosis-diseased 

cows often have fatty livers (White, 2015), suggesting PARVB as a potential candidate gene 

regulating KET processes. Similarly, Wu et al. (2016) detected an association between 

polymorphisms in the PARVB gene with the fatty liver disease syndrome in humans.  

Interestingly, the only suggestively associated marker on BTA 5 for KET is the SNP 

rs109896020. The Manhattan plot for KET (Figure 2.1) indicates that no other polymorphism 

close to SNP rs109896020 surpasses the candidate threshold. Probably, variation generated by 

the causal variants is not fully explained by genotyped SNP from the medium-density chip. 

Cow genotyping using a denser SNP panel, or utilization of sequence data, might contribute to 

the identification of a larger number of significantly associated genetic markers within this 

specific chromosomal segment.  

 

 

Figure 2.1. Manhattan plot for SNP effects for ketosis of first-lactation Holstein cows. 

 

On BTA 8, the SNP rs41860668 and rs41859808 surpassed the candidate threshold. One of the 

3 genes including these two SNP is the homeobox containing 1 (HMBOX1) gene. In humans, 

Chen et al. (2006) identified associations between HMBOX1 polymorphisms and type-2 

diabetes. Furthermore, Dai et al. (2011) showed that HMBOX1 is highly expressed in the 

hepatic tissue, which plays an important role in the glycometabolism (Rui, 2014). Moreover, a 

mutation in the HNF1 homeobox A (HNF1A) gene, also referring to the homeoboxes gene 

family, was associated with insulin-dependent diabetes mellitus and maturity-onset diabetes 

(Owen and Hattersley, 2001). Ketosis is closely related to diabetes since diabetes is the most 

common pathological cause of elevated blood ketones (Preeti and Sushil, 2016). Due to the 
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impact of HMBOX1 on diabetes, and due to the associations between diabetes with NEB and 

KET, we hypothesize that HMBOX1 also plays a crucial role in the progression of KET.  

On BTA 9, SNP rs42858549 was suggestively associated with KET. One of the 3 genes 

including this specific SNP is protein coding ENSBTAG00000011330. A disease associated 

orthologue of ENSBTAG00000011330 was significantly increased in diabetic rats and in 

consequence, associated with diabetes mellitus (Schmatz et al., 2009).  

On BTA 15, 13 genes were located in the defined interval in close distance to the 

candidate SNP rs109536046. The genes tripartite motif containing 66 (TRIM66), 

serine/threonine kinase 33 (STK33), 60S ribosomal protein L27a (RPL27A) and suppression of 

tumorigenicity 5 (ST5) influence diabetes mellitus and body mass in humans. Lau et al. (2017) 

focused on next generation sequencing and they identified genetic susceptibility to type-2 

diabetes. In humans, functional annotations were close to the potential candidate genes TRIM66 

and STK33. Furthermore, Rask-Andersen et al. (2013) reported effects of the STK33 

polymorphism rs4929949, located within a 47 kb haplotype block, on the body mass index in 

children. The STK33 is located in close distance to TRIM66, RPL27A, and ST5, which are all 

located within a 200 kb segment surrounding the marker rs4929949. Obesity or a large body 

mass index are associated with diabetes, and with high frequency, obesity and diabetes occur 

together (Golay and Ybarra, 2005). Recently, Kroezen et al. (2018) identified 6 genes involved 

in lipid, ketogenic, glucose metabolism, or in the citric acid cycle. The SNP and genes identified 

in our study were different from those detected by Kroezen et al. (2018). 
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Table 2.5. Position and description of potential candidate genes1 located in the interval of 250 

kb surrounding suggestive associated SNP for ketosis in first-lactation Holstein cows. 

1 Ensembl release 91 (Zerbino et al., 2018).  

 

Fat-to-protein ratio 

In total, 24 genome-wide significant SNP (pBF = 1.69e-06) and 30 suggestive SNP (pCD = 1e-

04) were detected for FPRbin on different chromosomes [i.e., 1 SNP on BTA 3, BTA 4, BTA 

24, BTA 28, and BTA 29, 2 SNP on BTA 13, 3 SNP on BTA 9, 4 SNP on BTA 27, and 40 SNP 

on BTA 14; Figure 2.2, model [4]]. The Manhattan plot (Figure 2.2) illustrates that the majority 

of the SNP was located on BTA 14. Due to the large number of detected SNP for FPRbin, we 

BTA Start (bp) End (bp) Ensembl Gene ID Description 

5 115,127,019 115,149,183 ENSBTAG00000030189 EFCAB6, EF-hand calcium binding domain 6 

5 115,517,920 115,572,329 ENSBTAG00000021978 PARVB, β-parvin 

5 115,583,627 115,608,935 ENSBTAG00000000805 PARVG, parvin gamma 

5 115,683,472 115,697,601 ENSBTAG00000003574 KIAA1644 

8 9,276,105 9,481,183 ENSBTAG00000017232 KIF13B, kinesin family member 13B 

8 9,500,635 9,691,300 ENSBTAG00000010819 HMBOX1, homeobox containing 1 

8 9,692,513 9,781,880 ENSBTAG00000008845 INTS9, integrator complex subunit 9 

9 64,879,264 64,929,935 ENSBTAG00000011330 ENSBTAG00000011330 

9 65,241,868 65,241,949 ENSBTAG00000047184 ENSBTAG00000047184 

9 65,003,566 65,003,656 ENSBTAG00000044914 U6, U6 spliceosomal RNA 

15 44,335,342 44,460,360 ENSBTAG00000005356 ST5, suppression of tumorigenicity 5 

15 44,175,366 44,203,114 ENSBTAG00000013366 NRIP3, nuclear receptor interacting protein 3 

15 44,199,004 44,199,141 ENSBTAG00000038873 U3, Small nucleolar RNA U3 

15 44,215,628 44,234,314 ENSBTAG00000008310 TMEM9B, TMEM9 domain family member B 

15 44,237,476 44,237,790 ENSBTAG00000004771 ENSBTAG00000004771 

15 44,246,871 44,247,423 ENSBTAG00000032339 ASCL3, achaete-scute family bHLH transcription 

factor 3 

15 44,250,291 44,260,216 ENSBTAG00000001917 C11orf16, chromosome 11 open reading frame 

16 

15 44,260,212 44,267,703 ENSBTAG00000001922 AKIP1, A-kinase interacting protein 1 

15 44,469,327 44,472,127 ENSBTAG00000005349 RPL27A, 60S ribosomal protein L27a 

15 44,469,600 44,469,728 ENSBTAG00000042335 SNORA3, small nucleolar RNA 

SNORA3/SNORA45 family 

15 44,470,841 44,470,970 ENSBTAG00000042354 SNORA3, small nucleolar RNA 

SNORA3/SNORA45 family 

15 44,500,912 44,530,712 ENSBTAG00000020890 TRIM66, tripartite motif containing 66 

15 44,552,624  44,726,438 ENSBTAG00000011910 STK33, serine/threonine kinase 33 
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only focused on gene annotations for significantly associated SNP. As expected, the most 

significant associated SNP rs109421300 (-log10(P) = 17.19) was located within the 

diacylglycerol O-acyltransferase 1 (DGAT1) gene. The DGAT1 and genes in the DGAT1 cluster 

[e.g., scratch family transcriptional repressor 1 (SCRT1), heat shock transcription factor 1 

(HSF1), protein phosphatase 1 regulatory subunit 16A (PPP1R16A), forkhead box H1 

(FOXH1), cysteine and histidine rich 1 (CYHR1), plectin (PLEC), lymphocyte antigen 6 family 

member H (LY6H), rhophilin Rho GTPase binding protein 1 (RHPN1), chromosome 14 open 

reading frame, human C8orf33 (C14H8orf33), kinesin family member C2 (KIFC2), and 

tonsoku like, DNA repair protein (TONSL)] are associated with milk yield, fat or protein 

percentage, and fatty acid composition in Holstein cows (Li et al., 2014; Bovenhuis et al., 2016). 

Results from random regression analyses (Oikonomou et al., 2009) implied significant effects 

of a polymorphism in the DGAT1 gene on energy and metabolic traits in Holstein cows. The 

influenced traits in first-lactation cows were BCS, energy balance and serum levels of fatty 

acids during the first 4 wk after calving. 

The 2 SNP rs110519353 [-log10(P) = 8.60] and rs109599512 [-log10(P) = 6.88] on BTA 27 

surpassed the Bonferroni corrected threshold, and are located in a segment for a QTL 

influencing milk fat percentage on BTA 27 (Littlejohn et al., 2014). Variants of the gene 

glycerol-3-phosphate acyltransferase 4 (AGPAT6; AGPAT6 includes the SNP rs110519353) are 

associated with milk fat percentage in Holstein-Friesian x Jersey crossbreed indicating 

involvement in lipid metabolism (Littlejohn et al., 2014). In addition, the SNP rs43088681 on 

BTA 13 (46,239,050 bp) was significantly associated with FPRbin. A polymorphism in the 

adenosine deaminase RNA-specific B2 (ADARB2) gene, located in the specified interval 

surrounding this SNP, is significantly associated with diabetes-related traits in humans (Oguro 

et al., 2012). Individuals with a particular genotype for ADARB2 polymorphism showed high 

serum triglyceride and serum adiponectin levels, implying a contribution of ADARB2 in energy 

metabolism. 

The quantile-quantile (QQ) plot for FPRbin (Figure 2.3) illustrates a strong deviation from the 

diagonal, possibly due to the strong effect of the most significant associated SNP rs109421300 

located in the DGAT1 gene.  
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Figure 2.2. Manhattan plot for SNP effects for binary distributed first test-day fat-to-protein 

ratio of first-lactation Holstein cows. 

 

 

Figure 2.3. Quantile-Quantile plot for binary distributed first test-day fat-to-protein ratio. 

 

In consequence, to verify this hypothesis, we included the SNP genotype for rs109421300 as 

an additional fixed effect in our association analyses for FPRbin (see model [5]). The Manhattan 

and QQ plots for FPRbin after DGAT1 correction display the expected results. Previously 

detected significant associated SNP on BTA 14 were eliminated due to the DGAT1 correction 

(Figure 2.4). Accordingly, the QQ plot indicates less deviation from the diagonal (Figure 2.5).  
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Figure 2.4. Manhattan plot for SNP effects for binary distributed first test-day fat-to-protein 

ratio after DGAT1 correction. 

 

 

Figure 2.5. Quantile-Quantile plot for binary distributed first test-day fat-to-protein ratio after 

DGAT1 correction. 

 

In a next step, we additionally considered the SNP genotype for rs109421300 as a fixed effect 

in the association analysis for KET (model [5]). The Manhattan and QQ plots for KET with or 

without DGAT1 correction display no differences, suggesting that this SNP only has substantial 

effect on FPR, but not on KET. This finding indicates that rs109421300 is not involved in milk 
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fat synthesis processes in the states of NEB and KET (i.e., transformations from mobilized body 

fat depots into milk fat), but contributes to the DGAT1 effect on high fat percentages.  

Overall, we identified five suggestively associated candidate SNP (pCD = 1e-04) influencing 

KET. For FPRbin (without DGAT1 correction), we detected 24 significant SNP (pBF = 1.69e-

06) and 30 suggestive SNP beyond the candidate threshold. For FPRbin (with DGAT1 

correction), we detected 3 significantly associated (pBF = 1.69e-06) and 15 suggestive SNP 

(pCD = 1e-04). Despite the significant phenotypic associations and the moderate quantitative 

genetic correlations between FPRbin and KET, different SNP were significantly associated 

with KET and FPR genomically.  

 

Conclusions 

Phenotypically, we detected strong associations between first test-day FPR and KET, as 

increasing KET incidences were significantly associated with higher FPR, and vice versa. In 

addition, we estimated moderate genetic correlations between KET and FPR using pedigree- or 

genomic-based relationship matrices. Results lead us to suggest the utilization of FPR from the 

first test-day as an indicator for genetic KET predictions. Heritabilities for KET, FPRgauss, and 

FPRbin were very similar. Interestingly, for KET the estimate was slightly higher when 

modeling was based on the pedigree-based relationship matrix, but for FPRbin, higher estimates 

were achieved using the GRM. For FPRgauss, heritabilities were almost identical for both 

pedigree and genomic relationship matrices. Genomically, different SNP significantly 

contributed to KET and FPR, indicating different genetic mechanisms for both traits. We 

identified potential candidate genes being associated with diabetes and lipid metabolism, and 

which are involved in KET progression. Also, significantly associated SNP for FPR were in 

close distance to lipid and energy metabolism genes, influencing the state of NEB in early 

lactation. 
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Abstract 

Ketosis is a metabolic disorder of increasing importance in high-yielding dairy cows, but 

accurate population-wide binary health trait recording is difficult to implement. Against this 

background, proper Gaussian indicator traits, which can be routinely measured in milk, are 

needed. Consequently, we focused on the ketone bodies acetone and β-hydroxybutyrate (BHB), 

measured via Fourier-transform infrared spectroscopy (FTIR) in milk. In the present study, 

62,568 Holstein cows from large-scale German co-operator herds were phenotyped for clinical 

ketosis (KET) according to a veterinarian diagnosis key. A sub-sample of 16,861 cows 

additionally had first test-day observations for FTIR acetone and BHB. Associations between 

FTIR acetone and BHB with KET and with test-day traits were studied phenotypically and 

quantitative genetically. Furthermore, we estimated SNP marker effects for acetone and BHB 

(application of genome-wide association studies) based on 40,828 SNP markers from 4,384 

genotyped cows, and studied potential candidate genes influencing body fat mobilization. 

Generalized linear mixed models were applied to infer the influence of binary KET on 

Gaussian-distributed acetone and BHB (definition of an identity link function), and vice versa, 

such as the influence of acetone and BHB on KET (definition of a logit link function). 

Additionally, linear models were applied to study associations between BHB, acetone and test-

day traits (milk yield, fat percentage, protein percentage, fat-to-protein ratio and somatic cell 

score) from the first test-day after calving. An increasing KET incidence was statistically 

significant associated with increasing FTIR acetone and BHB milk concentrations. Acetone and 

BHB concentrations were positively associated with fat percentage, fat-to-protein ratio and 

somatic cell score. Bivariate linear animal models were applied to estimate genetic (co)variance 

components for KET, acetone, BHB and test-day traits within parities 1 to 3, and considering 

all parities simultaneously in repeatability models. Pedigree-based heritabilities were quite 

small (i.e., in the range from 0.01 in parity 3 to 0.07 in parity 1 for acetone, and from 0.03 - 

0.04 for BHB). Heritabilities from repeatability models were 0.05 for acetone, and 0.03 for 

BHB. Genetic correlations between acetone and BHB were moderate to large within parities 

and considering all parities simultaneously (0.69 to 0.98). Genetic correlations between acetone 

and BHB with KET from different parities ranged from 0.71 to 0.99. Genetic correlations 

between acetone across parities, and between BHB across parities, ranged from 0.55 to 0.66. 

Genetic correlations between KET, acetone, and BHB with fat-to-protein ratio and with fat 

percentage were large and positive, but negative with milk yield. In genome-wide association 

studies, we identified SNP on BTA 4, 10, 11, and 29 significantly influencing acetone, and on 

BTA 1 and 16 significantly influencing BHB. The identified potential candidate genes NRXN3, 
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ACOXL, BCL2L11, HIBADH, KCNJ1, and PRG4 are involved in lipid and glucose metabolism 

pathways.  

Key words: ketosis, acetone, β-hydroxybutyrate, genetic parameter, genome-wide associations 

 

Introduction 

The period of negative energy balance after calving implies an imbalance between glucose 

supply and glucose requirement. In consequence, adipose tissue is mobilized and fatty acids are 

converted to ketone bodies, especially to acetone and BHB (David Baird, 1982). From a 

physiological perspective, ketones are fuel for the brain, the heart and for muscle activities, but 

excessive amounts of ketone body levels cause the metabolic disorder ketosis (KET). In the 

context of farm economy, KET implies substantial economic losses due to effect on other 

diseases, reduced milk production in the ongoing lactation, and veterinary costs (Berg et al., 

2002; Mostert et al., 2018). In most of the genetic and genomic studies, putative clinical cases 

of binary KET (producer records for either healthy or diseased cows) were considered because 

clinical cases are easier to detect than subclinical cases without any visible signs (Parker Gaddis 

et al., 2018). Nevertheless, additional consideration of subclinical KET cases in genetic and 

genomic analyses might contribute to improved prediction accuracies of genetic parameters, 

due to higher incidences. Incidences for clinical KET were lower than 2%, but a large number 

of cows were diagnosed for subclinical KET (up to 47%; Berge and Vertenten, 2014; Vanholder 

et al., 2015). Furthermore, subclinical KET was strongly associated with the occurrence of cost-

intensive diseases and with decreased milk content (Suthar et al., 2013). However, for the 

detection of subclinical KET, detailed recording of proper traits, such as ketone body 

concentrations (acetone or BHB) in blood or in milk, is imperative (van Knegsel et al., 2010).  

Phenotypic correlations between blood and milk ketone body concentrations were very 

strong for acetone (0.96), and moderate for BHB (0.66; Enjalbert et al., 2001). The phenotypic 

correlation between milk acetone and milk BHB was 0.68 (Enjalbert et al., 2001). Santschi et 

al. (2016) evaluated Fourier-transform infrared spectroscopy (FTIR) for the detection of ketone 

bodies in milk. Fourier-transform infrared spectroscopy is a cost-efficient, fast, and reliable 

alternative to blood ketone analysis and can be implemented in the routine process of monthly 

milk recording (Santschi et al., 2016). Grelet et al. (2016) used FTIR for the prediction of milk 

BHB and acetone concentrations. Prediction accuracies were quite large with 71% and 73%, 

respectively. 

With regard to quantitative genetic studies in Holstein cows, the genetic correlation 

between producer-recorded KET and first test-day milk FTIR measurements for BHB was 0.70 
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(Koeck et al., 2016). Lee et al. (2016) estimated heritabilities for FTIR milk BHB and acetone 

in parities 1 to 3 in Holstein cows. Early-lactation heritability estimates ranged between 0.04 

and 0.10 for BHB and from 0.05 to 0.18 for acetone, depending on the lactation number. 

Häggman et al. (2019) also estimated low heritabilities of 0.07 for both milk BHB traits with 

linear models, and of 0.12 with threshold models on the underlying liability scale. Weigel et al. 

(2017) used pedigree and SNP marker data and estimated a heritability of 0.07 for blood BHB. 

Heritability estimates for binary KET were small in the range from 0.01 to 0.08 (Belay et al., 

2017; Parker Gaddis et al., 2018; Freebern et al., 2020). 

In molecular genetic analyses, Kroezen et al. (2018) focused on the detection of 

potential candidate genes for producer-recorded KET and identified 6 genes influencing the 

lipid, ketogenic and glucose metabolism. Kroezen et al. (2018) applied a case-control design 

for binary KET, but they also discussed the reduced statistical power of such a design for 

Gaussian-distributed BHB. Freebern et al. (2020) applied a GWAS and fine mapping to identify 

potential candidate genes related to disease traits in Holstein cattle. They identified one 

important segment (including the DGAT1 gene) on BTA 14 for KET. A first GWAS for FTIR 

BHB in milk was conducted by Nayeri et al. (2019). They identified significantly associated 

SNP markers on BTA 6, 14, and 20. The identified SNP on BTA 14 was located within the 

DGAT1 gene. The DGAT1 is a candidate gene influencing inflammatory response and lipid 

metabolism in dairy cattle (Mach et al., 2012).  

So far, a few studies separately addressed physiological, quantitative genetics, and 

genomic associations for BHB, acetone and KET. However, for a deeper understanding, it 

seems to be imperative to study physiological mechanisms on different scales (i.e., 

phenotypically, genetically, and genomically) simultaneously using the same cow data set. 

Consequently, the aim of this study was to infer statistic, quantitative genetic and genomic 

associations between binary clinical KET and first test-day FTIR milk acetone and BHB 

concentrations in Holstein cows. Further aim was to study associations between acetone, BHB 

and KET with test-day traits from the very early-lactation period. Against this background, we 

applied generalized linear mixed models to study phenotypic trait relationships, we estimated 

genetic (co)variance components, we performed GWAS based on SNP marker data for acetone 

and BHB in milk, and we identified potential candidate genes influencing metabolic pathways. 
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Materials and Methods 

Cow traits 

The present study considered 65,777 Holstein cows from parities 1 to 3, kept in 62 large-scale 

co-operator herds from the German federal states of Mecklenburg-West Pommerania and 

Brandenburg. Calving ages ranged from 20 to 40 mo in parity 1, from 30 to 56 mo in parity 2, 

and from 44 to 75 mo in parity 3. First test-day records after calving included milk yield, fat 

percentage, protein percentage, fat-to-protein ratio (FPR), SCS [transformed somatic cell count 

according to Ali and Shook (1980)], as well as acetone and BHB milk concentrations. The 

interval for the first official test-day after calving comprised DIM 5 to 42. Acetone and BHB 

milk concentrations (in mM) were determined using FTIR (Foss Analytical, Hillerød, 

Denmark). All test-day traits followed a Gaussian distribution, based on residual analyses 

according to Villemereuil (2018). Veterinarians and herd manager phenotyped the cows for 

clinical KET based on a central disease diagnosis key (Stock et al., 2013). According to the 

recording guidelines, a KET score = 1 for diseased cows was assigned for cows with at least 

one diagnosis for fever and increased content of ketone bodies in blood or urine (measured via 

handheld ketometers or urine test strips) in a 6-wk interval after calving. Hence, a score of 0 

was assigned for healthy cows without any KET entry during this period. The number of 

Holstein cows and herds with acetone and BHB measurements and with clinical KET 

observations are shown in Table 3.1. The descriptive statistics for first test-day milk traits 

including acetone and BHB milk concentrations by parity are shown in Table 3.2.  

 

Table 3.1. Number of Holstein cows (no. of herds in parentheses) with acetone and β-

hydroxybutyrate (BHB) measurements and diagnoses for clinical ketosis. 

Trait 

Parity  

1 2 3 No. of records1 

Acetone, BHB 8,965 (32) 6,399 (25) 4,289 (24) 19,653 (32) 

Ketosis     

   Healthy 35,842 (36) 32,889 (47) 22,199 (49) 90,930 (52) 

   Diseased 491 (36) 761 (47) 921 (49) 2,173 (52) 

Ketosis, acetone, BHB 5,874 (18) 5,604 (19) 3,791 (20) 15,269 (22) 

1No. of observations from all 3 parities. 
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Table 3.2. Descriptive statistics for first test-day milk traits including acetone and β-

hydroxybutyrate concentrations in parities 1, 2, and 3. 

Trait Parity Mean SD Minimum Maximum 

Milk yield (kg)  1 28.18 6.67 2.10 51.70 

2 38.40 8.13 3.00 62.40 

3 40.41 8.74 2.30 68.00 

Fat (%) 1 4.20 0.81 1.61 10.06 

2 4.34 0.82 1.83 10.34 

3 4.43 0.89 1.60 9.52 

Protein (%) 1 3.32 0.36 2.13 6.40 

2 3.34 0.39 2.23 5.02 

3 3.31 0.39 2.30 6.23 

Fat-to-protein ratio 1 1.27 0.23 0.37 3.69 

2 1.30 0.23 0.50 3.26 

3 1.34 0.26 0.46 3.28 

Somatic cell score 1 2.75 1.78 -2.06 9.64 

2 2.17 1.89 -3.64 9.64 

3 2.49 2.08 -1.64 9.64 

Acetone (mM) 1 0.05 0.10 0 2.05 

2 0.05 0.09 0 1.54 

3 0.06 0.12 0 2.89 

β-hydroxybutyrate (mM) 1 0.01 0.05 0 1.61 

2 0.02 0.06 0 1.80 

3 0.02 0.07 0 1.20 

 

Genotypes 

A subset of 858 cows was genotyped with the Illumina BovineSNP50 v2 BeadChip (Illumina 

Inc., San Diego, CA), and 3,526 cows were genotyped with the EuroGenomics 10K chip 

(Illumina Inc., San Diego, CA). Genotyping was accomplished at the end of the project, with 

focus on first parity cows, implying that most of the genotyped cows had no phenotypic records 

for later lactations. Low-density 10K genotypes were imputed by the project partner VIT 

(Vereinigte Informationssysteme Tierhaltung w.V, Verden, Germany) to the 50K panel, 

applying the imputation design as described by Segelke et al. (2012). The SNP data set 
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considered 45,613 SNP from 4,384 genotyped cows with phenotypic records for acetone and 

BHB. Quality control of the genotype data was performed using the software package PLINK 

(Purcell et al., 2007). The SNP with more than 1% missing genotype data, with a minor allele 

frequency lower than 5%, and deviation from Hardy-Weinberg equilibrium (P < 10-8) were 

discarded. Thus, 40,828 SNP from the 4,384 cows were available for genomic studies. 

 

Statistical Models 

Statistical associations between clinical ketosis, acetone and β-hydroxybutyrate 

concentrations 

Generalized linear mixed models (GLMM) with an identity link function for Gaussian-

distributed traits were applied to analyze the effect of clinical KET on the acetone and BHB 

concentrations from the first official test-day. In this regard, the Glimmix procedure as 

implemented in SAS (version 9.4, SAS Institute Inc., Cary, NC), was used. Associations were 

studied for parities 1 to 3 using a repeatability model. In this regard, we considered the cows 

with measurements for all 3 traits KET, acetone and BHB (Table 3.1). The corresponding 

statistical model [1] was defined as follows: 

yijklmno = φ + Herdi + CYearj + DIMk + CMonl + CAgem + KET × Parityn + Cowo+ eijklmno [1] 

where yijklmno = first test-day observation for acetone or BHB; φ = overall mean; Herdi = fixed 

herd effect; CYearj = fixed effect of calving year (2015-2017); DIMk = linear regression on 

DIM; CMonl = fixed effect of calving month (12 months); CAgem = linear regression on calving 

age; KET × Parityn = combined fixed effect of clinical KET (healthy or diseased) and parity (1, 

2, or 3); Cowo = random cow effect due to repeated measurements from different parities; eijklmno 

= random residual effect. 

Model [2] was applied to analyze the effect of first test-day acetone and BHB 

concentrations on the disease probability for KET. In this regard, we used a GLMM with a logit 

link function for binary KET. Model [2] was:  

logit (π) = log [πrstuvwxy/(1− π rstuvwxy)] = φ + Herdr + CYears + DIMt + CMonu + CAgev + 

Parityw + ACEclx or BHBclx + Cowy [2] 

where πrstuvwxy = probability of a KET occurrence; Parityw = fixed parity effect; ACEclx or 

BHBclx = fixed effect of acetone (2 classes: < 0.15 mM; ≥ 0.15 mM) or BHB concentration [2 

classes: < 0.10 mM; ≥ 0.10 mM as suggested by de Roos et al. (2007)]; and further effects as 

specified in model [1]. 
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Model [3] was defined to study the detailed influence of KET from different diagnosis dates 

during the early-lactation period on acetone and BHB. Model [3] was: 

yijklmnop = φ + Herdi + CYearj + DIMk + CMonl + CAgem + Parityn + KET × Diffdato + Cowp 

+ eijklmnop [3] 

where yijklmnop = first test-day records for acetone or BHB concentration; KET × Diffdato = 

combined fixed effect of KET (healthy or diseased) × period between the first test date and the 

KET diagnosis date (8 classes considering the following periods: 37 - 21 d, 20 - 11 d, 10 - 5 d, 

4 - 1 d before the diagnosis date; and 0 - 4 d, 5 - 10 d, 11 - 20 d and 21 - 37 d after the diagnosis 

date); a dummy class for healthy cows; and further effects as specified in models [1] and [2]. 

Adjustment of P-values for multiple testing was done using the Dunnett statement in the 

Glimmix procedure (Dunnett, 1955).  

 

Statistical associations between test-day production traits with acetone and                              

β-hydroxybutyrate concentrations 

The effects of acetone and BHB on the test-day traits milk yield, fat percentage, protein 

percentage, FPR and SCS were estimated using a GLMM with an identity link function. The 

statistical model [4] was: 

yijklmnop = φ + Herdi + CYearj + DIMk + CMonl + CAgem + Parityn + ACEo or BHBo + Cowp + 

eijklmnop [4] 

where yijklmnop = observations for test-day traits, ACEo or BHBo = linear regression on the 

acetone or BHB milk concentration (modeled via at-statements in SAS according to König et 

al., 2005), respectively, and further effects as specified in model [1] and [2]. 

 

Estimation of genetic parameters 

Pedigree-based (co)variance components and heritabilities for acetone and BHB were estimated 

using the AI-REML algorithm as implemented in the DMU software package (Madsen and 

Jensen, 2013). Heritabilities for acetone and BHB were estimated in single-trait animal models 

separately for parities 1, 2, and 3. Furthermore, we considered acetone and BHB from all 3 

parities in single-trait repeatability models. Genetic statistical modeling considered the same 

fixed effects as specified in model [1], but we excluded the combined KET × Parity effect. With 

regard to random effects, we included the random additive-genetic animal effect and the 

permanent environmental effect in repeatability models. In matrix notation, the genetic 

statistical model [5] was: 
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y = Xβ + Zu + Wpe + e [5] 

where y was an observation vector for acetone or BHB; β was a vector of fixed effects including 

same effects as specified in model [1] (without KET × Parity effect, and with parity effect in 

the repeatability model); u was a vector of additive-genetic effects, with u  ~ N (0, Aσu
2), where 

A was the pedigree relationship matrix considering animals back to the birth year 1941, and σu
2 

was the additive-genetic variance; pe was a vector of permanent environmental effects in the 

repeatability model, with pe ~ N (0, Iσpe
2 ); e was a vector of random residual effects, with e ~ N 

(0, Iσe
2); I being identity matrices for the number of cows and number of observations, 

respectively; and X, Z, and W were incidence matrices for β, u, and pe, respectively. 

 Genetic correlations among KET, acetone, BHB, and milk production traits, between 

acetone from different parities, and between BHB from different parities, were estimated via 

bivariate linear animal models (within parities) and via bivariate linear repeatability models 

(including records from different parities simultaneously). Hence, also binary KET was 

analyzed in bivariate linear-linear models. As proved by Vinson and Kliewer (1976), genetic 

correlations from bivariate linear and bivariate threshold models are expected to be the same. 

The model was defined as follows:  

[
y

1

y
2
] = [

X1 0

0 X2
] [

β
1

β
2

] + [
Z1 0

0 Z2
] [

u1

u2
] + [

W1 0

0 W2
] [

pe
1

pe
2
] + [

e1

e2
] [6] 

where y
1
 and y

2
  were vectors of observations for the 2 traits; X1 and X2 were incidence matrices 

relating each observation to the fixed effects as specified for the single-trait model [5] in β1 and 

β2; Z1 and Z2 were incidence matrices relating the random additive-genetic effects of animals 

in u1 and u2 to each observation, pe
1
 and pe

2
 were the vectors for permanent environmental 

effects in repeatability models with corresponding incidences matrices W1 and W2; and e1 and 

e2 were the vectors for random residual effects for the 2 traits.  

 

Genome-wide association studies 

A GWAS for acetone and BHB considering the 4,384 genotyped cows was performed using 

the software package GCTA (Yang et al., 2011). In this regard, we applied a linear mixed model 

and we specified the option of leaving one chromosome out (Yang et al., 2014). The 

corresponding model [7] was: 

y = Xβ + Zu + Ss + e [7] 
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where y was the vector including records for acetone and BHB; β was a vector of fixed effects 

including the same effects specified in model [5] (with parity); u was a vector of polygenic 

random effects of all SNP excluding those on the chromosome that carries a candidate SNP, 

with u ~ N (0, Gσu
2 ), with G denoting the genetic similarity matrix among individuals, and σu

2 

the polygenic variance; s was the vector for fixed effects of the SNP tested for association coded 

as 0, 1, or 2 according to the respective allele dosage; e was a vector of random residual effects 

with e ~ N (0, Iσe
2); and X, Z, and S were incidence matrices for β, u, and S, respectively. A 

small fraction of genotyped cows had phenotypic records in first lactations. Due to failed 

convergence when considering repeated measurements from these cows, we ignored the 

random permanent environmental effect in genomic analyses. 

The effective number of independent SNP (NSNP = 29,548) was calculated using the 

software Genetic type 1 Error Calculator (Li et al., 2012), in order to define the genome-wide 

significance level according to Bonferroni (pBF = 0.05 / NSNP = 1.69e-06). In addition, a less 

conservative normative significance candidate threshold was used, considering pCD = 1e-04 

(Kurz et al., 2018). Genes located in a chromosomal window 250 kb upstream or downstream 

from the significantly associated SNP were detected using Ensembl, release 98, on the basis of 

the Bos taurus ARS1.2 genome assembly (Zerbino et al., 2018).  

 

Results and Discussion 

Statistical associations between clinical ketosis with acetone and β-hydroxybutyrate  

A clinical KET diagnosis was associated with significantly higher first test-day acetone and 

BHB milk concentrations (P < 0.001, model [1]). The acetone and BHB concentrations for 

cows with a KET diagnosis was at least 2-fold higher compared to estimates for healthy cows. 

This was the case for all 3 lactations (Table 3.3). Nevertheless, the parity effect was highly 

significant (P < 0.001), showing a decrease of least squares means for acetone and BHB with 

increasing lactation number. Inferred associations reflect the physiological processes. In the 

stage of a negative energy balance and especially for cows with a KET diagnosis, fatty acid 

oxidation from body fat depots and ongoing ketone production in the liver implies an 

accumulation of ketone bodies in blood and in milk (Andersson and Lundström, 1984). Results 

from Table 3.3 clearly indicate that FTIR milk ketones are useful indicators for the detection of 

clinical KET in early lactation. Similarly, using the same threshold for acetone (≥ 0.15 mM) 

and BHB (≥ 0.10 mM), de Roos et al. (2007) recommended FTIR acetone and BHB for the 

early detection of subclinical KET cases. Grelet et al. (2016) focused on cross-validations for 
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KET detection, and could clearly distinguish between diseased and healthy cows based on FTIR 

spectrometry data.  

 

Table 3.3. Least squares means (corresponding SE in parentheses) of first test-day acetone and 

β-hydroxybutyrate concentrations in milk (mM) for cows with the absence (0) or the presence 

(1) of a ketosis diagnosis. 

Trait Parity 

Ketosis diagnosis 

0 1 

Acetone 1 0.08 (0.00)a 0.15 (0.01)b 

2 0.03 (0.00)a 0.10 (0.01)b 

3 < 0.00 (0.00)a 0.06 (0.01)b 

β-hydroxybutyrate 1 0.03 (0.00)a 0.06 (0.01)b 

2 0.01 (0.00)a 0.05 (0.00)b 

3 < 0.00 (0.00)a 0.04 (0.01)b 

a, b Different superscripts indicate significant differences within parity (P < 0.001). 

 

Inversely, we detected a significant (P < 0.001) effect of acetone and BHB concentrations on 

KET incidences (results from model [2]). The probability for a clinical KET diagnosis was 

generally low, but significantly higher in cows with an acetone concentration above the 

threshold of 0.15 mM, and with a BHB concentration above the threshold of 0.10 mM, 

compared with the respective healthy cow group. Specifically, probabilities for a KET diagnosis 

were 4-fold higher for the cows allocated to the high acetone concentration (≥ 0.15 mM) or to 

the high BHB concentration (≥ 0.10 mM) group. 

 Due to the possible time lag between calving and first test-day date, a more frequent 

milk sampling in the critical period after calving could help to detect KET as early as possible. 

Acetone and BHB concentrations were significantly increased for KET diagnosed cows in the 

period from 37 to 20 d before the diagnosis date (Table 3.4), indicating that cows are suffering 

from elevated ketone body concentrations long time before clinical signs are obvious. 

Accordingly, van der Drift et al. (2012) detected the highest prevalence for hyperketonemia 

(defined as plasma BHB 1,200 µmol/L) in the very early lactation between 5 and 10 DIM. 

Results suggest utilization of earliest test-day milk samples to determine milk ketone bodies, 

and to consider results for acetone and BHB levels in preventive health management strategies. 

Addressing the period after a KET diagnosis, acetone substantially increased within the period 

of 20 to 37 d, and BHB within the period of 11 to 20 d (Table 3.4). Klein et al. (2019) studied 
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time lagged effects of KET diagnoses on KET indicator traits, and they confirmed the 

importance of the period comprising 20 to 30 d for metabolic disorders. 

 

Table 3.4. Least squares means (with corresponding SE in parentheses) of first test-day acetone 

and β-hydroxybutyrate (BHB) milk concentrations (mM) for ketosis healthy cows and ketosis 

diseased cows (considered time periods: test-day dates before or after the ketosis diagnosis 

date).  

Trait 

Healthy 

cows 

Diseased cows 

Before or after 

diagnosis 37 to 21 d 20 to 11 d 10 to 5 d 4 to 0 d1 

Acetone 0.03 (0.00) Before 0.15 (0.04)* 0.16 (0.02)*** 0.15 (0.02)*** 0.29 (0.02)*** 

After 0.07 (0.01)** 0.08 (0.01)*** 0.07 (0.01)*  0.18 (0.02)*** 

BHB 0.01 (0.00) Before 0.10 (0.02)** 0.06 (0.01)** 0.08 (0.01)*** 0.15 (0.01)*** 

After 0.02 (0.01) 0.04 (0.01)*** 0.05 (0.01)*** 0.11 (0.01)*** 

1 4 to 1 d before the ketosis diagnosis date, 0 to 4 d after the ketosis diagnosis date. 

*P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001; adjusted P-values (Dunnett adjustment) for least squares 

means differences between ketosis diseased and ketosis healthy cows. 

 

Statistical associations between acetone and β-hydroxybutyrate with test-day production 

traits 

Milk BHB and acetone significantly (P ≤ 0.001) affected milk yield (Figure 3.1), fat and protein 

percentage (Figure 3.2), FPR, and SCS (Figure 3.3). In agreement with the results from the 

present study, Chandler et al. (2018) and Santschi et al. (2016) identified a milk yield and 

protein percentage decline with increasing BHB and acetone concentrations. The decline in 

milk yield and protein percentage is due to impaired production processes requiring energy. 

Osorio et al. (2016) identified that especially protein synthesis in the mammary gland is a highly 

energy demanding process. Thus, due to energy deficiency in early lactation, protein synthesis 

might be restricted. As expected, fat percentage and FPR significantly increased with increasing 

ketone body concentrations in milk. The fat percentage and FPR increase is due to the strong 

body fat mobilization in the period of a negative energy balance, and the utilization of BHB for 

fatty acid synthesis in the mammary gland (Dodds et al., 1981). SCS increased with increasing 

BHB and acetone concentration. A possible explanation addresses immune responses in the 

mammary gland (i.e., an increasing production of somatic cells in response to excessive ketone 

body levels; Hillreiner et al., 2016). Santschi et al. (2016) created 3 classes for FTIR BHB 
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concentrations (< 0.15 mM, 0.15 - 0.19 mM, and ≥ 0.20 mM). Holstein cows allocated to the 

extreme group with a BHB concentration ≥ 0.20 mM had substantial lower milk yield and 

protein percentage, higher fat percentage, FPR, and SCS compared with cows from the 2 other 

groups. Furthermore, we detected a significant association between acetone and BHB milk 

concentrations. The BHB concentration increased linear with increasing acetone concentration 

in milk (not shown). 

 

 

Figure 3.1. Least squares means with corresponding SE for first test-day milk yield in 

dependency of acetone (∆, SE = 0.26-1.40) and β-hydroxybutyrate (BHB, ▲, SE = 0.03-1.53) 

milk concentrations. 
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Figure 3.2. Least squares means with corresponding SE for first test-day protein percentage (○, 

SE = 0.01-0.06; ●, SE = 0.01-0.07) and fat percentage (□, SE = 0.03-0.05; ■, SE = 0.03-0.06) 

in dependency of acetone (white symbols) and β-hydroxybutyrate (BHB, black symbols) milk 

concentrations. 

 

 

Figure 3.3. Least squares means with corresponding SE for first test-day fat-to-protein ratio 

(FPR; ∆, SE = 0.01-0.04; ▲, SE = 0.01-0.05) and somatic cell score (SCS, ◊, SE = 0.07-0.28; 

♦, SE = 0.07-0.32) in dependency of acetone (white symbols) and β-hydroxybutyrate (BHB, 

black symbols) milk concentrations. 
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Heritabilities for acetone and β-hydroxybutyrate and genetic correlations among acetone, 

β-hydroxybutyrate, ketosis and test-day production traits 

Heritabilities for milk ketone body concentrations from the first test-day are shown in Table 

3.5. Heritabilities for acetone were 0.07 (SE = 0.02) in first and second lactations, 0.01 (SE = 

0.01) in the third lactation, and 0.05 (SE = 0.01) from the repeatability model. For BHB, 

heritabilities were 0.04 (SE = 0.01), 0.04 (SE = 0.02) and 0.03 (SE = 0.02) in lactations 1, 2 and 

3, respectively. The heritability for BHB from the repeatability model was 0.03 (SE = 0.01). 

Due to the small permanent environmental variance component, repeatabilities for acetone and 

for BHB were smaller than 10%. Repeatabilities for same test-day production traits from 

different lactations were generally small, but quite large for different test-days within lactation 

(Gernand et al., 2007). In consequence, in most of the official national genetic evaluations, 

same test-day traits from different lactations are considered as different traits in multiple-trait 

models.  

The very small heritabilities for acetone and BHB in third-parity cows are due to a 

substantial increase of the residual variance component, especially for acetone. Nevertheless, 

the quite small heritabilities are in agreement with estimates by Weigel et al. (2017) and 

Häggman et al. (2019). Weigel et al. (2017) used blood BHB concentrations between d 5 and 

18 postpartum, measured with a handheld blood ketone meter in 1,453 Holstein cows. They 

defined 3 different BHB traits: BHBMAX [maximum BHB blood concentration (mmol/l) from 

twice weekly sampling between 5 - 18 d postpartum], BHBSQRT (square root of BHBMAX) and 

BHBBIN (binary scale, 1 if BHBMAX ≥ 1.2 mmol/l; 0 if BHBMAX ˂1.2 mmol/l). Heritabilities for 

the 3 traits ranged between 0.06 (SE = 0.04) and 0.07 (SE = 0.05). Häggman et al. (2019) 

grouped BHB measurements into 3 classes and estimated heritabilities with linear animal 

models. Heritabilities for BHB in the different classes ranged from 0.07 to 0.09. Lee et al. 

(2016) focused on FTIR milk ketones from different lactation stages after calving (30 DIM, 150 

DIM, 250 DIM) in parities 1 to 3. According to our results, heritability estimates for acetone 

and BHB slightly decreased with increasing parity. Satoła and Ptak (2019) detected larger 

permanent environmental and residual variances in later lactations than in first-parity cows, 

indicating stronger nongenetic influence on trait variability with aging. The quite large 

heritability estimates up to 0.36 for acetone and 0.14 for BHB in the studies by Lee et al. (2016) 

and Ranaraja et al. (2018) are possibly due to pronounced phenotypic trait variations and a 

smaller residual component in later lactation stages. 

Genetic correlations between acetone and BHB with KET were in the range from 0.71 

to 0.99 for the different parities, with moderate to large SE (0.07 - 0.27) (Table 3.5). The large 



CHAPTER 3 

98 

genetic correlations per parity between clinical KET and ketone concentrations suggest 

consideration of milk acetone and milk BHB in health selection indices to improve resistance 

against metabolic disorders (König and May, 2018). Genetic correlations between acetone and 

BHB with KET from the repeatability model were lower and ranged from 0.22 to 0.37 (SE = 

0.12 - 0.14; Table 3.5). Koeck et al. (2016) defined different traits for FTIR milk BHB based 

on means, averages and SD from repeated measurement data. Genetic correlations between the 

different BHB definitions with producer-recorded KET ranged from 0.64 to 0.82. In contrast, 

Belay et al. (2017) estimated low to moderate genetic correlations between KET and BHB traits 

in the range from 0.18 and 0.47, whereas correlations decreased with DIM. In the present study, 

genetic correlations between acetone measurements from different parities and between BHB 

measurements from different parities ranged from 0.55 to 0.66. The moderate to large 

correlations suggest early selection on FTIR profiles in first-parity cows. Nevertheless, SE of 

genetic correlation estimates were quite large (0.18 - 0.30). Genetic correlations between 

acetone and BHB for the different parities were in the range from 0.69 to 0.98 (SE = 0.13 - 

0.33). 

 

Table 3.5. Pedigree-based heritabilities (h²; SE in parentheses), additive-genetic (σa
2) (×10-3), 

permanent environmental (σpe
2 ) (×10-3) and residual (σe

2) (×10-3) variances for acetone and β-

hydroxybutyrate milk concentrations, and their genetic correlations (rg) with clinical ketosis 

(KET; SE in parentheses).  

   Variance  

Trait Parity h² σa
2        σpe

2   σe
2 rg  with KET 

Acetone 1 0.07 (0.02) 0.71  8.81 0.82 (0.17) 

2 0.07 (0.02) 0.45  6.07 0.96 (0.07) 

3 0.01 (0.01) 0.20  13.98 0.99 (0.27) 

All1 0.05 (0.01) 0.40 0.36 8.80 0.22 (0.12) 

β-hydroxybutyrate 1 0.04 (0.01) 0.09  2.40 0.71 (0.21) 

2 0.04 (0.02) 0.13  3.00 0.99 (0.10) 

3 0.03 (0.02) 0.13  4.23 0.71 (0.15) 

All 0.03 (0.01) 0.09 < 0.00 3.04 0.37 (0.14) 

1All = consideration of records from all 3 parities simultaneously in a repeatability model. 
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Genetic correlations between acetone, BHB, KET with test-day traits (Table 3.6) reflect the 

phenotypic associations. First test-day milk yield and protein percentage were negatively 

correlated with acetone, BHB and KET, whereas correlations between fat percentage, FPR, and 

SCS with acetone, BHB, and KET were positive (Table 3.6). This was the case for both 

modeling strategies (i.e., the analyses within parities or repeated measurement applications).  

 

Table 3.6. Genetic correlations between clinical ketosis (KET), acetone, and β-hydroxybutyrate 

(BHB) milk concentrations with first test-day traits from parities 1, 2, and 3 (corresponding SE 

in parentheses). 

Trait Parity Acetone BHB KET 

Milk yield (kg)  1 -0.51 (0.06) -0.57 (0.07) -0.52 (0.08) 

2 -0.73 (0.05) -0.67 (0.08) -0.74 (0.04) 

3 -0.89 (0.06) -0.84 (0.08) -0.82 (0.03) 

All1 -0.11 (0.10) -0.18 (0.12) -0.08 (0.06) 

Fat (%) 1 0.78 (0.03) 0.86 (0.03) 0.68 (0.08) 

2 0.85 (0.02) 0.85 (0.03) 0.70 (0.06) 

3 0.91 (0.03) 0.91 (0.02) 0.74 (0.05) 

All 0.42 (0.08) 0.65 (0.08) 0.15 (0.06) 

Protein (%) 1 -0.67 (0.06) -0.48 (0.10) -0.67 (0.09) 

2 -0.74 (0.06) -0.60 (0.10) -0.59 (0.10) 

3 -0.78 (0.10) -0.63 (0.13) -0.53 (0.07) 

All -0.54 (0.08) -0.32 (0.10) -0.37 (0.04) 

Fat-to-protein ratio 1 0.88 (0.02) 0.91 (0.02) 0.86 (0.06) 

2 0.92 (0.02) 0.92 (0.02) 0.84 (0.04) 

3 0.92 (0.02) 0.92 (0.02) 0.83 (0.04) 

All 0.73 (0.06) 0.82 (0.06) 0.39 (0.05) 

Somatic cell score 1 0.38 (0.10) 0.61 (0.11) 0.42 (0.14) 

2 0.33 (0.14) 0.46 (0.17) 0.39 (0.13) 

3 0.99 (0.22) 0.67 (0.21) 0.04 (0.11) 

All 0.13 (0.11) 0.24 (0.13) 0.12 (0.07) 

1All = consideration of records from all 3 parities simultaneously in a repeatability model. 
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The negative genetic correlations between acetone and BHB with milk yield and protein 

percentage are in line with results from previous studies (Koeck et al., 2013; Lee et al., 2016; 

Belay et al., 2017). The positive genetic correlations between fat percentage and FPR with milk 

ketone bodies support results by Lee et al. (2016), Ranaraja et al. (2018) and Mehtiö et al. 

(2020). The positive genetic correlations between SCS with milk ketone body concentrations 

or with KET indicate that KET and mastitis are genetically related in the early-lactation period 

(Heringstad et al., 2005). Again, correlations from the repeatability model were smaller 

compared to estimates within lactation. The generally lower genetic correlations from the 

repeatability model lead us to conclude that consideration of repeated measurements from 

different lactations with very low repeatabilities might bias genetic parameter estimates. 

 

Genome-wide association studies for acetone and β-hydroxybutyrate 

We identified 9 SNP significantly associated with acetone and BHB FTIR concentrations in 

milk according to the candidate threshold (Supplemental Table S3.1, 

https://doi.org/10.3168/jds.2019-18339). The –log10 P-values of the tested SNP are shown in 

Figure 3.4 (for acetone) and in Figure 3.5 (for BHB) as Manhattan plots. In total, 28 positional 

candidate genes in the interval of 250 kb surrounding the significant SNP (Supplemental Table 

S3.2, https://doi.org/10.3168/jds.2019-18339) were retrieved from the Ensembl database 

(Zerbino et al., 2018). In the following, we focused on inferring potential candidate genes 

possibly related to acetone or BHB due to their functional or physiological background. 

 

Acetone 

Significantly associated SNP were identified on BTA 4, 10, 11, and 29 (Figure 3.4, 

Supplemental Table S3.1). The SNP rs29021343 on BTA 10 (90,924,914 bp) with the highest 

–log10 P-value is located in the gene neurexin 3 (NRXN3, 90,495,258 - 91,099,930 bp). Zhang 

et al. (2017) applied a genetic pleiotropic conditional false discovery rate approach and 

discovered loci associated with obesity and type-2 diabetes. In their study, a SNP variant 

associated with obesity and diabetes in humans was located in the NRXN3 gene. Because 

diabetes and obesity are strongly related to KET and energy deficiency in early lactation 

(Hayirli, 2006), NRXN3 is a potential candidate gene for metabolic disorders. As described by 

Hayirli (2006), cows with clinical KET have a low responsiveness to insulin due to 

ketoacidosis. Ketosis symptoms and associated physiological mechanisms in cows show 

similarities to diabetes in humans. In this regard, Lucy (2004) identified similar characteristics 

when comparing diabetic states in humans and low-insulin states postpartum in cows (e.g., low 
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insulin levels or insulin resistance). Insulin inhibits lipolysis, regulates ketone body output from 

the liver, and enhances ketone utilization in peripheral tissues (Fukao et al., 2004). In causality, 

low insulin levels initiate adipocyte lipolysis and liver accumulation with fatty acids.  

The SNP rs110395452 on BTA 11 (1,283,185 bp) is localized in the gene acyl-CoA 

oxidase like (ACOXL, 1,237,943 - 1,576,166 bp), and also located in close chromosomal 

distance to the gene BCL2 like 11 (BCL2L11, 1,187,496 - 1,233,256 bp). According to Fang et 

al. (2017) and Hasstedt et al. (2013), ACOXL and BCL2L11 are associated with diabetes in 

humans. Genome-wide expression profiling (Fang et al., 2017) showed significant up-

regulation of BCL2L11 in type-1 diabetes mellitus samples compared with healthy controls. 

These results suggest an involvement of BCL2L11 in cell death of islet β-cells in the 

pathogenesis of diabetes. As reported by Hasstedt et al. (2013), the lipid metabolism gene 

ACOXL contributed to diabetes as well. Also, Hayirli (2006) clearly described the physiological 

interactions between KET and insulin regulations, and stretched the insulin resistance 

phenomenon in postpartum dairy cows. The second significantly associated SNP rs109102963 

on BTA 11 (75,410,689 bp) is located in the gene kelch like family member 29 (KLHL29, 

75,240,502 - 75,572,709 bp) and in close chromosomal distance to the gene ATPase family 

AAA domain containing 2B (ATAD2B, 75,091,973 - 75,213,880 bp). Both genes KLHL29 and 

ATAD2B are putative candidate genes for milk protein composition traits in Chinese Holstein 

cows (Zhou et al., 2019). 

The gene 3-hydroxyisobutyrate dehydrogenase (HIBADH, 68,473,794 - 68,614,954 bp) 

in the defined interval surrounding SNP rs109374730 (68,808,125 bp) on BTA 4 is associated 

with KET related fatty liver disease and negative energy balance in early-lactation cows 

(McCarthy et al., 2010; Sejersen et al., 2012). McCarthy et al. (2010) indicated that HIBADH 

was downregulated in cows with severe negative energy balance. Sejersen et al. (2012) 

described significant influence of fatty liver disease on HIBADH expression. Cows with high 

accumulation of liver triglycerides indicating fatty liver disease showed a significant 

downregulation of HIBADH in the liver. Additionally, HIBADH was correlated with plasma 

BHB and bilirubin. Apart from that, downregulated HIBADH in humans’ adipose tissue was 

associated with insulin resistance (Wiklund et al., 2016). Furthermore, the gene HIBADH 

regulates fatty acid transport, enhances lipid accumulation and was increased in mice and 

human with diabetes (Jang et al., 2016). 

On BTA 29, the gene potassium voltage-gated channel subfamily J member 1 (KCNJ1, 

32,214,439 - 32,244,810 bp) is located in close chromosomal distance to the significantly 

associated SNP rs41651011 (32,373,604 bp). Karnes et al. (2013) reported that KCNJ1 is 
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associated with abnormal blood sugar levels and diabetes. Alterations of blood sugar levels and 

a state of insulin resistance are characteristics for the period around calving, because insulin 

depended transfer of glucose into the mammary gland is prioritized (De Koster and Opsomer, 

2013). 

 

 

Figure 3.4. Manhattan plot for -log10 P-values of SNP effects for first test-day milk acetone 

concentration (mM) in Holstein cows. 

 

β-hydroxybutyrate 

Three potential candidate SNP were identified for the FTIR BHB concentration (Figure 3.5, 

Supplemental Table S3.1). The marker rs109480845 (67,532,667 bp) with the strongest 

association is located on BTA 16, in close chromosomal distance to the gene proteoglycan 4 

(PRG4, 67,381,599 - 67,398,481 bp). Geyer et al. (2016) identified impact of PRG4 on the 

glucose and lipid metabolism. Nahon et al. (2019) described the influence of PRG4 on the 

glucose intolerance and fatty liver disease in mice. For the SNP rs109224751 (68,984,620 bp) 

on BTA 16 and the SNP rs111002696 (47,765,383 bp) on BTA 1, no potential candidate genes 

explaining metabolic diseases, were identified.  

Genome-wide associations based on producer-recorded KET in Holstein cows (Huang 

et al., 2019) and US Jerseys (Parker Gaddis et al., 2018) detected significant SNP markers on 

BTA 10 and 11, with annotated potential candidate genes involved in insulin regulation and 

lipid metabolism. These chromosomal segments were in a distance of approximately 1 Mb to 

our significantly associated SNP on BTA 10 and 11. Applying a single SNP regression mixed 

linear model and enrichment analysis, Nayeri et al. (2019) detected significantly associated 

SNP on BTA 6, 14, and 20. Ongoing pathway analyses inferred associations with the lipid 
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metabolism and immune functions. In the present study, we did not find signals on BTA 14 

indicating the DGAT1 gene. Accordingly, GWAS in a previous study (Klein et al., 2019) with 

different statistical approaches suggested significant SNP within DGAT1 for FPR, but not for 

KET. The authors concluded that these SNP from the DGAT1 segment influence milk fat 

synthesis, but not contribute to the mobilization of body fat depots in the stage of negative 

energy balance. Tetens et al. (2012) mentioned the narrow correlations between FPR and energy 

balance indicators, but they did not identify quantitative trait loci affecting both traits 

simultaneously. Also in their study, DGAT1 was only relevant for FPR. 

The significantly associated SNP and annotated potential candidate genes from different 

chromosomes suggest a strong polygenic effect on milk acetone and BHB. The number of SNP 

surpassing the candidate threshold (pCD = 1e-04) was limited (9 SNP) and -log10 P-values of 

significantly associated SNP were quite low. As stated by Goddard et al. (2016), complex traits 

are more complex than presumed and influenced by thousands of SNP with very small effects. 

This is also true for the KET indicators acetone and BHB. All SNP effects were too small to be 

significant when considering the strict Bonferroni corrected P-value. McCarthy et al. (2008) 

proposed to enlarge the sample size to improve the statistical power in GWAS for complex 

traits with low incidences. Furthermore, cow genotyping with a denser SNP chip (as done by 

Freebern et al., 2020) might influence significance tests in GWAS. 

 

 

Figure 3.5. Manhattan plot for -log10 P-values of SNP effects for first test-day milk β-

hydroxybutyrate concentration (mM) in Holstein cows. 
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Conclusions 

The strong phenotypic associations between first test-day FTIR acetone and FTIR BHB with 

KET suggest routinely determination and utilization of ketone bodies in milk, to improve the 

dairy cow health management. Furthermore, we identified pronounced favorable genetic 

correlations among KET, FTIR acetone, FTIR BHB, and FPR within parities 1 to 3, and 

moderate genetic correlations from the repeatability model.  

Hence, from a breeding perspective, results suggest consideration of milk ketone bodies in 

selection indices for metabolic disorders. The strong genetic correlations between FTIR acetone 

and BHB from first lactation with the respective traits in later lactations indicate the usefulness 

of early selection in first-parity cows. Pedigree-based heritabilities for acetone and BHB were 

quite small. Nevertheless, we identified a small number of significantly associated SNP markers 

on 6 different chromosomes. The identified potential candidate genes in close chromosomal 

distance, (i.e., NRXN3, ACOXL, BCL2L11, HIBADH, KCNJ1 and PRG4) are involved in 

human diabetes, lipid and glucose metabolism pathways. 
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Appendix 

Supplemental Tables 

 

Table S3.1. Candidate SNP associated with first test-day acetone and β-hydroxybutyrate (BHB) 

concentration in milk.  

Trait BTA SNP Position (bp) MAF1 SNP effect P-value -log10(p) 

Acetone 10 rs29021343 90,924,914 0.18 0.01 < 0.001 4.71 

10 rs111009767 86,564,854 0.08 0.02 < 0.001 4.57 

11 rs110395452 1,283,185 0.15 0.01 < 0.001 4.54 

11 rs109102963 75,410,689 0.25 -0.01 < 0.001 4.51 

4 rs109374730 68,808,125 0.14 0.01 < 0.001 4.48 

29 rs41651011 32,373,604 0.50 -0.01 < 0.001 4.31 

BHB 16 rs109480845 67,532,667 0.19 0.01 < 0.001 4.09 

1 rs111002696 47,765,383 0.42 -0.01 < 0.001 4.00 

16 rs109224751 68,984,620 0.14 0.01 < 0.001 4.00 

1 MAF = Minor allele frequency. 
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Table S3.2. Genes1 located in the interval of 250 kb surrounding associated SNP for first test-

day acetone and β-hydroxybutyrate (BHB) in Holstein cows. 

1 Ensembl release 98 (Zerbino et al., 2018). 

Trait BTA Position (bp) Ensembl Gene ID Gene Name 

Acetone 4 68,473,794 - 68,614,954 ENSBTAG00000001036 HIBADH 

4 68,797,645 - 68,801,018  ENSBTAG00000020919 EVX1 

4 68,842,500 - 68,844,385 ENSBTAG00000014735 HOXA13 

10 90,495,258 - 91,099,930 ENSBTAG00000025324 NRXN3 

10 86,319,206 - 86,327,460 ENSBTAG00000013983 ZC2HC1C 

10 86,332,450 - 86,367,622 ENSBTAG00000016612 NEK9  

10 86,374,541 - 86,407,514 ENSBTAG00000005694 TMED10 

10 86,488,645 - 86,492,108 ENSBTAG00000004322 FOS 

10 86,610,233 - 86,655,611 ENSBTAG00000009451 JDP2 

10 86,713,963 - 86,736,092 ENSBTAG00000025405 BATF 

10 86,764,090 - 86,898,356 ENSBTAG00000040078 FLVCR2 

11 1,187,496 - 1,233,256 ENSBTAG00000024105 BCL2L11 

11 1,237,943 - 1,576,166 ENSBTAG00000004297 ACOXL 

11 75,091,973 - 75,213,880 ENSBTAG00000017255 ATAD2B 

11 75,240,502 - 75,572,709 ENSBTAG00000021969 KLHL29 

29 32,051,549 - 32,184,256 ENSBTAG00000008283 FLI1 

29 32,214,439 - 32,244,810 ENSBTAG00000000008 KCNJ1 

29 32,262,390 - 32,290,687 ENSBTAG00000006902 KCNJ5 

29 32,317,429 - 32,318,160 ENSBTAG00000024731 - 

29 32,330,486 - 32,459,266 ENSBTAG00000015905 ARHGAP32 

BHB 16 67,285,178 - 67,288,013 ENSBTAG00000054031 - 

16 67,381,599 - 67,398,481 ENSBTAG00000011932 PRG4 

16 67,448,413 - 67,448,793 ENSBTAG00000047559 histone H2B type 1-L-

like 

16 67,461,867 - 67,498,396 ENSBTAG00000011946 ODR4 

16 67,521,135 - 67,525,396 ENSBTAG00000004176 PDC 

16 68,929,292 - 68,991,907 ENSBTAG00000024449 CENPF 

16 69,034,474 - 69,223,706 ENSBTAG00000021553 PTPN14 

 16 69,234,217 - 69,287,670 ENSBTAG00000013166 SMYD2 

http://www.ensembl.org/Bos_taurus/Location/View?db=core;g=ENSBTAG00000001036;r=4:68473794-68614954
http://www.ensembl.org/Bos_taurus/Location/View?db=core;g=ENSBTAG00000014735;r=4:68842500-68844385;t=ENSBTAT00000046051
http://www.ensembl.org/Bos_taurus/Location/View?db=core;g=ENSBTAG00000013983;r=10:86319206-86327460;t=ENSBTAT00000018587
http://www.ensembl.org/Bos_taurus/Location/View?db=core;g=ENSBTAG00000016612;r=10:86332450-86367622;t=ENSBTAT00000022098
http://www.ensembl.org/Bos_taurus/Location/View?db=core;g=ENSBTAG00000005694;r=10:86374541-86407514;t=ENSBTAT00000007481
http://www.ensembl.org/Bos_taurus/Location/View?db=core;g=ENSBTAG00000004322;r=10:86488645-86492108;t=ENSBTAT00000005660
http://www.ensembl.org/Bos_taurus/Location/View?db=core;g=ENSBTAG00000009451;r=10:86610233-86655611;t=ENSBTAT00000012436
http://www.ensembl.org/Bos_taurus/Location/View?db=core;g=ENSBTAG00000025405;r=10:86713963-86736092;t=ENSBTAT00000035684
http://www.ensembl.org/Bos_taurus/Location/View?db=core;g=ENSBTAG00000040078;r=10:86764090-86898356
http://www.ensembl.org/Bos_taurus/Location/View?db=core;g=ENSBTAG00000024105;r=11:1187496-1233256
http://www.ensembl.org/Bos_taurus/Location/View?db=core;g=ENSBTAG00000017255;r=11:75091973-75213880;t=ENSBTAT00000022935
http://www.ensembl.org/Bos_taurus/Location/View?db=core;g=ENSBTAG00000008283;r=29:32051549-32184256
http://www.ensembl.org/Bos_taurus/Location/View?db=core;g=ENSBTAG00000000008;r=29:32214439-32244810
http://www.ensembl.org/Bos_taurus/Location/View?db=core;g=ENSBTAG00000006902;r=29:32262390-32290687;t=ENSBTAT00000079814
http://www.ensembl.org/Bos_taurus/Location/View?db=core;g=ENSBTAG00000024731;r=29:32317429-32318160;t=ENSBTAT00000034446
http://www.ensembl.org/Bos_taurus/Location/View?db=core;g=ENSBTAG00000054031;r=16:67285178-67288013;t=ENSBTAT00000070583
http://www.ensembl.org/Bos_taurus/Location/View?db=core;g=ENSBTAG00000011932;r=16:67381599-67398481
http://www.ensembl.org/Bos_taurus/Location/View?db=core;g=ENSBTAG00000047559;r=16:67448413-67448793;t=ENSBTAT00000065135
http://www.ensembl.org/Bos_taurus/Location/View?db=core;g=ENSBTAG00000011946;r=16:67461867-67498396;t=ENSBTAT00000015853
http://www.ensembl.org/Bos_taurus/Location/View?db=core;g=ENSBTAG00000004176;r=16:67521135-67525396;t=ENSBTAT00000005468
http://www.ensembl.org/Bos_taurus/Location/View?db=core;g=ENSBTAG00000021553;r=16:69034474-69223706
http://www.ensembl.org/Bos_taurus/Location/View?db=core;g=ENSBTAG00000013166;r=16:69234217-69287670
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Abstract 

Milk fatty acids (FA) have been suggested as biomarkers for early-lactation metabolic diseases 

and for female fertility status. The aim of the present study was to infer associations between 

FA, the metabolic disorder ketosis (KET) and the interval from calving to first insemination 

(ICF) genetically and genomically. In this regard, we focused on a single-step genomic BLUP 

approach, allowing consideration of genotyped and ungenotyped cows simultaneously. The 

phenotypic data set considered 38,375 first-lactation Holstein cows, kept in 45 large-scale co-

operator herds from 2 federal states in Germany. The calving years for these cows were from 

2014 to 2017. Concentrations in milk from the first official milk recording test-day for 

saturated, unsaturated (UFA), monounsaturated (MUFA), polyunsaturated, palmitic, and stearic 

(C18:0) FA were determined via Fourier-transform infrared spectroscopy. Ketosis was defined 

as a binary trait according to a veterinarian diagnosis key, considering diagnoses within a 6-wk 

interval after calving. A subset of 9,786 cows was genotyped for 40,989 SNP marker. Variance 

components and heritabilities for all Gaussian-distributed FA and for ICF, and for binary KET 

were estimated by applying single-step genomic BLUP single-trait linear and threshold models, 

respectively. Genetic correlations were estimated in series of bivariate runs. Genomic breeding 

values for the single-step genomic BLUP estimations were dependent traits in single-step 

GWAS. Heritabilities for FA were moderate in the range from 0.09 to 0.20 (standard error = 

0.02 - 0.03), but quite small for ICF (0.08, standard error = 0.01) and for KET (0.05 on the 

underlying liability scale, posterior standard deviation = 0.02). Genetic correlations between 

KET and UFA, MUFA, C18:0 were large (0.74 to 0.85, posterior standard deviation = 0.14 - 

0.19), and low positive between KET and ICF (0.17, posterior standard deviation = 0.22). 

Genetic correlations between UFA, MUFA, and C18:0 with ICF ranged from 0.34 to 0.46 

(standard error = 0.12). In single-step GWAS, we identified a large proportion of overlapping 

genomic regions for the different FA, especially for UFA and MUFA, and for saturated and 

palmitic FA. One identical significantly associated SNP was identified for C18:0 and KET on 

BTA 15. However, there was no genomic segment simultaneously significantly affecting all 

trait categories ICF, FA, and KET. Nevertheless, some of the annotated potential candidate 

genes DGKA, IGFBP4, and CXCL8 play a role in lipid metabolism and fertility mechanisms, 

and influence production diseases in early lactation. Genetic and genomic associations indicate 

that Fourier-transform infrared spectroscopy FA concentrations in milk from the first official 

test-day are valuable predictors for KET and for ICF. 

Key words: ketosis, FTIR milk fatty acids, fertility, single-step genomic evaluation, candidate 

genes 
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Introduction 

Phenotypically, ketosis (KET) as well as milk fatty acid (FA) profiles were associated with 

reproductive performance in dairy cows (Stádník et al., 2015; Rutherford et al., 2016). Holstein 

cows with increased levels of blood BHB (KET indicator) showed a significantly delayed 

interval from calving to first oestrus and interval from calving to first insemination (ICF; 

Rutherford et al., 2016). The ICF is a female fertility interval trait mainly indicating the start of 

the cycle activity after calving, and independent from further effects such as service sire or 

semen quality, which are relevant for female fertility traits reflecting a successful insemination. 

In this regard, Lucy (2019) elaborated the physiological background explaining associations 

between FA concentrations and cycle activity, and they emphasized that a negative energy 

balance (NEB) depresses follicle growth and follicle functionality. Accordingly, in the stage of 

a NEB, the increase of circulating ketone bodies, especially of BHB, and of FA, caused 

impaired oocyte fertility and immune dysfunctions with detrimental impact on uterine recovery 

(Wathes et al., 2009). Stádník et al. (2015) identified favorable associations between 

concentrations of milk monounsaturated FA (MUFA) and female fertility interval traits, 

whereas opposite observations were made for saturated FA (SFA). In addition, with regard to 

genetic evaluation improvements, Gernand and König (2017) emphasized the positive genetic 

trend in female fertility since explicitly considering ICF. Hence, it is imperative to focus on 

female interval traits displaying close functional relationships with NEB and with metabolic 

disorders. 

Genetic correlations between early-lactation milk ketone bodies and nonesterified FA 

concentration with ICF were positive with 0.38 and 0.39, respectively (Mehtiö et al., 2020). 

Similarly, correlations between KET breeding value with breeding values for fertility traits 

varied from 0.26 and 0.33, indicating fewer KET cases with an improved fertility status 

(Vosman et al., 2015). Genomically, detected shared SNP markers, potential candidate genes, 

and metabolic pathways indicated influence of the lipid metabolism on cow fertility and on 

KET (Wathes et al., 2013; Nayeri et al., 2019). 

The single-step genomic BLUP (ssGBLUP) approach, combining genomic and 

pedigree relationship matrices (e.g., Legarra et al., 2009; Aguilar et al., 2010), contributed to 

increased reliabilities of breeding values for production traits of young animals, when compared 

with traditional BLUP methods (Oliveira et al., 2019). So far, ssGBLUP has been applied to 

study FA profiles in many livestock species, and the advantages over traditional BLUP have 

been reported for sheep, goats, and cattle (Cesarani et al., 2019; Gebreyesus et al., 2019; Freitas 

et al., 2020). Gain in prediction accuracies from single-step applications were especially 
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observed for low heritability traits (Ismael et al., 2017; Guarini et al., 2018). In consequence, 

ssGBLUP is currently implemented into routine genomic evaluations for many livestock 

species (Misztal et al., 2020).  

So far, no study addressed genetic and genomic relationships among milk FA groups 

(SFA, UFA, MUFA, and polyunsaturated FA (PUFA)) as well as specific palmitic (C16:0) and 

stearic (C18:0) FA concentrations, KET diagnoses, and ICF in a comprehensive ssGBLUP 

approach. Thus, we applied ssGBLUP to estimate genetic (co)variance components for KET, 

first test-day Fourier-transform infrared spectroscopy (FTIR) milk FA profiles, and ICF, and 

we applied single-step GWAS to identify SNP marker associations and potential candidate 

genes for these traits. 

 

Materials and Methods 

Cow traits 

The present study considered 38,375 first-lactation Holstein cows, kept in 45 large-scale co-

operator herds from the German federal states of Mecklenburg-West Pomerania and 

Brandenburg. These cows calved from 2014 to 2017. Ages at first calving ranged from 20 to 

39 mo, and the first official test-day conducted by the milk recording organization was between 

5 d to 42 d after calving. The FA milk concentrations in g/100 g of milk from the first official 

test-day including UFA, MUFA, PUFA, SFA, C16:0, and C18:0 were determined in the 

laboratory of the milk recording organization using FTIR (Foss Analytics, Hillerød, Denmark). 

Data editing of FA measurements excluded test-day records with one or several missing FA 

fractions, and FA test-day records where MUFA concentrations were equal or lower than PUFA 

concentrations. For ICF, we deleted records smaller than 21 or larger than 250 d.  

Clinical KET was diagnosed by veterinarians and herd managers considering the 

definitions from the central disease diagnosis key (Stock et al., 2013). Accordingly, a KET 

score = 1 for diseased cows implied at least one observation for increased content of ketone 

bodies in blood or urine (measured via handheld ketometers or urine test strips) in a 6-wk 

interval after calving. Hence, a score = 0 was assigned for healthy cows without any KET entry 

during the early-lactation period. The numbers of first-lactation Holstein cows and herds with 

FA measurements, clinical KET, and ICF records are given in Table 4.1. The descriptive 

statistics for first test-day FA milk concentrations and ICF are shown in Table 4.2. 

 



CHAPTER 4 

119 

Table 4.1. Number of phenotyped and genotyped first-lactation Holstein cows (no. of herds in 

parentheses) with fatty acid measurements, diagnosis for clinical ketosis, and interval from 

calving to first insemination (ICF) records, and with overlapping records. 

Trait 

No. of cows (no. of herds) 

Phenotyped Genotyped 

Fatty acid concentration 5,920 (17) 1,858 (17) 

Ketosis    

   Healthy 35,842 (36) 8,565 (27) 

   Diseased 491 (36) 163 (27) 

ICF  18,511 (45) 7,624 (39) 

Ketosis and fatty acid concentration 3,878 (8) 800 (5) 

Ketosis and ICF 17,132 (36) 6,758 (27) 

Fatty acid concentration and ICF 4,154 (17) 1,523 (17) 

 

Table 4.2. Descriptive statistics for first test-day fatty acid milk concentrations (in g/100 g of 

milk) and for the interval from calving to first insemination (ICF, in days) in first-lactation 

Holstein cows. 

Trait Mean SD Minimum Maximum 

Saturated fatty acids 2.47 0.46 0.72 4.96 

Unsaturated fatty acids 1.47 0.40 0.42 3.60 

Monounsaturated fatty acids 1.19 0.35 0.03 3.01 

Polyunsaturated fatty acids 0.16 0.04 0.00 0.33 

Palmitic acid 1.08 0.21 0.32 2.25 

Stearic acid 0.42 0.11 0.00 1.01 

ICF 72.37 23.44 21 250 

 

Genotypes 

A subset of 2,322 cows was genotyped with the Illumina BovineSNP50 v2 BeadChip (Illumina 

Inc., San Diego, CA), and 7,464 cows were genotyped with the EuroGenomics 10K chip 

(Illumina Inc., San Diego, CA). Low-density 10K genotypes were imputed by the project 

partner VIT (Vereinigte Informationssysteme Tierhaltung w.V, Verden, Germany) to the 50K 

panel, applying the algorithm as described by Segelke et al. (2012). The SNP data set considered 
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45,613 SNP from 9,786 genotyped cows with phenotypic records for KET, ICF, or FA 

concentration (Table 4.1). Quality control of the genotype data was performed using the 

software package PLINK (Purcell et al., 2007). The SNP with more than 1% missing genotype 

data, with a minor allele frequency lower than 5%, and deviation from Hardy-Weinberg 

equilibrium (P-value < 10-8), were discarded. Thus, 40,989 SNP from the 9,786 cows were 

available for genomic studies. 

 

Statistical Models 

ssGBLUP genetic parameter estimations 

For the estimation of heritabilities and variance components for Gaussian-distributed milk FA 

concentrations and ICF, the genetic-statistical single-trait animal model [1] was defined as 

follows: 

y=Xβ + Za +e [1] 

where y was a vector including observations for ICF (in days) or first test-day FA 

concentrations (in g/100 g of milk) for SFA, UFA, MUFA, PUFA, C16:0, and C18:0; β was a 

vector of fixed effects including herd (45 herds for ICF, 17 herds for FA), calving year (4 yr 

from 2014 - 2017), calving month (12 mo), age at first calving (linear regression, 20 - 39 mo), 

and a linear regression on DIM (5 - 42 DIM) for FA concentrations; a was a vector of additive-

genetic effects, with a  ~ N (0, Hσ2
a), where σ2

a was the additive-genetic variance; e was the 

vector of random residual effect with e ~ N (0, Iσ2
e), where σ2

e was the residual variance; X and 

Z were the incidence matrices for fixed and random effects, respectively. The combined inverse 

of the H matrix was computed by blending the pedigree relationship matrix A and the genomic 

relationship matrix (Gw; Legarra et al., 2009). The Gw was calculated as follows: Gw = (0.95 × 

G + 0.05 × A22), where A22 was the submatrix of the pedigree-based relationship matrix for 

genotyped animals and G was genomic relationship matrix (VanRaden, 2008). The pedigree 

relationship matrix considered ancestors back to birth year 1941, and at least 3 generations 

backward were available for the cows with phenotypes. 

For binary KET, the genetic-statistical single-trait threshold model [2] was: 

l =Xβ + Za + e [2] 

where l was a vector of underlying liabilities for KET occurrence; β was a vector of fixed effects 

including herd (45 herds), calving year, calving month, the covariate days in milk (linear 

regression), and the covariate age at first calving (linear regression); e was the vector of random 
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residual effects with a residual variance of 1. The remaining specifications are the same as 

defined for model [1].  

For the estimation of genetic correlations among FA concentrations, ICF, and KET 

bivariate animal models were applied for all trait combinations. The bivariate model [3] was:  

[
y

1

y
2
] = [

X1 0

0 𝐗𝟐
] [

β
1

β
2

] + [
Z1 0

0 Z2
] [

a1

a2
] + [

e1

e2
] [3] 

where y1 and y2 were the observation vectors for a trait 1 and a trait 2; β1 and β2 were the vectors 

of fixed effects for trait 1 and 2, respectively, as defined above; X1 and X2 were corresponding 

incidence matrices for the fixed effects; a1 and a2 were the vectors of additive-genetic random 

effects for trait 1 and 2, respectively; Z1 and Z2 were the corresponding incidence matrices for 

the random additive-genetic effects; and e1 and e2 were the vectors of random residual effects 

for the 2 traits.  

Assumptions for the variance-covariance structure of additive-genetic effects were: 

[
a1

a2
] ~𝑁 ((

0
0

) , H ⊗ (
σa1

2 σa1a2

σa1a2
σa2

2
)) 

where σa1

2 and σa2

2  were the additive-genetic variances for the 2 traits and σa1a2
the additive-

genetic covariance between both traits, and ⊗ denoting the Kronecker product. Assumptions 

for the residual effects were: 

[
e1

e2
] ~𝑁 ((

0
0

) , 𝐈 ⊗ (
σe1

2 σe1e2

σe1e2
σe2

2
)) 

where I was an identity matrix, σe1

2  and σe2

2  were the residual variances for the 2 traits, and σe1e2
 

was the residual covariance between both traits. For bivariate runs including binary KET, the 

(co)variance structure of residual effects was:  

[
e1

e2
] ~𝑁 ((

0
0

) , 𝐈 ⊗ (
σe1

2 σe1e2

σe1e2
1

)) 

where 1 was the residual variance for binary KET. 

Variance components from single-trait linear and bivariate linear-linear models 

including only Gaussian FA traits and ICF were estimated using the AI-REML algorithm as 

implemented in the AIREMLF90 program (Misztal et al., 2018). For all runs including binary 

KET, THRGIBBS1F90 (Misztal et al., 2018) was applied to account for the binary trait 
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structure. In this regard, 200,000 samples were generated, with the first 30,000 samples 

discarded as burn-in. Every 10th sample was saved. The POSTGIBBSF90 program (Misztal et 

al., 2018) was used to calculate posterior means for all estimates. The length of the burn-in 

period and the length of the sampling period were determined according to Raftery and Lewis 

(1992), which is implemented in the BOA software package (Smith, 2005). For the 

determinations, we used the first 10,000 iterations of a Gibbs chain for genetic covariances. 

Furthermore, we visually inspected the trace plots.  

 

Single-step genome-wide association study 

Single-step GWAS (ssGWAS) for the estimation of SNP marker effects and corresponding P-

values based on the estimates of genomic breeding values as obtained from ssGBLUP analyses. 

The back solving was done using “OPTION snp_p_value” as implemented in POSTGSF90 

(Aguilar et al., 2019).  

The effective number of independent SNP (NSNP = 29,101) was calculated using the 

software Genetic Type I Error Calculator (Li et al., 2012), in order to define the genome-wide 

significance level according to Bonferroni (pBF = 0.05 / NSNP = 1.72e-06). The Genetic Type 

I Error Calculator was developed to address multiple-testing issues with dependent SNP. In this 

regard, SNP markers are divided into linkage disequilibrium blocks. By examining the 

eigenvalues obtained from decomposition of the linkage disequilibrium correlation matrix, 

Genetic Type I Error Calculator estimates the effective number of independent SNP in the 

blocks. In addition, a normative significance threshold was used to identify potential candidate 

SNP, considering pCD = 1e-04 (Kurz et al., 2018). According to Manca et al. (2020), annotated 

genes located in 250 kb upstream or downstream from the significantly associated candidate 

SNP were detected using Ensembl, release 102, on the basis of the Bos taurus ARS1.2 genome 

assembly (Zerbino et al., 2018). 

 

Results and Discussion 

Heritabilities for fatty acid concentrations, ketosis and the interval from calving to first 

insemination 

Variance components and heritabilities from the ssGBLUP approach for first test-days milk FA 

concentrations are given in Table 4.3. The moderate FA heritabilities, ranging between 0.09 

(SE = 0.02) for PUFA and 0.20 (SE = 0.03) for C16:0, are in agreement with estimates from 

Narayana et al. (2017) and Fleming et al. (2018), who considered only pedigree relationships. 

Accordingly, heritability estimates for SFA with 0.19 (SE = 0.03) and C16:0 with 0.20 (SE = 
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0.03) were larger than for UFA with 0.13 (SE = 0.02). This might be due to the fact that most 

SFA in milk originate from de novo synthesis in the mammary gland, whereas long chain UFA 

are derivatives from preformed circulating blood lipids and from body fat mobilization 

(Grummer, 1991; Bastin et al., 2012). The metabolic enzymes involved in de novo synthesis 

seems to be under stronger genomic control (Bastin et al., 2011). However, in the present study, 

heritabilities for UFA, MUFA (0.12, SE = 0.02), and C18:0 (0.13, SE = 0.02) were smaller than 

for SFA and for C16:0, but still in a moderate range (Table 4.3). Narayana et al. (2017) 

identified FA heritability alterations dependent on the lactation stage. Smaller early lactation 

heritabilities were due to the increased residual variance (Narayana et al., 2017). In contrast to 

milk FA, we estimated quite small heritabilities of 0.05 (SE = 0.02) for KET, and of 0.08 (SE 

= 0.01) for ICF (Table 4.3). The small heritabilities for KET and ICF reflect estimates from 

previous studies (e.g., Mehtiö et al., 2020). Recently, Shabalina et al. (2021) compared female 

fertility and metabolic disorder heritabilities based on A (pedigree relationships), G (genomic 

relationships), and H (combined relationships) matrices. The estimates were very similar and 

close to zero.  

 

Table 4.3. Heritabilities (h²), additive genetic (σa
2) (x10-2), and residual variances (σe

2) (x10-2) 

for fatty acid milk concentration, interval from calving to first insemination (ICF), and clinical 

ketosis. Corresponding SE are given in parenthesis. 

Trait h² (SE)  σa
2  σe

2 

Saturated fatty acids 0.19 (0.03) 3.28 13.64 

Unsaturated fatty acids 0.13 (0.02) 0.13 9.22 

Monounsaturated fatty acids 0.12 (0.02) 0.97 7.31 

Polyunsaturated fatty acids 0.09 (0.02) 0.01 0.13 

Palmitic acid 0.20 (0.03) 0.69 2.80 

Stearic acid 0.13 (0.02) 0.10 0.74 

ICF 0.08 (0.01) 4,078.8 45,914 

Ketosis 0.05 (0.02)1 5.43 100.03 

1 Posterior standard deviation. 

 

Genetic correlations between ketosis, fatty acid concentration, and interval from calving 

to first insemination 

Genetic correlation estimates among KET, FA concentrations, and ICF (Table 4.4) are in 

agreement with phenotypic estimates (Nogalski et al., 2015; Rutherford et al., 2016). However, 



CHAPTER 4 

124 

for some trait combinations, SE of genetic correlations were quite large (Table 4.4). We 

detected strong genetic correlations between KET with UFA (0.85), MUFA (0.74), and C18:0 

(0.74), but correlations between KET with SFA (-0.05), PUFA (-0.14), and C16:0 (-0.10) were 

close to zero. The genetic correlation between KET and ICF was low positive (0.17), but 

indicating genetic improvement in ICF due to the selection on metabolic stable cows.  

The FA displaying strong genetic correlations with KET also showed moderate positive genetic 

correlations with ICF (i.e., 0.46 for UFA, 0.42 for MUFA, and 0.34 for C18:0). The positive 

genetic correlations (Table 4.4) indicate a longer period from calving to first insemination due 

to increased concentrations of UFA, MUFA, or C18:0 in milk. In contrast, genetic correlations 

with ICF were close to zero for SFA (-0.04), PUFA (0.15), and C16:0 (-0.08).  

 

Table 4.4. Genetic correlations between clinical ketosis (KET) and the interval from calving to 

first insemination (ICF) with fatty acid milk concentrations, and between ICF and KET for first-

lactation Holstein cows. 

Trait KET1 ICF2 

Saturated fatty acids -0.05 (0.20) -0.04 (0.11) 

Unsaturated fatty acids 0.85 (0.14) 0.46 (0.12) 

Monounsaturated fatty acids 0.74 (0.19) 0.42 (0.12) 

Polyunsaturated fatty acids -0.14 (0.22) 0.15 (0.14) 

Palmitic acid -0.10 (0.21) -0.08 (0.11) 

Stearic acid 0.74 (0.18) 0.34 (0.12) 

ICF 0.17 (0.22)  

1Posterior standard deviations in parentheses. 

2SE in parentheses. 

 

Accordingly, Bastin et al. (2012) estimated very similar genetic correlations from pedigree-

based approaches between early lactation UFA, MUFA, C18:0 with female fertility interval 

traits. The strong positive genetic correlations between UFA, MUFA, and C18:0 with KET can 

be explained in a physiological context in early lactation. A NEB and KET cause catabolism of 

adipose tissue, and thus, the release of particular long-chain FA from mobilized tissue (Kay et 

al., 2005). Consequently, Nogalski et al. (2015) detected an increase in UFA, MUFA, and C18:0 

concentrations in milk in the stage of a NEB. Approximately 25% of milk FA are MUFA with 

oleic acid (C18:1), accounting for 23.8% of the total FA in dairy cattle milk (Lindmark 

Månsson, 2008). The fact that C18:1 and C18:0 are predominant in adipocytes and are released 
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during lipolysis (Kay et al., 2005) may explain the strong and positive correlations between 

MUFA and C18:0 with KET.  

Bastin et al. (2012) reported slightly negative genetic correlations between C16:0 and 

days open, reflecting the estimate in our study (rg = -0.06 between ICF and C16:0). Furthermore, 

we estimated slightly negative genetic correlations between KET with SFA and C16:0. Park et 

al. (2020) observed low levels of SFA in the stage of NEB in early lactation, but SFA levels 

increased with increasing DIM. Grummer (1991) clearly described the associations between 

energy intake on FA syntheses, demonstrating the opposite effects on C16:0 and C18:0. The 

different physiological pathways may be an explanation for the differing genetic correlations 

between C18:0 and C16:0 with KET. Accordingly, Stádník et al. (2015) reported antagonistic 

relationships between milk MUFA and female fertility, but they identified opposite effects for 

SFA. Demeter et al. (2009) associated increasing concentrations of milk C18:0 FA with 

impairments in calving rates. Results from our genetic study as well as the physiological 

mechanisms as outlined above indicate detrimental effect of KET and of increasing UFA, 

MUFA, and C18:0 on ICF. Hence, genetic selection on lower UFA, MUFA, and C18:0 milk 

concentrations early in lactation will genetically contribute to an improved metabolic health 

and fertility status regarding ICF.  

 

ssGWAS for milk fatty acid profile, interval from calving to first insemination, and ketosis 

We identified SNP significantly associated with the FA groups SFA, UFA, MUFA, PUFA 

(Figure 4.1), with the specific FA C16:0 and C18:0, with ICF and with KET (Figure 4.2). All 

significantly or suggestively associated SNP marker according to the Bonferroni (pBF = 1.72e-

06, -log10 P-value = 5.76) and the candidate threshold (pCD = 1e-04, -log10 P-value = 4.0), as 

well as annotated positional candidate genes, are provided in Supplemental Table S4.1 

(https://jlupub.ub.uni-giessen.de//handle/jlupub/99). The quantile-quantile plots for FA are 

given in the Supplemental Figure S4.1 (https://jlupub.ub.uni-giessen.de//handle/jlupub/99), and 

in Supplemental Figure S4.2 (https://jlupub.ub.uni-giessen.de//handle/jlupub/99) for ICF and 

KET. In the following, we focus on a deeper discussion including potential candidate genes and 

SNP for FA concentrations, KET, or ICF, which are involved in the respective physiological 

pathways.  

 

Saturated fatty acids 

In total, 34 SNP were significantly associated with first test-day milk SFA concentration (Figure 

4.1, Supplemental Table S4.1). All 19 significantly associated SNP according to Bonferroni are 
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located on BTA 14, including the strongest associated SNP rs109421300 (609,870 bp) in an 

intronic region of the diacylglycerol O-acyltransferase 1 (DGAT1) gene. DGAT1 is involved in 

the synthesis of triacylglycerol, explaining the large effect on milk fat percentage (Grisart et al., 

2002). The segment including DGAT1 and surrounding genes such as forkhead box H1 

(FOXH1) and protein phosphatase 1 regulatory subunit 16A (PPP1R16A) is a candidate region 

for milk SFA and C16:0 in Holstein cows (Palombo et al., 2018; Cruz et al., 2019). In our study, 

further suggestively associated SNP according to the candidate threshold are located on BTA 

1, 19, 22, and BTA 27. The strongest suggestively associated SNP rs110519353 (36,466,414 

bp) on BTA 27 is located in gene GINS complex subunit 4 (GINS4). Positional candidate genes 

within a segment of 36 Mbp on BTA 27 [i.e., golgin A7 (GOLGA7), secreted frizzled related 

protein 1 (SFRP1), glycerol-3-phosphate acyltransferase 4 (GPAT4, synonymous AGPAT6)] 

are involved in differential milk fat synthesis and affected levels of specific SFA (Littlejohn et 

al., 2014). Littlejohn et al. (2014) confirmed the association between the high-fat percentage 

‘C’ allele of rs110519353 with increased proportions of SFA and C16:0, and with decreasing 

UFA levels in Holstein-Friesian x Jersey crossbreeds. The SNP rs43682200 (45,350,130 bp) 

on BTA 1, rs109477972 (29,784,751 bp) on BTA 19, and rs41993977 (5,531,843 bp) on BTA 

22 were suggestively associated with SFA. Positional candidate genes were not associated with 

SFA.  

 

Unsaturated fatty acids 

For UFA, we identified 10 suggestively associated SNP according to the candidate threshold 

on BTA 5, 8, 10, 12, 14, and 28 (Figure 4.1, Supplemental Table S4.1). In contrast to SFA (with 

strongest effects of SNP markers on BTA 14), the most important segment for UFA including 

SNP rs110176023 (111,284,112 bp) with the highest -log10 P-value is located on BTA 8.  

On BTA 5, the gene ubiquitin specific peptidase 15 (USP15) is located within the 250 kb 

distance to the significantly associated SNP rs41625419 (51,366,141 bp). Orthologue of USP15 

contributed to a decline of body fat and circulating glucose levels in mice (Ensembl, 2020). 

Alterations of body fat and glucose levels were identified in the state of NEB and in dairy cows 

diagnosed for KET (Yang et al., 2019).  

The potential candidate genes C-X-C motif chemokine ligand 12 (CXCL12), rho GTPase 

activating protein 22 (ARHGAP22), Jumonji domain containing 1C (JMJD1C), located within 

the 250 kb distance to the SNP rs109278212 (45,261,673 bp), rs110222344 (43,155,287 bp), 

and rs109839180 (19,620,469 bp) on BTA 28, are related to diabetes, insulin resistance, fatty 

liver disease, and lipogenesis (Li et al., 2016; Viscarra et al., 2020). Additionally, gene CXCL12 
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is involved in diverse cellular functions, such as immune surveillance, inflammation response, 

and tissue homeostasis (Janssens et al., 2018). The receptor of CXCL12, C-X-C motif 

chemokine receptor 4 (CXCR4), was increasingly expressed in cows suffering from severe NEB 

(McCarthy et al., 2010). The segment on BTA 28 at 43 Mbp was associated with subclinical 

KET (Soares, 2020), and gene JMJD1C at 19 Mbp was identified as a candidate for metabolic 

body weight in Holstein cows (Hardie et al., 2017). On BTA 14, the 3 SNP rs109421300, 

rs109350371, rs109146371 were significantly associated with UFA. The SNP from the same 

genomic region were detected for SFA (as described above, Supplemental Table S4.1).  

 

Monounsaturated fatty acids 

For MUFA, we identified 9 suggestively associated SNP according to the candidate threshold 

on BTA 5, 8, 9, 10, 14, and 28 (Figure 4.1, Supplemental Table S4.1). The associated SNP, 

except for SNP rs109137030 (6,218,345 bp) on BTA 9, overlapped with the SNP detected for 

UFA (Supplemental Table S4.1). The high genetic correlation of 0.95 between MUFA and UFA 

(Penasa et al., 2015) indicates a similar genomic background.  

 

Polyunsaturated fatty acids 

In total, 14 suggestively SNP according to the candidate threshold were detected for PUFA on 

BTA 3, 4, 13, 14, 19, 24, and 28 (Figure 4.1, Supplemental Table S4.1). The strongest 

associated SNP rs42854990 (2,669,298 bp) is located on BTA 28, but no potential candidate 

gene was annotated. The SNP rs109839180 on BTA 28 was also suggestively associated with 

UFA and MUFA in our study (Supplemental Table S4.1). The SNP rs109823489 (56,044,735 

bp) on BTA 21 is located in gene coiled-coil domain containing 88C (CCDC88C), which was 

declared as a candidate gene for cow livability, indicating the overall robustness of a cow 

(Freebern et al., 2020).  

The SNP rs41593945 (117,293,280 bp) on BTA 4 is located within the defined distance to the 

gene insulin induced gene 1 (INSIG1). Gene expression analyses (Fan et al., 2020) revealed that 

INSIG1 is involved in the mammary lipid synthesis in ruminants. Associated SNP on BTA 3 

were rs110239426 (48,613,050 bp), rs109621977 (48,432,235 bp), and rs42945878 

(46,563,516 bp). The SNP rs109621977 is located in gene ALG14 UDP-N-

acetylglucosaminyltransferase subunit (ALG14), which regulates plasma FA levels in humans 

(Yuan and Larsson, 2020) and levels of milk composition traits in Holstein cows (Lin et al., 

2019).  
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On BTA 13, the SNP rs43705561 (70,050,255 bp) is located within the defined interval of 250 

kb to candidate gene lipin 3 (LPIN3), playing key roles in hepatic metabolic adaptations to 

NEB, especially in adipose tissue lipolysis and hepatic FA oxidation (Loor et al., 2007). On 

BTA 19, the associated SNP rs110933534 (40,505,729 bp) and rs41644917 (40,381,198 bp) 

are located close to the potential candidate gene insulin like growth factor binding protein 4 

(IGFBP4), which is related to NEB and female fertility in dairy cows. In this regard, Wathes et 

al. (2011) hypothesized that alterations in early lactation insulin signalling levels may delay 

uterine repair mechanisms and impair fertility. Interestingly, the 2 SNP close to IGFBP4 were 

also associated with C18:0 in our study. We estimated strong genetic correlations between 

C18:0 with KET, and moderate genetic correlations with ICF, supporting the overlapping causal 

genomic mechanisms. The candidate gene lipase G (LIPG) located within the 250 kb to SNP 

rs41570441 (49,057,452 bp) on BTA 24 is involved in triglyceride metabolism, yielding 

glycerol and free FA, and was upregulated in liver in metabolically imbalanced Holstein cows 

in early lactation (Wathes et al., 2021).  

 

Palmitic acid 

In total, 17 SNP on BTA 14 and 1 SNP on BTA 27 were significantly associated according to 

Bonferroni, and 18 SNP on BTA 1, 6, 14, 19, 22, and BTA 27 were suggestively associated 

with C16:0 (Figure 4.2, Supplemental Table S4.1). Significantly associated SNP on BTA 14 

widely overlapped with SFA associations, with the strongest effect of the SNP rs109421300 

located in DGAT1. Moreover, the suggestive SNP on BTA 1, 19, 22, and 27 were the same as 

detected for SFA. The SNP rs110351063 (65,323,234 bp) on BTA 15 is located in close 

distance to the candidate gene pyruvate dehydrogenase complex component X (PDHX). PDHX 

catalyzes the conversion of pyruvate into acetyl-coenzyme A and was annotated for subclinical 

KET in first-lactation Holstein cows (Soares, 2020). The SNP associations for C16:0 and SFA 

overlapped to a large extent. With a fraction of 30%, C16:0 is the most important SFA 

(Lindmark Månsson, 2008).  

 

Stearic acid 

The strongest association was identified for SNP rs109421300, located on BTA 14 in the 

DGAT1 gene (Figure 4.2, Supplemental Table S4.1). Additionally, 9 suggestively associated 

SNP were identified on BTA 1, 5, 8, 12, 15, and 19. The SNP rs41625419 (BTA 5), 

rs110176023 (BTA 8), and rs41577805 (BTA 12) also displayed significant effects on UFA 

and MUFA. Furthermore, the SNP rs43682200 (BTA 1) was significantly associated with SFA 
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and C16:0. The SNP rs110933534 and rs41644917 on BTA 19 were the same as detected for 

PUFA (Supplemental Table S4.1). The SNP rs110508416 (37,224,652 bp) close to gene INSC 

spindle orientation adaptor protein (INSC) on BTA 15 additionally was detected for KET 

(Figure 4.2, Supplemental Table S4.1).  

We observed a high proportion of overlapping important genomic regions for the 

different groups of FA. Identified genomic regions for milk FA showed strong overlaps for SFA 

and C16:0, and for UFA, MUFA, and partly C18:0. Detected overlapping genomic regions may 

be due to their common origin (i.e., from the blood from mobilized body tissue or de novo 

synthesis in the mammary gland). The SNP rs109421300 located in DGAT1 on BTA 14 was 

associated with all FA, apart from PUFA. Annotated positional candidate genes including 

DGAT1, GPAT4, CXCL12, ARHGAP22, INSIG1, LPIN3, LIPG, and PDHX are related to lipid 

metabolism, insulin resistance, inflammation response, NEB, subclinical KET, and also to 

female fertility traits.  

Generally, a large proportion of the significant SNP for most of the FA are located on 

BTA 14. In a previous GWAS for fat-to-protein ratio (Klein et al., 2019), we run models with 

and without correction for the effect of DGAT1 gene on BTA 14. The model with DGAT1 

correction contributed to a reduction of significantly associated SNP. Due to the overlapping 

physiological background with fat-to-protein ratio, similar effects are expected for FA. 

Accordingly, in a GWAS for FA, Cruz et al. (2019) additionally fitted models including the 

DGAT1 gene as covariate. Such modeling strategy implied a smaller number of detected 

potential candidate genes. We did not focus on such model comparisons in the present study, 

but the strong impact of DGAT1 on FA is obvious.  

 

Interval from calving to first insemination 

In total, we identified 5 suggestively associated SNP according to the candidate threshold on 

BTA 5, 10, 11, and 17 for ICF (Figure 4.2, Supplemental Table S4.1). The strongest associated 

SNP rs41599470 (36,317,694 bp) is located on BTA 17. Tenghe et al. (2016) identified a 

genomic region on BTA 17 for endocrine fertility traits in dairy cattle close to SNP rs41599470. 

On BTA 5, we detected two SNP rs29018280 (57,356,420 bp) and rs108956573 (57,282,611 

bp) in neighbouring distance. The intron variant rs29018280 is positioned in diacylglycerol 

kinase alpha (DGKA). Diacylglycerol kinases are key enzymes in the lipid metabolism. In beef 

cattle, gene expressions of DGKA in endometrial tissue were related to embryo survival 

(Beltman et al., 2010). Polymorphisms in the annotated potential candidate gene Erb-b2 

receptor tyrosine kinase 3 (ERBB3) showed significant associations with diabetes susceptibility 
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in humans and hormonal disorders causing the polycystic ovary syndrome (Welt and Duran, 

2014). Accordingly, Opsomer et al. (1999) displayed relationships between cystic ovarian 

disease in high-yielding dairy cows and insulin resistance mechanisms. Furthermore, we 

identified significantly associated SNP on BTA 10. Cai et al. (2019) and Minozzi et al. (2013) 

reported SNP associations on BTA 10 for fertility traits in Holsteins, but genomic regions 

differed from the detected significant SNP positions in our study. 

 

Ketosis 

We identified one significant SNP association according to Bonferroni and 42 suggestively 

associated SNP according to the candidate threshold (Figure 4.2, Supplemental Table S4.1). 

The significantly associated SNP rs110942910 (27,440,587 bp) and 6 suggestively associated 

SNP are located on BTA 18.  

The Manhattan plot for KET revealed 4 suggestively associated SNP on BTA 5 (Supplemental 

Table S4.1). One of these SNP [i.e., rs109896020 (114,222,945 bp)] showed strongest 

associations for KET when performing GWAS on the basis of the pure genomic relationship 

matrix (Klein et al., 2019). The corresponding region surrounding 114 Mbp includes several 

positional candidate genes contributing to subclinical KET (Soares, 2020). Loor et al. (2007) 

observed that KET implied downregulation of triosephosphate isomerase 1 (TPI1), a gene 

involved in glycolysis and gluconeogenesis, closely located to the SNP rs109046936 

(103,549,759 bp) on BTA 5. Further potential candidate genes surrounding a segment at 103 

Mbp are protein tyrosine phosphatase non-receptor type 6 (PTPN6), G protein subunit beta 3 

(GNB3), and prolyl 3-hydroxylase 3 (P3H3), which influenced metabolic body weight in first-

lactation Holstein cows (Hardie et al., 2017).  

Five SNP from BTA 15 were suggestively associated with KET: rs41632691 (83,673,161 bp), 

rs109932511 (83,710,700 bp), rs110944919 (78,017,138 bp), rs110508416 (37,224,652 bp), 

and rs109138685 (37,720,295 bp). The corresponding genomic region surrounding 83 Mbp 

includes the potential candidate genes galactosidase β 1 like 2 (GLB1L2), beta-1,3-

glucuronyltransferase 1 (B3GAT1), galactosidase β 1 like 3 (GLB1L3), and acyl-CoA 

dehydrogenase family member 8 (ACAD8), which are involved in physiological pathways 

contributing to subclinical KET (Soares, 2020). The annotated gene phosphodiesterase 3B 

(PDE3B), located within 250 kb to rs109138685, plays a crucial role in lipolysis and cell energy 

homeostasis (Degerman et al., 2011), suggesting its influence in KET progression. The 

significantly associated SNP rs110508416 on BTA 15 was additionally associated with C18:0 

in our study.  
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The genomic segment on BTA 10 comprising the SNP rs41586492 (17,746,328 bp), 

rs110844686 (34,985,737 bp), and rs43710033 (43,625,368 bp) with the annotated potential 

candidate genes mitogen-activated protein kinase kinase kinase kinase 5 (MAP4K5), atlastin 

GTPase 1 (ATL1), abhydrolase domain containing 12B (ABHD12B), glycogen phosphorylase 

L (PYGL), thrombospondin 1 (THBS1), and fibrous sheath interacting protein 1 (FSIP1) was 

associated with subclinical KET and DMI in Holstein cows (Hardie et al., 2017; Nayeri et al., 

2019; Soares, 2020).  

The SNP rs109946603 (9,419,987 bp) on BTA 20 was significantly associated with 

KET according to the candidate threshold. The corresponding genomic region includes the 

candidate genes microtubule associated protein 1B (MAP1B) and mitochondrial ribosomal 

protein S27 (MRPS27), which influenced clinical and subclinical KET (Soares, 2020). The 

segment including the significantly associated SNP rs41654962 (88,739,008 bp) on BTA 6 

encompasses the genes albumin (ALB), Ras association domain family member 6 (RASSF6), 

and C-X-C motif chemokine ligand 8 (CXCL8), contributing to inflammatory response (Ha et 

al., 2017), metabolic body weight (Hardie et al., 2017), and metabolic disorders (Nayeri et al., 

2019; Soares et al., 2021). Additionally, CXCL8 was differently expressed in healthy cows and 

in cows with subclinical endometritis, indicating a potential role of this gene in female fertility 

mechanisms (Bonsale et al., 2018). The segment including the 2 significantly associated SNP 

rs41994020 and rs41994761 on BTA 22 is in the defined distance to SNP markers, which were 

significantly associated with SFA and C16:0 in our study. The significantly associated SNP 

rs41647957 (8,009,249 bp) is located on BTA 27. The inferred potential candidate gene 

vascular endothelial growth factor C (VEGFC) is involved in inflammatory responses (Zhang 

et al., 2014). 

We detected chromosomal segments and annotated potential candidate genes such as 

PDE3B, PYGL, THBS1, ACAD8, and CXCL8, which contributed to KET occurrence, and which 

are involved in glycolysis, lipolysis, insulin resistance, and inflammatory response. The results 

from our study confirm the polygenic background of KET, influenced by many genomic regions 

with probably small effects. According to Aguilar et al. (2019), ssGWAS is an efficient method 

in QTL detection and P-value determination, especially in complex data sets including 

genotyped and ungenotyped animals. The simultaneous consideration of phenotypic, pedigree 

and genomic information in ssGWAS contributed to a larger number of SNP associations for 

KET compared with previous pure genomic approaches (Klein et al., 2019).  

We identified genomic regions influencing both trait categories FA and female fertility, 

especially the segment on BTA 15 with an effect on C18:0 and KET. As outlined in detail 



CHAPTER 4 

132 

above, several genomic regions identified for FA concentrations have been related to KET in 

previous studies. However, there was no genomic segment simultaneously significantly 

affecting all trait categories ICF, FA, and KET. Nevertheless, some of the inferred potential 

candidate genes (e.g., DGKA, IGFBP4, CXCL8) play a role in lipid metabolism and fertility 

mechanisms, and influence production diseases in early lactation.   
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Figure 4.1. Manhattan plot for -log10 P-values of SNP effects for first test-day (A) saturated, 

(B) unsaturated, (C) monounsaturated, and (D) polyunsaturated fatty acid concentrations in 

first-lactation Holstein cows. The dotted line indicates the candidate threshold (pCD = 1e-04, -

log10 P-value = 4.0) and the solid line indicates the Bonferroni corrected threshold (pBF = 

1.72e-06, -log10 P-value = 5.76).  
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Figure 4.2. Manhattan plot for -log10 P-values of SNP effects for first test-day (A) palmitic, 

(B) stearic fatty acid concentration, (C) interval from calving to first insemination, and (D) 

ketosis in first-lactation Holstein cows. The dotted line indicates the candidate threshold (pCD 

= 1e-04, -log10 P-value = 4.0) and the solid line indicates the Bonferroni corrected threshold 

(pBF = 1.72e-06, -log10 P-value = 5.76).  
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Conclusions 

We estimated quite large genetic correlations between KET with UFA, MUFA, and C18:0, and 

low to moderate genetic correlations between KET, UFA, MUFA, C18:0 with ICF. The results 

indicate that first test-day FTIR FA concentrations in milk are valuable predictors for KET and 

for ICF. Furthermore, the estimated moderate heritabilities for FTIR FA concentrations suggest 

consideration of FA in selection indices for female fertility trait ICF and health. Genomically, 

we identified significantly associated SNP and annotated potential candidate genes indicating 

shared physiological mechanisms on FA concentrations, KET and ICF. Candidate genes are 

mainly involved in carbohydrate and lipid metabolism, inflammatory response, diabetes, and 

fertility. In conclusion, the application of ssGBLUP genetic parameter estimations and 

ssGWAS inferred closer genetic mechanisms of the 3 trait categories FA, metabolic disorders, 

and female fertility trait ICF, compared with previous approaches based on either pure pedigree 

or pure genomic relationship matrices. 
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Appendix 

Supplemental Table 

 

Table S4.1. Associated SNP for milk fatty acid concentration on first test-day, ketosis and 

interval from calving to first insemination with positional candidate genes. 

BTA SNP SNP 

position (bp) 

Trait1 Positional candidate genes2 

1 rs43682200 45350130 SFA, C16:0, C18:0 ENSBTAG00000026836, ADGRG7, TFG, 

ENSBTAG00000053387 

2 rs109328804 50669137 KET ENSBTAG00000054108 

3 rs110239426 48613050 PUFA SLC44A3, CNN3, ALG14 

3 rs109621977 48432235 PUFA ALG14, SLC44A3, CNN3, TLCD4, RWDD3 

3 rs42945878 46563516 PUFA DPYD, PTBP2 

4 rs41593945 117293280 PUFA CNPY1, INSIG1, EN2, RBM33, SHH 

4 rs41664795 117389110 PUFA RBM33, EN2, SHH, CNPY1 

4 rs43387397 38051191 KET PCLO, CACNA2D1 

5 rs41625419 51366141 UFA, MUFA, C18:0 USP15, ENSBTAG00000053892 

5 rs29018280 57356420 ICF DGKA, PMEL, RAB5B, CDK2, PYM1, 

SUOX, RNF41, SMARCC2, MYL6, MYL6B, 

ESYT1, ZC3H10, PA2G4, ERBB3, RPS26, 

IKZF4, MMP19, ENSBTAG00000009049, 

DNAJC14, ORMDL2, SARNP, GDF11, 

CD63, RDH5, BLOC1S1, ITGA7, METTL7B 

5 rs108956573 57282611 ICF RPS26, IKZF4, ERBB3, SUOX, RAB5B, 

CNPY2, CS, COQ10A, ANKRD52, 

ENSBTAG00000052361, SLC39A5, NABP2, 

RNF41, SMARCC2, MYL6, MYL6B, ESYT1, 

ZC3H10, PA2G4, CDK2, PMEL, DGKA, 

PYM1, MMP19, ENSBTAG00000009049, 

DNAJC14, ORMDL2, SARNP, GDF11, 

CD63 

5 rs109366282 103500479 KET PHB2, PTPN6, LPCAT3, EMG1, ATN1, 

ENO2, LRRC23, C1S, C1R, C1RL, 

ENSBTAG00000037743, RBP5, CLSTN3, 

SPSB2, USP5, TPI1, CDCA3, GNB3, P3H3, 

GPR162, CD4, ENSBTAG00000051680, 

LAG3, PTMS, MLF2, COPS7A, PIANP 

5 rs109896020 114222945 KET MPPED1, ENSBTAG00000053264, 

SCUBE1, EFCAB6 

5 rs109046936 103549759 KET LRRC23, ENO2, ATN1, PTPN6, SPSB2, 

TPI1, USP5, CDCA3, 

ENSBTAG00000037743, C1R, C1S, 

LPCAT3, EMG1, PHB2, GNB3, P3H3, 

GPR162, CD4, ENSBTAG00000051680, 

LAG3, PTMS, MLF2, COPS7A, PIANP, 

ZNF384, ING, ACRBP, LPAR5 

5 rs41657085 118894255 KET no gene 

6 rs109163865 60520292 C16:0 LIMCH1, ENSBTAG00000051208, 

PHOX2B 

6 rs41654962 88739008 KET ALB, AFP, AFM, ENSBTAG00000049436, 

RASSF6, CXCL8, ENSBTAG00000027534, 

CXCL5, ENSBTAG00000011961, CXCL2, 

ENSBTAG00000051891 

8 rs110176023 111284112 UFA, MUFA, C18:0 ADI1, TRAPPC12, EIPR1, 

ENSBTAG00000049154, 

ENSBTAG00000052608 
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BTA SNP SNP 

position (bp) 

Trait1 Positional candidate genes2 

8 rs42263449 26696264 C18:0 SH3GL2, CNTLN  

8 rs42263474 26763145 C18:0 SH3GL2, CNTLN  

8 rs43138756 83720729 KET ENSBTAG00000009764, CTSV, ZNF484, 

IARS1, NOL8, CENPP 

8 rs110717374 17138381 KET TEK, IFT74, MOB3B, EQTN, LRRC19, 

PLAA, CAAP1 

9 rs109137030 6218345 MUFA no gene 

9 rs109316317 101969365 KET TTLL2 

10 rs43619534 31707885 UFA, MUFA no gene 

10 rs109974787 5565263 ICF SFXN1, HRH2, DRD1 

10 rs41586492 17746328 KET LRRC49, THAP10, LARP6, UACA 

10 rs42231661 68291765 KET KTN1, PELI2 

10 rs110844686 34985737 KET THBS1, FSIP1 

10 rs43710033 43625368 KET NIN, MAP4K5, ATL1, SAV1, 

ENSBTAG00000054530, ABHD12B, PYGL, 

ENSBTAG00000048395, TRIM9 

11 rs41659401 39446852 ICF no gene 

11 rs109882205 41992469 KET no gene 

11 rs29022274 41971708 KET no gene 

11 rs109038300 47378387 KET RPIA, ENSBTAG00000054154, 

ENSBTAG00000050329, 

ENSBTAG00000047029, 

ENSBTAG00000051611, 

ENSBTAG00000003408, 

ENSBTAG00000051342, 

ENSBTAG00000045514, 

ENSBTAG00000045659, EIF2AK3, TEX37, 

FOXI3 

11 rs42587069 30352564 KET MSH6, FBXO11 

11 rs110926908 44431373 KET SH3RF3, SEPTIN10, EDAR, CCDC138, 

RANBP2, ENSBTAG00000054181 

12 rs41577805 28834261 UFA, C18:0 FRY, N4BP2L2, N4BP2L1, BRCA2, ZAR1L 

12 rs110539543 82719169 KET FAM155A 

12 rs41629862 82277331 KET EFNB2, ARGLU1 

12 rs41672734 81142776 KET no gene 

12 rs111012814 20111148 KET DLEU7, ENSBTAG00000049315, 

RNASEH2B 

13 rs43705561 70050255 PUFA CHD6, PLCG1, ZHX3, LPIN3, EMILIN3 

14 rs109421300 609870 SFA, UFA, MUFA, 

C16:0, C18:0 

DGAT1, HSF1, TMEM249, SCRT1, BOP1, 

ADCK5, SLC52A2, FBXL6, ARHGAP39, 

C14H8orf82, LRRC24, LRRC14, RECQL4, 

MFSD3, GPT, PPP1R16A, FOXH1, KIFC2, 

CYHR1, TONSL, VPS28, 

ENSBTAG00000053637, SLC39A4, CPSF1, 

SCX, MROH1, ENSBTAG00000039978, 

HGH1, WDR97, MAF1, 

ENSBTAG00000051469, SHARPIN, CYC1, 

GPAA1, EXOSC4, OPLAH, SPATC1, 

GRINA, PARP10, PLEC 

14 rs110701587 63925324 PUFA SNX31, ANKRD46, 

ENSBTAG00000054554, RNF19A, 

ENSBTAG00000050156, SPAG1 

14 rs41630566 46570537 PUFA EXT1, MED30 

15 rs110508416 37224652 C18:0, KET INSC 

15 rs109138685 37720295 KET INSC, CALCB, CALCA, CALCB, 

ENSBTAG00000048777, CYP2R1, PDE3B 
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BTA SNP SNP 

position (bp) 

Trait1 Positional candidate genes2 

15 rs41632691 83673161 KET GLB1L2, B3GAT1, GLB1L3, 

ENSBTAG00000053675, NCAPD3, 

ENSBTAG00000046088, VPS26B, THYN1, 

ACAD8, ENSBTAG00000012229 

15 rs109932511 83710700 KET GLB1L2, B3GAT1, NCAPD3, 

ENSBTAG00000046088, VPS26B, THYN1, 

ACAD8, ENSBTAG00000012229, GLB1L3,  

15 rs110944919 78017138 KET ENSBTAG00000054640, 

ENSBTAG00000052223, 

ENSBTAG00000055007, 

ENSBTAG00000031119, 

ENSBTAG00000024788, 

ENSBTAG00000031030, OR4C3, PTPRJ, 

ENSBTAG00000051670, 

ENSBTAG00000049550, 

ENSBTAG00000031025, 

ENSBTAG00000053247, OR4X1, 

ENSBTAG00000031032, 

ENSBTAG00000053761, 

ENSBTAG00000053438, 

ENSBTAG00000054267, 

ENSBTAG00000048640, 

ENSBTAG00000050306, 

ENSBTAG00000053824, 

ENSBTAG00000053261, 

ENSBTAG00000051253 

15 rs110351063 65323234 C16:0 EHF, APIP, PDHX 

17 rs41599470 36317694 ICF FSTL5, SNORA72 

18 rs110942910 27440587 KET no gene 

18 rs109499402 18077073 KET ZNF423, ENSBTAG00000051062, 

ENSBTAG00000052469, C18H16orf78 

18 rs109375227 24203949 KET AMFR, NUDT21, OGFOD1, CES1, 

ENSBTAG00000001851, MT1A, MT1E, 

MT2A, MT3, ENSBTAG00000049147, 

ENSBTAG00000049538, MT4, BBS2, 

GNAO1 

18 rs110198858 33625498 KET no gene 

18 rs29021918 42703808 KET ZNF507, DPY19L3 

18 rs41632433 28333748 KET no gene 

18 rs110600398 27938774 KET no gene 

19 rs109477972 29784751 SFA, C16:0 PIRT, MYH2, MYH3, SCO1, ADPRM, 

TMEM220 

19 rs41644917 40381198 PUFA, C18:0 THRA, MED24, NR1D1, CSF3, 

ENSBTAG00000045067, MSL1, IKZF3, 

ZPBP2, GSDMB, ORMDL3, LRRC3C, 

ENSBTAG00000050854, GSDMA, PSMD3, 

CASC3, RAPGEFL1, WIPF2, CDC6, RARA, 

ENSBTAG00000052844, TOP2A 

19 rs110933534 40505729 PUFA, C18:0 WIPF2, CDC6, RAPGEFL1, ORMDL3, 

LRRC3C, GSDMA, PSMD3, CSF3, MED24, 

THRA, NR1D1, MSL1, CASC3, RARA, 

ENSBTAG00000052844, TOP2A, IGFBP4, 

TNS4 

20 rs109946603 9419987 KET MAP1B, MRPS27, ZNF366, PTCD2, 

ENSBTAG00000053736 

21 rs109823489 56044735 PUFA CCDC88C, GPR68, FRMD5, 

ENSBTAG00000050803, PPP4R3A 
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BTA SNP SNP 

position (bp) 

Trait1 Positional candidate genes2 

22 rs41993977 5531843 SFA, C16:0 GADL1 

22 rs41994020 5499054 KET GADL1 

22 rs41994761 5476277 KET GADL1 

24 rs41570441 49057452 PUFA DYM, C24H18orf32, RPL17, LIPG 

27 rs110519353 36466414 SFA, C16:0 GINS4, GOLGA7, SFRP1, GPAT4, NKX6-3, 

ENSBTAG00000027629, 

ENSBTAG00000054394, 

ENSBTAG00000003275 

27 rs109734522 36747901 C16:0 ENSBTAG00000052888, GPAT4, NKX6-3, 

ENSBTAG00000027629, 

ENSBTAG00000054394, 

ENSBTAG00000003275, KAT6A,  

27 rs42138713 41773014 C16:0 THRB, ENSBTAG00000050025, NR1D2 

27 rs41647957 8009249 KET VEGFC, ASB5, SPCS3 

28 rs42854990 2669298 PUFA ENSBTAG00000048153 

28 rs109278212 45261673 UFA, MUFA CXCL12 

28 rs110222344 43155287 UFA WDFY4, ARHGAP22, LRRC18, VSTM4, 

FAM170B 

28 rs109839180 19620469 UFA, MUFA, PUFA REEP3, JMJD1C 

28 rs41586819 16074091 KET ENSBTAG00000050189 

29 rs29026721 28190477 KET SPA17, SIAE, NRGN, VSIG2, ESAM, 

ENSBTAG00000054187, 

ENSBTAG00000051944, 

ENSBTAG00000051107, 

ENSBTAG00000054033, 

ENSBTAG00000048913, PANX3, TBRG1, 

MSANTD2, ROBO3, ROBO4, HEPACAM, 

CCDC15 

29 rs109868969 17135246 KET TENM4 
1 SFA = saturated fatty acids, UFA = unsaturated fatty acids, MUFA = monounsaturated fatty 

acids, PUFA = polyunsaturated fatty acids, C16:0 = palmitic acid, C18:0 = stearic acid, KET 

= ketosis, ICF = interval from calving to first insemination. 

2 Positional candidate genes located in the interval of 250 kb surrounding associated SNP 

were retrieved from Ensembl release 102 (Zerbino et al., 2018). 
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Supplemental Figures 

 

Figure S4.1. Quantile-Quantile plots for first test-day (A) saturated, (B) unsaturated, (C) 

monounsaturated, (D) polyunsaturated, (E) palmitic, and (F) stearic fatty acid concentration in 

first-lactation Holstein cows.  
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Figure S4.2. Quantile-Quantile plots for (A) ketosis, and (B) interval from calving to first 

insemination in first-lactation Holstein cows. 
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Ketosis associations and negative energy balance cow types 

Our results suggested strong relationships between KET, the first test-day milk FPR (chapter 

2), acetone and BHB concentrations (chapter 3) on phenotypic scales. Cows suffering from 

KET in early lactation exposed significantly higher FPR, acetone and BHB concentrations than 

KET healthy cows. Furthermore, we identified negative influence of KET and first test-day 

milk ketone bodies on milk production traits from the very early-lactation period (chapter 3). 

The milk yield and the protein percentage was significantly decreased with increasing BHB and 

acetone concentrations while fat percentage, the FPR, and the SCS increased due to the strong 

body fat mobilization and immune responses in the mammary gland (Dodds et al., 1981; 

Hillreiner et al., 2016). We recommend the use of acetone and BHB thresholds for KET 

monitoring of 0.15 mM and 0.10 mM, respectively. In our study, those values were already 

significantly associated with a KET diagnosis, with reduced milk production and changes in 

milk composition. Previous studies proposed higher thresholds of 0.15 - 0.19 mM (milk BHB 

levels; Santschi et al., 2016; Churakov et al., 2021). Considering our results cows that are in a 

subclinical stage of KET would be disregarded and would not be detected using those high cut-

off values in practice.  

Assessing the influence of KET on first test-day FA milk concentration in first-lactation 

Holsteins, considering the data set described in chapter 4 and a mixed model for FA as 

implemented in SAS (version 9.4, SAS Institute Inc., Cary, NC, chapter 4, model [1], including 

KET as fixed effect, excluding additive-genetic effects and relationship matrix) we also 

identified significant effects of KET on UFA, MUFA, and C18:0 (Table 5.1). First test-day 

concentrations of UFA, MUFA, and C18:0 were significantly increased due to KET diagnosis. 

According to Churakov et al. (2021), who associated C18:0 concentration of 0.47 g/100 g of 

milk with severe NEB our results, especially regarding C18:0, displayed the suggested 

threshold of 0.47 g/100 g of milk significantly associated with KET (Table 5.1). Churakov et 

al. (2021) presented this threshold as optimal value that maximizes the sum of sensitivity and 

specificity to detect cows in NEB. To the best of our knowledge, our phenotypic analysis 

presented first results on cut-off values for specific first-test-day FA concentrations associated 

with KET diagnosis (Table 5.1). These findings will have practical implications and will be 

useful for on-farm detection of metabolic disease KET and severe NEB.  
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Table 5.1. Least squares means (corresponding SE in parentheses) of first test-day fatty acid 

concentrations in milk (in g/100 g of milk) for cows with the absence (0) or the presence (1) 

of a ketosis diagnosis. 

Trait 

Ketosis diagnosis 

0 1 

Saturated fatty acids 2.49 (0.01)a 2.52 (0.09)a 

Unsaturated fatty acids 1.42 (0.01)a 1.72 (0.06)b 

Monounsaturated fatty acids 1.16 (0.01)a 1.41 (0.06)b 

Polyunsaturated fatty acids 0.16 (0.00)a 0.17 (0.01)a 

Palmitic acid 1.09 (0.00)a 1.11 (0.04)a 

Stearic acid 0.41 (0.00)a 0.47 (0.02)b 

a, b Different superscripts indicate significant differences (P < 0.001). 

 

Döpfer (2021) provided a reason for a monitoring on NEB impaired cows not exclusively 

relying on BHB concentration. According to Döpfer (2021) cows differently reacted to the NEB 

due to different degrees of body fat mobilization, liver damage, immunosuppression, or changes 

in dry matter intake. The different response patterns reflected five cow types: the athlete cow, 

clever cow, healthy cow, hyperketonaemic cow, and the poor metabolic adaptation (PMAS) 

cow. The athlete cow represented a cow with high blood BHB concentrations, milk production 

and FPR, the clever cows had low BHB concentrations and lower FPR, the healthy cows neither 

showed increased BHB nor elevated NEFA levels and had normal milk production. Elevated 

BHB values and strongly decreased milk production were present in the hyperketonaemic cows. 

A PMAS cow revealed low BHB but increased NEFA values, decreased dry matter intake, 

reduced rumen activity and milk production (Tremblay et al., 2018). Hence, Döpfer (2021) 

concluded that cows impaired by NEB belonging to category five cows (PMAS cows) will not 

be detected, if early lactation monitoring just focus on blood BHB values. According to that, 

we assume that the consideration of milk FA besides milk BHB levels would be advantageous 

in detecting PMAS cows and cows monitoring in the phase of NEB.  

The phenotypic associations were reflected by determined genetic correlations. Also on 

genetic scales the strong positive correlations between KET, the FPR (chapter 2) and ketone 

body concentration (chapter 3) hinted to the fact that an inclusion of these indicator traits in 

breeding programs would lead to metabolic healthier cows at the beginning of lactation. 

Accordingly, the phenotypic associations between KET, ketone bodies with milk production 

traits were confirmed by the detected negative genetic correlations of KET and ketone bodies 
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with first test-day milk yield, protein percentage, and positive genetic correlations with fat 

percentage, FPR, and the SCS (chapter 3). Additionally, we estimated strong positive genetic 

correlations between KET and the novel potential milk indicators, the first test-day UFA, 

MUFA, and C18:0 milk concentrations and low to moderate positive genetic correlations 

between those FA, KET, and the fertility interval trait ICF (chapter 4). Thus, an inclusion of 

milk indicators in an index health trait would allow an improvement in early lactation metabolic 

health, possibly leads to an earlier resumption of oestrus activity and, in that way, shorten the 

interval from calving to first insemination. In consequence, this might result in lower costs for 

veterinary treatments regarding KET, related diseases, and lower milk yield losses. 

Canada, Denmark, Finland, and Sweden already include KET milk indicators (i.e., BHB 

milk levels, FPR) in KET breeding value estimations. With regard to our results the 

consideration of KET milk indicators such as first test-day FPR, acetone, BHB, and the FA 

concentration in the RZmetabol index in the trait KET is recommended. As shown by Rius-

Vilarrasa et al. (2018) the inclusion of indicator traits in breeding value estimations will 

improve reliabilities of KET breeding values. The use of the information on acetone, BHB, and 

FA milk concentration could also allow additional subdivision of the KET breeding value into 

subclinical and clinical KET. 

 

Genomic variant associations and candidate genes for ketosis 

Results of the GWAS regarding KET (chapter 2; chapter 4) highlighted the importance of genes 

related to FA metabolism, immune response, and insulin resistance in KET progression. The 

suggestively and significantly associated SNP were located close to candidate genes involved 

in obesity, fatty liver disease (e.g., EFCAB6, PARVB), insulin resistance, and diabetes (e.g., 

HMBOX1), as well as inflammatory response (e.g., ALB, CXCL8, VEGFC). Also for identified 

KET milk indicators, FPR, acetone, BHB, and UFA, MUFA, C18:0 FA, positional candidate 

genes related to these traits were detected (e.g., ADARB2, NRXN3, ACOXL, BCL2L11, 

HIBADH, CXCL12, ARHGAP22, JMJD1C, IGFBP4, chapter 2, chapter 3, chapter 4). The 

metabolic diseases KET and fatty liver were strongly related to the NEB and may also be 

connected with a state of insulin resistance (Herdt, 2000). Insulin a key metabolic hormone 

plays a major role in lipid metabolism. Insulin blood concentration is influenced by glucose and 

glucose precursors, stimulates glucose uptake in cells, promotes lipogenesis and inhibits 

lipolysis in adipose tissue. Thus, insulin supressed the influx of free FA in the blood. In the 

liver, insulin reduced activity of carnitine palmitoyltransferase I (CPTI, chapter 1, Figure 1.2), 

hence, decreased the transport of NEFA into mitochondria and supressed ketogenesis (De 
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Koster and Opsomer, 2013). An insulin-deficient state or insulin resistance caused restricted 

lipogenesis and supports lipolysis (Hayirli et al., 2006). Within the liver, the NEFA from 

adipose tissue lipolysis could be metabolized through β-oxidation and to ketone bodies via 

ketogenesis. However, when the hepatic uptake of NEFA exceeded the oxidation, a fatty liver 

is developed (Grummer, 1992; Bobe et al., 2004). The excess NEFA were reesterified to 

triglycerides, accumulated in the liver, impaired metabolic liver functions, and increased the 

risk for KET (Herdt, 2000). Studies investigating endocrine mediators suggested a close 

relationship between dairy cows KET, insulin resistance, liver function and oxidative stress (Xu 

et al., 2014; Cuiyu et al., 2019). For example Cuiyu et al. (2019) examined the relationship 

between insulin resistance and KET in dairy cows 14 to 21 days postpartum. Glucose tolerance 

of blood glucose levels in 120 min was used as the cut-off point to divide dairy cows into three 

groups: the abnormal glucose tolerance KET group (TH), the normal glucose tolerance KET 

group (TL), and the healthy control group. Results showed that the insulin sensitivity value was 

significantly lower in TH group. Additionally, liver function abnormalities, determined due to 

aspartate aminotransferase plasma levels, were more severe in the TH than in the TL and control 

group. The concentration of BHB, NEFA and oxidative stress was significantly higher in the 

TH group than in controls. However, insulin resistance can deteriorate lipolysis of adipose 

tissue and the accumulation of NEFA in turn leads to greater insulin resistance which is 

associated with health problems such as fatty liver and oxidative stress (Cuiyu et al., 2019). 

Generally, if glucose concentrations were abundant, adipose lipogenesis would be 

favored over lipolysis (Herdt, 2000). This effect might be mediated as described by insulin but 

could also be related to the effect of glucose in glycerol synthesis. For triglyceride synthesis a 

source of glycerol is needed. The major precursor of adipose glycerol is glucose, thus, its 

presence enhances glycerol availability and favors lipogenesis. During NEB glucose 

concentration is reduced and NEFA mobilization from adipose tissue is stimulated due to the 

lack of glycerol (Herdt, 2000). 

The relationship between KET with inflammatory response genes might be based on the 

understanding of KET as a response to systemic inflammation in early lactation (Zhang and 

Ametaj, 2020). Zhang et al. (2016) compared markers for innate immunity activation during 

the dry-off period (pre-ketotic cows), the week of diagnosis of KET (ketotic cows), and the 

weeks of recovery from KET (post-ketotic cows). Results showed that both pre-ketotic and 

ketotic cows had accumulated pro-inflammatory cytokines (e.g., interleukin-6 and tumor 

necrosis factor), as well as acute phase proteins (e.g., haptoglobin) in the serum compared with 

healthy controls. Thus, cows with KET experienced a low-grade chronic inflammatory state 
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before the occurrence of the disease (Zhang et al., 2016). Results were confirmed by 

Abuajamieh et al. (2016) who found increased acute phase protein serum amyloid A, 

haptoglobin and lipopolysaccharide binding protein in ketotic Holstein cows post calving. 

Moreover, cows with subclinical KET showed a higher immune response compared with 

metabolically healthy individuals based on increased lymphocytes, increasing stimulative 

properties of peripheral blood mononuclear cell and a relationship between haptoglobin and 

typically increased values of BHB and NEFA (Schulz et al., 2015). 

Sartorelli et al. (2002) reported that ketone body BHB and acetoacetate suppressed non-specific 

immunity by reducing efficiency of chemotaxis and phagocytosis in neutrophils of ketotic small 

ruminants. This effect may explain the increased occurrence of infectious diseases during the 

ketotic state. Thus, on the one hand KET and elevated ketone bodies were related to the 

activation of the innate immune response but on the other hand, especially, BHB served as a 

suppressor of inflammatory response, facilitating the development of infectious diseases. 

Applying single-step approach in our last GWAS study (chapter 4) identified genomic 

regions on BTA 5, 6, 10, 15, and 20 associated with KET were common to preceding GWAS 

results (Nayeri et al., 2019; Soares, 2020; Soares et al., 2021). Thus, the overlapping genomic 

regions in different studies suggested that these regions should be of great interest in future 

functional studies analyzing KET progression. Again, positional candidate genes e.g., PDE3B, 

PYGL, THBS1, and CXCL8 were involved in glycolysis, lipolysis, insulin resistance, and 

inflammatory response. Interestingly, the used single-step approach (chapter 4) analyzing 

genomic KET and FA associations based on H matrix resulted in a higher number of 

significantly and suggestively associated SNP regarding producer-recorded KET compared 

with GWAS results based on G matrix (chapter 2). In the ssGWAS used in chapter 4, all 

phenotypic information from genotyped and ungenotyped animals as well as their ancestors’ 

information was used simultaneously through common genomic and pedigree information. The 

main advantage of ssGWAS is the ability to incorporate phenotypes of ungenotyped subjects 

directly in the association analyses without the necessity to construct pseudo-observations 

(Wang et al., 2012; Li et al., 2019). Therefore, ssGWAS could be more useful when a large 

number of phenotyped subjects is not genotyped (Li et al., 2019). Aguilar et al. (2019) 

confirmed that ssGWAS is an efficient method in QTL detection and P-value generation, 

particularly in complex data sets. The consideration of phenotypic, pedigree and genomic 

information in ssGWAS and thus higher number of animals used in our study (chapter 4) may 

have led to the greater number of SNP associations for KET compared with our preceding study 

results (chapter 2). Especially, regarding highly polygenic traits and the case-control study 



CHAPTER 5 

156 

design the more information included in the analysis due to bigger sample size considered, the 

more robust associations could be identified (McCarthy et al. 2008; Li et al., 2019). 

In general, GWAS for complex traits helped to explore the relationship between 

common genome sequence variation and genome-wide disease predisposition (McCarthy et al., 

2008). Nevertheless, SNP associations were mostly suggestive and not significant regarding 

KET (chapter 2, chapter 4) reflecting the polygenic character of the complex disease trait. 

Polygenic traits are influenced by multiple genomic regions with compared low effects 

(Kemper and Goddard, 2012). In comparison to commonly used medium-density SNP chip 

arrays the usage of whole-genome sequence (WGS) data in GWAS was confirmed as an 

effective method in identifying common and also rare genomic variants especially for complex 

polygenic traits in cattle (Daetwyler et al., 2014; Wolf et al., 2021). According to Wu et al. 

(2015) who compared association results for udder health in Holsteins using medium-density, 

high-density SNP chip, and sequence data, the dense genomic information lead to more 

powerful and reliable GWAS results. The power of association detection significantly increased 

with ascending marker density. Due to the application of sequence data the number of 

significantly associated genomic regions for the complex trait udder health was increased and 

important genomic regions could be defined more precisely (Wu et al., 2015). With increasing 

SNP density the probability that a SNP is in a perfect linkage disequilibrium with a QTL is 

enhanced (Meuwissen et al., 2016). Furthermore, using WGS the causative mutations might be 

present in the data set and genomic selection can use this causative mutation information 

directly instead of relying on the linkage disequilibrium between marker and causative mutation 

(Meuwissen et al., 2016). Additionally, compared with WGS data SNP chips are known to lack 

a substantial proportion of globally rare variants (Geibel et al., 2021).  

This leads to the suggestion that the implementation of WGS data in association 

analyses for KET might have beneficial effects on the GWAS results. The medium-density SNP 

chip with around 54,000 marker is commonly used for GWAS in dairy cattle. However, during 

the last decades high-density SNP chip (~ 777,000 marker) were designed and WGS data 

became available. As sequencing costs continue to decline WGS will be more and more applied 

in future analyses, in particular, regarding traits with complex genomic architecture 

(Meuwissen et al., 2016; Pryce et al., 2018). 

 

Impact of epigenetic processes related to negative energy balance and ketosis 

Epigenetics comprises the investigation of heritable molecular modifications responsible for 

the regulation of genome activities and gene expression resulting in phenotypic differences 
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without alterations to the basic DNA sequence (Wang and Ibeagha-Awemu, 2021). The word 

epigenetic could be divided into “epi” and “genetic” referring to information beyond encoded 

DNA sequence (Greally, 2018) and epigenetic processes due to DNA methylation, histone 

modification, chromatin remodeling, non-coding RNA regulation, affected gene expression, 

genome function, and stability. These processes form the epigenome being subject to continued 

changes and thus dynamic during the whole life. Several studies have provided evidence of 

epigenetic regulation processes involved in livestock health (Wang and Ibeagha-Awemu, 

2021).  

Van Hoeck et al. (2013) and Desmet et al. (2016) found that DNA methylation changes due to 

maternal stressors (i.e., metabolic disorders) partly explained poor performances of offsprings. 

The analysis regarding the exposure of maturing bovine oocytes and developing embryos to 

elevated NEFA suggested that maternal metabolic disorders can disturb epigenetic 

programming, i.e., DNA methylation in the offsprings. Oocytes and embryos exposed to 

pathophysiological concentrations of C18:1, C16:0, and C18:0 FA resulted in blastocysts with 

different DNA methylation and transcriptomic fingerprints compared to physiological 

concentrations of these FA. Transcriptomic comparison revealed that 311 genes were 

differently expressed in blastocysts originated from embryos cultured with high FA 

concentrations compared to normal conditions. Differently methylated and expressed genes of 

blastocysts (i.e., LEP, TCR, IGF1R, LIF, PEPCK) were related to lipid and carbohydrate 

metabolism, cell death, immune response, and metabolic disorders. Additionally, Van Hoeck 

et al. (2011) indicated that blastocysts exposed to the high FA concentration displayed glucose 

intolerant and mitochondrial dysfunction signs (i.e., reduced oxygen, pyruvate and glucose 

consumption, up-regulated lactate consumption, higher amino acid metabolism). Furthermore, 

the number of blastocysts from oocytes matured and the number of blastocysts from cleaved 

zygotes were significantly decreased due to the influence of pathophysiological FA 

concentrations (Desmet et al., 2016). According to that, Carvalho et al. (2014) showed that 

Holstein cows significantly losing body weight from calving to three weeks after calving 

displayed a lower number of viable and transferable embryos after a superovulation around 100 

days postpartum. As summarized by Leroy et al. (2017) oocytes and embryos were of 

questionable quality in females suffering from lipolytic disorders. As stated by Desmet et al. 

(2016) more research is necessary to examine long-term effects of the epigenetic dysregulation. 

Epigenetic effects of the ketone body BHB on histone acetylation (an epigenetic 

modification), bovine oocytes and embryos were assessed by Sangalli et al. (2018). Cumulus-

oocyte complexes were matured without (control group) or supplemented with 2 mM of BHB 
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(BHB group) during in vitro maturation. Additionally, subsequent embryos were incubated with 

or without 6 mM BHB supplement. Using histone acid extraction, H3K9ac, a robust post-

transcriptional modification, was measured and no differences in H3K9ac levels were detected 

in controls or BHB treated oocytes. The BHB treatment stimulated genes associated with 

ketolysis and metabolism regulators (e.g., BDH1, OXCT1, ACAT1, PPARA, PPARGC1A, and 

SREBF1) in cells. Also in oocytes treated with BHB gene expression of PPARA, a regulator for 

genes involved in lipid metabolism and ketone body synthesis was upregulated. The expression 

of PPARA is strongly induced during fasting to shift metabolism away from glucose metabolism 

to lipolysis to provide alternative sources of energy for the organism. Whereas no influence of 

BHB was detected on H3K9ac levels in oocytes significant influence was identified on H3K9ac 

levels and gene expression of FOXO3A, a gene related to oxidative stress response, in zygotes 

which maintained until blastocyst stage. Zygotes treated with BHB showed elevated levels of 

histone acetylation and blastocysts generated from these zygotes presented elevated H3K9ac 

levels and gene expression of FOXO3A. Those findings suggested that the metabolite BHB 

commonly circulating in cows’ blood, was able to affect an epigenetic mark (H3K9ac) in 

zygotes and blastocysts (Sangalli et al., 2018).  

The in vivo study of Chaput and Sirard (2020) analyzing the embryonic response to high 

BHB levels postpartum dairy cows confirmed the existence of epigenetic processes in this 

context. Differential expression in response to increased BHB concentrations in the maternal 

environment due to NEB in early lactation was found for 1,154 genes. 891 genes were 

downregulated and 335 were upregulated in embryos from cows in metabolic deficit. Genes 

FOXP4 and OPA1 of relevance to energy metabolism and mitochondrial functions showed 

significant expression differences in morulae from cows with high BHB blood levels 

postpartum (Chaput and Sirard, 2020). Moreover, Chaput and Sirard (2020) detected 

hypermethylation in high BHB groups in all regions except for exons. DNA methylation i.e., 

the chemical modification on a cytosine base, is one of the most widespread epigenetic marks 

and influences gene transcription. Thus, these findings indicated the appearance of a 

characteristic epigenetic signature of energy deficit experienced in vivo raised embryos, 

possibly reflecting an adaption to the maternal metabolic stress (Chaput and Sirard, 2020). 

Summarized, the in vivo and in vitro results suggested an influence of NEB, KET, elevated 

ketone bodies, and FA on cows’ fertility, oocyte maturation and blastocyst development due to 

epigenetic processes and altered gene expression. 

A recent study by Wu et al. (2020) addressed clinical KET associated alterations of gene 

expression in Holstein cows during the transition period. Comparison of gene expression of 
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healthy and KET diseased cows pre- and postpartum revealed 75 and four differently expressed 

genes between sick and healthy cows at post- and prepartum, respectively. Subsequent 

functional analyses exposed one gene STX1A associated with stress stimulations significantly 

higher expressed in sick cows pre- and postpartum. The potential biological effect of STX1A on 

KET has to be investigated (Wu et al., 2020).The presented studies indicated an epigenetic 

influence of the state of NEB and KET in dairy cows, especially, in reproductive organs in 

postpartum cattle not detectable with common GWAS. Future gene expression and epigenetic 

analysis probably provides insights on how KET might also affect the offspring by altering gene 

expression due to epigenetic processes during early embryonic stage. 

 

Usefulness of FTIR measurements 

In our studies we confirmed the usefulness of first test-day FTIR measurements of FPR and 

ketone body concentrations in early lactation KET monitoring. On the one hand ketone body 

concentrations provide an indication of the disease relatively early and as our analyses showed 

up to several weeks before KET was diagnosed (chapter 3). The FPR on the other hand showed 

significant changes only shortly before and on the actual diagnosis day (chapter 2). Therefore, 

it would be advantageous for dairy cattle farmer, if milk sampling with respect to KET 

indicators took place more frequently in the first weeks after calving.  

The FTIR data used in our studies were generated by the same analysis instruments in 

the milk recording organization. Thus, a standardization of data was not necessary. However, 

milk recording organizations around the globe use different analyzers for FTIR predictions. In 

that way, the data generated is specific to the particular spectrometer used. Differences between 

predictions originated from characteristics and modes specific to each spectrometer model, 

different uses, replacements, and maintenance operations (Grelet et al., 2017). The noise due to 

differences between the instruments reduced the prediction accuracies (Tiplady et al., 2019). 

For a large-scale usage of FTIR milk KET indicator data i.e., in breeding value estimations, 

standardization of infrared spectral data is mandatory. Several studies and projects (e.g., 

OptiMIR) were implemented to harmonize FTIR data from different analyzers to create 

comparable result (Grelet et al., 2017; Tiplady et al., 2019; Gruber, 2021).  

Grelet et al. (2017) evaluated if a spectral standardization method would enable the use 

of multiple equations within a network of different spectrometers. By comparing the spectral 

variability between 66 instruments from three different brands and 26 laboratories in Austria, 

Belgium, Canada, France, Germany, Luxembourg, Switzerland, and the United Kingdom the 

standardization was assessed. Standardization procedure based on the piecewise direct 
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standardization (PDS) method which relates milk spectra on a standard primary instrument to 

spectra on other instruments using identical milk based reference samples was considered. The 

standardization resulted in a reduction of variability between spectrometers, more precise, fine 

milk predictions (i.e., PUFA predictions) and an increase in the accuracy of the predictions. 

The PDS method has been shown to be valuable for the transfer of spectra from one instrument 

to another. Grelet et al. (2017) assumed that a standardization process will have positive effects 

on breeding studies which have to rely on many comparable records. In breeding evaluations 

nonstandardized data would inflate residual variance, reduce heritability and genetic progress. 

Additionally, genetic correlations between FTIR traits and direct traits would be lower with 

nonstandardized FTIR data from different instruments (Grelet et al., 2017). According to that, 

Tiplady et al. (2019) compared different standardization methods for FTIR spectra regarding 

classical milk components such as protein, fat, and lactose predictions including PDS and 

retroactive percentile standardization (RPS) to reduce between-instrument variability. The RPS 

method used percentiles of the observed spectra from routine milk test samples to map and 

exploit relationships between standard primary instrument and the other instruments. Tiplady 

et al. (2019) demonstrated that the PDS approach lead to the most consistent reduction in 

prediction errors across time, is less sensitive to shifts in milk composition and non-instrument 

errors and concluded that this was the optimal standardization approach.  

Most of the equation models were developed in research contexts and not practicable in a 

routine usage. Hence, Grelet et al. (2021) recommended a development of international 

guidelines and collaborations to generate large robust milk spectra data sets and consistent 

routine model use.  

 

Conclusions and recommendations 

This thesis specifies relationships of metabolic disease KET, innovative KET milk indicators, 

production traits measured via FTIR technic on the first test-day and fertility interval trait ICF. 

Trait relations were phenotypically, genetically and genomically analyzed in consideration of a 

cow reference group. Metabolic disease KET significantly influenced the first test-day FPR, 

acetone, BHB, UFA, MUFA, and C18:0 milk concentration. Thus, there is great potential for 

the milk indicators measured via FTIR with regard to reliable KET detection in early lactation. 

Genetic correlations between KET, FTIR ketone body, UFA, MUFA, and C18:0 concentrations 

were strong positive indicating genetic improvement in KET due to an inclusion of the assessed 

indicator traits in health indices of breeding programs. Low to moderate positive genetic 

correlations were estimated for KET, UFA, MUFA, C18:0 with ICF. Hence, an enhancement 
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in metabolic health might simultaneously lead to an earlier resumption of the oestrus. The 

GWAS results provide new insights in the genomic architecture of complex disease trait KET 

and corresponding innovative milk measurements. The results of the GWAS lay the basis for 

more profound investigations regarding the genetic expression that underlies KET progression, 

innovative milk indicator traits and ICF. In future, this might offer the opportunity to select for 

healthier cows regarding early lactation disease KET. 

 

The major results of this work and recommendations are: 

• Strong phenotypic relations between KET and milk indicator traits i.e., the FPR, 

acetone, BHB and UFA, MUFA, C18:0 concentrations on first test-day exist and could 

be used to derive management decisions. According to our results we suggest the usage 

of lower threshold values for ketone body concentrations of 0.15 mM and 0.10 mM for 

acetone and BHB, respectively, compared to commonly used thresholds in KET 

prevention and monitoring. Additionally, the inclusion of FA, especially C18:0 

(threshold value of 0.47 g/100 g of milk), will have practical implications and may also 

allow the identification of cows suffering from NEB but not showing the typical 

increased BHB concentration. Moreover, we recommend a more frequently milk 

sampling regarding the assessed indicator traits in the first weeks after calving. 

• Phenotypic and genetic relations between KET and ketone body concentrations with 

first test-day milk production traits were favorable suggesting positive influence of 

selecting for KET healthier cows on milk production traits in the first weeks after 

calving. 

• Genetic parameter estimates of KET, indicator traits and ICF revealed low to moderate 

heritabilities. Genetic correlations between KET diagnosis and novel milk indicator 

traits were large positive. We recommend their implementation in metabolic health 

breeding goals e.g., in KET index included in the RZmetabol. Low to moderate positive 

genetic correlations were detected for KET, UFA, MUFA, C18:0, and ICF. 

Accordingly, selection strategies for metabolic health improvement might have positive 

effects on the fertility interval trait. For large scale integration of FTIR measurements 

in breeding programs uniform screening and standardization of FTIR data should be 

used. 

• On the basis of innovative FTIR milk indicators and direct KET diagnosis, genomic 

regions of interest and potential candidate genes for KET were identified. Future 

functional analyses might improve the biological understanding of KET.  
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