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“Color is a mean of exercising direct influence upon the soul”

from Concerning the spiritual in art, by Wassily Kandinsky
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Abstract

Seeing in color is a primordial aspect of our visual experience. Despite its

importance, it is still misunderstood what exact purpose our color vision serves.

A common belief is that object recognition, crucial to our survival, is a core

driving force in the development of our visual system, and our color perception

by extension. And indeed, color is known for improving our ability to recognize

objects.

In this thesis, I explored the limits to which Deep Neural Networks, optimized

for object recognition or color constancy, can explain and help us understand

our color vision. Using advanced feature visualization, stimuli generation and

representational analysis methods, I carefully examined the color vision of these

trained models, also comparing their artificial responses to biological visual

systems.

I find that both artificial and biological systems exhibit some striking differ-

ences, but these are outweighed by the sheer number of similarities. These

similarities include (1) large computing power for the processing of color, (2)

single and double opponent units in their early processing stages, (3) more sen-

sitivity to variations in hue than saturation, and (4) color representations that

follow similar perceptual dimensions. Despite their limitations, Deep Neural

Networks can thus astonishingly explain many color properties of our visual

system. This thesis hence provides evidence that our color vision is largely

shaped for and motivated by a feedforward recognition of natural objects and

their surface colors.
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1

Synopsis

1.1 Introduction

Color is a primary feature of our visual experience. In the very first pages of his Phe-

nomenology of Perception, Merleau-Ponty defines sensations as follows sensations [1] : "to

see is to have colors or lights, to hear is to have sounds". According to him, colors are to

our visual experience what sounds are to our hearing: they define it. They are so salient

that the revolutionary painter Kandinsky even attributes them the power of "exercising

direct influence upon the soul" [2], and even scientists use them as striking examples to

illustrate perceptual phenomena [3].

While it remains unclear what exact purpose our color vision serves, there is much

evidence that color enhances our ability to recognize objects in a natural environment

[4, 5, 6]. Object recognition, crucial for our survival, is traditionally considered a core

factor in the development of our visual system [7, 8], and, by extension, our color vision.

If we can quantify the extent that state-of-the-art object classification models and color

classification models explain the properties of our color vision, we would be a step closer

to understanding how these emerged in biological vision. This is what this thesis attempts

to do, with the help of some recent and exciting advances made in artificial intelligence

algorithms – Deep Neural Networks.

Deep Neural Networks, commonly called DNNs, are a family of learning algorithms that

has been dominating the field of artificial intelligence for a little less than a decade now.

They have notably expanded boundaries in computer vision, surpassing even humans on

object and face recognition [9]. They also reached state of the art performance in gaze

prediction [10], video colorization [11] and many other complex visual tasks. DNNs are

very complex non linear learning algorithms, typically consisting of millions of parameters
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1. SYNOPSIS

in the form of interconnections between hundred of thousands of artificial “neurons”. Given

the many ways these network learn to form the same successful interconnections, it is a

real challenge to understand what features each neuron has learned in order for the model

to perform its task.

Developing more efficient and more accurate DNNs for visual tasks serves the field of

computer vision [12] and artificial intelligence at large. But, more generally, it is also of

tremendous interest for the field of vision science, as: (1) DNNs are better predictors of

neural activity [13, 14, 15, 16] and neural organisation [17] than previous models. (2)

They facilitate both neurophysiological [18] and psychophysical [19, 20] studies via image

generation or selection. (3) Under certain conditions they even predict human behaviour

[19, 21]. Understanding the computations underlying DNNs thus has the potential to

bring us a step towards understanding how we perform the same tasks - by revealing

similar neural features and the factors involved in their emergence. Finally, (4) DNNs are

also useful for developing tools for understanding representation in cognitive systems: if

we cannot find the tools and concepts to understand artificial neural networks like DNNs,

how can we hope to understand biological brains which are a million times more complex,

highly dynamic and hardly accessible in vivo?

This thesis is thus concerned with characterizing, describing and understanding the pro-

cessing and representations of colors in DNNs trained for the recognition of natural objects

and colors in complex environments. Doing so, we can test to what extent feedforward

models trained on these tasks explain how we perceive colors. Here lies the principal

motivation of this thesis. More precisely, we aim at solving the three following questions:

• What are the color properties of DNNs trained for object and color recognition?

• How do these properties compare to color vision in primate?

• And what can we learn from their similarities and differences?

Before diving into the three studies that constitute the core of this thesis, I will spend

the next few pages developing the themes relevant for understanding their scope. I will

start by giving a short introduction to deep neural networks and their impact on the field

of computer vision. I will then discuss the evidence that DNNs are useful models for

understanding our visual system, and the ventral stream in particular. I will follow with

what evidence we have that our color vision is tuned for object recognition. I will finish

the introduction with a description of some of the recent studies that are most relevant for

this thesis.

2



1.1 Introduction

1.1.1 Introduction to Deep Learning and Deep Neural Networks

For many decades, artificial neural networks sparked a relatively marginal interest in cog-

nitive and computer science, with none but a few scientists [22, 23, 24, 25] actively working

on developing such algorithms. In 2012, Alex Krizhevski and colleagues developed AlexNet

[26], an artificial neural networks that surpassed every other algorithm on the benchmarck

ILSVRC competition [27] 1 by an error almost half that of the runner up.

AlexNet is a combination of several innovations [28], each taking place in a short period

preceding it: a fast and efficient training procedure [25, 29], sufficiently large datasets [30,

31] and the development of software libraries for high-performance operations on Graphical

Processing Units (GPUs) 2. Indeed, GPUs are particularly well suited for computing many

simple operations simultaneously [28]. And essentially, this is what DNNs are: hundreds

of thousands of very simple and interconnected operators, or "neurons", each coding for

unique, sometimes simplistic features whose combined responses are able to solve very

complex tasks.

Since the introduction of AlexNet, DNNs have revolutionized the field of computer vision,

exhibiting supra-human performances on object [9, 32], scene and face recognition. They

also showed state of the art performance in other complex visual tasks such as saliency

[10], video colorization [11], face detection [33], reverse rendering [34], medical imagery

analysis [35] and 3D reconstruction [36] to name a few.

Throughout this thesis, I use several successful DNN architectures and their derivatives.

These architectures are AlexNet [26], the VGG nets [37], ResNet-50 [9], MobileNet [9] and

some custom derivatives of ResNet [9] and classic convolutional architectures [24]. For the

sake of conciseness, let us simply address here some key concepts. For a more a detailed,

technical description of these models, including their similarities and differences, please

refer to their respective papers or this thesis publications.

The architectures used here are classic, feedforward convolutional DNNs which non-

linearly transform their input by decomposing it into increasingly complex features, as

illustrated in Figure 1.1. This hierarchical encoding takes place via linear kernels, followed

by a non-linear activation function, that filter their input to enhance specific features. A

whole model is divided into layers, where kernels in one layer take their input from kernels

in previous layers and transmit their output to the next layers, thus building ever more

large and complex features as the layer depth increases [39]. Kernels in the first layers of

1see https://www.image-net.org/challenges/LSVRC/index.php
2see https://code.google.com/archive/p/cuda-convnet/
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Figure 1.1: Schematic of a Deep Neural Networks and learned representations.
Illustration of an AlexNet-like architecture with 5 convolutional layers and 3 fully-connected
layers [26]. The visual information from the input image is processed in a feedforward way,
layer per layer. As the layer number increases, so does the receptive fields of its units and the
complexity of the representations learned (visualizations of representations taken from [38]).

DNNs have receptive fields typically around 1.5% to 2.5% the size of the model’s input

(5 pixel-wide receptive fields for a 224 pixel-wide input), while kernels in the last layers

have receptive fields of similar size as the whole input image. DNNs are Deep Learning

algorithms, meaning that every kernel learns to encode features through optimization pro-

cedures, typically gradient descent [40], coupled with an optimization function, typically

cross entropy for recognition tasks [26]. Thus, DNNs trained for performing object recog-

nition are hard to interpret. To understand a model fully, one needs to discover thousands

of complex features where each feature is the result of a cascade of the several non-linear

operators that precede them.

1.1.2 Deep Neural Networks as models of the ventral stream

In the previous section, we have seen that DNNs revolutionized computer vision, going

as far as solving complex tasks like object recognition and illumination estimation. Since

biological vision resolves the same tasks, can DNNs teach us anything about the underlying

computations in our own visual system?

Two different - and often opposed - conceptions of vision have concurrently driven re-
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1.1 Introduction

search in biological and artificial visions [41]. One, the empiricist or discriminative per-

spective [3, 8, 42], considers perception as a largely feedforward processing flow, driven by

bottom-up mechanisms that filters and transforms the incoming retinal information into

ecologically relevant constant features, such as color [3] and shape [7]. As such, vision is

driven by sensory data and perception is direct. The other perspective, the generative and

rationalist conception of vision [43, 44], hypothesizes that the sensory input is constantly

evaluated and challenged by high-level representations that captures prior knowledge about

the world, which in turn makes inferences through a top-down signal flow. As such, vision

is driven by internal, complex beliefs that stabilize our sensory input.

As always, the reality is surely more refined than each perspective, and likely combines

both approaches [41]. The visual systems of primates indeed exhibit the hierarchical neural

organization and velocity associated with a feedforward processing of the visual input [13],

but also the recurrent connections [45] and robustness [44] associated with a top-down flow

of visual processing. We have yet to come up with a framework that could satisfyingly

unite both approaches. Until then, we can push each approach and explore the extent in

which they are sufficient to explain our visual system. With this in mind, the best current

models for testing the discriminative hypothesis are DNNs [8, 41], since they indeed reach

or surpass human performance on object recognition [9, 26, 46].

Interestingly, supervised DNNs trained for object recognition correlate with the ventral

visual pathway - known to be involved in our object recognition [8, 47] (Cf. Figure 1.2 A).

Notably, DNNs (1) are the best predictors for primates neural activity in the ventral path-

way [13, 14, 16], meaning that they capture the computational properties of the primate

brain to a larger extent than any other current models; (2) exhibit a similar organization

as biology [13, 15], with a hierarchical correspondence between layers of DNNs and visual

cortical areas: early cortical areas correlate with early layers of DNNs, and later cortical

areas with later layers, as shown in Figure 1.2 B. This suggests that similarly to DNNs, the

primate brain decomposes visual information into increasingly complex features; (3) have

a functional neural organization alike what is found in the human visual system [48, 49]

when the network is trained on the dual task of object recognition and face recognition [17];

(4) have a deep latent representation that predict human perceptual judgements [21, 50].

Together, these evidences suggests DNNs encode certain aspects of the world in the same

way that we perceive them.

Supervised DNNs trained for object recognition, however, also exhibit some fundamental

differences with human observers. The most well-known example is the kind of adversarial

attack first proposed by Goodfellow et al. [52] where adding small amounts of noise to an

5
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Figure 1.2: Hierarchical correspondence between layers of DNNs and visual
cortical areas. Panel A: Schematic of the ventral stream in the human brain. It shows
the approximate location of each cortical area of the ventral stream and the flow of visual
information from the retina. Panel B : Correspondence between layers in a DNN trained
for object recognition and cortical areas. The top plot is taken from [15] and shows the
distribution of voxels across several cortical areas in one subject, divided according to the
DNN layers that best predict their activity. Proportions are relative to the overall number
of voxels significantly correlated to DNN activations (30% of total voxels). The bottom plot
shows a schematic of the model’s architecture used in the study [51] and the color coding used
in the layer assignment. Note that the same color coding was used in panel A: applied colors
are representative of the average values found in the layer assignment [15] as well as the high
correlations found between IT and top layers of DNNs [16].

image, that is imperceptible to human, lead to erroneous network responses [52]. Generally

speaking, DNNs suffer from a hypersensitivity - or low robustness - to noise [53] and

lack generalizability to out-of-distribution stimuli - stimuli that are outside the stimulus

distribution included in the training [54]. Additionally, the error patterns of supervised

DNNs often differ from human observers [21, 55], meaning that when these DNNs are

wrong, they are for different reasons than us. In such cases, extreme stimuli manipulations

[55] or changes in training procedure [21] are required for correcting these differences. An

optimism is allowed, however, as new generations of deep neural models are ever closer

to solving these issues [56, 57]. Keeping these limitations in mind, DNNs remain useful

models for testing the extent to which a hierarchical, feedforward processing of the visual

6



1.1 Introduction

information can reproduce our vision, notably the properties of cortical areas involved in

object recognition.

1.1.3 Biological color vision is tuned for object recognition

DNNs seem worth pursuing as models of the visual system, and, in particular, the ventral

stream. But what about color? Despite the many mysteries behind color perception

[4, 5, 58], a common conception is that one crucial function of color vision is to facilitate

the recognition of objects and scenes [4, 5, 58, 59].

Psychophysical studies in humans have indeed shown that color images of natural objects

and scenes are recognized faster, classified more accurately and remembered better than

their grayscale version [60, 61, 62, 63, 64]. This is particularly true for the so-called "color

diagnostic objects" or objects which consistently appear in one specific color (e.g., lemons,

tennis balls) [60, 63, 64]. For these objects, the lack of color significantly impedes our

capacity to recognize them. While in our technologically advanced world, the man-made

objects that we manipulate rarely come in a single color, natural objects like fruits and

vegetables do [65], highlighting the importance of color for the recognition of edible objects,

and our survival. Some even argue that chromatic information is more indicative of objects

than luminance information, the latter rather carrying information about shadows and

shadings [66, 67]. In natural settings, distinguishing between two colors can be particularly

helpful for separating an object from its background e.g a fruit from its foliage [68]. Several

studies have shown how color improves object segmentation in natural scenes (see [69] for

a review) and how chromatic contrast drives our perception of object-contours [70]. Our

visual system seems particularly responsive to chromatic contrast: color-sensitive cells

with center-surround or double-opponent receptive fields appear in large proportions at

the earliest stages of our visual system (e.g., LGN [71, 72] and V1 [73, 74]).

These cells are presumably also involved in color constancy: our ability to perceive

surface colors consistently across various illumination conditions despite the ambiguous

sensory input reaching our eyes [75, 76]. Color constancy is yet another mechanism that

facilitates object recognition [5, 58]: it ensures that a same object keeps a consistent color

appearance throughout the day, and under natural and artificial lights. Although color

constancy has been thoroughly studied over the years (see [4, 58, 59, 75] for reviews) it

has yet to be fully understood. Some theorists argue that color constancy is an ill-posed

problem that cannot be perfectly solved [77, 78], and behavioral studies disagree on how

color constant human observers are [58]. It also remains unclear which neural mechanisms

are responsible for color constancy. Adaptation and the double opponency, Low level

7



1. SYNOPSIS

properties of cells in early stages of the visual system, have been shown to contribute to

color constancy [76]. But higher-level and even cognitive mechanism such as memory have

also been identified as being useful for color constancy. For example, humans observers

have been found more color constant for familiar objects than for unknown ones [79, 80].

Thus, we are still lacking a complete neural model of color constancy, which encompasses

physiological similarities to the primate’s visual system, and at the same time exhibits

similar behaviour to humans on color constancy relevant tasks.

Our color vision is thus tuned for object recognition. This suggests that object recogni-

tion - and its derivatives like color constancy - in itself may have helped shape the way

we see colors. If we want to understand how our color vision came about, it seems cru-

cial to understand what color properties emerge in models like DNNs trained for object

recognition, color recognition and color constancy, and if these networks resemble ours.

Surprisingly, however, there is to my knowledge fairly little work addressing these points,

although the interest seems to be growing. In the next section I give an extensive list of

the few relevant studies I am aware of.

1.1.4 Related works

The studies in this thesis can be subdivided into two. The first 2 studies focus on the color

properties of DNNs trained for object recognition, and how these abilities contribute to

the models performance. The third study implements several architectures on the task of

color recognition under varying illumination, simultaneously learning color constancy. For

clarity, I divided the next short review following a similar subdivision.

1.1.4.1 Color in DNNs for object recognition

Engilberge and colleagues were first to characterize the color properties of DNNs trained

for object recognition [81] using 2 popular architectures: AlexNet [26] and VGG-19[37].

They trained the models on natural images from the PASCAL dataset [82] and a subset

of ImageNet[30]. They found fairly low proportions of color-sensitive units throughout the

models, less than 15% in all layers. While Engilberge et al. do not show the distribution

of hues for color sensitive units, they show that the color tuning of these units are more

complex the deeper the layer. However, their approach has a few limitations: 1) their

testing datasets only include non-color diagnostic object classes like plane and sheep, pos-

sibly explaining the low proportion of color sensitive units found; 2) they evaluated hue

specificity using monochromatic images, thus removing chromatic contrast. Any chromatic

8



1.1 Introduction

edge detector would hardly respond to these stimuli, let alone kernels with complex spatial

tunings like those found in deep layers of the VGG nets [39]. In our first 2 studies, we

avoided these issues by 1) using the richer ImageNet dataset [30] as a training set. While

ImageNet has its limitations, it includes many natural object classes like lemon, banana,

zucchini and cardoon flower as well as several breeds of dogs and birds that differ with

one another in color also; 2) our test stimuli included chromatic contrasts, either through

a colored disk on a grey background (Study (1)) or natural images (Study (2)).

A year later and in the same year as the first study of this thesis, Rafegas and colleagues

[83] extracted some of the color properties of VGG-M net [37] trained for object recognition

on the ImageNet dataset [30]. They did so using a visualization method inspired by [12, 37].

They found that an average of 32% of the network’s units were color sensitive: a much

larger proportion than reported by [81]. This difference likely comes to their use of the

full ImageNet for training and a representative subset for testing. They also found a

prevalence of color opponency in the early layers, while kernels in higher layers tended to

respond mainly to individual hues. Like in Engilberge and colleagues [81], however, their

work includes a few limitations: 1) it is based on the assumption that the color properties

of kernels equal the color properties of the mean image patches responsible for their max

activation. As a consequence, color biases within the dataset might bias the results; 2)

averaging across many images to obtain mean image patches might blur complex color and

spatial tunings, particularly important in late layers [84]; 3) their study is limited to one

architecture only. To address limitations (1) and (2), in our second study, we evaluated

a neural unit’s maximally responsive stimulus on image patches defined in an appropriate

color space, while using a segmentation algorithm to preserve the complex spatial tuning

properties of deeper units. To address limitation (3) we used 3 architectures.

More recently, Harris et al. [85, 86] examined color properties in an anatomically con-

strained object recognition neural network [87]. The architecture mimics the biological

constraints of our early visual system with the introduction of a bottleneck after the very

first convolutional layers of the model [87]. Harris et al. reported simple and double

opponent [72] kernels in the layers before and after the bottleneck emerged in varying

proportions, depending on the size of the bottleneck. Like in [81], Harris et al. did not

include chromatic contrast as their computation of a kernel’s spatial opponency was based

on achromatic gratings only (Cf. Figures 6 and 7 in [85]). Despite this, their results empha-

size that color sensitive edge detectors like double-opponent kernels can emerge in DNNs

trained for object recognition. In the second study, we investigated this in all convolutional

layers of various DNN architectures.

9
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Again more recently, Taylor Xu [84] found that color and shape are jointly represented

in the higher layers of DNNs. Indeed, while colors and shape appeared separated at the

first stages of the processing, the geometry of the internal representations of color varied

and depended on object shape. Thus shape can influence the color tuning for kernels in

the deep layers of DNNs trained for object recognition. This finding, however, should not

have too many consequences for this thesis: in study (1) we used simple stimuli suited

for systematically studying kernels in early layers, and, in study (2), we used stimuli with

complex shapes tailored for each higher layer kernels.

In a recent work by De Vries et al [88], we show that DNNs trained for object recognition

develop a categorical representation of color. We repeatedly retrained the object recogni-

tion neural networks on a color classification task across several training colors, and found

systematic categorical borders. The same borders were also consistently found by a set

of genetic algorithm searching for the optimal border placement. Additionally, these bor-

ders and the categories they define correlate with the basic color categories found in many

populations, across cultures and languages [89]. Overall, this robust result suggests that a

categorical perception of color can emerge with the development of object recognition.

1.1.4.2 Models for color constancy

There are many proposed algorithms for color constancy (e.g., from computer vision and

image processing). In those fields, color constancy is typically approached by explicit

estimation of the scene’s illumination [90, 91, 92, 93], followed by an image correction via

the von Kries assumption [94]. This also applies to DNNs approaches [92, 93, 95, 96, 97],

although all these approach outperformed previous models. Their goal is thus to correct

images independently of their content, rather than model human perception. In biological

vision, however, color constancy is rather tested as the ability to extract color information

about the object and materials in the scene consistently across varying illuminations [58,

75, 77, 80, 98]. Following this definition, color constancy is related to object recognition,

and implicitly assumes some form of color comprehension.

One reason why previous studies failed to relate DNNs trained for color constancy to

object colors partially lay with the impracticability to train DNNs for color constancy

on natural images, let alone object recognition. Indeed, it would require a hundreds of

thousands of calibrated natural images, where the ground truth illumination would also

be known. Such dataset currently does not exist. Typical natural images datasets for
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color constancy are on the order of thousands of images 1. Previous studies involving

DNNs attempted at circumventing this issue through various data augmentation techniques

including the application of additional color distortions and cropping [95, 96]. In study (3),

instead, we rendered realistic scenes to create a large training set of naturalistic images

[99].

Using this approach, we have the veridical knowledge over all relevant real-world causes

such as surface colors and illuminations. Similar approaches have been used for depth and

optical flow estimation tasks [100, 101, 102], and surface material inference, such as gloss

[21, 103], but has to our knowledge not been applied to training DNNs for color constancy.

1.2 Summary of studies

1.2.1 Study 1: Processing of chromatic information in a deep convolu-
tional neural network

The goal in study (1) was to compare the color properties that emerge from DNNs trained

for object recognition to properties of neurons in primates. As the first work of this thesis,

it thoroughly investigates one architecture - AlexNet [26]. It also mainly focuses on units

in the early layers, with smaller receptive fields and fewer non-linearities than deeper units.

We trained the model on the ImageNet [30] dataset, comprised of over 1.2M hand-labeled

natural images of objects. Images were divided into 1000 different categories of object, 1

category per image. To improve our statistical relevance, 34 instances of AlexNet were

trained in addition to the pretrained model [104]. Randomization steps included in the

training procedure [26, 29] to ensure that the training instances were slightly different from

one another.

To examine color coding, we defined a color space that preserves the relationship and

relative distances between colors. The cardinal dimensions of this color space, which we call

RGBPCA, are the principal components of the pixel distribution of the training dataset.

This principal components were also found in previous work [105] for natural RGB images.

The rational behind choosing a PCA-based space is decorrelation of inputs: if DNNs

trained for object recognition are similar to biological visual systems, then their internal

representation should decorrelate their input along dimensions that are stastically sensible,

like the principal components of the input [106, 107].

First, we looked at the color directions kernels in the first layer of all 35 instances of

AlexNet are selective for. Figure 1.3 panel A shows the color direction sensitivities of the
1see https://colorconstancy.com/evaluation/datasets/ for a review
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96 kernels in the first layer of each AlexNet instance (35 total). Azimuth represents the

Hue angle in RGBPCA, while elevation represents the degree to which a kernel is sensitive

to color: At 0° elevation, kernels are only responsive to color while at 90° they are only

responsive to achromatic changes. At 45°, kernels are responsive to chromatic and achro-

matic information equally. In approximately equal numbers, AlexNet’s first layer kernels

cluster into 2 major groups (Figure 1.3 panel A right histogram): those mostly responsive

to color (color kernels) and those mostly sensitive to achromatic contrasts (luminance ker-

nels). Additionally, kernels within the color kernels category tend to fall along 2 cardinal

axes: the 0 -180° axis and the 90-270° (Figure 1.3 panel A upper histogram). Thus AlexNet

models seem to decorrelate their RGB input into statistically efficient dimensions in a sim-

ilar fashion as the human early visual system decorrelates its LMS input [106, 107]. The

distribution, however, is broad, and the 2 cardinal axes appear visible when all training

instances are considered together.

Our second experiment examined the consistency underlying AlexNet’s parallel process-

ing stream. AlexNet presents the peculiarity of having 2 parallel processing streams in its

early layers, one for each of the 2 GPUs it was originally trained on, and this may have

consequences on the model’s functional organisation. Alexnet’s developers [26] indeed suc-

cinctly reported that both streams each developed a specialization during training, one

rather processing the chromatic information and the other the achromatic information.

We asked how consistently this segregation occurred in our 35 instances and whether it

correlates with the model’s performance. While the degree of segregation varied among

our 35 training instances, 32 out of 35 models showed a degree of segregation significantly

higher than what could be expected by chance; many instances were near perfect segrega-

tion. This consistent segregation in the early stage of visual processing is also found for the

human visual system [108], suggesting that a segregation in the processing of chromatic and

achromatic information facilitates the process of learning to differentiate between objects.

The precise reason, however, remains unclear. Indeed, while accuracy positively correlated

with the degree of segregation, it only varied by less than 0.5% across the 35 instances.

Our third experiment examined how color information is processed throughout the mod-

els. The strategy applied, inspired from physiological approaches [73, 109, 110], consisted

of recording the response a single units to simple, highly controlled stimuli: colored circles

on a gray background for chromatic contrast. Confronted to these stimuli the last convo-

lutional layer of AlexNet showed a remarkable increase in responsivity to colored stimuli

relative to grayscale stimuli, as is also found in the most anterior visual areas of the occip-

ital lobe, V4 and VO [111, 112]. However, because late kernels learned complex features,
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A B

Figure 1.3: Summary of Study (1). Panel A: Preferred tuning directions of first layer
kernels (n=96) in RGBPCA coordinates. In the central scatter plot, individual dots are pre-
ferred elevationPCA angles (in absolute value) plotted against preferred azimuthPCA angles
for each kernel in the first layer of all 35 training instances of AlexNet. Dotted lines represent
the 45o threshold elevation value employed to classify kernels as either color (φ ≤ 45o) or
luminance (φ ≥ 45o) units. The right panel shows the histogram of preferred elevationPCA

values across all azimuthsPCA. The top panel shows the histogram of preferred azimuthPCA

values across color kernels only. Panel B : Functional segregation between the processing of
chromatic and achromatic information in the first layer of Alexnet. The top panel displays a
visualization of the first layer kernels in one training instance. The bottom graph shows the
performance of the model as a function of this functional segregation (r = 0.41, p<0.05

their overall response to our simple stimuli was much lower than the overall response of

kernels in early layers. This suggests that stimuli with more complex spatial features are

required for studying the color tuning of very late kernels accurately.

Taken together, these results show that feedforward DNNs trained on object recognition

exhibit several properties similar to the primates visual system: (1) They decorrelate their

input into statistically meaningful color dimensions early on; (2) They process chromatic

and achromatic information separately when segregated; (3) Later stages of the visual

processing exhibit a remarkable increase in color sensitivity. While the employed methods

worked well for characterizing units in AlexNet’s early layers, the observed color responses

in higher layers were harder to explain, presumably because of the simplicity of our stimuli.

Kernels from midlayers onward are known for being responsive to complex features, where
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shape and colors are entangled [36]. In order to study the color properties of these kernels

with higher degree of precision, in Study (2), we used more complex stimuli.

1.2.2 Study 2: Color for object recognition: Hue and chroma sensitivity
in the deep features of convolutional neural networks

While the method used in the Study (1) is well suited for examining early units of Deep

Neural Networks, later units require the use of stimuli with more complex spatial features

[113]. In Study (2) these limitations were solved by devising complex stimuli tailored for

each one of the network’s kernels. We found each kernel’s preferred stimulus, using a

method similar to [83], consisting in extracting the image patch among the 1.2M training

images responsible for the model’s maximum activation. We then segmented each kernel’s

preferred stimulus into meaningful segment based on their color distribution [114]. The

color of each segment was then separately modified while keeping the achromatic structure

of the whole stimulus the same (e.g., Figure 1.4 left). Finally, like in Study (1), each

kernel’s response to the color changes was recorded. The main advantage of this method

is that each kernel are exposed to their preferred shape, kept intact across color changes.

Additionally, because the stimuli are extracted from the ImageNet training dataset and

semantically meaningful to the models, we can now use them as input for the recognition

task. This method thus allowed us to quantify both the color properties of the deep units

and their consequences on object recognition in Deep Neural Networks.

Building up on the previous study, the pool of Deep Models included 2 additional con-

volutional architectures: VGG-16 and VGG-19 [37]. Very consistent results were found

across all 3 models, suggesting that the color properties reported here are shared by all

standard feedforward convolutional architectures, independently of their size. Addition-

ally, many of the results confirmed the previous findings. For instance, a dichotomy was

again observed in the first layers, where kernels are to a large degree either color responsive

or color agnostic. A peak of color responsivity was also found in the last convolutional

layers of all three models. This qualitative increase does not depend on the total number

of convolutional layers the model has, be it 5 or 13 or 16.

Other than these confirmations, we were also able to describe in more detail the color

properties of our 3 networks. We found a large proportion of double-opponent [72] kernels

in the early layers of the models we studied - 1st layer of AlexNet and 4th layer of the

VGG-nets - the determining factor appearing to be the kernel size, in each case of around

10 pixels width. Below this size - such as in the very first layers of the VGG nets - kernels

are mostly similar to simple cells [72, 73] i.e selective for a single hue across their whole
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Model predictions

Distributions of kernel types

Distributions of preferred hues

VGG-16 architecture

Figure 1.4: Summary of Study (2). Center : Schematic of the VGG-16 architecture. Left :
Examples of colored stimuli used as network input. Top: Histograms of hue directions that
kernels are selective for in the 1st, 4th, 7th, 10th and 13th convolutional layers (color coded).
Bottom: Histograms of the number of hues color sensitive kernels are selective for in the same
convolutional layers (as previously color coded). In the first layer, kernels are mostly single
opponent i.e. selective for one hue across the whole receptive field. In the fourth layer, most
color sensitive kernels are double opponent. Right : Accuracy of the models following hue
changes. The grey line is the accuracy of the model for the same grayscale stimuli. A wrong
hue can elicit a stronger drop in performance than non color, meaning that the model is more
sensitive to hue than color saturation.

receptive field. Above this size - in the deep layers of all 3 networks - tunings were more

varied and complex. We found kernels selective for up to 3 different hues, each in a specific

spatial segment (Cf. Figure 1.4 bottom). Some color sensitive kernels were even found

selective to 2 distinct hues within the same segment - one primary hue to which the kernel

is most responsive, and one secondary. This secondary hue was the opponent color of the

primary hue most of the time (around a 180° hue difference).

The distribution of hues for which kernels were most selective for also varied from layer to

layer. In each individual models, early layer kernels were found selective for a wide range of

hues 1. In deeper layers, however, the distributions of primary hues progressively narrows

down to 1 axis: the axis blue-orange of the RGBPCA coordinates, as shown in Figure

1Despite this broad distribution, we showed in Study (1) that cardinal directions actually appear when
pooling kernels of 35 training instances together.
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1.4 Top. This progression, interestingly, is almost in perfect opposition with what has

been observed in the macaque’s ventral stream: while Derrington, Krauskopf and Lennie

[71] found that the color responsive cells in the LGN are selective for a narrow range of

hues - restricted to 2 chromatic axes, which later defined the DKL color space [115] - color

responsive cells in V1 already show a higher diversity in the range of hues they are selective

for [73], and cells in V2 show no preferred color axis whatsoever [109].

Finally, and perhaps more importantly, we were also able to determine what consequences

some of the kernels properties have on the models performance (Cf. Figure 1.4 right). For

instance, we found that a segment displayed with a different hue than the one it is selective

for is likely to induce a lower kernel response than the same segment displayed in grey.

In other words, kernels in DNNs tend to be mainly sensitive to change in hues rather

than changes in chroma. This points to a special role for hue, as opposed to chroma or

saturation, as has also been observed in humans [116, 117, 118]. This property propagates

to the models’ recognition rate: accuracy was lowest for images with a hue around 90°

apart from the original hue, lower than for the same images in grayscale. Particularly for

images that color sensitive kernels are very responsive to. A similar effect was also reported

in humans, both for object and scene recognition: observers took a longer time to recognize

images of scenes with wrong colors than achromatic images of the same scenes [60, 119].

Overall, these results show that while supervised feedforward DNNs trained for object

recognition account for a surprisingly high number of color properties of the ventral stream,

they can also exhibit striking differences as illustrated by the almost opposite progression

in hue tuning between both systems.

1.2.3 Study 3: Deep Neural Models for color classification and color
constancy

So far, we gained insights on the color processing of state-of-the-art architectures trained

on the complex task of object recognition. These networks are, however, unsuited for

examining one important aspect of our color vision: color constancy, or our ability to

recognize colors consistently across varying illuminations [75]. Training DNNs for color

constancy requires a large dataset of calibrated images taken under varying illuminations,

practically impossible for real images [95], let alone labeled for object recognition.

As an alternative, we exploited the recent advances in computer graphics [99] to generate

over 450K photo-realistic images. These images were generated thanks to the real spectra
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of 1600 surface reflectances [120, 121], 279 natural lights [122, 123, 124] and 2115 different

realistic 3D object shapes 1 (see Figure 1.5 panel A for an example).

We trained several state-of-the-art models in computer vision for color constancy: Mo-

bileNet [32], ResNet50 [9] and VGG11 [37]. We also trained two custom architectures.

One, DeepCC, was a standard convolutional architecture [24]. The other, ResCC, was a

Bottleneck ResNet architecture [9]. Both were similar in size and much smaller than any

of the state-of-the-art models. The task of the models was to classify the images based on

the object’s surface color, independently from the illumination - thus effectively learning

color differences and color constancy simultaneously.

We measured the degree of color constancy achieved by the models using the Color

Constancy Index (CCI) [75]. A CCI of 0 indicates no color constancy, and a CCI of 1

indicates perfect color constancy. We found that all models performed extremely well on

their task, as shown in Figure 1.5 panel B. DeepCC, despite being the least accurate,

nevertheless showed an average CCI across color classes of 0.75, around the highest values

found for human observers [58], other architectures exhibiting average CCI values of 1. We

also found that each one of the networks used global contextual cues surrounding the object

to solve color constancy, more precisely to estimate the illumination, as indeed humans

would. Like human observers, they relied on the background color to account for the

illuminations [125, 126]. They also relied on scene complexity to perform color constancy,

although to a lesser degree than global contextual cues, again similarly to humans [127].

Finally, the networks also exhibited lower color constancy under illuminations orthogonal

to the daylight locus, which correlates with the difficulty that humans have to adapt to

these unnatural illuminations [128].

Convinced that our models exhibited global behaviors qualitatively similar to humans

when it comes to color constancy, we also visualized how these models perceive colors i.e.

what sort of color representations they built during training. In other words, while they all

differentiate between red, orange and green, do they also “perceive” orange as more similar

to red than to green? This question is not trivial, as these relative distances have never

been explicitly given to the models during training. And indeed, we found that not every

model developed human-like representations of colors – quite far from it.

We implemented a decoding approach inspired from standard methods in brain imaging

studies [129, 130] to extract matrices of distances from our models activations. These dis-

tance matrices tell us what are the relative representational distances between the surface
1Meshes ranging from man-made objects to natural objects, issued by evermotion https://

evermotion.org/shop
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Figure 1.5: Summary of Study (3). Panel A: One example out of our 450K generated
stimuli. The task of the models was to identify the color of the central object among 1600
different colors under varying illuminations. Panel B : Models performance. All models per-
formed the task extremely well: DeepCC, the simplest convolutional architecture trained, was
our poorest performer with an average Color Constancy Index of 0.75 across color classes,
which is at the upper limit of color constancy in humans observers [58] Panel C : Internal
representations of colors. Although ResCC, a custom ResNet architecture, performed better
than DeepCC at the task, it represented colors in a different way than humans. Contrary to
DeepCC.

colors in all different layers of our models. We can then fit the dimensions that can best

explain these distances [131] and visualize the resulting representational spaces, such as in

Figure 1.5 panel C for DeepCC and ResCC.

We found that DeepCC, our simplest convolutional architecture, was the network with

the highest similarity to both perceptual spaces by a large margin. In fact, it was the

only network for which the similarity grew over depth, meaning that the network progres-

sively transformed its input into representations similar to human color perception. The

other networks, like ResCC, although more accurate at object color recognition, trans-

formed their input into color representations progressively dissimilar to human perceptual

judgments.

Overall, these results show that computer graphics can be a mean to teach DNNs to

distinguish between colors under varying illuminations, thus effectively also teaching them

color constancy. Doing so, they consistently exhibit behaviours also previously observed

in humans observers when confronted with deprivation in contextual cues across network

architectures. Although the simplest architecture additionally exhibited human-like rep-

resentations of colors, the other architectures did not. The latter suggests that a trade-off

between an architectural simplicity and performance are necessary for developing human-
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like color representations.

1.3 Discussion

In this thesis, I uncovered many of the color properties of DNNs trained for object recog-

nition and color constancy, often comparing their emergent properties to human observers

and monkeys. Here, I review the resemblance of these networks with biology, and con-

nect my results to previous works. Doing so brings us closer to understanding the factors

involved in the development of our human color vision and its properties.

1.3.1 DNNs can explain human color vision...

The DNNs studied here share many similarities with the primate visual system, either in

physiological, behavioral and representational terms. Each will be discussed in detail in

the next pages.

1.3.1.1 Physiological and hierarchical correspondence

The chromatic properties of DNNs trained for object recognition correlate with those in

monkeys and humans. The most important similarity is perhaps that both systems devote

a significant part of their resources to processing color information [4]. But the findings

reported here go further and confirm a hierarchical correspondence between DNNs and

biological brains ([13, 15]): At the early layers, the properties of kernels are matched to

the properties of cells in the LGN and V1. At mid to late layers, kernels are matched to

the properties of cells in higher areas of the visual cortex.

Indeed, in Studies (1) and (2) of this thesis as well as in [83, 85], single and double

opponent kernels were found in large proportions in the early layers of DNNs trained for

object recognition: single opponent kernels for receptive fields below 10 pixels in size and

double opponent kernels for receptive fields around 10 pixels in size and above. These

types of processing units are commonly found at the very early stages of the visual system.

While single opponent cells can be found among the post-retinal ganglion cells [72] and color

responsive cells in the LGN [71], double opponent cells are predominant in the subsequent

stages: early areas of the visual cortex, such as V1 [72, 73]. These cells have been found

to be a major early contributor of our color vision [4, 75], emphasizing the power of these

models for explaining how we see colors.

We also found that DNNs tended to decorrelate their input following cardinal directions.

Early layer kernels in Studies (1) and (2) were found to be either color agnostic - thus
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sensitive to achromatic contrasts exclusively - or strongly responsive to color only. Addi-

tionally, although individual instances showed a broad and noisy distribution of hues for

which early layer kernels were most selective (Cf. Figure 1.4), we found in Study (1) that

clear cardinal color directions appear when pooling several instances together (Cf. Figure

1.3). These cardinal directions match almost perfectly the principal components of the

input’s color distribution. Similarly, the visual system of primates is known to decorrelate

its visual input into statistically optimal directions in color space [106, 107, 132, 133].

Similarities between artificial and biological systems go beyond the very early processing

stages. Just like kernels in mid and late layers of our networks, cells from extra-striate

cortical areas show complex color tuning and can be responsive to both achromatic and

chromatic stimuli [109, 110, 134, 135, 136, 137]. Additionally, in Studies (1) and (2), as

well as in Rafegas et al., [83], the highest global color sensitivities for the first and last

convolutional layers. Interestingly, studies in functional imaging also show that the overall

color sensitivity varies considerably between different visual cortical areas [138], seemingly

without any monotonous progression. Like DNNs, both early visual areas such as the

LGN and V1 and the late occipital areas, such as V4 and VO, show an overall higher color

selectivity than intermediary cortical areas [112, 139]. It is precisely around these late

occipital regions that neural activity is best predicted by the last convolutional layer of a

DNN trained for object recognition [15, 140] (See Figure 1.2). Of course, these studies and

our results do not demonstrate any strict equivalence between cortical areas and layers

of AlexNet, but the tantalizing correspondence evokes that there may be a functional

advantage to emphasize color information once the processing of the visual information

reaches a certain complexity and scale.

Most interestingly, like the functional segregation in the LGN and to a lesser extent in

V1 (see [108, 141, 142] for reviews), AlexNet shows a significant segregation in the first

two layers of processing between the chromatic and achromatic information (Cf. Study 1).

The exact cause for this functional segregation remains unclear: despite a significant and

positive correlation of the model’s performance with the degree of segregation (the more

segregated the higher the accuracy) the accuracy difference remains small - bellow the 0.5%

range. Performance may thus not be the only cause for this functional partitioning. Still,

our finding suggests that the division of labor between luminance-tuned and color-tuned

units is an optimal strategy in segregated neural networks such as AlexNet and the human

visual system, thus a natural consequence of optimization and physical constraints. It also

agrees with the hypothesis that color and luminance information serve different functions

[66, 67] in both biological and artificial systems.
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Overall, the neural organization of color sensitive units in DNNs, and their properties,

closely match those of color sensitive cells in the primate brains. This astonishing result

emphasize the usefulness of DNNs as tools for understanding and explaining the develop-

ment of color vision.

1.3.1.2 Human-like color representations and color categories

DNNs can also develop color representations which correlate with human perceptual judge-

ments. In the third study, one architecture naturally learned to differentiate between sur-

face colors according to lightness, hue and chroma - the 3 color dimensions which define the

most established perceptual color spaces [120, 143]. This architecture did so consistently

across 10 training instances by progressively transforming its ambiguous and clustered in-

put - an approximation of retinal transmission - into decorrelated and almost homogeneous

coordinates. Not only, but the relative representational distances also closely matched

the perceptual distances predicted by these spaces, indicating that the model developed

human-like similarity judgments of colors.

However, no evidence of a categorical representation of colors was found in any of the

models trained in study (3). Additionally, prototypical color surfaces - color surfaces

representative of a color category - did not lead to higher color constancy. This refutes

one theoretical idea that the perceptual singularity of prototypical colors is a consequence

of their singular reflective properties, resulting in a perceptual stability under varying

natural illuminations [144, 145]. This suggests that the origin of color categories does not

directly come from learning to differentiate colors under a wide range of different lightning

conditions. Instead, as we show in the recent work of de Vries et al. [88], color categories

emerge in the latent layers of DNNs trained for object recognition. Additionally, these

emergent color categories closely match the most basic color categories reported across

many languages and cultures [88, 89]. How color categories help object recognition is still

unclear. Nevertheless, the combination of both study (3) and de Vries et al. [88] suggests

that color categories form an optimal sparse representation of color space for classifying

objects visually, independently of their color stability under varying illuminations.

1.3.1.3 A special role of Hue

DNNs resemble humans in their use of color, and hue in particular, for recognizing objects.

Geirhos et al. [146] have shown that the performance of DNNs is significantly higher when

tested on color images than when tested on their grayscale version. We confirmed their
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observations in study (2), where the models performance decreased for grayscale images,

even more so than what is reported in their study (20% relative decrease compared to 5%).

This quantitative discrepancy is likely due to the higher number of color diagnostic object

classes included in the ImageNet dataset [30] used here. Indeed, color was most beneficial

to DNNs for recognizing images of natural objects, and generally for correctly classifying

images responsible for high responses in color sensitive kernels. This benefit of color, and

for recognizing natural objects in particular, is known to be important in humans as well

[60, 61, 62, 63, 64]. Study (2) goes further, however, and also points towards a special role

of hue for the contribution of color in DNNs. A gamut rotation of the whole image, or

displaying specific segments with the wrong hue lead to an even bigger drop in the models

performance than for the same images in grayscale. Again, this larger sensitivity to hue

than saturation was also reported in humans. Human observers are much more sensitive to

hue changes than saturation changes [117], and they have a harder time processing pictures

of natural scenes displayed with a wrong hue compared to the same images in grayscale

[60, 119].

Additionally, these results point towards a deep interaction between color and shape

information, compatible with the evidence later provided by Taylor et al. [84] that shape

and color are represented jointly in DNNs. The measured drop in performance for incorrect

colors cannot be explained by a reliance of the models on chromatic contrast only for

detecting object edges. If it was, the models accuracy would stay the same when colors were

modified but chromatic contrasts conserved. Instead, the model’s accuracy dropped sharply

with a gamut rotation on the input image. This leads to the conclusion that mismatched

colors act as an interference to the reliable information relayed by the stimulus luminance.

Similarly, for human observers, mismatched colors interfere with the recognition of natural

scenes, even more so than the lack of it [60, 119].

1.3.2 ... with some limitations

Astonishingly, many properties of our color vision emerge in DNNs, from the physiological

properties of neurons in the visual cortex to the use of contextual cues and hue for solving

color constancy and object recognition. These similarities have their limitations, however,

which raise further questions.
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1.3.2.1 Inverse progression of hue tuning

In Study (2), we found the striking difference between humans and machines that the

distributions of hues for which both systems are most responsive for follow an almost exact

inverse progression throughout the processing stage. Rafegas and colleagues [83] first found

that kernels are on average primarily responsive to the blue and orange colors, colors most

abundantly represented in the training dataset [30, 83]. In Study (2), we refined this

observation showing that this mostly applies to kernels in late layers of DNNs. Kernels in

early layers, however, are selective for a rather broad range of hues. The transition from

a broad distribution of preferred hue to a narrow distribution representative of the input

takes place progressively throughout the processing stage. In contrast, the macaque visual

system exhibits the opposite transition. Cells in the LGN preferentially respond to two

”cardinal directions” of color space. In the primary visual cortex, color sensitive cells are

selective for a much broader range of hues [73]. Cells in V2 and later areas do not show as

a whole any preference for particular hue directions, although each individual cell might

be highly hue specific [109, 110, 111, 137].

One possible reason for this prominent discrepancy is the supervised nature of the train-

ing procedure and its implementation used in our networks. The gradient descent algorithm

[40] ] consists of an optimization procedure where the model’s weights are updated in a

cascade fashion, from top to bottom. Thus, kernel weights in the last layer are first up-

dated to fit the desired output, after which weights of the penultimate layer, and so on. As

a consequence, kernels of the last layers will be more specialized, more narrowly matching

the dataset’s color distribution than the noisier and more universal kernels of the first layer.

1.3.2.2 DNNs hypersensitivity to color deprivation

Color is beneficial to both DNNs and humans for recognizing objects, and correlates with

many properties of the visual system. However, even when the experimental paradigms

to test participants were designed to limit neural feedback, the accuracy loss is marginal

compared to that observed for DNNs tested on grayscale images in [60, 119, 146, 146, 147].

Instead, the cost of removing color for object recognition is in humans generally rather

associated with longer processing times [60, 68, 119].

Hence, despite numerous shared color properties, DNNs trained on natural colored im-

ages are more sensitive to color deprivation than humans. This hypersensitivity is likely

related to the joint representation of color and shape hinted by some of our results and
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recently showed by Taylor et al. [84]. It suggests that except at the early stages of process-

ing, DNNs do not evaluate both chromatic and achromatic information separately. Instead,

when the color information is erroneous or missing, it interferes with the achromatic infor-

mation and leads to wrong predictions. It also suggests that, in contrast, the human visual

system maintain some parallelism between the flow of color and achromatic information

throughout its processing of the visual information. This would agree with some recent

evidence of a functional organization, including discrete cell regions sensitive to colors, in

higher areas like V4 [111, 148] and IT [137, 149].

The many similarities found in the color properties of both primates and artificial brains

suggest that, like DNNs, we learned to heavily rely on color for recognizing objects when

color information is available and unambiguous. When these conditions are not met, how-

ever, then our visual system ignores the conflicting color information and relies on achro-

matic information - through inhibition or feedback - with the drawback of slower reaction

times.

1.4 Conclusion

Despite some striking differences and limitations, DNNs surprisingly explain many of the

color properties of our visual system. Like neurophysiological properties of biological vision,

the networks show the emergence of simple and double opponent units in the early stage

of the visual processing, and a functional separation of color and luminance. At the

representational level also, with the emergence of human-like color similarities in some

DNNs trained for color recognition and color constancy, and the development of color

categories in DNNs trained for object recognition. At the behavioral level, finally, by their

reliance on contextual cues for solving color constancy and on color information - hue

especially - for solving object recognition. These numerous similarities give credit to the

notion that our color vision is largely a feedforward process, motivated by and shaped for

the recognition of objects and their properties.
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Deep convolutional neural networks are a class of machine-learning algorithms capable of solving non-trivial
tasks, such as object recognition, with human-like performance. Little is known about the exact computations
that deep neural networks learn, and to what extent these computations are similar to the ones performed by the
primate brain. Here, we investigate how color information is processed in the different layers of the AlexNet deep
neural network, originally trained on object classification of over 1.2M images of objects in their natural contexts.
We found that the color-responsive units in the first layer of AlexNet learned linear features and were broadly
tuned to two directions in color space, analogously to what is known of color responsive cells in the primate
thalamus. Moreover, these directions are decorrelated and lead to statistically efficient representations, similar
to the cardinal directions of the second-stage color mechanisms in primates. We also found, in analogy to the early
stages of the primate visual system, that chromatic and achromatic information were segregated in the early layers
of the network. Units in the higher layers of AlexNet exhibit on average a lower responsivity for color than units at
earlier stages. © 2018 Optical Society of America

OCIS codes: (330.4060) Vision modeling; (330.4270) Vision system neurophysiology; (330.1690) Color.

https://doi.org/10.1364/JOSAA.35.00B334

1. INTRODUCTION

Deep neural networks have emerged as the state-of-the-art al-
gorithms for artificial intelligence and computer vision appli-
cations. In the challenging task of object recognition, deep
convolutional neural networks (CNNs) have reached and even
surpassed human performance in the ImageNet large-scale
visual recognition challenge [1]. These algorithms have biologi-
cally inspired architectures mimicking the hierarchical process-
ing structure of the primate brain [2], and have been proposed
as potentially useful models of how the primate brain executes
feed-forward visual processing [3–5]. However, little is cur-
rently known about the internal representations these
algorithms develop during training, and to what extent the
computations performed by these networks are similar to
the known processing stages of the human and primate visual
cortex.

A common application of CNNs is object recognition.
Object recognition is considered to be one of the most impor-
tant purposes of the development of biological visual systems
[5,6], and one of the major questions is how different visual
attributes contribute to this process. Here, we focus on
color, as color is known to play a significant part in object
recognition. Psychophysical studies in humans have shown that
adding color information leads to faster and more accurate

performance in object and scene classification tasks, as well
as improvements in visual memory for such stimuli [7–12].
In particular, color was found to highly facilitate the recogni-
tion of color-diagnostic objects, i.e., objects with which a spe-
cific color can be associated such as lemons or strawberries
[7,10,11].

Color also seems to play a critical role for CNNs trained in
object recognition. In a recent study [13], the authors com-
pared the rate of successful classifications in three widely used
CNNs for achromatic and colored images in 16 object classes.
In parallel, they carefully designed a psychophysical experiment
and tested three human subjects for comparison purposes.
Despite their different architectures, all three CNNs showed
a significant 3%–8% drop in accuracy on achromatic relative
to colored images, while humans showed a somewhat smaller
difference (0.5%–4%). All of the selected object classes in this
study had weak color diagnosticity, suggesting that color plays a
significant role in object recognition in CNNs, even for
non-color diagnostic objects.

Several studies have worked towards a better understanding
of the processing of visual information in CNNs trained for
object recognition [14–17]. Yet very few, to our knowledge,
focused on their processing of color information. Only recently,
Rafegas and colleagues [18,19] studied the color responsivity
and tuning of units in the different layers of one training
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instance of the VGG-M network [20]. To do so, for each kernel
learned by the VGG-M network after training, they extracted the
N first stimuli responsible for their maximal activation. They
then made the assumption that the mean features of these N
stimuli were representative of the features of their corresponding
kernel and analyzed their chromatic characteristics. We use a dif-
ferent approach here, with a fixed set of highly controlled stimuli
similar to what has been used in numerous electrophysiological
experiments. We also investigate a different CNN, AlexNet, that
has been compared to the human visual system via several differ-
ent methods. Khaligh-Razavi and Kriegeskorte [3] have shown
that AlexNet, when trained for object recognition, can better
explain inferotemporal cortex activity, measured by functional
magnetic resonance imaging (fMRI), than an extensive list of
other computational models, and also fairly well explains activ-
ities in mid-level visual areas. It has also been shown that early-
and mid-convolutional layers of AlexNet correlate with early and
anterior areas of the occipital visual cortex, while the late fully
connected layers correlate with areas of the temporal cortex
[4,21], thus providing a clear correspondence between layers
and different stages of the processing in the human visual system.
Furthermore, AlexNet has the interesting feature of often being
implemented with two independent streams in the early stages of
its processing. This was a purely pragmatic feature, designed to
reduce computational demands during training by splitting the
layers with the largest numbers of units over two independent
GPUs. Curiously, although both streams are initialized ran-
domly, Alexnet’s developers reported in their original paper that
each stream becomes somewhat specialized after training, in ei-
ther the processing of the chromatic or achromatic information
[22]. However, they did not further investigate this segregation
and whether it bears any consequences for network performance.

In the first part of this study, we focus on the chromatic
properties of the kernels in the first layer of a set of 35 training
instances. Thanks to the high linearity of these kernels, we
could directly analyze their weights and characterize their chro-
matic tuning. In the second part, we focus on the color process-
ing occurring in the deeper layers of AlexNet. Because kernels
in these layers can no longer be considered linear, we used our
physiologically inspired approach to assess the chromatic prop-
erties of kernels up to the last convolutional layer. In the third
part, we combine the two approaches and measure, in layer 1
and 2 of AlexNet, to what degree the functional segregation
reported by AlexNet’s developers systematically occurs through-
out our set of 35 training instances. We further correlate our
results with the performance of the model.

2. METHODS

A. AlexNet

Deep convolutional neural networks are layered algorithms,
with each layer performing a set of processing operations.
Like most other CNNs, AlexNet is a feedforward system. It
takes as input a 227 × 227 × 3 image and outputs the category
the input image most likely belongs to. The first two input di-
mensions represent the spatial extent of the image (width and
height), and the third input dimension represents the three
RGB color channels. AlexNet consists of convolutional layers
and fully connected layers. A convolutional layer consists of a set

of linear kernels (i.e., filters) with equally sized receptive fields
(e.g., 11 × 11 × 3 in the first layer) at equally spaced intervals,
followed by half-wave rectification (ReLU) [22]. This results
in a two-dimensional map encoding the response of a given filter
at each spatial position. The activation maps from all filters
within a layer are stacked to produce the output volume of that
layer, which is the input volume of the next layer. In fully con-
nected layers, the network units get input from all units of the
previous layer. The units in fully connected layers thus have re-
ceptive fields the same size as the input image, and their activa-
tion maps can be computed through a simple multiplication of
their weights with the previous unit’s responses. AlexNet’s archi-
tecture consists of five convolutional layers followed by three
fully connected layers. The convolutional layers 1, 2, and 5
of the AlexNet architecture are followed by max pooling, a
down-sampling operation which reduces the size of the input
volume along its first two dimensions by taking the maximum
response of 3 × 3 neighboring units. Following the pooling op-
erations in layers 1 and 2 are two normalization layers. Most of
these features of the AlexNet architecture are shared by several
most recent and efficient architectures, in terms of the nature of
the layers [14,15,20,23,24], number of layers [14,20], and
nonlinearities implemented [14,15,20,23,24].

AlexNet has an interesting feature which it does not share
with other network architectures: throughout its convolutional
layers 1 and 2, processing occurs in two functionally separate and
independent processing streams. This segregation occurs because
the network was originally trained on two separate graphic
processing units (GPUs), and the authors found that restraining
the connectivity between the two GPUs was highly beneficial for
training efficiency. Thus, two parallel, intra-layer processing
streams were built into the first two convolutional layers of
the AlexNet architecture. Each layer was divided into two groups
of kernels; one group was trained on GPU1 while the other
group was trained onGPU2. All the way up to the convolutional
layer 3, each network unit receives input only from the units of
the previous layer residing on the same GPU. The training of
AlexNet and other deep convolutional neural networks includes
several randomization steps [22,25]. This implies that different
network instances are likely to contain different network param-
eters even though they might lead to similar levels of perfor-
mance. We investigated the AlexNet instantiation available
with the CAFFE framework and trained by the Berkeley team
[1,22], denoted by AlexNetB, together with 34 novel instances
trained on the same training dataset as the original network and
using the same procedures [22], but with each one randomly
initialized with values drawn from a standard normal distribu-
tion. Training images were taken from the 2012 ImageNet im-
age dataset, which is composed of over 1.2 million realistic JPEG
images [26]. Prior to each training run, the image dataset was
randomly shuffled. The implementation and training of each
network instance was done through the CAFFE deep learning
framework [27] via its Python interface. All analyses presented
in this work were scripted in Python.

B. Chromatic Coordinates

The processing taking place in the photoreceptors and in the
second-stage color opponent channels of the retinal ganglion
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cells has been characterized in great detail [28–30].
Psychophysically, three cardinal mechanisms have been shown
to provide independent axes, and in electrophysiological re-
cordings these axes could be related to different layers of lateral
geniculate neurons. One of these mechanisms is thought to
convey luminance information by combining information from
long and medium wavelength cones (L�M). The remaining
two channels convey chromatic information and exhibit color
opponent mechanisms by taking differences across cone activa-
tions (L −M) and S − �L�M� (where S represents short wave-
length cones). Computationally, this transformation provides
an efficient coding and decorrelation of the cone signals, akin
to a principal component analysis [31,32]. Since one major aim
of our study was to compare processing in AlexNet with known
primate physiology, we wanted to test whether the CNN used
similar coding mechanisms in its first layers.

Our initial approach was therefore to calculate cone excita-
tions from the RGB input images, convert these into the car-
dinal direction coordinates (DKL) proposed by Derrington,
Krauskopf, and Lennie in 1984 [30], and use these new coor-
dinates to characterize chromatic processing in AlexNet. One
immediate difficulty with this approach is that the AlexNet
training set consists of 1.2M uncalibrated and JPEG com-
pressed images, which makes it impossible to recover cone ex-
citations from the camera RGBs. On average, a camera standard
such as sRGB [33] might produce reasonable results. However,
doing so made it obvious that the concept of “luminance,”
based on flicker photometry and leading to an approximate ra-
tio of 10∶3∶1 for the sRGB primaries, does not make sense for
a network trained on RGB images. Therefore, we decided to
use as the relevant input quantities the principal components
of the complete training set. The first principal component rep-
resents intensity by summing the R, G, and B inputs. The sec-
ond and third principal components represent decorrelated
chromatic dimensions: R − B for the second principal compo-
nent andG − �R � B� for the third. The variances explained by
the three PCs are 90%, 8%, and 2%, respectively, meaning that
intensity is the dimension with overwhelmingly the most dis-
criminative power. These vectors are virtually identical to the
ones found by Otha et al. (1980) [34] for a much smaller set of
images. We will refer to the new system of chromatic coordi-
nates defined by the principal components as the RGBPCA co-
ordinates. All of our analyses will therefore be presented solely
in the RGBPCA coordinates, or their spherical representation as
azimuth and elevation. To understand the conversion from
Cartesian to spherical coordinates, we may consider a point
P in a given color space and call V the vector associated with
P. The elevation, or ϕ, of a point in space represents the angle
between the vector V and the chromaticity plane, with
ϕ ∈ �−90, 90�. Conversely, the azimuth, or ψ, represents the
angle between the projection of V on the chromaticity plane
and the first chromaticity axis. Note that the first chromaticity
axis will be given by the second principal component in the case
of the RGBPCA chromatic coordinates and the L–M axis in the
case of the DKL color coordinates. ψ can assume values in the
interval [0, 360]. A convenient aspect of this coordinate trans-
formation is that the length of the projection of V on the chro-
maticity plane intuitively represents the chromatic contrast of

P. Since the terms azimuth and elevation are mainly used in
the context of DKL coordinates in color science, we will use
the subscript PCA here.

C. AlexNet First Layer Kernels

The 96 kernels in the first convolution layer of AlexNet are
linear filters followed by half-wave rectification [22], composed
of 363 weights (11 × 11 × 3). The filters’ activation results from
the weighted sum of the input image pixel values coded in
RGB. Hence, the 363 weights fully describe each filter, and
can be directly expressed in the RGB space and then converted
into RGBPCA coordinates following the procedures described
previously. Since we focus on the color properties of the kernels
in this study, we will disregard their spatial properties. For a
given kernel, the direction in color space in which the kernel
weights vary the most defines the direction for which the kernel
is most sensitive to. Therefore, we performed a PCA on the
distribution of the kernel’s weights in RGB color space ex-
pressed in RGBPCA coordinates. The first principal component
defines the direction in color space for which a kernel is mainly
sensitive, and the variance explained by this first principal com-
ponent indicates how narrow the distribution of weights is
around this direction (i.e., how preferably tuned the kernel
is to this direction in color space).

D. Artificial Cell Responses

The kernels in the first layer of AlexNet can be directly expressed
in color space, and this provides a straightforward way of assess-
ing how these kernels process color information. Different meth-
ods need to be used to probe the color processing of kernels in
deeper layers of AlexNet. Physiologists are of course confronted
with the same kind of problem (see [35–39] for reviews).
A common way to investigate color processing at different stages
throughout the primate visual system is to record the response of
single neurons to simple, highly constrained color stimuli, thus
characterizing each neuron’s color tuning curves [30,40–45]. We
will use the same approach here to characterize the color tuning
characteristics of individual units of the AlexNet algorithm.

We opted for a fixed set of stimuli, all sharing the same spa-
tial characteristics, which only varied in color and in achromatic
contrast with the background. Stimuli were RGB images of col-
ored and achromatic disks on a gray background. The images
were 227 × 227 pixels in size, as required by the AlexNet
architecture. The disks had a 70 pixel radius and were placed
at the center of the image. Disks were chosen as the basic stimu-
lus shape since the color responsive kernels of the first layer of
AlexNet are for the most part selective for low spatial frequen-
cies at different orientations. Hence, employing circular stimuli
allowed us to roughly fit the spatial characteristics of all the
different kernels across different orientations. The color of
our stimuli was initially generated in the RGBPCA chromatic
coordinates and then converted into RGB values.

All color stimuli had the same constant chromatic-
contrastPCA of 0.3 and the same neutral gray background,
set to an intensityPCA value of 0. We designed a total of
300 color stimuli at 60 different azimuthPCA values (ψ ranging
from 0 to 360° in 6° steps) and at five different intensityPCA
values (I ranging from −0.6 to 0.6 in steps of 0.3).

B336 Vol. 35, No. 4 / April 2018 / Journal of the Optical Society of America A Research Article



IntensityPCA values were chosen such that, at −0.3 and 0.3I ,
the intensityPCA difference between the central disk and the
background and the chromatic-contrastPCA were of equal mag-
nitude. The choice of a relatively low chromatic-contrastPCA
guaranteed that our stimuli would remain within the RGB
gamut. Henceforth, we will sometimes describe our stimuli
in terms of their elevationPCA ϕ instead of their intensityPCA
value. Since chromatic-contrastPCA is kept constant, the con-
version from intensityPCA to elevationPCA is straightforward:
ϕ � arctan� I

0.30�. In addition to these color stimuli, we also de-
signed five achromatic (gray) stimuli, one for each of the five
intensityPCA values employed to construct the color stimuli.

The convolutional layers of deep neural networks are de-
signed such that a set of artificial neurons applies each kernel
of the layer at equally spaced intervals that tile the input vol-
ume. For example, AlexNet’s first convolutional layer is com-
posed of 96 different kernels. Each of the 96 kernels is applied
throughout the input image at four pixel intervals. Therefore,
55 × 55 network units are needed in order to apply each kernel
throughout the 227 × 227 input image. This means that
AlexNet’s first convolutional layer contains a total of 55 × 55 ×
96 units. However, this study focuses on the chromatic proper-
ties of the kernels of AlexNet independently of their spatial
properties. Therefore, we did not record the response of each
artificial neuron in each layer. Instead, for each kernel K , we
selected the maximal response of its set of units to each stimulus
image. If we denote N i as the number of kernels of the con-
volutional layer i, we thus end up with only N i tuning curves
YK
ϕ per layer for each elevationPCA level ϕ of our set of stimuli.

If we denote Y K
ϕ,ψ as the component of YK

ϕ corresponding to
the azimuthPCA ψ , we obtain

Y K
ϕ,ψ � max

j
R
K j

ϕ,ψ , (1)

where R
K j

ϕ,ψ is the response of the jth artificial neuron applying
the K th kernel map for a stimulus whose color is defined by
elevationPCA ϕ and azimuthPCA ψ .

E. Linearity

Some studies have shown that, throughout the hierarchy of the
primate visual system, the tuning of color responsive neurons
increases in complexity and becomes progressively more non-
linear [41,46]. Because of the non-linearities present through-
out AlexNet and deep neural networks in general, we similarly
expect that the tuning of color-responsive kernels in the deep
layers of these networks should also become increasingly non-
linear. By definition, the response of a linear kernel is given by
the dot product of its parameters with the input values. In our
case, at iso-intensity, this means that the response of a linear
kernel is given by the dot product, in color space, between
the stimulus vector and the direction for which the kernel is
maximally tuned. Some cells have been found on several
occasions to behave in a similar fashion in the early visual sys-
tem [30,40], and were thus called linear. For such cells, the
response Rϕ to a set of chromatic stimuli with a given
elevationPCA ψ is given by the equation

Rϕ�ψ� � B � Ajb� cos�ψ − az�j, (2)

where A is the maximum response amplitude, B is the response
baseline and b is constant, az is the preferred azimuthPCA of the
kernel, and ψ is the azimuthPCA of the stimulus. We deter-
mined tuning curves empirically, e.g., using the methods
described in subsection 2.D. Then, if Eq. (2) provides a good
fit to the tuning curves, we may conclude that the response of
the cell or network kernel is well approximated by the linear
combination of the chromatic input to the system. If the
properties of AlexNet match those of the visual system, the
quality of the fit should decrease in higher layers.

F. Color and Achromatic Responses

We also measured color responsivity throughout AlexNet using
a metric taken from the physiology literature [44]. This mea-
sure, which we call here color responsivity (CR), can be defined
as follows:

CR � max response to color − response to gray

max response to color� response to gray
, (3)

where gray and colored stimuli have the same intensity-
contrastPCA. A color-responsivity value of −1 occurs when a
unit exhibits no response to any colored stimulus but is respon-
sive to achromatic stimuli. Conversely, a color-responsivity
value of 1 occurs when a unit responds to at least one colored
stimulus and is unresponsive to achromatic stimuli.

We classified kernels into color and achromatic kernels ac-
cording to their chromatic properties. In the case of the linear
kernels of the first layer of AlexNet, color kernels are those
tuned for directions in color space with a chromatic component
larger than the achromatic component, i.e., tuned for
elevationsPCA ≤ 45°. In the case of kernels in subsequent layers
of AlexNet, the distinction is not as straightforward, as the tun-
ing characteristics of these kernels cannot be directly expressed
in color space. Instead, the color responsivity CR, measured for
colored stimuli with chromatic and intensity contrastsPCA of
equal magnitude, may be used to classify kernels. According
to Eq. (3), a unit with a response to one chromatic stimulus
twice as large as its response to an achromatic stimulus with
the same intensity features has a color responsivity of 1/3.
Thus, following the definition of color kernels given previously,
a color kernel has a color responsivity ≥1∕3, given that the
chromatic contrastPCA of the colored stimuli is equal to their
intensity contrastPCA. For colored stimuli with different achro-
matic and chromatic contrasts, the distinction between color
and achromatic (luminance) kernels is given by different
thresholds.

G. Measure of Functional Segregation

The differentiation between color and achromatic kernels we
propose in this study is motivated by the segregation observed
by Krizhevsky et al. [22]. This feature of AlexNet is potentially
very interesting particularly because AlexNet exhibits a unique
architecture, with two functionally separate and independent
processing streams implemented on two separate GPUs (which
we refer to as residing on GPU1 and GPU2). This two-stream
architecture is reminiscent of the organization of the primate
visual system into two separate visual processing streams, which
also exhibits a segregation between color and achromatic
processing [36,47,48]. If segregation between color and
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achromatic tuning were indeed found to systematically occur
across multiple AlexNet training instances, this would suggest
that the segregation naturally emerges from an architecture
with independent processing streams.

To measure the degree of functional segregation occurring
in AlexNet we employ the Index of Dissimilarity (ID) [49],
widely used in the field of economics, and defined as

ID � 1

2

����� c1C −
l 1
L

�����
���� c2C −

l 2
L

����
�
, (4)

where C and L are the total number of color and luminance
kernels, respectively; c1, l 1 are the number of color and lumi-
nance kernels residing on GPU1; and c2, l 2 are the number of
color and luminance kernels residing on GPU2. An index of
dissimilarity of 0 corresponds to the absence of functional seg-
regation, whereas an index of dissimilarity of 1 corresponds to a
complete functional segregation.

3. RESULTS

A. Chromatic Properties of First-Layer Kernels

Following the procedure described in subsection 2.C, we
expressed each kernel of the first layer of our training
instances in terms of their tuning in elevationPCA and
elevationPCA < 27°. We did so after performing a PCA on their
weights expressed in RGBPCA coordinates. The first principal
component explains on average 94.3% of the variance of kernel
weights. About 90% of kernels had over 84.2% of their
weights’ variance explained by the first principal component.
This result confirms that individual kernels in the first layer
of AlexNet have weights distributed primarily along one
direction in color space. Figure 1 displays the tuning directions
found for all kernels in the first layer of all 35 training instances
of AlexNet as a scatter plot of the preferred elevationPCA (in
absolute value) and azimuthPCA , marginal histograms of
preferred elevationPCA values across all azimuthsPCA, and of
preferred azimuthsPCA for color kernels.

The histogram of preferred elevationPCA values in Fig. 1
exhibits a bimodal distribution, with one peak at high
elevationsPCA close to 90° and a second peak at elevationsPCA
near 0°. The marginal histogram of preferred azimuthsPCA
in Fig. 1 further shows that kernels tuned for low
elevationsPCA exhibit azimuthPCA values that cluster roughly
around 0° and 180°, and to a lesser degree around 90° and
270°. Therefore, the tuning of kernels in the first layer of
AlexNet aligns well with the axes of the RGBPCA chromatic
coordinates. This indicates that the kernels in the first layer
basically perform a PCA on the RGB triplets. The bimodal dis-
tribution of preferred kernel elevationPCA angles suggests that
first-layer kernels are likely to be either strongly color responsive
or strongly color agnostic. Additionally, the mean and median
values of absolute elevationPCA tuning were 47.6° and 58.4°,
respectively. The observed median elevationPCA corresponds
to the angle for which the intensity component of a kernel
is 1.6 times larger than its chromatic component. In other
words, nearly half of the kernels in the first layer of AlexNet
are at least 1.6 times more responsive to intensity contrasts than
to chromatic contrasts. This imbalance is sensible, since 90% of
variance in the pixel values of the training dataset is distributed

along the intensity axis. The bimodal distribution of network
kernels in Fig. 1 highlights that only a few kernels respond to
both intensity and chromatic contrasts. This suggests it is in-
deed appropriate to classify first-layer network kernels into
color and luminance kernels. Figure 2 shows all 96 kernel maps

Fig. 1. Preferred tuning directions of first-layer kernels in RGBPCA

coordinates. Kernel tuning directions represented in RGBPCA coordi-
nates. In the left panel, individual dots are preferred elevationPCA an-
gles (in absolute value) plotted against preferred azimuthPCA angles for
each kernel in the first layer of all 35 training instances of AlexNet.
Dotted lines represent the 45° threshold elevation value employed to
classify kernels as either color (ϕ ≤ 45°) or luminance (ϕ ≥ 45°) ker-
nels. The right panel shows the histogram of preferred elevationPCA
values across all azimuthsPCA . The top panel shows the histogram
of preferred azimuthPCA values across color kernels only.

Fig. 2. Kernels of the first layer of AlexNetB. Kernels are displayed
according to their index order in the architecture. The top group of 48
kernels was trained on GPU1. The bottom group of 48 kernels was
trained on GPU2. Outlined in black are those kernels classified as lu-
minance kernels following the procedure described in Section 2.F.
Note how the majority of GPU1 kernels are color kernels, while
the majority of GPU2 kernels are luminance kernels.
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of the first layer of AlexNetB, where luminance kernels are out-
lined in black and color kernels are outlined in white.
Qualitatively, we can observe that our classification method cor-
rectly identifies whether a kernel is or is not tuned to colors. This
figure also allows some other qualitative remarks: color kernels
have color-opponent receptive fields while achromatic kernels
have achromatic-opponent receptive fields. Color kernels are
either oriented or non-oriented. These features are shared by
the kernels in the first layer of the 34 other training instances.

Across all 35 training instances of AlexNet we investigated,
on average 54� 3% of first-layer kernels were classified as
luminance kernels. This rough equality between the number
of luminance and color kernels is a common feature of neural
models. Rafegas and colleagues in 2017 [18,19] observed sim-
ilar proportions in the first layer of the VGG-M net, as did
studies implementing linear models [32,50–52].

The response of luminance kernels depends very little on the
chromatic variations in the input. Therefore, the chromatic in-
formation contained within the input images will be primarily
transmitted to upstream network layers through the output of
color-selective kernels. For this reason, we now only focus on
the chromatic properties of kernels which we have identified as
color kernels. Figure 3(a) shows the distribution of preferred
azimuthPCA across all color kernels in the first layer of all 35

AlexNet training instances. The central symmetry of the histo-
gram arises from the linear and opponent nature of the kernels.
Panels B through D show the distributions of preferred
azimuthPCA in the first-layer kernels of three individual
AlexNet training instances randomly selected out of the total
set of 34. Panel E shows the same distribution of preferred
azimuthPCA, except for AlexNetB.

Several things are striking about the histograms in Fig. 3.
First of all, azimuthPCA tuning of all kernels in all AlexNet
training instances exhibits a clear bimodal distribution.
Network kernels appear to be preferably tuned to two direc-
tions in the chromatic plane, one direction along the blueish–
orange axis, and one direction along the green–magenta axis.
Secondly, the directions defined by the two modes of the
azimuthPCA distribution are remarkably well aligned with
the two chromatic axes of the RGBPCA chromatic coordinates,
with the greatest discrepancy being a small 5° misalignment of
the green–magenta axis. The peak along the blueish–orange
axis is larger than the peak occurring along the green–magenta
axis corresponding to the third principal component of the
RGBPCA coordinates. The asymmetry between the two modes
of the azimuth distribution thus follows the difference in dis-
criminative power between the second and third principal com-
ponents defining the chromatic axes of the RGBPCA chromatic
coordinates. The alignment of the network’s tuning with
the principal chromatic directions of RGBPCA is not as
obvious when inspecting the azimuthPCA tuning of individual
training instances. A few representative examples are given in
Figs. 3(b)–3(e). The similarities between AlexNet’s chromatic
tuning directions and the RGBPCA chromatic axes strongly sug-
gest that kernels in the first layer of AlexNet are attempting to
transform and decorrelate the input signal in a fashion which is
similar to a principal component analysis.

B. Linearity and Color Responsivity in Deep Layers

The characteristics of color processing occurring in kernels be-
yond the first convolutional layer cannot be directly accessed
and analyzed. Therefore, we employed an indirect approach,
inspired from physiology, to investigate color processing in
the AlexNet deep layers. Our approach is described in detail
in subsections 2.D and 2.E.

Figure 4 shows some examples of tuning curves obtained in
different convolutional layers of AlexNet, fitted using Eq. (2).
We observe that the fits to Eq. (2) seem very accurate in the first
few layers, and that accuracy drops in higher layers. This ob-
servation is quantitatively confirmed in Fig. 5(a), in which the
mean accuracy of the fitted tuning curves (in terms of r2 ) is
shown to decrease with network depth (i.e., layer number).
This was to be expected, as the responses of the artificial neu-
rons in higher layers are preceded by several nonlinear process-
ing steps (see subsection 2.A). Fit accuracy decreases almost
linearly, from a mean r2 above 0.9 in layer 1 down to a mean
r2 only slightly above 0.5 for layer 7. Concerning the chromatic
tuning of linear kernels in layer 1, both methods give nearly
identical results. For 50% of the first-layer kernels, the differ-
ence was less than 3° between the two methods, and the bimo-
dality around the two chromatic axes of the RGBPCA

coordinates was present with both methods as well.

A

B C D E

Fig. 3. Azimuth tuning distributions of color kernels in RGBPCA .
(a) Circular histogram displaying the distribution of preferred
azimuthPCA of all color kernels in the first layer of all 35 AlexNet train-
ing instances. (b–d) Distributions of preferred azimuthPCA of color,
first-layer kernels for three individual AlexNet training instances se-
lected from our set of 35. (e) Same as (b–d), except for the
AlexNetB network instantiation provided within the CAFFE
framework.
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Physiological studies have shown that the response of early
visual neurons, in the primate lateral geniculate nucleus (LGN)
and in smaller proportion in V1 [40,46,53,54], are also well
fitted by Eq. (2). Therefore, the early visual processing units
of AlexNet and of the primate visual system both behave like
linear filters of chromatic input. Additionally studies in pri-
mates have shown that cells in visual areas as early as V1,
but mostly V2 and beyond, show more complex tunings than
the one described by Eq. (2) [40,41,54–56]. Therefore, as
processing progresses throughout the hierarchy of both biologi-
cal and artificial visual systems, cells or units process color in-
formation in ways which are increasingly nonlinear.

To facilitate the conversion from color responsivity to
elevationPCA tuning in layer 1, we used exclusively in the fol-
lowing analysis the set of stimuli for which the intensity and

chromatic contrastsPCA were of the same magnitude (cf. sub-
section 2.F). Figure 5(b) shows the mean proportion of units
exhibiting noticing behaviors across all 35 AlexNet training
instances, in every network layer up to layer 7. The full bold
line gives the proportion of unresponsive kernels across our set of
stimuli, i.e., of kernels which have no response to
our stimuli. The dashed-dotted line gives the proportion
of luminance-only kernels with sensitivity to intensity
contrastsPCA at least two times superior to their sensitivity to
chromatic contrastsPCA (elevationPCA > 63° in layer 1, color
responsivity < 1∕5). The full fine line is the proportions of
color-only kernels with sensitivity to chromatic contrastsPCA
at least two times superior to intensity contrastsPCA
(elevationPCA < 27° in layer 1, color responsivity > 1∕2).
The dashed line is the proportion of color-luminance

Fig. 4. Color tuning curves from representative kernels in the different AlexNet layers. In each panel, the dotted curve represents the response of a
kernel, plotted as a function of the azimuthPCA of the input stimulus. The continuous line is the tuning curve of filter that linearly combines
chromatic input, fitted to the kernel response using the formula in Eq. (2). The horizontal dashed line is the kernel’s response to an achromatic
(gray) stimulus with the same spatial and intensity characteristics as the colored stimuli.

A B C D

Fig. 5. Linearity, responsivity, and color responsivity of kernels across the different AlexNet layers. (a) Fit accuracy plotted as a function of network
depth (i.e., layer number). Accuracy data are the r2 score between kernel responses to colored stimuli and the model response of a linear chromatic
filter [Eq. (2)] fit to the measured kernel responses. Filled dots are mean accuracy at each network layer, computed across all kernels and across all 35
AlexNet training instances. (b) Proportion of kernels with different chromatic processing characteristics as a function of layer number. The full bold
line gives the proportion of kernels which have no response to our stimuli. Dashed-dotted line gives the proportion of kernels with a sensitivity to
intensity contrastsPCA at least two times superior to their sensitivity to chromatic contrastsPCA (� elevationPCA > 63° in layer 1, color
responsivity > 1∕5). Full fine line is the proportions of kernels with sensitivity to chromatic contrastPCA at least two times superior to intensity
contrastsPCA (� elevationPCA < 27° in layer 1, color responsivity > 1∕2). Dashed line is the proportion of kernels sensitive to both intensity and
chromatic contrastsPCA (63° > elevationPCA > 27° in layer 1, 1∕2 > color responsivity > 1∕5). All data are the mean proportions, computed across
all 35 AlexNet training instances. (c) Color responsivity [as computed from Eq. (3)] in all five convolutional layers. Data are the mean color
responsivity computed across all kernels and across all 35 AlexNet training instances. (d) Proportion of kernels with color responsivities superior
to different thresholds, computed across all 35 AlexNet training instances. In panels (a) and (c), error bars represent the standard deviation across the
35 training instances.
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kernels sensitive to both intensity and chromatic
contrastsPCA (63° > elevationPCA > 27° in layer 1, 1∕2 >
color responsivity > 1∕5). All data are the mean proportions,
computed across all 35 AlexNet training instances. From this
figure, we can see that the proportion of unresponsive kernels
increases dramatically in the fully connected network layers 6
and 7. On average, the proportion of unresponsive kernels in-
creases from 16% in layer 5 to 53% in layer 6. In layer 7, 72%
of units are completely unresponsive to both chromatic and
achromatic stimuli. This suggests that simple stimuli, such
as the gray and colored disks we employ here, are not well
suited to eliciting meaningful responses from the units of fully
connected layers. Comparing the responses to colored and ach-
romatic stimuli of units in layers 6 and 7 of AlexNet would
likely result in unreliable estimates of color responsivity in these
layers. Additionally, the color responsivity cannot be computed
for unresponsive units, as Eq. (3) does not allow a null sum as
its denominator. Therefore, we excluded the fully connected
layers 6 and 7 of AlexNet from further analyses.

Another observation one can make from this figure is that
the population of color-luminance kernels increases from layers
1 to 4, while the populations of color-only and luminance-only
kernels decreases. This means that while kernels in layer 1 of
AlexNet are mainly color-only or luminance-only kernels, sub-
sequent layers, up to layer 4, build more representations where
achromatic and chromatic information are of similar impor-
tance. In layer 5, however, an opposite tendency seems to occur.

To investigate this point further, we plotted in Fig. 5(c) the
mean value of color responsivity across the 35 AlexNet training
instances. In Fig. 5(d), we show the proportions of color re-
sponsive units for different criterion values of color responsivity
across all AlexNet training instances. However, since color
responsivity cannot be computed for unresponsive kernels,
we did not consider these units.

Figure 5(c) shows the mean color responsivity across training
instances in all five convolutional layers of AlexNet. The error
bars are the standard deviations of color responsivity across all
35 instances. We can observe a significant decrease of the mean
color responsivity in layers 1 to 4 in AlexNet, from a value of
0.39 in layer 1 to a value of 0.29 in layer 4. Surprisingly, the
value increases again in layer 5, with a mean color responsivity
of 0.38, almost the same as in layer 1. To further understand
this, Fig. 5(d) shows the proportion of units in their respective
layers having different degrees of color responsivity, for criterion
values ranging from 0 to 0.95. We can see that compared to layer
1, layers 2 to 4 show an increasing proportion of low-color-
responsive kernels but, more importantly, a decreasing propor-
tion of high-color-responsive kernels with color-responsivity
values above 1/3. This color-responsivity value of 1/3 corre-
sponds to units with equal sensitivity to achromatic and chro-
matic contrastsPCA, or tuned to an elevationPCA of 45° in the
case of the first layer. In layer 5, however, color responsivity in-
creases at all levels, hence producing a mean color responsivity
very similar to the mean color responsivity in layer 1.

Note that for kernels in layer 1, it is possible to relate their
elevationPCA tuning, obtained after analyzing their weights
directly, with their corresponding CR values (cf. subsection
2.F), and then compute the proportions of units with different

color-responsivity values in layer 1 similar as is done in
Fig. 5(d). We obtained equivalent proportions between the
two methods, with a mean difference of 2.4% across all color-
responsivity values displayed in Fig. 5(d), thus giving further
evidence that the physiologically inspired approach yields
reliable results.

C. Functional Segregation

Table 1 sums up the proportions of color and luminance
kernels in layers 1 and 2 of AlexNet across training instances,
according to our criteria described in subsection 2.F. In each
instance and layer, the half with more color kernels was selected
as the color group and the other half was selected as luminance
group. We see that, on average, over 70% of kernels in the color
group were color kernels, and over 80% were luminance ker-
nels in the luminance group, in both layers. Correspondingly,
we obtained an average index of dissimilarity of 0.54� 0.27
and of 0.56� 0.26 for layers 1 and 2, respectively. In compari-
son, the 95th percentile index of dissimilarity of a random dis-
tribution only amounted up to 0.21 and 0.13. Only one
training instance had an index of dissimilarity lower than these
values in both layers; two others had indices of dissimilarity in
the first layer lower than 0.21 and one other had an index of
dissimilarity in layer 2 lower than 0.13. Maximum indices of
dissimilarity were 0.90 and 0.87 for the first and second layers.
The distributions of indices of dissimilarity in layers 1 and 2
had a high correlation of 0.85.

These results mean that color and luminance kernels in
layers 1 and 2 of AlexNet are functionally segregated.
However, the standard deviations of 0.27 and 0.26 for the in-
dex of dissimilarity indicate a good degree of variability from
one training instance to another. The question is why such a
segregation tends to naturally occur during training, and what it
is good for. Does it lead to better accuracy? We tried to answer
this question by relating the performance of AlexNet to the
degree of segregation. Figure 6 shows plots of the top 1 accu-
racies of the 35 training instances as a function of index of dis-
similarity measured in layer 1. Top 1 accuracies were computed
on the 50,000 images of the validation dataset of the ImageNet
2012 contest, and correspond to the proportion of images for
which exact object classes were selected as the most probable
one by the model among the 1000 classes available. The right
axis shows the number of successful classifications among the
validation dataset corresponding to the left accuracy values. We
find a significant and positive correlation (rho � 0.41,
p � 0.014). While the effect is not dramatically big, it does
lead to a correct classification for about 200 more out of
the 50,000 test images. We obtained a similar result for
layer 2.

4. DISCUSSION

Our main results show that AlexNet essentially performs a prin-
cipal components analysis on the chromatic properties of the
input signals in its first layer. In subsequent layers, units
respond increasingly nonlinear to color, but color responsivity
remains high throughout the convolutional layers. The segre-
gation into two anatomically distinct streams that AlexNet im-
poses leads to a functional segregation into one part being
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mainly responsive to achromatic stimuli and the other to chro-
matic variations. This segregation is beneficial for object recog-
nition performance of the network. In this section, we will
discuss the similarities of these results with findings on the
processing of visual information in humans and non-human
primates. In particular, we will discuss how the tuning of
color-responsive kernels in the first layer of AlexNet may relate
to the tuning of color-responsive and linear cells of the primary
visual cortex. We will compare our results with models of the
primary visual cortex based on a linear analysis of the statistical
properties of natural scenes. We will further discuss the possible
relationship between the partial functional segregation found in
the first two layers of AlexNet and the partial segregation of the
chromatic and achromatic information observed in the early
stages of the visual system. And we will discuss the relatively
high color responsivity we found in units of the last convolu-
tional layer of AlexNet and the high color responsivity of the
most anterior visual areas of the primate occipital lobe.

A. Layer 1 and Early Visual Processing

The color space on which our networks have been trained is de-
fined by the uncalibrated RGB images of our training dataset.
Statistics of RGB images of natural scenes captured by uncali-
brated cameras cannot be expected to match the statistics of
natural scenes as captured by the retinal cones. As a consequence,
any neural system trained on these RGB images cannot be ex-
pected to tune itself to the cardinal directions found in the LGN,
but rather to statistically efficient directions in this RGB space.

The fact that the tunings of kernel maps in the first layer of
AlexNet, across all training instances, preferentially fall along
the axes of the RGBPCA coordinates suggests that, similar to
the early visual system [31,32,57], AlexNet learns to transform
and decorrelate its visual inputs in the early stages of its process-
ing to represent them more efficiently. The tuning distributions

along the axes, such as shown in Fig. 1, are remarkably similar
to the distributions observed in the LGN (see Fig. 5 of [30]).
For individual instances of the network [cf. Figs. 3(b) through
3(e)], the tuning resembles the more broad distributions found
in V1 [40,53]. This distribution in tuning has also been
observed in the first convolutional layer of the VGG-M
network by Rafegas et al. [19], suggesting that it may be a
shared characteristic of deep convolutional networks and not
specific to AlexNet.

Color kernels in the first layer of AlexNet share other simi-
larities with color-responsive linear cells in V1: they show a
high degree of linearity and can be oriented or non-oriented
(cf. Fig. 2) [40,43,58,59]. Several studies have reported corre-
lates between the first layers of AlexNet and early visual process-
ing in humans [3,4,21]. The color tuning of layer 1 kernels in
AlexNet around the cardinal directions of the RGB space,
analogous to the tuning of LGN and V1 cells along the cardinal
directions, is further evidence that the early processing stages in
both AlexNet and the primate brain share some similarities.

Another similarity of the early processing in AlexNet with
the early visual cortex is the significant segregation occurring in
the first two layers of AlexNet between the processing of the
chromatic and achromatic information. A functional segrega-
tion between color and achromatic information is also thought
to occur in the LGN and to a lesser extent in V1 (see [36,47,48]
for reviews). This finding suggests that the division of labor
between luminance- and color-tuned units may be an optimal
strategy in segregated neural networks such as AlexNet and the
human visual system, allowing for separate normalization pools
for the different inputs.

B. Statistical Models of the Early Visual Cortex

Many studies have compared cells in the early visual system,
particularly in V1, with basis functions resulting from statistical
analyses of natural images. PCA performed on small patches
extracted from natural images [32,50,51]) results in color op-
ponency, a feature shared with V1 cells. V1 cells’ spatial char-
acteristics, however, were not matched and the chromatic
tuning of the basis functions were aligned with the directions
given by the principal component and did not explain the
broad chromatic tuning observed in V1.

Independent component analysis (ICA) seems like a more
promising approach, as several studies have reported that basis
functions found via ICA performed on natural images bear a
closer resemblance to V1 cells in terms of the spatial features of
simple cells such as Gabor-like receptive fields, orientation tun-
ing, and spatial frequency bandwidth [51,60–62]. All of these
features are shared by kernels in the first layer of AlexNet. Phase

Table 1. Proportions of Color and Luminance Kernels in
the Color and Luminance Groups of the First Two Layers
and Corresponding Indexes of Dissimilarity

% Color Kernels % Luminance Kernels

color gp lum gp color gp lum gp ID

Layer 1 72� 13 19� 15 28� 13 81� 15 0.54� 0.27
Layer 2 70� 13 14� 4 30� 12 86� 4 0.56� 0.26

Fig. 6. Accuracy as a function of the index of dissimilarity in layer 1.
Correlation of the top 1 accuracy, computed on the whole validation
dataset, of the training instances of AlexNet with the degree of segre-
gation (ID, cf. Section 2.G) in layer 1. The right axis shows the num-
ber of successful classifications among the 50,000 images of the
validation dataset. The white dot stands for the AlexNetB training in-
stance provided with CAFFE. Kernels in the first layer of AlexNetB are
shown in Fig. 2.
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invariance, a property of complex cells in V1 as well as color-
opponent receptive fields, could also emerge from an ICA per-
formed on natural images [63–65]. In addition, Caywood et al.
[52] showed that color-responsive basis functions, derived from
an ICA on natural images encoded in LMS, were preferably
tuned to directions close to the cardinal directions of the
LGN. The basis functions obtained after performing an ICA
on natural color images [51,64,65], however, did not show
a color-tuning distribution as broad as that found for V1 linear
cells by Lennie and colleagues, even after the addition of noise
to simulate their experimental conditions [52]. More recently,
Kellner et al. [66] showed that broad color tuning could be
obtained with ICA performed on natural images after non-lin-
ear preprocessing of the images. The nonlinearities consisted of
a center-surround filtering, followed by a half-wave rectifica-
tion. Interestingly, this half-wave rectification is done by the
same function as the nonlinearity implemented in the response
of units in convolutional layers, the ReLU activation function
[67]. To understand this phenomenon further and better relate
it to the visual system, it would be interesting to directly com-
pare the kernels of the first layer of AlexNet with the basis func-
tions of an ICA performed on the training dataset, with and
without this nonlinearity.

C. Mid-level Processing

AlexNet’s lack of response to our color stimuli in deep layers
starting after layer 5 confirms the inherent characteristic of
CNNs to build more complex representations at each step
of the processing. Representations in deep layers have complex
spatial preferences [14,16] that simple stimuli fail to activate,
thus reducing the overall responsivity of the layers. Many units
in deeper layers show little response when presented with sim-
ple stimuli. Although to some degree this demonstrates a limi-
tation of simple stimuli for understanding the processing of
visual information, it also shows that biological and artificial
systems share some similarities. Indeed, similar proportions
of cells showing responses to color have been found in V1,
V2, V3, and V4 in physiological studies [41,43,68–72], as
is true for the layers 1 to 4 in AlexNet.

The mean color-responsivity curve of Fig. 5(c) shows that
the color responsivity across the layers of AlexNet steadily
decreases from layers 1 to 4 before suddenly increasing in layer
5. Some caution has to be taken in interpreting the magnitude
of this increase, but Rafegas et al. [19] also found an increase,
relative to layers 3 and 4, of color-responsive kernels in the fifth
layer of the VGG-M network. As the VGG-M network’s archi-
tecture shares with AlexNet the feature of having five convolu-
tional layers and three fully connected ones, we cannot assess
whether this increase in color responsivity is strictly related to
the number of layers. One reason for this increase could be,
however, the particular status of layer 5 in both cases as the
input to the first fully connected layer.

It has been shown that the convolutional layers of AlexNet,
trained for object recognition on the same dataset as in this
study, best predict cortical activity in the occipital lobe, while
fully connected layers best predict cortical activity in areas of
the temporal lobe, particularly the object-responsive Inferior
Temporal cortex [3,4,21]. Of course, these studies do not

demonstrate any strict equivalence between cortical areas
and layers of AlexNet, but show that when comparing visual
representations in AlexNet and the visual system, convolutional
layers are more similar to areas in the occipital lobe than to
other areas, while fully connected layers are more similar to
areas in the temporal lobe. Again, these studies focus on
AlexNet and thus do not allow for comparison or generalization
to other CNNs’ architectures.

Interestingly, studies of color processing in the human brain
have shown that V4 [44,73,74] and a more anterior occipital
area termed VO [74,75], exhibit an increase in color respon-
sivity relative to previous areas. It is exactly these areas where
activity can be best predicted by layer 5 of AlexNet [4,21]. This
tantalizing similarity hints that there may be a functional ad-
vantage to emphasizing color information once feature analyses
have reached a certain level of spatial scale or complexity,
which is not present when analyzing features at lower scales
or complexities.

D. Limitations

It is clear that the properties of CNNs, and thus AlexNet, de-
pend largely on the input that is used for training. While the
1.2 million images of the 2012 ImageNet competition dataset
[1,26] used for training AlexNet are useful in exploring object
recognition, they have some disadvantages when studying color
vision.

First of all, the images of the dataset are originally sampled
from the Internet. While this makes it feasible to obtain a large
number of images, there is no way to be able to control even the
most basic aspects of calibration for these images. In fact, this is
a feature of the data set with respect to object recognition, which
should be invariant relative to any of the camera settings. For
color vision, we would ideally have hyperspectral images, and at
least images with calibrated camera sensors. This lack of calibra-
tion information was the major reason for us to perform all of
our analyses on the RGB coordinates rather than attempting
conversion to cone excitations. Therefore, the statistics of the
training set of natural images are different from statistics of natu-
ral scenes as sensed by the primate cone photoreceptors [52].

A second limitation of the dataset is that all the training im-
ages were compressed using lossy JPEG compression. The
JPEG algorithm compresses images by taking blocks of 8 ×
8 pixels and then downsampling their information, both in spa-
tial frequency and color [76]. Caywood et al. [52] investigated
the statistical biases that JPEG compression could induce. They
compared the basis functions obtained after performing an in-
dependent component analysis (ICA) on a set of natural RGB
images and the same set but JPEG compressed, and found sev-
eral biases induced by the JPEG compression. In particular,
they found checkerboard-like blue–yellow and red–green basis
functions in the JPEG condition but not in the raw images. We
did not find such artifacts in our set of kernels (cf. Fig. 2).
Caywood et al. [52] also warn that biases could come
from the color encoding in JPEG compression. The JPEG
downsampling of colors is performed after a conversion of
the RGB values into YCbCr color-opponent space [76].
This transformation mimics the color-opponent channels in
the human visual system and is actually quite similar to the
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transformation from RGB to DKL coordinates [77]. We did
not see any bias in the tuning of the kernels in the first layer
of AlexNet towards these axes. Rather, they preferentially fell
around the directions defined by the PCA performed on the
color distribution of the training dataset as shown in Fig. 1.
In summary, JPEG compression does not seem to substantially
bias our results. Note also that color is downsampled more
heavily than luminance in JPEG, and this would lead us to
underestimate the role of color.

The third caveat is that the 1000 classes of objects consti-
tuting the dataset, and those which the model has been trained
to differentiate, contain few color diagnostic objects. Among
the 1000 classes, 352 of them are manmade instruments,
130 are dog breeds, and 67 are vehicles. In comparison, birds
and food only number 59 and 27, respectively. It should also be
noted that most cameras use fairly good white balance
algorithms, achieving color constancy even before the stimulus
enters the network and thus further reducing the demands on
color processing within the network.

To escape these limitations of the image set, one would need
to use a dataset of fully calibrated natural images with no JPEG
compression. The ideal, of course, would be hyper-spectral
natural images. However, such images are cumbersome to ob-
tain [78] and datasets with a sufficient number of labeled object
images, either in terms of classes or samples per class, do not
yet exist.

Another big issue concerns the question howmuch our find-
ings can be generalized to other CNNs. AlexNet was the first
CNN that was highly successful in the ImageNet challenge,
and for that reason is has been studied a lot in the past, includ-
ing comparisons to the primate visual system [3,4,21].
Subsequent network architectures—for example VGG or
Google-Net—still bear similarities to AlexNet, and in the
few instances where several architectures were compared to
human vision, they all behaved reasonably similar [13]. Still,
detailed studies on the influence of specific network architec-
tures on correlates of CNNs with the visual system are lacking.
However, at least the VGG-M network investigated by Rafegas
and colleagues [18,19] seems to behave relatively similar with
respect to color. The framework and tools we have developed
here will allow us to investigate these interesting issues in more
detail in the future.

5. CONCLUSION

In this study, we revealed several similarities between the color
processing in AlexNet and the primate visual system. First, we
have shown that, similar to the early visual system, kernels in
the first layer of AlexNet are linear and preferentially selective
for decorrelated and statistically sensible directions in the color
space of the input. Second, the distribution of tuning around
these directions is comparable to the distribution of color tuning
of linear and color-responsive cells in early visual processing.
Third, we observed a functional segregation of achromatic and
chromatic information in the early layers of AlexNet, analogous
to what has been found in early visual processing. Fourth, the
responsivity of the kernels to simple stimuli decreases as a func-
tion of the layer’s depth, as has been reported in the visual cortex.
Finally, layer 5, the last convolutional layer of AlexNet, shows a

remarkable increase in color responsivity, as is also found
in the most anterior visual areas of the occipital lobe, V4
and VO.

Our results show that the electrophysiology-inspired ap-
proach of using a set of fixed stimuli with highly constrained
parameters can in principle give reliable insights into the chro-
matic processing in a neural network, in our case an artificial
one. Indeed, we found that a direct analysis of the kernel weights
in the first layer of AlexNet and the physiological approach yield
equivalent results when analyzing both tuning and color respon-
sivity. This approach has clear limitations with regards to the
analysis of deeper layers, where simple stimuli are less effective.
Nevertheless, we find that color responsivity increases in the last
convolutional layer of AlexNet. This finding is in good agree-
ment with the previously shown increase in color responsivity
found in the last convolutional layer of the VGG-M network
using a direct optimization approach to discover, for each unit
of the network, an optimal stimulus [19].

We also observed that there is a degree of variability in the
features learned by AlexNet from one training instance to an-
other. In particular, kernels in the first layer do not become tuned
to the same directions in color space every time, and a prefer-
ential chromatic selectivity for two directions appears clearly only
when considering all instances together. Furthermore, different
training instances can exhibit diverse degrees of segregation be-
tween color-sensitive and non-color-sensitive kernels. This
underlines the importance of taking into account several training
instances of the same convolutional neural network in order to
thoroughly study its general behavior.

The further exploration of CNNs and their properties
presents many fascinating opportunities. It is possible to
present network units with huge numbers of stimuli to explore
their properties. Through training with a large set of more than
1 million natural images, it is also possible to explore exactly
which combinations of features in natural images drive each
network unit, even at the higher layers. And finally, we can rec-
ord the activity of any subset of units at the same time. There
are also shortcomings. CNNs do not yet represent any temporal
dynamics of neural processing. The properties of CNNs de-
pend largely on the input that is used for training. While
the 1.2 million images used for training AlexNet are likely use-
ful for exploring object recognition, it would be ideal to have
available a tailored image set for the study of color vision.
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A B S T R A C T   

In this work, we examined the color tuning of units in the hidden layers of AlexNet, VGG-16 and VGG-19 
convolutional neural networks and their relevance for the successful recognition of an object. 

We first selected the patches for which the units are maximally responsive among the 1.2 M images of the 
ImageNet training dataset. We segmented these patches using a k-means clustering algorithm on their chromatic 
distribution. Then we independently varied the color of these segments, both in hue and chroma, to measure the 
unit’s chromatic tuning. 

The models exhibited properties at times similar or opposed to the known chromatic processing of biological 
system. We found that, similarly to the most anterior occipital visual areas in primates, the last convolutional 
layer exhibited high color sensitivity. We also found the gradual emergence of single to double opponent kernels. 
Contrary to cells in the visual system, however, these kernels were selective for hues that gradually transit from 
being broadly distributed in early layers, to mainly falling along the blue-orange axis in late layers. In addition, 
we found that the classification performance of our models varies as we change the color of our stimuli following 
the models’ kernels properties. Performance was highest for colors the kernels maximally responded to, and 
images responsible for the activation of color sensitive kernels were more likely to be mis-classified as we 
changed their color. 

These observations were shared by all three networks, thus suggesting that they are general properties of 
current convolutional neural networks trained for object recognition.   

1. Introduction 

Convolutional Neural Networks (CNNs) are the state-of-the-art for 
object recognition algorithms. However, little is known about their in
ternal representations, and how these representations relate to object 
classification. The difficulty of the task resides in several factors, 
including the numerous non-linearities and the entanglement of fea
tures, such as shape and color, in hidden layers. 

This study takes its place in an ongoing debate on the validity of 
CNNs, particularly those trained for object recognition, as models of 
biological neural systems. There is evidence that, similarly to CNNs, 
object recognition in human is mainly a feedforward process (DiCarlo, 
Zoccolan, & Rust, 2012), and that CNNs can be good predictors of pri
mate brain activity (Khaligh-Razavi & Kriegeskorte, 2014; Güçlü & van 
Gerven, 2015; Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016). How
ever, other studies have shown differences between CNNs and the pri
mate brain (Goodfellow, Shlens, & Szegedy, 2014; Szegedy et al., 2014; 
Geirhos et al., 2017), or that CNNs rely on very different cues than our 

visual system (Szegedy et al., 2014; Geirhos et al., 2018). Studying how 
artificial neural networks learn to solve their tasks, and identifying and 
characterising their similarities and differences with biological brains 
are promising approaches. They will help us to understand why and how 
CNNs do solve the same tasks, and to answer the questions: what caused 
the two systems to behave similarly here, and different there? 

The processing of visual color information, and its importance for 
object recognition, is a field of study that offers such an opportunity. 
Decades of physiological and psychophysical studies (see Komatsu, 
1998; Gegenfurtner, 2003; Witzel & Gegenfurtner, 2018 for reviews) 
form a great basis for comparing CNNs to biological systems. 

For these reasons, we focus here on the general color tuning prop
erties of CNNs trained for object recognition. More specifically, we 
studied the color properties of the units constituting these CNNs, what 
consequences these properties may have on the classification perfor
mances of CNNs and, finally, how these properties and there conse
quences may relate to their counterparts in the macaque and human 
visual systems. 
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To our knowledge, there are relatively few studies that address this 
question. In our own earlier work (Flachot & Gegenfurtner, 2018), we 
used a physiologically-inspired approach to study the processing of 
chromatic information in AlexNet (Krizhevsky, Sutskever, & Hinton, 
2012). We used simple shape stimuli to analyze the chromatic tuning of 
kernels in a large number of training instances of AlexNet. We showed 
that units in early layers tended to be either color sensitive or color 
agnostic. Furthermore, there was a functional segregation of color sen
sitive and color agnostic units, probably due to the specific architecture 
of AlexNet, which is split into two different streams (ie graphics cards) in 
the early layers. Those network instances with a higher degree of 
segregation tended to perform better, implying that it might be advan
tageous to perform normalization operations separately to color and 
luminance components. Despite these promising results, our approach 
was limited to studying the early and middle layers, as the stimuli we 
used to probe the models were highly constrained to simple shapes, and 
to one CNN architecture only. 

Rafegas et al. (2018) used natural images from the ImageNet (Deng 
et al., 2009) data set to study the color properties of VGG-M net. Using 
visualization methods developed in (Simonyan & Zisserman, 2014; 
Yosinski, Clune, Nguyen, Fuchs, & Lipson, 2015), Rafegas and col
leagues examined patches for which the neural network units are 
maximally responsive among the 1.2 M RGB natural images of the 
training dataset. For each unit, they thus selected 100 patches and 
computed their weighted mean as an estimate of the feature that kernel 
would respond to best. They found that a large number of neurons were 
color selective in the sense that they responded much better to the 
colored patches than to the same patches in grayscale. An analysis of 
mean image patches showed a prevalence of color opponency in the 
early layers, while kernels in higher layers tended to respond mainly to 
individual hues. Their work includes a few limitations, however: (1) it is 
based on the assumption that the color properties of kernels equal the 
color properties of their corresponding mean image patches. As a 
consequence, color biases within the dataset might bias the results; (2) 
averaging across 100 images to obtain mean image patches might blur 
complex color tuning, particularly for late layers; (3) their study is 
limited to one architecture only, very similar to the one we used 
previously. 

Engilberge, Collins, and Süsstrunk (2017) also used natural images, 
but they evaluated the units’ responses to monochromatic images of 
different hues. This way, any kind of chromatic contrast was removed 
from the images. 

Here, we try to overcome some of the limitations of the earlier work. 
We measure the chromatic properties of units using natural images, but 
we do so by varying the color of the images, either through global 
transformations or by modifying the color of segmented regions in these 
images. We not only investigate the effect of chromatic changes on the 
responses of individual units, but also on the recognition performance of 
the whole network. 

2. Methods 

2.1. Models and training 

We used 3 networks in this study: AlexNet (Krizhevsky et al., 2012), 
VGG-16 and VGG-19 (Simonyan & Zisserman, 2014). We chose these 
networks because they are well established architectures of CNNs: more 
recent models are all inspired from or compared to these architectures. 
They also have more straightforward architectures than other networks 
such as Inception nets (Szegedy et al., 2015) or ResNets (He, Zhang, Ren, 
& Sun, 2016) making it easier to draw conclusions on their general 
properties. 

2.1.1. Models 
Deep convolutional neural networks are layered algorithms, each 

layer performing a set of processing operations. Like most other CNNs, 

AlexNet is a feedforward system. It takes as input a 227 × 227 × 3 image 
and outputs 1 out of 1000 category labels that the input image most 
likely belongs to. The first two input dimensions represent the spatial 
extent of the image (width and height), and the third input dimension 
represents the three RGB color channels. AlexNet consists of convolu
tional layers and fully-connected layers. A convolutional layer consists 
of a set of linear kernels (i.e. filters) with equally sized receptive fields (e. 
g. 11 × 11 × 3 in the first layer) applied at equally spaced intervals, 
followed by half-wave rectification (ReLU)(Krizhevsky et al., 2012). 
This results in a two-dimensional map encoding the response of a given 
filter at each spatial position. The activation maps from all filters within 
a layer are stacked to produce the output volume of that layer, which is 
the input volume of the next layer. In fully-connected layers the network 
units get input from all units of the previous layer. The units in fully 
connected layers thus have receptive fields of the same size as the input 
image, and their activation maps can be computed through a simple 
multiplication of their weights with the responses of the previous units. 
AlexNet’s architecture consists of five convolutional layers followed by 
three fully-connected layers. The convolutional layers 1, 2 and 5 of the 
AlexNet architecture are followed by max pooling, a down-sampling 
operation which reduces the size of the input volume along its first 
two dimensions by taking the maximum response of 3 × 3 neighboring 
units. Following the pooling operations, in layers 1 and 2 are two nor
malizations layers. 

We included two other networks in our study, the VGG-16 and VGG- 
19 networks (Simonyan & Zisserman, 2014). The main difference be
tween AlexNet and these two is the number of convolutional layers: as 
their names suggest, VGG-16 and VGG-19 have 16 and 19 layers 
respectively. Similar to AlexNet, the last three of these layers are fully 
connected, and the others convolutional. As opposed to AlexNet, VGG- 
16 and VGG-19 do not have normalization layers. Rather the non- 
linearities implemented within the nets come only from the ReLU acti
vation functions and pooling layers. In the case of VGG-16, the pooling 
layers are after convolutional layers 2, 4, 7, 10 and 13, while in the case 
of VGG-19, the pooling layers are after convolutional layers 2, 4, 8, 12 
and 16. Without the normalization layers, the VGG nets have simpler 
architectures than AlexNet. 

2.1.2. Software and dataset 
All three models were pretrained by the Berkeley team and are 

available with the CAFFE deep learning framework (Jia et al., 2014). 
The models were trained on the ILSVRC 2012 dataset (Russakovsky 
et al., 2015). This dataset consists in over 1.2 M labeled RGB images, 
divided into 1000 object classes. All analyses presented in this work 
were scripted in python. The code used in this study is available through 
Github.1 

2.2. RGBPCA color coordinates 

Many color spaces and chromatic coordinates are commonly used in 
colorimetry, color science and computer graphics (Plataniotis & Ven
etsanopoulos, 2013). Depending on the task, some are better suited than 
others. The color space most suitable for our analysis is that which our 
CNNs are tuned towards, as well as a product of the distribution of RGB 
values of pixels in the training dataset. ImageNet is indeed biased in its 
pixels distribution mainly towards achromatic variations, but also to
wards bluish-orangish colors (Rafegas et al., 2018; Flachot & Gegen
furtner, 2018), which seems to be a common feature of RGB natural 
images (Ohta, Kanade, & Sakai, 1980). As such, a Principal Component 
Analysis (PCA) performed on the pixel distribution of the training 
dataset lead to a first Principal Component along the achromatic di
rection, and a second along the bluish-orangish direction. In a recent 
study, we showed that kernels in early layers of AlexNet also preferred 

1 https://github.com/AlbanFlachot/optimal_patch. 

A. Flachot and K.R. Gegenfurtner                                                                                                                                                                                                           



Vision Research 182 (2021) 89–100

91

these directions (Flachot & Gegenfurtner, 2018). Given that these 
principal components are nearly identical to the optimal features found 
by Ohta and colleagues (Ohta et al., 1980), with a maximum relative 
difference of 3% per element, we used their color-axes transformation 
values. The resulting three color axes define a coordinate system in RGB 
space which we call RGBPCA. The three coordinates, sorted according to 
the ranking of their corresponding principal components, are IPCA for 
intensity as the achromatic dimension, C1PCA and C2PCA as the chro
matic dimensions. The transformation from RGB values to RGBPCA is as 
follows: 
⎛

⎝
IPCA
C1PCA
C2PCA

⎞

⎠ =

⎛

⎝
2/3 2/3 2/3
1 0 − 1
− 0.5 1 − 0.5

⎞

⎠

⎛

⎝

⎛

⎝
R
G
B

⎞

⎠ − 0.5

⎞

⎠. (1)  

All of our analyses will be presented solely in the RGBPCA coordinates, or 
their cylindrical representation as Hue and Chroma. To understand the 
conversion from cartesian to cylindrical coordinates, we may consider a 
point P in color space, and call V the vector associated with P. The Hue 
represents the angle between the projection of V on the chromaticity 
plane (orthogonal to IPCA) and C1. The Hue can assume values in the 
interval [0,360]. Chroma is defined as the length of the projection of V 
onto the chromaticity plane i.e. the degree to which a color diverges 
from gray. 

The choice of using RGBPCA as the unique color coordinates for our 
analysis is motivated by previous studies on CNNs trained on ImageNet 
(Flachot & Gegenfurtner, 2018) and is as such not arbitrary. Still, since it 
has been used for analysis only and not training, our results should not 
be too dependent on this choice, as other sensible color coordinates 
should lead to qualitatively similar conclusions. This is particularly the 
case given that the color dimension most relevant for this study - Hue - is 
almost identically represented across color spaces. The main difference 
is that the same hue might be referenced at two different angles in two 

different color spaces. 

2.3. Stimulus selection 

We aim at understanding the characteristics of the color properties of 
kernels learned in CNNs trained for object recognition, meaning that we 
would like to single out the dependence of a kernel’s response to the 
color of its input independently of any other feature. The main issue with 
CNNs is that the features learned individually by each of their kernels 
are mixtures of specific shapes and colors i.e have specific spatial, ach
romatic and chromatic characteristics (Zeiler & Fergus, 2014; Simonyan 
& Zisserman, 2014; Yosinski et al., 2015). In particular, kernels in deep 
hidden layers learn features of such specific and complex spatial and 
achromatic properties that one needs to first match in order to study the 
kernels’ chromatic properties (Flachot & Gegenfurtner, 2018). 

To do so, for each kernel of our 3 models, we aimed at obtaining an 
image patch with an ”optimal” shape. By optimal, we mean that the 
patch should display a shape feature that we know the given kernel is 
highly responsive to. This was done by picking, for each kernel, the 
image patch within the entire training dataset for which it is most 
responsive, similarly to Rafegas and colleagues (Rafegas et al., 2018). 
Some examples are provided in Fig. 1 A. 

Note that the size of the optimal patch is equal to the receptive field 
of the kernel it corresponds to. For example, optimal patches for the first 
layer kernels of the VGG-19 net are 3x3 pixels large, while optimal 
patches of layer 11 are 100x100 pixels large. This will matter when we 
will look into the impact of color changes on the classification perfor
mance of our models. 

Since the selected patch is the one responsible for the maximal 
activation of the given kernel across over 1.2 million images, it is 
reasonable to assume that its shape characteristics match the kernel’s 
shape features. 

Fig. 1. Method used to extract the refined color tuning curves of kernels in the deep layers of our networks. A: We start by selecting, for each kernel in each layer, the 
optimal patch that results in its maximal activation across the entire training dataset; B: For each optimal patch, we subtract the achromatic information and apply a k- 
means segmentation algorithm (K = 4) to the chromatic distribution; C: We then modified independently and uniformly the color of each of the resulting segments in 
both hue (24 different hues, from 0 to 360◦) and chroma (5 levels of C, from 0 to 1, from gray to colorful); D We used each modified image as input to the model and 
recorded the kernel response to the modified optimal patch; E We extracted the response of the kernel as a function of hue for each of the segment and values of 
chroma, resulting in a 4x5 tuning curves per kernel. 
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2.4. Color manipulation 

Similar to our previous study (Flachot & Gegenfurtner, 2018), we 
varied the color of our stimuli in a systematic and controlled manner, 
and recorded model responses. As opposed to using simple stimuli l ike 
colored circles, however, here we used the more complex optimal 
patches as the basis. 

Manipulating colors in these optimal patches lead to two issues. The 
first one was the RGB gamut. Since the color manipulations would be 
made according to the RGBPCA coordinates, changes to the hue of in
dividual pixels could lead to results outside of the RGB gamut. Note, 
however, that these manipulated images never get displayed on any 
device. These are purely virtual color coordinates and thus we do not 
need to be concerned with the gamut here. The ”images” are simply 
color distributions that can take any value. The second issue was 
retaining the shape information within the optimal patches across our 
color modifications, e.g sharp color edges. We used two approaches to 
make sure that any change in response from our models indeed came 
from the color changes and their color tuning, and not their shape 
tuning. First, we applied a global color transformation to the whole 
image, by rotating all pixel colors along the intensity axis in RGBPCA 
space, similar to (Nascimento, Albers, & Gegenfurtner, 2018). This 
conserves the color edges and local chromatic contrasts but modifies the 
hue. We applied gamut rotations for 24 angles in Hue, equally spaced by 
15◦. Second, we segmented the optimal image patches into different 
color regions and manipulated the hue of these regions separately. 

In order to extract refined tuning curves from our models, we had to 
choose a segmentation algorithm that would segment the optimal patch 
in a sensible way, color wise, while retaining the shape information. This 
allowed us to study the tuning of kernels in different regions of the 
patch. We chose to use the k-means segmentation algorithm (Forsyth & 
Ponce, 2003) on the chromatic distribution of the pixels of the patch, 
after we projected the color of every pixel onto the chromaticity plane (I 
= 0). After some exploration, we fixed K at 4: the upper limit for the 
number of hues the kernels were selective for. We thus obtained 4 seg
ments of our image patch based on their colors. This is illustrated in 
Fig. 1 B. The k-means algorithm has obvious shortcomings, such as 
forcing a fixed value of segments that can lead to non semantically 
sensible segment distinctions (see segments 1 and 4 in the example). 
However, it seemed to work for most image patches. We discuss this 
choice of segmentation algorithm in more details in the discussion 
section. 

After identifying our 4 segments for each optimal patch, we modified 
the color of each segment independently. We used 24 hue values equally 
spaced (every 15◦) within the interval [0,360], for 5 values of chroma, 
from 0 to 1. Fig. 1 C shows an example of such manipulation for 4 hue 
values and all 5 chroma values. Note that at zero chroma, the segment 
only retains its achromatic characteristics. We then measured how the 
kernel responded to these changes (Cf. Fig. 1 D). 

For each kernel K of our 3 networks, we thus measured 4x5 color 
tuning curves separately, one for each of the 4 segments at each of the 5 
values of chroma (cf. Fig. 2 E). At zero chroma, the tuning curves are flat 
since there are no color variations as the segment was converted to 
grayscale. 

2.5. Measures of color sensitivity 

Given the richness of our set of stimuli for each kernel of all three 
models, we defined several measures of color sensitivity. The first, and 
most straightforward measure, is the normalized maximal change of a 
kernel’s response induced by our set of color modifications. We call this 
measure the overall color sensitivity (CSoverall). A CSoverall of 0.5 describes a 
kernel whose response halved, compared to its maximal response, across 
all tested color modifications. More formally, we define CSoverall as: 

CSK
overall = 1 −

min
(
RK)

max
(
RK) . (2)  

where K denotes a kernel and R the set of measured responses. 
In other words, if a usually responsive kernel was to show a null 

response to one of our stimuli, say for one specific gamut rotation or 
segment modification, then it would have the maximal value of 1 in 
overall color sensitivity. If its response was to stay absolutely constant 
across our entire set of stimuli, thus not caring about any color change, 
then it would have the minimum value of zero. 

For each kernel K and segment S, we also applied a more restrictive 
measure that we called hue selectivity (CShue). It is defined as the 
normalized relative change of response induced by a hue modification, 
at constant chroma. More formally, 

CSKS
hue = maxC

⎛

⎝1 −
minH

(
RK

S,C

)

maxH

(
RK

S,C

)

⎞

⎠. (3)  

where S denotes our set of segments, C denotes our set of chroma and H 
denotes our set of hues. Most often, these changes were largest at the 
highest levels of chroma. 

We will describe a kernel as showing a major hue selectivity for 
segment S if its response varies by more than 50% across hues (CSKS

hue >

0.5), and a minor hue selectivity if its response varies by more than 25% 
(CSKS

hue > 0.25). We will call the hue eliciting the maximal activation 
preferred hue for the kernel K at segment S. We will also say that the 
kernel K is hue selective if it shows a major hue selectivity for at least one 
segment. 

Finally, we also considered the responsivity to chroma (CR). Not to be 
confused with the minimum perceived chroma (or chroma sensitivity) 
used in behavioral studies (Witzel & Gegenfurtner, 2014; Bednarek & 
Grabowska, 2002). Here, we defined responsivity to chroma as the 
relative change in a kernel response to a colored segment compared to 
the response to the same segment in grayscale: 

CRK
S = 1 −

RK
S,C=0

max
(
RK

S

) . (4)  

As with hue selectivity, we describe a kernel chroma responsive if it 
showed a major chroma responsivity in at least one of its segments. In 
other words, if a kernel showed a response 2 times higher for a colored 
segment than for the grayscale version of the segment, then this kernel is 
chroma responsive. 

3. Results 

Except when explicitly stated, the results presented here are essen
tially shared across all three networks and thus for synthesis purposes, 
only the results for VGG-19 are shown. Results for the other two net
works can be found in the supplementary material. 

3.1. Hue and chroma sensitivity 

An important first step in understanding the color processing of our 
models is to map the degree of color sensitivity of their underlying 
kernels (i.e., to which degree the responses of their kernels vary with 
color). 

Fig. 2 A shows the proportions of kernels with overall color sensi
tivities above various thresholds. In very early layers, overall color 
sensitivity is bimodally distributed. There are many kernels with little 
overall color sensitivity and many kernels with a high overall color 
sensitivity (Eq. 2). On average, across all three networks, we found that 
35% of the kernels saw their response vary by less than 12.5% when we 
changed the color of one of the patch’s segment (overall color sensitivity 
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<1/8) while 37% saw their response vary by more than 87.5% (overall 
color sensitivity >7/8). Past the first or second layer, we found that the 
spectrum of hue sensitivity spreads out and kernels gradually started 
showing intermediate degrees of hue sensitivity. This pattern hold up to 
the mid convolutional layers for the VGG networks and the last con
volutional layer for AlexNet. This progressive change in the distribution 
of color sensitivity from early to late layers is representative of the 
progressive entanglement of shape and color. While early kernels code 
almost exclusively for either the chromatic, either the achromatic in
formation, kernels in deep layers rather code for a mixture of the two. 
Interestingly, we also observed an increase in overall color sensitivity for 
kernels in the last convolutional layers, and the highest proportion of 
strongly color sensitive kernels for all three networks. We found the 
mean color sensitivity across all three networks equal to 0.63 and the 
mean proportion of strongly color sensitive kernels of 63%. These results 
are in line with the observations previously made for individual training 
instances of AlexNet (Flachot & Gegenfurtner, 2018) and VGG-M 
(Rafegas et al., 2018). Specific to the VGG nets, we also found a sec
ondary peak in sensitivity around the 6th convolutional layer. 

The proportions of kernels with hue selectivity (cf. Eq. 3) above 
various thresholds are shown in Fig. 2 B. Except in very early layers, 
where hue selectivity was on average very low in the VGG nets, we 
found a similar pattern as for overall color sensitivity. In fact, we found 
that both measures were extremely highly correlated, with the lowest 
correlation being of 0.94 for the VGG-19 network. 

Results for the proportions of responsivity to chroma (cf. Eq. 4) are 
displayed in Fig. 2 C. Similarly as for the two other measures, kernels in 
early layers tend to be either very responsive, either not responsive to 
chroma, while in later layers the spectrum of chroma responsivities is 
more broadly represented. Responsivity to chroma was on average, 
however, lower than for overall color sensitivity and hue selectivity, 
particularly in the deeper layers. Seemingly, kernels selective for hues 
tended to also be responsive to chroma. Positive correlations between 
the two measures were indeed found in every layers and model, the 
lowest correlation found being of 0.26 for the 11th layer of VGG-19, 
while AlexNet and early layers of the VGG-nets showed correlations 
greater than 0.75. On average, the correlation between the two mea
sures is 0.62. 

These results suggest the kernels in CNNs tend to be mainly sensitive 
to change in hues rather than changes in chroma. In other words, a 
segment displayed with a wrong hue is likely to induce a lower kernel 
response than the same segment with different saturation. This points to 
a special role for hue, as opposed to chroma or saturation, as has been 
observed in some psychophysical studies (Judd, 1970; Danilova & 
Mollon, 2016; Krauskopf & Gegenfurtner, 1992). 

3.2. Hue tuning and color opponency 

Studies in the primate visual system have also focused on the 
sensitivity of cells the early visual cortex towards direction in color 

space (Krauskopf, Williams, & Heeley, 1982; Lennie, Krauskopf, & Sclar, 
1990; Gegenfurtner, Kiper, & Fenstemaker, 1996; Gegenfurtner et al., 
1994; Gegenfurtner, 2003; Komatsu, Ideura, Kaji, & Yamane, 1992; 
Yasuda, Banno, & Komatsu, 2009) with cells along the primate visual 
pathway showing different degrees of color opponency, from single 
opponent cells in the LGN to double opponent cells in the visual cortex 
(Shapley & Hawken, 2011; Conway & Livingstone, 2006). Single 
opponent cells decorrelate the input channels, here in terms of RGB, by 
combining them in a spatially uniform way. Single opponent kernels 
show spatially uniform color selectivity. Double opponent cells are se
lective for opponent colors in different spatial regions of their receptive 
fields. Here we define a kernel as double opponent if it is selective for 
opponent hues in two different segments. 

Given our definition of hue sensitivity, one kernel can be selective to 
up to 4 hues, one for each color segment within the patch resulting from 
the k-means segmentation. To identify which hues the kernels are se
lective for, in Fig. 3, we selected for each of their color segment their 
preferred hue (i.e the hue eliciting the kernel’s highest response), under 
the condition that the kernel was found to be majorly hue selective 

Fig. 2. Proportions of VGG-19’s kernels with different levels of A overall color sensitivity; B hue selectivity; and C chroma responsivity.  

Fig. 3. Histograms of hues for which kernels are most responsive to across 
layers of the VGG-19 network. 
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(CShue > 0.5) on that same segment. If a kernel was found to be majorly 
hue selective in two segments, then it could be selective for 2 hues. There 
is a slight chance, however, that the 2 preferred hues at 2 different 
segments are actually very similar. To prevent over counting based on 
such a bias, we considered that a kernel can be considered a selective for 
two hues if and only if the hues are at a minimum of 30◦ from one 
another. 

Fig. 3 shows histograms of hues kernels are selective for across layers 
of the VGG-19 network. In the networks’ early layers, the different 
kernels show a broad distribution of preferred hues. There are no 
particular color directions that are over-represented. This broad distri
bution becomes a bi-modal distribution in the later layers, with hue 
preferences falling along the blue-orange direction of 0 and 180 hue 
degrees. In other words, kernels in the last convolutional layers of the 
VGG-19 net are mostly responsive to stimuli along the C1 axis of the 
RGBPCA coordinates. Kernels thus follow the color bias towards bluish- 
orangish colors of the pixels distribution of the training dataset (Rafe
gas et al., 2018; Flachot & Gegenfurtner, 2018). Such a bias is typically 
found for natural images (Nascimento, Ferreira, & Foster, 2002) due to 
the strong variation of natural images along the daylight locus, i.e 
bluish-orangish direction. It is also partially caused by the cubic nature 
of the RGB space (Ohta et al., 1980). Therefore, the bias is not a 
consequence of the particular choice of the RGBPCA coordinates. Rather, 
it confirms that the RGBPCA coordinates, because they are aligned with 
this preferred direction, are highly suitable to study the color processing 
in CNNs trained for object recognition. 

This large bias, however, does not mean that VGG-19 is color- 
deficient (e.g green) in its last layers. While ConvNets like AlexNet 
and VGG nets start with a relatively low number of kernels in their first 
layers (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014) (96 and 
64 respectively), the number of kernels increases progressively to reach 
high values in late convolutional layers. As such, although 1.8 of kernels 
are only selective for the green direction in the last layer of VGG-19, for 
example, this small percentage of kernels still makes a significant 
contribution. 

In order to identify single opponent and double opponent kernels, we 
counted the number of hues for which kernels are hue selective. If a 
kernel is selective for a single hue, and this hue is the preferred hue in all 
segments, then this kernel would be single opponent. If a kernel is se
lective for 2 different hues in two different segments, then it might be 
double opponent. Fig. 4 A shows the histograms of the number of hues 
for which kernels are majorly selective for (Cf 2.5). In the very early 
layers of the VGG nets, hue selective kernels were only selective for a 

single hue. Out of these hue selective kernels, 38% of them shared the 
same preferred hue across all segments, showing standard deviations of 
less than 10◦ in hue angle. By definition, these kernels are thus single 
opponent. In deeper layers, a large proportion of hue selective kernels 
were also selective for only one hue, although different segments 
showed different preferred hues. However, it was also the case that in 
these layers a significant proportion of hue selective kernels was selec
tive for 2 hues. The highest proportions were found at the 4th layer of 
the VGG-nets and at the 1st layer of AlexNet, layers where the receptive 
fields are all in the order of magnitude of 10 pixels wide. In these layers, 
proportions are on average of 66%. In the last layers, the proportions of 
kernels selective for 2 hues are on average of 28%. To figure out whether 
a kernel found selective for 2 hues at 2 different segments is actually 
double opponent, we need to compute the difference between these 2 
hues. Fig. 4 B shows a histogram of these hue differences across all layers 
of the VGG-19 net. From this figure, it appears that in their large ma
jority, over 73% on average, kernels selective for 2 hues are selective for 
hues more than 165 ◦ from one another, meaning these kernels are, 
indeed, double opponent. 

We also describe minor hue selectivity as cases where the response of 
a kernel vary by 25%, or more, with changes in hue within a segment 
(CS > 1/4 in Fig. 2 panel B; See also methods Section 2.5). Minor hue 
selectivity thus includes hue selective segments. Most kernels in middle 
to late layers were found to have minor hue selectivity, with proportion 
superior to 60% starting from layer 5 in the VGG-nets and layer 2 in 
AlexNet. Out of these minor hue selective kernels, the majority were 
selective for at least 2 hues, with a maximum of 4 hues found for 2 
kernels in each of the VGG-nets last layers. Although little, this number 
defines an upper boundary for the maximal number of segments in 
which kernels may be selective for different hues. This is also why 4 
segments were set in the k-means segmentation algorithm. 

So far, when a kernel was found to be hue selective within one of its 
segment, we focused on the hue they were maximally responsive to. But 
within one segment, a kernel could actually be selective to several hues, 
measurable by their tuning curves exhibiting auxiliary peaks. We 
thought interesting to quantify these auxiliary peaks using the peak 
detection algorithm in scipy (Virtanen et al., 2019). To be detected, a 
peak had a prominence of over 1/6 of the curves highest value and be 
above 30◦ hue apart from other peaks. We conducted this analysis for 
only hue selective kernels and segments. We considered only one tuning 
curve per segment (out of the 4 with non-zero chroma), the curve with 
the highest number of detected peaks. Fig. 5 shows some examples of 
tuning curves exhibiting 1, 2 or 3 peaks according to our algorithm. 
Fig. 6 shows the results of the analysis for hue selective kernels. We 
found that in early layers, hue selective kernels are exclusively selective 
for one hue in individual segments, with a proportion of 99% up to layer 
4 in VGG-19. From layer 5 on, this proportion decreases in favour of 
kernels with tuning curves showing 2 peaks, 1 for their primary hue and 
another for their secondary hue, reaching average proportions of 39% in 
the last layers. If applicable, we computed the angle difference between 
the secondary and primary hues. In Fig. 7 we show a histogram of these 
angle differences. We find that over 70% of these are at 180◦ ±15◦ away 
from the preferred hue. 

Fig. 4. A: Histograms of the number of hues for which kernel are selective (see 
Eq. 3). B: For kernels selective for 2 different hues at different segments: his
togram of the hue difference between the 2 hues. Except for early layers of the 
VGG nets, a significant proportion of the hue selective kernels are selective for 
two hues in two different segments. For the majority of these, the two hues are 
approximately opponent, suggesting that these kernels are double opponent. 

Fig. 5. Example of tuning curves displaying A 1 peak, B 2 peaks and C 3 peaks 
according to our algorithm (see Section 3). 
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This characteristic of late kernels goes beyond simple and double 
opponency. In fact, it rather resembles the behaviour of complex cells 
found in the primary cortex of cats and macaques (Spitzer & Hochstein, 
1985; Spitzer & Hochstein, 1985; Lennie et al., 1990). A complex cell 
response is modeled by taking in the signal of linearly summing ele
ments distributed throughout its receptive field, performing a half-wave 
rectification on each of them before combining them linearly (Spitzer & 
Hochstein, 1985; Lennie et al., 1990). In a similar fashion, a kernel of 
deep layers of CNNs linearly combines the outputs of kernels in the 
previous layer, each output resulting from a half-wave rectified 
weighted sum of inputs (ReLU, cf. Section 2.1 of this manuscript) 
(Krizhevsky et al., 2012). 

Once again, similar tendencies were found across the three examined 
networks, suggesting a general property of convolutional neural 
networks. 

In summary, in the last layer of our models, we found on average that 
50 % of the kernels were selective for one hue in at least one of their 4 
segments. 39% of these showed, within the same segment, a secondary 
selectivity for another hue. This other hue was, in over 70 % of cases, 
around 180◦ from the preferred and optimal hue. This means that, in the 
eventuality that this segment carried semantically relevant information 
for object classification, the classification could still be successful if the 
object had the optimal hue or its opponent hue, and unsuccessful if the 
object had a hue in between. 

3.3. Hue tuning and classification performances 

The color tuning of the kernels do not say how their color charac
teristics impact the classification performance of the whole network. We 
therefore obtained color tuning curves for the whole network and 
compared them to the tuning curves measured in the previous section. 

We thus showed the networks our color-modified set of images, and 
recorded the classification results of the models. We first focus on the 
simple case of the global transformations of the whole images colors, i.e 
via a rotation along the achromatic axis or turning in black and white. 

We looked at how the model performs as we modify the color of the 
images more and more. Fig. 8 shows the performance of VGG-19 as we 
modify the original colors of the stimuli by applying a rotation around 
the achromatic axis, in color space, of the their pixel distribution (black). 
At zero (or 360) degrees we have thus the accuracy obtained for original 
images. In gray is plotted the classification performance for the same 
images but converted to grayscale. We found that converting the stimuli 
to grayscale had already a significant impact on the classification per
formance. We observed a drop in performance from 76.5% to 59.5% for 
VGG-19. Across all three networks, we found a relative decrease of 25% 
in performance, 33% for AlexNet. However, we found an even bigger 
effect of hue modifications. The models reached even lower performance 
for large rotation angles, between 60 and 285◦ off the original colors. On 
average, we found that models showed a relative decrease in perfor
mance up to 31.6%, and 42% for AlexNet. This means that showing the 
wrong color to the network can be more detrimental than showing no 
color at all. 

After analysing the change in classification induced by the global 
transformation, we looked at the change in classification induced by the 
local transformations of the segments. First, we looked at the proportion 
of images which were originally classified correctly then misclassified at 
least once as we modified the color of the image segments (Fig. 9). The 
black curve (in Fig. 9) corresponds to images responsible for the acti
vation of color sensitive kernels. The gray curve corresponds to images 
responsible for the activation of non color sensitive kernels. The red 
curve stands for both kinds combined. We found that in all three cases 
the proportions increased as we used images related to kernels in higher 
levels. This is not surprising, as the size of the color modifications, in 
terms of pixels, increases as well, as described in the Section 2.3. The 
modification size is indeed a function of the patch size, itself equal to the 
receptive field of the kernel considered. We can also see that starting 
from the mid level layers, the black line is above the gray and red lines, 
meaning that images including the optimal patch for overall color sen
sitive kernels are more likely to be misclassified as we modify their color. 

Fig. 6. Proportion of VGG-19’s hue selective kernels showing a secondary peak 
in their tuning curves. 

Fig. 7. Histograms of the distance, in hue, of the secondary with respect to the 
primary hue for the VGG-19 networks. We can see that most of the peaks fall 
180◦ from the primary hue, meaning that kernels can be secondarily selective 
for hues 180◦ from the main hue in the same segment. 

Fig. 8. VGG-19 classification performance as a function of hue angle rotation, 
relative to the original colors. In black: performance of VGG-19 as we modify 
images from the original colors by applying a rotation around the achromatic 
axis of color space. Gray horizontal line: performance of the model for the 
images converted to grayscale. 
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For these images, color plays a higher diagnostic role for images 
including the optimal patch of non color sensitive kernel. Across all 
three networks, we found that a proportion of 65.7% images were 
misclassified at least once when they included the optimal patch of 
kernels in the last layer, 73.1% when these kernels were color sensitive 
and 45.2% when these kernels were non color sensitive. 

To be able to obtain a curve of classification as a function of hue, we 
cannot just consider the hue per se, as kernels were selective for different 
hues. Instead, we need to consider the degree of hue rotation with 
respect to the preferred hue of the corresponding kernel at this segment 
of the stimulus. In other words, if a kernel was mainly selective for blue 
at this particular segment, we started by showing to the model the 
corresponding image with the blue segment, then showed the images 
successively with hues progressively going away from the preferred 
blue. Since the classification is binary, we averaged across segments to 
obtain tuning curves. 

The color manipulations with the highest impact on classification 
were the ones based on the optimal patches in the highest layers, as 
opposed to the patches found in early layers being of smaller sizes. To 
measure tuning curves for classification as a function of hue, we thus 

considered the optimal stimuli corresponding to the kernels in the last 
convolutional layers: 256 original images for AlexNet and 512 for the 
VGG networks, one for each kernel. 

Figs. 10 A and B show the result of this procedure for VGG-19. Fig. 10 
A shows the classification accuracy of the model averaged across 
chroma, for different values of hue selectivity: in full gray is the classi
fication accuracy as a function of hue angle away from the preferred hue 
for images corresponding to non hue selective kernels. In full black line, 
the equivalent but for hue selective kernels. Dotted lines correspond to 
the accuracy of the model for the original images. In red is the mean 
accuracy across all segments. Fig. 10 B, on the other hand, shows the 
classification accuracy of the model averaged across hue selectivity, for 
different values of chroma. Full lines are obtained for different chroma, 
from 0 to 1. The lightest, straight line corresponds thus to color 
manipulation with a chroma of 0, meaning images with achromatic 
segments and no variation in hue. 

Several conclusions follow from Fig. 10. First, for all conditions, the 
maximal accuracies were obtained for the preferred hue, at 0 ◦ on the 
graph. This indicates that for a given chroma, the preferred hue was 
indeed the optimal hue for classification. Second, image classification, 
including the optimal patch of hue selective kernels, varies more with 
color modifications than for images including the optimal patch of non 
hue selective kernels. For the former, color played thus a more important 
role. On average across models, we observed a 27.4% relative decrease 
in accuracy for images including the optimal patch of hue selective 
kernel. In the non hue selective case, the relative decrease in accuracy is 
limited to 4.7% on average. Overall, as shown in red, we observed on 
average a relative decrease of 8.9%. Third, we see that the magnitude of 
the change in classification performance increased as we increased the 
chroma, from a relative difference of 4.3% to 14% for chromas of 0.25 
and 1 respectively (Fig. 10 B). Note that the maximal average accuracy 
decreased with chroma as well, with the same order of magnitude as the 
variation within chroma. Lastly, and perhaps most interestingly, we 
observed that the accuracy dropped gradually for hue angles that are 
0 to 90◦ apart from the preferred hues (0◦ in Fig. 10). However, the 
accuracy increased for angles roughly above 90◦, particularly in the case 
of the VGG networks, to peak again around 180◦. This was a robust effect 
across images, hue selectivities, chroma responsivities and networks. 

This peculiar secondary peak cannot be a direct consequence of the 
opponency of kernels, in the classical definition of it. Single and double 

Fig. 9. The proportion of correctly classified images which are misclassified at 
least once when the color of a segment is modified in color (black) and non- 
color (grey) sensitive kernels, and in any kernel (red). 

Fig. 10. VGG-19 network classification performance as a function of the distance, in hues, to the preferred hue. A: Results for different levels of hue selectivity, 
averaged across chroma. In full gray, results obtained for images including the optimal patches of non hue selective kernels. In full black line, for images including the 
optimal patches of hue selective kernels. Dotted lines are the classification performance for the original images in the 2 corresponding groups. In red is the mean 
accuracy across all kernels. B: Results for different chroma. Five levels of chroma, from 0 to 1, displayed from light gray to black. Dotted line correspond to the mean 
accuracy of the model for the original images. 
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opponent cells, as defined by Shapley and Hawken (2011), respond 
positively to specific hues with a specific spatial configuration, and 
respond negatively to inverse hues with the same spatial arrangement. 
Here, however, our nets correctly classify one image, whether one 
segment exhibits a hue or its inverse, but not those in between. This 
result is similar to the observations made in 7, where we found that hue 
selective kernels in late convolutional layers were often selective to two 
hues within one segment, the preferred hue and a secondary hue, that 
were in most cases around 180◦ apart from one another. The secondary 
peak in accuracy could possibly be directly related to the secondary peak 
sometimes present in the kernels tuning curves. 

4. Discussion 

We have made several observations in this work about the chromatic 
processing of kernels in 3 well established CNNs, about the color phys
iology of these nets so to speak. We also used a psychophysical-like 
approach to investigate the importance of color for their successful 
recognition of objects. 

Understanding how the color properties of the CNNs trained here 
relate to what we know of the macaque’s visual systems would be useful 
for assessing the extent to which CNNs can be accurate models of bio
logical neural systems. It would, in turn, give us ground for extending 
our understanding of how and why these biological neural systems - and 
in particular the macaque’s visual system - get to organize themselves. 
Color vision is particularly suitable for comparing both biological and 
artificial systems due to its long list of physiological and psychophysical 
studies performed over the last decades. 

4.1. Comparison with the physiology of color processing in the primate 
visual system 

On many occasions do both biological and artificial systems share 
similarities. In particular, the kernel properties in the early layers of the 
CNNs tend to be comparable to the properties of cells in the early visual 
system of the primate and human brains. Similarly to cells in the Lateral 
Geniculate Nucleus (LGN) and to a lower extent in V1 (Gegenfurtner, 
2003; Callaway, 2005; Nassi & Callaway, 2009; Krauskopf et al., 1982), 
kernels in early layers show a clear separation between highly color 
sensitive kernels and non color sensitive kernels (cf. Fig. 2). Color sen
sitive kernels in these layers show a simple hue tuning (cf. Fig. 6) 
similarly to cells in the LGN and simple cells in the primary visual cortex 
(Krauskopf et al., 1982; Lennie et al., 1990). 

Similarities between artificial and biological systems can also be 
identified in extra-striate cortical areas. Just like kernels in mid and late 
layers of our networks, cells from cortical areas from V2 onwards show 
complex color tuning and can be responsive to both achromatic and 
chromatic stimuli (Conway, 2009; Shapley & Hawken, 2002; Komatsu, 
1998; Gegenfurtner et al., 1996; Gegenfurtner et al., 1994; Zaidi & 
Conway, 2019). Functional imaging shows that global color sensitivity 
varies considerably between different visual cortical areas (Conway & 
Tsao, 2006). Similar to the CNNs studied here, early visual areas such as 
the LGN and V1, as well as late occipital areas, such as V4 and VO, show 
an overall higher color selectivity compared to mid occipital areas 
(Mullen, Chang, & Hess, 2015; Mullen, Dumoulin, McMahon, De Zubi
caray, & Hess, 2007). Neural regions of high color responsivity have also 
been found in more anterior areas such as IT (Zaidi & Conway, 2019). 

Another notable similarity between the CNNs studied here and bio
logical visual systems is the emergence of different degrees of color 
opponency, from single to double opponent kernels, just like the single and 
double opponent cells found in the early visual system of the monkey 
(Lennie et al., 1990; Shapley & Hawken, 2011; Conway, Hubel, & Liv
ingstone, 2002). Kernels exhibiting non-linear color response, likened to 
the color response of complex cells of the macaque visual systems (Lennie 
et al., 1990; Kiper, Fenstemaker, & Gegenfurtner, 1997), were also 
found in mid to late layers of our models. 

While we found many similarities between CNNs and the macaque’s 
visual system, massive differences can also be observed. In terms of hue 
tuning, indeed, striking differences can be found between biological and 
artificial brains in mid to late processing levels. On the one hand, we 
found here that CNN’s kernels progressively become preferentially se
lective for two specific hues, along the axis of the first chromatic prin
cipal component of the input images. In the primate’s visual system on 
the other hand, cells in the LGN preferentially respond to two ”cardinal 
directions” of color space. Color sensitive cells in the primary visual 
cortex are selective for a much broader range of hues (Lennie et al., 
1990). In V1 and later areas, they do not show as a whole any preference 
for particular hue directions, although each individual cell might be 
highly hue specific (Zaidi & Conway, 2019; Gegenfurtner et al., 1994; 
Gegenfurtner et al., 1996), Cells of the primate visual system show a 
transition from being selective for a narrow set of hues to a broad set, 
while it is just the opposite in CNNs. 

4.2. Comparison to psychophysical studies in humans 

There are many psychophysical studies investigating the role of color 
for recognition (for a review, see Bramão, Reis, Petersson, & Faísca, 
2011; Witzel & Gegenfurtner, 2018). Color enhances the recognition of 
objects and scenes by reducing reaction times needed for recognition 
(Wurm, Legge, Isenberg, & Luebker, 1993; Gegenfurtner & Rieger, 
2000) and increasing recognition accuracy (Gegenfurtner & Rieger, 
2000). This is especially true for objects so called color diagnostic, i.e., 
objects with a redundant color (Tanaka & Presnell, 1999; Tanaka, 
Weiskopf, & Williams, 2001; Nagai & Yokosawa, 2003; Wichmann, 
Sharpe, & Gegenfurtner, 2002; Oliva & Schyns, 2000). Same as for 
humans, networks trained on colored images also use color to perform 
better at recognizing objects. Figs. 8 indeed show that performance is 
significantly higher for the original colored images than for their grey
scale counterparts. 

Not only is color helpful, but previous work showed that incorrect 
colors also hinder humans recognition performance. Oliva and col
leagues (Oliva & Schyns, 2000) had an extra condition where they 
modified the color of the images of natural scenes by swapping the 
projections of their pixels on the CIELab color axes. They found that 
observers took a longer time to recognize images of scenes with swapped 
colors than achromatic images of the same scenes. Since these results are 
about scene perception, they do not allow a direct comparison with the 
observations made in this study. They do nonetheless show interesting 
similarities with some of our results: that kernels show a lower response 
to the wrong hues than to black and white stimuli, or that the classifi
cation performance of our models are indeed lower for stimuli with the 
wrong colors than for black and white stimuli (see Fig. 8). It remains an 
open question, however, whether the secondary peak in performance at 
around 180◦ off the kernels preferred hues in CNN (Fig. 10) would 
reoccur for human observers. 

4.3. Potential causes for similarities and differences 

The reasons for these similarities and differences remain unclear. 
Nevertheless, some possible explanations are at hand. Some of these are 
related to the general similarities and differences between CNNs and 
biological vision, other more specific to color. These may arise from 
differences in the input, the computational architecture, or the task (the 
output). One obvious similarity is that both systems devote a significant 
part of their resources to processing color information. The main reason 
would be that both systems try to make sense of the ”world” they see in 
order to solve their ”task”, and both this ”world” and the ”task” gives an 
important role to color. This is only possible because the CNNs studied 
here are trained on naturalistic color images for object recognition, a 
task for which color is highly relevant. Nevertheless, there are many 
important differences between the two systems’ inputs and tasks which 
could explain the differences between both systems in the processing of 
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color. The inputs have different constraints. ImageNet is composed of 
presumably white balanced, static RGB encoded images, while humans 
deal with the much more ambiguous retinal images that are constantly 
changing. While the sole task of our models was to solve object recog
nition for a few image classes, humans and macaques’ behaviour is 
dictated by constantly changing needs, from survival to reproduction, to 
which object recognition contributes as one of many subtasks. The hi
erarchical and feedforward processing of CNNs and primate visual sys
tem could at least partially account for the progressive transition from 
the separation of achromatic and chromatic information at the early 
stage of processing, to a progressive entanglement in later stages, found 
for both systems. Still, feedback connections, so numerous in humans 
and primates brains, are missing in CNNs. A feedback loop is imple
mented during training when updating the CNNs parameters, but it is no 
longer part of the recognition process after the models are trained. The 
supervised nature of the training procedure and its implementation is 
possibly one reason for the difference in hue tuning between CNNs and 
the primate visual system. The now classical gradient descent commonly 
implemented consists in training steps where the CNNs weights are 
updated in a cascade fashion, from top to bottom. Thus, kernel weights 
in the last layer are first modified to match the desired output, after 
which weights of the penultimate layer, and so on. As a consequence, 
kernels of the last layers will be more specialized, more narrowly 
matching the dataset’s color distribution than the noisier and more 
universal kernels of the first layer. 

4.4. Limitations 

We discuss here the limitations of our method, and in particular on 
the use of the k-means segmentation algorithm. The purpose of using the 
segmentation algorithm was to modify the color of segments of the 
kernels’ optimal patches in order to finely study the kernels’ color 
tuning (Fig. 1B). The segments should sensibly follow the color distri
bution of the patch while conserving the semantic information of the 
patch. 

Segmentation algorithms are a field of research in itself, of which we 
will not pretend to have an exhaustive knowledge. We looked into 
several kinds of algorithms, which could be divided into algorithms 
based on semantics or low-level features. 

A very accurate semantic segmentation, capable of segmenting the 
object from its surrounding sounds like it should be optimal. Since 2012 
and the advent of CNNs, as with many other complex visual tasks, se
mantic segmentation has improved considerably. To improve segmen
tation, previous work used complex architectures (Jégou, Drozdzal, 
Vazquez, Romero, & Bengio, 2017; Long, Shelhamer, & Darrell, 2015), 
better learning strategies (Papandreou, Chen, Murphy, & Yuille, 2015) 
or data augmentation (Zhu et al., 2019). The main limitation with se
mantic segmentation, however, is that it requires learning, thus a dataset 
to learn from and with a precise ground truth to compare to the model’s 
output. Although several of these datasets do exist (Everingham, Van 
Gool, Williams, Winn, & Zisserman, 2012; Brostow, Fauqueur, & 
Cipolla, 2008; Nathan Silberman, Derek Hoiem, & Fergus, 2012), none 
of them unfortunately include a number of semantic classes comparable 
to 1000 object classes of ILSVRC 2012, the dataset used here, and they 
do not necessarily coincide with the nature of ILSVRC classes. Some of 
them, such as CamVid (Brostow et al., 2008), are for the purpose of 
automatic driving and present essentially street views only. The PASCAL 
dataset (Everingham et al., 2012) has the interesting feature of having 
datasets for both object classifications and segmentation with the same 
object classes. These classes, however, are very few (10 to 20 classes), 
very broad and mainly man-made. None of these classes were classified 
as ”color-diagnostic” by Tanaka and colleagues (Tanaka & Presnell, 
1999), and thus inappropriate to study the importance of color for object 
recognition. Color indeed contributes very little for the recognition ac
curacy of these models when tested on these classes (Geirhos et al., 
2017). In addition, these classes transfer poorly to the broader ILSVRC 

2012 dataset and would require additional training. As an example, 
Fig. 11 shows a failed segmentation of one optimal image patch (a 
penguin) obtained with a recently developed soft-segmentation se
mantic algorithm (Aksoy, Oh, Paris, Pollefeys, & Matusik, 2018) and 
trained on the PASCAL dataset.The segmentation algorithm failed to 
recognise the penguin and thus gave an incorrect and unusable set of 
segments. 

Thus, we relied on low feature based algorithms, and decided to use 
the k-means algorithm (Forsyth & Ponce, 2003). As our research in
terests were in color properties, we performed the clustering on the 
chromatic distribution of pixels rather than achromatic information. The 
main drawback of k-means algorithm, aside from the fact that it bears no 
semantic knowledge, is the set number of segments one needs to define a 
priori. We chose the number 4, as it was found to be the upper bound for 
the number of hues in kernels with minor hue selectivity (see Section 
3.2). This number, however, is unlikely the correct number of segments 
for all optimal image patches. As a consequence, we might find areas of 
the image patch which would be unnecessarily divided, such as seg
ments 1 and 4 in our example Fig. 1 B. Given our purposes and analysis, 
however, we have several reasons to believe this is not an issue. If the 
extra segment(s) found are so nonsensical that they bear no significance 
to the kernel itself, any color modification would have no consequence 
on the kernels response. In addition, we always considered the maximal 
value across segments in our measures of color sensitivity for the 
models’ kernels. Finally, we accounted for this issue when we counted 
the number of preferred hues for which a kernel would be color selec
tive. We did so by discounting a hue if its hue angle is too close (30◦ or 
less) to the preferred hue found for at another segment (Cf. Section 3 and 
Fig. 4). Considering all these points, the consequences of the k-means 
algorithm shortcomings should bear no, if not quantitative at least 
qualitative, significance in our results. 

5. Conclusion 

In this study, we looked into the color tuning of kernels in deep 
convolutional neural networks trained for object recognition, and its 
influence on the models’ performance. The obscurity, non-linearity and 
complexity of these networks makes it a difficult task. We thus came up 
with a complex but complete approach, which allowed us to come up 
with stimuli tailored to study the color properties of each and everyone 
of the convolutional kernels of our three models. Thanks to this, we were 
able to extract the amount and nature of hues for which kernels were 
mainly responsive to. We show that the complexity of the color tuning of 
kernels in higher layers gets progressively higher, either because they 
are selective for several hues at distinct position, or because they show 
non linear tuning at the same position. We also show that most kernels 
are majorly responsive to the same hue directions in color space. This 
direction corresponds to the second principal component of the color 
distribution of pixels in the training dataset where the first component 
corresponds to the achromatic direction in color space. Finally, we were 
able to relate the color tuning of the models’ kernels with their 

Fig. 11. Figure of an optimal image patch for which current segmentation al
gorithms failed to serve our purposes. In A, the optimal image patch found for 
kernel 98 of AlexNet’s layer 5. It shows a penguin, an animal the segmentation 
algorithm has never seen before. As a consequence, the segmentation algorithm 
outputs incorrect segments as shown in B and thus an unusable object segment 
as shown in C. 
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performance by looking at the proportion of successful classification 
despite the color changes. We found that color had a significant 
importance for the object recognition by CNNs, and that the proportion 
of successful classifications is highest for the colors the kernels maxi
mally responded to. These findings support in part the applicability of 
CNNs trained for object recognition as models for the primate’s ventral 
stream. Significant discrepancies between the two systems were never
theless made obvious, particularly with respect to the hue tuning of 
kernels in late convolutional layers versus the hue tuning of cells in late 
occipital areas. These differences can however serve as a basis for 
developing CNNs even further and, in doing so, lead to an expanded 
understanding of how biological systems get to organize themselves. 
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Color constancy is our ability to perceive constant colors
across varying illuminations. Here, we trained deep
neural networks to be color constant and evaluated
their performance with varying cues. Inputs to the
networks consisted of two-dimensional images of
simulated cone excitations derived from
three-dimensional (3D) rendered scenes of 2,115
different 3D shapes, with spectral reflectances of 1,600
different Munsell chips, illuminated under 278 different
natural illuminations. The models were trained to
classify the reflectance of the objects. Testing was done
with four new illuminations with equally spaced
CIEL*a*b* chromaticities, two along the daylight locus
and two orthogonal to it. High levels of color constancy
were achieved with different deep neural networks, and
constancy was higher along the daylight locus. When
gradually removing cues from the scene, constancy
decreased. Both ResNets and classical ConvNets of
varying degrees of complexity performed well. However,
DeepCC, our simplest sequential convolutional network,
represented colors along the three color dimensions of
human color vision, while ResNets showed a more
complex representation.

Introduction

Color constancy denotes the ability to perceive
constant colors, even though variations in illumination
change the spectrum of the light entering the eye.
Although extensively studied (see Gegenfurtner &
Kiper, 2003; Witzel & Gegenfurtner, 2018; Foster,
2011, for reviews), it has yet to be fully understood.
Behavioral studies disagree on the degree of color
constancy exhibited by human observers (Witzel &
Gegenfurtner, 2018), and color constancy is considered
an ill-posed problem. It is argued from theoretical
and mathematical considerations that perfect color
constancy is not possible using only the available visual
information (Maloney & Wandell, 1986; Logvinenko
et al., 2015). Yet, observing that humans do achieve at
least partial color constancy sparks the question about
which cues and computations they use to do so. It also
remains unclear which neural mechanisms contribute
to color constancy. Low-level, feedforward processes,
such as adaptation and the double opponency of cells
in early stages of the visual system, have been identified
as being useful for color constancy (Gao et al., 2015).
Yet, other studies suggest that higher-level and even
cognitive processes such as memory also contribute.
For example, better color constancy has been observed
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for known objects than for unknown ones (Granzier
& Gegenfurtner, 2012; Olkkonen et al., 2008). Thus,
we are still lacking a complete neural model of color
constancy, which encompasses physiological similarities
to the primate’s visual system and at the same time
exhibits similar behavior to humans on color constancy
relevant tasks.

In contrast to earlier computer vision approaches,
deep neural networks (DNNs) may have greater
potential to be models for biological color constancy
and color vision. Conceptually inspired by biology
(LeCun & Bengio, 1995), DNNs can solve many
complex visual tasks such as face and object recognition
(Zeiler & Fergus, 2014; Yosinski et al., 2015), and
DNNs trained for object recognition have been shown
to correlate with neuronal activity in visual cortical
regions (Güçlü & van Gerven, 2015; Cichy et al., 2016).
The predictions for cortical activity are not perfect,
though, and DNN responses are far less robust to
distortions of the input images than human observers
(Goodfellow et al., 2014; Brendel et al., 2017; Geirhos
et al., 2017, 2018; Akbarinia & Gil-Rodríguez, 2020).
Furthermore, it has been shown that current DNNs
and human observers do not agree which individual
images are easy or difficult to recognize (Geirhos et al.,
2020b).

For the processing of color information specifically,
similarities have been observed between DNNs trained
on complex tasks and the visual system (Rafegas &
Vanrell, 2018; Flachot & Gegenfurtner, 2018). In
addition, DNNs trained on illumination estimation
from images have outperformed all previous approaches
(Lou et al., 2015; Bianco et al., 2015; Hu et al., 2017;
Shi et al., 2016; Afifi & Brown, 2019). This success was
enabled by fine-tuning networks pretrained on other
tasks (Lou et al., 2015), various data augmentation
techniques including the application of additional color
distortions and cropping (Lou et al., 2015; Bianco et al.,
2015), and architectural innovations and adversarial
training (Hu et al., 2017; Shi et al., 2016; Afifi & Brown,
2019). Notably, none of these networks were trained
only on natural variation in illuminations, and most of
them aimed at the task of color-correcting images, not
estimating object color.

Color constancy is also a well-studied problem
in computer vision and image processing, yet the
extent to which the algorithms in these engineering
fields can inform our understanding of human color
constancy is limited. In those fields, color constancy
is typically approached by explicit estimation of the
scene’s illumination (Land, 1964; Akbarinia & Parraga,
2017; Afifi & Brown, 2019; Bianco & Cusano, 2019; Hu
et al., 2017), followed by an image correction via the
von Kries assumption (von Kries, 1902). In biological
vision, however, color constancy is rather tested as the
ability to extract color information about the object
and materials in the scene consistently across varying

illuminations (Maloney & Wandell, 1986; Foster,
2011; Witzel & Gegenfurtner, 2018; Weiss et al., 2017;
Olkkonen et al., 2008), thus going one step further than
illumination estimation and requiring some form of
color comprehension.

Deep learning approaches to color constancy are
limited by their need for large datasets. The heavy
requirements for a good color constancy image
dataset (calibrated cameras, pictures taken from the
same angle at different times of day, or with many
different controlled and measured illuminations) result
in datasets rarely containing more than a thousand
images.1 One approach to generate larger training
datasets for this kind of situation is to use computer
graphics to render images or videos instead. This
approach has successfully been used for depth and
optical flow estimation tasks (Butler et al., 2012;
Dosovitskiy et al., 2015; Ilg et al., 2018), as well as other
aspects of surface material inference, such as gloss
perception (Storrs et al., 2021; Prokott et al., in press),
but has to our knowledge not been applied to color
constancy yet.

The goal of this study is (1) to teachDNNs to identify
color in settings that require color constancy, (2) to
assess whether the trained models exhibit behaviors
akin to observations made in psychophysical studies
for color constancy, and (3) to test whether human-like
color representations emerge with training. To do so,
we proceeded as follows: We generated artificial training
and validation images using three-dimensional (3D)
spectral rendering with a naturalistic distribution of
illuminations to overcome the limitations of previous
approaches. Instead of RGB encoded inputs, we used
images encoded using human cone sensitivities. Instead
of training our models on illumination estimation, we
trained them to extract the color of a foreground object
within the scene. Specifically, the task was to classify
objects floating in a room based on their surface color,
under a large set of different illumination conditions.
Chromaticities of colored surfaces and illuminations
were such that color constancy was necessary to
attain high accuracy, that is, the chromaticity shifts
induced by colorful illuminations were often larger
than the chromaticity difference between neighboring
surfaces. We then devised an evaluation procedure
of the trained models to allow comparison with
human studies. Finally, instead of using only a large,
complicated standard deep learning model, we trained
both complex and relatively simple ones and compared
their performance as well as the color representations
they developed during training.

We found that all our models performed very
well at recognizing objects surface colors, even for
illuminations they had never seen, with a supra-human
accuracy. Like humans (Kraft & Brainard, 1999), the
accuracy of the models drastically degraded, however,
as we manipulated the input by gradually removing
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cues necessary for color constancy. Similarly, we also
found a better performance for illuminations falling
along the daylight axis than for illuminations falling
in the orthogonal direction. This result is in line with
observations made in psychophysical studies (Pearce
et al., 2014; Aston et al., 2019). We found, however,
that different architectures learned to represent the
surface colors of objects very differently. One of them,
DeepCC—the most straightforward convolutional
architecture we implemented—seems to represent
surface colors following criteria resembling the
perceptual color dimensions of humans, as determined
by psychophysical studies. Other architectures like
ResNets, on the other hand, did not. This suggests
that while perceptual color spaces may aid color
constancy, they are certainly not necessary for achieving
human-like robustness to changes in illumination.

This article is divided into sections following our
main findings. We start by reporting the results obtained
for DeepCC’s evaluation, with a focus on the effect
of illumination on DeepCC’s performance. Then we
analyze how DeepCC represents surface colors and
gradually becomes color constant throughout its
processing stages. We finish with a summary of the
results obtained for other deep net architectures, in
particular, custom ResNet architectures.

General methods

Munsell and CIEL*a*b* coordinates

Throughout this study, two-color coordinate
systems are used. The first one is the Munsell color
system (Munsell, 1912; Nickerson, 1940), defined by
the Munsell chips themselves. Each Munsell chip is
indexed according to three coordinates: Hue, Value,
and Chroma. Hue is divided into 5 main hues: Red,
Yellow, Green, Blue, and Purple, each one divided into
8 intermediary hues, for a total of 40 hues. Value is
close to lightness as it refers to how light a Munsell chip
is perceived to be. In terms of surface reflectance, it
approximately corresponds to the amount of light that
gets reflected by the Munsell chip, that is, the area under
curve (Flachot, 2019). Value varies from 0 to 10, 0 being
the darkest and 10 being the lightest. Chroma refers to
the colorfulness of the chip, or its distance from gray.
In terms of surface reflectance, it corresponds to the
contrast in the amount of light reflected by different
wavelengths. The higher the chroma, the less flat the
surface reflectance spectrum (Flachot, 2019) and the
more colorful the chip. Chroma varies from 0 to 16.
Note, however, that the Munsell color system does
not have perfect cylindrical shape but has a limited
gamut: Certain hues and values do not allow for high
chromas. Hence, the full set of Munsell chips consists

of only 1600 chips instead of 40 × 16 × 10 = 5,600
chips. Because the Munsell color system is defined by
the Munsell chips, it is the most appropriate space to
discriminate Munsells. In addition, the Munsell chips
were chosen in an attempt to be perceptually uniformly
distant, and as such, the Munsell coordinate system is
an approximately perceptually uniform space.

Another perceptually uniform color space is the
CIEL*a*b* (Ohno, 2000) coordinate system. It was
constructed such that its Euclidean distance, commonly
called �E, is an approximate measure of perceptual
difference: Two colors equidistant to another in
CIEL*a*b* are approximately perceptually equidistant.
Additionally, it is commonly considered that the
average just noticeable difference (JND) between two
colors is approximately 2.3 �E (Mokrzycki & Tatol,
2011), meaning that a human observer is not able to
discriminate two color patches closer than this value,
even if placed side-by-side. Of the three dimensions, L*
accounts for lightness, a* accounts for greenish-reddish
variations, and b* accounts for blueish-yellowish
variations. The white point (point of highest Lightness)
was computed using the spectrum of the light reflected
by the Munsell chip of highest value, under the D65
illumination. This Munsell chip is also an achromatic
chip.

To relate the two color coordinate systems, the
median distance between two adjacent Munsell
chips is equal to 7.3 �E (i.e., significantly above
the JND).

Image generation

In the present study, we generated our own images
using the physically based renderer.2 Mitsuba was
developed for research in physics and includes accurate,
physics-based approximations for the interaction of
light with surfaces (Pharr et al., 2016; Bergmann
et al., 2016), yielding a perceptually accurate rendering
(Guarnera et al., 2018). Most important, it also allows
the use and rendering of spectral data: One can use
physically measured spectra of lights and surfaces as
parameters. Outputs can also be multispectral images
rather than simple RGB images. We exploited this
multispectral characteristic of Mitsuba using the
reflectance spectra of 1,600 Munsell chips (Munsell,
1912) downloaded from Joensuu University3 (Kalenova
et al., 2005). As illuminations, we used the power
spectra of 279 natural lights: 43 were generated from
the D series of CIE standard illuminations (Judd
et al., 1964; Ohno, 2000) at temperatures ranging from
4.000K to 12.000K; 236 were taken from the forest
illuminations measured by (Chiao et al., 2000). Each
illumination spectrum was normalized such that their
highest point reaches the same, arbitrary value of a
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Figure 1. Figure illustrating our method, both for training and evaluation. (A) To generate the training set of images, sets of 279
spectra of natural illuminations and 1,600 spectra of Munsell reflectances were used. The resulting multispectral images (B) were
then converted into three “LMS” channels using human cone sensitivity spectra and fed to the network. (C) The four illuminations R,
G, Y, and B were used exclusively in the evaluation. Note that while Y and B fall on the daylight locus, R and G have chromaticities
different from the illuminations of the training set. Out of 1,600, only 330 Munsell spectra were used.

100. The spectra of both Munsell reflectances and
illuminations are displayed in Figure 1A.

For meshes, we used a compilation of object datasets
issued by Evermotion4 for a total of 2,115 different
meshes, ranging from human-made objects to natural
objects. Each mesh was normalized such that they have
the same size (equal longest dimension).

In order to approximate the input to human visual
processing, we first generated our images with 20
channels, at equally spaced wavelengths ranging
from 380 to 830 nm. These were then collapsed onto
three “LMS” channels using measured human cone
sensitivities (Stockman & Sharpe, 2000). Images were
saved with floating points, thus without the need for any
gamut correction or further processing. This procedure
is illustrated in Figure 1B.

The 3D scene consisted of a simple “room” (see
Figure 2), with three walls, a floor, and a ceiling with
constant Munsell reflectances as surfaces. On the
ceiling, a rectangular light source was defined. On the
back wall, six colorful patches with constant Munsell
reflectances were added. Their purpose was giving
additional cues for the model to solve color constancy,
as seems to be necessary for humans (Brainard et al.,
2003; Yang & Maloney, 2001).

Finally, each LMS image consisted of a random
object floating at a random position and orientation
in the scene, with a given Munsell surface reflectance.
The shape of the object was taken randomly among our

pool of 2,115 meshes. Although its position was also
random, it was bounded so that the object would never
occlude the six patches in the background and would
stay fully within the field of view. We generated two
datasets, the Set-CC and Set-D65 datasets. Illustrations
of these datasets are available in Figure 2. In the CC
dataset, we generated 279 images per Munsell chip,
one for each of the 279 natural illuminations. In the
D65 dataset, we also generated 279 images per Munsell
chip value but kept the illumination constant with the
power spectrum of the standard D65 illumination.
Each dataset thus consisted of 1,600 × 279 = 446,400
images, with a resolution of 128×128 pixels and
three color channels, one for each L, M, and S cone
photoreceptor. Images were labeled according to the
mesh type, object position, illumination, and, most
important in this study, according to the Munsell
chip used for the mesh’s surface reflectance. All
surfaces were defined as Lambertian. This dataset
is publicly available,5\as well as the pipeline to
generate it.

Deep architecture

One network architecture has been extensively
studied throughout this work. Several others were
also tested, evaluated, and analyzed, for which results
are described in detail in “Standard and custom
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Figure 2. Illustration of the two training datasets used: one with varying illumination (CC), another with a constant illumination (D65).
The classification task consisted of identifying the correct Munsell chip used as surface reflectance for a random object floating in the
room. In order to be performant on the CC dataset, the network had to account for the illumination.

architectures.” For now, we limit ourselves to describing
the network architecture most relevant for this study,
which we refer to as Deep.

Deep has a convolutional architecture (LeCun et al.,
1998; Krizhevsky et al., 2012) with three convolutional
layers and two fully connected layers preceding
a classification layer. Convolutional layers can be
described as a set of linear kernels. Each kernel applies
the same linear filter of limited size on different portions
of the input, at regular intervals. The output of one
linear filter applied on one input patch, coupled with a
half-wave rectification (ReLU), is the output of one unit.
Units in convolutional layers have thus limited receptive
fields in the image input. Fully connected layers instead
take all units of the previous layer as input, such that
the units’ receptive fields cover the whole input image.
The convolutional layers of the Deep architecture have
16, 32, and 64 kernels with kernel sizes of 5, 3, and 3,
respectively. After each convolutional layer follows a
2×2 maxpooling layer. The fully connected layers have
250 units each. The classification layer is a simple fully
connected layer, preceded by a 40% dropout layer for
regularization.

Deep’s input consisted of the set of images we
generated, thus with a dimension of 128×128 pixels
and three color channels, one for each L, M, and S cone
photoreceptor.

Task and training

The training was supervised with the learning
objective of outputting the Munsell chip label for
each image (i.e., the color of the object in each scene).
Cross-entropy was used as loss. Training took place for
90 epochs. We used the Adam optimizer (Kingma &
Ba, 2015), with a learning rate of 0.001, divided every
30 epochs by 10.

We trained separate models on the CC and D65
datasets. Each dataset was further divided into training
and validation subsets, the former consisting of 90%
of the dataset’s images and the latter the remaining
10%. Training and validation subsets are quite similar:
They use the same viewpoint and the same room,
although the floating object was at random position
and orientations. But they also have differences: They
do not use the same object meshes, and in the case
of CC, neither do they use the same illumination
spectra. The validation subsets were generated with
212 object meshes and for CC 28 illumination spectra
exclusively, selected randomly among the 2,115 meshes
and 279 illuminations. The remaining meshes and
spectra were used for generating the training subsets.
Training subsets were only used for training our models,
while the validation sets were only used for testing the
model during training at regular intervals (each epoch)
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to monitor its performance on images it had never
seen.

We can now see how our task requires the models
to become color constant: In order for the models to
achieve a high recognition accuracy on the CC dataset,
they would need to compensate for the chromatic
shifts that are induced by the varying illuminations
interacting with the Lambertian surfaces. By extension,
this means they would need to achieve some degree of
color constancy. Indeed, the standard deviation of the
training illumination’s distribution is equal to 8.55 �E,
higher than the median distance between two adjacent
Munsell classes of 7.3 �E. Out of the 279 illuminations
in our training and validation sets, 202 are distant by
more than 10 �E from the reference illumination D65.

Given that there are two datasets, CC and D65, two
kinds of training instances need to be distinguished:
DeepCC when trained on CC and Deep65 when trained
on D65. Due to several randomization procedures
implemented during training, two training instances of
the same architecture trained on the same dataset will
give slightly different results. To allow broader claims
and a statistical analysis, we trained 10 instances of
DeepCC and Deep65 each.

Each model was trained on one GeForce GTX 1080.
Batch size varied from architecture to architecture but
was maximized to fit the GPUs memory. In the case
of Deep, the batch size was 800 images. All the code is
available on Github.6

Other than the validation dataset, we devised
other datasets to further evaluate our models. These
evaluation datasets mimicked the typical experimental
procedures for studying color constancy, consisting in
removing or ambiguously modifying contextual cues to
make the task more difficult (Witzel & Gegenfurtner,
2018; Kraft et al., 2002). They facilitated identifying
the relevance of diverse cues for the task, the testing
the model’s robustness to scene modifications, and
the comparison with previous psychophysical studies.
These contextual modifications were (1) removing the
colored patches in the background—if the models
use the constancy information transmitted by these
patches, a drop in performance should follow. (2)
Swapping the colored patches in the background with
patches under a different illumination—again, if the
models use the constancy information transmitted
by these patches, a drop in performance should
follow. (3) Placing the floating object in a background
illuminated with a wrong illumination—if the models
follow the information within the scene to estimate
the illumination’s color, then the resulting incorrect
estimation should lead to a misclassification of the
floating object’s color.

A detailed description of the evaluation datasets
will follow in “Evaluation DeepCC and Deep65” and
“Impoverished visual scene,” sections where the results
of these evaluations are presented.

Metrics

To assess the performance of DeepCC and Deep65,
we used several measures of accuracy. Given that the
task is the classification of Munsell chips, two are the
standard top-1 and top-5 accuracies (Krizhevsky et al.,
2012): top-1 counts as hit when the correct Munsell is
the one selected as most probable by the model; top-5
counts as hit when the correct Munsell is among the five
selected as most probable by the model. In addition,
we defined the Muns3 accuracy: A hit occurs whenever
the Munsell selected as most probable by the model is
1 Munsell away from the correct one (within a cube
of side 3 in Munsell space centered on the correct
Munsell).

Due to their discrete nature, however, top-1, top-5,
and Muns3 accuracies do not discriminate between
cases when a model selected a Munsell just outside
Muns3 or when it was completely off. To correct this
shortcoming, we converted the model’s output into
chromaticity coordinates. We did so by considering the
Munsell chips’ chromaticities under the D65 illuminant
in CIEL*a*b* space. We then defined the model’s
selected chromaticity as the chromaticity of the Munsell
selected by the model. The Euclidean distance between
the correct Munsell’s chromaticity and the model’s
selected chromaticity now defines a continuous measure
of the model’s error. Following the literature (Ohno,
2000; Weiss et al., 2017), we call this error �E (with its
1976 definition).

To further compare with the color constancy
literature, we considered another measure called the
Color Constancy Index (CCI) (Foster, 2011; Arend &
Reeves, 1986; Weiss et al., 2017). This measure has the
benefit of taking into account the quantitative error of
the model in color space (�E) relative to chromaticity
shift induced by the illumination. Consider that we
present to the model an image showing a floating object
under an illumination I with the surface reflectance of
a Munsell M. Consider now that the model recognizes
the wrong Munsell N. Then the Color Constancy Index
is defined as

CCI = 1 −
∣
∣CN

I −CM
I

∣
∣

∣
∣CM

D65 −CM
I

∣
∣
,

= 1 − �E
∣
∣CM

D65 −CM
I

∣
∣
. (1)

whereCM
I is the chromaticity of the Munsell M under

the illumination I,CM
D65 is the chromaticity of the same

Munsell chip but under the standard illumination D65,
and CN

I is the chromaticity of Munsell N under the
illumination I and recognized by the model. If the
model recognizes the correct Munsell, then the ratio
in the formula is neutral and CCI would be equal to
1. However, if the model does not compensate for the
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illumination’s shift in chromaticity and recognizes the
wrong Munsell chip, CCI would be close to 0. Negative
values of CCI indicate that the network chose the wrong
Munsell for other reasons, beyond the chromaticity
shifts induced by the illumination.

DeepCC and Deep65 evaluation

This section focuses on the evaluation of DeepCC
and Deep65. Results for other architectures can be
found in “Standard and custom architectures.”

We first present the results of training and validation
for both DeepCC’s and Deep65’s instances. We then
present thorough evaluations of the models using
additional, custom datasets (description below).

We found that both DeepCC and Deep65 reached
high top-1 accuracies on their respective validation
datasets. DeepCC instances reached on average 76%
accuracy on the CC validation set, while Deep65
reached on average 86% accuracy on the D65 validation
set. These values clearly show that the two sets of
networks learned how to solve their task and are able
to differentiate between 1,600 different surface colors
reasonably accurately (random performance would
be 0.0625%). The higher performance of the Deep65
network also indicates, as expected, that the D65 task is
inherently easier than when illumination is allowed to
vary, and thus color constancy is required to perform
the task.

In order to evaluate DeepCC in greater detail, as well
as allowing some comparison with observations made
in psychophysical studies, we generated another set of
testing images, with settings closer to conditions found
in typical perceptual experiments.

Methods

To facilitate our analysis, an evaluation dataset was
generated using a slightly different procedure than
for the training sets. First, a subset of 330 Munsell
chips was used, instead of the original set of 1,600 (cf.
Figure 1C). This subset was originally used for the
World Color Survey and is now a standard for studies
focusing on color naming (Berlin & Kay, 1969). It is
also widely used in studies related to color categories
(Witzel, 2019) and unique hues (Philipona & O’Regan,
2006; Flachot et al., 2016). As such, they are an excellent
basis for comparing our models with human judgments.

Second, we used four illuminations (cf. Figure 1C)
equidistant to the CIEL*a*b* gray point by 10 �E
(Ohno, 2000) in the chromaticity plane. This procedure
was inspired by experimental studies on illumination
discrimination and estimation (Aston et al., 2019). Two,
B and Y, lie on the daylight locus projected onto the

chromatic plane, and are thus within the distribution
of the natural illuminations used during training. The
other two, G and R, lie in the orthogonal direction,
which crosses the daylight locus at the gray point, and
are outside of the distribution of illuminations used
during training. More precisely, G is 4.45 �E away from
its closest illumination within the training set, while R
is 7.9 �E away, making R then G the two illuminations
DeepCC is less familiar with. Their power spectra were
generated with the principal components of natural
daylight spectra defined by Judd et al. (1964), which
serve as the basis for the D series of the CIE standard
illuminations. These illuminations were normalized
such that their areas under curve were equalized, thus
minimizing their difference in Lightness. For each
Munsell of the 330 Munsell classes and each of the
four illuminations, we generated 10 images for a total
of 330 × 4 × 10 = 13,200 images.

Note the fundamental difference between the
validation sets employed earlier and the evaluation set
defined here: While the validation datasets consisted
of illuminations and 3D shapes the networks had
never seen (to prevent overfitting), these illuminations
and shapes were still taken randomly from the same
distributions as for the training set (see General
methods). The evaluation dataset, however, included
illuminations that were completely outside of the
illumination distribution used at training time. As
such, our evaluation procedure is in accordance with
the recommendations from the machine learning
community and formally defined recently (Geirhos
et al., 2020a): using one independent and identically
distributed (i.i.d.) test set—our validation set—and
another out of the distribution (o.o.d.) test set—the
evaluation set described here.

Although the illumination spectra were different
from the ones used during training and validation, the
scene in which the floating objects were displayed was
exactly the same. We therefore refer to this evaluation
dataset as normal. Because we are evaluating DeepCC
and Deep65, each trained on different datasets, we
distinguish between two conditions: CC and D65.

Results

Figure 3A shows the distributions obtained for each
of our five metrics under the CC and D65 conditions.
For the accuracies, we considered the distributions of
values found for each Munsell class and illuminations
(each point of the distribution is thus computed with
10 images). For �E and CCI, we plot the distributions
of values found for individual images. Under the CC
condition, we found median top-1, top-5, and Muns3
accuracies of 80%, 100%, and 100%, respectively, across
Munsell classes. The first quartiles are at 60%, 90%, and
90%, respectively. This means that for the majority of
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Figure 3. DeepCC’s evaluation results obtained for all measures and all conditions. Each column corresponds to one measure (Top-1,
Top-5, andMuns3 accuracies, �E errors to ground truth, and CCI). Boxplots show distributions across Munsell chips; the swarm shows
the performance of the 10 training instances. (A) Performance for models trained under varying illuminations CC or the D65
illumination only D65 (“DeepCC and Deep65 evaluation”). The models trained on the CC dataset learned to classify Munsell colors
accurately even under novel illuminations, contrary to the models trained on D65 only. (B) In black, performance of DeepCC under the
no patch and wrong back conditions (“Impoverished visual scenes”). In white, performance of Deep65 under the wrong back
condition. DeepCC learned to rely on contextual cues within the scene to solve the task. When these cues are taken away or
incongruously altered, the model’s performance decreases. Under the wrong back condition, where the background is artificially kept
constant despite various illuminants shining on the object, DeepCC performs at the level of Deep65. (C) Performance of DeepCC
compared to other approaches to color constancy (“Classical approaches”), namely, perfect illumination estimation and von Kries
adaptation (perfect illu), Gray World, White Patch, ASM, and no account for illumination whatsoever (no CC). Under the normal
condition, DeepCC performed better than any algorithm tested, even better than a model that would perfectly estimate the
illumination and then perform the standard von Kries adaptation (perfect illu condition).

Munsell classes, DeepCC selects the correct Munsell
class in four out of five images, and when wrong,
it still selects a neighboring chip. This is confirmed
by the distributions found for �E and CCI, with
median values of 0 and 1. Eighty-five percent of the
images yielded less than 5 �E error as indicated by
the whiskers, 93% less than 10 �E error, and 99% less
than 19 �E. As a comparison, note that the median
�E distance between adjacent chips is approximately
7.5. This means that when DeepCC instances selected
the wrong chip, it tended to be a close neighbor of the

correct one. This is confirmed by the Muns3 accuracy,
according to which the model had an accuracy equal to
or above 90% for 95% of the Munsell classes. Similarly,
DeepCC showed a CCI higher than 0.83 in 75% of
cases. This CCI value of 0.83 is among the higher end
of CCI values measured in humans psychophysical
experiments (cf. Foster, 2011; Witzel & Gegenfurtner,
2018, for reviews), thus indicating the supra-human
performance of the model on this dataset. We also
found a positive CCI value in more than 87% of cases,
evidence that DeepCC not only learned to discriminate
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between Munsell colors with high accuracy but also
learned to account for potential color shifts induced by
the illumination.

Results were, however, very different for Deep65—the
network trained using only a single illuminant, D65.
We found median values of 0 in all three accuracies,
meaning the 10 training instances of Deep65 rarely
came close to selecting the right Munsell class. This is
made clear with the distributions of the �E and CCI
measures. For the vast majority of the images, Deep65
exhibited errors of above 10 �E and negative CCI,
meaning that Deep65’s error cannot be explained by the
illumination change alone. This indicates that Deep65
lacks the ability to cope with illuminant deviations from
the one it has been trained on, whereas DeepCC could
generalize to novel illuminants beyond the 279 different
illuminants it had been trained upon.

Interim conclusion

Results so far show that DeepCC did learn to
accurately classify color surfaces under varying
illumination. In doing so, it also learned to discount
the illumination color, reaching a high degree of color
constancy, even for illuminations outside of the gamut
of illumination spectra used for training. Deep65,
on the other end, performed very poorly on the four
illuminations used for testing.

Impoverished visual scenes

We have seen that DeepCC achieved supra-human
performance under normal conditions on the devised
evaluation dataset, thus achieving some degree of color
constancy. A remaining question is which elements
within the scene DeepCC used to compensate for
illumination change: Does it consider, for example, the
six constant color patches in the background? Given
that there are interreflections between the floating
object and the surrounding walls, is there any need for
the model to use cues in the background at all?

Computer graphics allow us to manipulate the scene
elements to test these questions. We thus devised new
datasets to gain insights into which cues within the
images DeepCC might use to achieve color constancy.
Three manipulations were conducted: (1) removing the
constant patches in the background, (2) modifying the
colored patches in the background to have the wrong
color, and (3) showing a floating object illuminated
by one illumination in a scene illuminated by another
illumination.

We then tested DeepCC on these three new datasets,
without any additional training.

Methods

We generated three new image datasets to test
DeepCC, in which some elements within the scene were
removed or incongruously modified. These elements
constituted cues that are known to be useful to humans
for achieving color constancy. Previous experiments
(Kraft et al., 2002) have shown that increasing the color
cues within a scene, in their case adding a Macbeth
color checker, can increase color constancy for humans.
Thus, in one dataset, the no patch dataset, we removed
the six constant patches located on the back wall. If the
networks do partially rely on the information given by
the background patches to solve color constancy, then
the missing information should lead to a drop in model
performance. Other studies (Kraft & Brainard, 1999)
showed that human color constancy is neutralized
when the context surrounding the object of interest is
manipulated incongruously. Thus, in two other datasets,
wrong patch and wrong background, we gave the
network conflicting contextual cues. In wrong patch, we
modified the chromaticities of the six colored patches,
originally under one of the four test illuminations, to
be replaced by their color under the D65 illumination.
In wrong background, the floating object, illuminated
by one of the four test illuminations, was cropped
out and placed in the same scene but illuminated
by the D65 illumination. If the networks do use the
background information to solve color constancy, then
the misleading information should also lead the models’
performance to drop, and significantly more so than in
the no patch condition. Note that for the last condition,
human observers would be expected to be unable to
solve the task. Examples of images illustrating these
conditions are shown in Figure 4.

Results

Results are shown in Figure 3B. The results for
DeepCC are plotted in black and the results for Deep65
under the wrong background condition are plotted in
white. Overall, DeepCC performed significantly worse
in each of the three new conditions than in the normal
condition, but still better than Deep65 in the normal
condition. Performance for the no patch condition was
on average still fairly high, indicating that the networks
did not rely solely on the constant patches to perform
the task. The three accuracy distributions include
medians of 40%, 90%, and 100%. Muns3 in particular
shows a first quartile at 90% accuracy, evidence that
deepCC was seleting a Munsell chip within the direct
vicinity of the correct one in the vast majority of cases
under this condition. �E and CCI measures lead to
the same conclusions: Median �E is found at 3.3
and a third quartile at 9.40, thus showing that in the
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Figure 4. Example for the four types of images we used during testing: normal, no patch (the colored patches in the background are
removed), wrong patch (the colored patches are cropped and replaced by the same surfaces but under the D65 illumination), and
wrong background (the object in cropped and placed in the room illuminated by D65 illumination).

large majority of cases, the model showed an error
of the same magnitude as the interdistance between
Munsell chips in CIEL*a*b*. The analysis of the CCI
distribution leads to the same conclusions: We found a
median value of 0.62 but a first quartile at –0.43. This
indicates that, while for most images DeepCC performs
relatively well under the no patch condition (a CCI of
0.62 remains in the upper-half of CCI values reported
in humans psychophysics), it is generally more difficult
for the model to solve the task, to the extent that a
significant proportion of images yields a negative CCI.

Interestingly, the reliance on the back patches’
presence was not equal across DeepCC’s training
instances. One instance saw its accuracy change by
merely 20%, while another experienced a drop of 60%.
Refining our scene manipulations, we also looked at
how the model’s instances responded when masking
one colored patch in the background at a time. Some
patches appeared more critical than others: Masking
the red and yellow patches (second and fifth from the
left) led to the largest loss in accuracy, with average
losses of 9.9% and 8.9%. Masking the white and
black patches (third and sixth from the left), however,
had the least impact on the model’s performance,
accounting for losses of 0.1% and 4%, respectively, on
average. Individual differences were also confirmed.
When masking the red patch, for example, one instance
dropped by 22% in accuracy, while another dropped

only by 2.3%. Some instances were also mainly
affected by the red patch, others by the yellow patch.
Nevertheless, the relatively high accuracies and CCI
show that the model remained able to perform the task,
albeit less successfully. The fact that different patches
had different influences also tends to suggest that the
decline in performance was not just a generic decline
associated with deviations from the training set, but
rather reflected the use of specific information from the
patches to support color constancy.

These results are evidence that DeepCC indeed uses
the information provided by the six constant colored
patches in the back wall—particularly the chromatic
ones. This is confirmed by the performance obtained for
the model on the wrong patch dataset (data not shown).
Indeed, we found that the models performed equally
well or worse under this condition than under the no
patch condition. Contrary to the latter, wrong patch
introduces a conflicting cue rather than the absence of
one, thus making the task even more difficult for the
model if it partially relies on the colored patches in the
background. Still, we found a median CCI value of
0.22, thus showing that despite the conflicting cues, the
model retained some degree of color constancy and
must rely on other cues to account for the illumination’s
color.

In the wrong background condition, however,
DeepCC’s performance dropped considerably, with
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a median top-1 accuracy at 0, and median CCI
values below 0 for all training instances. In fact, its
performance dropped to the same level as our control
model’s Deep65 tested on the same dataset. DeepCC
shows a median �E error of 11.4, for instance, and
11.3 for Deep65. In the wrong background dataset, the
background was manipulated such that it appeared
constant across all test illuminations, and illuminated
by our reference D65. This near equality is strong
evidence that DeepCC relies solely on the contextual
cues surrounding the floating object to perform color
constancy: When deprived of these cues, it interprets
any chromaticity shifts induced by the test illuminations
as being intrinsic to the object’s surface and thus
wrongly classifies its color, just like Deep65 would.

Interim conclusion

Thanks to the controlled manipulation of the scene
surrounding the floating object, we saw in this section
that all DeepCC instances solely rely on contextual cues
to identify the object’s Munsell surface and account for
illumination change: When deprived of reliable cues
surrounding the object of interest, it behaves the same
as Deep65, the same architecture trained with the D65
illumination only. Similarly, humans rely on contextual
cues to solve color constancy (Kraft & Brainard, 1999;
Kraft et al., 2002). Individual differences were observed
between training instances, however, when the colored
patches in the background were removed, with some
instances relying more on certain patches than others.

Standard approaches

To further evaluate DeepCC, we compared its
performance to the error expected with classical
approaches to illumination estimation, coupled with
the von Kries correction (Von Kries, 1902), standard in
computer vision (Akbarinia & Parraga, 2017; Hu et al.,
2017).

Methods

For comparison purposes we also computed, on our
test images of the CC normal condition, the errors
expected from classical approaches to illumination
estimation: Gray World, White Patch (Land, 1977), and
adaptive-surround modulation (ASM) (Akbarinia &
Parraga, 2017). All of these approaches are driven by
low-level features (as opposed to learning): Gray World
makes the assumption that the world is on average
“gray” under a neutral illumination and takes the
average pixel value as an estimation of the illumination’s

color; White Patch considers the brightest pixel as an
estimation of the illumination; ASM assumes that
image areas with high to middle spatial frequencies
(typically edges) are most informative and computes the
illumination by dynamically pooling a portion of the
brightest pixels according the average image contrast.
Each of these approaches delivers a single global
triplet of values specifying the illuminant for a given
image.

To enable a link from the global illumination
estimations to our classification task of the floating
object’s surface color, we coupled these approaches with
a global von Kries correction (von Kries, 1902). This
correction consisted in dividing each image pixel by the
three illumination values estimated by each approach.
For each resulting image, we then segmented the floating
object and estimated its chromaticity by considering
the mean value of all its pixels. We then compared this
estimated chromaticity with the chromaticity found
for the exact same object, at the exact same position
and orientation, but under a reference illumination.
In this way, any difference between the estimated
chromaticity and the reference chromaticity would
be a consequence of the illumination estimation +
correction only. As a reference, we used the computed
chromaticity of the object rendered under the D65
illumination.

Of course, there are many other approaches to
illumination estimation and white-balance correction
than the ones tested here, some of which may be more
accurate (see Akbarinia & Parraga, 2017, for a review;
Shi et al., 2016; Afifi & Brown, 2019). All of them,
however, deal with RGB images and rely on the global
von Kries adaptation for the final correction, which
in itself is an approximation. As an upper bound
for any approach based on illumination estimation
and von Kries adaptation, we also estimated the
error of the von Kries method based on the ground
truth illumination (perfect illumination estimator)
using the same evaluation procedure as for estimated
illuminations. This object color estimate is not perfect,
because it does not take into account local variations in
illumination, due to interreflections within the scene,
for instance (Worthey & Brill, 1986; Flachot et al.,
2016; Foster, 2011). Finally, we also computed the error
obtained without compensating for the illumination at
all. This would serve as an error estimate for a model
that would perfectly segment the object of interest in
the scene, but not compensate for the illumination (a
perfect non–color constant model). By definition, such
a model would thus have a CCI of 0.

Results

Figure 3C shows the distributions of �E errors
and CCI predicted from the classical approaches
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to color constancy, together with the results
obtained under the normal and wrong background
conditions, described previously, for comparison
purposes.

We found median �E values for all of the
aforementioned approaches to be higher than for
DeepCC under the normal condition. Even the error
merely induced by the von Kries adaptation (perfect
illu condition in the figure) leads to higher errors,
with a median value of 2.9. This median value is in
fact very similar to the median found for the no patch
condition, although slightly better. This is confirmed by
the corresponding median CCI of 0.65. Of the classical
approaches, the Gray World hypothesis proved to be
the most accurate, with median values of 4.6 �E and
0.48 CCI, slightly worse than for DeepCC on the no
patch condition. This suggests that not only did the
DeepCC instances accurately identify the region of
interest that is the object within the image and managed
to accurately estimate the illumination, but they also
accounted for the object’s position with respect to the
illumination. It also implies that DeepCC found a
better correction strategy than a global discounting of
the illumination like in the von Kries approach.This
is presumably thanks to the nature of the task, which
tries to estimate object color rather than a global
illumination, and thanks to the convolutional nature of
the model’s architecture, which allows local discounts
of the illumination.

Although DeepCC under the wrong background
condition exhibits errors greater than every one of
the standard approaches, it is as well to note that its
distribution is quite close to the distribution predicted
for a perfect non–color constant model (no CC
condition in the figure). Indeed, we find a median error
of 9.4 �E for the no CC condition, similar to the 11.4
�E found for the wrong background condition. This
suggests that DeepCC is indeed misled to attribute
a neutral illumination on a floating object and thus
behaves like a non–color constant model. Since Deep65
performs at the same level as DeepCC on the same
dataset, it is likely that the discrepancy of 2 �E between
no CC and wrong background comes from the fact that
DeepCC is no perfect Munsell classifier, even with all
contextual cues available.

Gray World’s success compared to other approaches
can be explained by the relative simplicity of the
scene: a room with fairly neutral walls, with a single
illumination. ASM would be expected to perform
better using images of more complex scenes. The
poor performance of the White Patch approach for
many images can be understood by the proximity of
the object of interest to the camera: When a Munsell
reflectance of high value is applied to the object,
the brightest pixels are likely to be found on the
object itself, rather than on some other parts of the
context.

Interim conclusion

Comparisons with classical approaches to color
constancy show that under the normal condition,
DeepCC learned how to compensate for the
illumination better than any of the classical approaches
we tested. It even performed better than a hypothetical
model provided with omniscient knowledge of the true
illumination and compensating through the von Kries
correction, the standard procedure for discounting in a
scene the illumination after its estimation (Akbarinia &
Parraga, 2017). Under the wrong background condition,
its performance lies close to the predicted performance
of a model that would perfectly segment the object of
interest in the scene and extract its chromaticity, but not
account for the illumination color. This suggests that
similarly to humans, it also relies on context to achieve
color constancy (Kraft & Brainard, 1999; Kraft et al.,
2002; Yang & Maloney, 2001).

Effect of illumination

To test the DeepCC models, we used the four
illuminations: Yellow (Y), Blue (B), Green (G), and
Red (R) (see Figure 1C). These were chosen to be
equidistant to D65 in CIEL*a*b* space, with Y and B
on the daylight locus and G and R in the orthogonal
direction. Note, however, that even though none of
these four illuminations were used during training, Y
and B are expected to appear more “familiar” to the
models than the other two. Indeed, the distribution of
natural illuminations used for training includes several
other illuminations along the daylight locus. G and R,
however, were outside the distribution of the training
set. More precisely, G is 4.45 �E away from its closest
illumination within the training set, while R is 7.9 �E
away, making R then G the two illuminations DeepCC
is less familiar with.

This anisotropy in the distribution of natural
illuminations had consequences on the performance
of our models and their degree of color constancy.
For each training instance and illumination, we
computed the mean CCI per Munsell class and
training instances, with each mean value computed
across 10 image exemplars in the normal conditions.
Figure 5 shows the distributions of these mean values
for each of the four illuminations in the form of a
boxplot. Additionally, we also plotted the average
CCI value for each training instance under each
illumination in the form of bee swarms. We observed
a significant effect of the illumination on the CCI of
our models: DeepCC models showed higher CCI for
the “familiar” illuminations (Yellow and Blue) than for
the “unfamiliar” illuminations (Green and Red). The
highest degree of color constancy was found under the
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Figure 5. Effect of the illumination on color constancy:
distributions of DeepCC’s mean Color Constancy Index (CCI) for
each Munsell class under each of the four testing illuminations.
Medians are in red. Each dot of the bee swarm plots is to the
average CCI found for a training instance of DeepCC. Statistical
significance was computed applying pairwise t tests with
Bonferroni corrections.

Yellow illumination, with an average CCI value of 0.86,
while the lowest was found under the Red illumination,
with an average CCI value of 0.64.

Results of Figure 5 are very similar to observations
made regarding the capacity of humans to perceive
illumination changes (Pearce et al., 2014; Aston et al.,
2019). It was found that human observers were more
sensitive to illumination changes happening along
the green–red color direction compared to changes
along the yellow–blue direction, meaning that they
are less likely to perceive an illumination shift along
the yellow–blue direction than along the green–red
one. This suggests, the authors argue, that the human
visual system compensates better for changes in the
blue–yellow directions, which could have consequences
for color constancy.

Interim conclusion

Results in this section show a significant effect of the
illumination on DeepCC’s performance. Higher color
constancy indices were observed for illuminations along
the yellow–blue direction in CIEL*a*b* color space
compared to illuminations falling onto the orthogonal
direction. This difference is presumably explained by the
model being more accustomed to variations along the
daylight locus, the direction along which daylight and
natural illuminations, such as the ones used for training,

vary most. The parallel one can draw between our result
and observations made in human psychophysics (Aston
et al., 2019) implies that the higher variation along the
daylight locus may be a cause of similar consequences
in humans.

Color constancy throughout
DeepCC

There is uncertainty regarding where the neural
mechanisms for color constancy would take place in the
brain. Many studies emphasize early mechanisms, such
as cone adaptation (Lee et al., 1999), or cells sensitive
to chromatic contrasts between object and background
in V1 (Wachtler et al., 2003). Other have shown that
lesions in macaque area V4 also led to impaired color
constancy (Wild et al., 1985; see Foster, 2011, for a
review). In contrast to biological brains, deep neural
networks like DeepCC allow access to the activations
of every unit. Taking advantage of this, we added linear
readouts to every layer of DeepCC in order to measure
at which processing step color constancy emerges.

Methods

In order to apply the Color Constancy Index at
different processing stages of DeepCC, we trained
readout networks for each one of its five layers (three
convolutional and two fully connected). These linear
probes (Alain & Bengio, 2016) consisted of very simple,
fully connected linear models with 1,600 kernels, 1 per
Munsell class. They take as input the ReLU-corrected
output of DeepCC’s layer they read out, before the
maxpooling operation. For example, the readout
network of DeepCC’s first convolutional layer (RC1)
takes as input the output of that layer after the ReLU
operation and is trained on the same task as DeepCC,
using the same dataset. The parameters of DeepCC’s
convolutional layer are not updated during this
training iteration, only the weights of RC1. RC1 being
fully connected and linear, no complex or nonlinear
operations are added, and as such, RC1’s performance
is an indication of the amount of information available
in the first convolutional layer of DeepCC.

Results

Figure 6 shows the average CCI obtained for DeepCC
readout models. We named these readout models
RC1, RC2, RC3, and RF1, RF2, corresponding to the
convolutional layers 1, 2, 3, and the fully connected
layers 1, 2, respectively. We trained 10 instances of each
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Figure 6. Color Constancy Index (CCI) for the five readout
models tested with the normal and no patch image sets. Each
readout takes input from all units of the designated layer: from
the three convolutional layers (readouts RC1, RC2, and RC3) to
the two fully connected layers (readouts RF1 and RF2). By
extension, the value of CCI reflects the degree of color
constancy at the different layers of DeepCC.

readout model, one for each instance of the original
model. As shown in the plot, the readout models were
tested under two conditions: CCnormal (black) and
CCnopatch (cyan). Error bars are the standard deviation
obtained across the 10 training instances. The CCI
gradually increases in the normal condition in an almost
linear fashion across processing stages, consistently
across the 10 models. In the no patch condition, CCI
follows the normal condition only up to RC2, at which
point it continues increasing but at a much lower rate.
The difference between the two conditions becomes
significant from RC3 onward. Error bars are also larger
for the following layers, another indication of the large
individual differences between training instances and
observed in “Impoverished visual scene”.

Interim conclusion

Contrary to many physiological studies emphasizing
the early neural mechanisms for color constancy
(Foster, 2011), we found that color constancy seemed to
increase steadily throughout DeepCC, both under the
normal condition and the no patch condition.

Color representations in DeepCC

We next performed a representational similarity
analysis (Kriegeskorte et al., 2008) on unit activations
within each layer to probe the models’ internal

representations of colors. We find that although the
training objective treated each Munsell value as an
entirely distinct class, the DeepCC networks nonetheless
learned similarity relationships between the colors that
closely resemble their true embeddings in the Munsell
space.

Methods

To estimate the similarity between Munsell colors
as seen by DeepCC, we computed representational
dissimilarity matrices (RDMs) (Kriegeskorte et al.,
2008) between the average unit activations per Munsell
classes for each layer in the DeepCC networks using
the correlation distance as a metric (Aguirre, 2007).
Activations were recorded using the evaluation
dataset under the normal condition, augmented with
additional images under the D65 illumination (i.e.,
the 330 test Munsell classes under the D65, Y, B,
G, and R illuminations). In turn, the RDMs were
used as input to a classical multidimensional scaling
analysis (MDS) (Cox & Cox, 2008) to compute the
underlying dimensions best explaining the previously
found dissimilarities. Previous work has shown that
the activations of complex deep neural models were
able to predict neural response in biological brains (e.g.,
in mice), even when untrained, that is, with random
weights (Cadena et al., 2019). As a control, we thus
also performed the same analysis for 10 instances of
the deep architecture with random weights, denoted
DeepRand.

Results

We performed MDS on the RDMs for each of the
five layers of DeepCC. Figure 7 shows two-dimensional
(2D) representations of the first three dimensions
of the MDS results for each layer, tested under the
normal condition and averaged across all 10 training
instances. These three dimensions are the dimensions
of maximal variance, in decreasing order. Each column
corresponds to one layer. The upper row plots the first
and second dimensions, the lower row the second and
third. Colored dots correspond to Munsell chips and
are displayed using their corresponding sRGB values.

We find that increasingly human-like color
dimensions emerge in all layers: Munsells are separated
according to their lightness, sometimes also their hue.
There is a progression in the way DeepCC represents
Munsells: In early layers, many colors are clustered
together, especially in the dark regions, rendering
them less easily discriminable from one another. This
changes in the last two layers, in which colors are
more clearly separated from one another. Additionally,
the dimensions are easy to interpret. In the first fully
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Figure 7. Results of a multidimensional scaling performed on the correlation of Munsell representations for different layers of
DeepCC, from convolutional layer 1 (Conv1) to fully connected layer 2 (Fc2). Each column corresponds to one layer, each row to the
different dimensions resulting from the MDS: first row, Dimensions 1 and 2 of maximal variance (decreasing order); second row,
Dimensions 2 and 3 of maximal variance (decreasing order). Each dot corresponds to one Munsell surface, displayed with its color
under the D65 illumination. While Munsell surfaces appear clustered in the early layers, particularly with respect to lightness, a
progressive disentanglement in terms of chromaticity and lightness takes place throughout the network.

connected layer, for example, each dimension seems to
code for a standard color dimension: Dimensions 1 and
2 for “yellow–blue” and “red–green,” with an almost
perfect hue color circle and a radius correlated with
saturation, and dimension 3 for lightness.

At each layer, we also computed the cumulative
percentage of activation’s variance explained by the
three first dimensions given by the MDS, both for
DeepCC and DeepRand, the latter consisting of deep
instances with random weights. We interestingly found
that, although the MDS could potentially yield a much
larger number of dimensions, the first three dimensions
are enough to explain more than 85% of the variance
in most of the layers, for both model types. The highest
percentage of explained variance in DeepCC is found
for fc1, with 91%. This means that the representations
of Munsell are mostly 3D. This result is particularly
surprising because fc1 contains the highest number of
kernels (250, same as fc2) and thus is more likely to lead
to a higher-dimensional latent space. And indeed, the
explained variance is lowest at fc1 layers for DeepRand,
with 68%.

We next sought to quantify the similarity—or
difference—between Munsell representation in our
models and their coordinates in a perceptual color
space. To do this, we performed a Procrustes analysis
(Gower, 1975) to identify the rigid transformation that
best mapped the coordinates obtained from the first
three MDS dimensions, performed on each layer, to the
corresponding coordinates in the Munsell color space.
The percentage of explained variance is an indication
of the goodness of the mapping: The closer to 100%,
the better. As shown in Figure 8, we find that in all

Figure 8. Result of the similarity analysis for all layers of the
deep architecture trained on the CC dataset (DeepCC) and with
random weights (DeepRand), from convolutional layer 1
(conv1) to fully connected layer 2 (fc2). The figure shows that
the highest similarity with Munsell coordinates was found for
DeepCC at the first fully connected layer fc1. Additionally,
DeepCC always rates higher than DeepRand.

layers, the variance explained by DeepCC progressively
increases from 63% in convolutional layer 1 to 91% in
fc1. Fc2’s subsequent drop likely reflects the demands
of the objective function to deliver categorical outputs.
Additionally, DeepCC significantly explains more of
the variance than the same architecture with random
weights (DeepRand) with a maximal difference in fc1.
Indeed, while the variance explained progressively
increases for DeepCC, it progressively decreases for

Downloaded from jov.arvojournals.org on 07/28/2022



Journal of Vision (2022) 22(4):17, 1–24 Flachot et al. 16

DeepRand. Note the relatively high explained variance
for both DeepCC and DeepRand models in the first
layer conv1. It is likely a consequence of the input
space: Performing the Procrustes analysis from the
Munsell chromaticities in LMS space (input) toMunsell
coordinates yields a percentage of accounted variance
of 66%, very close to the 63% found in DeepCC’s
conv1.

It is important to note that this finding is nontrivial
and cannot be explained solely by the loss function we
used. During training, the networks were never taught
similarity relationships between Munsell color values.
Rather, the error signal was the same whether the
models wrongly selected a Munsell close to or far from
the correct one in color space. Theoretically, a model
could reach a high accuracy and not learn human-like
similarities between the Munsell colors. And indeed, as
reported below, other architectures trained and tested
following the same procedures represent colors in a
different manner.

Qualitatively similar results were also obtained when
using a L2 norm instead of the correlation metric.
Additionally, we also performed this analysis using
the CIEL*a*b* coordinates as a reference for the
Procrustes analysis and found extremely similar results
as with the Munsell coordinates. We excluded these
results from the figures to avoid redundancy.

Interim conclusion

Similarly to the increasing CCI observed throughout
the network in the previous section, the representational
analysis also uncovered a progression in the way
Munsell colors are represented within the model’s
layers. Visually, we could observe a progressive
disentanglement of Munsell colors with increasing layer
depth. More important, the representation of color also
progressively increased their resemblance with human
perception, peaking at FC1, where there was a very high
correspondence to the Munsell perceptual color space.
This was quantitatively confirmed using a similarity
analysis, where it was found that the representational
distances and dimensions between Munsell values, in
the penultimate layer in particular, matched very well
the human perceptual distances and dimensions found
empirically in previous psychophysical studies. The
subsequent drop found in the last layer likely reflects the
demands of the objective function to deliver categorical
outputs.

Standard and custom architectures

We observed in the previous section that DeepCC
represents Munsell colors following color dimensions

found empirically to be perceptually relevant for
humans. Is this a special feature of this architecture
(i.e., would different architectures learn different
representations)? If yes, it would be strong evidence
that there is not one globally optimal system of
representations to solve color classification. To answer
this question, we trained and evaluated several other
standard deep learning architectures.

Methods

Architectures
For the sake of comparison, we also trained three

standard, high-performance deep learning models on
the CC dataset: VGG-11 (Simonyan & Zisserman,
2014), MobileNet (Howard et al., 2017), and ResNet-50
(He et al., 2016). All of these architectures have specific
features that make them significantly different from
one another. These standard architectures, however,
are relatively large and complex compared to the
DeepCC architecture. While DeepCC only has 676
kernels (outside of the classification layer’s 1,600) and
3.6 million interconnections between units, all three
others have more than 13,000 kernels, the highest being
ResNet-50 with almost 54,000. In order to allow some
comparison with networks of a size more similar to
DeepCC, we additionally devised another, shallower
model. It consisted of a custom ResNet architecture,
generated thanks to a ResNet bottleneck architecture
generator (available in github7). To distinguish it from
ResNet-50, we will call this architecture ResCC. It has
three layers, each with three, one, and two bottleneck
blocks, respectively. The first layer starts with 16 kernels,
layer 2 with 32, and layer 3 with 64. Including the
kernels within the bottleneck layers, it reaches 3,424
kernels and 0.6 million interconnections. Similarly to
DeepCC, where we trained 10 instances, 6 independent
training instances of ResCC were trained for further
analysis.

Results

We evaluated each one of the DNN architectures
on the normal, no patch, wrong patch, and wrong
back conditions. Here, for the sake of simplicity, we
show only a summary of the results through a table
with the distributions’ medians. Table 1 shows the
median measurements of performance obtained for
all architectures under those conditions, with the
results obtained for DeepCC as a reminder on the
last column. MobileNet, VGG-net, ResNet-50, and
ResCC all showed higher performance than DeepCC
in all conditions. Interestingly, there was almost no
difference in performance for every model other than
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Model MobileNet VGG-11 ResNet-50 ResCC DeepCC (ref ConvNet)
Nb param 4.3 M 135.3 M 29.8 M 0.6 M 3.6 M

Condition normal no patch normal no patch normal no patch normal no patch normal no patch

Top-1 95 95 100 100 100 95 85 80 75 40
Top-5 100 100 100 100 100 100 100 100 100 90
Muns3 100 100 100 100 100 100 100 100 100 95
�E 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.3
CCI 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6

Condition wrg patch wrg back wrg patch wrg back wrg patch wrg back wrg patch wrg back wrg patch wrg back

Top-1 85 0.0 92.5 0.0 87.5 0.0 80 0.0 25 0.0
Top-5 100 25 100 25 100 25 100 25 65 25
Muns3 100 70 100 75 100 70 100 65 85 65
�E 0.0 10.6 0.0 10.0 0.0 10.34 0.0 11.2 5.6 11.4
CCI 1 −0.34 1.0 −0.28 1 −0.32 1 −0.4 0.23 −0.46

Table 1. Median values found for all measures and all models under the normal, no patch, wrong patch, and wrong back conditions.
All models show higher performances than DeepCC in all test sets. Interestingly, except DeepCC, none of the models are sensitive to
the absence (no patch) or incongruence (wrong patch) of the colored patches in the background. This suggests that in contrast to
DeepCC, these other models barely rely on the constant colored patches in the background to perform color constancy. The sharp
drop in performance for the wrong back condition, however, suggests that like DeepCC, all other models also rely on the contextual
cues surrounding the floating object to perform color constancy.

DeepCC between the normal, no patch, and wrong
patch conditions. All models, however, have shown
a significant loss in accuracy for the wrong back
condition, suggesting that all tested models rely heavily
on cues in the background to perform their task.

Up to now, standard networks and ResCC essentially
shared the same characteristics as DeepCC: While
they outperformed the classical approaches to color
constancy, such as Gray World (cf. “Comparison with
classical approaches”) under the normal condition, they
failed to account for the illumination color under the
wrong back condition (cf. Figure 3), as indeed essentially
any observer would. Additionally, we found they also
show a significant effect of the illumination on the
Color Constancy Index, with higher performance for
the Yellow and Blue illuminations than for the Green
and Red illuminations (not shown).

However, when it came to the analysis of Munsell
representations within the latent layers, they all
exhibited a very different picture from DeepCC:
Munsell chips did not appear to be differentiated
following human-like color dimensions. As in the
previous section, we performed multidimensional
scaling on the RDMs for each layer of each
architecture, followed by a Procrustes analysis using
Munsell coordinates as a reference space. Across all
architectures, the highest percentage of explained
variance resulting from the Procrustes analysis was
53%. It was obtained for the VGG-11 architecture’s
fourth layer and stands substantially below the
91% explained variance of DeepCC’s penultimate
layer.

As an example, we show in Figure 9 the results of
the MDS analysis averaged over the ResCC instances.
We can observe that none of the three layers visibly
separate Munsell colors along human-like perceptual
dimensions like Hue, Lightness, or Chroma. This is
particularly true for Layer 3. For this last layer, the first
three dimensions of the MDS account for only 54%
of the dissimilarity between Munsell representations,
meaning that Munsell discrimination took place in a
space with more than three dimensions.

This observation is further confirmed by Figure 10.
The variance explained by the best fit for mapping
Munsell representations in ResCC layers onto the
Munsell coordinates was always lower than for
DeepCC, meaning that ResCC distinguished Munsell
values using color dimensions different from the
ones defined by human color perception, contrary to
DeepCC. Additionally, the low percentage of variance
explained by the same architecture but with random
weights (ResRand) suggests that the architecture is
the major factor for this difference. Interestingly, this
result correlates with a recent observation (Zhou et al.,
2018) that ResNet architectures lead to much less
interpretable representations than more conventional
convolutional architectures like AlexNet and VGG
Nets.

Interim conclusion

The results of our comparisons with other
architectures show that if performance was our only
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Figure 9. Results of a multidimensional scaling performed on the correlation distance of Munsell representations for different layers
of ResCC. Compared to DeepCC (cf. Figure 7), ResCC does not seem to classify Munsells following the same dimensions as those
defined by human perception, particularly in Layer 3.

Figure 10. Results of the Procrustes analysis for the Res
architecture trained on the CC dataset (black) and with random
weights (gray). The analysis was performed on the outcomes of
the multidimensional scaling at different layers using Munsell
space as reference coordinates. The variance explained for
ResCC was consistently lower than for DeepCC throughout its
layers, meaning that ResCC discriminate Munsells following
color dimensions dissimilar to those defined by human color
perception. The fact that the Res architectures systematically
rate lower both when trained and with random weights
suggests that the major factor for this difference is the
architecture.

goal, many architectures other than Deep could
have been used to solve the Munsell classification
task and indeed achieved superior performance. The
similarity analysis we used, however, showed that other
architectures, such as ResCC, seemingly differentiate
between Munsell colors according to color dimensions

very different from those empirically found for human
perception, contrary to DeepCC.

This last observation is thus evidence that there is not
one globally optimal system of representations to which
all networks tend to converge. Rather, multiple possible
systems of representations deliver good performance at
the task, the one shared between humans and DeepCC
being one of them. This result also emphasizes the need
for careful examination when it comes to selecting a
DNN architecture for a given task. While at first sight,
ResCC might have seemed a better choice for our tasks
(highest performance and few parameters), the analysis
of the Munsell representations shows that DeepCC
presents characteristics more similar to human color
discrimination. This last point suggests that DeepCC
is thus potentially a better candidate for modeling
human discrimination of Munsell color surfaces. It
also emphasizes the need to develop further methods
and strategies to analyze and understand the features
learned by different architectures.

Discussion

We have trained deep neural models for the
classification of Munsell chips under varying natural
illuminations using 3D spectral renderings. We found
that our models did learn to discount the illumination’s
contribution to the color appearance of the surface,
hence learning color constancy. When manipulating
the contextual cues within the scene, in such the way
that these cues no longer gave information about the
illumination shining on the object, our models were no
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longer color constant, performing exactly at the same
level as our control network Deep65, trained under our
reference illumination D65 only. Additionally, we found
that despite using the same training procedure, different
architectures led to very different color representations
of Munsell chips within their layers: One network,
DeepCC, developed color representations very similar
to the Munsell chips coordinates, while the other
models did not.

In the following, we discuss how these findings relate
to human color constancy and color vision. We also
discuss the opportunities offered by the combination
of deep learning and computer graphics for studying
properties of human vision such as color constancy.

Deep neural networks for biological color vision

We find that as a result of training, the deep
neural network models became similar to humans
in several respects: They classified Munsell colors
largely independently of changes in illumination, thus
learning color color constancy. They used contextual
information to do so: When we manipulate the scene
elements to provide incorrect information about the
illuminant, the models perform at the same level as
a non–color constant model, meaning that they are
no longer able to discount the illuminant. Likewise,
numerous previous studies have shown that humans
also rely on context to achieve color constancy (Kraft
& Brainard, 1999; Kraft et al., 2002; Yang & Maloney,
2001). One model, DeepCC, was also sensitive to the
cues provided by the constant color patches in the
background. Additionally, the models showed higher
degrees of color constancy for illuminations along
the daylight locus than for illuminations along the
orthogonal color direction. This also correlates with the
lower sensitivity to illuminant change along the daylight
locus observed in humans (Aston et al., 2019).

In addition, our analysis of the networks’ inner
representations revealed that DeepCC represented
surface colors using dimensions similar to the Munsell
and CIELab spaces, which are based on human
perception. This similarity seems to be the exception
rather than the rule, as other architectures like ResCC,
represented color in a different way, despite achieving
similar or superior performance on the objective.The
observation that one architecture learned human-like
features and not the other hints at architectural
influences shaping human color perception. Better
understanding these architectural influences—and
how they relate to the architecture of primate visual
systems—may help us understand human color vision
in the future.

It remains unclear what exact mechanisms within the
networks are responsible for achieving color constancy,
and to what extent these are comparable to neural
mechanisms found in biological visual systems. Some

possibilities, however, are more likely than others.
One mechanism thought to significantly contribute to
primate color constancy is adaptation (Foster, 2011)
present as early as at the retinal level (Lee et al., 1999).
Adaptation, however, is commonly accepted to require
either neural feedback from recurrent interactions
within the network (del Mar Quiroga et al., 2016),
or an intrinsic suppression mechanism in the neuron
itself (Whitmire & Stanley, 2016), neither of which
are explicitly implemented in the architectures used
here: They are feedforward networks with simple
ReLU activation functions. Recently, Vinken et al.
have implemented an exponentially decaying intrinsic
adaptation state within each unit of a feedforward
CNN architecture (Vinken et al., 2020). They were
successfully able to reproduce neurophysiological and
perceptual properties of adaptation. Their proposed
architecture could thus have the potential to learn the
adaptation mechanism for color constancy if trained
on our task. Nevertheless, the fact that networks can
achieve color constancy without such adaptation
mechanisms suggests that in humans, the primary role
of adaptation may be in controlling sensitivity given
limited dynamic range and noise, rather than surface
reflectance estimation per se. Another mechanism
thought to contribute to color constancy in biological
brains is cell response invariance, or the tendency
of certain cells to be largely sensitive to chromatic
contrasts between target and background (Foster,
2011), both at the early stages of the visual system
(Wachtler et al., 2003) and the later stages (Kusunoki
et al., 2006). Recent studies have shown that kernels
sensitive to chromatic contrasts can be found in the
early and late convolutional layers of feedforward
CNNs trained for object recognition (Flachot &
Gegenfurtner, 2018, 2021; Harris et al., 2019).

3D-rendered dataset for color constancy

Unfortunately, large datasets consisting of numerous
photographs of real, complex scenes with controlled
conditions suitable for training deep neural networks
from scratch on color constancy tasks do not yet exist.
The popular ImageNet (Deng et al., 2009), for instance,
consists of millions of natural images but taken from
noncalibrated cameras, presumably white-balanced.
The ColorChecker dataset (Gehler et al., 2008) has
the opposite characteristic: It presents precise and
well-calibrated complex images, but less than 1,000 of
them. Large hyperspectral datasets of natural scenes at
different times of the day would be optimal, of course,
but the difficulty of controlled hyperspectral captures is
such that most datasets count a few hundreds of images
at most (Vazquez-Corral et al., 2009; Nascimento et al.,
2016).

Some challenges remain, however, such as the
efficient creation of convincing outdoor scenes. It
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is possible that reproducing the statistics of more
complex, naturalistic scenes would contribute toward
greater robustness of DNNs to scene changes and
perhaps allow the emergence of higher features of color
vision, such as color categories (Witzel & Gegenfurtner,
2018; Parraga & Akbarinia, 2016).

Implications for color constancy in general

Our results have several implications for color
constancy in general, independent of whether we
believe that DNNs are a good model of human color
constancy. First, we trained networks to extract the
surface color more accurately than a perfect global von
Kries correction. This implies that a global illumination
correction is not the optimal solution to the color
constancy problem, even in a situation with a single
illumination color. This may guide future computer
vision and image-processing work that aims to extract
object properties rather than color-correcting images.
Second, we confirm earlier suspicions that the prior
distribution over illuminations causes the better
performance of humans along the daylight axis, as
employing a naturalistic range of illuminations was
sufficient to cause our networks to have this bias as
well. Third, our finding that network architectures
like ResCC can achieve outstanding color constancy
performance despite not reproducing human perceptual
color similarity representations suggests that these
representations are not necessary for color constancy.
Although perceptual color spaces presumably have
many advantages for human color vision, our findings
do not support the notion that they are specifically
optimized for color constancy—at least in the class of
images we investigated. An interesting direction for
future research would be to train networks explicitly
on perceptual color representations and test how this
improves performance at other tasks. This would
potentially provide answers to the teleological question
of why human color space is shaped as it is (DiCarlo
et al., 2012).

Conclusion

In this study, we approached color constancy
as a surface reflectance classification task under
varying illumination using deep neural networks. This
methodology closely mimics what humans do on a
daily basis and differs from the common approach to
computational modeling of color constancy that mainly
focuses on the illumination estimation and image
correction. We then devised a set of testing conditions
to thoroughly evaluate our models and compare them
to previous human behavioural studies. We found
that similarly to humans, all models heavily relied on

contextual cues to solve color constancy and show
the same bias toward illuminations along the daylight
locus as humans. However, a similarity analysis on the
activation patterns within the deep latent layers of the
trained models showed significant differences in the way
they represented color surfaces. Only one convolutional
network, DeepCC, learned to discriminate colored
surfaces following similar dimensions to those used by
humans. This suggests that in computational models
of human color constancy, the highest performance
alone might not be the best metric to measure fidelity
of a model to human color representations. This is
in line with reports in object classification, where
lower performance networks may better correlate with
human brain recordings and behavioral measurements
(Kubilius et al., 2019; Geirhos et al., 2020b).

Keywords: color constancy, deep learning, spectral
renderings, color classification
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Footnotes
1See https://colorconstancy.com/evaluation/datasets/ for a review.
2http://www.mitsuba-renderer.org/.
3http://www.cs.joensuu.fi/∼spectral/databases/download/munsell_spec_
glossy_all.htm.
4https://evermotion.org/shop.
5https://www.dropbox.com/sh/gz52alcoue9ew6w/
AADYg3EJZD9bRLb04aifByNJa?dl=0.
6https://github.com/AlbanFlachot/color_constancy.
7https://github.com/ArashAkbarinia/kernelphysiology.
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