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1. ABSTRACT

1 Abstract

Like all natural systems, the mammalian brain and its neurons are governed by the fundamen-

tal principles of physics. Simplified computer simulations based on such principles help us

see through the high complexity of especially the human brain and ultimately figure out how

it works. In the scope of this thesis, two biologically realistic models were created focusing

on, firstly the macroscopic and secondly the microscopic structure of the brain. The key

component to both of these morphological simulations is the principle of wiring optimisation.

First, combining dimensionality reduction methods and biologically inspired modelling based

on optimal wiring, this thesis develops a method to simulate how the gyrification pattern of

the mammalian brain emerges, differs from species to species, and changes due to pathological

changes in neuron connectivity. The gyrification model is based on two biology-driven key

principles: First, neuron placement follows wiring optimisation requirements and second,

local connectivity between neurons is strong while long range connectivity is sparse as ob-

served in the mammalian cortex. Many studies from the past saw the formation of gyri and

sulci as the result of the surface of the cortex trying to expand in the limited cavity of the skull.

The simulation described here shows that even without the constraint of the skull, gyrification

still emerges when applying a biological neural connectivity distribution in addition to wiring

optimisation.

The first model provides new insights into the macroscopic structure of the brain but lacks

microscopic detail. The second model is also based on optimal wiring but focused on re-

producing the anatomical neuronal structure at the level of single cells. It provides a new

algorithm and a tool to repair and preserve the microscopic structure of neuron morphology

reconstructions. This is especially relevant for human neurons since here, data is extremely

hard to come by, and the data that is available mostly originates from patients with diseases

like severe epilepsy. Since the reconstruction process is a delicate procedure, the anatomical

structure of reconstructed neurons is oftentimes severed by dendrites accidentally being cut.

The recovered anatomy of neuronal dendrites is, however, pivotal to study the functionality

of human and nonhuman neurons, which is further illustrated by analysing passive electro-

physiological differences between human and mouse neurons.

In summary, the thesis shows that optimal wiring is a useful guiding principle to simulate

and better understand macroscopic and microscopic anatomical structure of the brain at the

level of cortical folding as well as individual dendritic trees of nerve cells.

7/124



2. ZUSAMMENFASSUNG

2 Zusammenfassung

Wie alle natürlichen Systeme unterliegt auch das Gehirn von Säugetieren und seine Neuronen

den grundlegenden Prinzipien der Physik. Im Rahmen dieser Arbeit wurden zwei biologisch

realistische Modelle erstellt, die sich zum einen auf die makroskopische und zum anderen auf

die mikroskopische Struktur des Gehirns konzentrieren. Die Schlüsselkomponente dieser bei-

den morphologischen Simulationen ist das Prinzip der Verdrahtungsoptimierung. Zunächst

wird in dieser Arbeit durch die Kombination von Methoden zur Dimensionalitätsreduktion

und biologisch inspirierter Modellierung auf der Grundlage optimaler Verdrahtung eine Meth-

ode entwickelt, mit der simuliert werden kann, wie das Faltungsmuster des Säugetiergehirns

entsteht, wie es sich von Art zu Art unterscheidet und wie es sich durch pathologische

Veränderungen der Neuronenverknüpfungen verändert. Das Faltungsmodell basiert auf

zwei biologisch begründeten Grundprinzipien: Erstens folgt die Platzierung von Neuronen

den Anforderungen an eine optimale Verdrahtung, und zweitens ist die lokale Konnektivität

zwischen Neuronen stark, während die Konnektivität über weite Entfernungen gering ist,

wie es im Kortex von Säugetieren beobachtet wird. Die hier beschriebene Simulation zeigt,

dass auch ohne die Beschränkung durch den Schädel Faltungen entstehen, wenn zusätzlich

zur Optimierung der Verdrahtung eine biologische Verteilung der neuronalen Konnektivität

angewendet wird.

Das erste Modell bietet neue Einblicke in die makroskopische Struktur des Gehirns, lässt aber

mikroskopische Details vermissen. Das zweite Modell basiert ebenfalls auf dem Prinzip der

optimalen Verdrahtung, konzentriert sich aber auf die Reproduktion der neuronalen Struktur

auf der Ebene einzelner Zellen. Es bietet einen neuen Algorithmus und ein Werkzeug zur

Reparatur und Erhaltung der mikroskopischen Struktur von Neuronenmorphologierekon-

struktionen. Dies ist vor allem für menschliche Neuronen von Bedeutung, da hier Daten

extrem schwer zu bekommen sind und die verfügbaren Daten meist von Patienten mit

Krankheiten wie schwerer Epilepsie stammen. Die wiederhergestellte Anatomie neuronaler

Dendriten ist jedoch entscheidend für die Untersuchung der Funktionalität menschlicher und

nicht-menschlicher Neuronen, was durch die Analyse der passiven elektrophysiologischen

Unterschiede zwischen menschlichen und Mäuseneuronen weiter veranschaulicht wird.

Zusammenfassend zeigt die Arbeit, dass die optimale Verdrahtung ein nützliches Leit-

prinzip ist, um die makroskopische und mikroskopische anatomische Struktur des Gehirns

zu simulieren und besser zu verstehen.
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3. INTRODUCTION

3 Introduction

3.1 The Macroscopic structure of the brain: Gyrification

3.1.1 Gyrification of the brain

The mammalian brain has a distinct appearance with its striking cortical folding pattern.

These folds revolve around gyri (ridges or outward folds) and sulci (depressions or furrows).

A gyrus is typically surrounded by sulci and vice versa. Gyrification appears in a wide variety

of mammals, such as humans, carnivores, dolphins, whales and non human primates etc.

(Welker (1990), Bayly et al. (2014), Kroenke and Bayly (2018)). Interestingly, the degree of

cortical folding varies dramatically from species to species (Pillay and Manger (2007), Zilles et

al. (2013), Huggenberger (2008)), ranging from cortices with no folds at all (lissencephalic), in

for example, rats, to highly convoluted specimen, like dolphin brains.

Figure 1. Different methods of calculating the folding index FI

(Note: Figure by Pillay and Manger (2007), Fig. 2) Example methods of how to calculate the folding
index FI by comparing two different contours of the cortex. Top left: Image of cortex section. Top
right: Method 1 is the most popular way to determine FI by comparing the complete contour to the
outer contour. Bottom: Method 2 and 3 depict alternative procedures to determine FI .
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3. INTRODUCTION

The degree of folding is measured using the folding index (FI). There are several different

methods of calculating FI (Pillay and Manger (2007)) which are depicted in Fig. 1. Method 1

compares the exposed circumference AE (here complete contour) to the total circumference

AT (here outer contour) by forming the quotient as follows.

FI =
AT

AE

In this thesis FI will be calculated using this method.

Increasing the cortical surface area increases the number of neurons as well, enhancing

cognitive capabilities. It was therefore popularly assumed that cortical folding is the result of

the brain trying to expand in the limited cavity of the skull, thereby increasing its surface area

(Welker (1990)). This is, however, largely inaccurate since studies in mice have shown that

cortical folding can be induced by a genetic change that triggers a cortical surface expansion

(Chenn and Walsh (2003), Kingsbury et al. (2003)). In conjunction with lesion experiments

which were able to show that folding emerges even without any space limiting cavity during

brain development, these findings debunk the expanding brain theory (Barron (1950), Welker

(1990)). The expanding brain theory furthermore has difficulties explaining anomalies like the

lissencephalic cortex of the manatee.

Figure 2. Folding index of the cortex of different species depending on the number of neurons
(Note: Figure by Mota and Herculano-Houzel (2015), Fig. 1 B) The folding indices of different species
plotted against the number of neurons in their respective cortices.
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3. INTRODUCTION

Despite having similar numbers of neurons to primates, the manatee’s cortex does not exhibit

any folding (Charvet et al. (2016)), which is strikingly odd since, in general, folding seems to

increase with the number of cortical neurons in mammals as shown in Fig. 2. Therefore, the

low degree of folding in rodents like mice and rats compared to other mammalian species is

unlikely to be the result of their small size. The degree of cortical gyrification does not only

vary from species to species but seems to obey scaling laws specific to orders of mammals as

described by Zilles et al. (2013). They visualise this in Fig. 3, which plots the FI (here GI for

gyrification index) against the brain weight for different orders of mammals in a and different

families of primates in b.

Figure 3. Scaling behaviour of FI in different orders of species with respect to brain weight
(Note: Figure by Zilles et al. (2013), Fig. 1 (a) and (b)) (a) Logarithm of the gyrification index GI
(equivalent to the folding index) plotted against the logarithm of the brain weight for different species.
The scaling of GI is fitted for different orders of species indicated by colours, revealing differences in
scaling between orders. (b) Same plot as in (a) but for different primate species.
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3. INTRODUCTION

The brain weight can be used as a substitute measure for the number of cortical neurons as

was shown by Herculano-Houzel (2009). Among primates, the homo sapiens brain shows

the highest degree of folding, however, folding is at its most extreme in cetaceans who also

exhibit the most intense scaling of gyrification with increasing number of cortical neurons.

Cortices of cetaceans also are very thin (Hof and Van Der Gucht (2007)).

Brain functionality is dependent on its anatomy and vice versa, as for a healthy brain specific

functions are strictly localised on the cortical surface. Therefore, it is likely that there is a

link between anatomy and functionality of the brain (Rakic (1988) Welker (1990), Felleman

and Van Essen (1991), Amunts and Zilles (2015)). Even though there are multiple hypotheses

regarding the emergence of cortical folding patterns, the exact mechanism is largely unknown.

Some models suggest physical forces are responsible for the formation of gyri and sulci

by pulling them towards each other (Tallinen et al. (2014), Tallinen et al. (2016), Mota and

Herculano-Houzel (2015)). Such forces could explain the different degrees of folding in

different species (Pillay and Manger (2007), Zilles et al. (2013)) as the level of gyrification

depends on cortical thickness and its surface area (Mota and Herculano-Houzel (2015)). The

cortex behaves similarly to a crumpling sheet of paper where the amount of folding has been

shown to increase with larger but at the same time thinner sheets as depicted in Fig. 4. Folding

patterns in the cortex, which are dependent on cortical functionality, can however be inherited

across generations (Welker (1990), Bartley et al. (1997), Biondi et al. (1998),

Figure 4. Folding index of sheets of paper of varying size and thickness
(Note: Figure by Mota and Herculano-Houzel (2015), Fig. 2 B) The folding index of crumpled sheets
of paper plotted against their surface area. The different colours indicate the sheet thickness as shown
by the inlay numbers in mm.
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3. INTRODUCTION

Lohmann et al. (1999), Fischl et al. (2008)), suggesting that connectivity and genetic parameters

influence the final appearance of any folding pattern. Llinares-Benadero and Borrell (2019)

do indeed observe changes in the expression of genes during cortical development. These

changes of gene expression, which occur mostly in the outer subventricular zone (OSVZ), do

correspond to the locations where ultimately a gyrus or sulcus will emerge (de Juan Romero

et al. (2015)). The cortex seems to fold as the OSVZ forms, which allows for the proliferation of

basal progenitor cells that are situated within the OSVZ (Poluch and Juliano (2015), Martı́nez-

Martı́nez et al. (2016)). This is in line with Reillo et al. (2011) and Nonaka-Kinoshita et al. (2013)

who find that the regulation of genes that govern proliferation of the OSVZ in ferrets either

increases or decreases the cortical surface area, which in turn leads to a change in gyrification.

The basal progenitor cells are likely to be among the architects of folding, as they change

the framework of radial fibers. This allows proliferated neurons to spread out tangentially,

forming a gyrus (Reillo et al. (2011), Borrell and Reillo (2012), Borrell and Götz (2014), Borrell

(2018), Del Toro et al. (2017)). Importantly, gyrification does not start before neurogenesis is

completed. Gliogenesis begins once all excitatory neurons have reached their final locations

and folding is initiated (Kroenke and Bayly (2018), Rash et al. (2019)). Therefore, gyrification is

likely to be the result of connections forming throughout white matter as neurons differentiate

alongside the cortex expanding.

The folding pattern of the cortex has also been observed to change with pathological dis-

eases, such as autism, schizophrenia and persistent epilepsy (Walsh (1999), Bayly et al. (2014),

Barkovich et al. (2012), Fernández et al. (2016), Kroenke and Bayly (2018)). These observations

further underline the interdependence of functionality and anatomy of the cortex. The folding

pattern changes due to pathological deficiencies of its microscopic structure and connectiv-

ity. Pinpointing exactly what mechanical forces are at work when gyrification emerges, is

however, a controversial debate. The tension exerted by axons could theoretically be one

component of the force acting on neurons. This is underlined by experiments, confirming that

the axonal tension is a substantial force acting on neurons (Mota and Herculano-Houzel (2012),

Xu et al. (2009), Chada et al. (1997),Geng et al. (2009), Hilgetag and Barbas (2006)). Folding

could also be caused by the cortex expanding tangentially (Ronan et al. (2014), Kroenke and

Bayly (2018)). This theory, is however, not as popular as the axonal tension hypothesis since

pulling axons would be consistent with wiring optimisation. Saving wiring cost is an essential

concept in the brain as it decreases signal travel time as well as conserving resources (Laughlin

and Sejnowski (2003), Ruppin et al. (1993), Van Essen (1997), Hilgetag and Barbas (2009)).
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3. INTRODUCTION

Nonetheless the tension between the opposing walls of a gyrus, which was supposed to be

the pivotal factor (Van Essen (1997)), was found to be negligible (Xu et al. (2010)). Therefore,

the tangential expansion theorem seems to be more plausible. With the exact mechanism

that leads to gyrification, when considering tangential expansion being unclear (Ronan and

Fletcher (2015), Kroenke and Bayly (2018)), it is hypothesised that folding is induced by

different expansion speeds of different layers. In case an outer layer of the cortex expands

faster than its corresponding inner layer, a gyrus could form. In case the roles of the layers

are reversed, a sulcus would emerge (Bayly et al. (2013), Budday et al. (2014), Richman et al.

(1975)).

Another major factor in gyrification is likely to be cortical connectivity, as it heavily influences

local cytoarchitecture (Rakic (1988), Dehay et al. (1991), O’Leary et al. (2007)). Additionally,

connectivity influences the size of specific cortical areas, leading to the formation of stereo-

typical folding patterns (Ronan and Fletcher (2015)). In general, structures in neuroanatomy

are restricted by connectivity (Laughlin and Sejnowski (2003), Bullmore and Sporns (2012),

Chklovskii and Koulakov (2004)).

3.1.2 Cortical connectivity

The mammalian brain is organised microscopically and macroscopically. On the macroscopic

scale, different brain areas fulfil different functions and are interconnected to link information

from for example, different sensory organs. On a cellular level, six different layers can be

observed in the cortex. Information travels up and down the layers (vertically) with neurons

in close vicinity being highly interconnected. This local cytoarchitecture is organised into

so called cortical columns which span the layers vertically. Connectivity between different

areas (global connectivity) is different from connectivity within and in between neighbouring

cortical columns (local connectivity). While both local and global connectivity drop off rapidly

with distance, global connectivity is sparse compared to local connectivity. A study by Hellwig

(2000) found connectivity between neurons separated by more than 500µm (long range) to

drop to 0% − 15% in contrast to the local 50% − 80%. They were able to fit the decay of

local connectivity with distance using a Gaussian function of the following form, where the

connection probability p(x) scales with the cell separation x− x0.

p(x) ∼ e(x−x0)2
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3. INTRODUCTION

Figure 5. Local short range connection probability among neurons of different layers in the cortex
(Note: Figure by Hellwig (2000), Fig. 7) a, The local connection probability between an axon of a
layer-2 neuron and a dendrite of a layer-2 neuron (as indicated in the upper right corner) plotted
against cell separation and fitted by a Gaussian function. b, Same plot for connections between axons
of layer-2 to dendrites of layer-3. c, Axons of layer-3 to dendrites of layer-2. d, Axons of layer-3 to
dendrites of layer-3.

Importantly, local connectivity seems to be attached to the framework of cortical columns, as

it appears to be clustered (Hellwig (2000)), indicating that connections within a column are

favoured. Fig. 5 showing the Gaussian fits of local connectivity underlines the clustering of

local connectivity. Here, the data points for connection probability alternate from being located

above and below the fitting curve as distance between neurons increases. This alternation

indicates that connection probability stays constant as long as neurons are within the same

column, dropping once the next column is reached.

The decay of global connectivity was found to be of exponential nature (Ercsey-Ravasz et

al. (2013)). Monitoring weighed connectivity between different brain areas with the help of

sensitive retrograde tracer experiments in macaque monkeys revealed an exponential decay

in connectivity with distance between areas. The weight of a projection from a source to a

target area is defined as the ratio between the number of labelled source area neurons and the
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3. INTRODUCTION

total number of neurons labelled in the entire cortex that are not a part of the target area.

3.1.3 Wiring optimisation

The layout of connections between neurons in the brain has to solve the pivotal problem of

being as efficient as possible, while at the same time minimising wiring cost. Going to extremes

on both aspects at the same time is not possible (Bullmore and Sporns (2012)), as indicated by

Fig. 6. Minimal wiring cost would be achieved by neurons just being connected to their closest

neighbours, which results in a network lacking any global long range connections. Short

wires additionally allow for fast signal propagation. Efficient global information processing

however, relies precisely on long range connections, which in turn drive wiring cost up. In

other words, connectivity in the cortex is a delicate compromise, optimising both wiring

cost and network efficiency to the extend that either factor does not fall utterly short. The

brain therefore organises itself in a modular arrangement, where clusters of neighbouring

information nodes tend to optimise wiring cost. Long range connections between different

modules/areas are also included but are kept sparse in order to not blow wiring cost out of

proportion (Bullmore and Sporns (2012)). A large proportion of wires in the brain is located in

the white matter of the brain. The separation of white and grey matter seems to be an optimal

solution when connecting many neurons via fast axons to minimise conduction delay (Wen

and Chklovskii (2005)). Wen and Chklovskii (2005) show that the maximal size of a network

that does not allow for conduction times longer than about one millisecond is close to the size

of a cortical column.

Figure 6. Network cost and efficiency
(Note: Figure by Bullmore and Sporns (2012), Box 1) Different types of networks optimise different
aspects. Low cost networks with no global connection have low efficiency. Random connectivity with
lots of global connections is costly but has high performance efficiency.

16/124



3. INTRODUCTION

Therefore, all-to-all connection in the brain is not a viable option when considering conduction

delays. Signal travel time could be reduced by increasing the axon diameter, yet this would

result in a larger brain volume. With an increased volume, axons would have to be longer,

increasing conduction delays.

Using the concept of wiring optimisation, computer models should be able to predict the

optimal placement of neurons. Raj and Chen (2011) were able to show that nodes moving freely

on a 3D surface that is topologically identical to the brain would arrange themselves similarly

to the actual arrangement found in the brain when constrained by wiring optimisation. The

connectivity between the nodes was kept identical to that observed in the brain. They conclude

that the brains anatomy is a result of its connectivity demands and not the other way around.

Inspired by this concept, Weigand et al. (2017) predicted the optimal placement of neurons via

similarities. Two neurons are similar if they are interconnected and share a lot of connections

to other neurons. The more similar two neurons are, the closer they are placed together. To test

this basic concept, a random arrangement of neurons is set up in a square with each neuron

being assigned to a horizontal area depending on its position (Fig. 7 left). The different areas

are colour coded. A connection probability matrix is derived, based on the distances between

neurons (Fig. 7 middle left). Neurons in close vicinity have a high connection probability

dropping off rapidly with distance. The connection probability matrix is translated into a

connection matrix (Fig. 7 middle right) which is then used to determine neuron similarities

depending on their connections.

Figure 7. Dimension reduction methods can recover neuron positions based on connectivity
(Note: Figure by Weigand et al. (2017), Fig. 1 A) The original positions of neurons can be recovered
based on a distance dependent connectivity function f(d), using multi-dimensional scaling (MDS), a
dimension reduction method. A connection probability matrix is calculated based on the distances
between neurons. Neurons are then placed according to the binary connection matrix, connected ones
in close vicinity, others further apart.
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Since all neurons have many connections, this problem can be treated as a high dimensional

data set. By using a dimension reduction algorithm (here multi-dimensional-scaling MDS

(Borg and Groenen (2005))), neurons are placed in a 2D manifold, accurately reproducing the

original input arrangement (Fig. 7 right). Depending on the nature of the connection probabil-

ity function and the number of neurons involved, this method is capable of reproducing a

transition from salt and pepper arrangements to a pinwheel for orientation selective neurons

(Fig. 8). These neuron arrangements mimic the configurations in the rodent and cat visual

cortex where neurons encode different object orientations in the visual field. Neurons that

encode for similar or the same orientations are assumed to be more closely connected and

share the same colour in Fig. 8. Rodents, with low numbers of neurons n when compared to

the cat, exhibit random looking salt and pepper arrangements, while cats develop pinwheel

structures. These findings show that anatomical features of the brain can be predicted by

applying the proper connectivity amongst neurons and considering wiring optimisation. By

realising a transition from the anatomy of one species to another when altering parameters,

it is demonstrated that connectivity is indeed one of, if not the most prominent factor that

determines brain anatomy.

Figure 8. MDS predicts pinwheel arrangements of neurons found in the visual cortex
(Note: Figure by Weigand et al. (2017), Fig. 1 C) Neurons in the visual cortex encode for different object
orientations (orientation preference), indicated by the colours. Using a connectivity function based
on orientation preference similarity, MDS reproduces the transition from salt and pepper towards
pinwheel arrangements with increasing numbers of neurons n, as found in the visual cortex of rodents
and cats. γ is a parameter of the connectivity function that determines how selective neurons are with
respect to orientation preference.
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3.2 The Microscopic structure of the brain: Neuron reconstructions

3.2.1 Human neuron morphology reconstructions

The morphology of dendrites from many species has been the subject of research for a long

time. These investigations have recently lead to the emergence of computational models

capable of growing artificial dendrites that are indistinguishable from real ones (Cuntz et al.

(2010), Cuntz et al. (2007)). The reason neural dendrites are of such importance, is the fact

that informational inputs from many other neurons arrive here. These inputs, which can be

of inhibitory or excitatory nature, are integrated by the dendritic tree (London and Häusser

(2005), Gulledge et al. (2005), Wen and Chklovskii (2005)). The geometric and structural

properties of the dendrites are responsible for the way information is processed (Mainen and

Sejnowski (1996)). Dendrite complexity heavily affects a neuron’s firing properties as found

by Zhu et al. (2016) and van Ooyen et al. (2002). In this study, cortical neurons were grown

on polyolefine polymer (POP) stamps featuring a high resolution in a pattern specifically

designed for that purpose as depicted in Fig. 9 A. Neurons grown in such a patterned structure

exhibit differences in firing rate and neural excitability compared to un-patterned neurons.

This is demonstrated in Fig. 9 B that showcases two example spike trains form an un-patterned

and a patterned neuron. Despite the efforts of the past, investigating and analysing dendritic

tree structure and electrophysiology of human neurons has proven to be a big challenge since

reliable data of fully reconstructed 3D human neurons is in short supply (DeFelipe (2015)).

The scarceness of human data is due to multiple aspects but the most obvious of them, and at

the same time hardest hurdle to overcome, is that humans are very unlikely to surrender any

of their healthy brain cells to the scientific community. The few data that are accessible are

reconstructions from human patients with severe brain diseases, like for example, epilepsy

or brain tumours, that are untreatable (Domı́nguez-Álvaro et al. (2018), Buchin et al. (2020)).

Morphologies affected by such diseases exhibit changes in behaviour, causing intellectual

disability alongside heavily impaired cognitive functionality (Shuman et al. (2017)), amongst

other pathological changes. Hence, utilising such data to perform research on human neurons

might result in inaccurate scientific conclusions that represent a neuron’s functionality in its

pathological and therefore not its healthy state. On top of that, reconstructing a neuron’s

morphology is a difficult procedure that is prone to error.
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Figure 9. Neuron complexity affects spiking behaviour
(Note: Figure licensed by https://creativecommons.org/licenses/by/4.0/, figure by Zhu et al. (2016),
Fig. 4 A and B) A, Patterned cortical neurons in an image of a phase contrast micrograph on a cover
slip at DIV14. B, Whole cell patch mode recordings of spontaneous spike trains, in segments of 10s
raw data with an example for un-patterned and patterned neurons.

Reconstructing a neurons morphology successfully is dependent on many factors, such as the

quality of the microscopic image stack the neuron is reconstructed from, or uncertainties that

may arise when distal cell branches overlap. Cutting tissue to prepare for microscopic imaging

inevitably leads to lesions in the delicate distal arbors of the dendrites. The staining agents

injected into neurons to make their dendritic tree visible in the microscope image may not

reach the furthest regions in the dendrite, which alongside tissue shrinkage and distortions

(Horcholle-Bossavit et al. (2000), De Schutter and Jaeger (2000)), can make reconstruction

very difficult. The resulting 3D reconstructions are oftentimes incomplete since part of the

dendrites are missing, which inhibits our understanding of human neuron functionality.
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While human neurons are poorly understood, research on neurons of rodents such as rats and

mice has progressed rather well. Therefore, the question arises whether reconstructions of

human neurons are actually needed since rodent morphologies may be sufficient. Studies of

human morphologies in the recent past have revealed differences between human neurons

and neurons of other species, regarding morphology and brain circuits (Benavides-Piccione et

al. (2020), Mihaljevic et al. (2020), Schmidt and Polleux (2022)). Kötter and Feizelmeier (1998)

showed that existing variations in morphological size between species result in recognisable

differences in electrophysiological properties of neurons. They found that simply scaling the

size of a neuron to turn a neuron from one species into a neuron from a different species is not

enough to create constant activity patterns. Therefore, other mechanisms must exist which

are able to compensate. Another recent study suggests that the capacitance of human neuron

membranes is lower compared to other species (Eyal et al. (2016)). There also seem to be

differences in the developmental stages of neurons, with human neurons exhibiting a longer

prometaphase-metaphase than chimpanzees (Mora-Bermúdez et al. (2016)). Apparently, this

is not true for non-neural cells, but only proliferating progenitors. These reasons emphasise

how important it is to make data on human neuron morphologies more reliable, accurate and

accessible. They are, however, just the tip of the iceberg when it comes to understanding how

the human brain and its neurons differ from those of other species. Understanding the nature

of these differences will enable us to implement more realistic computer simulations (Zhao

and Bhattacharyya (2018)) and potentially even get to the bottom of the superiority of the

human brain compared to other mammalian species.

3.2.2 Repairing neuron morphologies

To address the issue of the scarcity of human neuron morphology data, the second project

in this thesis implements a repair algorithm. The repair tool is based on the TREES toolbox

(Cuntz et al. (2010)), which is a model created to grow realistic artificial dendrites. The model

uses optimal wiring principles to connect a number of carrier points to a root node (the soma),

growing an artificial neuron. The TREES toolbox provides a simple solution to modelling

different cell types via just one parameter called the balancing factor bf . A neuron needs to

minimise conduction time in its dendrites, preferably using direct connections to the soma.

This, however, comes at a considerably increased wiring cost, while opting for low wiring

cost increases conduction time instead. The balancing factor introduced by Cuntz et al. (2010)
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represents a compromise, tipping the balance between the two extremes, depending on the

cell types specific needs. Fig. 10 illustrates how the bf impacts the shape of an artificial neuron,

showing four different possibilities to connect the same set of carrier points (red) to the root

node (black), with increasing bf . bf = 0 corresponds to a layout that minimises wiring cost,

while bf = 1 minimises conduction time to the root. Different cell types can therefore be

modelled by a single parameter. This goes to show that the constraints of optimal wiring are

very relevant when it comes to explaining the macroscopic and the microscopic structure of

the brain (compare Chapter 3.1.3). Indeed, wiring optimisation will be a key component for

both models, the macroscopic gyrification model and the microscopic neuron repair tool, later

in this thesis.

The repair algorithm will allow the user to complete any incomplete neuron morphology by

adding artificial dendrites to the existing ones.

Figure 10. The dendrite growth algorithm based on optimal wiring finds the optimal trade-off
between cable length and conduction delay
(Note: Figure by Cuntz et al. (2010), Fig. 2 B, redrawn by Moritz Groden) The impact of the balancing
factor on artificially grown dendrites. The same set of carrier points (top, red points) is connected to
the root node (top, black point). Depending on the balancing factor bf either wiring cost is minimised
(low values of bf ), or signal travel time to the root (high values of bf ).
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Figure 11. Microscope images of mouse CA1 data set
(Note: Images by Benavides-Piccione et al. (2020)) Top: Confocal microscope image of the mouse hip-
pocampus with stained pyramidal neuron morphologies. Middle: Magnified image of the mouse CA1
region with region of interest. Bottom: Region of interest with one example pyramidal morphology
reconstruction overlay in red.

For this purpose, new artificial dendrites are grown exclusively from the incomplete ends (sev-

ered ends) of the dendritic tree of the input neuron. The incomplete ends and their coordinates

are specified in the morphology by the user. To validate the effectiveness of this approach, it

will be tested on a set of CA1 pyramidal neuron reconstructions of the mouse, reconstructed by
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Benavides-Piccione et al. (2020). Even though the goal of the algorithm is to repair incomplete

human morphologies, they are not suitable candidates for the validation process. Mouse

neurons have been studied far more intensively than human ones, not least because of the

reasons mentioned in Chapter 3.2.1. Fig. 11 shows the microscopic images of the mouse

pyramidal neuron reconstructions used to validate the repair tool. All reconstructions are

taken from the mouse hippocampus, which is depicted in the top panel of Fig. 11 (images by

Benavides-Piccione et al. (2020)). Specifically, neurons from the CA1 region (Fig. 11 middle)

were reconstructed as indicated by the rectangular region of interest (ROI). The magnified

ROI is depicted in Fig. 11 bottom, with an example overlay of a neuron reconstruction. In

the validation process, neurons are cut intentionally in their apical and basal arbors. These

intentionally cut versions of the pyramidal neurons are repaired using the repair algorithm to

compare the repaired neurons to the original reconstructions. Morphological changes affect

the electrophysiological properties of neurons, altering their firing response (Zhu et al. (2016)).

A successful repair, should therefore, recover the original electrophysiological behaviour of a

neuron, which will also be demonstrated in this thesis.

The neuron repair model can be applied to any cell type besides pyramidal neurons. The

validation relies on pyramidal neurons since they are the most abundant in the cortex. Extrap-

olating the concept of the validated model, it will be applied to human neurons morphologies

in this thesis.

3.2.3 Neuron biological regrowth

As mentioned earlier, changes in dendritic morphology can have an impact on neuron func-

tionality. This has also been reported for brain disorders in the developmental stage such as

Down’s syndrome (Blanpied and Ehlers (2004), Penzes et al. (2011)) and after the brain was

affected by trauma (Greenwood and Connolly (2007)). How dendrites regrow and regenerate

after suffering such pathological conditions remains largely unclear. Bodmer and Jan (1987)

have created a biological model using the multiple dendritic arborisation (da) neurons of the

peripheral nervous system of Drosophila flies. These neurons are divided into four different

groups depending on their dendritic pattern, called classes I-IV. Neurons of class IV grow

on a two dimensional plane on the extracellular matrix secreted by the epidermis (Han et

al. (2012)). The model of Drosophila was recently used to study regeneration in dendrites

after dendriotomy by Song et al. (2012) and Stone et al. (2014). 98% of the class IV da neurons
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proximal dendrites that were lesioned exhibited regeneration, which was measured by how

much of the receptive field was covered after the lesion event. Interestingly, the lesioned

dendrites displayed the all or nothing principle when it came to regeneration. This means that

either a new dendrite grew that originated from the site of lesion, or the vacant area was filled

by other invading branches from the neighbouring regions (Song et al. (2012)). Therefore,

biological regrowth seems to follow a bimodal distribution between invasion and regeneration

from the cite of lesion.

The neuron repair algorithm introduced in this thesis aims to mimic biological regrowth. The

method used for biological regrowth is identical to incomplete growth (growth from severed

ends only), the only difference being that the algorithm is allowed to grow from any random

point on the morphology in close vicinity. The algorithm is tested on reconstructions of class

IV da neurons that were lesioned during experiments. The artificially regrown cells reproduce

the same bimodal distribution found by Song et al. (2012).
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4 Materials and methods

Custom code for both simulations, the gyrification model and the neuron dendrite repair tool,

was written in MATLAB (MathWorks). Some of the excessively time-consuming calculations,

especially the parameter scans for the gyrification model, were performed on the Neuroscience

Gateway cluster (Sivagnanam et al. (2013)).

4.1 Gyrification model

4.1.1 Optimal placement

The method used to predict the optimal positions of neurons for the gyrification model is a

variant of what has been used in recent studies, specifically by Weigand et al. (2017), who

used oMDS (ordinal multidimensional scaling) (Borg and Groenen (2005)) to calculate the

relative positions of neurons. The gyrification model uses t-SNE (t-distributed stochastic

neighbour embedding) (van der Maaten and Hinton (2008)) rather than oMDS. According

to the connection dissimilarities between neurons, t-SNE predicts the optimal placement

of neurons. t-SNE was chosen due to its superior performance over oMDS (see Discussion

Chapter 6). Calculating the connection dissimilarities differed from the approach taken by

Weigand et al. (2017), who used the Jaccard distance. The connection dissimilarity between

two connected neurons would be determined by the Jaccard distance between their respective

connection vectors. In case of two unconnected neurons, the connection dissimilarity was

calculated as the shortest path length separating these two neurons on the connected graph.

The dissimilarities of connected neurons along this shortest path serve as a distance measure,

which are added up. In this thesis, however, only the cosine distance between neuron

connection vectors was used instead of the Jaccard distance along the shortest path. This is

due to the cosine distance yielding similar results using less computational power. Hence,

with a given connectivity matrix C, the positions of neurons X can be predicted by t-SNE,

which uses the connection dissimilarity matrix D as an input. The dissimilarities are calculated

in the following way, such that the pairwise cosine distances cdk,l between neuron k and l are

contained in D:
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cdk,l = 1− ck · cl
∥ck∥∥cl∥

ck and cl are the connection vectors of neurons k and l. Therefore, k and l correspond

to the matrix columns in the connectivity matrix C. Any neuron positions predicted in X

represent the relative positions among the other neurons. Therefore, any folding arrangements

calculated by this method have to be standardised to fit within a unit square.

4.1.2 Folding connectivity

By assigning neurons to a specific cortical column, the gyrification model replicates the

connectivity in the cortex. Each cortical column is filled with neurons according to the

parameter M , which is the number of neurons per column. The number of columns C

determines the size of the cortex. Therefore, N = C ·M is the total number of neurons in a

folding arrangement. Since any neuron Nk → Ci is assigned to a column Ci, the distances

between neurons correspond to the distances between columns. The distance between any

two columns Ci and Cj is defined as the cyclical topological distance ∆Ci,j as follows:

∆Ci,j :=


C
2
−
(
d− C

2

)
if d > C

2

−d if − C
2
< d ≤ C

2

−C
2
−
(
d+ C

2

)
if d ≤ −C

2

Here, d = i− j is the difference between the two column indices. This topological distance

between cortical columns is the setup for the connection probability function between two

neurons Nk and Nl, with the corresponding connection probability pk,l. As mentioned earlier,

since neurons are assigned to columns, with Nk → Ci and Nl → Cj , the connection probability

function is based on the topological distance between the respective columns ∆Ci,j .
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pk,l = a

(
cos (∆Cij · π/C) + 1

2

)γ

+ (b− a) · exp

(
−(∆Cij · π/C)4

2πσ/C4 · 106

)
(1)

The first part of the equation models global long range connectivity using a broad cosine

function with its strength determined by a. The exponent γ regulates the decay rate of global

connectivity. The second part of the equation represents local close range connectivity with

its strength equal to b, implemented by a rapidly decaying Gaussian function. The width

of local connectivity is determined by σ. Folding in the model relies on strong local and

weak global connectivity, meaning that b usually takes larger values than a, with a ≈ 0.3 and

b ≈ 1. Importantly, since a and b correspond to probabilities, they have to fulfil the following

conditions:

0 ≤ a ≤ 1 and 0 ≤ b ≤ 1

To ensure the cyclic nature of the connection probability (Eqn. 1) regardless of the number of

columns, the topological distance between the two columns ∆Cij is multiplied by π/C. The

same is true for σ, which is multiplied by 2π/C4, ensuring the width of local connectivity always

spans the same number of columns regardless of the value of C, unless the value of σ is

changed. To produce the connection matrix C, random values of one or zero representing the

neuron connections ck,l are calculated based on the connection probabilities pk,l. Containing

the pairwise connections ck,l, the connection matrix C is then used as an input to the neuronal

placement algorithm to determine connection dissimilarities as described earlier. The folding

pattern arrangement is predicted based on these dissimilarities.

4.1.3 The folding index

The most important measure to quantify the morphological properties of a folding pattern is

the folding index FI . In order to calculate FI , the exposed circumference AE (which is equal

to the convex hull) is compared to the total circumference AT (which is equal to the boundary).
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Figure 12. Total and exposed circumference
Example of the total and exposed circumference of a folding pattern.

The boundary as well as the convex hull are calculated using build-in functions of MATLAB,

boundary and convhull respectively, as depicted in Fig. 12. The boundary (total circumference)

fits tightly around the folding pattern while the convex hull (exposed circumference) envelops

its rough area. Using these MATLAB functions, when applied to a set of 2D data points, yields

the circumferences AE and AT , which in turn can be used to estimate the area H the data

set occupies. In case of a folding pattern, the number of neurons N and their coordinates

represent the set of 2D data points. If a formation is not convex, the convex hull leads to a

false approximation of both the actual circumference (same as the total circumference AT ) and

the area H . H is overestimated, while the actual circumference is underestimated, leading to

AE < AT for non-convex shapes.

The boundary function is based on the principle of α-shapes (Akkiraju et al. (1995)). α-shapes

are composed of a set of curves Kα. Using only one parameter α ∈ [0,∞] to characterise

them, the curves Kα are built around the points of the data set (here N ). K0 represents the

set of points N itself, whereas K∞ is equal to the convex hull. With a set of points that is
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usually finite, the set of curves Kα is also finite and is constructed in such a way that αm takes

the highest and α1 the lowest value of α. In case of α1, Kα1 is the continuously connected

graph of all the points contained in N , the finite set of points. For the largest α, which is αm,

Kαm = K∞. By finding all possible values of α, with α1 < α < αm, the MATLAB function

boundary calculates the unique curves. To select a specific α-value, the function implements

a shrink factor F called the boundary parameter. Setting F = 0 produces the convex hull,

whereas the tightest possible boundary corresponds to F = 1. Since the perimeter of a folding

pattern can exhibit small gaps of varying size, choosing a boundary parameter too high can

cause the boundary to penetrate these gaps wrapping around the inside of the folding pattern

as well as the outside. The resulting value for the total circumference AT is way too large.

To avoid this issue, but still get an accurate value for AT , the boundary parameter was set to

0.9. This way, the boundary is still able to follow the outer contours of the folding pattern

accurately while not penetrating small gaps. Once AT and AE have been determined, FI can

be calculated by comparing them as follows:

FI =
AT

AE

4.1.4 Fractal dimension

The fractal dimension is a measure to quantify how space-filling a self similar pattern is.

A folding pattern takes the shape of a one-dimensional line that consists of neurons. The

one-dimensional line gives rise to the gyri and sulci, that lie in a 2D-plane. Suppose the 1D

line fills the entire 2D plane with its convolutions, its fractal dimension D would be equal to

two, since it effectively is a two-dimensional object. The less space-filling the line, the lower D,

down to a value of one, which would correspond to a straight line. A fractal dimension of two

for a convoluted 1D line is a hypothetical value. In reality, D would approach two but never

reach it. To determine the fractal dimension D of a folding pattern, the box counting algorithm

was applied (Liu et al. (2003), Mandelbrot (1983), Kalmanti and Maris (2007)). Applying

the box counting method requires a pixel image of the boundary (total circumference, see

Materials and methods Chapter 4.1.3) of a folding pattern. The boundary in the image has

to be no wider than one pixel. In a first step to achieve this, the build in MATLAB function
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poly2mask is applied to the boundary of the folding pattern, yielding a 1000 × 1000 binary

matrix B. In conjunction with the MATLAB morphological operator bwmorph(‘remove’), B

now represents a rasterized pixel image of the boundary with 1-pixel-width. With the help of

the build-in MATLAB function boxcount, the fractal dimension of the folding pattern boundary

can be estimated. The boxcount algorithm computes how many squares s it takes to cover the

pixel image of the folding pattern perimeter. s varies depending on the side length l of the

squares. The variation in s can be characterised by the following power law:

s = g · l−D

Here, D is the fractal dimension and g is a constant. The set of points given by log(l) and log(s)

is then fitted by a line, such that its positive gradient is an estimate for D (Kalmanti and Maris

(2007), Falconer (2004))(Fig. 19 middle, Fig. 23 B).

4.1.5 Fold frequency and Amplitude

In order to analyse the spatial folding frequencies and amplitudes of a folding pattern, a

projection of its radial shape on a horizontal graph is required. The horizontal graph is a

projection of the folding pattern boundary’s radial amplitude plotted against the column

index Ci (boundary is equal to the total circumference, see Materials and methods Chapter

4.1.3). The radial amplitude is given by the Euclidean distance from the outer perimeter (the

boundary) of a folding pattern to its centre of mass as depicted in Fig. 13. It shows the original

folding pattern on the left and the corresponding graph on the right. Since the points on the

boundary are not equally spaced with respect to the column index, the data points were fitted

using a smoothing spline from the build-in MATLAB fit function. The smoothing spline fit is

represented in Fig. 13 by the black line. After sampling the fit to obtain equally spaced data

points, the fast Fourier transform function in MATLAB FFT is applied yielding the spatial

frequency spectrum of the gyrification layout. The data is sampled into frequency bins, as

there is no time component in the spatial frequencies of a folding pattern (see Fig. 19 right, Fig.

23 B bottom). The intensity of a frequency bin is given by the colour code next to the graph.
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Figure 13. Horizontal projection of a folding pattern boundary
Example of a horizontal projection of the tight boundary of a folding pattern. The amplitude of gyri
and sulci are measured from the centre of mass to the outer perimeter of the folding pattern.

Since the frequency spectrum would otherwise be dominated by the high power values of low

frequencies in the folding pattern due to their large amplitudes, a cut off limit was introduced

in the colour code. Without such a cut off limit, peaks of higher frequencies would not be

visible despite their higher occurrence. This is because of their significantly lower amplitude.

In case of a folding pattern, a frequency of one would signify a convolution spanning the

entirety of the folding pattern perimeter. Next to calculating the frequency spectrum, the

smoothing spline fit is also used to analyse the mean amplitude of folds in a folding pattern.

This can be done by applying the findpeaks function in MATLAB to the sampled fit.

4.1.6 Discarding degenerate folding patterns automatically

The optimal placement method used in the gyrification model does not always predict folding

patterns that feature a continuous ring-like shape as expected for a cortex. Such results, as

mentioned in Chapter 5.2, are referred to as degenerate (Fig. 17) since they cross themselves or

are discontinuous. Any degenerate result was automatically discarded and therefore excluded

from all analyses. A folding pattern counts as non-degenerate if it features a closed ring

like-shape. With a cyclical connectivity, this expectation is reasonable. The algorithm built to

judge whether a folding pattern is degenerate and should be discarded, relies on a directed
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graph G = (V,E). E represents the graphs edges, whereas V the graphs nodes.

V =
{
k : k ∈ {1, ..., N}

}
(2)

E =

{
(k, l) : ∆Cij > 0 ∧ ∥xk − xl∥ < 2 · max

u∈{1,...,N}

(
min

m∈{1,...,N}\{u}
(∥xu − xm∥)

)}
(3)

As neurons are assigned to cortical columns such that Nk → Ci and Nl → Cj , ∆Cij is the

difference in column index between neurons k and l. The coordinates of the locations for

neurons k and l are given by the vectors xk and xl. Applying the definition from Eqn. 2

and 3 the directed graph will only form a connection between the neurons Nk and Nl if

the topological distance between their respective cortical columns Ci and Cj is positive.

Furthermore, the neurons Nk and Nl must not be further apart from one another than double

the maximum of all minimum Euclidean distances from neuron to neuron in order for a

connection to be formed. In other words, for each neuron the distance to its closest neighbour

is calculated. Taking the maximum of these distances and multiplying by two yields the

maximum distance two neurons can be apart for the directed graph to form a connection and

therefore counting as non degenerate. This procedure avoids the formation of local circles in

the directed graph. Accordingly, the directed graph can only be cyclical if the folding pattern

layout takes the shape of a closed continuous loop. The isdag function in MATLAB can be

used to test whether a graph is cyclical or not. Based on the result of the isdag function the

algorithm decides whether a folding pattern produced by the model is valid or degenerate.

Folding pattern results where the boundary was able to penetrate a small gap in the folding

pattern perimeter, were excluded from analyses as well. Some arrangements discussed in

this thesis feature many nuclei instead of a ring-like cortex (see Fig. 15 B, Fig. 43 right). Such

results were selected separately, since the directed graph criteria does not apply here.
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4.2 Neuron dendrite repair tool

4.2.1 The fix tree function

The neuron repair tool is implemented as a graphical-user-interface (GUI), built with custom

code in MATLAB. The GUI calls upon the fix tree function, which is the primary repair

algorithm that is based on the TREES toolbox (Cuntz et al. (2010)), specifically the minimum

spanning tree function (MST tree). The neuron repair tool (GUI in conjunction with the

fix tree function) is used in this thesis to regrow and repair lesioned proximal dendrites

of CA1 mouse and human pyramidal neurons. The missing dendritic branches in a target

area are regrown and repaired, comparing the statistical properties of length, size (total cable

length, mean path length per segment, mean diameter per segment) and complexity (number

of branch points, Sholl intersection distribution). These properties are analysed and compared

before and after the repair. On top of that, the electrophysiological firing behaviour is analysed

for different morphologies using T2N (Beining et al. (2017)).

In the TREES toolbox, neurons are modelled as trees, which are a representation of their

morphology. The morphology is considered as a directed graph between a set of nodes (carrier

points) with a so-called adjacency matrix that specifies the connections between the nodes.

By re-sampling the morphology, new nodes are added or removed such that the Euclidean

distance between two consecutive nodes is the same for all nodes. This procedure does not

alter the morphology as long as the sampling resolution is not too low. With a resolution of

1µm for example, the distance between neighbouring nodes is equal to 1µm. The fix tree

function grows new artificial dendrites (repair dendrites) into a growth area/volume V that

is passed to the function as an input. The coordinates for V can be drawn with the cursor

using the GUI. V can be any set of arbitrary 2D or 3D points that is uploaded or drawn with

the cursor, with the volume being determined by the boundary function in MATLAB. The

boundary function uses α-shapes (Akkiraju et al. (1995)) to calculate the perimeter of any set

of points, with the tightness of the fit being defined by the parameter α. α = 0 corresponds

to the convex hull, whereas α = 1 corresponds to the tightest boundary. Carrier points are

distributed within V according to the density profile of the branch and termination points in

the dendritic spanning field of the input neuron that is supposed to be repaired. The clustering

of the density profile is approximated via a Monte Carlo approach (unpublished by Laura

Anton, available in the TREES toolbox), with the carrier points being distributed accordingly.
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Figure 14. MST growing into distributed carrier points
Example of how the MST tree function of the TREES toolbox successively connects a set of carrier
points (red) distributed in a growth volume (blue shaded area) to a root node (blue).

To determine the number of carrier points Npts, the density of the branch points in the input

neuron as well as the size of V is evaluated. The artificial repair dendrites now grow into the

distributed carrier points, which are successively connected to the morphology of the input

neuron by the MST tree function. This is demonstrated in Fig. 14, for a number of carrier

points in red being connected to a single root node in blue. In the repair algorithm, the carrier

points are connected to the existing dendrites of the input morphology instead. A connection

is determined via a cost function that is defined by a single parameter, the balancing factor bf

(Cuntz et al. (2010)). The cost function consists of the signal conduction time to the root node

or soma (path length cost) and the material cost (wiring cost). The algorithm minimises the

cost function for each connection with bf tipping the balance in favour of wiring cost or path

length cost.

totalcost = wiringcost+ bf · pathlengthcost

bf is automatically estimated by the repair tool based on the input morphology using the

bf tree function of the TREES toolbox. The bf tree function analyses the root angle distribution

of the neuron as introduced by Bird and Cuntz (2019). Any single new connection to a carrier

point formed by the algorithm is not allowed to span a distance larger than the growth

threshold Gthr. Gthr is determined by measuring the length of the part of a line m that lies
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within V . m passes through the coordinates of the root node R (soma) and the point that is

located between the mean volume coordinate Vmean and the coordinate of the volume V that

is furthest form the root node Vfar. Therefore m is determined by:

Q = mean(Vmean, Vfar)

m =

{
x⃗ =

−→
OR + t ·

−→
RQ | x⃗ ∈ V

}

Any value for t is chosen in such a way that the line m is located within the growth volume

V . With the first of the two growth modes available in the neuron repair tool, new artificial

dendrites can grow from any point on the original input morphology that is not further

away than Gthr. This mode is called biological growth mode, since new dendrites grow

as if the living neuron would regenerate lost dendritic material. The second growth mode

is meant to repair a section of the dendritic arbor that is known to exist but could not be

reconstructed. For this purpose, the algorithm allows new dendrites to grow exclusively form

incomplete terminals of neuron branches that have been severed (incomplete growth). The

input neuron morphology file has to specify these incomplete terminals by stating their exact

coordinates. Incomplete terminals that are located too far away from the growth volume

V are not considered for growth, with the maximum distance allowed depending on the

size of the input morphology. The incomplete growth mode has an additional option called

main growth, which is designated to the repair of the apical dendritic arbor of pyramidal

neurons. Pyramidal neurons feature one or more prominent main dendrites in their apical

region (Benavides-Piccione et al. (2020)), which grow approximately in a straight line away

from the soma of the neuron. Engaging the main growth option causes the algorithm to

identify the thickest incomplete terminals when compared to all incomplete terminals. Main

apical dendrites are then grown from these selected incomplete terminals radially outwards

towards approximately 95% of the outer end of the growth volume V . The length and general

directions of the main apical dendrites are estimated by the line m, that severs as a template,

with any excess material that ends up outside of V being pruned. After main growth is

completed, the growth procedure resumes as before, with the only difference that artificial

repair dendrites can branch off the newly added main dendrite sections.

If existent, a reference morphology can be uploaded to the repair algorithm in addition to
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the input neuron. The reference neuron serves as a statistical template, with the algorithm

matching the number of branch points NBr of the repaired neuron to NBr determined by

analysing the reference neuron. In case no reference neuron is uploaded, the desired number

of branch points can be chosen manually (desired NBr has to be larger than NBr of the input

neuron). The matching process is implemented by iterating over the growth process while

successively adding more carrier points until the repaired morphology reaches the desired

number of branch points. After matching the number of branch points to the reference or a

manually chosen value, the algorithm can optionally adjust the total dendritic length of the

repaired neuron to match the reference or a chosen value. This is done by pruning any excess

dendritic material. To match the appearance of the artificial dendrites to the existing input

morphology, the original part of the neuron is left untouched while the repaired dendrites

are edited. Adding a quadratic taper, the dendritic diameter of the repaired dendrites is

adjusted following the approach by (Bird and Cuntz (2016)). A spatial jitter is imposed upon

the dendrite coordinates using low pass filtered spatial noise to make the dendrites resemble

the appearance of their biological counterparts.

The parameters that determine the morphology of the repair dendrites can be adjusted

manually as well, instead of being automatically estimated by the algorithm. The fix tree

function introduced here can be used via a custom build GUI as mentioned before, that will be

available within the TREES toolbox. The GUI is based on the GUIDE MATLAB environment

featuring a custom designed interface (see Fig. 28). The GUI is compatible with any 2D or

3D morphology reconstruction, as well as microscope image stacks the serve as background

images.

4.2.2 (T2N) Electrophysiological properties

To test whether the electrophysiological firing behaviour of a neuron that has been sectioned

can be recovered using the neuron repair tool described in this thesis, a compartmental

model was used to perform somatic current clamps. These in silico current clamp experi-

ments were performed using the T2N software interface designed by Beining et al. (2017) in

MATLAB. T2N links the compartmental modelling package NEURON (Carnevale and Hines

(2006)) to the TREES toolbox. The T2N software can be used to create or implement already

existing complex electrophysiology models, many of which are accessible via the website

https://senselab.med.yale.edu/modeldb (McDougal et al. (2017)). A morphology reconstruction in
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the TREES toolbox format can be outfitted with passive and active ion channels, as specified

by the used compartmental model using T2N. The model of choice for the testing of the

neuron repair tool is a compartmental model by Jarsky et al. (2005), which was originally

implemented to examine distal synaptic inputs in CA1 pyramidal neurons, which is fitting,

since most neuron reconstructions lack dendritic material in the tuft region that can be repaired

with the repair algorithm. Four active voltage channels (conductances) are included in the

model by Jarsky. The first channel is a voltage-gated Na+ channel followed by a delayed

rectifier K+ channel. Featuring an increased half-inactivation voltage the model incorporates

a distal A-type K+ channel and lastly a proximal A-type K+ channel. The distribution of

the ion channels mentioned above along the dendrites is modelled according to function of

the direct path length to the soma. In case of the delayed rectifier K+ and the Na+ channels

the compartmental model by Jarsky et al. (2005) features a version with weak excitability

that follows a uniform distribution. As reported by experiments the A-type K+ current was

increased by a factor of six along the apical dendrites in the model. The result of this current

increase creates variable slopes for different morphologies that increase linearly between soma

and tuft. The borders to divide the apical trunk of the dendrite were set in the following

fashion: 3.14% of the dendritic arbor defined as the proximal apical, 36.27% as the medial

apical, 68.90% as the distal and 100% as the tuft. The compartmentalisation of the dendrite

was performed at path distances of approximately 100µm, 300µm and 500µm.

The in silico current clamp experiments consisted of somatic current injections of ramping

intensity for both mouse and human morphologies. Each injection lasts for 500ms, as they

are being performed for the reference, the repaired and the artificially cut morphologies. The

firing behaviours of these three versions of the same neuron are then compared to show how

damage and repair influence the resulting voltage traces. Ultimately, these simulations show

that the electrophysiological properties of a damaged neuron can be recovered using the

neuron repair tool.

The passive electrophysiological properties of the human dentate gyrus granule cells (GCs),

provided by Buchin et al. (2020), were extracted from whole cell patch clamp recordings. The

data was obtained from acute brain slices that were resected from epilepsy patients during

surgery. Fig. 36 in Chapter 5.3.4 depicts an example morphology on the top left, with the

different dendritic regions marked by the colour code. The patch clamp recordings are taken

from 24 different morphologies by injecting a rectangular current pulse at the soma and mea-

suring the evoked voltage trace (example trace shown in Fig. 36 top right). The spine densities
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and Wyler grades were measured for 6 out of the 24 morphologies. All measurements were

performed by Buchin et al. (2020). The input resistance Rin, the membrane time constant Tm

and the membrane resting potential V rest, were calculated by analysing the recorded voltage

traces. To ensure that only the passive response of the neuron is analysed, exclusively voltage

traces with a small negative current injection were used for further analyses. This is done to

prevent any active channels being involved in the neuron’s response.

V rest can be estimated by performing a linear fit of the voltage trace before the current pulse

is injected. Since the exact time stamps of the start and stop of the current injection are given,

the voltage trace can be cut accordingly. Averaging over the results for different voltage traces

yields V rest. To determine Rin, the voltage deflection from the resting membrane potential

when current is injected must be calculated. The deflection is equal to the difference between

V rest of the specific trace and the voltage U after the current has been injected. U can be

determined by performing a linear fit on the part of the voltage trace after current injection

begins and before it ends. Repeating this procedure for multiple voltage traces with different

injection currents I yields Rin according to Ohm’s law U = R · I . Therefore R = U/I , which

means that the slope of a linear fit through the data points of U plotted against I gives Rin. To

determine Tm one simply tracks the time it takes for the membrane potential to reach 1− e−1

of its resting potential V rest, after the current injection and therefore hyperpolarization stops.

Repeating this procedure for every voltage trace and taking the average yields Tm.

To determine the axial resistance Ra and the membrane conductance Gm, a steady state simu-

lation was performed using the sse tree function of the TREES toolbox. The function estimates

the input resistance Rin based on the input values Ra and Gm. Since Rin has already been

extracted from the voltage traces as described earlier, proper values for Ra and Gm reproduce

Rin plus minus two standard deviations. Fig. 36 in Chapter 5.3.4 shows a visualisation of

the procedure on the bottom. To account for the lack of spines in the GC morphologies, the

simulation is carried out two times. First for the original morphologies without any changes

and secondly after adding artificial spines to the morphologies using the spines tree function of

the TREES toolbox. Since the spine densities were only recorded for 6 morphologies, artificial

spines could only be added for these 6. The densities where measured at two points for each

morphology by Buchin et al. (2020). The first measurement was performed close to the soma

and the second on the most distal ends of the dendrites. To add artificial spines to the entire

dendritic tree apart from the soma, the spine density was extrapolated stepwise between the

two points where the measurements were made. Spine sizes were modelled according to the
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measurements on human cortical pyramidal cells by Eyal et al. (2018), due to the lack of spine

data for human dentate granule cells. Using the simulated values for Gm and the membrane

time constant Tm, the membrane capacitance was calculated as follows.

Cm =
Tm

Rm
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5 Research and results

5.1 The scope of this thesis: Optimal wiring-based macroscopic and micro-

scopic models of the nervous system

1. Macroscopic model of cortical folding: Brain functionality is governed by the laws of

physics, which we can implement in computer simulations in an attempt to make them

resemble reality as closely as possible. The closer we get, the better we can understand how

the brain and its neurons function and even predict how neurons and the brain grow and

connect. For this approach to work, dividing the problem into smaller chunks is helpful, as it

reduces complexity. In case of this thesis, two computer simulations were build, one focusing

on the macroscopic, the other on the microscopic structure of the brain.

The macroscopic simulation is capable of reproducing the folding patterns of the mammalian

cortex. The algorithm is based only on wiring optimisation and neuron connectivity and

therefore provides a simple explanation as to why gyrification emerges. The transition from

brains with no folds (lissencephalic), found in small mammals such as rodents, to highly

convoluted cortices, as found in whales and humans, is easily realised by adjusting parameters.

The change of gyrification observed in pathological diseases such as autism is reproduced,

as parameters can be adjusted section wise. The model also predicts different scaling of

gyrification among different orders of species. The algorithm therefore explains a lot of

different phenomena using a simple approach on the macroscopic scale, while neglecting a lot

of microscopic detail. In a future attempt to build an artificial brain, the model could be used

as a framework that provides the large anatomical architecture. Microscopic details could

then be embedded into this framework, piece by piece moving closer to a full computational

model of the brain.

2. Microscopic model of nerve cell’s anatomy: A lot of detail is required to understand the

microscopic components of the brain. While a lot of data and research exists on neurons

and their morphologies of small mammals such as rodents and even small monkeys, data

on human neurons is sparse. As the ultimate goal of neuroscience is to understand how the

human brain works and what makes it superior, we first need to improve availability and

usability of human neuron data sets. Therefore, this thesis introduces a graphical user interface

capable of repairing damaged morphology reconstructions of any neuron. As reconstructing
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neuron morphologies from resected tissue is a delicate process, errors occur frequently. The

model can repair microscopic parts of dendrites by adding artificial ones in any area the

user chooses. By adjusting one parameter, different types of neurons can be repaired with

ease. A repair restores the electrophysiological behaviour of a damaged neuron, as will be

demonstrated in this thesis, which can be severely impaired when dendrites are cut or missing.

Due to damage, dendrites of neuron reconstructions might appear to not reach layers and

areas they normally do reach since important axonal input arrives there. This can lead to false

scientific conclusions. The tool was built to relieve these problems and improve the size and

availability of human morphology data sets, so the scientific community can develop better

and better models of the human brain.

5.2 Macroscopic modelling: A computational model of gyrification

The gyrification model introduced in this thesis is based on two simple principles:

1. Neuron placement follows wiring optimisation requirements.

2. Local connectivity between neurons is strong while global/long range connectivity is

sparse as found in the mammalian cortex (Hellwig (2000), Kaiser et al. (2009), Ercsey-

Ravasz et al. (2013)).

The algorithm predicts neural placement by analysing pairwise connection dissimilarities

between neurons. Therefore, a neuron’s relative position to all other neurons depends on

connectivity. In conjunction with connection dissimilarities, t-SNE (t-distributed stochastic

neighbour embedding) (van der Maaten and Hinton (2008)), a dimension reduction method, is

used for optimal placement (see Materials and methods Chapter 4), placing neurons that share

a lot of connections in close vicinity, spatially separating those that do not. To establish strong

local and sparse long range connectivity, neurons in the model are grouped into columns.

These correspond to cortical mini columns, which have been observed to feature strong

connectivity among their neurons (Sporns et al. (2005), Mountcastle (1997), Buxhoeveden and

Casanova (2002)). Columns can be regarded as a small area on the cortex since they span the

six layers of the cortex vertically. Therefore, two key parameters in the model are the number

of columns C and the number of neurons N .
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Figure 15. Cortical folding derived from connectivity
(Note: Figure by Groden et al. (2019), Fig. 1 A and B) A, Connection probability function based
on the topological distance between cortical columns, featuring strong local but sparse long range
connectivity. σ: width of local connectivity; γ: decay of global connectivity; a: strength of global
connectivity; b: strength of local connectivity. B, Results for folding patterns with a fixed connectivity
(b = 1, a = 0.2, σ = 0.1, γ = 1), but increasing number of columns C and decreasing number
of neurons per column M = N/C. The results show a transition from nuclei to lissencephalic to
convoluted folding patterns. Points with the same colour belong to the same cortical column

The model neurons and columns are connected topologically in a cyclical fashion, meaning

that neurons in column 1 and neurons in column C are neighbours. This way, the model

columns form a topological ring. The connections between neurons are set randomly following

a connection probability function that depends on the topological ∆Ci,j distance between the

columns of neuron i and j (Fig. 15 A). The shape of the connection probability function (see

Materials and methods Chapter 4) is controlled by a set of parameters. The strength of global

and local connectivity can be adjusted via the parameters a and b, where a is responsible for

global and b for local connectivity. a and b are used to create an offset between local and global

connectivity to meet the requirements of strong local and sparse long range connectivity. γ

controls the speed of global connectivity decay, while σ sets the range of local connectivity.

The number of neurons in the simulation is considerably lower than neuron numbers found

in real mammalian brains due to computational limits. For the same reason, the model is

restricted to 2D gyrification patterns. The resulting patterns therefore resemble coronal or

horizontal slice images of the cortex as depicted in Fig. 15 B. In Fig. 15 B, folding patterns

are shown with ascending numbers of columns C and neurons N from left to right with all

43/124



5. RESEARCH AND RESULTS

other connectivity parameters fixed. Each column is assigned a colour in Fig.15 B, such that

all points, which represent single neurons, with the same colour belong to the same column.

Depending on the ratio between C and N , the number of neurons per column M differs as

well, with M = N/C. In case M ≫ C like with the first layout on the left in Fig. 15 B, the

model predicts a pattern that features multiple separate neuron clusters that resemble the

ganglia-like nervous systems found in for example, worms (Mayer and Whitington (2009)).

As C and N increases, there is a relative decrease in the number of neurons per column M and

the folding patterns form a connected ring shaped layout to the point where intricate folding

emerges. The level of folding increases with decreasing numbers of neurons per column,

going form lissencephalic to highly convoluted. As demonstrated in Fig. 16 the gyrification

model is able to produce extreme levels of folding for large cortices (high values for C) and

large total number of neurons N . The optimal placement method t-SNE in the model also

predicts degenerate solutions for folding patterns. Such degenerate folding patterns do not

form a closed loop, but rather have overlapping sections where the pattern crosses itself as

depicted in Fig.17. Degeneracy among folding patterns can occur even when using sets of

parameters that otherwise produce regular ring-like layouts. Using custom code in MATLAB,

these degenerate patterns where identified automatically and discarded (see Materials and

methods Chapter 4).

Figure 16. Folding patterns with extreme folding
By adjusting the folding parameters, folding patterns can reach extreme levels of gyrification (C =
3200, M = 10, a = 0.1, b = 1, σ = 0.01, γ = 1).
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Figure 17. Degenerate folding results
(Note: Figure by Groden et al. (2019), Fig. S1 A) Examples of degenerate folding patterns with different
numbers of columns (parameters: σ = 1.5, a = 0.2 and M = 2).

The degree of folding of the cortex in mammalian species increases dramatically with brain

size, more specifically the surface area of the cortex. The increase in gyrification is especially

significant for cortices that are relatively thin. For primates of increasing size, cortical thickness

does not change much, while brain size increases along with the level of gyrification (Fig. 18 A)

(Mota and Herculano-Houzel (2015), Zilles et al. (2013), Hofman (1985)). As cortical columns

correspond to small patches of cortex, the parameter for the number of columns C in the model

determines the size of the cortical sheet. Cortical thickness on the other hand is modelled

by the number of neurons per column M , as columns span the cortex vertically. As a result,

increasing the number of columns in the simulation while keeping M and all connectivity

parameters constant should yield a similar trend in folding as observed in mammalian species.

The model does indeed reproduce the same transition from lissencephalic cortices to highly

convoluted ones when cortical size (the number of cortical columns) is increased as shown in

Fig. 18 B. The first (primary) folds that start to emerge exhibit large amplitudes and a long

spatial wavelength. As C increases, smaller secondary gyri and sulci start to develop on top of

the primary folds that feature a higher frequency and smaller amplitude. In order to quantify

the degree of folding of the folding patterns produced by the model, the folding index FI was

calculated.
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Figure 18. Cortical folding transition from lissencephalic to convoluted
(Note: Figure by Groden et al. (2019), Fig. 2 A and B) A, (Top) Traces of primate brain sections for
species with increasing brain weight and number of neurons in million (FI value depicted in each
brain section). From left to right: marmoset, galago, squirrel monkey, macaque, and human. (Bottom)
Traces of the full brains for reference. B, Example model results with fixed connectivity and number of
neurons per column (M = 2, b = 1, a = 0.2, σ = 2.6, γ = 1). C and N are increased gradually showing
a transition from lissencephalic to convoluted like in A (FI depicted above each folding pattern).

FI is defined as the inverse ratio between length of the convex hull, which envelopes the

outer most perimeter of the pattern and the tight boundary that follows the patterns exact

contour (see Materials and methods Chapter 4). In Fig. 18 FI is shown for each layout as a

decimal number.

To graphically visualise the overall trend of gyrification in model folding patterns, the fractal

dimension and the spatial frequency spectrum of gyri and sulci in addition to FI were

calculated for a large parameter space of C. The fractal dimension is a measure of how

space-filling a 1D line is that produces self similar patterns. It ranges from 1 to 2, while 1

corresponds to a straight line and 2 to a line that fills the entire available 2D-space. The

frequency spectrum was calculated using the fast Fourier transform function FFT in MATLAB,

applied to a smoothing spline fit curve that fit the tight boundary of the folding pattern. The

curve was calculated by measuring the distance of each boundary point to the centre of mass

of the folding pattern (see Materials and methods Chapter 4).
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Figure 19. Quantifying gyrification
(Note: Figure by Groden et al. (2019), Fig. 2 C) Measures of the degree of folding from the folding
pattern data set depicted in Fig. 18 B. C is increased from C = 100 to C = 5000 in 100 steps. The black
line is the mean of 30 trials for each data point with the grey shaded area being the standard deviation.
Left: Folding index FI plotted against the number of columns C. Middle: Fractal dimension plotted
against C. Right: Amplitudes of spatial folding frequency bins as indicated by the colours.

The resulting graphs of the three measures are depicted in Fig. 19, with FI on the left,

the fractal dimension in the middle and the frequency spectrum on the right. As expected,

both FI and the fractal dimension show an increase with the number of columns C. They

do however reach a peak indicating a maximum degree of folding. The spatial frequency

spectrum shows the same trend with low frequency folds emerging first at low numbers of C.

As C increases they stay present, but higher frequency folds start to develop (compare Fig. 18

B). The power in the frequency spectrum corresponds to the occurrence of a frequency and its

relative amplitude. Since the low frequency folds amplitude (relative distance to the centre

of mass) is large, they exhibit a high power in the frequency spectrum. Closely observing all

three graphs, a decline in FI , the fractal dimension and high frequency folds in the frequency

spectrum becomes apparent when C increases towards large numbers. Further increasing C

leads back to lissencephalic folding patterns. Depending on the chosen set of connectivity

parameters, this phenomenon is more or less pronounced. The higher frequency folds start

to merge, forming a thicker cortex that still exhibits low frequency folds (Fig. 20 A). This

phenomenon resembles the phenotype of the manatee (Fig. 20 B), which always has been an

outlier, as its cortex is rather large yet lissencephalic and thick.
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Figure 20. The exception of the manatee
(Note: Figure by Groden et al. (2019), Fig. 2 D) A, Increasing the number of columns even further
with a fixed connectivity (M = 2, a = 0.25, σ = 1.5, γ = 1) leads to lissencephalic folding patterns.
B, Tracing of the manatee brain with brain weight and number of neurons in million. Whole brain
tracing on the left (only cortex and bulbus olfactorius shown) and section tracing on the right.

Cortical folding does not only scale with brain size in general. The strength of gyrification

scaling varies between different orders of mammals (Mota and Herculano-Houzel (2015),

Zilles et al. (2013), Pillay and Manger (2007)).

Figure 21. FI scaling for different mammalian orders predicted by the brain folding model
(Note: Figure by Groden et al. (2019), Fig. 5) Depending on connectivity, the level of gyrification scales
differently with increasing cortical size C. 10 trials were calculated for each value of C. The other
folding parameters were fixed unless stated otherwise (a = 0.2, b = 1, M = 2, γ = 1, σ = 0.3). A, The
folding index FI increases with the number of cortical columns C for different values of width for
local connectivity σ (red, blue and black). For red C = 100 to C = 2000 in 50 steps. For blue C = 100 to
C = 3000 in 100 steps. For black C = 200 to C = 5000 in 100 steps. B, The folding index FI increases
with the number of cortical columns C for different values of decay in global connectivity γ but also
scales differently (red, blue and black). Same increments of C used here as in A. The data points in A
and B where fitted using a sigmoidal function. The inlays in both graphs are a magnification of the
sigmoidal fits overlaid at the point of greatest slope. The value for the slope is also shown. In A slopes
are roughly the same whereas in B, slopes vary significantly.
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The gyrification model predicts these variations in scaling when altering connectivity param-

eters. The model predictions for the folding index FI for different brain sizes (number of

columns C) are demonstrated in Fig. 21. Increasing the influence of local connectivity, which

in the model is done by increasing σ or γ (compare Fig. 22), leads to a shift in the onset of

gyrification as well as a higher peak FI (Fig. 21 A and B). If C is increased even further,

the degree of folding (FI) goes back down to 1 (log(1) = 0 as in Fig. 21) in all cases, which

corresponds to lissencephalic cortices. Fitting the data points using a sigmoid function reveals

the maximum slope of each curve as indicated by the inlays. Varying σ does not change the

magnitude of scaling in FI (Fig. 21 A), while altering γ yields significantly different values for

the maximum slope (Fig. 21 B). Quantitatively reproducing the results for the slopes of scaling

for different mammalian orders as found by Zilles et al. (2013) has not been possible with the

model approach. This issue is due to the low number of neurons in the model compared to

the real brain. However, calculating the differences in slope between the curves from Fig. 21 B

does match the differences in slope published by Zilles et al. (2013).

5.2.1 The impact of connectivity

Folding pattern shapes and properties in the model are heavily impacted by cortical size and

the number of neurons per column. However, the choice of connectivity parameters has an

equally significant effect. There are three parameters which influence different aspects of

connectivity. γ determines the width of global, while σ controls that of local connectivity.

The difference in strength between global and local connectivity is set by a. The strength

parameter for the local connectivity b is for the purpose of this demonstration considered to

be equal to one,

Figure 22. Connectivity parameters
(Note: Figure by Groden et al. (2019), Fig. 3 A, B, C top) Examples of how the connectivity parameters
affect the shape of the connectivity function for γ, σ and a.

49/124



5. RESEARCH AND RESULTS

since the connection probability to the closest neighbours is very strong (b can however be

adjusted). Fig. 22 visualises how the three connectivity parameters change the shape of

the models connection probability function. To quantify the impact of a certain parameter,

all other parameters were kept constant. Fig.23 A shows some example folding patterns

demonstrating the effects of varying each of the three connectivity parameters respectively.

These examples serve as a visual reference to better understand the graphs in Fig.23 B, which

quantify the change in folding pattern properties induced by differences in connectivity.

Large values of σ correspond to a wide range of local connectivity (Fig. 22 middle), which

leads to large folds of low frequency (Fig. 23 A and B left). Decreasing σ and therefore the

range of local connectivity increases the frequency of gyri and sulci. With more frequent folds

the degree folding (folding index FI) increases as well, leading to a more fractal arrange-

ment (increase in fractal dimension). Large folds with large amplitudes seem to be present

throughout σ’s parameter range as indicated by the frequency spectrum.

Figure 23. The impact of connectivity on folding patterns
(Note: Figure panel B by Groden et al. (2019), Fig. 3 A, B, C bottom) A, Example folding patterns for
different values of σ, γ and a. B, Quantification of folding pattern properties with a fixed parameter
set (b = 1, a = 0.15, σ = 0.3, γ = 1, C = 1400, M = 2). From left to right, σ is varied first (from
σ = 0.05 to σ = 1.5 in 0.05 steps), then γ (from γ = 0.25 to γ = 10 in 0.25 steps) and last a (from
a = 0.06 to a = 0.3 in 0.01 steps). The black line is the mean of 40 trial for each data point. Standard
deviation in grey. C, Increasing γ and therefore the decay of global connectivity leads to lissencephaly
(b = 1, C = 600, M = 2, a = 0.2, σ = 0.3).
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Folds do however not only depend on the range of local connectivity. When changing the

range of global connectivity, the degree of folding varies significantly. Specifically large values

of γ which correspond to a low range of global connectivity (Fig. 22 left) result in a low degree

of folding (low FI). Increasing the range of global connectivity leads to a significant increase

in FI and a slight increase in fractal dimension. Interestingly, changes in γ have the same effect

on folding patterns as changes in σ. However, the changes in global and local connectivity

range are exactly opposite. While a wide range in global connectivity induces more folding,

the same is true for a low range in local connectivity. The increase in gyrification induced by

global connectivity, is however, different since the mean amplitude of folds increases, but their

frequency is relatively constant. When the number of columns is decreased, large values for γ

with a low range of global connectivity cause folds to disappear almost entirely as depicted in

Fig. 23 C. Folding, therefore, seems to be dependent on the existence of long range connections.

Increasing the strength of global connectivity a increases the frequency of folds, but at the

same time decreases their mean amplitude. Compared to the impact of σ when increased,

a has the inverse effect. Therefore, an increase in local connectivity width counteracts an

increase in global connectivity strength (compare Fig. 22 and Fig. 23 A and B). An extensive

increase in a however eventually leads to a drop in FI and fractal dimension. The frequency

of gyri and sulci increases to the point where they merge into each other. Therefore, the level

of gyrification decreases after it reached a peak. Maximum gyrification hence can be achieved

with an optimal value for a (global connectivity strength).

5.2.2 Breaking symmetry

While folding patterns modelled with similar or the same parameter sets tend to look alike,

their appearance never matches exactly. The differences between folding patterns with the

same parameter set are very subtle, but when looking at details like for example, the exact

position of a single gyri or sulci, significant variations become evident (Fig. 24). Therefore,

parameters that correspond to the size, the thickness and the connectivity of the cortex do not

lead to the formation of a stereotypical folding pattern in the model. Breaking the symmetry

of the model’s cyclical connection probability distribution, however, leads to the formation

of stereotypical folds. In an asymmetrical folding pattern, the connectivity parameters are

altered on specific sections of its perimeter.
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Figure 24. Folding patterns with the same parameters are not identical
(Note: Figure by Groden et al. (2019), Fig. S3 A) Folding patterns sharing the same parameter set
(C = 600, M = 2, a = 0.2, σ = 0.3, γ = 0.5) or even the same binary connection matrix are not
identical as showcased by three examples.

Fig. 25 shows the consequences of this procedure when altering the width of local connectivity

σ (Fig. 25 A), the strength of global connectivity a (Fig. 25 B) and the number of neurons per

column M (Fig. 25 C). In each panel, the framed folding pattern has its perimeter amplitudes

with respect to the center of mass plotted against the column index Ci on the right for better

quantitative understanding. The part of the perimeter where the parameter was altered is

marked by the shaded area. As indicated by the colour coding of cortical columns, the change

in folding occurs at the same location of the cortex perimeter for each individual parameter

that was altered. Therefore, folding can be altered stereo-typically in a local section of the

perimeter by changing cortical connectivity parameters. For local connectivity σ and global

connectivity a changes in sections of the perimeter led to the same differences in gyrification

compared to parameter changes on the entire perimeter (compare Fig. 23). According to

these results, local folding in the mammalian cortex is likely to depend on changes in the

local connectivity and the number of neurons per column, meaning cortical thickness. The

model is also capable of repeatedly producing recognisable individual folds by using the

same approach of altering the connectivity in a certain section of the perimeter. Such folds

emerge when increasing the strength of local connectivity b. Fig. 26 shows three examples that

feature the same change in connectivity in the same section of the perimeter that leads to a

characteristic fold in that area, which is marked in black. In the area marked black b is changed

to 1, while in the rest of the folding pattern b = 0.6. Brain disorders can change the appearance

of the folding arrangement in many ways (Walsh (1999), Sun and Hevner (2014), Barkovich

et al. (2012), Fernández et al. (2016)). Changes can be specific to certain areas only, or affect

the entire cortex. Such changes in folding can be reproduced by the model by breaking the

symmetry and altering the model parameters.
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Figure 25. Stereotypical folding patterns
(Note: Figure by Groden et al. (2019), Fig. 4) Varying the connectivity function in a specific region leads
to stereotypical folding arrangements. A, (Left) Example folding patterns where the local connectivity
σ has been varied in a specific region (C = 1200, a = 0.2, b = 1, M = 3, γ = 1). (Right) Amplitude
to the center of mass plotted for the framed folding pattern. Colours indicate cortical columns and
position on the folding pattern. Regions for different values of σ are indicated by the shaded area.
B, Same arrangement as in A with a being varied. Other parameters are (C = 1200, b = 1, σ = 0.1,
M = 3, γ = 1). C, Same arrangement as in A but M is varied. Other parameters are (C = 1200, b = 1,
σ = 0.1, a = 0.2, γ = 1).

The folding pattern in the centre of Fig. 27 represents the healthy brain, with its ”healthy set

of parameters”. To reproduce the changes in folding caused by a brain disorder, the ”healthy

set of parameters” is altered accordingly, resulting in the folding patterns at the end of the

arrows, that represent pathological arrangements. In cases where parameters were altered in

a section of the folding pattern only, this particular section is marked in black.
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Figure 26. Characteristic single folds
(Note: Figure by Groden et al. (2019), Fig. S4) Example folding patterns with increased strength of
b = 1 in a local area (marked black) produce a single stereotypical fold. In the rest of the folding
pattern b = 0.6 (C = 1000, M = 2, a = 0.2, b = 0.6, σ = 1, γ = 1).

Polymicrogyria is one example of such a gyrification altering condition. Here, cortical thick-

ness decreases and the frequency of folds increases while the size of gyri and sulci decreases

(Chang et al. (2004)), which is the opposite of a thicker cortex, leading to lissencephaly (Toro

and Burnod (2005), Richman et al. (1975), Budday et al. (2014)). This is exactly in line with

the gyrification model, since as discussed multiple times, reducing the number of neurons

per column M , which corresponds to a thinner cortex, increases folding in the model (Fig.

27 top, Fig. 45 left). Even though there reportedly is a change in connectivity caused by

polymicrogyria, its exact nature is unknown (Trivedi et al. (2006)). In the gyrification model,

increasing the strength of global connectivity by increasing a leads to shallower folds (Fig. 23

A and B). Therefore, the model predicts a reduced mean amplitude for gyri and sulci if the

relative difference between the strength of local and global connectivity is reduced (increasing

a while b stays constant). As demonstrated in Fig. 25 B, a change in a can be restricted to

a section of the cortex in the model. Accordingly, polymicrogyria can develop in only part

of the cortex because of altered local connectivity (Fig. 27 top). Clinical studies did indeed

find cases where the entire cortex was affected by polymicrogyria, as well as examples where

only specific regions exhibited the disorder (Rai et al. (2015), Chang et al. (2004), Jansen and

Andermann (2005)). Patients with autism typically also exhibit cortices with changes in the

degree of folding. The region most affected in autism is the frontal lobe, where deeper folds

emerge increasing the folding index FI (Carper and Courchesne (2005), Hardan et al. (2004),

Nordahl et al. (2007)). The same phenotype can be reproduced in the gyrification model by

lowering the strength of global connectivity a (Fig. 27 left, Fig. 23 A and B).
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Figure 27. Model predictions of folding changes in brain disorders
(Note: Figure by Groden et al. (2019), Fig. 6) The gyrification model is capable of reproducing the
pathological changes in folding of the human brain caused by brain disorders. Middle: In this plot,
this is assumed to be the normal healthy cortical folding pattern that uses the following parameters,
C = 1000, M = 4, a = 0.2, b = 1, σ = 0.1 and γ = 1. Top: The model reproduces Polymicrogyria,
which is a pathological condition where smaller, more frequent folds are observed as well as a thinner
cortical sheet. The change in folding is expressed either globally or locally, as also demonstrated by the
model results. In the model, this is achieved by lowering M and increasing a. Right: Schizophrenia
causes the superior temporal gyrus to exhibit an increased folding frequency, as well as a deeper
superior temporal sulcus. The model predicts a similar result when decreasing both a and M . Bottom:
When modelling Microcephaly a decrease in C, M or both leads to completely different folding
arrangements. Decreasing C counteracts a decrease in M , since lower C increases folding and lower
M has the opposite effect. Decreasing both at the same time results in a similar appearance to the
folding pattern shown in the center. Left: In Autism, the frontal lobe of the brain exhibits deeper folds.
By lowering the strength of global connectivity a in a section of the folding pattern the model achieves
a similar result.
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The model predictions agree with findings of Catani et al. (2016), Just et al. (2007) and

Courchesne and Pierce (2005), where deeper folds correspond to strong local but weakened

global connectivity. Similar to the next example disorder, schizophrenia, changes in folding

caused by autism are much more subtle compared to polymicrogyria (Nordahl et al. (2007),

Wisco et al. (2007)). The superior temporal sulcus in schizophrenia is enlarged, exhibiting

increased depth (Csernansky et al. (2008)). In terms of connectivity, a decrease in global

connectivity strength (Geoffroy et al. (2014), Alderson-Day et al. (2015), Skudlarski et al.

(2010)), as well as decreased cortex thickness at the superior temporal gyrus that goes along

with increased folding frequency reportedly correspond to schizophrenia disorder (Wisco et

al. (2007)). The increase in folding frequency is likely due to the decrease in cortical thickness

as observed in polymicrogyria, while a deeper superior temporal sulcus might be due to the

decrease in global connectivity strength (Richman et al. (1975), Budday et al. (2014), Toro and

Burnod (2005))(Fig. 27 right, Fig. 23 A and B, Fig. 45). In contrast to the other examples,

microcephaly is associated with a significantly smaller brain, which can exhibit a normal

appearance other than being too small. Folding can also be reduced in microcephaly (Volpe

(2008), Francis et al. (2006)). In this brain disorder, connectivity does not seem to be altered,

however, there is a deficiency in neuronal proliferation (Gilmore and Walsh (2013), Barkovich

et al. (2012)). A decrease in neuronal proliferation might cause the diminution in cortical size

with a relatively small number of columns, a low number of neurons per column or even

both at the same time (Volpe (2008)). To reproduce a folding pattern in the model with an

appearance similar to the ”healthy state pattern” (Fig. 27 centre) but with less folds, both

the number of columns and the number of neurons per column have to be scaled down in a

uniform fashion (Fig. 27 bottom).

5.3 Microscopic modelling: A realistic neuron repair algorithm

Like the gyrification model introduced in this thesis, the neuron repair algorithm explained

here is based on the simple principle of wiring optimisation. Artificial neurons can be grown

in a computer simulation based on this approach, using the in silico TREES toolbox (Cuntz et

al. (2010)). The TREES toolbox is build upon the minimum spanning tree algorithm (MST),

which uses a balancing factor bf to optimise a cost function that weighs conduction time

to the soma against total wiring length (see Materials and methods Chapter 4). With the

reconstruction of neurons from microscopic images being a difficult procedure, the resulting
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3D morphology reconstructions are often incomplete (De Schutter and Jaeger (2000). This

can be due to for example, lesion when cutting tissue, image distortion, shrinkage or staining

agents failing to reach the most distal parts of dendrites. The neuron repair tool developed in

this thesis is a Graphical-User-Interface (GUI) that can be used to repair any given morphology

by extending the existing incomplete dendritic arbor with artificial dendrites.

5.3.1 The GUI and fix tree function

The repair algorithm in and of itself consists of the fix tree function (for details see Materials

and methods Chapter 4) that is called upon by a Graphical-User-Interface (GUI) environment.

The interface allows the user to upload an incomplete 3D neuron morphology as depicted

in Fig. 28 (1.). In order to be able to accurately estimate the dimensions of the neuron mor-

phology reconstruction, a background image stack can be uploaded to the GUI (Fig. 28 (2.)).

For this purpose, different layers in the tissue can be marked out by lines, like in the example

image in Fig. 28, that shows the stratum oriens (SO), the stratum pyramidale (Spyr), the

stratum radiatum (SR) and the stratum lacunosum moleculare (SLM) of the CA1 region in the

mouse hippocampus. Image stacks can be uploaded in 3D or 2D. The position as well as the

orientation of the morphology can be adjusted freely, to fit the background image (4.). In case

the size of the background image is out of sync with the reconstruction, the voxel size can also

be adjusted at will (3.). These adjustments are done via the Image Stack panel in the top right

corner.

The region where new extended artificial dendrites should be added to the existing morphol-

ogy can be marked out in the GUI. In case the volume and its position is already known, the

user can upload volume coordinates to the interface. Otherwise, the perimeter of the volume

can be drawn on the screen by selecting the coordinates with the cursor. This procedure is

initiated via the Repair Panel (5.) and has to feature points being selected in at least two of three

planes (x-y, x-z and y-z-plane). By hitting the repair button (7.), the algorithm determines

the growth volume set by the chosen coordinates, using the boundary function in MATLAB,

and initiates the repair automatically. All parameters for the repair are estimated by the

algorithm automatically (see Materials and methods Chapter 4), but can be individualised via

the interface (6.). The only exception here are pruning parameters, since pruning is optional. If

needed, the algorithm can be limited to not grow beyond a set value of total dendritic length

as well as maximum number of branch points.
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Figure 28. Neuron repair tool GUI
Illustration of the graphical-user-interface of the neuron repair tool. Plot of the neuron morphology
and microscope image stack in the middle with the tool bar on the right. The bullet points 1. to 8.
represent the necessary steps to upload a neuron morphology and image stack and then successfully
repair the damaged morphology. The red points are an indication of a volume being drawn with the
cursor.

Alternatively, a reference morphology can be uploaded to the GUI, if existent. The algorithm

will then use the statistics of the reference morphology as a template, matching the number

of branch points and the total dendritic length of the repaired morphology to the reference.

Uploading a reference morphology is completely optional, mostly used to test the algorithm’s

functionality. In the default growth mode, new branches can grow from any random point on

the original morphology in close vicinity to the growth volume (biological growth mode). This

mode is meant to imitate biological regrowth of a damaged neuron, re-invading the vacant

space. The second growth mode, referred to as incomplete growth mode, is used to repair

morphologies that have been damaged accidentally during the reconstruction process.
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Figure 29. Lost dendritic material can be recovered with the new growth algorithm
Example GUI output, with the repaired morphology on the left. The input morphology is marked in
black with the repaired dendrites marked in red. The blue shaded area is the repair volume. The GUI
also outputs a before-after comparison of morpholgical statistics with two examples depicted on the
right (Sholl intersection distribution and Total dendritic length for basal and apical arbor).

Here, the reconstructing scientist usually knows which ends of the dendrites have been

severed and in which area the missing dendritic material is supposed to grow. Consequently,

with the incomplete ends of the dendrite marked out in the uploaded morphology file, the

repair algorithm will exclusively grow artificial dendrites from these severed ends in case

the incomplete growth mode is engaged. There is one more option that can be engaged

when the incomplete growth mode is active, dedicated to the special growth requirements

of pyramidal neurons, since their apical dendritic arbor features a prominent main apical

dendrite (Benavides-Piccione et al. (2020)). Engaging this option grows the main apical

dendrite first before proceeding with the regular growth protocol (see Materials and methods

Chapter 4). Fig. 29 shows an example output of the GUI with a repaired morphology on

the left (artificial dendrites in red, growth volume in blue). The GUI automatically calculates

morphological statistics like for example, the Sholl intersection distribution and the total

dendritic length in a before and after comparison (Fig. 29 middle and right). The GUI includes

more statistics than the examples shown here. The GUI is designed to address the issue of

sparse human neuron reconstructions. This is done by repairing damaged morphologies,

extending their dendrites artificially in areas where branches should be growing, but could not

be reconstructed. The algorithm restores the morphological as well as the electrophysiological

properties of the neuron. This will increase the accuracy and reliability of neuron morphology

data sets.
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5.3.2 Validating the neuron repair algorithm

Human neuron morphologies are poorly understood compared to for example, those of

rodents. For this reason, testing and validating the repair algorithm is based on a data set

of mouse CA1 pyramidal neurons (Benavides-Piccione et al. (2020)) (see Fig.11). Pyramidal

cells are the most abundant neuron type in the brain and mouse neurons are widely studied,

increasing the reliability of algorithm testing. Judging how good the repair of a neuron is

requires a reference. Therefore, the reconstructed mouse pyramidal morphologies from the

Benavides-Piccione et al. (2020) data set were cut intentionally in an arbitrary location in both

the apical and the basal arbor at different points and angles. The cut morphology is used as

an input to the repair algorithm to be repaired and the original morphology serves as the

reference which is also passed to the algorithm. As described earlier, the algorithm matches

the morphological statistics of the repaired morphology to the reference. The reference, the

cut and the repaired morphologies are then compared to determine the accuracy of the repair.

This procedure is carried out for multiple different morphologies as depicted in Fig. 30. Here,

repairs were performed on six different morphologies, three in the top row and three in the

bottom row. The original reference morphology is shown on the left and the repair on the

right for each morphology respectively. In the reference all dendrites that have been cut

intentionally are marked in red with the black dendrites representing the cut morphology. The

same is true for the repaired morphology, but here, the red dendrites represent the artificial

repair instead. The blue shaded areas show the growth volume the artificial repair dendrites

were allowed to grow in. The volume is determined by calculating the convex hull, using

the built-in convhull function in MATLAB, of the dendrite material that has been cut off from

the reference morphology. The volume is then enlarged by 10%, since dendrites growing into

a set volume will end up occupying a smaller space. Therefore, without any enlargement

the repaired dendritic arbor would always be too small. The graphs beneath each repair

comparison, with the reference on the left and the repair on the right respectively, show

the Sholl-profile (Sholl (1953)) for the cut, the repaired and the reference morphology. The

repairs in Fig. 30 are performed using the incomplete growth mode which allows dendrites

to only grow from specified incomplete ends. Therefore, the repair simulates the situation

where dendrites that are known to exist but were somehow lost (for example, during the

reconstruction process) are restored resembling reality as closely as possible.
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Figure 30. Successful repair of artificially damaged mouse CA1 pyramidal neurons
Six example repairs of mouse CA1 pyramidal neurons, reconstructed from the images in Fig. 11. The original
reference morphologies have been cut intentionally in the basal and apical arbor and then repaired (Recon-
structions by Benavides-Piccione et al. (2020)). For each repair, the left neuron depicts the reference and the
right the repair. The input neuron is marked in black, with all red dendrites having been cut for the reference
and artificially grown for the repaired morphology. The blue shaded areas represent the convex hull of the cut
dendrites enlarged by 10%. Underneath each repair, the graphs show the Sholl intersection distribution for the
cut, the repaired and the reference neuron. The repairs try to resemble the reference morphology as closely as
possible.
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The coordinates of the incomplete ends are specified in the morphology file, since they are well

known due to the intentional lesion of the reference morphology. Since pyramidal neurons

feature a prominent main apical dendrite in their apical dendritic arbor (Benavides-Piccione et

al. (2020)), the main growth option (see Materials and methods Chapter 4) is engaged for the

repair of the apical dendrites in Fig. 30. The main apical dendrite is severed in the proximal to

distal area of the neurons in all cases in Fig. 30. With the main growth option, the main apical

dendrite is grown first, followed by the rest of the dendritic arbor.

Fig. 30 showcases how the repair algorithm is capable of recovering dendritic material that

was lost. The overall shape of the repair matches the reference accurately in both the apical

and the basal arbor. Additionally, the Sholl-profile is also replicated well. Comparing the

repaired Sholl-profile to the reference shows that the match is not perfect in every location.

However, the improvement with respect to the cut version of the neuron is substantial. The

Sholl-profile also reveals that dendrites reach the same points in space in the repair as they

do in the reference, sitting in between 300-400µm for all morphologies in Fig. 30. The size of

the artificially extended dendrites is limited by the growth volumes as indicated by the blue

shaded areas.

In terms of analysing the morphological accuracy of a repair, it is particularly important

to compare overall shape and appearance of a neuron as well as statistics associated with

morphology simultaneously. This is due to the fact that matching statistics do not necessarily

imply matching morphological shape and vice versa. Therefore, the information provided by

the graphs of Fig.31, is very much complementary to the depictions of the morphologies in

Fig.30. The graphs in Fig.31 show different statistical aspects of the morphologies depicted in

Fig.30. Since the desired number of branch points is known due to the existing reference mor-

phology, the algorithm matches the number of branch points to fit the repaired morphology

exactly. This is shown in the first graph on the left side of the top row, by plotting the total

number of branch points of the repair against the reference (blue data points). A point lying

on the 45◦ angle ledger line indicates a match, as demonstrated by the blue points, which all

lie on the line in this first graph. For the sake of a before-after comparison, the same measure

for the cut morphologies is plotted against the reference in red. The red points do not lie on

the 45◦ line indicating a miss match in this particular metric. All the graphs depicted in Fig.

31 share the same style with the 45◦ ledger line indicating matching statistics.
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Figure 31. Statistics for the main features of dendrite morphology shows a successful recovery of
lost dendrites
The graphs depict the morphological statistics of the repairs from Fig. 30. The values for the repaired
morphologies are plotted against the reference, shown in blue. The statistics for the cut morphologies
are plotted against the reference in red. The ledger line at a 45◦ degree angle signifies a match between
the two morphologies. Points that lie close to this line indicate a close match. For the first graph (top
left), showing the statistics for the total number of branch points, the blue points lie exactly on the
line since the algorithm fits the repair to match that statistic exactly. The other graphs depict the total
dendritic length (top middle), the dendritic length per segment (apical)(top right), the dendritic length
per segment (basal)(bottom left), the diameter per segment (apical)(bottom middle) and the diameter
per segment (basal)(bottom right).

With a matching number of branch points, the model tries to match the total dendritic length

of the repair to the reference as accurately as possible. The graph in the top middle of Fig. 31

shows that matching the total dendritic length works well in most cases as all blue data points

lie on the ledger line again. Unsurprisingly, the red data points for the cut morphology are far

from matching the reference.

The next four graphs in 31 measure the average dendritic length or the average diameter

of the different segments in a dendrite. A dendritic segment is measured as a continuous

dendrite cable from one branch point to the next as depicted in Fig. 32 which shows two

example segments in red and blue.
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Figure 32. Dendritic segment definition
Skeletonized hypothetical dendrite with two example segments in red and blue.

The graphs in Fig. 31 show the average dendritic length per segment and the average diameter

per segment for the apical and basal dendritic arbor separately. Fitting the first two properties,

the total number of branch points and the total dendritic length exactly, causes the last four

properties to fall into place accurately as depicted in Fig. 31. The fit for the dendritic length

and diameter per segment is mostly very close to a match, improving the cut morphology by a

large margin most of the time. According to these results, the neuron repair tool is capable of

accurately reproducing the overall appearance and morphological statistics of CA1 pyramidal

neurons of the mouse.

5.3.3 Repairing human CA1 pyramidal neurons

Since the main objective of the neuron repair tool introduced in this thesis is to repair damaged

human morphology reconstruction, it was tested on human CA1 pyramidal neurons. This

section demonstrates how a data set of human neurons can be repaired, in case a neuron

sustains any form of damage. A neuron can even be extended, meaning that artificial dendrites

are grown beyond the fully reconstructed neurons, where there are supposed to be dendrites.

The data set of human CA1 pyramidal neurons was provided by Benavides-Piccione et al.

(2020) and is shown in Fig. 33. Panel A shows a mosaic con focal microscope image of the CA1

region of the human hippocampus, with the dentate gyrus (DG) on the left. The layers of the

CA1 region are marked out as SLM (stratum lacunosum moleculare), SR (stratum radiatum),

SP (stratum pyramidale) and SO (stratum oriens). The region of interest, the morphologies

were taken from, is marked by a rectangle and magnified in panel B.
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Figure 33. Human CA1 pyramidal neuron data set
Con focal microscope images of the human CA1 pyramidal neuron data set by Benavides-Piccione et al.
(2020). A, Image of the hippocampal region with stained morphologies and marked out layers of the
CA1 region (stratum oriens (SO), stratum pyramidale (SP), stratum radiatum (SR), stratum lacunosum
moleculare (SLM)). Dentate gyrus (DG). The region of interest (ROI) is framed by a rectangle. B,
Magnified ROI with stained pyramidal morphologies and marked layers.

The neurons’ somata are located in the SP layer. Their apical dendritic arbor easily reaches

into the SR layer but barely stretches far enough to touch the SLM layer.

The neurons in Fig. 33 were reconstructed resulting in digital 3D morphologies that are

depicted in Fig.34 A, where they are an overlay to a black background image which marks

out the layers of the CA1 region like in Fig. 33 B. The morphology reconstructions are colour

coded, such that each neuron can be identified by its specific colour throughout Fig. 34. Panel

B shows the same neuron reconstructions from panel A, but they have been cut intentionally

in their dendritic arbors, which have then been repaired. The repairs have been fitted to

match the original reconstruction using the same procedure applied to mouse CA1 pyramidal

neurons in Chapter 5.3.2. The repaired neurons are depicted as an overlay to the microscope

image of the region of interest from Fig. 33 B. Panels A and B of Fig. 34 are a side by side

comparison of the original morphologies and the repairs, which resemble the appearance of

the original morphologies very well.

The original morphology reconstructions (Fig. 34 A) reportedly lack dendrites in the tuft area,

which is the most distal region of the apical dendrite (Benavides-Piccione et al. (2020)). Due

to the positioning of the morphologies in the image stack that was taken from cut tissue, the

basal dendrites of these neurons have sustained damage during tissue sectioning.
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Figure 34. Repairing human CA1 pyramidal neurons
Human CA1 pyramidal neuron repairs and extensions. A, Reconstructions of the human CA1
pyramidal neurons shown in Fig. 33 B, overlaid on a black background with marked CA1 layers. B,
The morphologies from A have been cut intentionally and then repaired using the neuron repair tool.
The growth volume was calculated by taking the convex hull from the cut off dendrites enlarged by
10% (same procedure as in Fig. 30). C, The morphologies from A have been extended. The original
reconstructions were left untouched and artificial new dendrites were added to the apical and basal
arbors. The region where dendrites were missing and should therefore be extended were chosen in
accordance with the expert opinion of Benavides-Piccione et al. (2020).

To complete the missing parts of the dendritical arbors of the original reconstructions from Fig.

34 A, the repair algorithm was applied. The results are depicted in Fig. 34 C, where entirely
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new regions have been added to the full reconstructions by growing artificial dendrites.

Neurons with somata located close to the edge of where SP meets SR should theoretically

extend their apical dendrites more than halfway into the SLM layer, which is due to axons from

the perforant path providing synaptic input in this region (Ito and Schuman (2012)). Neurons

with somata located far away from the border of SP and SR will not reach deep into the SLM

layer. Panel C of Fig. 34 shows the results of the human CA1 pyramidal neurons that have

been extended using the repair tool. These repaired/extended neurons now feature dendritic

arbors that cover the area of the CA1 region much better than the reference morphologies in

panel A.

5.3.4 Electrophysiology in repaired human and mouse cells and differences between the

two species

When recovering the morphology of an incomplete neuron, the goal is to reestablish its

morphological appearance, statistic as well as its electrophysiological properties. The electro-

physiological behaviour of a neuron in conjunction with detailed understanding of the brain’s

network will be key to understand how the brain works. For this reason, the repair algorithm

introduced in this thesis was used to recover the morphology of a neuron, testing whether it

was possible to recover the electrophysiological behaviour as well. Therefore, neurons were

sectioned intentionally and then repaired to match the original reference neuron’s morphology

like in Chapter 5.3.2. The firing behaviour of these neurons was simulated by performing

somatic current injections. These current injections were simulated using a compartmental

model by Jarsky et al. (2005). The results are depicted in Fig. 35. The example shown in panel

A is a mouse CA1 pyramidal neuron, whereas panel B depicts a human pyramidal neuron

repair. The reference neuron is shown on the right and the repair on the left respectively, with

the cut and repaired dendrites marked in red. The current clamps are performed with five

different increments of increasing intensity, with the firing responses plotted for the reference,

the repaired and the cut neuron morphology. Each current clamp lasts for 500ms. The firing

behaviour of the intentionally cut neuron is significantly different from the reference and the

repaired neuron, in both human and mouse respectively as demonstrated in Fig. 35 A and

B. The cut morphologies produce spikes at currents where both the reference and repaired

neuron do not fire at all.
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Figure 35. Repairs recover a neuron’s original firing behaviour
Repaired neurons with the neuron repair tool recover their original firing behaviour. A, The reference
mouse CA1 pyramidal neuron on the left has been sectioned in the apical arbor (sectioned dendrites
in red). The cut dendrites have then been repaired using the same method as in Fig. 30 in the
morphology on the right (repaired dendrites in red, growth volume in blue). In silico somatic
current clamp experiments were performed on the reference, cut and repaired morphology, using a
compartmental model by (Jarsky et al. (2005)). The graphs on the right show the voltage traces for
each morphology with their resting membrane potential above the traces. The current increments
are depicted below the graphs. Each current clamp lasts for 500ms, as indicated by the black bars. B,
Same experiment layout as in A, but for a human CA1 pyramidal neuron.

The firing behaviour of the repaired neuron is very reminiscent of the reference neuron, unlike

the firing rate of the cut neuron.

Since the neuron repair tool is able to recover the electrophysiological behaviour of the

original reference morphology in the repaired morphology as demonstrated in Fig. 35 for both

species, it is of great interest to analyse what separates human neurons from mouse neurons.

68/124



5. RESEARCH AND RESULTS

Both morphological and electrophysiological aspects are of importance here, since, as shown

in Fig. 35, morphology and therefore morphological repairs do have a significant impact

on electrophysiological behaviour. Understanding such differences in electrophysiology

and morphology between human and mouse can teach us about how the human brain

achieves superior cognitive abilities (Schmidt and Polleux (2022)). Unfortunately, for the

CA1 pyramidal cell data set provided by Benavides-Piccione et al. (2020), there is no data

from elctrophysiological patch clamp experiments available. This means extracting any

electrophysiological properties from voltage traces recorded directly from these neurons is not

possible. To compensate for this lack of data, another data set of human granule cells from the

dentate gyrus, which is a region of the hippocampus, is utilised. The data set is provided by

Buchin et al. (2020) and includes 24 human granule cell morphologies with voltage traces from

whole-cell patch clamp experiments. An example morphology and voltage trace is shown in

Fig. 36 top. The following section analyses the passive electrophysiological properties of the

human granule cells and compares them to findings in mouse granule cells. The analyses of

the electrophysiological properties was done in association with two students of the Cuntz

lab at ESI (Ernst-Strüngmann-Institut) Frankfurt am Main, Lina Eicke and Alicia Strosche.

Additionally, the morphological differences between mouse and human granule cells as well

as mouse and human CA1 pyramidal neurons are compared. The granule cell morphologies

were taken from patients with temporal lobe epilepsy. This pathological condition is associated

with hippocampal sclerosis (HS, for details see Buchin et al. (2020)), which is why the granule

cell morphologies were quantified neuropathologically using the Wyler grade (WG) system

(Wyler et al. (1992)). A WG of degree 1 (WG1) corresponds to no or mild HS, while WG3 and

WG4 indicate severe cases of HS. For this reason, the passive properties of the granule cells

will additionally be displayed and compared as they are separated by Wyler grade.

The voltage traces from current clamp experiments recorded directly from the neurons of

the data set provided by Buchin et al. (2020) allow for the calculation of passive properties

of the human granule cells. The resting membrane potential V rest, the input resistance Rin

and the membrane time constant Tm can be extracted from the voltage traces by linearly

fitting sections of the voltage trace to obtain V rest and the stimulated membrane potential

V stim (Fig. 36 top right). The time it takes for the membrane potential to reach 1− e−1 of the

difference between V rest and V stim determines Tm.
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Figure 36. Human dentate gyrus granule cell morphology and passive property simulation
Top left, Example human dentate gyrus granule cell morphology provided by Buchin et al. (2020).
Dendritic regions are marked out by the colour code. Top right, Example human granule cell voltage
trace (current injection amplitude −0.05nA) with fits for the resting membrane potential V rest (red)
and the V stim stimulated membrane potential (blue). Bottom, Parameter space of the simulation using
the sse tree function. The possible values for te axial resistance Ra and the membrane conductance
Gm produce simulation values for Rin (blue sheet). Values for Ra and Gm that produce acceptable
values of Rin (within two standard deviations of Rin calculated from the voltage traces) are marked
by the red stripe.

Based on the voltage trace-based estimate of Rin, Ra (axial resistance) and Gm (membrane

conductance) can be calculated using a parameter scan that simulates the observed Rin with

the help of the sse tree function of the TREES toolbox. The simulation is done for possible

values of Ra and Gm that produce a fitting value for the observed range of Rin values (Fig.

36 bottom).
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Figure 37. Passive electrophysiological properties of human and mouse dentate gyrus granule
cells
Top, From left to right: input resistance Rin, membrane time constant Tm and membrane resting
potential V rest (Beining: values taken from Beining et al. (2017), SH: values taken from Schmidt-
Hieber et al. (2007)). Bottom, From left to right: axial resistance Ra, membrane conductance Gm,
membrane capacitance Cm. These three properties have been calculated using the sse tree function of
the TREES toolbox (see Materials and methods Chapter 4). Add Sp.: artificial spines have been added
to the reconstructed morphology using the TREES toolbox. The data shown for the human GCs is
from the 3 morphologies rated WG1 (mild/no HS) in the data set.

Fig. 37 shows the passive properties of the 3 (healthy) cells from the data set that were rated

WG1 by Buchin et al. (2020). The top row of graphs in Fig. 37 depicts Rin, Tm and V rest.

These properties are extracted from traces with a relatively small negative stimulation current,

since little to no active ion channels are involved in this interaction (see Materials and methods

Chapter 4), leaving only the passive response of the neuron. As demonstrated in Fig. 37,

compared to a mouse granule cell (compare Beining et al. (2017) and Schmidt-Hieber et al.

(2007)), a human granule cell exhibits a much lower Rin. This is likely due to the larger size of

the human neuron. A lower input resistance decreases the cell’s excitability following Ohm’s

law U = R · I , as the voltage deflection decreases with lower R at constant I . To compensate

for a decreased excitability, human granule cells feature a lower input latency, expressed in

a decrease in the membrane time constant Tm. The membrane resting potential V rest is,

however, similar across both species, regardless of the difference in neuron size and Rin.
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The following properties of the human granule cells in the bottom row of Fig. 37 have been

calculated according to the method depicted in Fig. 36 bottom. As the reconstructed morpholo-

gies do not feature any synaptic spines, which lowers the surface area of the reconstructions,

the calculations have been carried out two times. Firstly, the properties were simulated for the

original reconstructions (”Human” in Fig. 37) and secondly, artificial spines were added to

the reconstructions using the TREES toolbox (”Human (Add Sp.)” in Fig. 37). A spine control

factor to compensate for the reduced surface area because of absent spines was proposed by

Schmidt-Hieber et al. (2007) to be in the range of 1.7 to 2.3 for mouse granule cells. However,

the density of spines in human granule cells is lower than the density of spines in mouse

granule cells, increasing the surface area in human granule cells by a factor smaller than 1.7.

Therefore, artificial spines were added to the morphologies according to the observed spine

densities by Buchin et al. (2020) (see Materials and methods Chapter 4). Out of the 24 human

granule cell morphologies, the spine densities as well as the Wyler grades are only recorded for

6 individual reconstructions. Therefore, the sample size for the passive properties of relatively

healthy human granule cells with added artificial spines in Fig. 37 is only equal to 3 (3 of the 6

cells are rated WG1) rather than 24. The range of possible values for the axial resistance Ra is

very large as indicated by the error bars in Fig. 37 and the graph in Fig. 36 bottom. This means

that almost any value of Ra paired with a suitable candidate for the membrane conductance

Gm will lead to a fitting value of Rin as extracted from the voltage traces. Therefore, the

values for Ra in human granule cells in Fig. 37 are all very similar, even with artificially

added spines. Ra in mice seems to be slightly decreased compared to humans according to

Schmidt-Hieber et al. (2007). The membrane conductance Gm is significantly increased in

humans compared to mice as shown in Fig. 37. Gm is the inverse of the membrane resistance

Rm = 1/Gm, which is decreased due to the also rather low Rin of human neurons. With a

low resistance the conductance, being the inverse, rises. When adding artificial spines, the

surface area of a reconstruction increased by a factor of 1.465 on average. This results in Gm

not being halved (as it would be the case with a spine control factor of 2 applied to Rm) but

decreased by a factor 0.67 compared to the original morphologies in Fig. 37. Together with

Tm the membrane capacitance Cm can be calculated as Cm = Tm/Gm. The expected value

for Cm is ≈ 1µF/cm2, following the hypothesis that Cm is a natural constant (Curtis and Cole

(1938)). While the data by Schmidt-Hieber et al. (2007) seems to confirm this as shown in Fig.

37, there have been some studies reporting lower values of Cm, especially for human neurons

(see Discussion Chapter 6).
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Figure 38. Passive electrophysiological properties of human dentate gyrus granule cells separated
by Wyler grade
Top, From left to right: input resistance Rin, membrane time constant Tm and membrane resting
potential V rest (WG: Wyler grade). WG 1 represents no or mild HS (hippocampal sclerosis). WG
3 and 4 indicate severe HS. Bottom, From left to right: axial resistance Ra, membrane conductance
Gm, membrane capacitance Cm. These three properties have been calculated like in Fig. 37. Add
Sp.: artificial spines have been added to the reconstructed morphology using the TREES toolbox. W1
(Wyler grade 1) and W3/W4 (Wyler grade 3 and 4) are indicated by the colour code.

The values of Cm for human granule cells depicted in Fig. 37 are, like those of the mouse,

close to 1µF/cm2. Cm for the original human morphologies without any compensation for

the lack of spines is, however, much larger, with Cm ≈ 1.72µF/cm2. Therefore, with proper

compensation for the lack of spines, this analysis finds Cm of human granule cells to be within

the same range as Cm of granule cells in the mouse. As mentioned earlier, the data set of

human dentate granule cells contains morphologies with different Wyler grades (WG) or

levels of hippocampal sclerosis (HS). Fig. 38 illustrates how electrophysiological properties

of neurons with WG1 differ from neurons with WG3 and WG4. Fig. 38 consists of the data

from the 6 individual morphologies, for which the Wyler grade as well as the spine densities

were recorded (3 morphologies for WG1 and 3 for WG3/WG4) as mentioned before. The

differences seem to be very reminiscent of the differences between human and mouse granule

cells depicted in Fig. 37. Human granule cells with severe HS (WG3 and WG4) exhibit passive
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elctrophysiological properties that are more mouse-like than their WG1 counterparts. Rin is

increased in WG3/WG4 leading to increased excitability in accordance with Ohm’s law. At the

same time Tm is also increased like in the mouse granule cell. V rest sees a slight decrease in

WG3/WG4 but is still within close range of WG1. As expected, the axial resistance Ra is con-

stant within Wyler grades even with artificially added spines, since like in Fig. 37 a wide range

(error bars) of values is acceptable to fit the values for Rin. Interestingly, Gm is significantly

decreased in WG3/WG4, to the point where the value for the original morphologies in Fig.

38 is in the same range as the values for human granule cells with artificial spines in Fig. 37.

The values for Gm in Fig. 38 for WG3/WG4 seem to be decreased in such a way that they can

compensate for the increase in Tm, to produce a similar membrane capacitance Cm for both

WG1 and WG3/WG4 (Cm = Tm/Gm). This is true for morphologies with artificial spines

as well. As illustrated in Fig. 35, the morphological features of a neuron heavily impact its

electrophysiological behaviour. Therefore, Fig. 39 compares the morphological properties of

the mouse and human neurons that had their passive electrophysiological properties analysed

in Fig. 37 and 38. Additionally, the morphological features of the mouse and human CA1

pyramidal cells used to validate the neuron repair tool are depicted as well. The total dendritic

length as well as the mean dendritic diameter of human neurons is significantly larger than in

mice, for both granule and CA1 pyramidal neurons.

Figure 39. Comparing morphological properties of mouse and human granule and CA1 pyramidal
neurons
From left to right: Total dendritic length (apical and basal); Mean dendritic diameter (apical and
basal); Total number of dendritic branch points; Total number of dendritic termination points. Human:
Human granule cells, Human W1: Human granule cells with Wyler grade 1, Human W3/W4: Human
granule cells with Wyler grade 3 or 4, Mouse (Beining): Mouse granule cells from Beining et al. (2017),
Human CA1 pyr: Human CA1 pyramidal cells from Benavides-Piccione et al. (2020) (morphologies
depicted in Fig. 34 A, Mouse CA1 pyr: Mouse CA1 pyramidal cells from Benavides-Piccione et al.
(2020) (morphologies depicted in Fig. 30.)
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This explains the lower input resistance Rin in human granule cells compared to mice (Fig. 37),

since a smaller cell poses more resistance to an incoming current than a larger one. Differences

in Wyler grade seem to have no impact on both total dendritic length and mean diameter.

Interestingly, while the difference in dendritic length is substantial between CA1 pyramidal

neurons and granule cells, the mean dendritic diameter is similar for both cell types in the

respective species. The dendritic length in a human granule cell is ≈ 2.04 times larger than

in a mouse granule cell. For CA1 pyramidal neurons, the difference in dendritic length is

governed by a similar factor of ≈ 2.3911. Since the dendritic length of mouse CA1 pyramidal

neurons is similar to that of human granule cells, one could assume that they exhibit a similar

input resistance as well. This is, however, unlikely due to the low dendritic diameter in mouse

neurons. The number of branch and termination points is a measure of neuronal complexity.

In this regard CA1 pyramidal neurons are significantly more complex than granule cells (Fig.

39 right). Additionally, in pyramidal neurons, human morphologies are exceedingly more

complex than those of mice. On the flip side, in granule cells, complexity does not seem to

differ between humans and mice. A possible explanation for this could be that granule cells

favour direct connections to the soma and therefore do not branch a lot. This explanation

will be explored in further detail in the next section (Chapter 5.3.5), where different cell types

are repaired using the neuron repair tool. To model different cell types, different sets of

parameters, that govern how much the dendrites branch, have to be used in the model.

5.3.5 Repairing other cell types

The neuron repair tool is designed to be applicable to all neuron cell types besides just

pyramidal cells, in the animal and the human brain. Using the TREES toolbox (Cuntz et al.

(2010)) modelling different cell types can be done via just one parameter called the balancing

factor bf . bf balances the need to minimise conduction time towards the soma, alongside

maintaining a small wiring cost (see Fig. 10). Furthermore, the dendritic arbor of a neuron is

set apart by the density profile of its spanning field. bf is estimated automatically by the repair

algorithm (Bird and Cuntz (2019)), as well as the density profile of termination and branch

points in the dendritic arbor of the input neuron that is supposed to be repaired. Carrier

points are then distributed accordingly within the growth volume provided by the user.
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Figure 40. Repairing different cell types: hippocampal granule cells, cerebellar Purkinje cells and
artificially grown cells
A, Granule cell of the mouse (Beining et al. (2017)). (Left) Reference morphology with intentionally cut
dendrites marked in red. (Right) The morphology in black has been repaired with artificially grown
dendrites marked in red. The blue shaded area marks the growth volume. B, Purknje cell from the
mouse (Chen et al. (2013)). Same layout as in A with the reference on the left and the repair on the
right. C, Artificial spherical neuron grown with the TREES toolbox (Cuntz et al. (2010)). Layout like in
A (reference on the left, repair on the right).

76/124



5. RESEARCH AND RESULTS

These carrier points are the framework used by the MST algorithm of the TREES toolbox to

grow into. The number of carrier points is dependent on the size of the growth volume as

well as on the density profile of the dendritic arbor of the input neuron. These parameters

calculated automatically by the repair tool can also be adjusted manually if needed (see

Materials and methods Chapter 4). By using different values for bf and different densities

and numbers of carrier points, different cell types can be modelled and therefore be repaired

by the algorithm. Fig. 40 shows examples of such repairs that are not pyramidal cells. Panel A

depicts a granule cell of the mouse (Beining et al. (2017)). Like in Fig. 30, the original reference

morphology is shown on the left, with the intentionally cut part of the dendrite marked in red.

The repaired version is shown on the right, with the blue shaded area representing the growth

volume and the artificially extended dendrites marked in red. The granule cell typically

favours low conduction time over minimal wiring cost and can therefore be modelled using a

high bf value. The carrier point density distributed in the growth volume is relatively low.

A purkinje cell on the other hand tends towards the other end of the spectrum, minimising

wiring cost rather than conduction time. Panel B shows an example repair of a mouse purkinje

cell (Chen et al. (2013)) that uses a low bf value. Compared to the granule cell, the density of

carrier points is much larger in the purkinje cell. As illustrated by panel B, this configuration

leads to a lot of branching. The layout of panel B is the same as in panel A. The last panel C of

Fig. 40, which has the same layout as the previous ones, depicts a spherical, fully artificial

neuron produced by the MST of the TREES toolbox. As a proof of concept, this neuron has

been intentionally cut and repaired in the same way as the others. The incomplete growth

mode was used for the repairs of the cells depicted in Fig. 40, repairing a part of the dendrite

that is known to exist.

5.3.6 Biological repair of class IV da-neurons of D. melanogaster

To investigate the development of dendrites and dendriotomy, the class IV da neurons of the

Drosophila fly are used as a model. The objective here is to reproduce experimental findings

in dendriotomy by Song et al. (2012), Li et al. (2018) and Stone et al. (2014), mimicking real

neurons of Drosophila. This was done using five reconstructions of class IV neurons (Song et

al. (2012)) from the data base neuromorpho.org (Ascoli et al. (2007)). This project was inspired

by the previous work done by two students of the Cuntz lab at ESI (Ernst-Strüngmann-

Institut) Frankfurt am Main, Hannah Moessinger and Barbara Schaffran, who investigated
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the biological regrowth of class IV Drosophila neurons using computational modelling. The

class IV neurons had one branch cut off (lesion), leaving one cut off point defined as the

incomplete node. The cell will then grow into the area left vacant by the lesioned branch. This

would either happen by neighbouring branches ’invading’ the space, or by a new branch

sprouting from the incomplete node (’conserved branches’). This behaviour of the neurons can

be simulated using the neuron repair tool. Using the biological growth mode, new dendrites

can grow from any random point on the input morphology. Repairing the Drosophila neurons

with the repair tool multiple times yielded a distribution of invasion and conserved regrowth.

The repairs obtained by the algorithm were grouped depending on the fraction of invading

Figure 41. Biological regrowth using the neuron repair tool
Class IV neurons of Drosophila (Song et al. (2012)). A, Reference morphology with the intentionally
sectioned branch marked in red. B, Biological regrowth using the neuron repair tool of the severed
branch from A. In this case, the new dendrites grew mainly from the severed stem. C, Biological
regrowth using the neuron repair tool of the severed branch from A. Here, the area left vacant by
cutting the branch is invaded by new dendrites from neighbouring branches. D, Statistics of what
percentage of the newly grown dendrites originates from the severed stem over 500 trials. This means
applying the biological regrowth algorithm to the Drosophila neuron from A 500 times.
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branches that regrew from neighbouring branches rather than from the incomplete node

during the repair. Panels A-C in Fig. 41 show examples of biological regrowth performed

on a class IV da-neuron of Drosophila, with the original reference morphology in panel A.

Panel B shows an example of conserved regrowth originating from the incomplete node and

panel C shows an example of invasion. The cut and repaired dendrites are marked in red

respectively. If the removed branch represented approximately 25% of the total dendritic path

length of the original neuron, conserved regrowth from the incomplete node tended to occur.

Invasion was observed to occur in all neurons regardless of how much dendritic material

was cut off. With more of the neuron’s path length removed, invasion seemed to occur less.

Predicting the amount of invasion was not possible. The distribution of conserved regrowth

and invasion was of bimodal nature as depicted in Fig. 41 D that shows the percentage of

regrowth from the cut branch out of 500 regrown neurons. The distribution features two

distinct peaks at 0% of the regrown material originating from the cut branch and 60% of

the material stemming from the incomplete node. This is in accordance with the research

conducted by Song et al. (2012), who observed the same bimodal distribution. Over 60% of the

artificially regrown morphologies displayed invasion when less than 25% of the total dendritic

material of the original cell was cut. The 40% that remain displayed a degree of conserved

growth, approximately 20% of the sectioned branches’ total length.

The repair algorithm is therefore capable of reproducing biological regrowth. The regrowth

simulates a neuron’s capability of recovering/regrowing dendritic material in an area where its

dendrites were damaged. The results show the same balance between invasion and conserved

regrowth as experimental findings by Song et al. (2012).
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6 Discussion

The two computer models introduced in this thesis aim to make a contribution to further

our understanding of how the brain works. They achieve this feat in different ways. The

macroscopic model of brain folding provides an explanation as to how gyrification emerges,

what the differences between species are, how neural connectivity of the cortex on a local and

global scale is constituted to produce the different levels of convolutions and how pathological

diseases might impact gyrification. The interaction between diseases and gyrification will

be discussed in more detail at a later stage of this thesis. The microscopic model provides

a way to enhance research on neuron morphologies, especially human ones, by repairing

incomplete morphologies, restoring their appearance and electrophysiological properties. This

can be a means to improve the poor human neuron data situation, increasing the reliability

and accuracy of these data sets, potentially revealing more of the subtle differences between

human neurons and those of other mammals. It is applicable to all different cell types and

features a biological regrowth mode.

6.1 What causes the brain to fold?

The model of gyrification introduced in this thesis reproduces the trend of increased corti-

cal folding found in mammalian brains with increasing size (Zilles et al. (2013), Mota and

Herculano-Houzel (2015), Hofman (1985)). The model also provides an explanation for out-

liers like the lissencephalic cortex of the manatee (Charvet et al. (2016)). The principles the

model is build on are very simplistic. Neuronal placement is constraint by the demand that

wiring length must be minimised (Laughlin and Sejnowski (2003), Wang and Clandinin (2016),

Ruppin et al. (1993), Chklovskii and Koulakov (2004)). The model predicts folding patterns

with different levels of gyrification for a connectivity distribution with strong local and sparse

global connections. Such a connectivity is the result of a compromise also implemented by the

real brain to optimise network performance with fast conduction time and global information

processing (Bullmore and Sporns (2012)). According to the model, folding in larger cortices is

likely to depend on their high number of columns C as they represent cortical size, compared

to the number of neurons per column M , which is disproportionally low. Cortical thickness

represented by M stays relatively constant. The level of gyrification in the model is however
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critically dependent on connectivity parameters as well, suggesting that brain folding patterns

with similar appearance could be defined by multiple parameters. Therefore, differences

in cortical size, the number of neurons within a cortical column (cortical thickness), and

connectivity work together to produce the intricate folding patterns we observe in the brain.

Changing any of these parameters in the model in a local area leads to stereotypical folds

emerging in these sections. These predictions by the model could explain the characteristic

folds that appear on the cortices of mammalian brains.

The magnitude of the increase in Cortical folding with increasing brain size varies depending

on connectivity parameters as demonstrated in Fig. 21. These differences in scaling were

also observed in different orders of mammals (Mota and Herculano-Houzel (2015), Zilles

et al. (2013), Pillay and Manger (2007)). Specifically γ changed the maximum slope of the

sigmoidal fit significantly in the model. Since γ changes the rate of decay in global connectivity,

future research should analyse the differences in global connectivity between mammalian

orders. Specifically questions like how far global connections reach in the cortex and whether

mammalian orders with strong scaling feature connections that span the maximum available

distance in their cortices, could be interesting.

The differences in the scaling of the degree of folding between mammalian orders could also

be the result of different cortical thicknesses (Mota and Herculano-Houzel (2015)). Thicker

cortices in turn can be the consequence of larger neurons, which additionally lead to an

increased width in local connectivity, since they span longer distances. Indeed, in rodents of

increasing body size, the size of neurons and the width of local connectivity increases much

more dramatically compared to primates (Elston and Manger (2014)). Therefore, the lower

rate of gyrification scaling in rodents compared to other mammalian orders could be the result

of a diminished number of neurons, columns and a broader local connectivity (Zilles et al.

(2013), Pillay and Manger (2007)).

In the folding model, differences in the number of neurons per column and therefore cortical

thickness influence the degree of folding significantly (Fig. 25 C). These variations could be

an explanation as to why the degree of folding in humans and primates is not constant along

the rostrocaudal axis (Toro et al. (2008), Toro (2012), Zilles et al. (1988), Zilles et al. (1989)).

While the degree of folding in the rostral part of the cortex is lower than in the caudal part,

the caudal part features larger numbers of neurons than the rostral part (Charvet et al. (2016),

Charvet et al. (2015)). As depicted in Fig. 25 C, the model predicts the exact opposite for the

degree of folding.
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Figure 42. Rostrocaudal folding differences
(Note: Figure by Groden et al. (2019), Fig. S7) Changing connectivity can cancel out the effect of
changing the number of neurons per column M . Folding parameters are fixed unless stated otherwise
(M = 2, C = 1200, σ = 0.9, a = 0.2, b = 1, γ = 1). A, Example folding pattern on the left with folding
amplitudes plotted on the right. M is changed in one region of the cortex compared to the other, as
indicated by the shaded area. Dot colours indicate columns and position on the folding pattern. B,
Another folding pattern with the same changing values of M as in A, but also changing values of σ
(local connectivity). The differences in folding and connectivity mimic the situation in the rostral vs
caudal part of the cortex.

The cortex is, however, much thicker in the rostral part than in the caudal part, which is

associated with a decreased degree of folding (Zilles et al. (1989), Mota and Herculano-Houzel

(2015), Pillay and Manger (2007), Welker (1990), Hofman (1985)). Interestingly, in the rostral

region, cortical thickness is increased despite the low number of neurons per column. Since

columns span the cortex vertically, less neurons per column should correlate with a thinner

cortex and therefore increased folding. In primates and rodents the opposite is true, which is

likely due to an increased neuron size in the rostral part of their cortex. As mentioned earlier,

this can lead to a thicker cortex despite low numbers of neurons. Neurons of larger size are

the only explanation since the size and number of glial cells is constant throughout the cortex

(Herculano-Houzel (2014)). Elston (2000) and Elston (2003) actually found neurons in the
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rostral part of the cortex to be larger than in the caudal part. With increasing size, neurons

span larger horizontal distances as mentioned before, resulting in a wider local connectivity

(Elston (2003)). Keeping in mind that despite low numbers of neurons per column, cortical

thickness is increased in the rostral region due to larger neuron size, which also increases local

connectivity width, the gyrification model can reproduce the difference in folding between

the rostral and caudal parts of the brain as shown in Fig. 42. Changing only the number

of neurons per column M , and therefore cortical thickness, results in the opposite effect as

depicted in Fig. 42 A. The part with a decreased number of neurons per column (rostral

part) is more convoluted than the other part, which is not what we find in biology. However,

changing local connectivity according to the biological findings reveals that the connectivity

parameters can compensate for the lack of neurons (FIg. 42 B). In the rostral part, neuron size

and therefore the width of local connectivity, is increased. This is modelled by an increase in

σ, which increases local connectivity width in the model. Despite the low number of neurons

per column M compared to the caudal section, the degree of folding in the rostral part is now

significantly lower.

In biology, it is oftentimes observed that regions which perform similar functions or are

complementary are located in close vicinity and feature strong interconnectivity. Such re-

gions that share a common functionality tend to form gyri (Welker (1990)). This structure

therefore represents, for instance, a certain body part, or part of the auditory system with

high connectivity (Scannell (1997)). In case two regions do not share a common function, they

are likely to be separated by a sulcus. As stated by Welker (1990), some species even show

a direct correlation between the number of nuclei in the thalamus and the number of gyri.

Gyri could therefore be the manifestation of nuclei in a nervous system, but here, they form

on the cortical sheet (as gyri). The gyrification model predicts something similar. Applying

extreme sets of parameters in the model, neurons group into nuclei-like arrangements as

shown in Fig. 15 B. When decreasing the number of neurons per column, the model predicts

a phase transition towards a cortical sheet (Fig. 43). The nuclei arrangement resembles the

organisation of neurons in birds (Jarvis et al. (2005)). Since a gyrus moves its walls closer

together allowing for shorter connections, it may be a compromise that features the benefits of

a nucleus as well an arrangement of neurons in a layered sheet. Such a compromise would be

the result of strong lateral connectivity between columns and neurons that share a common

function. In the gyrification model, effects on connectivity because of functional similarities

between neurons are neglected.
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Figure 43. From cortical arrangement to nuclei
(Note: Figure by Groden et al. (2019), Fig. S6) A dramatic increase in the number of neurons per
columns M leads to the transition from gyrification to nuclei (C = 200, a = 0.1, b = 1, σ = 0.01, γ = 1).

However, increasing connectivity in a small part of cortex can easily be done in the model.

As depicted in Fig. 26, such a local increase in connectivity leads to the formation of a

characteristic single fold. Unfortunately, the model predicts the formation of a sulcus rather

than a gyrus. This is not surprising, since the model can not identify the benefits of bringing

neurons closer together via a gyrus. On a local scale in the model, a sulcus is equally as

optimal as a gyrus; however, on a global scale, the model favors the sulcus to reduce the

distance to all other neurons, especially the ones that are topologically distant. In a real cortex,

the gyrus would be far more beneficial to minimise wiring cost, since axons would be able to

go right across rather than going all the way around like they would have to with a sulcus.

There is no doubt that cortical folding depends on some physical force acting on the tissue

pulling it together, thus creating gyri and sulci. Even though the gyrification model does not

simulate any physical forces, it does not contradict their existence. Specifically forces that

lead to wiring cost optimisation are compatible with the model. However, hypotheses like the

axonal tension theory provide a more direct correlation between gyrification and wiring cost

optimisation (Van Essen (1997)). Strongly interconnected parts of the cortex are consequently

pulled together due to the force exerted by the axons connecting them forming a gyrus. The

competing forces lead to neurons taking positions that optimise wiring cost. Analogously, the

model predicts the positions of neurons based on how interconnected they are with highly

connected ones in close vicinity, without the need to simulate physical forces. Predictions

84/124



6. DISCUSSION

by the model are therefore likely to represent self-organising global neural arrangements,

created by forces pulling on single neurons. It is possible to explain gyrification of the cortex

using such a self organising mechanism. If the position of a neuron depends on a mechanical

pulling force exerted by its connections, then the magnitude of this force is going to change

with the number of neurons. Given that the relative connectivity stays constant, this would

lead to different folding layouts, explaining the phase transition from lissencephalic to highly

convoluted folding patterns. This transition is predicted by the model and observed in biology,

with the degree of folding depending predominantly on the number of columns (increasing

cortical size increases the number of neurons) and not the specific connectivity (Weigand et

al. (2017)). Furthermore, the model suggests that local connectivity and global connectivity

result in different mechanical forces respectively that work together producing gyrification.

The model was able to show that the formation of gyri depends on local connectivity (Fig.

23 A left), given that the balance between cortical size (number of columns) and the size of a

column (neurons per column) is in the right range (Fig. 15 B). However, in the model, global

connectivity is equally as important for the degree of folding of a folding pattern (Fig. 23 A

middle and C). The physical tension of global connections tries to pull the entire structure

together, making it more compact. The result would be a thick cortex, while local connectivity

forces a small part of the cortex to contract. Local connectivity alone would therefore lead to a

thin cortex.

Figure 44. Local and global folding forces
(Note: Figure by Groden et al. (2019), Fig. S9) Presumably a combination of forces exerted by global
and local connectivity leads to the formation of gyri and sulci. (Left) Global connectivity, in an attempt
to save wiring length, exerts a pull in the tangential direction causing the cortex to thicken. (Right)
Local connectivity which is dominant within cortical columns compresses the cortex. (Bottom) These
two contradicting forces result in the formation of gyri and sulci signifying a compromise.
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Combining the two counteracting forces, the only option for the cortex to fulfil both constraints

is to fold, which represents a compromise (Fig. 44). Mechanical forces of significant magnitude

have indeed been found (Bray (1984), Dennerll et al. (1989), Lamoureux et al. (1989), Chada

et al. (1997), Heidemann et al. (1995), Xu et al. (2009), Xu et al. (2010), Hanein et al. (2011),

Franze (2013)). Such forces were initially thought to be sufficient to drive the formation of

gyri and sulci as proposed by Van Essen (1997). A more recent study by Xu et al. (2010),

however, found that the tension exerted by axons is not strong enough to pull gyri walls

together. As suggested by our model, forces that originate from local and global connectivity

combine to define the folding pattern in the cortex. Analogously, a recent study by Lawton

et al. (2019) showed that a deferentially expanding outer layer under the influence of tensile

radial forces and forces along the circumference determine the shape of the initial folding

pattern of the cerebellum. The results of the model suggest that circumferential force within

grey matter and forces pulling on the global structure through axon fibres in white matter are

the reason behind gyrification in the biological cortex (Herculano-Houzel et al. (2010), Xu et

al. (2010)). Additionally, Kroenke and Bayly (2018) found that the start of cortical folding in

a growing brain coincides with the formation of connectivity. As soon as connections form,

there are tensile forces along the axonal fibres. The formation of convolutions also corresponds

to functional areas in the brain with characteristic folds usually forming in the same areas

(Welker (1990)). Analysing these cytomechanical forces in the future would be interesting.

Such investigations could be aided by the gyrification model, linking neuron’s circuits to these

mechanical forces.

6.2 Folding in pathological human brains

Disorders in the human brain can change the level of gyrification in parts or the entirety

of the cortex. The result of such a change can, for instance, be lissencephaly in the human

brain (Welker (1990), Di Donato et al. (2017)). A cortex described as lissencephalic features

no or reduced gyri and increased thickness, since neurons fail to migrate to their proper

positions within the cortex and remain stuck in white matter (Moon and Wynshaw-Boris

(2013), Richman et al. (1975)). The absence of gyri and sulci is predicted to be the result of

increased cortical thickness by mechanical models in a pathological lissencephalic condition

(Budday et al. (2014), Richman et al. (1975), Toro and Burnod (2005)). In a thicker cortex, outer

neuronal layers can be thinner compared to relatively thick inner layers.
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Figure 45. Increasing M leads to lissencephaly
(Note: Figure by Groden et al. (2019), Fig. S9) Increasing the number of neurons per column M leads
to lissencephalic arrangements. For C = 200 the folding pattern reaches a state of no folding at all,
while for C = 500 the transition is not completed entirely (a = 0.2, b = 1, σ = 0.1, γ = 1).

In line with these findings, the gyrification model described in this thesis predicts lissencephalic

folding patterns for increasing numbers of neurons per column M (Fig. 45 top), which is the

equivalent of increased cortical thickness in the model. Connectivity, however, plays a role

equally as important, as changes here may result in lissencehphaly as well. In lissencephalic

cortices, the amount of white matter is reduced, which decreases the long-range connectivity,

as shown by experiments conducted by Kao et al. (2011) and Lee et al. (2004). Similarly, a de-

creasing global connectivity leads to lissencephalic cortices (Fig. 23 C). Therefore, there might

be a synergy of weak global connectivity and increased cortical thickness (larger numbers of

neurons per column), that further reduces the prominence of gyri, leading to lissencephaly.

Neither decreased global connectivity nor increased cortical thickness on their own are enough

to produce completely lissencephalic folding patterns when the number of columns is in-

creased (Fig. 45 bottom, Fig. 23 A and B).

Lissencephaly is just one example of a change in cortical folding that is caused by brain

disorder. There are a wide variety of such pathological phenomena that change folding in

different ways (Walsh (1999), Sun and Hevner (2014), Barkovich et al. (2012), Fernández et al.

(2016)). By altering the corresponding parameters in accordance with how cytoarchitecture
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changes within a pathological cortex, the gyrification model is capable of reproducing the

same change in folding observed in biology as was demonstrated in Fig. 27.

6.3 Gyrification model relationships

Cortical connectivity is reportedly very strong on the local scale, but decays rapidly on a

global scale, weakening long range connectivity (Kaiser et al. (2009), Ercsey-Ravasz et al.

(2013), Hellwig (2000)). In the gyrification model presented in this thesis, only cortico-cortical

connections are taken into consideration. This is done to make the model as simple as possible,

since connections from subcortical regions do not contribute to folding in a significant way

(Barron (1950), Welker (1990)). In the model, neurons are assigned to cortical columns, which

are connected in a cyclical chain. The connection probability function, that defines which

connections form between neurons, is based on the topological distance between the cortical

column a neuron was assigned to. For reference, see Fig. 15 A and Fig. 22, which show the

connection probability function in detail. Model results are able to reproduce folding patterns

of varying degree of folding, ranging form arrangements with no folds to highly convoluted

ones. Folding patterns exhibit multiple levels of gyrification with varying spatial frequencies

of gyri and sulci. Changing the number of columns relative to the number of neurons per

column and vice versa is enough to achieve such variety in the model (Fig. 15 B). The degrees

of gyrification in mammalian species are covered by the model results, as the model produces

folding patterns with folding comparable to large primates or even cetacean species, which

exhibit the largest degree of folding (Fig. 16, Fig. 18 B, Fig.19, compare to findings by Mota

and Herculano-Houzel (2015), Zilles et al. (1989), Welker (1990)).

Larger numbers of columns C in the model, corresponds to a cortical sheet of increasing size.

This leads to an increase in the degree of folding, with large primary folds emerging first, and

smaller folds of high frequency developing on top of the primary folds as secondary folds

(Fig. 18 B, Fig. 19). The secondary folds exhibit a smaller amplitude. Opposed to that, the

number of neurons per column M corresponds to cortical thickness, with low M signifying a

thin, and large M signifying a thick cortex. In the model, folding increases with low M (thin

cortices) and decreases with large M (thick cortices)(Fig. 45). These model predictions are

in line with observations in mammalian species, where a thick cortex exhibits little folding,

while cortices of larger size develop high degrees of gyrification (Welker (1990), Zilles et al.

(1989), Hofman (1985), Mota and Herculano-Houzel (2015), Pillay and Manger (2007)).
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There are a multitude of other models of gyrification that found the same influence cortical size

and thickness have on the level of gyrification (Mota and Herculano-Houzel (2014), Tallinen

et al. (2014), Budday et al. (2014), Bayly et al. (2013), Toro and Burnod (2005), Richman et al.

(1975), Todd (1982), Prothero and Sundsten (1984)). The majority of these approaches focused

on mechanical forces acting on the cortical sheet, that would cause it to fold. Therefore, they

analysed what kind of strain the cortex experiences during growth and how it would react to

such forces due to material properties and the properties of the white matter beneath, in an

attempt to explain why gyrification emerges (Toro and Burnod (2005), Richman et al. (1975),

Bayly et al. (2013), Budday et al. (2014)). Since they model mechanical forces, these models are

well adapted to further our understanding of the underlying mechanism of cortical folding.

The models, however, struggle to explain the development of stereotypical gyri and sulci.

Specific folds are reproducible with the model presented in this thesis, when using the same

connectivity, but introducing local changes of the connection probability function (Fig. 25 A

and B). With respect to that, the model presented here is unique, since it takes connectivity

into account, enabling the investigation of the effect of connectivity on gyrification. Variations

in connectivity could hence be responsible for stereotypical folding patterns and explain why

folding patterns can be inherited (Biondi et al. (1998), Bartley et al. (1997), Lohmann et al.

(1999)). This approach could furthermore provide an explanation why folding patterns are

characteristic within mammalian clades (Welker (1990)), why specific gyri and sulci can be

identified as functional areas (Fischl et al. (2008), Welker (1990)), and why perturbations in

connectivity change the appearance of folding patterns (Welker (1990), Rakic (1988)). Without

any local changes of connectivity, the position of folds predicted by the model is random,

even when using the same connectivity for two separate folding patterns (Fig. 24). The degree

of gyrification, however, remains much the same. In mammalian species with high levels of

gyrification, characteristic as well as unpredictable folds have been observed. The degree

of gyrification in such mammalian species remains similar among individuals belonging to

the same species, despite the fact that the exact position of a fold is unpredictable (Zilles

et al. (2013)), which is in agreement with the model predictions. Therefore, it is likely that

characteristic convolutions in the brain are the result of functional areas of the cortex that are

highly interconnected and feature a highly organised connectivity. Unpredictable convolutions

probably emerge due to variations in cortical sheet size, the number of neurons per column or

connectivity.

The gyrification model presented in this thesis is very practical when it comes to understanding
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the link between cortical folding and connectivity, as was demonstrated for multiple examples

from biology. The model is, however, based on assumptions, which greatly simplify the model,

but work on an abstract level (O’Leary et al. (2015)). The numbers of neurons used in the

model are far below what is observed in mammalian species. The sheer computational power

to handle such numbers is simply not available. The model assumes that the relative position

of neurons is decided by how the neurons are connected. This is done by using a dimension

reduction method that determines a neurons position based on its connection dissimilarities.

Since in such arrangements, neurons that share a lot of connections are placed spatially

close, they instinctively satisfy optimal wiring constraints (Chklovskii and Koulakov (2004),

Laughlin and Sejnowski (2003), Ruppin et al. (1993), Wang and Clandinin (2016)). Costa et al.

(2007) and Song et al. (2014) actually found that connection dissimilarities correspond to the

relative connectivity between functional areas. This relative connectivity in turn is associated

with the distance between such areas in the cortex (Ercsey-Ravasz et al. (2013)). The model

assumes that this relationship between connection dissimilarity and distance can be carried

over and applied to neurons as well. It has already been shown that a dimension reduction

method, namely oMDS (ordinal multidimensional scaling), is capable of predicting cortical

maps in mammalian visual cortices (Weigand et al. (2017)). Here, connectivity is determined

by feature preferences of neurons. Instead of using oMDS, the gyrification model uses t-SNE

(van der Maaten and Hinton (2008)), since it performs much better. t-SNE specialises on

preserving data structure locally and globally on the projection of low dimensions, as well as

set apart data that lies on multiple high dimensional manifolds (van der Maaten and Hinton

(2008)). Studying the effect of connectivity on the folding pattern arrangement on different

scales, meaning global and local connections, is made possible by these distinct properties

of t-SNE. oMDS as a more conservative approach falls short in these regards. Importantly,

t-SNE next to its advantages does have some unwanted flaws or side effects (Wattenberg et

al. (2016)), occasionally resulting in solutions exhibiting some form of degeneracy (Fig. 17).

Evidently, the cost function minimised by t-SNE has no relation to a growing cortex, where

cells migrate to the cortical layers, like we observe in biology (see Materials and methods

Chapter 4). Also, for the dimension reduction method there is no reason why neurons in

folding patterns can not form a sheet rather than a circular line. This leads to the formation

of degenerate arrangements. The degree of folding was easy to recognise in the degenerate

folding patterns, matching the level of gyrification in regular ones within the same parameter

range. All degenerate solutions were, however, discarded using an automatised algorithm
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that filtered out all results that did not form a closed loop (see Materials and methods Chapter

4). Since computational power limits the number of neurons used in the model, as mentioned

earlier, the model is not capable of explaining how connectivity and the number of neurons

relate quantitatively. However, in spite of such simplifications, the qualitative predictions of

the model are widely in line with experimental data, as shown before. Taking into account

what has been found by Weigand et al. (2017) regarding cortical maps in addition to matching

cortical folding and connectivity, the gyrification model suggests that the nervous system is

moulded by optimising wiring constraints.

The potential of the gyrification model is far greater than what has been elaborated on in this

thesis. Using relatively low numbers of neurons and corresponding connectivity parameters,

it was possible to compute large sets of data that include a lot if different levels of gyrification,

showing a large proportion of the folding pattern spectrum. Creating folding patterns with

much larger numbers of neurons is, however, theoretically possible (Fig. 16). Such folding

layouts potentially feature extreme degrees of gyrification. Changing the connectivity matrix

in very specialised ways reveals what the model is capable of. This is demonstrated in Fig. 46

A right, where a folding pattern with two distinct hemispheres was created using a special

connectivity matrix. Two topological rings of columns feature the same connectivity used in

the model, with sparse global but strong local connectivity, within themselves respectively.

This is indicated by the connectivity matrix depicted in Fig. 46 A left, with the upper left

section of the matrix corresponding to one hemisphere and the lower right section to the

other. The interconnectivity in between the two hemispheres is very sparse and corresponds

to the lower left and the upper right section of the matrix. Fig. 46 B right demonstrates

another special connectivity folding pattern that mimics the rough shape of the hippocampal

region. The layout of the connectivity matrix in Fig. 46 B left is the same as in Fig. 46 A

left. In this particular case, random noise connections were added to the connectivity, as

depicted in the connectivity matrix. In the future, the model could be used to uncover the

anatomical aspects of homologous structures in the brain. For this purpose, a lot of details of

cortical connectivity would have to be added, forming special models that help explain the

distinct folding arrangement of the mammalian hippocampus and the comparatively simple

corresponding homologous regions in reptiles (Tosches et al. (2018)).
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Figure 46. Modelling specific anatomical structures
(Note: Figure by Groden et al. (2019), Fig. S8) A, Binary connection matrix on the left with every
black dot signifying a connection. The two folding pattern hemispheres on the right feature the same
intra-connectivity as usual (top left and bottom right in the matrix). Every column is also connected
to its counterpart of the folding pattern in the other hemisphere. The connection probability rapidly
decays the further columns are separated topologically (bottom left and top right in the matrix). B,
Binary connection matrix on the left like in A. The two chains are non-cyclical, with one chain being
strongly connected to both ends of the other chain (bottom left and top right in the matrix). The chains
feature a similar connectivity within themselves. The connectivity represents a rough, simplified
version of the connectivity in the hippocampus, with the dentate gyrus (DG), the CA1, and CA3
region.

6.4 The lissencephalic manatee

It is unlikely the presumed connectivity differences between mammals and rodents are

mainly responsible for the often lissencephalic appearance of rodent cortices. Recent studies

suggest that the low degree of folding in rodents is due to the small size of their cortical
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sheet (Mota and Herculano-Houzel (2015)), which is in agreement with the findings of the

gyrification model presented in this thesis. Interestingly, there is an outstanding exception

that debunks the theory that lissencephalic cortices are only observed in species with a small

cortical sheet, which is the manatee. The manatee’s cortical size and number of neurons is

in the range of primates, yet its cortex is lissencephalic (Charvet et al. (2016)). Considering

that marine mammals and species of the Afrotherian clade that are closely related (Foote

et al. (2015)) display extreme levels of gyrification (Zilles et al. (2013), Mota and Herculano-

Houzel (2015), Pillay and Manger (2007)), this seems even more peculiar. According to the

gyrification model, there is a peak level of folding when increasing the number of columns and

therefore increasing cortical size, after which folding decreases back towards lissencephalic

arrangements (Fig. 20). These lissencephalic folding patterns feature a thicker cortex that still

shows some larger primary convolutions. In the model it seems as if the small high frequency

secondary folds fuse together creating a thicker cortex. The same could be happening in the

manatee leading to its lissencephalic cortex. Approaching from a different angle, in the model

low degrees of folding can correspond to a large number of neurons per column (Fig. 45, Fig.

43). Alternatively, strong local connectivity in addition to weak global connectivity by itself

or in conjunction with large numbers of neurons per column would yield the same model

results (Fig. 23 A, B and C) and could explain how neurons cluster into Rindenkerne (Butti et

al. (2011)).

6.5 Benefits of a neuron dendritic repair tool

Most of the insight into the detailed functionality of structures in the brain has been derived

from experimental research conducted in animals. The research is mostly based on animal

data, since reliable, accurate data on the human brain and neurons is sparse (DeFelipe (2015)).

In June of the year 2021, the data on human nerve cells contained by neuromorpho.org (Ascoli

et al. (2007), Parekh and Ascoli (2013)), which is one of the largest public data bases on neuron

morphologies, amounts to only approximately 4.9% of the entire data set. Adding to the

already limited data situation is the fact that acquiring large data sets of neurons from human

brain tissue is restricted by ethical issues (Kellmeyer (2021), Tilimbe (2019), Palk et al. (2020)).

It is, however, of critical importance to be able to study human neurons specifically instead of

those of animals. This is due to observations that found functional and structural differences

between neurons of humans and other mammals (Geschwind and Rakic (2013), Hofman
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(2014), Rilling (2014), Kaas (2013), Sherwood et al. (2012), DeFelipe (2011), Oberheim et al.

(2009), Schmidt and Polleux (2022)), which is the reason why substituting human with other

mammalian data is not viable (Zhao and Bhattacharyya (2018)). There are a multitude of

reported differences between for example, homologous mouse and human neurons involving

gene expression, morphology and laminar distribution (Hodge et al. (2019)). Eyal et al. (2016)

found human layer 2/3 pyramidal neurons from the temporal cortex to have a lower mem-

brane capacitance Cm ≈ 0.5µF/cm2, compared to the agreed upon Cm ≈ 1µF/cm2 found

in other species. The study predicts the lower membrane capacitance improves synaptic

charge-transfer from the dendrites to the soma and spike propagation along the axon in

human neurons by using 3D reconstruction models. The human brain’s size increased during

evolution as well as its complexity (DeFelipe (2011)). Therefore, specialised mechanisms

developed in human neurons to handle the increased complexity of higher brain functions, in-

cluding strong excitatory synapses allowing excitatory principal cells to cause local inhibitory

neurons to fire through only a single action potential (Szegedi et al. (2016)). Firing patterns of

large groups of neurons that represent the higher functions of the brain could otherwise not

be coordinated. From a morphological standpoint, synaptic spines have been reported to be

significantly larger, longer and come in higher densities in human neurons compared to mice

(Benavides-Piccione et al. (2002)). Also human CA1 pyramidal neurons have been found to

be larger and structurally different from mouse CA1 pyramidal neurons (Benavides-Piccione

et al. (2020)). Understanding these differences between human neurons and those of other

species will be key to unravel what makes the human brain so unique in terms of cognitive

abilities. On top of the problematic human neuron data situation, most of the 3D morphology

reconstructions originating from human cells that are available, are taken from pathological

neurons extracted from patients with brain disorders that can potentially change the mor-

phology and functional aspects of the neurons (Houser (1992),Glass and Dragunow (1995)).

The reconstruction process after obtaining the neurons from patients is a difficult procedure

that is unfortunately prone to error itself (De Schutter and Jaeger (2000)). By resecting tissue,

dendrites of neurons can be accidentally cut, or agents injected into the neuron to stain it for

microscopy may not reach remote areas of the dendrite and the resulting microscope image

can be distorted, to mention just a few possible errors.

To tackle the issue of studying human morphologies for their specific structural and functional

aspects, the scientific community needs to have access to large, complete and reliable data

sets of 3D reconstructions of human neurons. The neuron dendrite repair tool introduced in
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this thesis is designed to improve the data situation on specifically human neurons, as well as

solve and relief problems and difficulties associated with neuron reconstruction. Data sets that

already exist and contain incomplete reconstructions can be improved by completing these

morphologies. This will enlarge data sets of human neurons, counteracting the problematic

ethical situation that limits the ways data of human neurons can be acquired. Data that

would otherwise be invalid due to pathological damage to neurons and brain disorders can

be repaired such that these neurons resemble their healthy state more closely. These repairs

can then be added to the existing data bases.

6.6 Recovering human CA1 pyramidal neuron morphology and electro-

physiology

By extending the dendrites of human CA1 pyramidal neurons using the neuron repair tool

(see Fig. 33 and 34), the apical arbor reaches more than halfway into the SLM layer, making

the formation of synaptic input connections arriving from the perforant path that would

normally form (Ito and Schuman (2012)) possible. None of the human reference morphology

reconstructions if Fig. 33 feature an apical tuft. Since the tuft is located far away from the soma

it is hard to reconstruct. However, the projections reaching the CA1 region of the hippocampus

from the entorhinal cortex contact the apical tuft regions of CA1 pyramidal neurons as well

as interneurons in the SLM layer as shown for rats (Capogna (2011), Desmond et al. (1994)).

Therefore attaching an artificial tuft to a human CA1 pyramidal neuron reconstruction can

help recover their original functionality, providing better insight into the properties of human

neurons. The same concept can be applied to other cells in different regions. Unfortunately,

it is impossible to know exactly what incomplete dendrites would look like in real life. The

areas where the new artificial dendrite extensions would grow (Fig. 34 C) were designed in

accordance with the expertise and experience of Benavides-Piccione et al. (2020). Examples of

the growth volumes provided by Benavides-Piccione et al. (2020) are attached in the Appendix

(Chapter 11) Fig. S1. The placement of the growth volumes was done taking regions of

arriving synaptic input into account. Furthermore, dendritic material lost due to tissue lesion

was recovered, which was mainly the case for the basal arbors.

Repairs executed with the neuron tool are able to recover the firing behaviour of the original

reference morphology, as demonstrated in Fig. 35. While the damaged morphology exhibits
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a significantly increased firing rate when stimulated somatically compared to the reference,

the repair behaves like the reference. These differences in firing behaviour are to be expected,

since alterations in morphology reportedly have a big impact on neuron firing response (Zhu

et al. (2016)). The firing rate of the repaired morphology does not match the reference perfectly,

with the repair showing a slightly reduced firing rate. This can be due to differences in

topology between the repaired morphology and the reference. While the morphology of the

repair closely resembles the appearance of the reference, they are not an exact match. Such

small structural differences in geometry and complexity have been shown to affect a neuron’s

firing behaviour (Mainen and Sejnowski (1996), Zhu et al. (2016), van Ooyen et al. (2002)).

Compared to the cut neuron, the repaired morphologies’ firing rate has improved significantly,

fixing what would otherwise potentially be a neuron behaving in a pathological fashion. The

neuron repair tool can therefore help recover the true functionality and behaviour of neurons,

specifically human neurons.

The repair of both human and mouse neurons influences their electrophysiological behaviour

in a similar way. The cut morphologies exhibit an increased firing rate as shown in Fig. 35, yet

the effect is not identical. As mentioned before in Chapter 5, analysing the electrophysiological

differences between the human and mouse CA1 pyramidal neurons provided by Benavides-

Piccione et al. (2020), that were repaired with the neuron repair tool, has not been possible,

due to a lack of data. The analysis of the electrophysiological differences between human

and mouse dentate gyrus granule cells in Fig. 37 (data provided by Buchin et al. (2020)) that

was performed instead, showed that there are indeed significant differences between the two

species. These differences are also linked to the morphological differences displayed in Fig. 39.

Compared to the input resistance of mouse granule cells (GCs) reported by Schmidt-Hieber

et al. (2007) (Rin = 308± 26MΩ) and Beining et al. (2017) (Rin = 289.5± 34.9MΩ), the value

for human cells (Rin = 109± 10.63MΩ) was significantly lower. Reported values for human

dentate GCs include a wide range of values. Stegen et al. (2012) find Rin to be very high

(394.8± 60.2MΩ) in human GCs with mild hippocampal sclerosis (HS) and reduced in case

of severe HS (155.5± 41.4MΩ). In another study by Stegen et al. (2009), values for Rin range

from 290± 41MΩ for cells of Wyler grade 2 to 192± 16MΩ for Wyler grade 3 (the Wyler grade

(WG) indicates the level of HS (Wyler et al. (1992))). The human GCs provided by Buchin et al.

(2020) seem to follow a different trend, as WG1 (mild HS) shows lower Rin than WG3/WG4

(severe HS) (Fig. 38). Stegen et al. (2012) state that the low values of input resistance for severe

HS are likely due to an increase in membrane conductivity rather than a change in cell size,
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as the membrane surface area was similar for mild and severe HS. This is in line with the

results in Fig. 39, since the total dendritic length and the mean dendritic diameter does not

change with different WG. Therefore, the surface area does not change either. The values for

Rin reported by Stegen et al. (2009) and Stegen et al. (2012) seem to be more in the range of

mouse cells when compared to Schmidt-Hieber et al. (2007), Beining et al. (2017) and Young et

al. (2009) (421± 12MΩ). This is, however, strange, since human GCs tend to be larger than

mouse GCs, as demonstrated in Fig. 39, and should therefore have lower Rin. The concept

applies to other cell types as well, as shown by Beaulieu-Laroche et al. (2021) who compare the

properties of layer 5 pyramidal neurons across different species, with the large human neurons

exhibiting one of the lowest values for Rin. Similar to Rin, the membrane time constant Tm

in human GCs (13.11± 1.33ms) is reduced when compared to the mouse (34± 2ms Beining

et al. (2017), 37.2± 2.6ms Schmidt-Hieber et al. (2007)). Again Tm for human GCs (mild HS:

43.2± 2.1ms; severe HS: 28.4± 1.2ms) as found by Stegen et al. (2012) resembles the mouse.

The difference in Tm between WGs is also reversed in Fig. 38 compared to Stegen et al. (2012).

According to the results in this thesis and the literature, there seems to be a large variation in

Rin and Tm due to pathological changes within human GCs caused by HS.

The Membrane resting potential V rest for human GCs (−90.9±2.93mV ) was in a similar range

compared to mice (−80.4± 1.3mV (Schmidt-Hieber et al. (2007)), −92.7± 0.5mV (Beining et

al. (2017))). V rest does not seem to be significantly affected by HS in human GCs as well, as

displayed in Fig. 38 and found by Stegen et al. (2012) (mild HS −73.1 ± 1.0mV , severe HS

−78.9 ± 0.9mV ) and Stegen et al. (2009) (WG2: −73.2 ± 1.1mV , WG3: −75.1 ± 1.1mV ). The

calculated mean values for the axial resistance Ra in Fig. 37 are slightly increased in humans

(225.04± 88.28Ωcm) compared to mice (194± 24Ωcm Schmidt-Hieber et al. (2007)), but feature

a large range of possible values. Even with artificially added spines Ra does not change a lot

(artificial spines: 226.81± 87.87Ωcm). This is due to the wide range of possible values for Ra

that produce a fitting value for Rin, even for different WGs (Fig. 38). Therefore, Rin seems

to be mostly dependent on the value for Gm. Reported values for Ra range from 142.03Ωcm

in mild HS to 212.56Ωcm in severe HS (Stegen et al. (2012)), indicating large fluctuations. In

Fig. 37 the variations in the membrane conductance Gm are significant, compared to Ra.

Adding artificial spines increases Rm overall, which in turn decreases Gm. Thus the human

GC reconstructions exhibit a high value for Gm (1.17 · 10−4 ± 2.17 · 10−5S/cm2), where as

with added spines (0.94 · 10−4 ± 1.49 · 10−5S/cm2), Gm decreases. Since with added spines

the surface area of the neuron increases by a factor of ≈ 1.465, Gm here is not as low as it
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would be with spine control factor of ≈ 2 as suggested by Schmidt-Hieber et al. (2007). Gm in

case of the mouse (2.63 · 10−5 ± 0.16 · 10−5S/cm2 Schmidt-Hieber et al. (2007)) is much lower.

This is likely due to the large values of Tm in mice compared to humans, to compensate and

achieve a membrane capacitance of ≈ 1µF/cm2 (Cm = Tm/Gm). Cm is largely agreed upon

to be a natural constant (Curtis and Cole (1938)). The results by Schmidt-Hieber et al. (2007)

support this hypothesis, however, there have been recent studies suggesting a lower Cm

of ≈ 0.5µF/cm2 in human layer 2/3 pyramidal neurons (Eyal et al. (2016)) or ≈ 0.9µF/cm2

in rat layer 5 neurons (Gentet et al. (2000)). In Stegen et al. (2012), Cm is fixed at 1µF/cm2.

Their reported values in human GCs for Rm (mild HS 42.36kΩcm2; severe HS 14.79kΩcm2),

as Rm = 1/Gm, are within the range of those found in this thesis (9.76± 1.82kΩcm2; added

spines 11.97± 1.84kΩcm2). The difference in Rm and Gm between different WGs in Fig. 38

is, however, the opposite of that reported by Stegen et al. (2012). However, the difference

between WG1 and WG3/WG4 in Fig. 38 ensures that Cm ≈ 1µF/cm2. This is true in Fig. 37

as well, since with proper compensation for the lack of spines, both human (added spines

1.15± 0.18µF/cm2) and mouse (1.01± 0.03µF/cm2 by Schmidt-Hieber et al. (2007)) neurons

feature Cm ≈ 1µF/cm2. Without any compensation for spines Cm in human GCs is too

high 1.44± 0.24µF/cm2. Therefore, the findings in this thesis suggest that the hypothesis of a

constant Cm ≈ 1µF/cm2 holds true.

The morphological differences between human and mouse neurons in Fig. 39 suggest that

human neurons are larger and more complex than those of mice. This is in line with studies

that found similar results when comparing human morphologies to those of other species

like macaque monkeys, marmosets and chimpanzees (Elston et al. (2001), Bianchi et al. (2013),

Schmidt and Polleux (2022)). Human neurons are both larger and more complex in all cases.

Interestingly, the ratio of the difference in total dendritic length between mouse and human

neurons in both GCs and CA1 pyramidal neurons seems to be similar in Fig. 39. This suggest

that the size scaling factor between the two species is similar across different cell types. Patho-

logical conditions like HS seem to cause a large variation in electrophysiological properties

in human GCs. The neurons seem to undergo changes in passive properties, presumably to

maintain a consistent input output relationship, as neurons of different WG still maintained

a membrane capacitance of ≈ 1µF/cm2. The analysis of the passive electrophysiological

properties of both mice and human neurons further underlines the importance of being able

to repair especially incomplete human morphologies. The differences in electrophysiology

between the two species illustrate how human neurons compensate for differences in their
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morphology. Supplying complete human morphology data sets will help unravel whether

these changes are just for compensation or actually change the way human neurons process

information.

6.7 Neuron dendrite regeneration

Class IV da neurons in Drosophila are studied for their ability to regenerate dendrites (Song

et al. (2012)). In the peripheral nervous system (PNS) regeneration of class IV dendrites is

common, as Song et al. (2012) found regrowth to originate from the lesioned stem in 49.4%

of the cases, which was also reported by Stone et al. (2014) but not quantified. In case the

dendrite did not regrow from the sectioned stem, branches from the neighbouring dendrites

invaded the vacant region, covering the epithelial area with the dendritic network. Song et

al. (2012) reported this bimodal regrowth behaviour. In almost 100% of the cases, the vacant

region was recovered by the neuron dendrites in one way or the other (Stone et al. (2014)).

Since the process of regeneration is very complex when considering cell type, stage in devel-

opment and specific mechanisms, covering all these factors with the neuron repair tool has

not yet been possible. It is, however, possible to reproduce the resulting bimodal distribution

of dendrite regrowth, using the comparatively simple approach of the TREES toolbox. Fo-

cusing more on the method used by Song et al. (2012) to calculate invasion would be worth

while at this point. Song et al. (2012) found that for cases with 100% invasion, the lesioned

dendrite would stall or retract. In such a case it is, however, unclear whether the branch is

still operational or not. In case of a retraction, new target points could be connected to the

branch, which was not considered by Song et al. (2012). Leaving a longer stump when cutting

the dendrite caused regeneration to sprout from that location more often (Stone et al. (2014)).

With regard to this finding, investigating what impact the site of dendriotomy has on invasion

occurring as opposed to regeneration should be of interest.

Although the neuron repair algorithm can not mimic biological regrowth completely, the

results presented in this thesis allow for more insight and more secure use of the TREES

toolbox. Since the repair algorithm was able to reproduce the bimodal distribution between

invasion and regeneration, the results show that the same algorithm using the balancing factor

bf can be implemented to regenerate dendrites mimicking biological regrowth and to repair

an incomplete neuron. Additionally, the model shows that dendrites have similar properties

before the lesion event and after the regrowth regardless of whether neighbouring dendrites
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invade or the lesioned stem regrows.

6.8 Pros and cons of the neuron repair tool

Distributing carrier points in a specifically chosen volume is the underlying approach the

neuron repair tool is based on. The algorithm successively connects these carrier points

to the existing morphology reconstruction, using optimal wiring constraints. The volume

within which the carrier points are distributed can be based on the convex hull of sectioned

dendrites, or chosen by the user arbitrarily. This method provides high flexibility, enabling

the user to specify exactly where the morphology should be extended. On the flip side,

it presupposes a certain level of intuition and experience of the user. The addition of a

background image of sufficient quality, which can be used as a reference, negates some of

this problem. Specifically users/morphology re-constructors with experience in the field

will be able to judge the dimensions and boundaries of a morphology as well as where parts

might be missing much more effectively when using a background image. In case of the

CA1 region of the hippocampus and other brain regions with a similar organisation into

different layers, the procedure is greatly facilitated, since layer boundaries clearly indicate

where dendrites and somata are located. Other regions, like the cortex, are likely to pose a

bigger challenge, since here, neurons do not grow within well defined layers but anywhere

within a cortical column (Tischbirek et al. (2019)). To eliminate the problem of an arbitrarily

chosen growth volume, the final complete boundary of any neuron would have to be predicted

by an algorithm that implements a large data base of neuron morphology reconstructions.

Such an algorithm would have to analyse the existing input morphology (just like the neuron

repair tool introduced in this thesis) and consider its specific cell type, region of origin in the

brain and species. The data base the algorithm relies on has to contain a large number of

complete neuron reconstructions from different species, cell types and brain regions. Based on

the specifications of the input morphology, the most probable complete boundary of the input

neuron is then predicted by averaging over the spanning volumes of all neurons from the data

base that fit those requirements. The average is then scaled to fit the size and dimensions of

the input neuron so its missing parts can be completed by the repair algorithm. Implementing

this data base based approach could be the subject of future research.

Input morphologies with increasingly larger sectioned parts of their dendritic arbor make

it more and more difficult to reliably analyse the properties of what is left of the neuron.
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Deriving repair parameters off of a highly damaged morphology therefore is likely to be

flawed. The level of uncertainty in a morphology repair consequently increases in case the

input morphology features only minimal reconstructed dendritic material.

Studying how neurons react to damage or injury in vivo, and how these sectioned dendrites

regrow afterwards, has been the subject of recent research (Song et al. (2012), Li et al. (2018),

Stone et al. (2014)). Repairing these morphologies by replacing the missing dendritic material

with artificial ones has not been attempted. Hence, the approach of the neuron repair tool

described in this thesis is unique, as it is a simple general method, applicable to any cell type

or species. As the tool is available as an easy to use graphical-user-interface, anyone can

repair sectioned dendrites of morphologies that would otherwise be unusable for research.

The growth process in most morphological computer models is implemented as a stochastic

procedure, depending on branching probability, how many branching events occur, and the

number of segments etc. (van Pelt and Schierwagen (2004), Ascoli and Krichmar (2000),

Donohue and Ascoli (2008)). As the repair tool is build upon the TREES toolbox, wiring

optimisation is taken into account. Different cell types can therefore be modelled using a

single parameter (the balancing factor bf ), since different cell types fulfill different optimal

wiring constraints. According to Poirazi and Papoutsi (2020), the parameter set used to

implement a model should be as small as possible. Such an approach, like the neuron repair

tool introduced in this thesis, provides the needed simplicity and adaptability to seamlessly

be implemented into daily research.

6.9 Conclusion

Both the macroscopic and the microscopic structure of the brain follow the constraint of wiring

optimisation. This fact is demonstrated by the two computer simulations described in this

thesis. While the intricate folding patterns of the cortical sheet can be modelled by a specific

connectivity function that ensures weak global but strong local connectivity and minimising

wiring cost, dendrites of damaged neurons can be repaired using a similar principle. The

repair of these dendrites depends on a compromise between minimising wiring cost and

conduction time to the soma. Therefore, wiring optimisation is essentially a compromise in

both cases that holds a delicate balance between network performance and wiring cost.

Cortical folding can be predicted by using a dimension reduction method (here t-SNE) that

finds the optimal positions for neurons in terms of wiring optimisation. In order for this
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approach to work, the model assumes strong local but weak global cortical connectivity.

The predictions made by the gyrification model are consistent with experimental findings,

reproducing cortical gyrification patterns in a large range and relations between common

measures. The model can be used to investigate the emergence of characteristic folding

patterns, how folding scales, and give insights into pathological brain disorders, revealing the

underlying connectivity and circuitry. By adding more detail to the model, the approach can

in the future give rise to models that explore the anatomy of neural circuits more precisely.

Damaged dendritic arbors of different neuron types can be repaired artificially using in silico

computer models like the neuron repair tool described in this thesis. This is relevant, since

the reconstruction process of neuron morphologies is a difficult procedure that is prone to

error. Especially in case of human morphologies, where availability of reliable complete

reconstruction data is very limited, repairing morphologies artificially could improve the

situation significantly, enabling more research of human cells. Investigation of human neurons

is of critical importance, since more an more reports emerge that state how properties of

human neurons are different from other species. Additionally, the neuron repair tool can

mimic biological regrowth of neurons, reproducing the findings of biological experiments.
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11. APPENDIX

11 Appendix

Figure S1. Human neuron extension volumes
Human CA1 pyramidal neuron data set region of interest (the same data as depicted in Fig. 33 and
Fig. 34). This data is provided by Benavides-Piccione et al. (2020). The green shaded areas show
potential dendrite extension volumes for the neuron repair tool drawn by Benavides-Piccione et al.
(2020), showing were dendrites should be growing, since they could not be reconstructed successfully
in these areas. The white panels show the RGB-colour code for each morphology.
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