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1 Introduction

One of the cornerstones in the theory of automata arrays is the early result of John
von Neumann who solved the logical problem of nontrivial self-reproduction. From
this biological point of view he employed a mathematical device which is a multitude
of interconnected automata operating in parallel to form a larger automaton, a
macroautomaton built by microautomata. He established that it is logically possible
for such a nontrivial computing device to replicate itself ad infinitum [16].

Nowadays the so-called polyautomata theory has several branches. One important
field is the modelling of natural phenomena, for example in physics, biology or
chemistry. Another one deals with certain types of polyautomata as computational
models, in particular as acceptors for formal languages. Those automata arrays are
object of the present article.

A lot of investigations have been done in order to explore the computing capabilities
of such devices but there are still some unanswered basic questions. Usually these
investigations are in terms and with the methods of automata and complexity theory.
We are particularly interested in the relations between some of the most important
automata array language families and the classical linguistic language families. It
has turned out that the interesting families include the regular languages and are
contained in the deterministic context-sensitive languages such that this interest is
synonymous with the interest in the relations to the context-free languages and their
subfamilies.

2 Automata arrays

We denote the rational numbers by Q, the integers by Z, the positive integers
{1,2,...} by N, the set N U {0} by No and the powerset of a set S by 25. The
empty word is denoted by ¢ and the reversal of a word w by w®. For the length
of w we write |w|. We use C for inclusions and C if the inclusion is strict. For a
function f we denote its i-fold composition by flil, i € N.

The specification of an automata array includes the type and specification of the
microautomata (cells), their interconnection scheme (which can imply a dimension
to the system), a local transition function and the input and output modes. One-
dimensional synchronous devices with nearest neighbor connections whose cells are
(nondeterministic) finite automata are commonly called cellular arrays ((N)CA)
resp. iterative arrays ((N)IA) in case of parallel resp. sequential input mode. A
connection to the nearest neighbor to the right only yields one-way information
flow through the array. The corresponding devices are denoted by (N)OCAs resp.
(N)OIAs.



For convenience we identify the cells of one-dimensional arrays by positive integers.
The state transition depends on the current state of a cell and the current state(s)
of its neighbor(s). The transition function is applied to all cells synchronously at
discrete time steps. With an eye towards formal language processing we define
formally:

Definition 1 A nondeterministic (two-way) cellular array (NCA) is a system
(S, Ona, #, A, F), where
1. S is the finite, nonempty set of cell states,
A C S is the nonempty set of input symbols,
F C S is the nonempty set of accepting states,
# ¢ S is the boundary state,
bna : (SU {#})3 — 29\ {0} is the (nondeterministic) local transition function.

SANEER I

If the state set is a Cartesian product of some smaller sets S = 51 X Sy X +++ X S}
we will use the notion register for the single parts of a state. The concatenation of
one of the registers of all cells respectively forms a track.

Let M = (S,6,4,#%, A, F) be an NCA. A configuration of M at some time ¢t > 0
is a description of its global state which is actually a mapping ¢ : [1,...,n] — S
for n € N. The configuration at time 0 is defined by the initial sequence of states.
For a given input word w = a; ---a, € AT we set ¢y (7) := aj, 1 <4 < n. During
its course of computation an NCA steps nondeterministically through a sequence of
configurations whereby successor configurations are chosen according to the global
transition function A, 4:

Let ¢, t > 0, be a configuration, then its successor configurations are as follows:

ct1 € Apglct) <

ct41(1) € Spa(#, (1), c(2))

ct+1(1) € Snalcr(i — 1), (i), ct(6 + 1)),i € {2,...,n — 1}
cr1(n) € dna(ci(n — 1), ¢(n), #)

Thus, A,y is induced by d,4.

# S1 S9 S3 Sq S5 #

Figure 1: A (two-way) cellular array.

If the flow of information is restricted to one-way, the resulting device is a non-
deterministic one-way cellular array (NOCA). Le. the next state of each cell depends
on the state of the cell itself and the state of its immediate neighbor to the right.



S1 52 S3 S4 S5 #

Figure 2: A one-way cellular array.

An NCA (NOCA) is deterministic if 6,4(81, 82, 33) (0nd(S1,$2)) is a singleton for all
states s1, 2,53 € S U {#}. Deterministic cellular arrays are denoted by CA resp.
OCA.

An input word w is accepted by an N(O)CA if at some time i during its course of
computation the leftmost cell becomes accepting.

Definition 2 Let M = (S, 0,4, #, A, F) be an NCA or an NOCA.
1. A word w € AT is accepted by M if there exists a time step 1 € N such that
¢i(1) € F holds for a configuration c¢; € AZ]d(CO,w)-
2. LIM) ={w € A" | w is accepted by M} is the language accepted by M.
3. Let t : N — N, ¢(n) > n, be a mapping and i,, be the minimal time step
at which M accepts a w € L(M). If all w € L(M) are accepted within
iw < t(Jw|) time steps, then L is said to be of time complexity .

The family of all languages acceptable by NCAs (NOCAs) with time complexity ¢
is denoted by .Z;(NCA) (£ (NOCA)). If ¢t equals the identity function id(n) = n,
acceptance is said to be in real-time and we write .Z;(NCA) (%+(NOCA)). In the
sequel we will use a corresponding notion for other types of acceptors. The linear-
time languages Z;(NCA) (Z:(NOCA)) are defined according to £ (NCA) :=

Ukeq, k>1 Zhia(NCA).
There is a natural way to restrict the nondeterminism of the arrays. One can
limit the number of allowed nondeterministic state transitions. For this purpose

a deterministic local transition &4 : (S U {#})3 — S is provided and the global
transition induced by d4 is denoted by Ag.

Let ¢ : N — Ny be a mapping that gives the number of allowed nondetermi-
nistic transitions dependent on the length of the input. The resulting system
(S, Ond, 04, S0, #, A, F') is a gG-CA (¢gG-OCA) if starting with the initial configuration
co,w (for some w € A1) the possible configurations at some time ¢ are computed by
the global transition as follows:

{CO,w} ifi=0
A (o) if i < g(|w|)

U Al[;_gﬂwm (') otherwise

CIEAgfélwl)](CO,w)



Observe that all nondeterministic transitions have to be applied before the deter-
ministic ones and that for some s1, s9,s3 € S U {#} the nondeterministic part may
contain the deterministic one: d4(s1, s2,83) € dna(s1, S2, S3)-

In cellular arrays the input mode is called parallel. One can suppose that all cells
fetch their input symbol during a pre-initial step. Another natural way to supply the
input is the so-called sequential input mode. Now the distinguished cell at the origin,
the so-called communication cell, fetches the input sequence symbol by symbol. In
order to define such iterative arrays formally we have to provide an initial (quiescent)
state for the cells. Moreover, due to historical reasons the space (number of cells) of
iterative arrays is not bounded. We assume that once the whole input is consumed
an end-of-input symbol is supplied permanently.

Definition 3 An iterative array (IA) is a system (S, 9, &y, So, #, A, F'), where
1. S is the finite, nonempty set of cell states,

A is the finite, nonempty set of input symbols,

F C S is the set of accepting states,

so € S is the initial (quiescent) state,

# ¢ A is the end-of-input symbol,

§: 8% = S is the local transition function for non-communication cells satis-

fying (5(80, S0, 80) = 50,

7. 0p: 82 x (AU{#}) — S is the local transition function for the communication
cell.

S kR

Here iterative arrays are defined as deterministic devices. The reason is that real-
resp. linear-time nondeterministic TAs have exactly the same accepting power as
real- resp. linear-time nondeterministic CAs.

A configuration of an TA at some time ¢ > 0 is a pair (wy,c¢;) where wy € A* is
the remaining input sequence and ¢; : Z — S is a function that maps the single
cells to their current states. The configuration (wp,cy) at time 0 is defined by the
input word wy and the mapping cy(i) = sg, ¢ € Z, while subsequent configurations
are chosen according to the global transition function A: Let (wy,¢), t > 0, be a
configuration then its successor configuration (w1, ci+1) is as follows:

(Wi, 1) = A((wy, ¢r)) <=
err1(3) = 6(culi — 1), celi), eeli + 1))i € 2\ {0},
Ct+1 (0) = (50 (ct(—l),ct(O),ct(l),a)
where ¢ = #, wyy; = e if wy = ¢, and @ = a1, w1 = ag---ap f wy = a1---ag.
Thus, the global transition function A is induced by § and dp.

An input word w is accepted by an TA if at some time ¢ during its course of compu-
tation the communication cell becomes accepting.
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Figure 3: An iterative array.

Definition 4 Let M = (S, 6, ¢, so, #, A, F') be an IA.
1. A word w € A* is accepted by M if there exists a time step 1 € N such that
¢i(0) € F holds for (w;, c;) = Ald((w, ¢g)).
2. LM) ={w € A* | w is accepted by M} is the language accepted by M.
3. Let t : Ng — N, t¢(n) > n + 1, be a mapping and i,, be the minimal time
step at which M accepts a w € L(M). If all w € L(M) are accepted within
iw < t(Jw|) time steps, then L is said to be of time complexity .

Since for nontrivial computations an IA needs to read at least one end-of-input
symbol we define the time complexity n + 1 to be real-time. Again, we denote the
family of all languages acceptable by IAs with time complexity ¢ by .Z;(IA).

Throughout the article the regular, deterministic context-free, context-free resp.
deterministic context-sensitive languages are denoted by .23, £ 4et, -Z> r€SDP. L det-

3 Relations between automata arrays and the position

of %

In order to compare the context-free languages and some of their important sub-
classes to the language families definable by time-bounded automata arrays it is con-
venient to recall some of the known results. Figure 4 summarizes inclusions between
real-time and unlimited-time (O)CAs, 1G-OCAs, IAs and regular languages.
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Figure 4: Hierarchy of language families.

At the left end of the hierarchy are the regular languages, which are strictly in-
cluded in all of the considered array language families. It is known that the families
Z+(OCA) and .%,+(TA) are incomparable but both are strictly included in the real-
time CA languages. Unfortunately, these are the only inclusions known to be strict.
The right hand end of the (shown part of the) hierarchy is marked by the unlimited-
time CA languages. These are in turn identical to the deterministic context-sensitive
languages. Thus, we have a hierarchy between the linguistic families .3 and .2} ge;
and, naturally, the question for the position of %, arises.

Since .Z1(IA) as well as .Z;(OCA) are containing noncontext-free languages the

strict inclusion

L C Z(CA)
follows immediately.

In 1988 the position could be shifted downwards to the unlimited-time one-way
languages. The inclusion

L C Z(0CA)
has been shown in [3].

Due to the hierarchical result .£+(1G-OCA) C Z(OCA) [1] the following theorem

is a further improvement.
Theorem 5 % C £,,(1G-OCA)

Proof. From [1] the equality Z;(1G-OCA) = Z£4(1G-CA) is known. There-
fore, we may prove the theorem by showing how an 1G-CA can simulate an e-free
nondeterministic pushdown automaton (pda) in real-time.

The leftmost cell of the 1G-CA can identify itself (by the # on its left). It simulates
the state transitions of the pda.

During the first time step all the other cells are guessing a state transition of the
pda nondeterministically. These guesses as well as the input symbols are successively
shifted to the left on some additional tracks. Thereby at every time step the leftmost
cell receives an input symbol and a previously guessed state transition. Thus, simply
by applying the transition to the current situation it simulates a nondeterministic
transition of the pda deterministically. It remains to show how to simulate the stack.



Assume without loss of generality that at every time step at most one symbol from
a nonempty finite stack alphabet is pushed onto or popped from the stack.

Each cell has three registers that can store one stack symbol respectively. They are
numbered 1, 2 and 3 downward the stack. The third register is used as a buffer.
The cells preferably fill two of their registers with symbols. In order to reach that
charge they behave according to the following rules (cf. Figure 5):

lal f] o] 2] L] 4] <] f£] fn] ] /]
el/1el /sl /1 /L LS pushc |da]/1e|/ i)/ |/] |
e
o] fe] fu] A1 A L] ®] fa] fe] [ ] ||
pushb |c|/|f]/]i] Hyalp el /lel/1nl /L /L
af [&8f [ ] Hal LS A L L
la] fal f£] fi] ] 1] ] fe] f£] [n] []
pusha |b|/le| /18| /| |/| |/| |/ pop | |/ld|/(8]/|i]/] |
C h e
o] fa] el [n] L] L] (<] fa] f£] fe] ||
</ L/ L/ pop | |/lel/I |/In]/| |
LI L&) L] I O O 5 (O
[a] fe] J£] [n] fi] L]/ [a] 2] fe] || ||
pop | |/ |/]8]/] | v e/ /1AL
[a] f£] fu] f2] L] L]/ [a] J£] [n] ] | ]
/18l /L /LS el /181 /13 /L /|

Figure 5: Example for pushdown store simulation by a two-way device.

e If all three registers of the left (upward) neighbor of a cell are filled, then it stores
the symbol from the buffer register of the neighbor in its own first register. The
content of the first and second register is shifted to the second resp. third one.
Otherwise the content of the buffer is deleted.

o If the buffer of the left neighbor of a cell is empty, its own second register is empty
and the first register of its right neighbor is filled, then it stores the symbol from
the first register of the right neighbor in its own second register.

o If just one register of the left neighbor of a cell is filled, then the symbol in the cell’s
own first register is deleted, whereby the content of the second register is shifted to



the first one.

Eventually, the actions have to be superimposed and it can easily be verified that
the simulation works correctly. Thus, as shown by storing two symbols into one cell
and using a buffer the delay is avoided which is needed by the lower cells to react
to operations applied to the top of the stack. O

The next step of positioning the family % would be to prove or disprove the inclu-
sion % C %+(CA). The problem whether or not the real-time CA languages are
containing the context-free ones was raised in [13] and is still open. It is related to
the open question whether or not sequential one-tape Turing machines are able to
accept the context-free languages in square-time. A proof for the inclusion would
imply the existence of square-time Turing machines.

4 Iterative arrays

Now we turn to the comparison of % and the language families at the lower end
of the hierarchy. The present section is devoted to real-time iterative arrays. (In
case of linear-time the accepting capabilities of IAs and CAs are identical.) In [9]
it has been proved that iterative arrays can accept the context-free languages in
square-time:

L C Lp(IA)

In the same paper it has been shown that the time complexity can be reduced to
linear-time if the cells are arranged in two dimensions:

2 C £1(2D-1A)

About seventeen years later the second result could be improved to one-way infor-
mation flow [2]:

&> C £ (2D-0IA)

Moreover, the corresponding 2D-OIAs are not only acceptors but parsers for the
context-free languages.

With the help of a specific witness language the incomparability of . and .%;+(IA)
has been established in [5]. In the following we are going to explore the boundary
between acceptable and nonacceptable context-free languages in real-time IAs.

Lemma 6 Every e-free (real-time) deterministic context-free language belongs to

Zri(1A).

Proof. Using the method referred to in the proof of Theorem 5 one can construct
an iterative array that simulates a deterministic pushdown automaton. The commu-
nication cell controls the stack, fetches the input and simulates the state transition.



Since per assumption the pda performs no e-transitions the IA operates in real-time.
Od

Once the stack simulation principle was known the previous lemma became straight-
forward. But nevertheless it seems to mark a sharp boundary what becomes clear
by the next theorem.

Theorem 7 There exists a deterministic, linear context-free language that does not
belong to £.(IA).

Proof. We are considering the configuration of an IA (S, 4, dg, so, #, A, F') at time
n—m where n denotes the length of the input and m < n. The remaining computa-
tion of the communication cell depends on the last m input symbols and the states
of the cells —m —1,...,0,...,m+ 1 only. Due to their distance from the communi-
cation cell all the other cells cannot influence the overall computation result. So we
are concerned with at most |S|>(m+1+1 different situations.

Now let L = {$z4$--- $z1¢118 - - - $us$ | 2 = wizi, i, v,z € {0,1}*}. Obviously L
is a deterministic, linear context-free language.

For each different two prefix-words w and w’ of the form $z4$ - - - $z1¢ with |z;| = &k
there exists at least one 1 < j < k such that z; # a:; Tt follows 11)353_1ac§-z$k_7+1 €L
and w'$’ 71$f$k77’ +1 ¢ L. There exist 2¥” different prefix-words of the given form.
On the other hand, at time n — 2k the TA can distinguish at most |S|>(Zk+1)+1 —

|S|#*+3 different situations. For k large enough we can conclude |S|*+3 < 2 and,
thus, after processing two different words w and w’ the situation must be identical.

We obtain w$’'zl$* 71! € [ <= w'¢$/"'2f$" 7T € L, a contradiction. O

By the previous theorem neither the deterministic nor the linear context-free lan-
guages are subfamilies of .Z;.(IA).

5 One-way cellular arrays

Now we are going to investigate the relations between real-time OCAs and some
important subfamilies of .%. The presented results will prove the incomparability
of Z+(OCA) and .Z+(IA) in terms of context-free languages.

The reason why we restrict our considerations to real-time OCAs is due to the known
relation .Z;(OCA) = Z%(CA) [4, 15] and the fact that the real-time CAs are object
of the next section.

Some subfamilies of % are known to be strictly included in .Z,;,(OCA). E.g. the
Dyck languages [11] and the bracketed context-free languages [6]. In the following

10



we deal with linear languages. In [12] it has been shown that they are acceptable
by OCAs in real-time.

Theorem 8 Every linear context-free language belongs to £,(OCA).

Proof. Let G = (N, T, Xy, P) be a linear context-free grammar ([10]). W.Lo.g. we
may assume that all productions are of the form X — a, X — Ya or X — aY,
where X,Y € N are nonterminals and a € T is a terminal.

Let w = ajaz---ay be a word in L(G). If X =* q;---a; then there must exist a
Y such that either Y =% a;---a; 1 AN X = YajorY =% a;y1---a; AN X = a;Y.
Basing on this fact we define sets of nonterminals for the given word w as follows:
N(i,i)={X eN|(X —-a;)) e P},1<i<n

N(i,j) = N1(4,7) U No(4,7),1 < i < j < n, where

Ni(i,j) ={X eN|(X =»Ya;) ePAY € N(i,j — 1)}

No(i,j) ={X €N | (X -a;Y)€EPANY € NGi+1,j5)}.

It holds w € L(G) < Xy € N(1,n).

A corresponding OCA behaves as follows. During the first transition a cell ¢ com-
putes N(i,i) and (a;,a;). In subsequent transitions, say at time k + 1, it computes
N(i,i+ k) and (a;,a;4x) if K+ 1 > i and keeps its state otherwise. The new values
can be determined by the state of the cell itself and the state of its right neighbor
(ie. N(i,i+k—1), (a;,a;4%—1) and N+ 1,5+ k), (aj+1,a;1%)).- Thus, the leftmost
cell computes N(1,7n) at time step n. O

With Theorem 7 we can conclude that there exists a language in .Z,;(OCA)\.Z+(IA).
Again, the question arises whether we can relax the condition of Theorem 8 to larger
subfamilies. An answer follows from the results given in [14] where by counting
arguments the closure of .£,(OCA) under concatenation has been shown to be
negative. In the proof the language L = {0°1' | i € N}U{0'1z01° | z € {0,1}*,i € N}
has been used as witness. Clearly, L is a linear context-free language and, thus,
belongs to .%;:(OCA). But for the concatenation L; = L-L it holds Ly ¢ .%+(OCA).
Since L; is the concatenation of two linear languages it is a 2-linear language.

Corollary 9 There exists a 2-linear context-free language that does not belong to

Zri(OCA).

On the other hand, one can show L; € %(IA) such that there exists a context-
free language in Z4(IA) \ .%+(OCA) and, hence, with the previous results the
incomparability of .%+(IA) and .%+(OCA) follows in terms of context-free languages.
Although .%+(OCA) does not contain the 2-linear languages, real-time OCAs are
powerful devices. For example, the non-Parikh-linear language {(0°1)* | i € No} [11]
and the inherently ambiguous language {0°192% | i = j V j = k, 4,5,k € N} [13] are
belonging to .%:(OCA).

11



6 Two-way cellular arrays

For structural reasons .%,(IA) C .%+(CA) and .%+(OCA) C .Z,.(CA) holds. Since
Z+(IA) and %1 (OCA) are incomparable both inclusions must be strict. Unfortu-
nately, this proof of the strictness, although given in terms of context-free languages,
gives us no context-free subfamily contained in .Z,..(CA).

Theorem 10 %5 4., C Z+(CA)

Proof. Here we cannot use a stack simulation as in the proof of Lemma 6 because
we are concerned with deterministic pushdown automata that are allowed to perform
e-transitions. But w.l.o.g. we may assume that a given deterministic pda M pushes
at most k£ € N symbols onto the stack at every non-e-transition and erases exactly
one symbol from the stack at every e-transition [7]. Moreover, the first transition is
a non-e-transition.

Due to the equality £,(OCA) = ZF(CA) it suffices to construct a ((k+1)-n)-time
OCA M’ that accepts the language L (M).

Therefore, let S denote the state set of the pda M, let G denote its set of stack
symbols, A its set of input symbols, sg its initial state, | € G its bottom-of-stack
symbol, F its set of accepting states and § : Sx G x (AU{e}) — S x G* its transition
function.

Now define the OCA M’ = (§',4',#, A, F') as follows:

Each cell of M has k + 2 registers: k registers for stack symbols of M that may
be empty, one register for a finite counter and another one that can store an input
symbol, a distinguished special symbol € or a state of M. Accordingly, S’ is defined
to be (SUAU{€}) x {0,....k} x (GF U {e}). ¢ will be designed in such a
way that at every time step at most one of the cells contains a symbol from S
in its corresponding register. This symbol is the currently simulated state of M.
Accordingly, F' is defined to be F x {0,...,k} x (GF U {e}).

Let a; - - - a5, be an input of M then M’ gets the reversal a,, - - - a1 as input. Initially
the counter registers of M’ are set to 0 and the k registers for stack symbols are
empty.

Since the first transition of M’ has to be a non-e-transition and the rightmost cell
of M’ can identify itself, we define (cf. Figure 6):

VaecA:
(5’((a,0,6),#) = (s',0,g1 - gpL%), wherei =k —p
iff (5(80,J_,G,) = (Slagl e gp)

From now on at every time step the cells of M’ are divided into three segments.
Exactly one of the cells has stored a symbol from S in its corresponding register.

12
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Figure 6: The initial step of the pda M (left) and the corresponding step of the
OCA M’ (right). Counters are not depicted.

The second segment is formed by the cells to the right of that cell. They are marked
by the special symbol €. The cells to the left are the third segment. These are in
their initial states (cf. Figures 6,7,8).

Every simulation of a transition of M takes two phases. During the first phase,
which takes one time step only, the new current state and top-of-stack content of
M is computed. (The first phase is indicated by 0 in the counter registers.) If M
would perform a non-e-transition (cf. Figure 7) the cell bordering the distinguished
cell at the left hand side has the necessary information in order to perform the
computation. We define:

VacA,s€S8, g,€G:
51((0'5076)’(3’0791 gk:)) = (Slaiagll g;)J—Z)a where 7 = k —-D
iﬁ 5(3591701) = (sl’g:,L te -gzl))

All the other cells in the left segment keep their states:

Va,ac A: §((a,0,¢),(a,0,£)) = (a,0,¢)

The distinguished cell observes that M would not perform an e-transition. It changes
to the special symbol €:

13



VseS§:
8 ((5,0,91 - gx), #) = (€,0,92--- g L) and
& ((s,0,91 - gk), (€,0,95+1 - g2%)) = (€,0,92 - GkGr+1)
iff §(s,g1,a) is defined for some a € A

Qp | -+ |Qiy1| @5 | 8 € €
a1 g7 4+1 1
Im
L
9k 1 1
“gp)
Qn | --- |QGiv1| ¢ | € € €
g1 | 92 9% +2 1
; G| . |...|9m
9 1| 1
92 : s
: 1 19k+1 1 4
9m
1

Figure 7: A non-e-transition of the pda M (left) and the corresponding transition
of the OCA M’ (right). Counters are not depicted.

All cells that contain the special symbol € shift their contents of the & stack symbol
registers at every time step by one register. The last register is filled with the symbol
shifted out by the right neighbor.

A gj € G:
§'((€,0,91--- gx), #) = (€,0,92--- gx-L) and
& ((€,0,91 gk), (€,0,9k+1 - g2%)) = (€,0,92 " Gk Gr+1)
The purpose of the counter is to pack the stack symbols after a non-e-transition. If

the content of the counter is greater than 0, then the second phase is performed in
the distinguished cell:
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Vseb, gieG:

6" (83,91 - 9p L"), (€,0,gp1 - Gptk)) = (8,5 — 1,91+ Gpgp+1L77 1)

if >0

If the counter has been decreased to 0, then the next transition of M is simulated. If
it is an e-transition (cf. Figure 8) this fact can be recognized by the distinguished cell
as well as by its left neighbor. Moreover, since during e-transitions the top-of-stack
symbol is erased we get the packing for free from the above described behavior.

Vac A, s€S, g €G:

(5’((&,0,5), (37iagl te gk)) = (G,O,E)

iff 4> 0 or d(s,g1,¢) is defined

VacA,s€S8, gi€eG:

51((370591 v 'gk)a #) = (3,50792 . ng—) and
8 ((s,0,91- - gk), (€,0, k41 - g2k)) = (s',0,92 - - - grGr+1)
!

iff 6(s,91,€) = (5,¢)

an ai+1| a; | s €
a1 g 41

Im

1

gk 1

an ai+1| a; | g €
92 gm 12

9m

L

Gk+1 l

Figure 8: An e-transition of the pda M (left) and the corresponding transition of
the OCA M’ (right). Counters are not depicted.
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The OCA M’ takes at most (k + 1) - n time steps. It has to simulate n non-e-
transitions of M. This takes n time steps. During these time steps at most k - n
stack symbols can be generated. These are successively shifted out or erased by
e-transitions. So it takes at most another k - n time steps in order to erase them all.
It follows that M’ obeys the time complexity (k + 1) - n. O

Combined with Theorem 7 the previous proof gives us the strictness of the inclusion
Z(TA) C %+(CA) and a strictly in .%+(CA) contained subfamily of .%,.

Regarding .%,;(OCA) the following theorem works in some sense similarly.
Theorem 11 Every metalinear language belongs to .%,(CA).

Proof. Let L be a metalinear language. Then there exists a k¥ € N such that L is
k-linear. Therefore, we can represent L as the concatenation Lq - Lo -...- Ly of k
linear languages.

The family .%,,(OCA) is closed under reversal [11]. Combined with Theorem 8 we
conclude that there exist real-time OCAs for each of the languages L%, . . ., LkR. Since
the concatenation of a real-time and a linear-time OCA language is again a linear-
time OCA language [8] we obtain L¥ - ... - L € £,(OCA). Due to the equality
Z:(0OCA) = ZE(CA) it follows Ly - ...- Ly = L € £4(CA). O
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