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1 Abbreviations 

 

 

A 

ab: amygdaloid body (corpus amygdaloideum; Fig. 34-37) 

acn: accumbens nucleus (nucleus accumbens) (Fig. 11, Fig. 27-28, Fig. 31-32) 

alv: alveus (Fig. 14-16, Fig. 24, Fig. 39-42) 

Ans: ansate sulcus (sulcus ansatus; Fig. 57 G and 58 C (horse), Fig.77)  

ans: ansiform lobule (lobulus ansiformis; Fig. 11-16, Fig. 21-27 , Fig. 47-52) 

aob: accessory olfactory bulb (bulbus olfactorius accessories; Fig. 54) 

aq: mesencephalic aqueduct (aqueductus mesencephali; Fig. 11-12, Fig. 30, Fig. 40-45, Fig. 72) 

Aur: internal ear (auris; Fig. 7-9) 

 

B 

bcc: brachium of the caudal colliculus (brachium colliculi caudalis; Fig. 10, Fig. 42-45 ) 

boc: basioccipital bone (os basioccipitale; Fig. 30) 

brc: brachium of the rostral colliculus (brachium of the rostral colliculus; Fig. 41) 

bsp: basisphenoid bone (os basisphenoidale; Fig. 30) 

 

C 

ca: cortical aplasia of the cerebellum (Fig. 28-29)  

Cal: calcarine fissure (fissura calcarine; Fig 63) 

cam: cornu ammonis (Fig. 10-17, Fig. 20-28, Fig. 38-43) 

cc: corpus callosum (Fig. 14, Fig. 25-30, Fig. 31-38) 

ccc: commissure of the caudal colliculi (commissura colliculi caudalis; Fig. 12, Fig. 28, Fig. 44) 

ccl: caudal colliculus (colliculus caudalis; Fig. 10-12, Fig. 24-26 , Fig. 46-47) 

Cco: cerebellar cortex (cortex cerebelli; Fig.74) 

ccr: commissure of the rostral colliculli (commissura colliculi rostralis; Fig. 42) 

cdc: caudal commissure (commissura caudalis; Fig. 12-13, Fig. 30, Fig. 40-41) 

cec: central canal (canalis centralis Fig. 30) 

cf: column of fornix (columna fornicis; Fig. 9, Fig. 33-37, Fig. 41)  

cfo: corpus of fornix (corpus fornicis; Fig. 13-14, Fig. 33-35) 

cgs: central grey substance (substantia grisea centralis; Fig. 10-12, Fig. 28-29, Fig. 40-45) 

cho: optic chiasm (chiasma opticum; Fig. 6-8, Fig. 28-30, Fig. 32-33) 

ci: cingulated gyrus (gyrus cinguli; Fig. 16-17, Fig. 28-30 , Fig. 32) 
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cin: cingulum (Fig. 17) 

cl: central lobule (lobulus centralis; Fig. 12-13, Fig. 28-30, Fig. 46-48, Fig. 72)  

cla: claustrum (Fig. 33)  

cm: central white substance of the cerebellum (corpus medullare cerebelli; Fig.74) 

cmf: commissure of the fornix (commissura fornicis Fig. 36-40) 

cn: caudate nucleus (nucleus caudatus; Fig. 13-15, Fig. 25-29, Fig. 31-37) 

con: cochlear nucleus (nucleus cochlearis; Fig. 50-52) 

Cor: coronal sulcus (sulcus coronalis; Fig. 12-18, Fig. 23-26, Fig. 32-33, Fig. 57-58) 

cpi: piriform cortex (cortex piriformis Fig. 27) 

crc: cerebral crus (crus cerebri; Fig. 9-10, Fig. 35-42) 

Cru: cruciate sulcus (sulcus cruciatus, Fig. 57) 

cu: culmen vermis (Fig. 14-16, Fig. 29-30, Fig. 47-48, Fig. 72) 

 

D 

dbb: diagonal band of broca (stria/gyrus diagonalis; Fig. 25, Fig. 32) 

de: declive vermis (Fig. 13-14, Fig. 29-30, Fig. 49-52, Fig. 72) 

Dia: diagonal sulcus (sulcus diagonalis; Fig. 15-17, Fig. 21-24, Fig. 57-58) 

dg: dentate gyrus (gyrus dentatus; Fig. 13-15, Fig. 39) 

dpc: decussation of the rostral cerebellar peduncle (decussatio pedunculorum cerebellarium 
rostralium; Fig. 8-9, Fig. 28-30, Fig. 42-43) 

dt: descending tracts- corticospinal and corticobulbar (tractus corticospinalis, tractus cortico bulbaris; 
Fig. 6, Fig. 43) 

 

E 

ec: external capsule (capsula externa; Fig. 13-14, Fig. 23-25, Fig. 31-38) 

Ecg: ectogenual sulcus (sulcus sctogenualis; Fig. 13-17) 

Ecm: ectomarginal sulcus (sulcus ectomarginalis; Fig. 15-18, Fig. 19-21, Fig. 32-40, Fig. 57-60) 

Ecs: ectosylvian sulcus (sulcus ectosylvius; Fig. 14-18, Fig. 19, Fig. 35-41, Fig. 57-60) 

Eng: endogenual sulcus (sulcus endogenualis; Fig. 13-14, Fig. 29-30, Fig. 57) 

Enm: endomarginal sulcus (sulcus endomarginalis; Fig. 18, Fig. 24-25, Fig. 42-51, Fig. 57-60) 

Enspl: endosplenial sulcus (sulcus endosplenalis; Fig. 59) 

 

F 

fh: fimbria of hippocampus (fimbria hippocampi; Fig. 10-15, Fig. 20-26, Fig. 38-39) 

Flc: longitudinal cerebral fissure (fissura longitudinalis cerebri; Fig. 17-18) 

flm: medial longitudinal fasciculus (fasciculus longitudinalis medialis; Fig. 6-9, Fig. 29-30, Fig. 42-52) 

fmt: mammillothalamic fasciculus (fasciculus mammilo-thalamicus; Fig.10-13, Fig. 28-29, Fig. 35-37) 

flo: flocculus (Fig. 9, Fig. 21-22, Fig. 48-52, Fig. 72) 
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fo: fornix (Fig.10-12,15, Fig. 27-30) 

fol: folium vermis (Fig. 29-30, Fig. 72) 

fos: fibrae olfactorii septales (Fig. 10-12; Fig. 32)  

fsc: subcallosal fasciculus (fasciculus subcallosus; Fig. 31-39)  

fte: fasciculus tegmenti (forel) (Fig. 27, Fig. 40-47) 

ftp: transverse fibres of the pons (fibrae transversae pontis Fig. 42-44) 

 

G 

gcc: genu of the corpus callosum (genu corporis callosi Fig. 29-30) 

Gen: genual sulcus (sulcus genualis; Fig. 13-17, Fig. 30, Fig. 57) 

gnf: genu of the facial nerve (genu nervi facialis, Vll; Fig. 7-8, Fig. 49-50) 

gp: globus pallidus (Fig. 12, Fig. 31-33) 

 

H 

ha: habenula (Fig. 38-40) 

hit: habenulo-interpedumcular tract (tractus habenulo-interpeduncularis; Fig. 10-13, Fig. 28-29, Fig. 

39) 

 

I 

ic: internal capsule (capsula interna; Fig. 14-16, Fig. 22-26, Fig. 31-37) 

idg: induseum griseum (Fig. 36-38) 

in: insula (Fig. 14-15, Fig. 33, Fig. 56) 

inc: insulae callejae (Fig. 31) 

ipd: interpeduncular nucleus (nucleus interpeduncularis; Fig. 30, Fig. 42-43) 

ir: infundibular recess (recessus infundibularis; Fig. 6) 

ita: interthalamic adhesion (adhaesio interthalamica; Fig. 35-39) 

 

L 

lal: lateral lemniscus (lemniscus lateralis; Fig. 8-9, Fig. 25 , Fig. 44-45) 

lgb: lateral geniculate body (corpus geniculatum laterale; Fig. 40-41)  

lme: external medullary lamina (lamina medullaris externa; Fig. 12-14, Fig. 24, Fig. 36-40) 

lmi: internal medullary lamina (lamina medullaris interna; Fig. 38) 

Lms: lateral mesencephalic sulcus (sulcus lateralis mesencephali; Fig. 41) 

lot: lateral olfactory tract (tractus olfactorius lateralis; Fig. 7-10, Fig. 23-24, Fig. 31-32) 

li: lingua vermis (Fig. 9-11, Fig. 28-30, Fig. 46-51, Fig. 72)  

lv: lateral ventricle (ventriculus lateralis; Fig. 23-26, Fig. 34-39) 
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M 

Mar: marginal sulcus (sulcus marginalis; Fig. 18, Fig. 21-27, Fig. 34-51, Fig. 57-60) 

mb: mamillary body (corpus mammillare; Fig. 28-30, Fig. 38) 

mgb: medial geniculate body (corpus geniculatum mediale; Fig. 10-12, Fig. 40-41)  

ml: medial lemniscus (lemniscus medialis; Fig. 6, Fig. 26, Fig. 42-47) 

mot: medial olfactory tract (tractus olfactorius medialis; Fig7-9) 

 

N 

nab: nucleus of the abducent nerve (nucleus nervi abducentis; Fig. 7, Fig. 49) 

nde: dentate nucleus (nucleus dentatus; Fig. 24-25,Fig. 49-51) 

nf: fastigial nucleus (nucleus fastigii; Fig. 11, Fig. 51-52) 

nip: interposed nucleus (nucleus interpositus; Fig. 11, Fig. 28, Fig. 49-51) 

nmv: vestibular nucleus (nucleus vestibularis medialis; Fig. 50-52) 

nml: lateral vestibular nerve (nucleus nervi vestibularis lateralis, Deiters’s; Fig. 50) 

nnf: facial nerve (nucleus nervi facialis; Fig. 50-52) 

nno: oculomotor nerve (nucleus nervi occulomotorii; Fig. 42) 

nnt: trigeminal nerve (nuclei nervi trigemini; Fig. 46-48) 

no: nodulus vermis (Fig. 28-30, Fig. 72) 

npo: pontine nuclei (nuclei pontis; Fig. 26-27, Fig. 45) 

nrt: reticular nucleus of thalamus (nucleus reticularis thalami; Fig. 26) 

nts: nucleus of the spinal tract of the trigeminal nerve (nucleus tractus spinalis nervi trigemini; Fig. 25; 

Fig. 49) 

 

O 

ob: olfactory bulb (bulbus olfactorius; Fig. 6-9, Fig. 21-27) 

Obl: oblique sulcus (sulcus obliquus; Fig. 58) 

Oc: oculus, eye (Fig. 7-14) 

ocm: external ocular muscles (Fig. 22) 

olf: olfactory fibres (fibrae olfactoriae; Fig. 6-10, Fig. 19-30) 

oli: olivaris nucleus (nucleus olivaris; Fig. 30) 

olr: olfactory recess (recessus olfactorius; Fig. 54) 

omn: oculomotor nerve (nervus oculomotorius; Fig. 27) 

Op: operculum (Fig. 60) 

opn: optic nerve (nervus opticus; Fig. 6-8, Sagittal Fig. 21-27) 

or: optic radiation (radiatio optica; Fig. 15, Fig. 19-20, Fig. 38-41) 

ot: optic tract (tractus opticus; Fig. 8-14, Fig. 21-26, Fig. 34-40) 

otu: olfactory tubercle (tuberculum olfactorium; Fig. 23-26, Fig. 31) 
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ox: obex region (obex; Fig. 30) 

 

P 

paf: paraflocculus (Fig. 9-10, Fig. 19-21, Fig. 46-52, Fig. 72) 

pb: pineal body (corpus pineale; Fig. 14, fig. 30, Fig. 40) 

pcc: caudal cerebellar peduncle (pedunculus cerebellaris caudalis Fig. 8-9, Fig. 23-26, Fig. 52)  

Pcf: preculminalte fissure (fissura praeculminata; Fig. 72) 

pcm: medial cerebellar peduncle (pedunculus cerebellaris medialis Fig. 8-10, Fig. 23-24, Fig. 45-47) 

pcr: rostral cerebellar peduncle (pedunculus cerebellaris rostralis Fig. 9-10, Fig. 25-27, Fig. 46-49) 

pg: pituitary gland (hypophysis; Fig. 7, Fig. 28-30, Fig. 34-40) 

phg: parahippocampal gyrus (gyrus parahippocampalis; Fig. 10-13, Fig. 38-43) 

pir: piriform lobe (lobus piriformis; Fig. 7-13, Fig. 19-21, Fig. 43-42) 

pml: paramedian lobule (lobulus paramedianus; Fig. 10-13, Fig. 22-26) 

prpc: prepiriform cortex (cortex praepiriformis; Fig. 11)  

Ppf: prepyramidal fissure (fissura praepyramidalis; Fig. 72) 

Prf: primary fissure (fissura prima; Fig. 27-30, Fig. 72) 

Prr: prorean sulcus (sulcus proreus; Fig. 57) 

Prs: presylvian sulcus (sulcus praesylvius; Fig. 11-13, Fig. 25, Fig. 57A,B,C) 

put: putamen (Fig. 13-15, Fig. 22-24, Fig. 31-36) 

pul: pulvinar (nucleus pulvinaris; Fig. 25, Fig. 40-41) 

po: pons (Fig. 28-30, Fig. 45, Fig. 72) 

pta: pretectal area (area praetectalis; Fig. 27) 

py: pyramis vermis (Fig. 27-30, Fig. 72) 

pyr: pyramidal tracts (tractus pyramidalis; Fig. 29; Fig. 48) 

 

R 

rc: rostral commissure (commissura rostralis; Fig. 11-12, Fig. 26-28, Fig. 50-52) 

rcc: radiation of the corpus callosum (radiatio corporis callosi; Fig. 22-25, Fig. 31-42) 

rcl: rostrum of the corpus callosum (rostrum corporis callosi; Fig. 13, Fig. 28-30) 

rf: reticular formation (formatio reticularis; Fig. 27) 

Rfi: rhinal fissure (fissura rhinalis lateralis; Fig. 13-14, Fig. 19-22, Fig. 31-48) 

rm: rete mirabile (Fig. 28-30) 

rmt: radix motoria of the trigeminal nerve (Fig. 23) 

rn: red nucleus (nucleus ruber; Fig. 27-28, Fig. 41) 

rnf: radix of the facial nerve (radix nervi fascialis, Vll; Fig. 6, Fig. 49) 

roc: rostral colliculus (colliculus rostralis; Fig. 13, Fig. 25-30, Fig. 42-45) 

rtv: recessus tecti of the fourth ventricle (recessus tecti ventriculi quarti; Fig. 72) 
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S 

Scl: callosal sulcus (sulcus corporis callosi; Fig. 30) 

scc: splenium of the corpus callosum (splenium corporis callosi; Fig. 28-29; Fig. 41-42) 

Scf: secundary fissure (fissura secunda; Fig. 72, Fig. 28-30) 

si: substantia innominata (Fig. 33) 

sl: lateral septal nuclei (nuclei septi laterales; Fig. 31-32) 

smt: stria medullaris of the thalamus (stria medullaris thalami; Fig. 14, Fig. 29-30, Fig. 33-38) 

sn: septal nuclei (nuclei septales; Fig. 30) 

sng: substantia nigra (Fig. 9, Fig. 25-26, Fig. 38-41) 

spe: septum pellucidum (Fig. 39-40)  

Spl: splenial sulcus (sulcus splenialis; Fig. 17-18, Fig. 23-30, Fig. 31-48, Fig. 57-60) 

Spl*: connecting sulcus between splenial and suprasylvian sulcus (Fig. 25-30, Fig. 32-37, Fig. 59) 

spt: spinal tract of the trigeminal nerve (tractus spinalis nervi trigemini; Fig. 6-7, Fig. 24-25) 

Sss: suprasylvian sulcus (sulcus suprasylvius; Fig. 14-18, Fig. 19-26, Fig. 31-46, Fig. 57-60) 

stb: striate body (corpus striatum; Fig. 25-26) 

sto: stratum opticum of the rostral colliculus (Fig. 42). 

Syl: sylvian fissure (fissura sylvii; Fig. 14-18, Fig. 19-20, Fig. 33-38, Fig. 57-59) 

 

T 

tb: trapezoid body (corpus trapezoideum; Fig. 26, Fig. 48) 

th: thalamus (Fig. 12-14, Fig. 24-30, Fig. 35-38) 

tl: terminal lamina (lamina terminalis; Fig. 28-30) 

tu: tuber of vermis (tuber vermis; Fig. 14-16, Fig. 25-26, Fig. 72) 

 

U 

uv: uvula vermis (Fig. 28-30, Fig. 72) 

Unf: uvulonodular fissure (fissura uvulonodularis; Fig. 72) 

 

V 

vn: vestibular nuclei (nuclei vestibulares) 

vtx: decussatio tegmenti ventralis (Forel; Fig. 38) 

 

Z 

zi: zona incerta (Fig. 38) 

 

Roman figures 

V: trigeminal nerve (nervus trigeminus; Fig. 6-7, Fig. 21-24, Fig. 35-45) 
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Vmd: mandibular nerve of the trigeminal nerve (nervus mandibularis; Fig. 6, Fig. 21) 

Vmx: maxillary nerve of the trigeminal nerve (nervus maxillaris; Fig. 6, Fig. 20-21) 

Vll: facial nerve (nervus facialis; Fig. 7-9) 

Vlll: vestibulocochlear nerve (nervus vestibulocochlearis; Fig. 6-7, Fig. 48-49) 

 

Arabic figures 

3: third ventricle (ventriculus tertius; Fig. 8-9, Fig. 29-30)  

4: fourth ventricle (ventriculus quartus; Fig. 7-9, Fig. 30) 
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2 Introduction 

 

 

Since its domestication around 7000 BC the pig (sus scrofa domesticus) has always 

been of great economical importance. Due to the discovery of significant structural 

and metabolic similarities to the human body, the pig has also become the subject of 

biomedical research (Landy et al. 1961, Douglas 1972, Book and Bustad 1974, 

Tumbleson 1986; Swindle et al. 1988, Swindel et al. 1994, Munkeby et al. 2006). 

Therefore detailed anatomical knowledge of the pig brain is invaluable to researchers 

and a number of anatomical and histological pig brain atlases exist (Salinas-Zeballos 

et al. 1986, Makita and Tominaga 1987, Félix et al. 1999). The experimental 

biomedical and neuro-radiological approach remains the main source of the 

documentation of the MRI anatomy of the pig brain (Marcilloux 1989, 1993, Duhaime 

et al. 2000, Sørensen et al. 2000, Rhode 2001, Watanabe et al 2001, Makiranta et al. 

2002, Duhaime et al. 2003, Grate et al. 2003, Bjarkam et al. 2004, Munkeby 2004, 

Fang et al. 2005, 2006, Duhaime et al. 2006, Lidegran et al. 2006, Munkeby 2006, 

Cohen et al. 2007, Gizewski et al. 2007, Hata et al. 2007, Moxon-Lester et al. 2007, 

Rosendal et al. 2009, Oto et al 2011).  

Standard anatomical atlases in veterinary medicine and comparative anatomy are 

based on macroscopic and/or histological examination. Most of them contain few 

drawings of the porcine brain or concentrate only on parts of the pig brain. It is their 

aim to give an overview of the anatomy or the evolutionary relationship of several 

domestic animal species (Franck and Martin 1894, Flatau and Jakobsohn 1899, 

Schellenberg 1900, Martin 1904, Bolk 1906, Ellenberger and Baum 1942, Sisson 

1953, Koch 1965, Yoshikawa 1968, Brauer and Schober 1970, Romer and Parson  

1991, Nickel et al. 1992, Dyce et al. 2002). 

In veterinary medicine results of MRI investigations of other species, such as 

companion animals (Buonnano et al. 1982, Kraft et al. 1989, Hudson et al. 1995, 

Assheuer and Sager 1997, Smith et al. 2001, Leigh et al. 2008), ruminants (Gordon 

and Dennis 1995, Karger 1998, Tzuka and Taura 1999, Yamada et al. 2005, Schmidt 

et al. 2006, Schenk 2007, Schmidt et al. 2008, Schmidt et al. 2009, Schmidt et al. 

2011) and horses (Chaffin 1997, Arencibia et al. 2001) are available as a result of the 

ongoing effort to collect morphological data for the currently expanding field of 

magnetic resonance imaging (MRI). The existing histological atlases of the pig brain 
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are useful for anatomical and biomedical studies. They have however limitations 

when it comes to the identification of porcine brain structures in MRI scans. The 

translation of morphological data into the identification of cortical sections of the 

porcine brain (in MRI) remains a challenge, because a structure highlighted by a 

certain staining technique does not necessarily have an intense signal in MRI scans.  

Furthermore morphological nomenclature of the sulci of the porcine brain is not 

standardized. Terminology changes and varies between research groups. This may 

be because of progress in research and advances in technology, but also because of 

differences in opinion. This problem is highlighted in this study with the aim to spark 

renewed discussions, that will ultimately lead to a standardized terminology. 

This study presents anatomical details of the porcine brain as revealed in MRI and 

includes a synopsis of historical and recent data on the morphology of the porcine 

brain. In addition the morphology of the porcine brain in MRI is compared with the 

MR images of other ungulates and members of the suidae and other mammals, 

including rare MRI scans of a female babirusa. Similarities and differences are 

pointed out. The description of specific features in MRI scans of the domestic pig 

brain complements existing data for veterinary diagnostic imaging.  
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3 The pig in biomedical research 

 

 

The idea of using the pig as a model to help understand the physiology and anatomy 

of the human body is not new (Gross 1998), but lay more or less forgotten until the 

20th century. Scientific research over the last five decades has shown the great 

potential of pigs in biomedical research because of biological homologies to the 

human body and the pig’s suitability as a laboratory animal (Lind et al. 2007).  

First scientists focused on the similarities of human and porcine nutritional and 

physiological functions. This included studies of the reproductive tract. Pigs were also 

used in pediatric research (Landy et al. 1961, Douglas 1972, Book and Bustad 1974). 

Furthermore the pig became popular as a model in cardiovascular research and 

currently plays an important role in experimental surgery, such as cardiac surgery, 

organ transplantation and plastic and reconstructive surgery. In cardiology the pig 

model is used to conduct research into myocardial infarction (Checkley 1987, 

Williams 1988). But the pig is also used in the fields of anaesthesiology (Mäkiranta et 

al. 2002) and orthopaedic research (Robinson et al. 1988). Pigs have been used to 

study sudden infant’s death (Waters et al. 1996) and metabolic disorders (Cesta et 

al. 2006, Danielsen et al. 2001). The pig is also used frequently in surgical training 

(Swindel et al. 1994). Much today’s understanding of human neonatal physiology 

derives from studies conducted in animal models (Munkeby et al. 2004, Munkeby et 

al. 2006) and a large body of data concerning the newborn pig has been gathered for 

this purpose. Research shows that the piglet’s anatomy and physiology are in many 

respects close to that of humans (Mc Cellan et al. 1968, Tumbleson 1986, Roohey et 

al. 1997, Swindle et al. 1998, Munkeby et al. 2006). 
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3.1 General advantages of the pig model in biomedical 

research 

 

When selecting a suitable animal model for human brain research, primate brains, 

such as macacca brains, seem to be the obvious choice, because of the close 

human-primate phylogenetic relationship (Rosendal et al. 2009).  

Although the fully grown domestic pig‘s (sus scrofa domesticus) weight and size 

could be seen as a disadvantage, piglets or small purpose bred minipigs are 

considered to be an alternative (Swindel et al. 1994, Roohey et al. 1997). As a 

laboratory animal the pig is less expensive to keep and more accessible, it produces 

larger litters and is more easily handled than primates. Pigs also seem to have fewer 

health problems in a laboratory environment (Book and Bustad 1974, Swindle et al. 

1994, Bjarkam et al. 2004, Fang et al. 2005). Non-human primate models have also 

the disadvantage of unresolved ethical issues (Roohey et al. 1997). It is easier and 

less expensive to keep pigs under controlled conditions (Vodička et al. 2005).  

As early as the 1960s the first specific pathogen free (SPF) pigs were bred (Landy et 

al. 1961) and pigs were raised under germ-free conditions (Meyer et al. 1964). In 

addition to that, pigs have been already transgenically modified by somatic cell 

nuclear transfer (Dai et al. 2002, Lai et al. 2002), this allows the establishment of 

knockout piglets and facilitates xenotransplantation and the creation of transgenic 

disease models (Lind 2007). The pig’s lifespan of 12-18 years also allows long term 

research, like the evaluation of safety and efficacy of therapeutic methods (Lind et al. 

2007). Minipigs are nowadays purposely bred as laboratory animals (Yucatan, 

Hanford, Göttingen, Sinclair or Chinese breeds like Xiang, Wuzhishan, Diannan 

Small-Ear, Tibetan and Banna). Desired traits are placidity and size (Lind et al. 

2007).  



Comparative anatomy of the pig brain 

 

5 

 

3.2 The pig brain in neuroscience 

 

Although the pig was used for pediatric brain research in the sixties and seventies of 

the last century (Landy et al. 1961, Douglas 1972, Book and Bustad 1974), it took 

decades until the pig’s use in neuroscience was fully recognised (Lind et al 2007). 

Today the porcine brain is viewed as an excellent non primate, gyrencephalic model 

for the human brain (Hofman 1985, Hashimoto et al. 1996, Mun-Bryce et al. 2001, 

Lidegran et al. 2006, Nielsen et al. 2009). The nuclei of the pig brain are larger in 

comparison to the nuclei of a rat- or rodent brain (Marcilloux et al. 1989 and 1993). 

The pig brain is also large enough to allow the identification of cortical and 

subcortical structures using conventional imaging techniques like magnetic 

resonance imaging (MRI), functional magnetic resonance imaging (fMRI) and 

positron emission tomography (PET) (Watanabe et al. 2001, Bjarkam et al 2004, 

Jelsing et al. 2005, Lind et al. 2007). The porcine brain also allows well- localised 

lesions (surgical procedures) or stimulations (using neural stimulation devices) in 

anatomically defined structures (Dalmose et al. 2005). 

The gyrated pig brain is more similar to the primate brain than the lissencephalic 

brain of smaller laboratory animals (Jelsing et al. 2006, Lind et al. 2007). The shape 

and gyral pattern of a piglet’s brain is basically comparable to that of humans, as is 

the distribution of grey and white matter. The changes in brain morphology during 

development also show similarities (Mäkiranta et al. 2002, Grate et al. 2003, 

Munkeby et al. 2004, Munkeby et al. 2006, Lind et al. 2007, Lodygensky et al. 2007). 

The porcine brain is seen as an appropriate model for the brain of human infants. 

Advantages of piglets as experimental animals in pediatric research have been 

investigated by Glauser (1966). The growths spurt of the porcine brain, like that of 

human brains, extents from late prenatal to early postnatal life (Dickerson and 

Dobbing 1967, Pond et al. 2000). The pig brain is furthermore a model for recovery 

after brain trauma (Armstead and Kurth 1994, Wagner et al. 1996, Duhaime et al. 

2000, Raghupathi and Margulies 2002, Duhaime et al. 2003, Grate et al. 2003, 

Munkeby et al. 2004, Munkeby et al. 2006). The brain injury responses of Yorkshire 

piglets of 5 days of age, 1month of age and 4month of age were found to correspond 

developmentally to brain injury responses of human infants, toddlers and early 

adolescents (Duhaime et al. 2003). Brains of three to five day old piglets were used 

as models for infant brains less than 3 month of age, while investigating traumatic 
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axonal injury (Raghupathi and Margulies 2002).  

Brain hypoxia or brain ischemia can cause severe an irreversible brain damage with 

often fatal outcome for the patient. The lack of oxygen/blood supply to the brain can 

be for example caused by stroke or by complications during birth. The pig is used in 

a large number of studies concerning brain hypoxia and ischemia (Chang et al. 1998, 

Imai et al. 2006, Lidegran et al. 2006, Moxon-Lester et al. 2007, Rosen et al. 1992, 

Sakoh and Gjedde 2003). Munkeby et al. 2006 while investigating neonatal hypoxia 

ischemia demonstrated the value of MRI in morphological research and published 

pictures of the Haderian gland in piglets as revealed by MRI images (1.5 Tesla). This 

gland - though large enough - in size had only been investigated in rodents and lower 

vertebrates before. MRI is also used as a guiding tool in surgery (Rhode et al. 2001, 

Hata et al. 2007). Magnetic resonance imaging-guided focused ultrasound for 

thermal ablation of brain tumours was for example tested using a swine model 

(Cohen et al. 2007).  
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3.3 Steretotactic studies of the pig brain 

 

Stereotaxy is important for a large number of in vivo studies of the central nervous 

system. It often involves the fitting of a specially designed apparatus (Fig. 1, Fig. 2). 

To know the exact position of brain structures (such as nuclei) is very important, 

because stereotactic coordinates are the key to accurate cranio-encephalic 

topography- whether it involves surgical or pathological procedures or morphological 

research (Andersen et al. 2005, Bjarkam et al. 2004, Dalmose et al. 2005, Félix et al. 

1999, Jelsing et al. 2006, Lim et al. 1960, Marcilloux et al. 1993, Poceta et al. 1981, 

Saito et al. 1998, Salinas-Zeballos et al. 1986, Sørensen et al. 2000, Szteyn et al. 

1980, Talairach et Tournoux 1988, Tindal et al. 1968, Watanabe et al. 2001).  

The porcine brain was studied using stereotactic methods. Stereotactic brain atlases, 

including a stereotactic atlas of the pig brain and stereotactic studies of selected 

structures of the porcine brain are available to researchers (Marcilloux et al. 1989 

and1993, Felix et al. 1999, Bjarkam et al. 2004, Saito et al. 1998). In 1986 Salinas-

Zeballos et al. published a stereotactic atlas of the developing swine brain, because 

detailed studies of the nervous system in development (e.g. postnatal development 

of neural control of visceral function) need accuracy and reproducibility of electrode 

placement. To aid the localization of the porcine hippocampus, stereotactic 

coordinates were also determined (Saito et al. 1998). 

A detailed stereotactic atlas of the pig brain was published in 1999. The atlas 

consists of transversal and sagittal drawings and photographs (Felix et al. 1999). 

Stereotactic procedures were for example established to locate hypothalamic nerve 

centres in the porcine brain (Szteyn et al. 1980), to place cannulae in cerebral 

ventricle in experimental settings (Poceta et al. 1981), to map cerebral blood flow 

(Andersen et al. 2005) and to allow stereotactic electrical stimulation of the pontine 

micturition centre in the pig (Dalmose et al. 2005). 
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Figure 1 
Example of a stereotactic apparatus (from Félix et al.1999). The porcine skull is fixed by ear- bars and 
mouth and orbital pieces. This was necessary to be able to produce a detailed stereotactic atlas of the pig 
brain. The atlas consists of transversal and sagittal drawings and photographs of the porcine brain. 

 

 

Figure 2 
The scull of a goat is fitted into a stereotactic apparatus (from Tindal et. al 1986). Stereotactic 
coordinates and techniques are essential for the accurate insertion of electrodes, or cannulae bearing 
steroids or drugs, into specific brain structures. 
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3.4 Morphological details of the pig brain in literature 

 

Interest in the anatomy of the porcine brain started at the beginning of the last 

century. Since then the porcine brain has been featured in a large number of 

comparative anatomical atlases and comparative anatomical studies of the central 

nervous system of mammals. Today a variety of anatomical studies of the porcine 

brain, based on macroscopic studies and studies investigating the brain function, are 

available (Franck and Martin 1894, Flatau and Jakobsohn 1899, Ziehen 1899, 

Schellenberg 1900, Martin 1904, Gegenbauer 1909, Kappers 1921, Kuhlenbeck 

1927, Anthony and De Grzybowski 1931, Haller v. Hallerstein V 1934, Ellenberger 

and Baum 1942, Stephan 1951, Sisson 1953, Koch 1965, Yoshikawa 1968, Brauer 

and Schober 1970, Dellmann and Mc Clure 1975, Lauer 1982, Stark 1982, Romer 

and Parson 1991, Nickel et al. 1992, Nieuwenhuys et al. 1998, Dyce et al. 2002). 

A comparative anatomical investigation into the cerebellum of mammals was 

delivered by Bolk (1906). He describes the porcine cerebellum comprehensively. The 

development of the cerebellum of the pig was described by Larsell in 1954. And the 

topography and cytoarchitecture of the cerebellum (boar) was investigated by Bujak 

in 1974. Bujak describes a partial aplasia of the cerebellar cortex that is caused 

mechanically during the brain development of the domestic pig and the wild boar 

(also mentioned by Schulz 1953 and Cohrs and Schulz 1952). The absolute and 

relative growth curves for the foetal cerebellum of the pig and the entire brain of the 

foetal pig (from 45 days to term) were determined by Done and Herbert (1968). 

Bradley (1903) examined the cerebellum of pig embryos from day 40 to day 70, as 

well as the adult cerebellum of the pig. The porcine cerebellum was also compared 

with cerebelli of other domestic mammals including the cerebelli of horse, dog, goats 

and sheep. The mesencephalon of domestic mammals was described by Chromiak 

in 1963. This paper gives information about nuclear topography of the brains of 

domestic mammals and includes the porcine brain. 

Myelo- and cytoarchitectonics of the domestic pig’s mesencephalon and pons were 

also studied (Freund 1969, Freund 1973). The nuclear pattern of the non-tectal 

portions of the midbrain and isthmus in ungulates was examined (Gillian 1943). This 

study features the study of the midbrain of a 16 cm pig. The morphology and 

cytoarchitecture of red nucleus (nucleus ruber) of the domestic pig was described 

(Otabe and Horowitz 1970). The structure and the topography of the diencephalon 
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and its different nuclear groups were described by different authors. Studies include 

the nuclei of the posterior group of the thalamus (Welento 1964), the thalamus 

(Solnitzky 1037), the nuclei of the hypothalamus (Welento 1964) and the nuclei of the 

ventromedial hypothalamus (Seeger 1990). A study of the hypothalamus and 

subthalamus of sus scrofa also exists (Solnitzky 1939), as well as a more recent 

study of the subthalamic nucleus. The subthalamic nucleus was evaluated using 

immunohistochemistry and design-based stereology (Larsen et al. 2004). The 

porcine retinal projections were investigated with the aid of histological staining 

techniques. In that context nuclei of the diencephalon were described, including the 

dorsal and ventral nuclei of the lateral geniculate body. The retinal projections of the 

pig were also compared with the retinal projections of sheep (Karamanlidis and 

Magras 1972). The thalamus of the pig was compared with the thalamus of the 

sheep. Cellular and fibrous structures were investigated (Rose 1942). 

The structure of the mammalian corpus callosum was described and species 

differences and similarities of that structure were pointed out (Olivares et al. 2001).  

The sulci of the cerebral cortex of ungulates were studied as early as 1878. The 

study includes the description of features of the porcine brain. The system of the sulci 

of ungulates was also compared with the system of sulci of carnivores (Krueg 1878). 

The motor cortex of the domestic pig was studied by Breazile et al. (1966) and the 

primary- and secondary somatosensory cortex of the new born pig were both 

described by Craner and Ray in 1991. They confirmed the similarity of the 

organization of these cortical areas to those of other mammals. Earlier investigations 

into the same areas were performed by Adrian in 1943 and Woolsey and Fairman in 

1946. The primary somatosensory cortex was recently studied using functional 

magnetic resonance imaging in piglets (Duhaime et al. 2006). 

The prefrontal cortex of the minipig brain (Göttingen minipig) was described using 

neural projection criteria and concentrating on cytoarchitecture (Jelsing et al. 2006 a). 

The same year the development of glia cells and neocortical neurons of the domestic 

pig and the Göttingen minipig were studied (Jelsing et al. 2006 b). 

Hofman (1985) proposed a dimensionless index of cortical folding, rather than the 

use of a single allometric relation, to study the effect of size increase on the geometry 

of the brain. He compared the size of various brain structures in mammals, including 

sus scrofa. 

The morphological characteristics of the gyrus dentatus (archipallium) in some 

animal species and in man were described (Dilberovic et al. 1986).  
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The olfactory system of the porcine brain is well developed and was investigated by a 

number of researchers. They have concentrated on the olfactory tubercle and the 

nucleus of the diagonal fasciculus of Broca (Hereć 1967). Within the olfactory bulb of 

the pig, the luteinizing hormone-releasing hormone was localised 

immuncytochemically (Leshin et al. 1991). The accessory olfactory bulb of the pig is 

the subject of another research project (Salazar et al. 2004).  

A comprehensive study of the early development of the olfactory nerve of pigs can be 

found (Edgar and Bedford 1904).  

The brainstem of the domestic pig is the research subject of Breazile (Breazile 1967). 

He delivers a description of the cytoarchitecture of this part of the porcine central 

nervous system. He later examined the ventrolateral spinal cord afferents to the brain 

stem of the pig (Breazile and Kitchell 1986). 

Furthermore the course and termination of the pyramidal tract of the porcine brain 

were determined (Palmieri et al. 1987). A fiber and numerical analysis of the 

pyramidal tract of ungulates was performed (Lassek 1941). It also features the pig. 

There is an interest in the brain growth of the pig during ontogeny. The development 

of the porcine cerebellum was examined in the foetal pig (Done and Herbert 1968).  

Descriptions of the pre- and postnatal development of the porcine central nervous 

system (Dickerson and Dobbing 1967, Pond et al. 2000) can be found.  

It was possible to identify postnatal changes in functional activities of the porcine 

brain using functional magnet resonance imaging (Fang et al. 2005 a). The post 

partal development of the porcine cerebellum was also studied by Fang et al. (2005 

b) using f MRI.  
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3.5 The Göttingen minipig brain in literature 

 

Minipigs are a popular animal model in neuroscience (Lind et al. 2007, Rosendal et 

al. 2009). It is therefore not surprising that scientists are developing protocols to 

utilize MRI as tool to aid the determination of neuronal coordinates of the minipig 

brain (Rosendal et al. 2009). Rosendal et al. 2009 used a 3 Tesla MRI to produce in 

vivo visualization of the Göttingen minipig brain (focusing on nuclei that are of special 

interest in human medical research). The high quality scans allow the visualisation of 

important nuclear groups. Watanabe et al. (2001) published a MR based statistical 

atlas of the minipig brain after examining 22 male Göttingen minipigs to establish a 

basis for a planned systematic comparison of gender, age and strain differences of 

the minipig brain. He achieved (through 3 D image rendering) a model that pictures 

the statistical/ average shape of the of the minipig brain. Because of its value as a 

laboratory animal (see above) the brain of the Göttingen minipig was examined in 

detail. Age- weight relationships of selected organs and body weight were 

established in the early seventies (Thomas and Beamer 1971). Auditory- and 

somatosensory cortex of minipigs were mapped (Andrews et al. 1990). A volumetric 

screening procedure for the Göttingen minipig brain was developed in 2005 (Jelsing 

et al. 2005). The prefrontal cortex of the Göttingen minipig was described by neural 

projection criteria and cytoarchitecture. Cytoarchitectonic and connectional data of 

this study suggest that the Göttingen minipig has a structurally divided prefrontal 

cortex (Jelsing et al. 2006 a). Using stereological principles, the development of 

overall number- and perikaryon volume of the Purkinje cells post partum were 

estimated in the Göttingen minipig brain. The cells were found to be considerably 

larger in comparison with human Purkinje cells and the Purkinje cells of other 

mammals. The volume of the perikaryon and the increase in cell number was 

considered to be part of the growth and development of the cerebellum in this breed 

(Jelsing et al. 2006 c). Glia cells and neocortical neurons of the Göttingen minipig 

and the domestic pig were compared. In this study the researchers focused on the 

postnatal development (Jelsing et al. 2006 b). As part of the research into the 

Parkinson disease, the pars compacta of the substantia nigra was studied in the 

Göttingen minipig (Nielsen et al. 2009). A MRI protocol for the visualization of the 

minipigs brain was established experimentally. As a consequence the determination 

of coordinates necessary in experimental neurosurgery in the Göttingen minipig was 
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considerably improved (Rosendal et al. 2009). 

 

 

3.6 Comparative brain studies of the porcine brain 

 

Scientists have been interested in interested the anatomy of the wild boar brain 

(Hadziselimovic and Dilberovic 1977) and changes of the brain during domestication. 

A special interest in the anatomical differences between the brain of the domestic pig 

and its wild relative exists. As early as 1939 brains of the wild boar and domestic pig 

breeds were examined anatomically and compared (Rawiel 1939). These studies 

were continued by a comparison of the cytoarchitectonic composition of brains of the 

European wild boar and the domestic pig (Kruska et al. 1970). Researchers were 

keen on finding out how domestication changes the structure of the brain and 

consequently the behaviour of the animal (Stephan 1951, Kruska 1988). The brains 

of feral pigs and European domestic pigs were examined to establish whether the 

effects of domestication on the porcine brain are reversible or not (Kruska and Röhrs 

1974, Röhrs and Ebinger 1999). A description of the brain of the Sus (Porcula) 

salvanius hodgson, a miniature wild pig, discusses the difficulties of comparative 

anatomy of mammal brains of different body size (Kruska 1982). Auditory structures 

of the European wild boar and the domestic pig were also compared (Plogmann and 

Kruska 1990). In 1987 Makita and Tominaga developed a pig brain atlas to aid the 

interpretation of CT scan slices. It contains drawings and photographs of dorsal and 

transversal brain sections. It was followed by a study comparing CT scans of the 

brains of pigs under anaesthesia with formalin fixed brains of wild boar in 1988.  

Brauer und Schober compare the system of sulci und gyri of the Warthog 

(Phacochoerus africanus), pekaris (Tayassuidae), wild boar and the pot belly pig 

(Brauer und Schober 1970). 
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4 Materials and methods 

 

4.1 Specimens 

 

The intracranial central nervous system of 10 pigs (hybrids for meat production, 5 

month old) is described in this study. The pigs were received post mortem. They had 

undergone surgery at the Giessen School of Endoscopy (human medicine) and were 

euthanized after the endoscopic procedures. One animal was flushed with 0.9% 

saline via the jugular vein, followed by 4% formaldehyde in phosphate buffer. After 

fixation and hardening of the tissue, the head was dissected between the first and 

second cervical vertebrae and stored in the same fixation solution. After 2 weeks of 

post fixation, imaging was performed using Phillips brilliance, 1 Tesla MRI scanner, 

with a Phillips surface coil (C3) at the Department of Veterinary Clinical Science - 

Clinic for Small Animals, Justus Liebig-University (Fig. 3). The other 9 pigs were 

scanned directly post mortem without fixation.  

The head of a female babirusa (Indonesian member of the suinae), also known as 

“pig deer” was received from the “Hessisches Untersuchungsamt”. The animal had 

been euthanized because of a uterine neoplasia at Frankfurt Zoo (Fig. 62). The 

female was 27 years old. The babirusa did not show any neurological disorders ante 

mortem. The head was removed from the babirusa’s body post mortem and taken to 

the Department of Veterinary Clinical Science - Clinic for Small Animals, Justus 

Liebig-University (JLU) in Giessen. Here it underwent MRI examination. The scans 

were taken 2-3 hours after death and before preparation and fixation of the brain in 

formalin for future examinations.  

The head of a Wiesenauer minipig was obtained post mortem from the Clinic for 

Swine at the Justus-Liebig-University, Giessen. The pig was euthanized because of 

complicated pelvic fractures. Native MRI scans were taken directly after death.  

The head of a wild boar (sus scrofa) was kindly donated by Dr. Markus Müller. The 

animal was killed during a hunt and in accordance with the German game law 

(“Jagdrecht”). 

The scans of the porcine brain were also compared with available scans of post-

mortem bovine, equine and ovine brains that had previously undergone MRI 

examination at the Clinic for small animals (JLU). CT Images of all porcine heads 
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were taken with a CT scanner, Phillips Brilliance (Fig. 3) to identify the position of the 

brain within the skull and to help with orientation.  

All animals scanned for the purpose of this study, were obtained after their death. 

Therefore it was not necessary to apply for permission according to the German 

animal welfare act (Tierschutzgesetz § 8 from the 18th of May 2006 (BGBI. I S. 1206, 

2013)). All other MR images (including brains scans of red deer and alpaca) were 

found in the archives of the small animal surgery department of the JLU in Giessen. 

The images were used with the kind permission of Prof. Dr.Dr. h.c. M. Kramer and 

PD Dr. med.vet. (habil.) M. Schmidt. 

 

4.2 MR-imaging of the formalin fixed specimens 

 

Magnetic resonance images of the entire head were acquired in dorsal, sagittal and 

transverse planes, using a 3D gradient echo sequence. To achieve a sufficient 

signal-to-noise ratio (SNR), 32 averages were accumulated overnight (approx. 8 h) 

obtaining slices of 1mm thickness with 130 mm field of view (FOV) at 256/256 matrix 

size. After acquisition each dimension was additionally extrapolated by a factor 2. 

This resulted in an image size of 1024x1024, with 0,25 mm in-plane resolution and 

1.0 mm slice distance. Optimum contrast was obtained with 1800 milliseconds (ms) 

repetition time (TR) and a 90° flip angle, while the echotime (TE) was adjusted to 

35 ms. Proton density (PD) weighted images were produced with these parameters. 

The chosen 3D sequence facilitates the generation of pictures with high signal 

intensity because each impulse excites the volume of the brain. It was shown that 

greater sensitivity is achieved with 3D sequences because each signal acquisition 

represents an average of the entire sample volume, resulting in a substantial 

increase in the signal-to-noise ratio (Toga and Mazziotta 1996).   

 

4.3 MR-Imaging of unfixed specimen 

 

The other species were examined using routine imaging protocols for living animals. 

T2- weighted turbo spinecho sequences were used with TE: 10,0 ms, TR 4567,0 ms 
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and a 90 ° flip angle. Image matrix and field of view (FOV) were adjusted on the size 

of the head of the animal.  

 

4.4 Assembly of the 3D brain model  

 

Computer-generated volume reconstruction of the brain surface was carried out 

using AMIRA® and AVIZO 6® (Mercury Computer Systems) graphical software. The 

3D model of the outer brain surface (Fig. 4) was assembled by manual image 

segmentation of the original scans. This method provides greater accuracy of the 

results compared with automatic segmentation. The AMIRA® and AVIZO® programs 

are essential for the manual and semi-automated image segmentation of the 

individual slice. This can be achieved by manuall or automated creation of an image 

mask. All of the voxels corresponding to a single anatomical structure in the scans 

were selected. The multiplanar projection of all planes in one image could then be 

used to label the images. By placing the crosshair tool (Fig.5) on one point of interest 

in one plane, it marks the same structure in the two remaining planes. A 3D surface 

model of the porcine brain was also constructed. It helps to identify the position of 

one slice of the brain in relation to the two remaining orthogonal planes. This method 

was used to identify the gyri and sulci in the 2D images (Fig. 4). The terminology 

used in this study complies with the Nomina Anatomica (1989), Nomina Anatomica 

Veterinaria (1994), and Terminologia Anatomica (1998). 13 dorsal, 12 sagittal and 22 

transverse MRI slices were selected and labelled. The scans were furthermore 

compared with MRI brain scans of other domestic animal species (for example 

canine, equine, ovine and bovine) and the wild boar, Wiesenauer minipig and 

babirusa. Veterinary textbooks, anatomical atlases and studies of the porcine brain 

were used to identify structures before labelling (Krueg 1878, Franck 1894, Flatau 

and Jakobsohn 1899, Schellenberg 1900, Martin 1904, Black 1915, Kappers 1921, 

Rawiel 1939, Ellenberger Baum 1943, Stephan 1951, Sisson 1953, Koch 1965, 

Breazile 1966, Yoshikawa 1968, Brauer and Schober 1970, Kruska 1970, Lauer 

1982, Salinas-Zeballos et al. 1986, Makita and Tominaga 1987, Palmieri et al. 1987, 

Craner and Ray 1991, Nickel et al. 1992, Felix et al. 1999, Watanabe et al. 2001, 

Dyce et al. 2002, Lind et al. 2007). 

 



Comparative anatomy of the pig brain 

 

17 

 

 

Figure 3 

A: MRI scanner (Phillips), B: CT scanner (Phillips) at the clinic for small animals, Justus Liebig- 
University, Giessen. CT Images of all porcine heads were taken with a Phillips CT scanner to identify the 
position of the brain within the skull and to help with orientation. MRI images were produced using a 
Phillips Brilliance, 1 Tesla MRI scanner, with a Phillips surface coil (C3) © Verena Schmidt. 

 

 

Figure 4 

A 3D- surface model of the pig brain was created with the Avizo
®

 program. The identification of the sulci 

was possible with the aid of the multiplanar modus. The right presylvian sulcus is positioned at the 
crossing of the blue (dorsal), red (transversal) and green (sagittal) orthogonal planes. ©Verena Schmidt 
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Figure 5 

The three- dimensional identification of porcine brain structures is possible with the AMIRA® multiplanar 
reconstruction program and the “cross hair tool”. Top left: cross hair tool. Identification of the fornix in 
the transversal plane (top right) helps to identify the same position in the dorsal (bottom left) and the 

sagittal plane (bottom right) of the MRI dataset. ©Verena Schmidt 
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5 Results  

 

 

5.1 High detailed morphology of the porcine brain as 

revealed by MRI  

 

5.1.1 General external morphology 

 

In the pig the caudal poles of the medially flattened hemispheres are wider than the 

rostral poles. The hemispheres together give the cerebrum an oval shape in dorsal 

scans (Fig. 18). Images of the same orientation through the piriform lobe reveal two 

kidney shaped hemispheres (Fig. 11-13). In rostral transverse scans the 

hemispheres are ventrally narrow and dorsally wider. Put together they appear 

almost heartshaped (see Fig. 31).  

 

5.1.2 Cerebral cortex (pallium)  

 

5.1.2.1 Paleopallium 

 

The paleopallium is the basal part of the brain. In the pig it is very prominent with 

massive olfactory bulbs which are long, flat and situated ventrally from the frontal 

cortex. The hypointens olfactory tract is divided into a medial- (mot: Fig. 7-9) and a 

lateral (lot: Fig. 7-10, Fig. 23-24, Fig. 31-32) tract. The medial tract reaches the 

precommissural area. One part of the fibres terminates there surrounded by cortical 

gyri, but other fibers stretch beyond the hypointense rostral commissure (rc: Fig. 11-

12, Fig. 26-30, Fig. 31-33) to reach the corresponding region of the opposite 

hemisphere. The lateral part of the olfactory tract terminates in the prominent piriform 

lobe (pir: Fig. 7-13, Fig. 19-21, Fig. 34-42) of the pig (olfactory cortex). Most cranially 

positioned the prominent olfactory bulbs are visible in MRI scans (transverse scans 
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not included), along with their olfactory fibers (olf: Fig. 6-10, Fig. 19-30). The 

hypointens olfactory fibers extend in ventral, rostral and lateral direction. While the 

olfactory bulb appears as a dorsoventrally flattened oval in sagittal aspects (Fig. 21-

27) they are triangular in dorsal sections at the level of the optic chiasm (Fig. 6). The 

paired bulbs don’t touch in midline. The accessory olfactory bulbs, that are situated in 

the middle region of the olfactory bulbs can not be identified in the atlas, but are 

featured in a native scan (Fig. 54). The olfactory bulbs of the pig are ventrally 

positioned. The lamina cribrosa is horizontally positioned and the olfactory fibres 

stretch out in rostral direction from the surface of the bulbs. The two tracts flank a 

prominent olfactory tubercle (otu: Fig. 23-26, Fig. 31). Caudally bordered by the 

diagonal band of broca (diagonal gyrus; dbb: Fig. 25, Fig. 32) forming the trigone. 

 

5.1.2.2 Neopallium 

 

The neopallium is laterally separated from the paleopallium by the rhinal fissure (Rfi: 

Fig. 13-14, Fig. 19-22, Fig. 31-48) and medially separated from the archipallium by 

the splenial sulcus (Spl: Fig. 16-18, Fig. 23-30, Fig. 31-48, Fig. 57-60). The pig’s 

gyrencephalic brain is characterized by a pattern of alternating furrows (sulci) and 

ridges (gyri). The sulci of the porcine brain can be identified as hyperintens lines in 

the images of the atlas. They are accompanied either side by the corresponding 

hypointens gyri. The longitudinal cerebral fissure (Flc: Fig. 17-18) divides the 

hemispheres. On the lateral surface of the hemispheres of our formalin fixed 

specimen we are able to identify the deep, long sylvian fissure that points 

caudodorsally (Syl: Fig. 14-18, Fig. 19-20, Fig. 33-38, Fig. 57-59). It originates near 

the middle of the rhinal sulcus. The sylvian gyrus obscures the insula (in: Fig. 14-15, 

Fig. 33, Fig. 56) bordering the sylvian fissure. Caudal to the sylvian fissure the 

shorter caudal ectosylvian sulcus (Ecs: Fig. 14-18, Fig. 19, Fig. 35-41, Fig. 57-60) 

can be identified pointing dorsocaudally, almost running parallel to the sylvian fissure. 

The diagonal sulcus (Dia: Fig. 15-17, Fig. 21-24, Fig. 57-58) crosses the rostral part 

of the lateral surface pointing in caudoventral direction. The suprasylvian sulcus (Sss: 

Fig. 14-18, Fig. 19-26, Fig. 31-46, Fig. 57-60) is positioned dorsally to the sylvian 

sulcus and the ectosylvian sulci. It positioned parallel to the mediodorsal border of 

the hemisphere. A dorsal branch of the rostral suprasylvian sulcus (ramus dorsalis) 

can be identified. Further caudal the marginal sulcus (Mar: Fig. 18, Fig. 21-27, Fig. 
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34-5, Fig. 57-60) can be found, medial the endomarginal sulcus (Enm: Fig. 18, Fig. 

24-25, Fig. 42-5, Fig. 57-60) and lateral the ectomarginal sulcus (Ecm: Fig. 15-18, 

Fig. 19, Fig. 32-40, Fig. 57-60) can be identified. The ectomarginal sulcus is 

positioned dorsocaudally to the suprasylvian sulcus and ventrolaterally to the 

marginal sulcus. The endomarginal sulcus is positioned mediodorsal to the marginal 

sulcus. The coronal sulcus (Cor: Fig. 12-18, Fig. 23-26, 57-58) emerges from dorsal 

margin of the hemispheres and can be connected caudomedially with the ansate 

sulcus (not visible in MRI atlas).  

Medially the hyperintens sulcus of the corpus callosum (Scl: Fig. 30) surrounds the 

corpus callosum rostrally, dorsally and ventrally and separates the corpus callosum 

(cc: Fig. 14, Fig. 25-30, Fig. 31-38) from the cingulate cortex above. It is framed 

dorsally by the cingulate gyrus that appears to be hypointens in comparison. The 

caudal splenial sulcus (Spl: Fig. 17-18, Fig. 23-30, Fig. 31-48, Fig. 57-60) extends 

around the splenium of the corpus callosum (scc: Fig. 28-29; Fig. 41-42) and also 

extends cranially above the trunk of the corpus callosum. The genual sulcus (Gen: 

Fig. 13-17, Fig. 30, Fig. 57) is positioned rostrally and extends around the genu of the 

corpus callosum (gcc: Fig. 29-30) and lies in the middle between the endo- (Eng: Fig. 

13-14, Fig. 29-30, Fig. 57) and ectogenual (Ecg: Fig. 13-17) sulcus. Another sulcus 

connects the medial splenial sulcus with the lateral suprasylvian sulcus. For the 

purpose of this study it is called “connecting sulcus” (Spl*: Fig. 25-30, Fig. 32-37, Fig. 

59). The nomenclature concerning this sulcus in literature is controversial and will be 

examined in the discussion chapter of the thesis. 

 

5.1.2.3 Basal nuclei 

  

The ventrolateral part of each hemisphere contains the basal nuclei (caudate nuclei, 

putamen, globus pallidus, claustrum, accumbens nucleus). The accumbens nucleus 

(acn: Fig.11, Fig. 27-28, Fig. 31-32) is situated in close proximity to the caudate-

putamen complex (rostroventromedial). It is not easily distinguishable from its 

surroundings. The caudate nucleus (cn: Fig. 13-15, Fig. 25-29, Fig. 31-37) is large 

and easy to identify, it is elongated, laterally flattened and does not bulge into the 

lateral ventricle. In dorsal and transverse scans the caudate nuclei form a butterfly 

shaped structure. The caudate nucleus of the pig is not as curved as the caudate 
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nucleus of humans or other domestic mammals (see also comparative morphology 

below). Therefore the tail end of the nucleus, that follows the curve of the lateral 

ventricle, does not appear twice in transverse scans. Body and tail of the nucleus 

can’t be seen together in the same scan. The basal nuclei are hyperintens and 

embedded in hypointens fibre bundles (white substance). They form the 

characteristic stripes of the striate body. The caudate nucleus (cn: Fig. 13-15, Fig.  

25-29, Fig. 31-37) is separated from the lentiform nucleus or lenticular nucleus by 

hypointens fibres of the internal capsule (ic: Fig. 14-16, Fig. 22-26, Fig. 31-37). The 

hyperintens lentiform nucleus consists of the medial globus pallidus or pallidum (gp: 

Fig. 12, Fig. 31-33) -part of the palaeostriatum- and the lateral putamen (put: Fig. 13-

15, Fig. 22-24, Fig. 31-36). The lentiform and the caudate nucleus combined form the 

neostriatum. Laterally the claustrum (cla: Fig. 33), a narrow structure, is separated 

from the neopallium by the extreme capsule or capsule extrema (not featured). The 

amygdaloid body (ab: Fig. 34-37) is usually described as part of the basal nuclei, but 

is located caudoventrally from the lenticular nucleus at the top of the piriform lobe 

and is functionally part of the rhinencephalon. Medially it is connected with the 

hippocampus and with the lateral olfactory tract (lot: Fig. 7-10, Fig. 23-24, Fig. 31-32) 

and the claustrum (cla: Fig. 33).  

 

5.1.2.4 Archipallium 

 

The cingulated (ci: Fig. 16-17, Fig. 28-30, Fig. 32) and supracallosal gyri form the 

medio-dorsal part of the pig’s archipallium. They are situated between the dorsal 

splenial sulcus (Spl: Fig. 16-18, Fig. 23-30, Fig. 31-48) and the ventral corpus 

callosum. The archipallium’s ventrolateral part is known as the cornu ammonis or 

“Ammonshorn” housing the hippocampus. The archipallium embraces the dorsal 

caudal and ventral aspects of the thalamus. The cornu ammonis is hyperintens (but 

isointense to the piriform lobe, best seen in transverse and dorsal images) and 

resembles the horn of a ram (cam: Fig. 10-17, Fig. 20-30, Fig. 38-43). In our 

transverse scans the arched cornu ammonis appears as two separate stuctures in 

the same slice (dorsally and ventrally; Fig. 39-40). 

The fornix (arch) is formed by a bundle of fibres (fo: Fig. 10-12,15, Fig. 27-30; cf: Fig.  

9, Fig. 41; cfo: corpus of fornix Fig. 13-14, Fig. 33-35). These fibres are longitudinal 

association fibres and originating from the cingulum, white matter originating from the 
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cingulate gyrus (ci: Fig. 16-17, Fig. 28-30, Fig. 32). The association fibres enter the 

hippocampus caudally and are parting from it rostrally. Rostrally the fornix is situated 

below the corpus callosum (cc: Fig. 14, Fig. 25-30, Fig. 31-38). From there it 

continues in ventral direction (around the rostral aspect of the thalamus). Further 

caudal it reaches the mamillary bodies (mb: Fig. 28-30, Fig. 38) of the hypothalamus. 

All the way the fornix remains connected to the corpus callosum by the septum 

telencephali, also known as septum pellucidum (spe: Fig. 39-40). It forms parts of the 

medial wall of the lateral ventricle. The septum also contains the septal nuclei (sn: 

Fig. 30). The pronounced rhinencephalon contains the limbic system, consisting of 

the dentate gyrus (dg: Fig. 13-15, Fig. 39) cingulate gyrus (ci: Fig. 16-17, Fig. 28-30, 

Fig 32), supracallosal gyrus, geniculate gyrus and the hippocampal formation, is well 

developed.  

 

5.1.2.5 Commissures 

 

One of the most striking features in the midsagittal MR image is the corpus callosum 

that connects most parts of the neopallium of the two hemispheres. Its rostrum (rcl: 

Fig. 28-30) connects caudoventrally with the lamina terminalis. Its most rostral part is 

the genu of corpus callosum (gcc: Fig. 29-30). From there its trunk runs along the 

bottom of the longitudinal fissure, caudally forming the splenium of the corpus 

callosum (scc: Fig. 28-29). The hypointens fibres of the corpus callosum run 

transversally, entering the corpus medullare of the hemispheres. Here they spread 

out to frontal and occipital cortical areas. The corpus callosum (trunk and splenium) 

also forms the roof of the lateral ventricles. The corpus callosum of the pig forms a 

very long narrow arch in sagittal scans. In some parts it is not thicker than the fornix.  

The hypointens rostral commissure (rc: Fig. 11-12, Fig. 26-30, Fig. 31-33) of the 

paleopallium is located just ventrally to the connection between the rostrum of the 

corpus callosum (rcl: Fig. 28-30) and the terminal lamina (tl: Fig. 28-30). Rostrally the 

commissure leads to the olfactory tracts and septal area, while the caudal part 

connects laterally with the piriform lobe. The commissure of the fornix joins the 

hippocampus of the left and right hemisphere. It is part of the archipallium (cmf: Fig. 

36-40) and is also known as the commissure of the hippocampus.  
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5.1.3 Diencephalon 

 

The rostral part of the brain stem is called diencephalon. The diencephalon is divided 

into thalamus, metathalamus, epithalamus and hypothalamus. It is mostly hidden 

from view by the telencephalon and is situated directly below the hypointens fibres of 

the fornix (fo: Fig. 10-12,15, Fig. 27-30) and the hyperintens cornu ammonis (cam: 

Fig. 10-17, Fig. 20-28, Fig. 38-43), a three dimensional structure shaped like the horn 

of a ram. Only the most ventral aspect- the hypothalamus is visible. A midsagittal MR 

image reveals a better view (Fig. 30). A region called the subthalamus is positioned 

dorsal to the hypothalamus and is a continuation of the mesencephalic tegmentum. 

The different parts of the fornix can be best viewed in transverse scans. Here we can 

distinguish between the columna fornicis (cf: Fig. 9, Fig. 33-37, Fig. 41), the 

commissure of the fornix (cmf: Fig. 36-40) and the corpus of the fornix (cfo: Fig. 13-

14, Fig. 33-35).  

 

5.1.4 Mesencephalon 

 

The mesencephalon is part of the brain stem. The pig’s arched mesencephalon is 

mostly covered by the rostral part of the cerebellum; a smaller section is covered by 

the occipital lobe. The ventral aspect is exposed. The hyperintens narrow 

mesencephalic aqueduct (aq: Fig. 11-12, Fig. 30, Fig. 40-45) runs through it joining 

the 3rd and 4th ventricle rostrally. It is surrounded by the more hypointens central grey 

substance (cgs: Fig. 10-12, Fig. 28-29, Fig. 40-45). Together they form of the large 

arched aqueduct. This can be viewed in sagittal slices. The mesencephalon can be 

divided into a dorsal (tectum), medial (tegmentum) and ventral (crura cerebri) part. 

The tectum is the dorsal aspect with the aqueduct (aq: Fig. 11-12, Fig. 29-30, Fig. 

40-45) positioned below. It forms the caudal (part of the auditory pathway) and rostral 

colliculi (roc: Fig. 13, Fig. 25-30, Fig. 42-45) as part of the visual pathway. Four 

structures arranged as two pairs are forming the roof of the mesencephalon. The 

caudal colliculi are positioned further apart than the rostral colliculi. They are 

spherical structures. They are more ventrally positioned then the rostral colliculi. 

The rostral colliculi (roc: Fig. 13, Fig. 25-30, Fig. 42-45) of the pig are larger than the 

caudal colliculi (ccl: Fig. 10-12, Fig. 24-26, Fig. 46-47) - similar to the rostral colliculi 
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of small ruminants- and are connected by the commissure of the rostral colliculi .This 

can also be observed in Fig. 41. In the pig the rostral and caudal colliculi are 

separated by a longitudinal medial sulcus from their contralateral counterpart and a 

transverse sulcus parts the rostral from the caudal colliculi. The rostral colliculi are 

connected to the hypointens optic tract (ot: Fig. 9-14, Fig. 21-26, Fig. 34-40) while the 

caudal colliculi are connected to the medial geniculate body (mgb: Fig. 10-12, Fig. 

40-41) by the hypointens brachium of the caudal colliculi (bcc: Fig. 10, Fig. 42-45).  

The medial longitudinal fasciculus (flm: Fig. 6-9, Fig. 29-30, Fig. 42-52) is positioned 

ventrally to the periaqueductal grey/central grey substance (cgs: Fig. 10-12, Fig. 28-

29, Fig. 40-45). Ventrally the hypointens fibres of the rostral cerebellar peduncles 

(pcr: Fig. 9-10, Fig. 25-26, Fig. 46-49) are crossing over to the contralateral side, 

forming the decussation of the rostral cerebellar peduncles/decussation of the 

brachium conjunctivum/ interpeduncular decussation (dpc: Fig. 8-9, Fig. 28-30, Fig. 

42-43) with the hyperintens central interpeduncular nucleus of the tegmentum just 

below, that was identified in the scans (ipd: Fig. 30, Fig. 42-43). In the MR images it 

is also possible to identify the substantia nigra (sng: Fig. 9, Fig. 25-26, Fig. 38-41). 

The red nucleus (rn: Fig. 27-28, Fig. 41) of the domestic pig was not easy to identify 

in our scans. The position had to be assumed due to the neighbouring easily 

identifiable features in the same plane such as the substantia nigra (sng: Fig. 9, Fig. 

25-26, Fig. 38-41), aqueduct (aq: Fig. 11-12, Fig. 30, Fig. 40-45), the fasciculus 

tegmenti (fte: Fig. 27, Fig. 40-47) and the brachium of the rostral colliculus (brc: Fig. 

41) in transverse images. 

The pons of the pig (po: Fig. 28-30, Fig. 45) stretches far in rostral direction. In 

transverse scans it can be identified below the mesencephalon. 

 

5.1.4.1 Thalamus  

 

The thalamus of the pig is almost oval shaped in the midsagittal scan. The largest 

section of the third ventricle can be found ventrally from the intermediate mass of the 

thalamus. The thalamus can be seen just below the fornix (fo: Fig. 10-12,15, Fig. 27-

30) building the floor of the lateral ventricle and bordering the internal capsule (ic: 

Fig. 14-16, Fig. 22-26, Fig. 31-37). It meets the terminal lamina (tl: Fig. 28-30) 

rostrally while it connects caudally with the mesencephalon. The thalamus of the pig 

consists of a number of hyperintens nuclei that could not be individually identified in 
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our scans. In the midsagittal picture (Fig. 30) the nuclei of the thalamus form a 

prominent circular structure (th: Fig. 12-14, Fig. 24-30, Fig. 35-38) that appears to be 

hypointens compared to the ventricle that is reduced to a hyperintense ring. The 

thalamus develops within the walls of the third ventricle. The connection of the 

thalamus of the left and right hemisphere is called interthalamic adhesion (ita: Fig. 

35-39) or massa intermedia. In transverse and dorsal slices the thalamus is not 

circular but changes its shape from cranial to caudal and ventral to dorsal.  

The thalamus is the most important connection and control point between the 

brainstem, the medulla oblongata and the telencephalon. The most striking afferent 

nerve is the optical nerve (opn: Fig. 6-8, Fig. 21-27). The left and right (mildly 

hypointense) parts converge and cross over to the contralateral side at the optic 

chiasm (cho: Fig. 6-8, Fig. 28-30, Fig. 32-33) and continue as the optic tract (ot: Fig. 

9-13, Fig. 21-26, Fig. 24-40). Their destination is the metathalamic lateral geniculate 

body (lgb: Fig. 40-41). The strong hypointens optic tract and the optic chiasm form 

the rostral boundary of the diencephalon. In sagittal scans the optic chiasm appears 

oval shaped and dorsoventrally elongated (Fig. 30).  

 

5.1.4.2 Metathalamus 

 

The metathalamus is dominated by the hyperintens lateral (lgb: Fig. 40-41) - and 

medial (mgb: Fig. 10-12, Fig. 40-41) geniculate bodies. They contain nuclei that are a 

relay centres for acoustic and visual information. Unfortunately it is not possible to 

identify the nuclei individually. In the transverse scans the strongly hypointens optic 

tract arches over the geniculate bodies. The hypointens lamina medullaris externa 

(lme: Fig. 12-14, Fig. 24, Fig. 36-40) is visible ventromedial from the lateral 

geniculate body (lgb). The lateral geniculate body connects with the optic tract (ot: 

Fig. 9-13, Fig. 21-26, Fig. 24-40) while the medial geniculate body is met by fibres 

from the caudal colliculi (ccl: Fig. 10-12, Fig. 24-26 , Fig. 46-47). The fibres of the 

stongly developed optic nerve (opn: Fig. 6-8, Sagittal Fig. 21-27) are crossing over to 

the contralateral side. As a result the optic chiasm (cho: Fig. 6-8, Fig. 28-30, Fig. 32-

33) is large and the lateral geniculate body is strongly developed. 
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5.1.4.3 Epithalamus  

 

The epithalamus positioned dorsomedially of the brain. The pineal body (pb: Fig. 14, 

fig. 30, Fig. 40) is part of the epithalamus. The pineal body is a small structure and is 

indeed shaped like a pine cone. The structure is caudodorsally attached to the 

habenular commissure that could not be identified in our selected scans. The pineal 

body is connected to the diencephalon by the habenulae (ha: Fig. 38-40) a paired 

structure originating from a hypointens fibre bundle called the stria medullares 

thalami (smt: Fig. 14, Fig. 29-30, Fig. 33-38) also known as the habenular stria and 

connected by the habenular commissure. The stria also act as the major afferent 

tract to the habenulae from the telencephalon, while the main efferent tract, the 

fasciculus retroflexus or habenulo-interpeduncular tract (hit: Fig. 10-13, Fig. 28-29, 

Fig. 39) with a small round hypointens shape in dorsal sections travels through the 

dorsomedial parts of the dorsal thalamus and finally to the interpeduncular nucleus 

(ipd: Fig. 30, Fig. 42-44) in the brainstem. The habenular nuclei are interconnected 

with the limbic system. The caudal commissure (cdc: Fig. 12-13, Fig. 29, Fig. 40-41) 

is positioned caudoventrally to the cone shaped pineal body (pb). The small roundish 

hypointens caudal commissure forms the dorsal wall of the rostral entrance to the 

aqueduct (aq: Fig. 11-12, Fig. 30, Fig. 40-45). Unfortunately hypointens artefacts, 

caused by air are separating the cerebellum from the telencephalon, result in a gap 

between the rostral colliculus (roc: Fig. 13, Fig. 25-30, Fig. 42-45) and the pineal 

gland that would not be there had the pig’s head not been removed from the body 

prior to the scan. This was unfortunately necessary to facilitate the formalin fixating 

process.  
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5.1.4.4 Hypothalamus 

 

The hypothalamus is the most ventral part of the diencephalon and forms the floor of 

the 3rd ventricle (3: Fig. 8-9, Fig. 29-30). The pituitary gland is elongated and is 

pointing in caudoventral direction (pg: Fig. 7, Fig. 28-30, Fig. 34-40). The pituitary 

gland is situated in a deep groove surrounded by the basiphenoid bone (bsp: Fig. 

30). The caudoventral part of the groove is filled the blood vessels of the rete mirabile 

(rm: Fig. 29-30). The rete mirabile is hypointense in our scans. The rete mirabile 

takes up more space than the pituitary gland itself. The pituitary gland is positioned in 

the dorsal part of the groove. The tissue of the pituitary gland is hypointens to the 

cerebrospinal fluid (CSF) that fills the infundibular recess of the 3rd ventricle. It is 

isointense to the piriform lobes that emerge at the level of the nucleus of the 

abducent nerve (nab: Fig. 7, Fig. 49). 

The tuber cinereum (a hollow structure consisting of gray matter and positioned 

between the optic chiasm and mammillary body) is not marked in the MR images, but 

the hyperintens infundibular recess (ir: Fig. 6) and the mammillary body (mb: Fig. 28-

30, Fig. 38) are labelled. We can see the infundibular recess (ir: Fig. 6) of the 

pituitary gland caudal from the optic chiasm (cho Fig. 6-8, Fig. 28-30, Fig. 32-33). It is 

filled with cerebrospinal fluid (CSF) from the 3rd ventricle that is responsible for the 

hyperintens signal in PD weighed images of the formalin fixed brain.  

 

 

5.1.4.5 Subthalamus 

 

The subthalamic region is positioned dorsal to the hypothalamus and is a 

continuation of the mesencephalic tegmentum. The subthalamus is positioned 

between thalamus (dorsal) and hypothalamus (ventral and medial). The internal 

capsule (ic: Fig. 14-16, Fig. 22-26, Fig. 31-37) borders the subthalamus laterally on 

either side. It is bordered caudally by the tegmentum of the mesencephalon. The 

subthalamus is part of the extrapyramidal system. The subthalamic nucleus is 

connected with the putamen (put: Fig. 13-15, Fig. 22-24, Fig. 31-36) and pallidum 

(gp: Fig. 12, Fig. 31-33) by fibres of the ansa lenticularis (not identified in scans). The 

zona incerta can be identified dorsomedial of the subthalamic nucleus (zi: Fig. 38) in 

transverse scans. The hyperintens pallidum or globus pallidus (gp) consists of 
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loosely distributed nerve cells. It is a part of the diencephalon but is divided from it by 

the hypointens fibres of the internal capsule (ic: Fig. 14-16, Fig. 22-26, Fig. 31-37) 

and shifted towards the putamen (put) of the telencephalon. As mentioned above 

pallidum and putamen are forming the elongated lenticular nucleus of the porcine 

brain. 

 

5.1.5 Metencephalon 

 

The metencephalon consists of the tegmentum metencephali and the cerebellum 

(cb) (see below), they are divided by the 4th ventricle (4:Fig. 7-9, Fig. 30). The 4th 

ventricle emerges at the level of the nucleus of the abducent nerve (nab: Fig. 7, Fig. 

49) in our scans. It is filled with hyperintens cerebrospinal fluid (CSF). We can 

identify two cranial nerves in dorsal scans of the metencephalic level (Fig. 7) and 

slightly ventral (Fig. 6). The fifth cranial nerve (trigeminal nerve) emerges here 

caudolaterally from the descending corticobulbar and corticospinal tracts and 

cranially from the floor of the 4th ventricle. The trigeminal nerve of the pig is is large, 

its roots extend laterally. In transversal scans the trigeminal nerve (with its 

hypointense white matter) can be identified as a bean shaped structure stretching in 

rostral direction (V: Fig. 6-7, Fig. 21-24, Fig. 35-45). In sagittal scans we can see that 

the nerve extends in cranioventral direction. The spinal tract of the trigeminal nerve 

(spt: Fig. 6-7) extends in caudal direction (towards the spinal cord Fig. 6) and laterally 

in the direction of the fasciculus longitudinalis medialis (flm: Fig. 6-9, Fig. 28-30, Fig. 

42-52). The fibre bundle of the medial longitudinal fasciculus is isointense to the 

spinal tract of the trigeminal nerve and is situated ventral of the 4th ventricle (4: Fig. 7-

9, Fig. 30) and the central canal (cec: Fig. 30). The 8th cranial nerve 

(vestibulocochlear nerve VIII: Fig. 6-7, Fig. 48-49) emerges caudolaterally from the 

trigeminal nerve (V) in Fig. 6 and innervates the ear (Aur: Fig. 7-9). We can also 

identify the well developed pons (po: Fig. 28-30, Fig. 45) with its hypointens 

transverse fibres (ftp: Fig. 42-44) and the embedded hyperintens pontine nuclei (npo: 

Fig. 26-27, Fig. 45). Easily distinguishable as an external ridge, the pons and its 

organisation can be seen as a continuation of the medulla oblongata. The pons is 

connected on either side with the cerebellum by the hypointens medial cerebellar 

peduncle (pcm: Fig. 8-10, Fig. 23-24, Fig. 45-47) also known as the brachium pontis. 

Caudal of the pons, the trapezoid body (tb: Fig. 26, Fig. 48) releases 
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vestibulocochlear nerve (VIII: Fig. 6-7, Fig. 48-49) and the facial nerve (VII: Fig. 25-

27). The hypointense genu of the facial nerve (gnf: Fig. 7-8, Fig. 49-50) and the 

hypointense radix of the facial nerve (rnf: Fig. 6, Fig. 49) are captured in our scans. 

The hyperintense nucleus of the facial nerve is pictured in Fig. 50-52. The genu of 

the facial nerve wraps itself around the hyperintense nucleus of the abducent nerve 

(nab: Fig. 7, Fig. 49). In transverse scans the hypointense genu of the facial nerve 

forms an arch like sructure. The fiber bundle of the facial nerve extends in 

ventrolateral direction and ends in the radix of the facial nerve. Here they surface 

from the brainstem. Medially directly under the hypointens central grey substance 

(cgs: Fig. 10-12, Fig. 28, Fig. 40-45) runs the hypointens medial longitudinal 

fasciculus (flm: Fig. 6-9, Fig. 28-30, Fig. 42-52). 

The trapezoid body appears hypointens and consists of transverse fibres (like the 

pons) that surround the dorsal and ventral trapezoid nuclei. The trapezoid body, as 

part of the auditory pathway, is continued rostrally by the lateral lemniscus (lal: Fig. 8-

9, Fig. 25, Fig. 44-45). Fibers from the ventral cochlear nuclei pass through an ipsi- 

or contralateral nucleus of the trapezoid body. Some of the fibres reach the caudal 

colliculi (ccl: Fig. 10-12, Fig. 24-26, Fig. 46-47) via the hypointens lateral lemniscus 

(lal: Fig. 8-9, Fig. 25, Fig. 44-45), the other fibers reach the auditory cortex (temporal 

lobe) after passing through the medial geniculate body (mgb: Fig. 10-12, Fig. 40-41).  

Fibres extending from the dorsal cochlear nucleus (con: Fig. 50-52) join the ipsi-or 

contralateral lateral lemniscus (lal: Fig. 8-9, Fig. 25, Fig. 44-45) directly. In the pig the 

small dorsal and ventral cochlear nuclei are embedded in the acoustic tubercle. The 

hyperintens medial (nmv: Fig. 50-52) - and lateral (nml: Fig. 50) vestibular nuclei form 

a part of the ventrolateral wall of the 4th ventricle (vestibular area). The pons can be 

divided into a dorsal and a ventral part. Ventrally we find the transverse fibres (ftp: 

Fig. 42-44) and pontine nuclei (npo: Fig. 26-27, Fig. 45). The majority of fibres are 

part of the descending tract. They originate in the cerebral cortex and from there 

pass through the cerebral crura (crc: Fig. 9-10, Fig. 35-42). They cross over to the 

contralateral cerebellar hemisphere via the hypointens middle cerebellar peduncles 

(pcm: Fig. 8-10, Fig. 23-24, Fig. 45-47) also known as pontocerebellar tracts. The 

transverse fibres of the pons are crossed by fibres of the hypointens longitudinal 

pyramidal tract (pyr: Fig. 28-30, Fig. 48-52). The dorsal aspect of the pons is mainly 

formed by the reticular formation (rf: Fig. 27) connecting the spinal cord with the 

forebrain.  
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5.1.5.1 Cerebellum 

 

The cerebellum of the pig in midsagittal MRI (Fig. 30, Fig. 73) scans is characterized 

by the hypointens medulla that forms the “abor vitae” as it branches out into 

individual lobes, lobules and folia (smallest subdivision). The cortex of the cerebellum 

is hyperintens. The primary cerebellar fissure (Prf: Fig. 27-30, Fig. 73), the first 

fissure that divides the primordial cerebellum during ontogenesis into a rostral and 

caudal lobe, is easily identified in the MRI scans. The rostral lobe appears to be 

smaller than the caudal lobe. The classical subdivisions of the vermis in mammals 

can also be identified in the pig. The lingula (li: Fig. 9-11, Fig. 28-30, Fig. 46- 51, Fig. 

73) is positioned cranial to the recessus tecti of the 4th ventricle, followed 

dorsorostrally by the central lobule (cl: Fig. 12- 13, Fig. 28-30, Fig. 46-48, Fig. 73). 

Culmen (cu: Fig. 14-16, Fig. 29-30, Fig. 47-48, Fig. 73) and declive (de: Fig. 13-14, 

Fig. 29-30, Fig. 49-52, Fig. 73) together form the monticulus (little hill), which is 

raised and pointed in the pig. They are separated by the primary cerebellar fissure 

and caudoventrally joined by the folium (fol: Fig. 29-30, Fig. 72) and the tuber (tu: 

Fig. 14-16, Fig. 25-26, Fig. 72). The prepyramidal fissure (Ppf: Fig. 72) separates the 

tuber from the pyramis (py: Fig. 27-30, Fig.74) and the secondary cerebellar fissure 

(Scf: Fig. 28-30, Fig. 72) divides the pyramis from the uvula (uv: Fig. 28-30, Fig. 72). 

The nodulus (no: Fig. 9-12, Fig. 27-30, fig. 52, Fig. 72) is positioned ventrally 

between the caudal uvolunonodular fissure (Unf: Fig.74) and the cranial recess. 

From the rostral and caudal truncus the medulla branches of into a number of lobes, 

lobules and folia (smallest subdivision). From dorsomedial to ventrolateral the declive 

(de: Fig. 13-17, Fig. 29-30, Fig. 49-52, Fig. 72), ansate gyrus, paraflocculus (paf: Fig. 

9-10, Fig. 19-21, Fig. 46-52, Fig. 72) and flocculus (flo: Fig. 9, Fig. 21-22, Fig. 48- 52, 

Fig. 72) form an arch around the cerebellar nuclei. In midsagittal slices the vermis of 

the porcine brain is nearly circular. Cranially from the cerebellum we find the rostral 

(roc: Fig. 13, Fig. 25-30, Fig. 42-45) and caudal colliculi (ccl: 10-12, Fig. 24-26, Fig. 

46-47) of the lamina quadrigemina. Within the medulla of the cerebellum we can 

identify a number of hyperintens nuclei. They are the nucleus fastigii (nf: Fig. 11, Fig. 

51-52), the nucleus interpositus (nip: Fig. 11, Fig. 28, Fig. 49-51) and the dentate 

nucleus (nde: Fig. 24-25, Fig. 49-51). The hypointens fibres of the rostral (pcr: Fig. 9-

10, Fig. 25-26, Fig. 46-49), medial (pcm: Fig. 8-10, Fig. 23-24, Fig. 45-47) and caudal 

(pcc: Fig. 8-9, Fig. 23-26, Fig. 52) cerebellar peduncles connect the cerebellum to the 

surrounding parts of the brain. In dorsal, sagittal and transverse scans we can see 
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that the cerebellum is composed of the central vermis and hemispheres. In dorsal 

scans the lateral lobules of the cerebellar hemispheres are lacking the symmetry of 

the telencephalic hemispheres due to the curved vermis. The curve of the vermis is 

not visible in midsagittal scans. We can identify on either side of the vermis the 

flocculus (flo: Fig. 9, Fig. 21-22, Fig. 48-52, Fig.74), paraflocculus (paf: Fig. 9-10, Fig. 

19-21, Fig. 46-52, Fig. 72) ansiform lobule (ans: Fig. 11-16, Fig. 21-27, Fig. 47-52) 

and paramedian lobule (pml: Fig. 10-13, Fig. 22-26). Again we can identify the 

hypointens medulla and the hyperintens cortex. In the pig the ansiform lobule is 

especially easy to identify due to its medulla that runs at a transverse angle to the 

vermis stretching in rostrolateral direction. 

 

5.1.5.2 Medulla oblongata 

 

Because the pig’s heads were removed from the rest of the body we could only 

detect the rostral part of the medulla oblongata. The caudal structures are partly 

destroyed in the preparation process. The medulla oblongata can be seen as an 

extension of the spinal cord. Together with the caudal medullary velum and the 

caudal part of the 4th ventricle (4: Fig. 7-9, Fig. 30) it forms the mylencephalon. In 

comparison with the spinal cord the medulla oblongata houses a larger number of 

nuclei (unidentified in our scans) responsible for an increase in width. The medulla 

oblongata is rostrally connected to the pons (po: Fig. 28-30, Fig. 45). It fills the 

medullar impression of the basioccipital bone (boc: Fig. 30) and reaches the foramen 

magnum caudally. On the ventral aspect runs the ventral median fissure ending at 

the caudal end of the pons.  
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5.2 Dorsal scans of the porcine brain 

 

 

Figure 6 
cho: optic chiasm; dt: descending tracts- corticospinal, 
corticobulbar; flm: medial longitudinal fasciculus; ir: infundibular 
recess; ml: medial lemniscus; ob: olfactory bulb; olf: olfactory 
fibers; opn: optic nerve; pg: pituitary gland; rnf: radix nervi 
fascialis; spt: spinal trct of the trigeminal nerve; V: trigeminal nerve; 
Vmd: nervus mandibularis of the trigeminal nerve; Vmx: nervus 
maxillaries of the trigeminal nerve; VIII: vestibulacochlear nerve. 
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Figure 7 
Aur: auris; cf: columna fornicis; cho: optic chiasm; crc: cerebral crus; 
flm: medial longitudinal fasciculus; gnf: genu nervi fascialis; lot: 
lateral olfactory tract; mot: medial olfactory tract; nab: nucleus of the 
abducent nerve; ob: olfactory bulb; Oc: oculus; olf: olfactory fibers; 
opn: optic nerve; pg: pituitary gland; pir: piriform lobe; spt: spinal 
tract of the trigeminal nerve; V: trigeminal nerve; VIII: 

vestibulocochlear nerve; 4: fourth ventricle. 
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Figure 8 
Aur: auris; cho: optic chiasm; dpc: decussatio pedunculorum 
cebellarium rostralium; flm: medial longitudinal fasciculus; gnf: genu 
nervi fascialis; lal: lateral lemniscus; lot: lateral olfactory tract; mot: 
medial olfactory tract; ob: olfactory bulb; Oc: oculus; olf: olfactory 
fibers; opn: optic nerve; ot: optic tract; pcc: pedunculus cerebellaris 
caudalis; pcm: pedunculus cerebellaris medialis; pir: piriform lobe; 3: 
third ventricle; 4: fourth ventricle. 
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Figure 9 
Aur: auris; cf: columna fornicis; crc: cerebral crus; dpc: decussatio 
pedunculorum cerebellarium rostralium; flm: medial longitudinal 
fasciculus; flo: flocculus; li: lingula; lot: lateral olfactory tract; ml: 
medial lemniscus; mot: medial olfactory tract; no: nodulus; ob: 
olfactory bulb; Oc: oculus; olf: olfactory fibers; ot: optic tract; pcc: 
pedunculus cerebellaris caudalis; pcm: pedunculus cerebellaris 
medialis; pcr: rostral cerebellar peduncle; pir: piriform lobe; sng: 
substantia nigra; 3: third ventricle; 4: fourth ventricle. 
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Figure 10 
bcc: brachium colliculi caudalis; cam: cornu ammonis; ccl: caudal 
colliculus; mgb: medial geniculate body; cgs: central grey substance; 
crc: cerebral crus; fmt: fasciculus mammillothalamicus; fo: fornix; 
fos: fibrae olfactorii septalis; phg: parahippocampal gyrus; hit: 
habenulo-interpeduncular tract; li: lingula; lot: lateral olfactory tract; 
Mas: masseter muscle; mgb: medial geniculate body; no: nodulus; 
Oc: oculus; olf: olfactory fibers; opn: optic nerve; ot: optic tract; paf: 
paraflocculus; pcm: medial cerebellar peduncle; pcr: rostral cerebellar peduncle; pir: piriform lobe; phg: 
parahippocampal gyrus; pml: paramedian lobule.  
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Figure 11 
acn: accumbens nucleus; ans: ansiform lobule; aq: mesencephalic 
aqueduct; cam: cornu ammonis; ccl: caudal colliculus; cgs: central 
grey substance; fmt: fasciculus mammilo-thalamicus; fo: fornix; fos: 
fibrae olfactorii septalis; gp: globus pallidus; hit: habenulo-
interpeduncular tract; li: lingula; Mas: masseter muscle; mgb: medial 
geniculate body; nde: nucleus dentatus; nf: nucleus fastigei; nip: 
nucleus interpositus; no: nodulus; Oc: oculus; ot: optic tract; paf: 
paraflocculus; prpc: praepiriform cortex; pir; piriform lobe; phg: 
parahippocampal gyrus; pml: paramedian lobule; Prs: presylvian sulcus; put: putamen; rc: rostral 
commissure; Rfi: rhinal fissure.  
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Figure 12 
ans: ansiform lobule; aq: mesencephalic aqueduct; cam: cornu 
ammonis; ccc: commissura colliculi caudalis; ccl: caudal colliculus; 
cdc: caudal commissure; cgs: central grey substance; cl: central 
lobule; Cor: coronal sulcus; fh: fimbria hippocampi; fmt: fasciculus 
mammilo-thalamicus; fos: fibrae olfactorii septalis; gp: globus 
pallidus; gph: parahippocampal gyrus; hit: habenulo interpeduncular 
tract; lme: lamina medullaris externa; mgb: medial geniculate body; 
pml: paramedian lobule; no: nodulus; Oc: oculus; ot: optic tract: paf: paraflocculus; pir: piriform lobe; 
Prs: presylvian sulcus; put: putamen; th: thalamus. 
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Figure 13 
alv: alveus; ans: ansiform lobule; cam: cornu ammonis; cdc: caudal 
commissure; cfo: corpus of fornix; cl: central lobule; cn: caudate 
nucleus; Cor: coronal sulcus; dg: dentate gyrus; de: declive; ec: 
external capsule; Ecg: ectogenual sulcus; Eng: endogenual sulcus; 
fh: fimbria hippocampi; fmt: fasciculus mammilo-thalamicus; Gen: 
genual sulcus; gp: globus pallidus; hit: habenulo interpeduncular 
tract; lme: lamina medullaris externa; Oc: oculus; ot: optic tract; phg: 
parahippocampal gyrus; pir: piriform lobe; pml: paramedian lobule; Prs: Presylvian sulcus; put: putamen 
py: pyramis vermis; rcl: rostrum corporis callosi; Rfi: rhinal fissure; roc: rostral colliculus; sn: septal 
nuclei; th: thalamus. 
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Figure 14 
ans: ansiform lobule; cam: cornu ammonis; cc: corpus callosum; cfo: 
corpus of fornix; cn: caudate nucleus; Cor: coronal sulcus; cul: 
culmen; dg: dentate gyrus; ec: external capsule; Ecg: ectogenual 
sulcus; Ecs: ectosylvian sulcus; Eng: endogenual sulcus; fh: fimbria 
hippocampi; Gen: genual sulcus; ic: internal capsule; in: insula; lme: 
lamina medullaris externa; Oc: oculus; ot: optic tract; pb: pineal 
body; put: putamen; Rfi: rhinal fissure; smt: stria medullaris thalami; Sss: suprasylvian sulcus; Syl: 
sylvian fissure; th: thalamus; tu: tuber. 
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Figure 15  
alv: alveus; ans: ansiform lobule; cam: cornu ammonis; cn: caudate 
nucleus; Cor: coronal sulcus; cul: culmen; Dia: sulcus diagonalis; 
dg: dentate gyrus; Ecs: ectosylvian sulcus; Ecm: ectomarginal 
sulcus; fh: fimbria hippocampi; fo: fornix; Gen: genual sulcus; ic: 
internal capsule; in: insula; or: optic radiation put: putamen; Sss: 
suprasylvian sulcus; Syl: sylvian fissure; tu: tuber. 
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Figure 16 
alv: alveus; ans: ansiform lobule; cam: cornu ammonis; cc: corpus 
callosum; ci: cingulated gyrus; coronal sulcus; cul: culmen; de: 
declive; Dia: sulcus diagonalis; Ecg: ectogenual sulcus; Ecs: 
Ectosylvian sulcus; Ecm: ectomarginal sulcus; fsc: fasciculus 
subcallosus; Gen; genual sulcus; ic: internal capsule; scc: splenium 
corporis callosi; Sss: suprasylvian sulcus; Syl: sylvian fissure; tu: 
tuber.  
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Figure 17 
cam: cornu ammonis; ci: cingulated gyrus; cin: cingulum; Cor: 
coronal sulcus; de: declive; Dia: sulcus diagonalis; Ecg: ectogenual 
sulcus; Ecm: ectomarginal sulcus; Ecs: ectosylvian sulcus; Flc: 
longitudinal cerebral fissure; Gen: genual sulcus; or: optic radiation; 
Spl: splenial sulcus; Sss: suprasylvian sulcus; Syl: sylvian fissure. 
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Figure 18 

Cor: coronal sulcus; Ecm: ectomarginal sulcus; Ecs: ectosylvian 
sulcus; Enm: endomarginal sulcus; Flc: fissura longitudinalis cerebri; 
Mar: marginal sulcus; Spl: splenial sulcus; Sss: suprasylvian sulcus; 
Syl: sylvian fissure. 
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5.3  Sagittal scans of the porcine brain 

 

 

 

 

Figure 19 

Dia: diagonal sulcus; Ecs: ectosylvian sulcus; Ems: endomarginal 
sulcus; or: optic radiation; paf: paraflocculus; pir: piriform lobe; Rfi: 
rhinal fissure; Sss: suprasylvian sulcus; Syl: sylvian sulcus. 
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Figure 20 

cam: cornu ammonis; Ecm: Ectomarginal sulcus; fh: fimbria 
hippocampi; olf: olfactory fibers; paf: paraflocculus; pir: piriform lobe; 
Rfi: rhinal fissure; or: optic radiation; Sss: suprasylvian fissure; Syl: 
Sylvian fissure; Vmx: maxillary nerve of the trigeminal nerve. 
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Figure 21 
ans: ansiform lobule; cam: cornu ammonis; Dia: diagonal sulcus; 
Ecm: ectomarginal sulcus; fh: fimbria hippocampi; flo: flocculus; 
Mar: marginal sulcus; ob: olfactory bulb; olf: olfactory fibers; olt: 
olfactory tract; ot: optic tract; paf: paraflocculus; pir: piriform lobe; 
Rfi: rhinal fissure; Sss: suprasylvian sulcus; Vmd: mandibular nerve 
of the trigeminal nerve; V: trigeminal nerve (trunk); Vmx: maxillary 
nerve of the trigeminal nerve. 
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Figure 22 
ans: ansiform lobule; cam: cornu ammonis; Dia: sulcus diagonalis; 
ec: external capsule; fh: fimbria hippocampi; flo: flocculus; ic: internal 
capsule; Mar: marginal sulcus; ob: olfactory bulb; ocm: external 
ocular muscles; olf: olfactory fibers; opn: optic nerve; ot: optic tract; 
pml: paramedian lobule; put: putamen; rcc: radiatio corporis callosi; 
Rfi: rhinal fissure (medial part); Sss: suprasylvian sulcus; V: 
trigeminal nerve. 
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Figure 23 
ans: ansform lobule; cam: cornu ammonis; con: cochlear nuclei; Cor: 
coronal sulcus; Dia: diagonal sulcus; fh: fimbria hippocampi; ic: 
internal capsule; lot: lateral olfactory tract; lv: lateral ventricle; Mar: 
marginal sulcus; nde: dentate nucleus; ob: olfactory bulb; olf: 
olfactory fibers; opn: optic nerve; ot: optic tract; otu: olfactory 
tubercle; pcc: caudal cerebellar peduncle; pcm: medial cerebellar 
peduncle; pml: paramedian lobule; pul: pulvinar; put: putamen; rcc: 
radiatio corporis callosi; rmt: radix motoria of the trigeminal nerve; 
Sss: suprasylvian sulcus, V: trigeminal nerve. 
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Figure 24 
alv: alveus; ans: ansiform lobule; cam: cornu ammonis; ccl: caudal 
colliculus; Cor: coronal sulcus; Dia: diagonal sulcus; ec: external 
capsule; Enm: endomarginal sulcus; fh: fimbria hippocampi; flo: 
flocculus; ic: internal capsule; lme: lamina medullaris externa; lot: 
lateral olfactory tract; lv: lateral ventricle; Mar: marginal sulcus; nde: 
dentate nucleus; ob: olfactory bulb; olf: olfactory fibers; ot: optic tract; 
otu: olfactory tubercle; pcc: caudal cerebellar peduncle; pcm: medial 
cerebellar peduncle; pml: paramedian lobule; pul: pulvinar; put: 
putamen; rcc: radiation corporis callosi; Spl: splenial sulcus; Sss: 
suprasylvian sulcus; th: thalamus; V: trigeminal nerve. 
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Figure 25 
ans: ansiform lobule; cc: corpus callosum; ccl: caudal colliculus; cn: 
caudate nucleus; Cor: coronal sulcus; dbb: diagonal band of broca; 
ec: external capsule; Enm: endomarginal sulcus; fh: fimbria 
hippocampi; ic: internal capsule; lal: lateral lemniscus; lv: lateral 
ventricle; Mar: marginal sulcus; nde: dentate nucleus; nts: nucleus 
tractus spinalis nervi trigemini; ob: olfactory bulb; olf: olfactory 
fibers; ot: optic tract; otu: olfactory tubercle; pcc: caudal cerebellar 
peduncle; pcr: rostral cerebellar peduncle; pml: paramedian lobe; 
Prs: praesylvian sulcus; pul: pulvinar; rcc: radiatio corporis callosi; 
roc: rostral colliculus; snr: substantia nigra; Spl: splenial sulcus; Spl*: connecting sulcus; stb: striate 
body; th: thalamus; tu: tuber; vn: vestibular nuclei; Vll: facial nerve. 
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Figure 26 
ans: ansiform lobule; cam: cornu ammonis; ccl: caudal colliculus; ci: 
cingulated gyrus; cn: caudate nucleus; Cor: coronal sulcus; fh: 
fimbria hippocampi; ic: internal capsule; lv: lateral ventricle; Mar: 
marginal sulcus; ml: medial lemniscus; npo: nuclei pontis; nrt: 
nucleus reticularis thalami; ob: olfactory bulb; olf: olfactory fibres; 
opn: optic nerve; ot: optic tract; otb: olfactory tubercle; pcc: caudal 
cerebellar peduncle; pcr: rostral cerebellar peduncle; pml: 
paramedian lobule; rc: rostral commissure; roc: rostral colliculus; 
sng: substantia nigra; Spl: splenial sulcus; Spl*: connecting sulcus; 
Sss: supra sylvian sulcus; stb: striate body; tb: trapezoid body; th: 
thalamus; tu: tuber; Vll: facial nerve. 
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Figure 27 
acn: accumbens nucleus; cu: culmen; ans: ansiform lobule; cam: 
cornu ammonis; cc: corpus callosum; cn: caudate nucleus; cpi: 
cortex piriformis; fo: fornix; fte: fasciculus tegmenti (forel); lot: lateral 
olfactory tract; Mar: marginal sulcus; ml: medial lemniscus; no: 
nodulus; npo: nuclei pontis; ob: olfactory bulb; olf: olfactory fibers; 
omn: oculomotor nerve; opn: optic nerve; pcr: rostral cerebellar 
peduncle; Prf: primary fissure; pta: pretectal area; py: pyramis 
vermis; rc: rostral commissure; rf: reticular formation; rn: red 
nucleus; roc: rostral colliculus; Spl: splenial sulcus; Spl*: connecting 
sulcus; th: thalamus; Vll: facial nerve. 
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Figure 28 
acn: accumbens nucleus, ca: cortical aplasia; cam: cornu ammonis; 
cc: corpus calosum; ccc: commissure of the caudal colliculi; cgs: 
central grey substance; cho: optic chiasm; cl: cetral lobule; ci: 
cingulated gyrus; cn: caudate nucleus; cu: culmen; fmt: fasciculus 
mammilo-thalamicus; fo: fornix; hit: habenulo-interpeduncular tract; 
li: lingula; mb: mammillary body; nip: interposed nucleus; no: 
nodulus; olf: olfactory fibers; pg: pituitary gland; po: pons; Prf: 
primary fissure; py: pyramis vermis; pyr: pyramidal tracts; rc: rostral 
commissue: rcl: rostrum of the corpus callosum; roc: rostral 
colliculus; scc: splenium of the corpus callosum; Scf: secondary 
fissure; Spl: splenial sulcus; Spl*: connecting sulcus; th: thalamus; 
tl: terminal lamina; uv: uvula. 
  



Comparative anatomy of the pig brain 

 

56 

 

 

Figure 29 

ca: cortical aplasia; cc: corpus calosum; cdc: caudal commissure; 
cgs: central gray substance; cho: optic chiasm; ci: cingulated gyrus; 
cl: cetral lobule; cn: caudate nucleus; cu: culmen; de: declive; dpc: 
decussatio pedunculorum cerebellarium rostralium; Eng: endogenual 
sulcus; flm: fasciculus longitudinalis medialis; fmt: fasciculus 
mammilo-thalamicus; fo: fornix; fol: folium; gcc: genu of the corpus 
callosum; hit: habenulo-interpeduncular tract; li: lingula; no: nodulus; 
olf: olfactory fibers; pg: pituitary gland; po: pons; Prf: primary fissure; 
py: pyramis vermis; pyr: pyramidal tracts; rc: rostral commissue: rcl: 
rostrum of the corpus callosum; rm: rete mirabile; roc: rostral 
colliculus; scc: splenium of the corpus callosum; Scf: secondary fissure; smt: stria medullaris thalami; 
Spl: splenial sulcus; Spl*: connecting sulcus; th: thalamus; tl: terminal lamina; tu: tuber; uv: uvula; 3: 
third ventricle. 



Comparative anatomy of the pig brain 

 

57 

 

 
 

Figure 30 
aq: mesencephalic aqueduct; boc: basioccipital bone; bsp: 
basisphenoidal bone; cc: corpus callosum; cec: central canal; cho: 
optic chiasm; ci: cingulated gyrus; cl: central lobule; cu: culmen; de: 
declive; dpc: decussatio pedunculorum cerebellarium rostralium; 
Eng: endogenual sulcus; flm: medial longitudinal fasciculus; fo: 
fornix; gcc: genu of the corpus callosum; Gen: genual sulcus; ipd: 
interpeduncular nucleus; li: lingula; mb: mammillary body; no: 
nodulus; psp: presphenoidal bone; olf: olfactory fibers; oli: olivary 
nucleus; ox: obex region ; pb: pineal body; pg: pituitary gland; po: 
pons; Prf: primary fissure; py: pyramis vermis; pyr: pyramidal tracts; 
rcl: rostrum of the corpus callosum; rm: rete mirabile; roc: rostral colliculus; Scf: secondary fissure; Scl: 
sulcus corporis callosi; smt: stria medullaris thalami; sn: septal nuclei; Spl: splenial sulcus; Spl*: 
connecting sulcus; tb: trapezoid body; th: thalamus; tl: terminal lamina; tu: tuber; uv: uvula; 3: third 
ventricle; 4: fourth ventricle. 
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5.4  Transverse scans of the porcine brain 

 
 

 
 

Figure 31 
acn: accumbens nucleus; cc: corpus callosum; cn: caudate nucleus; ec: 
external capsule; fsc: fasciculus subcallosus; gp: globus pallidus; ic: 
internal capsule; inc: insulae callejae; lot: lateral olfactory tract; otu: 
olfactory tubercle; put: putamen; rc: rostral commissure; rcc: radiatio 
corporis callosi; Rfi: rhinal fissure; sl: lateral septal nuclei; Spl: splenial 
sulcus; Sss: suprasylvian sulcus. 
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Figure 32 
acn: accumbens nucleus; cc: corpus callosum; cho: optic chiasm; ci: cingulated 
gyrus; cn: caudate nucleus; Cor: coronal sulcus; dbb: diagonal band of broca; ec: 
external capsule; fos: fibrae olfactorii septales; gp: globus pallidus; ic: internal 
capsule; lot: lateral olfactory tract; put: putamen; rc: rostral commissure; rcc: 
radiatio corporis callosi; Rfi: rhinal fissure; sl: nuclei septi laterales; Spl: splenial 
sulcus; Spl*: connecting sulcus; Sss: suprasylvian sulcus. 
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Figure 33 

cc: corpus callosum; cfo: corpus of fornix; cf: columna fornicis; cho: optic chiasm; 

cla: claustrum; cn: caudate nucleus; Cor: coronal sulcus; ec: external capsule; fsc: 

fasciculus subcallosus; gp: globus pallidus; ic: internal capsule; in: insula; put: 

putamen; rc: rostral commissure; rcc: radiatio corporis callosi; Rfi: rhinal fissure; si: 

substantia innominata; smt: stria medullaris thalami; Spl: splenial sulcus; Spl*: 

connecting sulcus; Sss: suprasylvian sulcus; Syl: sylvian fissure. 
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Figure 34 

ab: amygdaloid body; cc: corpus callosum; cf: columna fornicis; cfo: corpus of 
fornix; cn: caudate nucleus; ec: external capsule; fsc: fasciculus subcallosus; ic: 
internal capsule; lv: lateral ventricle; Mar: marginal sulcus; ot: optic tract; pg: 
pituitary gland; pir: piriform lobe; put: putamen; rcc: radiatio corporis callosi; Rfi: 
rhinal fissure; smt: stria medullaris thalami; spe: septum pellucidum; Spl: 
splenial sulcus; Spl*: connecting sulcus; Sss: suprasylvian sulcus; Syl: sylvian 
fissure. 
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Figure 35 
ab: amygdaloid body; cc: corpus callosum; cf: columna fornicis; cfo: corpus of 
fornix; cn: caudate nucleus; crc: cerebral crus; ec: external capsule; Ecs: 
ectosylvian sulcus; fmt: fasciculus mammilo-thalamicus; fsc: fasciculus 
subcallosus; ic: internal capsule; ita: interthalamic adhesion; lv: lateral 
ventricle; Mar: marginal sulcus; ot: optic tract; pg: pituitary gland; pir: piriform 
lobe; put: putamen; rcc: radiatio corporis callosi; Rfi: rhinal fissure; smt: stria 
medullaris thalami; Spl: splenial sulcus; Spl*: connecting sulcus; Sss: 
suprasylvian sulcus; Syl: sylvian fissure; th: thalamus; zi: zona incerta; V: 

trigeminal nerve. 
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Figure 36 
ab: amygdaloid body; cc: corpus callosum; cf: columna fornicis; cfo: corpus of 
fornix; cmf: commissure of the fornix; cn: caudate nucleus; crc: cerebral crus; 
ec: external capsule; Ecs: ectosylvian sulcus; fmt: fasciculus mammilo-
thalamicus; fsc: fasciculus subcallosus; ic: internal capsule; idg: induseum 
griseum; ita: interthalamic adhesion; lv: lateral ventricle; lme: lamina medullaris 
externa; Mar: marginal sulcus; ot: optic tract; pg: pituitary gland; pir: piriform 
lobe; put: putamen; rcc: radiatio corporis callosi; Rfi: rhinal fissure; smt: stria 
medullaris thalami; Spl: splenial sulcus; Spl*: connecting sulcus; Sss: 
suprasylvian sulcus; Syl: sylvian fissure; th: thalamus; st: stria terminalis; V: 
trigeminal nerve. 
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Figure 37 

ab: amygdaloid body; cc: corpus callosum; cf: columna fornicis; cmf: 
commissure of the fornix; cn: caudate nucleus; crc: cerebral crus; ec: external 
capsule; Ecs: ectosylvian sulcus; fmt: fasciculus mammilo-thalamicus; fsc: 
fasciculus subcallosus; ic: internal capsule; idg: induseum griseum; ita: 
interthalamic adhesion; lv: lateral ventricle; lme: lamina medullaris externa; Mar: 
marginal sulcus; ot: optic tract; pg: pituitary gland; pir: piriform lobe; rcc: radiatio 
corporis callosi; Rfi: rhinal fissure; smt: stria medullaris thalami; Spl: splenial 
sulcus; Spl*: connecting sulcus; Sss: suprasylvian sulcus; Syl: sylvian fissure; th: 
thalamus; V: trigeminal nerve. 
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Figure 38 
cam: cornu ammonis; cc: corpus callosum; cmf: commissura fornicis; crc: 
cerebral crus; ec: external capsule; Ecs: ectosylvian sulcus; fh: fimbria 
hippocampi; fsc: fasciculus subcallosus; idg: induseum griseum; ita: 
interthalamic adhesion; lv: lateral ventricle; lme: lamina medullaris externa; lmi: 
lamina medullaris interna; mb: mamillary body; Mar: marginal sulcus; ot: optic 
tract; pg: pituitary gland; pir: piriform lobe; or: optic radiation; rcc: radiatio 
corporis callosi; Rfi: rhinal fissure; smt: stria medullaris thalami; sng: substantia 
nigra; Spl: splenial sulcus; Sss: suprasylvian sulcus; Syl: sylvian fissure; th: 
thalamus; vtx: decussatio tegmenti ventralis; V: trigeminal nerve; zi: zona incerta. 
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Figure 39 
alv: alveus; cam: cornu ammonis; cmf: commissure of the fornix; crc: cerebral 
crus; dg: dentate gyrus; Ecs: ectosylvian sulcus; fh: fimbria hippocampi; fsc: 
fasciculus subcallosus; ha: habenulae; hit: habenulo-interpeduncular tract; ic: 
internal capsule; ita: interthalamic adhesion; lv: lateral ventricle; lme: lamina 
medullaris externa; Mar: marginal sulcus; or: optic radiation; ot: optic tract; pg: 
pituitary gland; phg: parahippocampal gyrus; pir: piriform lobe; Rfi: rhinal fissure; 
sng: substantia nigra; spe: septum pellucidum; Spl: splenial sulcus; Sss: 
suprasylvian sulcus; check: V: trigeminal nerve. 
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Figure 40 
aq: mesencephalic aqueduct; alv: alveus; cam: cornu ammonis; cdc: caudal 
commissure; cgs: central grey substance; cmf: commissura fornicis; crc: 
cerebral crus; Ecs: ectosylvian sulcus; ha: habenulae; lgb: lateral geniculate 
body; lme: lamina medullaris externa; lv: lateral ventricle; Mar: marginal sulcus; 
mgb: medial geniculate body; or: radiatio optica; ot: optic tract; pg: pituitary 
gland; phg: parahippocampal gyrus; pir: piriform lobe; pul: pulvinar; rcc: radiatio 
corporis callosi; Rfi: rhinal fissure; sng: substantia nigra; spe: septum 
pellucidum; Spl: splenial sulcus; Sss: suprasylvian sulcus; V: trigeminal nerve. 
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Figure 41 
alv: alveus; aq: mesencephalic aqueduct; brc: brachium of the rostral colliculus; 
cam: cornu ammonis; cdc: caudal commissure; cgs: central grey substance; cf: 
columna fornicis; crc: cerebral crus; Ecs: ectosylvian sulcus; fte: fasciculus 
tegmenti; lgb: lateral geniculate body; lv: lateral ventricle; Mar: marginal sulcus; 
mgb: medial geniculate body; phg: parahippocampal gyrus; pir: piriform lobe; pul: 
pulvinar; or: optic radiation; rn: red nucleus; Rfi: rhinal fissure; red nucleus; sng: 
substantia nigra; scc: splenium corporis callosi; Spl: splenial sulcus; Sss: 
suprasylvian sulcus; V: trigeminal nerve. 
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Figure 42 
caudal colliculus; cam: cornu ammonis; ccr: commissure of the rostral colliculi; 
cgs: central grey substance; crc: cerebral crus; dpc: decussation of the rostral 
cerebellar peduncle; Enm: endomarginal sulcus; flm: fasciculus longitudinalis 
medialis; ftp: transverse fibers of the pons; ipd: interpeduncular nucleus; lv: 
lateral ventricle; Mar: marginal sulcus; ml: medial lemniscus; nno: nucleus nervi 
occulomotorius; or: optic radiation; phg: parahippocampal gyrus pir: piriform 
lobe; Rfi: rhinal fissure; roc: rostral colliculus; scc: splenium corporis callosi; 
Spl: splenial sulcus; Sss: suprasylvian sulcus; sto: striatum opticum of the 
rostral colliculus; V: trigeminal nerve. 
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Figure 43 

aq: mesencephalic aqueduct; bcc: brachium of the caudal colliculus; cam: cornu 
ammonis; cgs: central grey substance; dpc: decussation of the rostral cerebellar 
peduncle; dt: descending tracts (corticospinal and corticobulbar); Enm: 
endomarginal sulcus; Ecm: ectomarginal sulcus; flm: medial longitudinal 
fasciculus; ftp: transverse fibers of the pons; ipd: interpeduncular nucleus; Mar: 
marginal sulcus; ml: medial lemniscus; pb: pineal body; phg: parahippocampal 
gyrus; roc: rostral colliculus; Rfi: rhinal fissure; roc: rostral colliculus; Spl: 
splenial sulcus; Sss: suprasylvian sulcus, V: trigeminal nerve. 
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Figure 44 

aq: mesencephalic aqueduct; bcc: brachium of the caudal colliculus; ccc: 
commissure of the caudal colliculi; cgs: central grey substance; Enm: endomarginal 
sulcus; Ecm: ectomarginal sulcus; flm: medial longitudinal fasciculus; fte: 
fasciculus tegmenti; ftp: fibrae transversae pontis; lal: lateral lemniscus; Mar: 
marginal sulcus; pb: pineal body; Rfi: rhinal fissure; roc: rostral colliculus; Spl: 
splenial sulcus; Sss: suprasylvian sulcus, V: trigeminal nerve. 
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Figure 45 

aq: mesencephalic aqueduct; bcc: brachium of the caudal colliculus; ccc: 
commissure of the caudal colliculus; cgs: central grey substance; dt: descending 
tracts; Enm: endomarginal sulcus; Ecm: ectomarginal sulcus; flm: fasciculus 
longitudinalis medialis; fte: fasciculus tegmenti; lal: lateral lemniscus; Mar: marginal 
sulcus; ml: medial lemniscus; npo: nuclei pontis; pcm: medial cerebellar peduncle; 
po: pons; Rfi: rhinal fissure; roc: rostral colliculus; Spl: splenial sulcus; Sss: 
suprasylvian sulcus, V: trigeminal nerve. 
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Figure 46 
ccl: caudal colliculus; cl: central lobule; dt: descending tracts; Enm: 
endomarginal sulcus; Ecm: ectomarginal sulcus; Ems: ectomarginal sulcus; flm: 
medial longitudinal fasciculus; fte: fasciculus tegmenti; li: lingula; Mar: marginal 
sulcus; ml: medial lemniscus; nnt: nucleus nervi trigemini; paf: paraflocculus; 
pcm: medial cerebellar peduncle; pcr: rostral cerebellar peduncle; Spl: splenial 
sulcus; Sss: suprasylvian sulcus, V: trigeminal nerve. 
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Figure 47 
ans: ansiform lobule; ccl: caudal colliculus; cl: central lobule; cu: culmen; Enm: 
endomarginal sulcus; Ecm: ectomarginal sulcus; flm: medial longitudinal 
fasciculus; fte: fasciculus tegmenti; li: lingula; Mar: marginal sulcus; ml: medial 
lemniscus; nnt: nucleus nervi trigemini; paf: paraflocculus; pcm: medial 
cerebellar peduncle; pcr: rostral cerebellar peduncle; Rfi: rhinal fissure; Spl: 
splenial sulcus; tb: trapezoid body. 
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Figure 48 
ans: ansiform lobule; cl: central lobule; cu: culmen; Enm: endomarginal sulcus; Ecm: 
ectomarginal sulcus; flm: medial longitudinal fasciculus; flo: flocculus; li: lingula; Mar: 
marginal sulcus; nnt: nucleus nervi trigemini; paf: paraflocculus; pcm: medial 
cerebellar peduncle; pcr: rostral cerebellar peduncle; pyr: pyramidal tracts; Rfi: rhinal 
fissure; Spl: splenial sulcus; tb: trapezoid body; VIII: vestibulocochlear nerve. 
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Figure 49 

ans: ansiform lobule; de: declive; Enm: endomarginal sulcus; Ecm: ectomarginal 
sulcus; flm: medial longitudinal fasciculus; flo: flocculus; gnf: genu nervi facialis; li: 
lingula; Mar: marginal sulcus; nab: nucleus of the abducent nerve; nde: dentate 
nucleus; nts: nucleus tractus spinalis nervi trigemini; paf: paraflocculus; pcr: 
pedunculus cerebellaris rostralis; nab: nucleus of the abducent nerve; nip: interposed 
nucleus; pyr: pyramidal tracts; rnf: radix of the facial nerve; VIII: vestibulocochlear 
nerve. 
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Figure 50 
ans: ansiform lobule; con: cochlear nuclei; de: declive; Enm: endomarginal 
sulcus; Ecm: ectomarginal sulcus; flm: medial longitudinal fasciculus; flo: 
flocculus; gnf: genu nervi facialis; li: lingula; Mar: marginal sulcus; nf:fastigeal 
nucleus; nde dentate nucleus; nip: nucleus interpositus; nml: lateral vestibular 
nerve; nmv: medial vestibular nerve; nnf: nucleus of the facial nerve; paf: 
paraflocculus; pyr: pyramidal tract. 
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Figure 51 

ans: ansiform lobule; de: declive; nde: dentate nucleus; Enm: endomarginal 
sulcus; Ecm: ectomarginal sulcus; flm: medial longitudinal fasciculus; flo: 
flocculus; li: lingula; Mar: marginal sulcus; con: cochlear nuclei; nf: nuclus 
fastigii; nip: nucleus interpositus; nmv: medial vestibular nerve; nnf: nucleus of 
the facial nerve; paf: paraflocculus; pcr: pedunculus cerebellaris rostralis; pyr: 
pyramidal tract. 
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Figure 52 
ans: ansiform lobule; de: declive; flm: medial longitudinal fasciculus; flo: flocculus; 
con: cochlear nuclei; nf: nuclus fastigii; nmv: medial vestibular nerve; nnf: nucleus of 
the facial nerve; no: nodulus; paf: paraflocculus; pcc: caudal cerebellar peduncle; 
pyr: pyramidal tract. 
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5.5  Comparative morphology of the porcine brain  

 

 

Apart from giving a general overview of the porcine brain this study focuses on the 

surface of the brain (cerebrum and cerebellum) as revealed in MRI. It was also the 

aim to explore the system of sulci as detailed as possible while the brain remained in 

situ (within the cranial cavity). In addition selected structures of the porcine brain are 

featured that are visible in MRI, but that are usually damaged using traditional 

preparation techniques (removal of the brain from the cranial cavity etc.), such as the 

pituitary gland and the rete mirabile.  

It would often have been desirable to deliver a more detailed comparison with the 

brains of other ungulates or brains of other species (e.g. carnivores) to highlight the 

unique features of the porcine brain. A more intense MRI study of other members of 

the suidae could have given more clues as to how closely members of the suidae are 

related, about the similarities and differences of brain shape and size and especially 

about the consistency of the system of gyri and sulci. Unfortunately brains of the 

domestic pig and especially the brains of rare breeds and rare members of the 

suinae are seldom available for veterinary research purposes. For this MRI study it 

was possible to obtain the brains of a babirusa, a member of the suidae. With this 

thesis it is therefore possible to deliver the results of a preliminary MRI study of the 

babirusa brain compared with brains of members of the suidae. A more detailed 

study of this interesting specimen was unfortunately beyond the scope of this study.  

The hemispheres of the porcine telencephalon form the largest part of the brain. 

They cover the brainstem dorsally and reach the cerebellum caudally. They only 

cover a small rostral part of the cerebellum, leaving a larger caudal aspect 

uncovered. This is best seen in the midsagittal MRI scan (Fig. 30). The olfactory 

bulbs of the pig are impressively large and are dorsally approximately half covered by 

the hemispheres, while the bovine olfactory bulbs for example are nearly completely 

hidden from dorsal view (Nickel et al. 1992). Among the most distinctive 

morphological features of vertebrate brains is the evolutionary expansion of the 

cerebral cortex (Hofman 1985, Barton 2007). By comparing the scans of the pig brain 

with images of other domestic animals, the different degrees of gyrification as well as 

differences in size and shape of the hemispheres are apparent (Fig. 53). The pig’s 
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rhinencephalon is large and dominates the forebrain. The porcine brain appears 

elongated and rostrally pointed. The lateral aspect is almost triangular. The brains of 

sheep, horse, deer, calf and alpaca appear to be wider, rounder and stockier in 

comparison. Even though all the studied brains are gyrencephalic, the equine and 

the ruminant brains show more gyri and sulci than the porcine brain (Fig. 53, Fig. 57-

60). In the equine and ruminant brains second- and third degree gyri can be 

identified. The gyri of the pig are manly straight and longitudinally arranged. The 

basic arrangement of the “arcuate sulci”, as seen in lower ungulates (praeungulata, 

for example the hyrax), has been preserved. The brain of the deer is the most similar 

in shape and degree of gyrification (Fig. 53 C) in the dorsal scans. 

 

 

Figure 53 

Dorsal scans highlighting differences in the degree of gyrification. A: sheep, ovis ammon aries; B: pig, 

sus scrofa domestica C: red deer, cervus elaphus; D: alpaca, vicugna pacos; E: calf, bos taurus 

domestic; F: horse, equus caballus (A-F courtesy of PD Dr. med.vet. (habil.) M. Schmidt). 
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5.5.1 The gross division of the cortex 

As in other ungulates, the neopallium of the pig is laterally separated from the 

paleopallium by the lateral rhinal fissure (Rfi: Fig. 13-14, Fig. 19-22, Fig. 31-48) and 

medially separated from the archipallium by the splenial sulcus (Spl: Fig. 17-18, Fig. 

23-30, Fig. 31-48, Fig. 57-60). The rhinal fissure is dorsally positioned and easy to 

identify. The piriform lobe of the pig is large and the olfactory tubercle (otu: Fig. 23-

26, Fig. 31) is well developed. The pig’s frontal cortex is situated below the large 

frontal sinus and the flat and elongated olfactory bulbs are positioned ventrally under 

the rostral pole of the brain. They extend caudally and almost reach the level of the 

terminal lamina, as can be seen in sagittal scans (tl: Fig. 28-30). The olfactory fibres 

(olf: Fig. 6-10, Fig. 19-30) of the pig are not confined to the rostral end of the bulb. 

Instead they spread out from the bulb’s whole surface and are clearly visible in Fig. 

30. The bulbs themselves house a large olfactory recess which seems to be 

collapsed in the fixed specimen scanned for the atlas, but can be visualized (more 

hyperintense than the surrounding tissue) in a native scan (Fig. 54 A). There is a gap 

between the two olfactory bulbs of the pig (ob: Fig. 6-9, Fig. 21-27), similar to the 

bovine olfactory bulbs and in contrast to the olfactory bulbs of the dog and cat that 

contact in midline (Nickel et al. 1992). The olfactory bulbs of other ungulates are 

dorsally covered by the cortex (according to Nickel et al. 1992). In the porcine brain 

an accessory olfactory bulb is located within the olfactory bulb. It is dorsally and 

slightly medially positioned (Fig. 54 A). The accessory olfactory bulb of the pig seems 

to be developed even before birth and might be involved in the essential nipple 

seeking behavior of neonatal pigs (Salazar et al. 2004). The rhinal fissure (Rfi: Fig. 

13-14, Fig. 19-22, Fig. 31-48) of the lateral brain surface, with its rostral and caudal 

part forms the upper limit of the rhinencephalon. The rhinal fissure separates the 

neocortex from the paleocortex. With increasing gyrification the rhinal fissure is 

shifted ventrally (Fig. 55). The caudal part of the porcine rhinal sulcus is not covered 

by the temporal lobe.  
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Figure 54 
Accessory olfactory bulb and olfactory recess of the pig brain. A: native T2 weighted scan (transverse 
scan); B: native T2 weighted scan accessory olfactory bulb (sagittal scan); C: modified drawing from 
Leshin et al. 1991. The olfactory bulbs of the pig contain a large olfactory recess. In the porcine brain the 
accessory olfactory bulb is located within the olfactory bulb. It is dorsally and slightly medially positioned 
(A+B courtesy of PD Dr. med.vet. (habil.) M. Schmidt). 
 
 

 

5.5.2 Expansion pattern of the cerebral cortex 

  

The growth of the cortex during phylogenesis creates species specific expansion 

pattern. In the 19th century Krueg (1887) already mentioned, that the brains of 

ungulates and carnivores expand through different mechanisms which he describes 

as pronation and supination. 
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5.5.2.4  Pronation and supination 

 

One can observe in the carnivore (feline) brain an expansion during development 

towards lateral aspect of the hemispheres (pronation). The medial surface of the 

hemisphere remains sparsely gyrated. As a result one can see (Fig. 55 C) that the 

corpus callosum is positioned in the top third of the brain. The hemispheres expand 

in lateral direction. We can also see (Fig. 55 A) an expansion of the cortex in the 

equine and bovine brain in medial direction (supination). This results in a large 

number of gyri and sulci on the medial surface of the hemispheres. Consequently the 

corpus callosum is shifted ventrally and towards the base of the skull. The pig’s 

corpus callosum is positioned in the centre of the hemispheres and the brain. 

Compared with the brains of sheep and dogs, the brain gyrification- and development 

pattern of the pig seems to take up an intermediate position (Fig. 55 B). The 

pronation and supination process is described by Krueg (1878) and Kappers (1921). 

 

 

Figure 55 

Increase of brain mass in dorso-medial orientation (A: bovine brain). Increase of brain mass latero-ventral 
orientation (C: feline brain). The brain of the pig takes an intermediate position (according to Krueg 1887 
and Kappers 1921), (A-C courtesy of PD Dr. med.vet. (habil.) M. Schmidt). 
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5.5.2.5  Opercularisation 

 

The insula is a part of the lateral brain surface (facies convexa). It was first described 

in the human brain by Vicq d’Azyr (1786) as “convolutions situated between sylvian 

fissure and striate body” (Clark 1896). This can also be seen in the scans of this 

study. In the pig the operculum covers only a part of the insula (Clark 1896, Kappers 

1921, Nickel et al. 1992, Russo et al. 2007). The insula of the pig appears flattened 

and sparsely gyrated in the MRI scans (Fig. 56 C). In ungulates (such as bovines and 

sheep) insular gyri are developed (Fig. 56 A, B). The opercularisation in the pig brain 

is nearly complete (Lauer 1982). During the ontogenesis the smooth surface of the 

pallium starts to form the deep sylvian fissure (fissura lateralis cerebri/ fissura sylvina) 

and the insula. It is characterised by a considerable morphologic variability in 

mammals. During ontogenesis the insula together with the striate body remain in 

place, while the pallium growth arch like (caudoventrally) around this area in order to 

maximise its mass. 

 

 

Figure 56 

Comparison of dorsal T2 weighted images of the insular region of the A: bovine, B: ovine, C: porcine 
brain. The insula (in) and the operculum (Op) are not as gyrated in the porcine brain. The opercularisation 
of the porcine brain is almost complete. Only a small part of the insula remains uncoverd (A-C courtesy of 
PD Dr. med.vet. (habil.) M. Schmidt).  
 

  



Comparative anatomy of the pig brain 

 

86 

 

5.5.3  The porcine cortex in comparison with the cerebral cortex of 

 other ungulates  

 

Transverse brain scans of horse, sheep, calf and domestic pig at the level of the 

olfactory bulbs, the striatum, the optic chiasm, the pituitary gland, the mammillary 

bodies, the habenulae, the rostral colliculi and the lingula (cerebellum) were selected 

and compared. As mentioned above the brains of the horse, sheep and calf are more 

gyrated than the porcine brain. The paleopallium is the most developed part of the 

cerebral cortex. The opercularisation process of the porcine brain is advanced, while 

temporalisation is not as developed. Some sulci can be traced from rostral to caudal 

scans. The rhinal fissure is only missing at the level of the lingula. The rhinal fissure 

is most dorsally positioned in the porcine brain at every level. The diagonal sulcus of 

the horse and the calf can be traced caudally up to the level of the optic chiasm. The 

diagonal sulcus of the pig is shorter and is not as easily identified. The arched 

furrows (ectosylvian and suprasylvian sulci also known as “Bogenfurchen“) are 

preserved but not strongly developed in the porcine brain, especially at the rostral 

pole of the brain. Rostrally (Fig. 57 C) the forebrain of the horse is the most gyrated. 

The forebrain expands far in lateral direction. Together the hemispheres appear 

almost circular. The other transverse scans at the level of the olfactory bulbs are 

more triangular (Fig. 57 A, B, D). The porcine brain appears most elongated 

(dorsoventral direction). At the level of the striatum, the brains of the sheep and pig 

are trapezoid in transverse scans. The brains of the horse and the calf are more 

elliptical. The caudate nuclei of the calf are the most elliptical (Fig. 57 E). The 

caudate nucleus of the pig is more triangular and does not extend as far laterally 

(Fig. 57 H). The caudate nuclei of the horse are almost isointens to the surrounding 

tissue and therefore not easy to distinguish (Fig. 57 G). The sylvian fissures of the 

horse, sheep and calf are deep and more dorsally positioned than the sylvian fissure 

of the pig. The sylvian fissure of the horse is displayed twice in scan (57 E).At the 

level of the optic chiasm the brain of the pig starts to expand ventrolaterally. The 

caudate nucleus of the pig is still triangular in shape, whereas the caudate nuclei of 

the horse and sheep are oval and continue to expand laterally towards the putamen 

and pallidum. Further caudally, at the level of the pituitary gland, the porcine brain 

does not feature the oblique sulcus of the horse brain (Fig. 58 G). 
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Figure 57 

Transverse image of the brain of different ungulates on the level of the olfactory bulbs (A-D) and striatum 
(E-H); A: calf; B: sheep; C: horse; D: pig ; E: calf; F: sheep; G: horse; H: pig.  
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The brain of the pig is now almost round in the transverse scan. The corpora callosi 

of the horse and sheep seems to be more dorsally positioned. The system of gyri and 

sulci of horse, sheep and calf are dorsolaterally more gyrated. The gyri and sulci 

seem deeper and are more defined. At the level of the mammillary bodies (Fig. 59) 

the porcine brain is still round, while the brains of the horse, calf and sheep are 

dorsoventrally flattened. The endosplenial sulci of the horse and calf become visible 

at this level. The endosplenial sulcus is not a feature of the porcine brain. The horse, 

sheep and calf brains become more elliptical and dorsoventrally flattened. The 

ectosylvian sulcus (“Bogenfurche”) of the pig can be detected at this level (Fig. 59 D). 

In the pig it is rather shallow and not as long and complex as in the horse and the 

calf. In the porcine brain we can also find a sulcus (Spl*) connecting the splenial 

sulcus with the suprasylvian sulcus.  

Marginal, endomarginal and ectomarginal sulci dominate the sulcal system in caudal 

transverse scans (Fig. 60). They seem to be the most conservative and are featured 

in all of our specimens. 
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Figure 58 

Transverse image of the brain of different ungulates on the level of the optic chiasm (A-D) and pituitary 
gland (E-H); A: calf; B: sheep; C: horse; D: pig ; E: calf; F: sheep; G: horse; H: pig.  
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Figure 59 
Transverse image of the brain of different ungulates on the level of the mammillary bodies (A-D) and 
habenulae (E-H); a: calf; B: sheep; C: horse; D: pig; E: calf; F: sheep; G: horse; H: pig.  
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Figure 60 

Transverse image of the brain of different ungulates on the level of the rostral colliculi (A-D) and of the 
lingula (E-H); A: calf; B: sheep; C: horse; D: pig ; E: calf; F: sheep; G: horse; H: pig.  
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Abbreviations figures 57-60: 

Ans: ansate sulcus; Cor: coronal sulcus; Cru: cruciate sulcus; Dia: diagonal sulcus; 

Ecm: ectomarginal sulcus; Ecs: ectosylvian sulcus; Enm: endomarginal sulcus; Eng: 

endogenual sulcus; Enspl: endosplenial sulcus; Gen: genual sulcus; Mar: marginal 

sulcus; Obl: oblique sulcus; Prs: presylvian sulcus; Prr: prorean sulcus; Rfi: rhinal 

fissure; Scl: sulcus of the corpus callosum; Sss: suprasylvian sulcus; Spl: splenial 

sulcus; Spl*: connecting sulcus; Syl: sylvian fissure (pictures courtesy of PD Dr. 

med.vet. (habil.) M. Schmidt). 

 

 

5.5.4 Comparative morphology of the cortex of pig breeds, wild boar and 

babirusa  

 

 

 

Figure 61 
Comparison of the of the domestic pig brain with the brain of the wild boar: A: wild boar midsagittal scan, 
B: domestic pig midsagittal scan, C: wild boar dorsal scan, D: domestic pig dorsal scan. The main sulci of 
the domestic pig and the wild boar are very similarly positioned. Also the overall shape of the 
telencephalon and cerebellum is mostly preserved in the domestic pig. The dorsal curvature of the 
domestic pig’s telencephalon seems less convex. The sulci of the wild boar appear longer and deeper (A-
D courtesy of PD Dr. med.vet. (habil.) M. Schmidt). 
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In the MRI scans of Fig. 61 one can see that the main sulci of the domestic pig and 

the wild boar are very similarly positioned. Also the overall shape of the 

telencephalon and cerebellum is mostly preserved in the domestic pig, although the 

dorsal curvature of the domestic pig’s telencephalon seems less convex (Fig. 61 B). 

The brains of both -domestic pig and the wild boar- present strongly developed 

olfactory bulbs and large pituitary glands. In the sagittal images one can see 

differences in the shape of the corpus callosum. The dorsal surface is almost 

concave in the wild boar. The gyri and sulci dorsal to the corpus callosum seem to be 

longer in the wild boar and appear to be more convoluted. This might be an 

explanation for the concave facies splenalis of the corpus callosum. As well as that 

the pons is more pronounced in the wild form than in the domestic pig. In the sagittal 

scan the sulci of the frontal cortex of the wild boar are more distinct (Fig.61 A and B). 

This observation was also made by Brauer and Schober (1970). The same 

observation is difficult to make in the dorsal images, since they are not taken in the 

exact same plane. 

Differences between the brain of the domestic pig, Wiesenauer minipig, wild boar 

and the brain of the Indonesian babirusa (Fig. 63), a member of the suinae become 

apparent. Our MRI scans of the head show a massive frontal sinus extending 

dorsally over the telencephalon and cerebellum of the barbirusa. The telencephalon 

is relatively small when compared with the size of the cerebellum (Fig. 63 C). The 

shape of the cerebellum in MRI is almost square in the midsagittal scan. In contrast 

the cerebellum of the porcine brain is more dorsoventrally extended. The pons of the 

babirousa seems not as pronounced as the pons of the domestic pig, in spite of the 

large cerebellum. We propose that the corticocerebellar fibres of the pons are not as 

developed because of the smaller size of the telencephalon. The well developed 

cerebellum is responsible for vital coordination. The pituitary gland is large and points 

caudally like the pituitary gland of the domestic pig and wild boar. The corpora 

callosa of babirusa and pig are very similar in shape. The brain of the babirousa 

seems to be dorsoventrally compressed in transversal sections (Fig. 65). Compared 

with the porcine brain the corpus callosum the gyri of the babirusa are laterally more 

convoluted (transverse scans, Fig. 65-67). The telencephalon of the babirusa is 

elongated (sagittal scans, Fig.63), especially when compared with the brain of the 

Wiesenauer minipig. Out of the four specimens the Wiesenauer minipig features the 

least amount of olfactory fibres. The brain of this brachycephalic (“short headed”) pig 

is rostrocaudally compressed. As a result the mesencephalon is shifted in dorsal 
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direction. The frontal lobe of the Wiesenauer minipig is positioned in a more rostral 

position than the olfactory bulbs (Fig. 63 B). 

By comparing the brains of the dolichocephalic (“long headed”) domestic pig with the 

brains of Wiesenauer minipig, barbirusa and wild boar, it is apparent that the shape 

of the brain is influenced by the scull and either elongated or caudorostrally 

compressed. The sulci and gyri are stretched or compressed accordingly. As far as 

can be determined in MRI, the system of gyri and sulci varies little between the 

scanned specimens as can be seen in Fig. 65-67. The sulci emerge at approximately 

the same level. The variation is so slight, that is would be difficult to identify the 

individual specimens if the image was viewed out of the context of this study. The 

brain of the wild boar features the most secondary sulci and fissures. Volumetrical 

differences are not visible in the 2D images. The brain of the babirusa is 

dorsoventrally flattened and elongated compared with the other suidae. The 

cerebrum and cerebellum of the babirusa are in line. 

 

 

 
Figure 62 

Head of a babirusa (female), the specimen was scanned post mortem at the Justus Liebig University in 

Giessen. It was donated by the Hessisches Untersuchungsamt after the animal had been euthanized due 

to a neoplasia in the uterus at Frankfurt Zoo. © Verena Schmidt 
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Figure 63 
A: domestic pig, B: Wiesenauer minipig, C: babirousa D: wild boar in midsagittal scans.  
Cal: calcarine fissure; Ecg: ectogenual sulcus; Eng: endogenual sulcus; Gen: genual sulcus; Scl: sulcus 
of the corpus callosum; Spl: splenial sulcus; Spl*: connecting sulcus (A-D courtesy of PD Dr. med.vet. 
(habil.) M. Schmidt). 

 

 

The mesencephalon is elongated and the mammillary bodies are rostrally oriented. 

The babirusa displays the longest distance between the mammillary bodies and the 

pons. The Corpus callosum is long and thin in sagittal scans and the ventral surface 

is concave. 

The cerebellum of the babirousa resembles the cerebellum of the bovine cerebellum 

in MRI-scans. It is cuboid in shape and very myelinated. In the Wiesenauer minipig, 

the wild boar and the domestic pig the cerebelli are rather cone shaped and 

rostrodorsally positioned 
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Figure 64 

A: short nosed pig skull: B: Wiesenauer minipig MRI midsagittal; C: long nosed pig skull; D: wild boar 
brain midsagittal MRI. Note the differences in brain shape. The minipig brain seems rounder. The 
cerebellum appears to be rather square. The cranial and caudal lobes are of similar size, similar to the 
brachycephalic pug (Fig. 79 B) if not as pronounced the olfactory bulb and its fibres are shifted caudally 
(A-D courtesy of PD Dr. med.vet. (habil.) M. Schmidt). 
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Figure 65  
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Figure 66  
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Figure 67  
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Abbreviations figures 65-67: 

 

A: Domestic pig, B: Wiesenauer minipig, C: Babirousa, D: Wild boar, E: Domestic 

pig, F: Wiesenauer minipig, G: Babirusa, H: Wild boar; 

Cor: coronal sulcus; Dia: diagonal sulcus; Ecg: ectogenual sulcus; Ecs: ectosylvian 

sulcus; Eng: endogenual sulcus; Gen: genual sulcus; Mar: marginal sulcus; Rfi: rhinal 

fissure; Scl: sulcus of the corpus callosum; Sss: suprasylvian sulcus; Spl: splenial 

sulcus; Spl*: connecting sulcus; Syl: sylvian fissure (pictures courtesy of PD Dr. 

med.vet. (habil.) M. Schmidt). 

 

5.5.5  Functional division of the pig’s cortex 

 

5.5.5.4 Frontal region of the cortex 

 

The cortex of the rostral pole of the cerebrum is called prefrontal cortex (PFC). It was 

firstly described by Brodmann (1909) as an area specific to the primate brain. Since 

then, other scientists proposed that it could also be detected in other mammals 

(Jelsing et al. 2006 a). Rose and Woolsey (1948) characterized the prefrontal cortex 

as an area that is connected with the thalamic mediodorsal nucleus (Förstl 2005). For 

the purposes of a study conducted by Jelsing et al. (2006 a), the PFC was defined as 

the major reciprocal projection area from the thalamic mediodorsal nucleus (key 

definition according to Uylings and van Eden 1990). Jelsing et al. provide a map of 

the PFC in the young Göttingen minipig brain. The PFC seems to be rather large and 

seems to cover the rostral part of the superior frontal gyrus, the frontomedial cortex, 

the rostral cingulate gyrus and the rostral part of the insula inside the rhinal fissure 

(Fig. 68). Because of problems such as the precision of stereotactic injections and 

possible diffusion of injected tracer (manganese tracer) the result must be assessed 

with care. Jelsing et al. (2006 a) emphasise, that the reciprocal connectivity of the 

frontal cortex with the thalamic mediodorsal nucleus does not provide strict criteria for 

defining the PFC.  
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Figure 68 
Prefrontal cortex of the Göttingen minipig brain (as proposed by Jelsing et al. 2006): Cytoarchitectonic 
and connectional data suggests that the Göttingen minipig has a structurally divided prefrontal cortex. 
The delineated PFC is rather large covering the rostral part of the superior frontal gyrus, the frontomedial 
cortex, the rostral cingulate gyrus as well as the rostral part of the insula (hidden within the deep rhinal 
fissure). A: dorsal view; B: medial view; C: lateral view of the prefrontal cortex (light blue areas);  
Ans: ansate sulcus; cb: cerebellum; cc: corpus callosum; Cor: coronal sulcus; Dia: diagonal sulcus; Ecs: 
ectosylvian sulcus; Ems: ectomarginal sulcus; Eng: endogenual sulcus; Enm: endomarginal sulcus; Gen: 
genual sulcus; Mar: marginal sulcus; ob: olfactory bulb; opn: optic nerve; pg: pituitary gland; Rfi: rhinal 
fissure; Spl: splenial sulcus; Spl*: connecting sulcus; Sss: suprasylvian sulcus; Syl: sylvian fissure. 
Picture © Verena Schmidt 
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5.5.6 Primary and secondary somatosensory area of the porcine brain 

The primary (S1) and secondary (S2) sensory cortex of the neonatal pig have been 

investigated by Craner et al. in 1991 and previously by Adrian in 1943 and Woolsey 

and Fairman (1946), who examined adult pig brains. The S1 of the pig seems to be 

very similar to the S1 of other mammals. The body surface projections are complete 

and somatotopically organized. They progress from hind limp to the head with medial 

to lateral locations in the cortex. The part of the body that is most important for the 

survival of the animal seems to have the largest cortical representation. This is 

supported by the fact that the rostrum of the pig used for rooting has a large 

representation (Craner and Ray 1991 a, Nickel et al. 1992). The representation of the 

rostrum region is located dorsal to the suprasylvian sulcus in the coronal gyrus (Fig. 

69 A,B,C). Unlike SI, which possesses a disproportionately large representation of 

the rostrum, SII has no specialized representation of the rostrum. The secondary 

somatosensory region (SII) provides a more generalized representation of the total 

body surface and is located lateral to the rostral and middle suprasylvian sulci 

(Craner and Ray 1991 b).  

 

5.5.7 Auditory cortex of the porcine brain 

 

The auditory cortex and somatosensory cortex of the miniature swine (Andrews et al. 

1990) and pig (Adrian 1943) were found to be comparable to those of other species 

(cat and monkey). The auditory region is positioned around sylvian fissure and the 

somatosensory cortex is placed around the central (dorsomedial suprasylvian) 

fissure (Fig.69 A). 
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Figure 69 
Somatosensory cortex of the porcine brain (taken from A+B: Adrian 1943 and C: Craner and Ray 1991). 
The representation of the rostrum region is located dorsal to the suprasylvian sulcus in the coronal 
gyrus. 
 

 

5.5.8 Visual cortex of the porcine brain 

 

The most characteristic and well defined area of the visual cortex (Fig. 69 A, Adrian 

1943) is the so called area striata/striate area. On account of its special 

morphological character and its physiological importance, its relation to vision, the 

area striata has been investigated with high interest in a lot of species (Bright 

Funkhouser 1915, Adrian 1943, Lakshminarasimhan 1974, Barbier et al. 2002, 

Gizewski et al. 2007). In the human brain it is possible to identify with the naked eye 

a stripe of white fibrous matter lying tangentially within the grey substance. This 
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stripe is called the stripe of Gennari. In the pig and domestic mammals the visual 

cortex extends over the convexity of the occipital lobe including the endomarginal, 

marginal and splenial gyri (Fig. 69 A). Although secondary gyri complicate the 

identification in domestic herbivores, the visual cortex and its macroscopic structural 

representations in the mentioned gyri, seem to be very constant amongst the 

domestic animals (Nickel et al. 1992). 

 

5.5.9 Motor cortex of the porcine brain 

 
 
 

 

 

 

Figure 70 
In literature the central sulcus (A) of humans and primates is often homogized with the cruciate sulcus of 
the dog (B). The central sulcus (A) and the cruciate sulcus (B) are marked with a red circle. The cruciate 
sulcus of the canine brain is positioned cranial to the motor area (marked by figure 7). 
Pictures courtesy of Campbell 1905 (A) and Nickel et al.1992 (B, according to Campbell 1905, Marquis 
1934, Tunturi 1950, Woolsey et al. 1952, Pinto et al. 1956 and Woolsey 1960. 
 

 

In the porcine brain we find the motor area according to Breazile et al. 1966 and 

Palmieri et al. 1987 between cruciate and coronal sulci (Fig.71). The authors chose 

to name the sulcus cranial to the motor area “cruciate sulcus”. This seems to 

homologize this cruciate sulcus of the pig with the cruciate sulcus of the canine and 

feline brain, which is also positioned cranial to the motor area (Fig.70 B). The motor 

area of the human and primate brain is positioned rostrally to the central sulcus 

(Campbell 1905, Nickel et al. 1992) in the so called gyrus praecentralis, while 
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the somatosensory area is positioned caudally to the central sulcus in the postcentral 

gyrus (Fig. 70 A). In literature the cruciate sulcus of the canine and feline brain is 

often homologized with the central sulcus of the primate and human brain. But the 

somatosensory area of dog and cat includes the postcruciate and the rostral 

suprasylvian gyrus. Furthermore their cruciate sulcus is positioned in a praecentral 

position. It seems therefore problematic to homologize the central and cruciate 

sulcus and use the terms “precentral” and “postcentral” in domestic mammals (Fig. 

70, Nickel et al. 1992).  

 

 

 

Figure 71 

The motor area of the porcine brain is positioned on the lateral surface (according to Breazile et al.1966 
and Palmieri et al. 1987). The motor area is positioned between the “cruciate” sulcus and the “coronal 

sulcus”. Compare with Fig. 70 (cruciate sulcus and central sulcus). ©Verena Schmidt. 
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5.5.10  Pituitary gland and rete mirabile in MRI 

 

The hypothalamus of the pig was investigated by a number of authors (Solnitzky 

1939, Welento 1964, Szteyn et al. 1980, Seeger 1990). The hypothalamus is the 

most ventral part of the diencephalon forming the bottom of the 3rd ventricle bordering 

the optic chiasm caudally. 

The basisphenoid bone is strongly developed in pigs with a cranially oriented dorsum 

sellae forming a rather deep recessus (Sisson 1953). In the horse it is not possible to 

confirm a recessus. The pituitary gland is positioned on top of the basisphenoid 

bone, as can be seen in the midsagittal scan of the equine brain (Fig. 72 B).  

The pituitary gland of the pig is elongated with a rather long pituitary stalk and points 

in caudal direction (Fig. 72 A+D, see also Nickel et al. 1992). It is important to 

mention the blood vessels surrounding the pituitary gland (pg: Fig. 7, Fig. 28-30, Fig. 

34-40). The vessels seem to be often collapsed in post mortem MRI scans. Blood 

can be curdled and oxidized, impacting dramatically on the signal quality. In the 

scans of the pig brain the vessels are visible as a hypointens area (pointing 

ventrocaudally). It is known as rete mirabile (rm: Fig. 28-30; Fig. 72, Burbridge et al. 

2004). Because of the hypointensity of the signal the structure could be mistaken for 

an artefact (for example air sucked in during preparation of the skull). The pituitary 

gland of the pig seems well developed and extends to the rostral end of the pons 

(Fig. 30, Fig. 72). Its tuber cinerum is difficult to identify in the MR images, but the 

infundibular recess (ir: Fig. 6) and the mammillary body can be seen (mb: Fig. 28-30, 

Fig. 38). The mammillary body is divided into two parts in the canine brain but 

uniform in the other domestic animal species (small ruminants might show a division 

into two parts) the mammillary body contains two nuclei on either side (Nickel et al. 

1992). According to Seeger 1990 the ventromedial hypothalamic nucleus of the pig is 

the most dominant part of the mammillary body. Unfortunately the individual nuclei 

could not be visualized in MRI, but a three dimensional study of the pig’s 

hypothalamic nuclei was conducted by Stzeyn et al. 1980, who examined “large 

white Polish” pigs. A detailed description of the hypothalamic nerve centres of the pig 

was delivered by Welento (1964).  
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Figure 72 
A: midsagittal scan of the porcine brain; B: midsagittal scan of the equine brain C: Angiogram of the right 
ascending pharyngeal artery in the pig. The lateral projection demonstrates the rete mirabile to better 
advantage (taken from Burbridge et al. 2004). D: midsagittal scan of the porcine brain (A, B, D courtesy of 
PD Dr. med.vet. (habil.) M. Schmidt). 
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5.5.11   Cerebellum 

 

Larsell (1954) studied the morphology of the mammalian cerebellum intensively and 

describes the organ’s homologous design. Since the characteristic shape of the 

mammalian cerebellum can be traced back to simply structured archetypes, the 

morphology of this organ is best understood when keeping its simply shaped origins 

in mind. The cerebellum of amphibians is made up of a single, undivided corpus 

cerebelli forming the roof of the fourth ventricle (Nickel et al. 1992, Butler and Hodos 

2005). In phylogenetically higher ranking specimen the corpus cerebelli is 

consequently divided through transverse fissures into a number of smaller sections 

called lobes. The individual sections, the lateral parts in particular, grew larger in the 

evolutionary process forming the cerebellar hemispheres. The original division into 

lobes is still preserved in the vermis of the cerebellum throughout the domestic 

animal species including the pig (Fig. 73 and Fig. 74). The cerebellum also 

experienced a volume/size growth originating from the vermis towards the 

hemispheres and in caudal direction. The actual size of the cerebellum is variable 

amongst vertebrates. Care has to be taken not to simply compare the cerebellar size 

since animals can vary significantly in body size (Butler and Hodos 2005). The 

nomenclature still treats the vermis (due to its prominence) as a singular, 

morphologically separate structure. The individual parts of the hemispheres are 

named without taking the morphological and functional connection with the vermis 

into consideration (Nickel et al. 1992). Unlike the vermis of the human brain, the 

vermis of the domestic animals is very prominent and especially so in the porcine 

brain. The imposing size of the pig’s vermis in our examined specimen is only 

surpassed by the size of the vermis of the sheep. The vermis nearly equals the 

hemispheres in size (Fig. 74). Seen from above in the native photograph (Fig. 74 J.) 

the cerebellum of the pig with its laterally expanding hemispheres appears to be 

triangular in shape. The cerebellum of the ruminants in comparison is rather round 

shaped and the cerebellum of the horse seems square (Fig. 74). 

The vermis is best examined in the midsagittal scans (Fig. 30, Fig 73) as explained in 

the result chapter. The rostral lobe is divided from the caudal lobe by the primary 

cerebellar fissure (Prf: Fig. 27-30, Fig. 73), the first fissure during ontogenesis that 

divides the primordial cerebellum. It appears to be smaller than the caudal lobe in the 

fixed pig brain. The formalin fixed specimen in this study was scanned over-night (8 
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hours) following fixation. Unfortunately there is no data available about the average 

size of the caudal and rostral lobes, but we suggest that this finding resembles the 

majority of cases. The hybrid pigs were 5 month old at time of scan. At this point of 

ontogenesis the juvenile pig brain should resemble the brain of the adult pig 

(according to Pond et al. 2000). The caudal lobe of the examined sheep’s cerebellum 

is also noticeably larger than the rostral lobe (Fig. 74 C), not unlike the caudal lobe of 

the fixed pig’s cerebellum. 

In this study it was possible to identify the most important fissures dividing the cortex 

and the medulla of the cerebellum using MRI. The names of the subdivisions 

especially of the vermis are historical and -although controversially discussed 

(Bradley 1903) - still used today (Nickel et al. 1992). The medulla of the cerebellum is 

well developed in all our domestic animal species. In the pig and horse the corpus 

medullare and its branches are relatively thin compared to those of the ruminants’ 

cerebellum (Fig. 74). The similarities between the cerebellum of horse and pig 

continue with the rather oval (higher than wide) shape of the vermis in midsagittal 

scans. The cerebelli of the ruminants in the midsagittal scans are round (sheep: Fig. 

73 C) and square (calf: Fig. 73 F). The rostral and the caudal lobe of the vermis are 

similar in size in all featured mammals with exception of the sheep and pig (the 

rostral lobe is smaller) in the midsagittal images (Fig. 74 C). But looking at the total 

surface area of the cerebellum, it becomes clear that the rostral lobe in all animals is 

not as developed as the caudal lobe. The hemispheres are nearly completely 

extensions of the caudal lobe. The caudal poles of the cerebral hemispheres leave a 

gap and the cerebellum is positioned in between the hemispheres and not under the 

cerebrum as seen in the dorsal photographs of the cerebellum (Fig. 74 A,D,G,J). The 

tentorium cerebelli osseum (see also Fig. 80) is missing in the porcine skull and this 

facilitates contact between cerebellum and cerebrum. The mesencephalic margin 

(caudal rim of the cerebrum) of the ruminant’s brain overlaps the caudal end of the 

lamina quadringemina and pushes the caudal colliculi ever so slightly in ventral 

direction. The mesencephalic margin of the pig’s brain and to a certain extend the 

horses causes a depression of the rostral colliculi (roc: Fig. 13, Fig. 25-30, Fig. 42-

45). This can’t be interpreted as an intra cranial pressure increase. Whether the 

recessus tecti of the fourth ventricle of pig (rtv: Fig. 73) and horse are also 

compressed, can’t be confirmed. The lateral extensions of the rostral lobe (lobus 

anterior) are difficult to identify in the porcine scans. The quadrangular lobule (lobulus 

quadrangularis) can be detected lateral of the culmen in dorsal photographs (Fig. 74) 
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because of its cranial extending medullar branches and lobules. The lobulus simplex, 

the first lobe after the primary fissure that extends from the declive is only weakly 

developed in the domestic animal species featured (Fig. 73).  

The characteristic s-shaped bend of the caudal vermis originates in the declive. 

There seems to be no rule as to why this shape actually develops. Only Bolk (1906) 

describes a relationship between the bend of the tuber, folium and declive of the 

vermis (together forming the median cerebellar lobe) and development and growth of 

the ansiform lobule (ans: Fig. 11-16, Fig. 21-27, Fig. 47-52). He proposes that the 

sharper the bend of the median lobe is the smaller the ansiform lobule becomes. This 

can be seen in the horse (Fig. 73 G-I). This relationship can be more clearly 

observed in dorsal scans. The caudal crus (crus caudale) of the ansiform lobule 

extends in ventral direction. The vermis (Fig. 73 j-l) of the pig is straighter and cranial 

and caudal crus of the ansiform lobule are on one level. In the pig brain the tuber (tu: 

Fig. 14-16, Fig. 25-26, Fig. 72) of the vermis is different to that of the other species. 

All of the examined pig brains show a medullar branch that ends right at the surface 

of the tuber of the vermis. This medullar branch does not seem to be covered by 

cerebellar cortex. Interestingly this happens in an area of strong development - the 

region of the tuber vermis. The growth of the tuber results in lateral deviation of the 

caudal part of the vermis causing an S- shaped bend. This was first observed by 

Schultz (1953) in his histological examinations of the pig’s cerebellum. It has been 

proposed to be a developmental impediment, thus creating a mechanical barrier due 

to a lack of space or compression through blood vessels (Cohrs and Schulz 1952). It 

was also described to be a physiological cortical aplasia (ca: Fig. 28-29; 

“physiologische Rindenaplasie”) that can’t be identified in other domestic mammals 

(Done 1986, Done and Herbert 1986, Nickel et al. 1992). The medulla of the 

paramedian lobule (pml: Fig. 10-13, Fig. 22-26) merges with the caudal crus of the 

ansiform lobule (ans: Fig. 11-16, Fig. 21-27, Fig. 47-52) that runs parallel with the 

medulla of the vermis. The paramedian lobe does not show any interspecific 

variations, while the shape of the paraflocculus (paf: Fig. 9-13, Fig. 19-21, Fig. 46-52, 

Fig. 72) is extremely variable. Comparing the relatively simple structure of the lobules 

of the pig (midsagittal scan) with the midsagittal scans of other domestic ungulate 

brains, we can see that the lobules branch off from the marrow of the arbor vitae into 

a number of secondary and tertiary lobules. The cerebelli of the featured ruminants 

show the most branches. The pig’s laminae medullares cerebelli are thin, 
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Figure 73 
Cerebellum of the pig (sagittal section through the middle of the vermis): aq: mesencephalic aqueduct; 
Cco: cerebellar cortex; cl: central central lobule; cm: corpus medullare; cu: culmen; de: declive; fol: 
folium; li: lingula; no: nodulus; Pcf: preculminate fissure; Ppf: prepyramidal fissure; Prf: primary fissure; 
py: pyramis vermis; rtv: recessus tecti ventriculi quarti; Scf: secondary fissure; tu: tuber; Unf: 
uvulonodular fissure; uv: uvula; IV: fourth ventricle (picture courtesy of PD Dr. med.vet. (habil.) M. 
Schmidt). 

 

 

especially in native scans and the contrast between medulla and cortex is weak. A 

better contrast can only be achieved through longer scans of the fixed pig brain. The 

surface of the pig’s cerebellum appears to look similar to that of carnivores (like dogs 

and cats), with its delicate system of gyri and sulci (Nickel et al. 1992). It is connected 

to the brain stem by the cerebellar peduncles (pcc, pcm, pcr) and the medullary vela 

(rostral and caudal) and lies dorsal to the pons (po: Fig. 28-30, Fig. 45) and medulla 

oblongata. It is divided from the cerebral hemispheres by the transverse fissure. The 

cerebellum of the babirusa appears square. Not unlike the cerebellum of the calf the 

babirusa’s rostral and caudal lobe nearly equal in size (as can be seen in Fig. 63 C). 

This was also the case in the scanned brachycephalic Wiesenauer minipig (Fig. 63 

B). While investigating the cerebellar nuclei and internal grey substance, Bujak 

(1974) noticed differences between the cerebellar nuclei of domestic pigs and the 

cerebellar nuclei of the wild boar. The nuclei seem to be more distinctly separable in 

the wild boar. The MR-images do not reveal differences between the cerebellar 

nuclei of the domestic pig and the wild boar.  



Comparative anatomy of the pig brain 

 

112 

 

 

Figure 74 

Dorsal photographs (A,D,G,J), dorsal (B,E,H,K) and midsagittal (C,F,I,L) MRI scans.  

A-C: ovine cerebellum; D-F: bovine cerebellum (calf); G-H: equine cerebellum; J-L: porcine cerebellum (A-

L courtesy of PD Dr. med.vet. (habil.) M. Schmidt). 

 

  



Comparative anatomy of the pig brain 

 

113 

 

6  Discussion 

 

 

Although the main structure (Grundbauplan/blueprint) of the mammalian brain shows 

a large number of similarities, species differences exist (especially size of the 

telencephalon, shape etc.) that can make it difficult to differentiate between 

pathological and physiological structures in brains of specimens that are not regularly 

examined in MRI (such as the pig). This study aimes describe the brain of the 

domestic pig (Sus scrofa domestica) as detailed as possible using a 1 Tesla MRI 

scanner and is so far the first and most complex textbook MRI-atlas of its kind. It 

includes 13 dorsal, 12 sagittal and 22 transversal images. In order for a brain atlas to 

be successful it is important to match the anatomy of the individual specimen with the 

representation of the anatomy in the atlas (Toga and Thompson 2001). It is therefore 

vital to scan as many individuals as possible to reflect the anatomy of the majority of 

individuals. In this study the 10 hybrid pig brains scanned showed little variation in 

brain structure amongst each other. But every specimen behaved slightly different in 

MRI as their heads varied slightly in size and also the scans taken did not always 

capture the exact same plane. 

Also the interspecific differences of the brains of different members of the suidae 

including the wild boar, the Wiesenauer minipig and the babirusa need to be 

discussed. Where appropriate the pig brain is furthermore compared with brains (in 

scans and formalin fixed), atlases and studies (Roschig 1907, Anthony and de 

Grzybowski 1930, Anthony and de Grzybowski1931, Anthony and de Grzybowski 

1937, Ciliga 1937, Lauer 1963, Lauer 1982, Cohn and Papez 2004, Schmidt et al. 

2009, Schmidt et al. 2011) of domestic animals and ungulates to highlight 

differences. The brain of the domestic pig in situ is surrounded by the meninges and 

is positioned within the cranial cavity of the skull. In comparison to the skull the brain 

of the pig is relatively small and its volume takes up 1/8 of the skull as seen in Fig. 75 

(Flatau and Jakobsohn 1899). The cranial cavity in pigs and ruminants is divided by 

the cruciform eminence (see Fig. 80) and when the brain is in situ, only the 

membranous tentorium cerebelli divides the cavity into a large rostral part, containing 

the telencephalon, the diencephalon and the mesencephalon and smaller caudal 

cavity containing the metencephalon and mylencephalon (Nickel et al. 1992). 
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Figure 75 

Midsagittal view of the virtual reconstruction of the skull of an adult domestic pig, demonstrating the 

dimensions of the neurocranium relation to dimensions of the viscerocranium. CT scan © Verena 

Schmidt 

 

In the pig the cruciform eminence resembles two barely visible ridges that cross over 

at the most dorsal aspect. In sagittal MR images liquor should be visible between 

cerebrum and cerebellum and not hypointense bone signal. This can be seen in the 

native sagittal scan of the babirusa (Fig. 63 C). The tentorium cerebelli is believed to 

have emerged relatively late in phylogeny as bilateral folds of the dura mater on 

either side of the brainstem in the cerebro- cerebellar fissure and is ossified in other 

domestic animals like the horse (Klintworth 1986, Nickel et al. 1992). This in 

conjunction with the pig’s rhienencephalonindex (rhienencephalon in % of 

neopalliumindex, Nickel et al. 1992) could indicate a lower phylogenetic rank.  
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6.1  The neocortex of the pig 

 

The MRI study confirms that the brain of the domestic pig is not as convoluted as the 

brain of other ungulates. It is characterized by la large rhinencephalon and a stable 

surface pattern as shown in the brain scans of the pig breeds in this study.  

It has been postulated that the bigger the neopallium (size, convolution) in relation to 

the rest of the brain is, the higher the brain is placed in the “phylogenetic hierarchy”. 

This is known as cerebralization. The artiodactyls (including the domestic pig) and 

terrestrial herbivores are depending on olfactory signals to interact socially and their 

intensive olfactory abilities (as macrosmatic animals) are reflected in a well 

developed rhinencephalon (Lauer 1982, Salazar et al. 2004). A criterion of the 

degree of cerebralisation is the neopalliumindex. Men, elephants and primates for 

example have a very high neopalliumindex. Their rhinencephalon is extremely small 

in relation to the neopallium. The pig’s neopalliumindex is ranked below that of 

primates, bovines and felines but above the neopalliumindex of canines (Nickel et al. 

1992). Interestingly the non-olfactory components of the rhinencephalon - the limbic 

system (hippocampus), seem not as well developed in relation to the peripheral 

components of the olfactory system. However, a direct correlation between the 

dimensions of these brain parts has been questioned (Reep et al. 2007). The 

hippocampus of the pig is characterised by a general cytoarchitecture, similar to that 

of other mammals (Saito et al. 1998). The archipallium used to be purely responsible 

for the correlation of olfactory information with other sensory information. But with the 

development of the neopallium and reduction of the importance of the olfactory sense 

the archipallium moved to the medial wall of the hemisphere (Dyce et al. 2002).  

It is not possible in this study to determine whether the size of the porcine 

rhinencephalon can be linked to the pig’s extremely sensitive olfactory sense or to a 

rather low evolutionary position. Artiodactyls use olfactory cues in a wide variety of 

social interactions (Hart 1983; Deutsch 1992), but the MRI images are solely able to 

capture the pig’s large rhinencephalon (and small neopallium) with its dorsally 

positioned lateral rhinal fissure (Rfi: Fig. 13-14, Fig. 19-22, Fig. 31-48), in comparison 

to other domestic animal species.  
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6.2  Gyrification 

 

Among the most distinctive morphological features of vertebrate brains is the 

evolutionary expansion of the cerebral cortex (Hofman 1985, Barton 2007). By 

comparing the scans of the pig brain with our scanned brains of sheep, calf, deer, 

horse and alpaca (Fig. 53) the different degrees of gyrification as well as differences 

in size and shape of the hemispheres become apparent.  

It is known that the level of cortical gyrification varies across mammals of different 

brain sizes but very little is known about the influences triggering the emergence of 

the special pattern of grooves and ridges in the brain (Stark 1954). In the ferret (the 

smallest laboratory animal with a folded cortex) the gyrus formation was studied by 

firstly investigating the external features of the pallium during the folding process and 

secondly by describing the histological changes occurring within a gyrus as it 

develops and grows. It was observed that gyri are formed by longitudinal and radial 

expansion of the cortical department. Gyri occur between relatively fixed areas which 

form the sulcal floor. The hemispheres are also subjected to moulding by the growing 

skull. During that process the frontal pole of the cerebrum becomes pointed while the 

sulcal walls become closely opposed and the gyral crowns flattened (Smart and Mc 

Sherry 1986 a, Smart and Mc Sherry 1986 b). Pillay and Manger (2007) examined 25 

different mammalian species and support the theory that, with increasing brain size 

and size of the mammal (actual mass of the periphery serviced by CNS), the 

gyrencephaly increases (Kuhlenbeck 1927, Stark 1982, Welker 1990, Nieuwenhuys 

et al. 1998, Danckers 2003). They also found ungulates to be the mammals with the 

most gyrencephalic brains. When species of similar brain weights were compared 

ungulate brains were significantly more gyrencephalic. It also seems to be the fact 

that large brains tend to be more convoluted than small brains due to the 

disproportionately small changes in cortical thickness (Hofman 1985). Minipigs, when 

kept under appropriate conditions (e.g. restrictive feeding) remain small, while a fully 

grown wild boar or landrace pig are larger in size and weight. Allometric growth 

doesn’t seem to contribute to the emergence of additional cortical areas or a 

significantly different organisation of the system of gyri and sulci (Fig. 63, Fig. 64-67). 

This study shows that within the suidae only few differences exist.  

Oboussier (1967 and 1971), while investigating phylogenetic relations of different 

African bovidae, summarises her findings (relation of neocortex surfaces to 
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bodyweight) as follows: “One must conclude that (amongst bovidae) different 

evolutionary paths were taken 1. Different degree in size of the neocortex surface 

and 2. The same neocortex surface size is obtained by a) fewer and deeper or b) 

multiple and more superficial sulci.  

Shultz and Dunbar (2006) describe ungulates as a group with relatively simple 

patterns of resource use but with varied social behaviours. Their statistical study 

suggests that relative brain size is independently associated with sociality and social 

complexity and habitat use. The relative neocortex size is associated with social but 

not with ecological factors (habitat). Barton 2007 comes to the conclusion that the 

evolution of mammalian cortical structure is closely associated with specialisation for 

different sensory niches. Barton believes that functionally differentiated cortical areas 

evolve independently from one another (adaptive specialisation).  

Amongst the suidae (as members of the artiodactyls) the brains of European 

domestic pigs, wild pigs and feral pigs (Galapagos Islands) were examined (Kruska 

1988, Kruska et al. 1970, Kruska and Röhrs 1974). The studies reveal that the brain 

of the wild pig is bigger and more gyrated than the brain of the domestic and feral 

pig. They also established that the return of the domestic pigs to the wild did not 

result in a larger brain (in relation to body size) of the feral pig. It seems that the 

reduction in brain size caused by domestication - domestic pigs have a 33, 6 % 

smaller brain (Röhrs and Ebinger 1999) - is not reversible. This theory is supported 

by brain studies of feral dogs (especially the Australian dingo), cats, goats, donkeys 

and sheep (Kruska 1970, Ebinger 1974, Röhrs and Ebinger 1999). A relationship 

seems to exist between the degree of cerebralization and reduced brain size due to 

domestication. Mammals with larger brains (artiodactyls, carnivores) seem to show a 

greater decrease in brain size during domestication than for example rodents. 

Comparisons of individuals within an order demonstrate that the level of brain 

evolution may not be the only factor influencing size reduction due to domestication. 

Species-specific variations in the level of brain size reduction could result in a 

gradually different reduction in total function (Kruska 1988). 

Renewed interest in the gyrification of the insula region was sparked by the discovery 

of functions attributed to this area of the cortex such as visceral sensory, visceral 

motor, somatosensorial and supplementary motor area (Russo et al. 2007). Of the 

artiodactyl brains compared in this study, the opercularisation appears least 

advanced in the porcine brain, while it is more advanced in the brain of ruminants. 

The level of gyrification of the insular region seems to reflect the complexity of the 
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gastrointestinal tract (Russo et al. 2007). In ruminants we find a complex system of 

different compartments with highly specified individual functions, while the pig is 

monogastric. During ontogenesis the insula together with the striate body remain in 

place, while the pallium growth arch like caudoventrally around this area in order to 

maximise its mass. As a consequence the temporal lobe is formed. This 

ontogenetical process is also called temporalisation. Finally the insula can be found 

at the bottom of the sylvian fissure, often completely obscured by a part of the 

temporal lobe called operculum (Nickel et al. 1992). The temporal lobe in the pig is 

clearly formed and develops caudally of the sylvian fissure. Like the temporal lobe of 

the bovine brain the porcine temporal lobe does not obscure the piriform lobe. The 

temporal lobe of the canine and feline brain in caudal position to the pseudosylvian 

fissure covers the piriform lobe laterally almost completely (Nickel et al. 1992). 

 

6.2.1 Discussion of the position and nomenclature of the sulci of the porcine 

brain  

 

We were able to determine the morphology of the porcine cortex using MRI. During 

our investigation it became apparent that the terminology of the system of sulci of the 

porcine brain in literarure is not constant, even though the system of gyri and sulci 

shows very little variation amongst the studied suidae.  

The following chapter discusses the system of sulci of the porcine brain. Pictures in 

anatomical atlases often consist of two dimensional drawings or illustrations. It is 

difficult to match drawings of gyri and sulci to actual structures in MRI scans. The 

identification of sulci in MRI proved less difficult than to establish the position of gyri. 

The sulci are more defined in the actual two dimensional scans (also noted by 

Maudgil et al. 1998) and in the three dimensional reconstructions using AMIRA® and 

AVIZO®.This study therefore concentrates on the identification of the sulci of the pig 

brain. In order to correctly identify and consequently name the sulci of the pig brain, 

the MRI images were compared with images and descriptions of a large number of 

textbooks and studies (Krueg 1878, Franck 1894, Flatau and Jakobsohn 1899, 

Schellenberg 1900, Martin 1904, Black 1915, Kappers 1921, Rawiel 1939, 

Ellenberger and Baum 1943, Sisson 1953, Koch 1965, Breazile et al. 1966, Brauer 

und Schober 1970, Kruska et al. 1970, Lauer 1982, Palmieri et al. 1987, Craner and 
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Ray 1991 A,B (piglet), Nickel et al. 1992, Watanabe et al. 2001 (minipig), Jelsing et 

al. 2006 (piglet), Lind et al. 2007 (piglet). In the process of trying to match textbook 

drawings, histological slices and our MRI scans it became evident, that the 

nomenclature of the sulci of the pig varies tremendously. This is also true for other 

species. Lakshminarasimhan (1974 and 1975) investigated the isocortex and the 

visual cortex of the ox (bos taurus). He came across the variability of names for the 

system of grooves and ridges of the bovine brain. A recent study of the gyration of 

the feline brain discusses the localisation, terminology and variability of gyri (Pakozdy 

et al. 2014). 

This study demonstrates that there are different reasons for the variable terminology 

of sulci: 

1) Authors copy names from different existing studies of the pig brain. 

2) Names for the sulci of the pig brain are copied from anatomical studies of 

different species (e.g. carnivores, other ungulates, primates). Sulci positioned 

in similar positions are given the same names. (Schellenberg states for 

example as early as 1900 that names for a large number of sulci of ungulate 

brains (including the porcine brain) were borrowed from “The structure of the 

dog’s brain” by Langley in 1883). 

3) Different authors use a different homology concept to establish the names of 

sulci and use the terminology accordingly. 

4) Within the family of suidae the sulci may show variability.  

 

5) Gyri and sulci of the same functional area (motor area, somatosensory area 

etc.) receive the same names. Again terminology might be copied from 

already existing studies.  

 

Table 1 gives an overview of the terminology already used for sulci of the pig brain. 

The reader will also find the Latin name (Nomina Anatomica Veterinaria, NAV) and 

synonymously used terminology (from studies and atlases).  

As mentioned above sulci of the pig brain are arranged in a simpler manner than 

those of ruminant (bovine and ovine) and equine brains. But the pattern of the 

porcine gyri and sulci is more complex than the system of sulci of dogs and the cat 

(Schellenberg 1900, Sisson 1953, Nickel et al. 1992). Although the appearance of 
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the telencephalon in the order of ungulates (including sus scrofa) varies 

tremendously (including the size and the gyral pattern), it has been proposed by 

Krueg (1878), that ten main sulci (of the dorsal and lateral brain surface) can be 

constantly identified (in addition to the rhinal and hippocampal sulcus). They are on 

the lateral surface: the sylvian fissure, the suprasylvian sulcus, the coronal sulcus, 

the presylvian sulcus, the lateral sulcus, the diagonal sulcus, the caudal ectosylvian 

sulcus. The deep, long sylvian fissure (Syl: Fig. 14-18, Fig. 19-20, Fig. 33-38, Fig. 57-

59) of the pig points caudodorsally. It originates near the middle of the rhinal fissure. 

The sylvian gyrus obscures the insula almost completely. Some authors describe an 

anterior ramus that extends in rostral direction along with the rhinal fissure (Flatau 

und Jakobsohn 1899, Rawiel 1939, Ellenberger und Baum 1943), but this has been 

questioned by Schellenberg (1900). This study shows that the sylvian fissure of the 

pig is narrow and flat in comparison to the sylvian fissure of other ungulates. The 

bovine and equine sylvian fissures are deep and further secondary gyri can be seen 

inside the furrow (Fig. 57 and Fig. 58, Fig. 60). Caudal to the sylvian sulcus the 

shorter caudal ectosylvian sulcus (Ecs: Fig. 14-18, Fig. 19, Fig. 35-41, Fig. 57-60) or 

pars posterior of the ectosylvian sulcus can be identified pointing upwards and 

backwards nearly parallel to the sylvian fissure. Black (1915) suggests that the term 

ectosylvian sulcus is misleading because this  

 

Table 1: Main sulci/fissures of the pig brain (dorsal, lateral and medial surface);  
Name: names and abbreviation used in this study; NAV: nomina natomica veterinaria  
Blue: constant sulci in ungulates (Lauer, Krueg); Green: cruciate /connecting sulcus. 
Note: Some of the sulci are divided into cranial-, caudal- and medial parts or have small secondary sulci 
branching off. The term “fissure” is often used instead of sulcus. The term “fissure” is used by some 
authors to indicate a deep incision and the term sulcus for a more superficial groove (Nickel et al.1992). 
Kreiner (1986) introduced the term “perfissure” for fissures that cover gyri and sulci beneath. 

 
Name NAV Synonym Position 

ansate sulcus (Ans) 
 
 

sulcus ansatus 
 
 
 
 

transverse s., s. transversus 
(Lauer 1963, Koch 1965, 
Schellenberg 1900) 

s.verticalis (Anthony and De 
Grzybowsky1931), f.cruciata 
minor (Franck 1894) 

from medial to lateral 

rostral to Spl*/Cru, short and 
deep extending laterally from 
Flc, intersected by Cor (Lauer 
1963), charachteristic for 
ungulates (Nickel et al.1992) 

coronal sulcus (Cor) 
 
 
 

sulcus coronalis 
 
 
 

s. corona-ansata “since the s. 
coronalis can be an 
extension of the s. ansatus” 
(Kappers 1921) 

dorsorostral  

rostral continuation of s. 
ansatus (Nickel et al. 1992);  

cruciate sulcus (Cru) 
 
 
 

sulcus cruciatus 
(centralis) 
 
 
 

sulcus centralis (primates),  
 

 

connection between Spl and 
Sss (Sisson 1953, Franck 
1894, Rawiel 1939 , Kruska 
1970, Flatau and Jakobson 
1899) 
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connecting sulcus/ 
"Verbindungsast" 
(Spl*) 

  

 
connecting sulcus , cruciate 
sulcus, “often described as s. 
cruciatus” (Martin 1904) 

connection between Spl and 
Sss (Nickel et al. 1992, 
Ellenberger and Baum 1943, 
Kappers1921, Martin 1904, 
Schellenberg 1900) 

diagonal sulcus 
(Dis) 
 
 

sulcus diagonalis 
 
 

cranial aspect of Ecs (Krueg 
1878) 

lateral, located between s. 
coronalis and s. presylvius 
(Lauer 1963) 

ectogenual sulcus 
(Ecg) 

sulcus 
ectogenualis 

sulcus rostralis (Lauer 1963, 
Kappers 1921) 

medial, rostral to s. genualis 

ectosylvian sulcus 
(Ecs) 
 
 

sulcus ectosylvius 
 
 
  

s. arcuatus (Black 1915),  
s. postica (Krueg 1878),  
s. obliqua (Holl 1900)  
 

lateral 
cranial /pars anterior (not 
always present) and 
caudal/posterior part frame the 
sylvian sulcus 

ectomarginal sulcus 
(Ems) 

sulcus 
ectomarginalis  
(ectosagittalis) 

 s.ectolateralis (Schellenberg 
1900, Koch 1965) 
s. collateralis (Martin 1904) 

lateroventral of marginal sulcus  

endomarginal sulcus 
(Enm) 

sulcus 
endomarginalis 
(endosagittalis) 

s.entolateralis (Rawiel 1939, 
Flatau 1899), confinis 
(Franck 1894, Flatau 1899) 

mediodorsal of marginal sulcus  

longitudinal cerebral 
fissure (Flc) 
 

fissura 
longitudinalis 
cerebri 

interhemispheric fissure 
(Watanabe et al. 2001) 
 

dorsal, separating the two  
hemispheres 

endogenual sulcus 
(Eng) 

sulcus 
endogenualis 

s. entogenualis (Schellenberg 
1900) 
 

medial 

genual sulcus (Gen) 
 
 

sulcus genualis 
 
 

  mediorostral  
follows the genu of the corpus  
callosum 

marginal sulcus 
(Mar) 

sulcus marginalis  
(sagittalis) 

 s.lateralis (Lauer 1963), s. 
Medilateralis (Franck 1894) 

dorsocaudal 
 

presylvian sulcus 
(Prs) 

sulcus praesylvius sulcus presylvius frontal 

lateral rhinal fissure 
(sulcus) (Rfi) 

sulcus rhinalis 
lateralis 

  lateral 

sulcus of the corpus 
callosum (Scl) 

sulcus corporis 
callosi 

callosal sulcus 
 

medial, separating the corpus 
callosum from cortex 

splenial sulcus (Spl) sulcus splenialis  s.callosomarginalis= splenial 
+ genual fissure (Sisson 
1953, Schellenberg 1900), 
cranial part= s. cinguli (Nickel 
et al. 1992) 

medial  
 

suprasylvian sulcus 
(Sss) 

sulcus 
suprasylvius 

  lateral, most extensive sulcus  
of the lateral surface, parallels  
the dorsomedial border of  
hemisphere (Lauer 1963) 

sylvian fissure 
(sulcus) (Syl) 

fissura sylvia 
(lateralis cerebri) 
 

fissura lateralis cerebri 
(Ellenberger and Baum 
1943), fissura sylvii (Nickel et 
al. 1992) 

lateral 
in dorsocaudal direction from 
rhinal fissure  

transverse cerebral 
fissure  
 

fissura transversa 
cerebri 
 

fissura cerebrocerebellaris 
 
 

dorsal, separating the  
cerebrum from the cerebellum 
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sulcus is not homolog to the ectosylvian sulcus of carnivores and therefore names it 

“sulcus arcuatus” (Table 1). Cranial to the sylvian fissure the rostral ectosylvian 

sulcus (pars anterior) can be found. This sulcus is not always present in the porcine 

brain, but if visible, connects with the diagonal sulcus (Dia: Fig. 15-17, Fig. 21-24, 

Fig. 57-58), which points dorsal and rostral ending just ventrally to the coronal sulcus 

(Nickel et al. 1992). A connection between the diagonal sulcus and a rostral part of 

the ectosylvian sulcus could not be visualised in this study. Nickel et al. 1992 

describe the diagonal sulcus as a characteristic feature in the brain of ungulates 

crossing the rostral part of the lateral surface pointing in caudoventral direction.  

The suprasylvian sulcus (Sss: Fig. 14-18, Fig. 19-26, Fig. 31-46, Fig. 57-60) is 

constantly described in literature and is constant in all featured ungulates. The 

suprasylvian sulcus is positioned dorsally to the sylvian sulcus and the ectosylvian 

sulcus. It runs parallel to the mediodorsal border of the hemisphere. The rostral part 

is the most developed (rostral suprasylvian sulcus) and where the rostral ectosylvian 

sulcus can’t be found, it may connect with the diagonal sulcus. A dorsal branch of the 

rostral suprasylvian sulcus (ramus dorsalis) can be regularly identified but is not 

always present (Nickel et al.1992). This study shows a possible connection between 

the suprasylvian sulcus and the diagonal sulcus in sagittal images (Fig. 19-22). 

Further caudal the marginal sulcus (Mar: Fig. 18, Fig. 21-27, Fig. 34-51, Fig. 57-60) 

can be found, accompanied medially by the endomarginal sulcus and laterally by the 

ectomarginal sulcus. This sulcus is also very constant and a feature of all scanned 

specimens. It shows very little variation in shape and length.  

The ectomarginal sulcus (Ecm: Fig. 15-18, Fig. 19-21, Fig. 32-40, Fig. 57-60) is 

positioned dorsocaudally to the suprasylvian sulcus and ventrolaterally to the 

marginal sulcus. The endomarginal sulcus (Enm: Fig. 18, Fig. 24-25, Fig. 42-51, Fig. 

57-60) is positioned mediodorsal to the marginal sulcus. Both sulci can be constantly 

identified in the scanned pig brains. The positions of the endomarginal and 

ectomarginal sulci are also not controversially discussed. Still the terminology varies 

strongly (Table 1). The coronal sulcus (Cor: Fig. 12-18, Fig. 23-26, Fig. 32-33, Fig. 

57-58) emerges cranially and connects caudomedially with the ansate sulcus. The 

cortical area rostral of the coronal sulcus is small in ungulates (1/10 of the total brain 

surface) indicating a small frontal area (Kappers 1921).  

On the medial surface of the hemispheres the following fissures/sulci are constant 

(Krueg 1878): the splenial sulcus, the genual sulcus and the ectogenual sulcus. 
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Lauer (1982) adds the callosal sulcus of the medial brain surface to the list of 

constant sulci. These sulci could be also identified using the 1 Tesla MRI and seem 

to be constant in our specimen. We also propose that the splenial sulcus, the genual 

sulcus, the endogenual sulcus and the sulcus of the corpus callosum are constant on 

the medial brain surface of the pig.  

The sulcus of the corpus callosum (Scl: Fig. 30) surrounds the corpus callosum 

rostrally, dorsally and ventrally separating the corpus callosum from the overlying 

cortex. It is framed by the dorsal cingulate gyrus. The splenial sulcus (Spl: Fig. 17-18, 

Fig. 23-30, Fig. 31-48, Fig. 57-60) is described by Sisson (1953). For him the splenial 

sulcus is part of the callosomarginal fissure that is divided into a posterior (caudal) 

part named splenial fissure, extending from the tentorial aspect of the hemisphere in 

a direction parallel with the corpus callosum and the rostral part, called genual fissure 

that lies in the middle between the rostral aspect of the corpus callosum and the 

dorsomedial border. Nickel et al. 1992 don’t use the name “callosomarginal fissure”, 

but discuss the splenial sulcus and the genual sulcus as separate structures. The 

caudal splenial sulcus extends around the splenium of the corpus callosum and has 

a cranial extension over the truncus called cingulate sulcus. The genual sulcus is 

positioned rostrally and extends around the genu of the corpus callosum.  

While Lauer claims that the “sulcus transversus” (in position of the ansatus; Ans: Fig. 

76) is variable, Nickel et al. 1992 state that the “sulcus ansatus” (transversus) is 

characteristic for the ungulate brain. It can be connected to the coronal sulcus. It 

extends from the dorsomedial to the dorsolateral surface of the cerebrum. The MRI 

scans in this study do not extend rostrally and dorsally enough to capture this feature 

in the images of the atlas part.  

The most inconsistently named sulcus seems to be the cruciate sulcus 

(Verbindungsast/Cruciate sulcus; Spl*: Fig. 25-30, Fig. 32-37, Fig. 59) of the porcine 

(Fig. 76) and indeed the ungulate cortex. Lauer 1982 describes the telencephalon of 

different ungulate species and proposes that the cruciate sulcus should be described 

as a characteristic structure of the carnivore brain and that it could be a mistake to try 

to identify a homologous sulcus in ungulates. Kappers came to the same conclusion 

in 1921 when he stated: “The frontal sulci of the carnivores are similar to the frontal 

sulci of the ungulates except the cruciate sulcus. A sure homolog of the cruciate 

sulcus cannot be found in ungulates” and “some call the dorsomedial incision of the 

splenial (sulcus) cruciate in ungulates. This is because the cruciate of carnivores 

such as dogs and cats can have anastomoses with the splenial (sulcus).” A sulcus in 
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a different position is named “cruciate sulcus” by Nickel et al. 1992. It is supposedly a 

small structure on the medial surface of the porcine brain - but is pictured in different 

positions within the same atlas. The sulcus seems to be connected to the splenial 

sulcus in the first drawing and to the endogenual sulcus in the second. Another group 

of authors (Franck 1894, Breazile et al. 1966, Brauer and Schober 1970, Palmieri et 

al. 1987, Craner and Ray 1991 a, Craner and Ray 1991 b, Jelsing et al. 2006, Lind et 

al 2007) place “their” cruciate sulcus in -what seems to be- the position of the ansate 

and coronal sulci of other authors. In the MRI images of this atlas, the connection 

between the splenial sulcus and the suprasylvian sulcus is marked as connecting 

sulcus (Spl*). It is not the purpose of this study to decide on a correct or incorrect 

position or definition of the “cruciate sulcus”, but Fig. 76 highlights the need to 

produce a standard nomenclature of the porcine brain. 

 

Figure 76 
The cruciate sulcus: A: dorsal; B: midsagittal; C: lateral view of the porcine brain. The red areas mark the 
different positions of the “cruciate sulcus” in the reviewed literature. ©Verena Schmidt.  
Ans: ansate sulcus; cb: cerebellum; cc: corpus callosum; Cor: coronal sulcus; Dia: diagonal sulcus; Ecs: 
ectosylvian sulcus; Ems: ectomarginal sulcus; Eng: endogenual sulcus; Enm: endomarginal sulcus; Gen: 
genual sulcus; Mar: marginal sulcus; ob: olfactory bulb; opn: optic nerve; pg: pituary gland; Rfi: rhinal 
fissure; Spl: splenial sulcus; Spl*: connecting sulcus; Sss: suprasylvian sulcus; Syl: sylvian fissure. 
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6.3  Homology of sulci 

 

The problem of homologies of sulci (and gyri) of the cerebral cortex has been 

investigated and discussed throughout the 19th century and the beginning of the 20th 

century (Gegenbauer 1909, Haller v. Hallerstein 1934) without coming to a 

conclusion. Gegenbauer (1909) believed the homologization of these formations to 

be impossible and Haller v. Hallerstein (1934) did not believe in the theoretical 

possibility of homologization of gyri and sulci “since these formations are not organs” 

(Kreiner 1968). Kreiner (1968) seemed to be of the opinion that it was incorrect to 

rely on macroscopic morphological observations without investigating the actual 

architectonics of the cortex. Breazile et al. 1966 suggest that names of gyri and sulci 

must be reconsidered, if similarities of cortical areas are to be found between the 

different species. Lind et al. 2007 also recommend further analysis of the system of 

gyri and sulci, because conclusions and homology assessments of sulci and gyri are 

variable in scientific studies (“Coronal and cruciate sulci may or may not fusionate or 

they may be completely separated and the anterior and posterior suprasylvii sulcus 

may also fusionate”). Lakshminarasimhan (1975), investigating the isocortex of the 

ox (Bos taurus), realized the need to study the sulci and fissures closely in view of 

conflicting terminology. In his opinion the criteria for homologizing the sulci of 

different domesticated animals are often not clearly mentioned. He suggests the 

study of afferent connections of the sulci, gyri and cortical areas to establish 

homology. This discussion demonstrates that the term homology is not easily defined 

and more than just one concept of homology exists (Rehkämper and Zilles 1991, 

Maudgil et al. 1998, Butler and Hodos 2005). Three current concepts of homology, a 

phylogenetic, a morphological and a developmental concept compete with each 

other. The first concept is based on synapomorphy- the inheritance of shared derived 

features. Synapomorphy has to be established by finding similar structure-function 

correlations in related species (Maudgil et al. 1998). Care has to be taken to 

establish homology in this way because there seems to be evidence of parallel 

evolution of cortical structures in mammalian and avian brains (Rehkämper and Zilles 

1991) and the parallel emergence of the cruciate sulcus in dogs and cats (Radinsky 

1969). The second concept determines homology through structural similarities such 

as shape, appearance and position. This can only be established for constant 

features, which can be reliably identified. The third concept is based on the modus of 
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structural development, for example developmental origin and cell lineage (Maudgil 

et al. 1998). In this study MRI is used for morphological research and follows the 

second concept comparing the form and location of constant features of the porcine 

brain.  
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6.4 Variability of the cortical pattern  

 

 

The system of sulci of the pallium is characterized by individual and breed variability 

(Nickel et al. 1992). A variety of pig breeds exists, although the percentage of pure 

bread pigs is getting smaller (Fig: 77). Pigs slaughtered for human consumption are 

mostly hybrid pigs. Breeders are selecting for performance like meat quality or litter 

sizes. The conservation of breeds is often neglected (Sambraus 1996).  

Variability of sulci has been noted in a variety of other species such as cats 

(Kawamura 1971) and recently by Pakozdy (2014), dogs (Stark 1954, Oboussier 

1949, Oboussier 1950, Oboussier 1955, Lim 1960) and African bovidae (Oboussier 

1967, Oboussier 1971).  

The variations of cerebral sulci of the cat were investigated by Kawamura (1971) to 

develop a standard map based upon objective data, because the external 

appearance of the cat brain had been drawn in multiple ways by a large number of 

authors (Winkler and Potter 1914, Rose and Woolsey 1948, Crouch 1969, Kawamura 

and Otani 1970). A division of the cat’s sulci into 4 categories is proposed: 1. the 

most variable, 2. the variable, 3. the stable and 4. the most stable. In his opinion the 

categorization is necessary to acquire objective data. He also examined as many 

individuals as possible. 89 feline brains were compared for the study (Kawamura 

1971). The left and right hemispheres of the cat brain can also have slight differences 

in the appearance of sulci (Nickel et al. 1992). Starck (1954) compared the sulci of 

different canine breeds (Maltese, Pug, Pekinese, Japan Chin, Whippets, Barsoi, 

Greyhound, Cocker Spaniel and Dachshund). He noticed differences between large, 

small, brachycephalic and dolichocephalic breeds. The differences include the 

positions of sulci (ansate and cruciate sulcus) and shape of the brain. Oboussier 

(Oboussier 1949, Oboussier 1950, Oboussier 1955) examined the sulci of the brains 

of Whippets and Bulldogs and their first generations offspring (F1). The brains of the 

animals of the F1 did display characteristic sulci pattern of the mother (Bulldog) and 

father (Whippet), but neither of them were the same, nor could the pattern be 

predicted. Also Lim et al. 1960, while developing a stereotactic atlas of the dog’s 

brain, found: “the endless variations in size and shape of the dog’s head make them 

unsuitable for research involving accurate cranio-encephalic topography.” The study 

only focuses on light weight (10+/- 2kg), short haired dogs without unduly short or 
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long noses.  

A disadvantage of this study is the relatively small number of individual pigs scanned. 

A larger number of MRI scans of different specimen could have presented a 

variability of sulci as well as more differences in the size and shape of the porcine 

brains. As mentioned above (Table 1) some sulci of the pig brain might fuse (like the 

coronal and ansate sulcus) or are not constant like the cranial ectosylvian sulcus. We 

can therefore assume some variability in the sulci of the porcine brain. Rawiel (1939) 

documented the variability of the appearance of the brain of several domestic pig 

breeds including Berkshire, Magalitza and German landrace pigs. He states that, 

although certain structural differences exist between breeds, certain breed 

characteristics can be occasionally identified in a different porcine breed. In Rawiels 

opinion age and sex don’t seem to have any significant influence on the appearance 

of sulci of the porcine brain. The main sulci seem to be constant. 

A major influence on the shape of the brain seems to be the skull shape -the shorter 

the base of the skull, the stockier the brain. Therefore mild differences in topography 

of the sulci exist. The difference of brain shapes are more extensively studied in dog 

breeds (Stark 1954, Oboussier 1949, Oboussier 1950, Oboussier 1955, Nickel et al. 

1992). The dolichocephalic dog breeds are characterised by their elongated brain 

(sagittal MR images). The olfactory bulbs of the rhinencephalon of dolichocephalic 

breeds are the most rostrally positioned part of the brain. While the brachycephalic 

canine brain is round and the olfactory bulbs are shifted caudally under the frontal 

pole of the hemispheres (Fig. 78). As a result the frontal pole of the brain appears 

almost round and the olfactory bulbs are moved caudally under the frontal pole of the 

brain stem seems shortened (Nickel et al. 1992). This is also be the case in porcine 

breeds and could be visualized in the MRI scans (Fig. 63-64). 
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Figure 77 
Fig.: A variety of pig breeds exists, although the percentage of pure bread pigs is getting smaller. A: 
Chinese Maishan pig; B: Wild boar; C: Turopolje Pig; D: Landrace pig (above), Potbelly pig (below); E: 
Magalica pig; F: Angeln Saddleback. ©Verena Schmidt 

 

 

Figure 78 

A: Dolichocephalic; B: Brachycephalic (pug) canine breed in midsagittal MRI scan. Note the round shape 

of the brachycephalic dog compared to the elongated shape of the dolichocephalic specimen. The 

olfactory bulbs of the pug are moved caudally under the hemispheres of the brain (A+B courtesy PD Dr. 

med. vet. (habil.) M. Schmidt). 



Comparative anatomy of the pig brain 

 

130 

 

6.5 Influence of skull morphology on the morphology and 

expansion pattern of the cortex 

 

The brain of ungulates in general expands laterally and is short, similar to the brain of 

adult cetaceans. Ungulate brains seem to be shortened compared with the brains of 

most other mammals. Neuroanatomists use the term telescoping. This can be 

appreciated by a higher inclination angle of the corpus callosum when compared with 

the inclination angle of the corpus callosum of carnivores (Oelschläger and Kemp 

1998, Oelschläger et al. 2010). In the pig the base of the skull does not seem to run 

parallel to the dorsal surface of the cerebrum. This could be the result of telescoping. 

During telescoping the brain is shortened along its central axis and the dorsal surface 

experiences a rostral shift. The hemispheres are drifting apart simultaneously. 

Telescoping is seen as a mechanism to allow the brain to grow bigger in spite of the 

restrictions of the skull (Oelschläger et al. 2010). The brain of the pig remains 

relatively small and is not as gyrencephalic as the brains of other species associated 

with telescoping (in comparison with brains of other ungulates and cetaceans). 

 

Figure 79 

Skeleton of the domestic pig (left). Note the orientation of the head and the rostral tilt of the squama 
occipitalis compared to the vertical orientation of the squama in the dog. © Verena Schmidt. 
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Figure 80 

A: tentorium cerebelli osseum of the horse; B: eminentia cruciformis of the pig; C: foramen magnum of 
the pig; D: strong squama occipitalis of the dog (Cavalier King Charles Spaniel) E: view of the cavum 
cranii of the pig with top of skull removed (A-E  courtesy of PD Dr. med. vet. (habil.) Martin Schmidt). 

 

The porcine brain is elongated in dolichocephalic breeds. We can see in the dorsal 

scans (atlas) that the hemispheres of the pig brain are positioned in close proximity 

to each other. Therefore the porcine brain might not experience an increase in size 

through telescoping. The posture of the pig might give a different explanation for the 

orientation of the brain stem (Fig. 79). The snout of the pig is pointed rostrally (as 

adaption to the pigs feeding behaviour). This in turn results in a rostral tilt of the 

squama occipitalis. Examining the caudal base of the skull, a ventral tilt of the 

foramen magnum is also visible (Fig. 80). Therefore the medulla oblongata leaves 

the skull in ventral direction.  
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6.6   MR-Imaging techniques and their comparability 

 

 

In veterinary medicine it is common procedure to scan the transverse images at a 

ninety degree angle to the base of the skull. As a consequence scans of transverse 

sections of the brain and medulla of the pig are most likely to capture the structures 

of the brain at a slightly different angle as achieved through other techniques. This in 

turn influences the appearance -for example length and width- of individual 

structures, for example nuclei, sulci and gyri. Alternatively internal landmarks such as 

the rostral and caudal commissures are commonly chosen in MRI to determine the 

horizontal plane (Andersen et al. 2005). The transverse scans are then taken at a 90º 

angle as shown in Fig. 81. This is known as the Talairach system (Talairach and 

Tournoux 1988). In order to compare the shape of nuclei for example it is important 

to compare scans that were taken in the same plane at a comparable angle. It is 

important to highlight the fact that standardized scanning regimes in relation to 

orientation of the scans do not exist in veterinary medicine. In human medicine such 

regimes are already in place and it would be desirable for veterinarians to establish a 

uniform system to facilitate easier interpretation of scans. To create reproducible 

conditions for surgery and biomedical research, stereotactic atlases, such as the 

stereotactic atlas of the porcine brain (Felix et al. 1999), are of great importance. In 

this study of the porcine brain, it was challenging to compare histological slices with 

MRI scans, because of the different orientation of the scans and slices. The shape of 

structures, as well as the difference in structures captured in one image/slice can 

differ significantly. Therefore we found the use of stereotactic (Felix et al. 1999) or 

histological atlases (Yoshikawa 1968) not always practical to help identify structures 

in MRI. 
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Figure 81  

A and B demonstrating the difference in the shape of the objects in slices at different angles. C: Talairach 

and Tournoux 1988 D: Scanning orientation used in this atlas (transversal scans in 90 degree angle to the 

base of the scull). © Verena Schmidt. 

 

Nowadays MRI is available to scientists as well as veterinary practitioners, especially 

to those who are interested in neurological research. Since MRI is more widely 

accessible and may become less expensive in use, it is most likely that MRI is going 

to be utilized more frequently for diagnostics in large animals such as horses and 

other large animal species. Veterinarians and scientists have already started to use 

MRI as a diagnostic tool for the examination of large animals like sheep and cattle 

(Karger et al. 1998, Tzuka and Taura 1999, Yamada et al. 2005, Schenk 2007). 

These animals are not only of economical importance to their owners but more and 

more often kept as pets. With the MRI data set one can create sections in any 

desired plane. Being able to see the brain from every angle is of great benefit 

examining the three-dimensional organisation of the brain (Van der Linden 1998). For 

this study high quality MRI pictures were taken with a 1.0 T (Tesla) MRI scanner 

(Phillips) while the pig brain remained in situ. In order to map the brain the PD 

weighted MRI scans were compared with photographs, histological preparations and 

drawings of available brain atlases and studies of the pig/ungulate brain (Krueg 1878, 
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Flatau and Jakobsohn 1899, Schellenberg 1900, Rawiel 1939, Breazile 1967, 

Breazile 1968, Yoshikawa 1968, Kruska 1970, Lauer 1970, Makita and Tominaga 

1987, Palmieri et al. 1987, Brauer and Schober 1970, Félix 1999, Watanabe et al. 

2001, Jelsing et al. 2006, Lind et al. 2007, ) and anatomical textbooks (Franck and 

Martin 1894, Martin 1904, Ellenberger and Baum 1942, Sisson 1953, Koch 1965, 

Nickel et al. 1975, Craner and Ray 1991 a, Craner and Ray 1991, Romer and Parson 

1991, Dyce et al. 2002) to aid the identification of structures. The aim was to capture 

and identify as many details as possible of the porcine brain in all three planes 

(transverse, dorsal and sagittal). In this study, contrast and spatial resolution were 

improved and the identification of a large number of delicate brain structures in the 

MR images of the formalin fixated and native pig brain post mortem was possible by 

using multiple signal averaging acquisitions. However the field strength of 1.0 T has 

limitations concerning the image quality. It can be difficult to identify a number of 

small anatomical details in MRI for example the nuclei of the mesencephalon or the 

hypothalamus. Higher field strengths are recommended to reveal small anatomical 

detail (Benveniste and Blackband 2002, Schmidt et al. 2006). The more powerful the 

magnetic field, the more hydrogen ions inside the brain are exited and produce an 

intense MR-signal leading to a maximized contrast- and signal-to-noise-ratio 

(Schmidt 2006). With these field strengths even the central nervous system of 

embryos can be visualized (spatial resolution ~ 50μm, Schmidt et al. 2009). In these 

high field scanners however, the size of the coils is a limiting factor, as they are only 

a few centimetres in diameter (Schmidt et al. 2006, Schmidt et al. 2009). Large 

brains or whole heads must therefore be scanned with conventional head or surface 

coils. As a consequence the use of high resolution scanners cannot be applied to 

brains of mature pigs with an average brain volume of 162cm³ (Hofman 1985) and 

size about 6cm long x5cm wide x 5cm deep (Hashimoto et al. 1996). The large 

skull/splanchnocranium of the pig in relation to the actual size of the porcine brain is 

also a disadvantage when trying to achieve optimal MRI image quality. This is due to 

the low filling factor that is compromised by the distance between the object (in our 

case the brain) and the head coil. The longer the distance/the more space between 

brain and coil the more compromised is the signal to noise ratio. This is frequently a 

challenge when performing in vivo MRI scans. The pig’s skull harbours a large frontal 

sinus extending from the frontal bone caudally reaching the occipital bone (Nickel et 

al. 1992) while the human brain for example is positioned directly under the skull 

(Fig. 82). The frontal sinus of our scanned babirousa female (Fig.83) is even more 
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impressive and visible as a large air filled cavity that extends far caudally and 

reaches dorsally over the telencephalon and even the cerebellum (Fig. 83 B). The 

large frontal sinus is common in animals with an acute olfactory sense. The empty 

compartments are believed to supply moisture (Negus 1954). Although there are a 

number of morphological atlases and textbooks available (Frank and Martin 1894, 

Flatau and Jakobsohn 1899, Martin 1904, Kappers 1921, Ellenberger and Baum 

1943, Sisson 1953, Koch 1965, Yoshikawa 1968, Brauer and Schober 1970, Makita 

and Tominaga 1987, Romer and Parsons 1991, Nickel et al. 1992, Félix et al. 1999, 

Dyce et al. 2002), so far no textbook atlas exists that can provide information about 

morphology of the healthy brain of the domestic pig post-mortem, as revealed by 

high resolution MR imaging. The scanning of fixed brains seems to allow an even 

better duration of image acquisition (van der Linden et al. 1998). 

 
Figure 82 
We can compare the human brain (left) and porcine brain (right) in MRI. Note the difference in distance 
between the brain and the surface of the scull in the human brain compared with the porcine brain. The 
longer the distance between the head coil and the brain the less optimal the picture quality (picture of 
human brain courtesy of PD Dr. med.vet. (habil.) M. Schmidt). 
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Figure 83 

Babirousa (A+B) and Pig (C+D) brain in situ. Transverse (at level of pineal gland) and midsagittal MRI 
scan. Note the size of the sinus surrounding the brain of the babirousa female. Note also in B: 
Cerebrospinal fluid (CSF) between telencephalon and cerebellum instead of an osseous tentorium 
cerebelli seen as hyperintense area (A-D courtesy of PD Dr. med.vet. (habil.) M. Schmidt). 

 

 

6.6.1 Comparability of MRI scans and histological sections 

 

This study emphasises that it is vital not to interpret MR images in the same way as 

histological sections, displayed for example by light microscopy. In MRI scans, the 

shape of a cell group can’t be determined by staining features. The shape of the cell 

group is influenced by differences in water content (concentration of protons) of the 

tissue and relaxation. Images taken by light microscopy show the characteristic 

colours of staining methods. Staining methods were developed to improve contrast 

and details in cells and tissue. They are missing in MR images due to the nature of 

this technique. Cells with a high contrast due to their staining features in histology 
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can have similar relaxation times in MR microscopy. A detailed knowledge of the 

actual morphological details of the subject, in our case the porcine brain, is therefore 

necessary for the interpretation of corresponding MR images. The MR images are 

not meant to replace light microscopic images, but aim to complement existing 

information on brain structures in the third dimension (see also Schmidt et al. 2009). 

It is complicated and in a number of cases not possible to identify nuclei or small 

structures in MRI (for example nuclei of the metencephalon or hypothalamus). The 

interpretation of the MRI images challenges the eye of the interpreter in different 

ways. The structures and substructures can be so small that more than one signal is 

combined in one voxel. This makes it difficult to match a single voxel to a single 

structure. The identification of structures through a signal is often difficult since two 

different objects in close proximity although separate might not cause a signal 

difference. This problem can also be experienced when using a microscope where it 

is often hard to distinguish separate nuclei because they are stained by the same 

method. This study of the porcine brain describes only structures that can be clearly 

be identified in the MRI scans.  
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6.6.2  Orientation 

 

It is important point out the difference in veterinary and human medical terminology 

when discussing the orientation of brain scans in MRI. The upright posture of 

humans and the resulting field of view define an anterior and posterior aspect. In 

veterinary medicine, due to the horizontal position of an animal’s spine, the terms 

cranial (towards the head) rostral (towards the snout) and caudal (towards the tail) 

are used. Planes parallel to the base of the skull are furthermore defined as dorsal 

scans (towards the back) as opposed to coronal (Fig.84). In horses, ruminants, dogs 

and cats the brain stem (truncus encephali) remains in a more horizontal position. 

The human brain in contrast is bent approximately 90° between diencephalon and 

mesencephalon, due to the massive cerebrum and the upright posture of men (Nickel 

et al. 1992, Butler and Hodos 2005). This can also be seen in Fig. 84 B. 

 

 

 

Figure 84 

Orientation of the scans in MRI; A: Porcine brain; B: Human brain (picture courtesy of PD Dr. med. vet. 

(habil.) M. Schmidt). Transversal scan: rostro-caudal orientation. Sagittal scan: latero-lateral orientation. 

Dorsal scan: dorso-ventral orientation. © Verena Schmidt. 
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7 Summary 

 

 

For this study the healthy brains of the domestic pigs are examined post mortem. 

MRI (magnetic resonance imaging) scans in transverse, sagittal and dorsal 

orientation (native and formalin fixed) are produced with a 1.0 Tesla scanner.  

12 sagittal, 13 dorsal and 22 transverse scans are selected and labelled to produce a 

MRI picture atlas of the porcine brain. With the aid of the graphical software 

programs AMIRA® and AVIZO® (Mercury Computer Systems Inc.) it was possible to 

identify brain structures (like nuclei) and to locate and describe the sulci of the 

porcine brain in MRI. These graphical software programs make it possible to 

construct a three dimensional model of the porcine brain and to facilitate 

simultaneous identification of morphological features in dorsal, transverse and 

sagittal scans.  

In addition to the atlas, MRI scans of a wild boar, a Wiesenauer minipig and a 

babirusa are produced and compared with the scans of the domestic pig.  

An important result of this study is a summary and discussion of the nomenclature of 

the sulci of the porcine cortex. It is now easier to match functional areas of the cortex 

with the corresponding structure in the MRI scan, because a standardized 

nomenclature for the sulci of the porcine brain does not exist so far. 

This study also describes special features of the porcine brain. The porcine brain has 

less gyri than the brains of a variety of other ungulates. The position of the pig’s 

forebrain in relation to the brain stem, the strongly developed pars olfactoria of the 

rhinencephalon in relation to the limbic system and the topography of the pituitary 

gland in relation to the diencephalon, are also different from the other featured 

species. It is furthermore possible to identify a physiological aplasia of the cerebellar 

cortex of the tuber region in the MRI scans of the porcine brain. 

In the featured members of the suidae (pigs and babirusa) the system of gyri and 

sulci shows little variation. Most sulci and their position are constant. The shape of 

the brain differs between the brachycephalic breeds (such as the Wiesenauer 

minipig) and the dolichocephalic hybrid pigs (bread for meat production). The brain of 

the Wiesenauer minipig is shorter and rounder compared with the brains of the 

scanned hybrid pigs. However, the surface structures of brachycephalic and 
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dolichocephalic pig brains show only little difference. 
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8 Zusammenfassung 

 

 

Für die vorliegenden Studie wird das gesunde Gehirn des Hausschweines (sus 

scrofa domesticus) post mortem untersucht. Es werden mithilfe eines 1.0 Tesla 

Scanners MRT (Magnetresonanztomographie) Aufnahmen von Schweinegehirnen in 

transversaler, sagittaler und dorsaler Ausrichtung erstellt (nativ und formalin fixiert). 

Für den MRT- Atlas des Schweinegehirnes werden 12 sagittale, 13 dorsale und 22 

transversale Bilder ausgewählt. Zur Lokalisation von Gehirnstrukturen, wie z.B. der 

Kerngebiete oder der Beschreibung des Furchenbildes, werden die Grafikprogramme 

AMIRA® und AVIZO® (Mercury Computer Systems Inc.) verwendet. Sie ermöglichen 

eine dreidimensionale Darstellung des Schweinegehirns und die gleichzeitige 

Identifikation von Gehirnstrukturen in dorsaler, transversaler und sagittaler 

Schnittebene. Identifizierte Gehirnstrukturen werden in den ausgewählten Scans 

beschriftet. Es werden ebenfalls Scans von einem Wildschwein, einem Wiesenauer 

minipig und einem Babirusa angefertigt und mit den Bildern des Hausschweines 

verglichen. 

Ein wichtiges Ergebnis der vorliegenden Arbeit besteht in der Auflistung, der 

Benennung und Diskussion der Sulci der kortikalen Oberfläche. Sie vereinfacht in 

Zukunft die Zuordnung funktioneller Abschnitte der Großhirnrinde zur Morphologie im 

MRT- Schnittbild. Eine standartisierte Nomenklatur existiert bisher nicht. 

Das Schweinegehirn ist im Vergleich zu Gehirnen vieler anderer Ungulaten weniger 

stark gyrifiziert. Weitere Besonderheiten des porcinen Gehirnes sind die 

Lagebeziehung des Vorderhirnes zum Hirnstamm, die ausgeprägt entwickelte pars 

olfactoria des Rhinencephalon in Relation zu seiner pars limbica und die 

topographische Beziehung der Hypophyse zum Diencephalon. Desweiteren kann bei 

den Masthybriden eine Aplasie der Kleinhirnrinde in der Region des tuber vermis 

mittels MRI dargestellt werden. 

Innerhalb der Suidae (Schweine und Babirusa) weist das System der Gyri und Sulci 

nur geringe Variationen auf. Die meisten Sulci und deren Lage sind konstant. 

Unterschiede zwischen den Gehirnen von kurznasigen (Wiesenschwein) und 

langnasigen (Mehrzahl der Masthybriden) Schweinerassen bestehen in der 

Stauchung und Abrundung des Gehirnes. Die Oberflächenstruktur der 
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Grosshirnrinde weist jedoch kaum Unterschiede zwischen den Rassen auf. 
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