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1. Introduction 

With 2.2 – 3.6 % annual failure rate [1], composite restorations durability is regarded as an 

important clinical issue [2]. In order to deliver successful adhesive restorations, the 

following conditions should ideally be met; a high quality hybrid layer should be formed 

between dentine and the restorative material, and hybrid layer should be long-term 

maintained  [3–6]. Hydrolytic degradation and enzymatic activity in dentine are the main 

reasons for adhesive failure of composites [7,8]. As if water content in dentine and 

endogenous enzymes were not enough of a challenge for the restorations, bacteria from the 

oral cavity, can further threaten the restoration’s viability, through secondary caries [9–11]. 

Since, extrinsic bacterial damage or intrinsic enzymatic degradation are localized at 

restoration margins, this thin adhesive interface is considered the Achille’s ptern of 

adhesive restorations. Both phenomena are connected to each other forming a vicious circle 

– the greater the extent of marginal failure due to enzymatic collagenolysis, the larger the 

space created for water to flow in and as next for bacteria to gather. The ultimate goal 

would be the production of a dental material with antibacterial and at the same time 

anticollagenolytic characteristics which would inhibit both bacterial and enzymatic 

degradation.  

Chlorhexidine is a known antiseptic which acts against S. mutans and is therefore widely 

used in oral hygiene products and in preventive dentistry [12–14]. The importance of 

chlorhexidine in restorative dentistry and its benefit in adhesive restorations has however 

recently been discussed [15–17]. Although dentine collagenolytic enzymes – matrix 

metalloproteinases and cysteine cathepsis – are responsible for the destruction of collagen 

matrix in the hybrid layer, chlorhexidine is shown to act against them and protect the 

collagen network of the hybrid layer [15–19]. Chlorhexidine can be delivered as dentine 

pre-treatment or admixed with the adhesives; however issues are raised regarding its 

potential interference with the mechanical properties and the bonding efficiency of the 

adhesives used as carriers [20,21].  

Only one adhesive system with industrially incorporated 0.2% chlorhexidine is 

commercially available [22,23] and a direct comparison between the different ways of 
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chlorhexidine addition into the different steps of the adhesive procedure (primer or bonding 

agent) has never been made in a single study nor has it been directly compared with the use 

of chlorhexidine as a cavity pre-treatment agent, under the same circumstances. Whether 

chlorhexidine adhesives can protect the adhesive bond after 6- or 12-month storage, or 

whether they are able to protect restoration margins from secondary caries via antibacterial 

action, are questions  which need to be  answered. 
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2. Review of literature 

2.1. Dentine and its Endopeptidases 

Dentine is a collagen-based mineralized tissue with inorganic apatite crystals embedded in 

an extracellular organic matrix. This matrix consists mainly of type I collagen (~90% w/v), 

which is responsible for the tensile strength of dentine and for its biochemical properties. 

Non-collagen components (~10% w/v) such as proteoglycans and glycoproteins are present 

within the matrix and play fundamental roles during fibrillogenesis, crystal growth and 

mineralization [24]. Since dentinogenesis is an active phenomenon, it requires extracellular 

enzymatic control by different proteinases, mainly matrix metalloproteinsases (MMPs) [25] 

and cysteine cathepsins (CCs) [15,18]. Apart from the dentinal matrix, MMPs [26] and CCs 

[27] are detected in human saliva, while some MMPs are also found in dental plaque [28]. 

Therefore their role in dentistry and their significance in dental research is clear, since 

clinical issues like dental caries and adhesive restorations’ failure are related to them 

[29,8,30,31,27,32,18].  

2.1.1. Matrix Metalloproteinases (MMPs) 

MMPs are a family of 23 different multi-domain calcium- and zinc-dependent proteolytic 

enzymes (endopeptidases) that take part in physiological and pathological tissue 

development and remodeling, by cleaving collagen fibrils.The first member of this enzyme 

group was discovered by Gross and Lapiere, 1962 [33], and from then, up to 28 types of 

MMPs have been described. MMP-2 (gelatinase),-3 (stromelysin), -8 (collagenase), -9 

(gelatinase) and -20 (other type) have been identified in dentine tissue [34,25,35–37] with 

MMP-2 and MMP-9 being the most common forms [35,38,39]. Dentine MMPs remain 

trapped in the tissue matrix during development. Specifically, MMP-2 is deposited in 

dentine during tooth development and is still present in mature age up to 40 years old [40]. 

All forms share a common structure, including (i) a signal peptide, which directs MMPs to 

the appropriate pathway, (ii) the pro-peptide domain with a cysteine residue, which 

occupies the active zinc site making the catalytic enzyme inaccessible to substrates until an 

activation signal is given, referred to as the “cysteine switch”, (iii) the catalytic domain 
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with a zinc ion,  and (iv) the C-terminal hemopexin-like domain, which mediates 

interactions with substrates and defines specificity [41]. Their function relies on two ions of 

Zn2+ and at least one ion of Ca2+ bound on various amino acid residues. Their function is to 

control metabolic processes which take place in the cell microcosm, by activation and 

deactivation of their activity. In pathological conditions, the balance is often shifted 

towards over-activation, leading to excessive degradation of the extracellular matrix.  

Their activation, and thus their enzymatic activity, is regulated on several levels, including 

the regulation of transcription, secretions, activation and inhibition. For most of them 

(except MMP-2), the most important step in regulation is the transcription from DNA. 

Thrombin upregulates MMP-2 and -3 mRNA [42] and hypoxia longer than 24 hours causes 

an increase in MMP-2 mRNA expression [43]. MMPs are secreted from the odontoblasts as 

proenzymes and their activation is a critical step that leads to collagenolysis [41]. Although 

they are activated in acidic pH, they function best at neutral pH [34]. A wide range of 

systemic diseases (like arthritis, oncogenesis, multiple sclerosis, osteogenesis imperfecta, 

Alzheimer’s disease, bronchial asthma etc) is associated with the over-activation of MMPs 

or with lack of their natural inhibitors [41]. 

2.1.2. Cysteine Cathepsins (CCs) 

CCs (B, L and K) [15,18,44] consist another group of dentine endopeptidases, capable of 

degrading extracellular matrix proteins such as collage type I and III. Since they were 

detected only a few years ago, there is not much information available. Unlike MMPs 

which cleave collagen fibrils at a single site, generating two collagen fragments, CC-K can 

cleave collagen at multiple sites generating fragments of various lengths [45]. Their 

expression by human odontoblasts and their activity in dentine was recently investigated 

[44] and they are also associated with caries progression and failure of restorations 

[31,27,18]. Their collagenolytic activity varies according to the depth of their localization 

and in contrast to MMPs, their optimum acidity to function is pH 5, since they are rather 

unstable at neutral pH [27].  
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2.2 Adhesive bonding in dentine 

Resin composites have gradually turned out to be the most indicated restorative material, 

also for posterior teeth [46,47,1]. Composite materials however require an intermediate 

bonding agent or dental adhesive, which penetrates enamel and dentine, primarily 

establishing the micromechanical bonding [48]. Bonding with any commercially available 

bonding system requires the same three phases: etching, priming, bonding [4,49,6]. Dental 

adhesives are however divided into two categories, regarding their bonding mechanism; 

total-etch (or etch-and-rinse) adhesives and self-etch adhesives [3,6]. Total-etch adhesives 

require a distinct etching phase performed by 35 – 37% phosphoric acid gel, while self-etch 

adhesives demineralise by means of acidic primers or acidic components.  

Enamel and dentine bonding is a form of tissue bioengineering, where minerals are 

replaced by resin monomers to form a hybrid biostructure. During etching of dentine, 

inorganic content is removed with phosphoric acid or by means of an acidic primerin a 5 

μm – 10 μm depth [3,6], to achieve a superficial demineralisation of dentine in order to 

create micro-retentive porosities [50]. Demineralised collagen network should then be 

primed before proceeding to the last step of infiltration of the collagen with the adhesive 

resin, in order to polymerize and form two basic structures [3,6]; the hybrid layer [51] and 

the resin tags [52]. The hybrid layer is a structure which connects the hydrophobic adhesive 

with the hydrophilic dentine and is comprised of collagen fibrils, and proteoglycans 

enveloped by infiltrated polymer chains of the adhesive [53]. This polymer-collagen layer 

is basically responsible for the bonding effectiveness of composites, which does not rely on 

its thickness or on the number and length of the tags but rather on its quality [54]. Resin 

tags represent the micromechanical anchores of the hybrid layer inside the etched dentine, 

and more specifically the open dentinal tubules.  

2.3 Why do adhesive restorations fail? 

The key to success in adhesive dentistry relies on the durability of the adhesive interface 

overtime, however this is practically hard to achieve. Almost 20 years ago it was exhibited 

that the adhesive bond to dentine fails [55] and since then, it still remains as a concern 

[56,2,15,4,31,18,57]. It is widely accepted that resin-dentine bonds deteriorate over time, as 

exhibited in vitro after 1 year [16], after 4 years [58], after 5 years [59], after 6 years [60], 
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in animal studies [61] and in vivo in human teeth [62–64]. Bond failure occurs mainly due 

to hydrolytic and enzymatic degradation, which are better described as a vicious circle, 

rather than two indepenent challenges. Several other factors, which result in either 

hydrolytic or enzymatic degradation, are associated in the literature with reduced longevity 

of the adhesive bond to dentine, those being: application of simplified adhesives [65,66], 

phase separation between hydrophobic and hydrophilic monomers [7], sub-optimal 

polymerization and monomer conversion [7], degradation of resin components [65,2], 

moisture control during bonding – or the absence of it [3,6,7] – and last but not least, the 

operator effect [67,68]. Apart from the intrinsic factors mentioned, bacteria from the oral 

cavity are able to adhere on restorative materials [69] and in case of favorable conditions, 

they can further extrinsically degrade the restoration margins [70], contributing this way to 

final restoration failure.  

2.3.1. The role of water 

Preservation of collagen network integrity in a well-formed hybrid layer is vital to 

preserving dentine bond overtime [18]. Since diffusion of resin monomers in the collagen 

network of demineralised dentine shows a decreasing concentration gradient [71], collagen 

fibrils at the bottom of the hybrid layer may remain uncovered and thus structurally 

unstable [53,15]. Moreover, depth of demineralisation can be greater than the infiltrating 

potential of resin monomers and the monomer size (~ 2 mm diameter for adhesive 

monomers such as TEGDMA) is not small enough to penetrate the nanometric voids 

between collagenmolecules, ranging from 1.26 – 1.33 nm [72]. In absence of hermetic 

encapsulation, these empty interfibrillar spaces are subsequently filled with water and are 

prone to hydrolytic and enzymatic degradation [56,30,32,73]. Moreover, ionic and 

hydrophilic resin monomers contained in dental adhesives [65], so as to enable bonding 

with wet dentine substrates, or to etch and bond dental tissues simultaneously, may have 

additional undesirable effects. Permeable, unstable resin matrices may be produced by 

them, allowing water sorption, resin leaching, plasticization of the polymer network and 

hydrolysis to occur over time [56,74,75]. In the long run, adhesion with etch-and-rinse 

adhesives is compromised by themselves [36], since those adhesives include a hydrophobic 
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resin which cannot sufficiently infiltrate dentine matrix and are therefore more prone 

hydrolytic degradation [58,2]. 

2.3.2. Hydrolytic and enzymatic degradation 

As if bonding to dentine was not a challenge for the clinician by itself, evidence of 

collagenolytic activity in dentine was first reported both in carious and sound dentine in 

1983 [76], and some years later, Pashley et al. 2004 proved that MMPs are involved in 

dentine degradation in absence of bacteria [15]. Those degraded sites correspond to 

nanoleakage patterns [66] or increased MMP activity [15,77–79]. Collagen, which is 

suboptimally infiltrated by the adhesive during the formation of the hybrid layer [53], may 

be degraded overtime by dentine MMPs in presence of water [15,77–79,59]. Hydrolytic 

activity by host-derived proteases seems to start at the bottom of the hybrid layer, where the 

porous sub-optimally infiltrated areas are located. The major significance of water for the 

functionality of MMPs was demonstrated by a decrease of resin-dentine interface 

degradation after storage in mineral oil, proving that MMPs are in fact hydrolases [15]. 

Adding to that, the breakdown of collagen creates more available space to be filled with 

water, boosting the vicious circle of hydrolysis, enzymatic degradation and long-term bond 

deterioration [73]. 

Endogenous dentine peptidases (MMPs and CCs) are released and activated iatrogenically 

during adhesive procedures, exposing collagen network to their collagenolytic activity. 

There is compelling evidence that dentine treatment with either total-etch or self-etch 

adhesives activates precursor forms of proteases that would have otherwise remained 

inactive [78]. Routine application of acidic monomers (pH 1.5 – 2.7) on dentine promotes 

activation of MMPs without denaturing the enzymes, resulting in a 14- to 15-fold increase 

in their collagenolytic activity [15,79]. However, the extent of MMP activity seems to be 

pH-dependent [79]. Another study shows that self-etch adhesives with pH ~ 2.4 leave less 

exposed collagen, since demineralisation and infiltration occur simultaneously, exposing 

fewer proteases [74]. In contrast, the very low pH of the phosphoric acid (pH 0.1 – 0.4) 

during separate etching at etch-and-rinse systems, denatures the enzymes and decreases 

MMP activity [79,15,78]. Controversial results showing increased MMP activity after 

application of phosphoric acid, [80,36], are related to the influence of acid etching on 
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soluble vs matrix-bound proteases in dentine, since matrix-bound enzymes are unaffected 

by low pH and continue to act against collagen. A different explanation is given by the 

group of Iwasa et al. 2011 which suggested the formation of a protective CaHPO7-layer 

after separate etching, which temporarily masks the collagen fibrils from proteases activity 

[81]. Furthermore, while acid etching reveals endogenous MMPs, etching and rinsing can 

also cause loss of Ca2+ and Zn+ ions, which are necessary for their collagenolytic activity 

[82], leading to their inactivation. 

Enzymatic degradation is detected by MMP-2 and MMP-9 during the adhesive procedure 

with three-step etch-and-rinse adhesives [36,59],  two-step etch-and-rinse [83,84] with mild 

two-step self-etch adhesive [36,79] or with one-step self-etch adhesives [79,83,85] and 

MMP activation seems to be product-dependant [83]. 

Apart from their interference with the adhesive interface of bonded restorations, MMPs and 

CCs have also been related to autodegenerative processes in dentine, such as the 

inflammation of dental pulp [86] and progression of caries lesions [29,34,27,8,76]. Lactic 

acid produced by cariogenic bacteria during caries progression may also activate MMPs 

[29]. While salivary enzymes may access outer, caries-infected dentine, they do not 

contribute to degradation of caries-affected dentine, during which dentinal fluid rather than 

saliva could be the source of increased collagenolytic activity [87]. Likewise, dentine 

matrix-bound endopeptidases may not necessarily be readily activated after simple in vitro 

demineralisation. However endopeptidases decrease mechanical properties of caries-

affected dentine and reduce its ability to remineralise [8]. 

If biodegradation of the adhesive interface is to be avoided, a complete infiltration of resin 

monomers into the collagen network is fundamental. Despite the fact that the goal is both 

clear and reasonable, it is not so easily attained. For that reason, strategies to counteract 

these actions in the adhesive interfaces have been explored, including inactivation or 

blockage of MMPs during application of the adhesive protocols and management of 

secondary caries which could further threaten the permeability of the composite 

restorations.  
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2.3.3. Dental caries 

Dental caries is an irreversible, infectious disease of the calcified tooth tissue, involving 

demineralisation of inorganic compounds, mainly hydroxyapatite, by acids produced by 

oral bacteria. Therefore, caries affects teeth through a series of episodic and cyclical 

bacterial and chemical events that result in carious lesions and, if remain untreated, finally 

cause tooth loss. Caries is produced when pathogenic bacteria are gathered on a susceptible 

host – the tooth surface – in an environment rich in fermentable carbohydrates, for a 

sufficient length of time for the cariogenic process to take place.  Cariogenic properties of 

S. mutans [88] and their relationship with caries [89] and with sugar intake [90], have led to 

the perception that mutans streptococci are the main pathogen which causes dental caries. 

Apart from S. mutans, Lactobacillus spp. is also highly associated with caries [91]. 

Cariogenicity however depends more on diet than the prevailing bacterial species, and thus 

bacterial counts alone cannot alter caries activity or caries risk [91]. 

Caries initiation and progression involves a continuous balance between demineralisation 

and remineralisation, which take place in the oral cavity. Demineralisation occus when pH 

in dental plaque, and thus on the tooth surface, decreases below 5.5. In acidic pH, bacterial 

organic acids are able to diffuse into calcified dental tissues, leading to dissolution of 

apatite crystals [29], which can be clinically seen as a ‘’white spot’’. Active enamel lesions 

comprise of surface erosion and subsurface porosity [92]. Demineralisation may then 

continue deeper in dentine, leading to destruction of organic matrix by proteases, either of 

bacterial origin as initially described [93] or as more recently exhibited, by endogenous 

MMPs [29,34,27,8,76]. As next, saliva buffers neutralize bacterial acids and allows for 

remineralisation to take place, even after half of the mineral compound from caries-affected 

dentine is lost. This dynamic process is repeated numerous times daily and if balance is 

lost, demineralisation predominates and caries progression takes place [29]. However, 

regarding remineralisation, recent evidence demonstrates that dentine collagen matrix does 

not necessarily remain as intact as believed during caries demineralisation, since structural 

changes in collagen are noted [87] and a true subsurface remineralisation is rarely achieved 

[92,92].  
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2.3.4. Secondary caries 

Replacement of failed restorations is a major problem contributing to the expensive circle 

of re-dentistry [10]. Although in the 1970s restorations were failing due to degradation and 

wear of materials, nowadays the main cause of restoration failure is secondary caries 

[1,10,94,95]. Specifically for Class V restorations, it has been demonstrated that 62.5% of 

them fail after 5 years due to reasons associated with their marginal integrity [96]. 

According to FDI (World Dental Federation), secondary or recurrent caries is defined as 

“positively diagnosed carious lesion which occurs at the margins of an existing restoration” 

[97] and has the same pathology with primary caries [10]. This lesion usually consists of 

two regions: an outer lesion formed on the tooth surface, having similar histological 

characteristics with primary caries, and a wall lesion, which is a narrower defect in the 

enamel or dentine along the cavity wall [9].  

Secondary caries is caused because of microleakage of fluids, bacteria, toxins and ions 

through the material – tooth interface [11]. This space varies between 2 - 20 μm at the 

cavity floor and 1 – 10 μm at the lateral restoration walls [98] and bacterial biofilm 

gathered in up to 8 weeks, may be 2 – 15 μm [52]. The growth of bacteria is either due to 

invasion of oral bacteria through restoration margins or due to retained bacteria in the 

cavity, which gain access to their nutrients though microleakage [99]. Even though a 

threshold marginal gap size for clinical failure of the restorations has not been established 

[100], restorations with marginal defects fail more frequently [101]. There is a close 

relationship between marginal adaptation of restorations and bacterial growth in cavities, 

underlining the fact that bacterial growth results from the communication of the oral 

environment with the restored cavity [99]. The development of wall lesions could depend 

both on the amount of the accumulated plaque on the outer surface and the micro-gap 

between the restoration and the tooth tissue [10]. Since composite restorations accumulate 

more biofilm, they are subject to faster bacterial degradation [69], and the extent of 

degradation of the restorative composite or of the adhesive, are dependent on their chemical 

formulation [70]. Furthermore, issues which arise from, or are connected to adhesive 

bonding [7] (such as polymerization shrinkage, hydrolytic and enzymatic bond 
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degradation) or technical failures such as fractures, defective contours, overhanging 

margins [9], can result in gap formation between the composite and the tooth tissues. 

2.4  How can restoration failure be avoided? 

In order to elongate the duration of adhesive restorations and prevent their failure, action 

should be taken against hydrolytic degradation, enzymatic deterioration and bacterial attack 

during secondary caries process. Since hydrolysis is difficult –  if not impossible – to 

prevent,  in a tissue which consists of ~ 22% water and 33% organic compounds, research 

is focused on ways to reduce enzymatic activity intrinsically and on antibacterial strategies 

to reduce the risk of secondary caries extrinsically.  

2.4.1 Chlorhexidine (CHX) 

CHX is a cationic-bisguanide (C2H7N5), broad-spectrum antimicrobial agent which is 

extensively used inoral hygiene products. Although clinical studies have shown that CHX 

varnishes are effective in reducing S. mutans counts for 3 months after a 10-day application 

period [13], there is not enough evidence that over-the-counter preparations can influence 

caries progression [12]. However when a CHX was tested in artificial mouth systems, it 

presented positive results against early caries as an emulsion [14] and reduced successfully 

bacterial counts inside cavities compared to ozone disinfection [102].  

CHX possesses both bacteriostatic and bactericidal effects against Gram+ and Gram- 

[103,104] depending on its concentration and acts by disruption of the cell membrane [105] 

by binding on the lipopolysaccharides of the bacteria [104]. Its antibacterial action against 

S. mutans [106] was known long before the importance of CHX in restorative dentistry and 

its beneficial role in adhesive restorations was discussed. CHX was first used as a dentine 

disinfectant and re-wetting agent prior to adhesive bonding, since it did not influence the 

immediate bond strengths [107,108], before realizing its activity against collagenases and 

gelatinases (MMPs) [109,15,110] and more recently against CCs, and specifically against 

CC-B, -K and –L [19,44]. It is believed to act by cationic chelation, sequestrating Ca2+ and 

Zn2+ ions, which would otherwise activate the MMP catalytic domains [110, 82].  

CHX is able to bind to acid etched dentine and be slowly released overtime [111] without 

promoting deleterious changes on collagen structure [112]. It has strong positive ionic 
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charges, which electrostatically bind the protonated NH3
+ in the CHX molecule to the 

negatively charged phosphate groups in mineralized dental tissues or to carboxylic acids in 

demineralised dentine [111,113]. This binding is increased by acid etching through a 

potential increase in surface free energy [111,114]. CHX binding mechanism to dental 

tissues and to enzymes is dependent on CHX saturation and when applied in higher 

concentrations, CHX may oversaturate the enzyme binding sites and remain bound to 

collagen fibrils for later release. CHX is then released at therapeutic levels, a phenomenon 

known as substantivity [115]. This characteristic allows enzyme-bound CHX to remain 

active after initial application. The association between CHX concentration and its 

protective effect on bond strength is related but the correlation is not linear [17,111]. It is 

also exhibited that CHX molecular charge and not its concentration is responsible for its 

localization in dentine [105] since substantivity levels were same when either 0.2% or 2% 

CHX was tested [115]. Extent of CHX debinding from the dentinal substrate is greater 

when rinsed water, than with HEMA, ethanol or NaCl solution [111].  

2.4.2 Inhibition of enzymatic degradation 

Inhibition of enzymatic degradation would be advantageous in preservation of hybrid layer 

overtime [18]. Several methods have been suggested in order to inhibit degradation and 

achieve long-term stability of the resin-dentine interface; among them, incorporation of 

MMP inhibitors in materials, use of hydrophobic adhesives which exhibit lower water 

sorption and solubility, application of multiple layers, increasing the curing time and 

solvent evaporation, or using collagen-cross-linking agents [56,4,32,65,74,31].  

Tissue inhibitors of MMPs (TIMPs) are substances which balance the activity of MMPs in 

dentine and can either be natural or synthetic. The natural compounds include long-chain 

fatty acids, epigallocatechin and other polyphenols, flavonoids and others and generally 

exceed the concentration of MMPs in extracellular fluids. So far four proteins have been 

identified as natural inhibitors (TIMP-1, TIMP-2, TIMP-3, TIMP-4) and they do not 

demonstrate specificity [41]. Synthetic inhibitors on the other hand, such as CHX, mimic 

the structure of the natural ones and show selectivity, as at lower concentrations they 

preferentially target some MMPs rather than others [116]. Although the exact mechanism 

of inhibition of proteolytic activity is not understood, the inhibitory mechanism is thought 
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to occur via chelation. Chelation is a particular way that ions and molecules bind metal 

ions, involving a chelator (ligand) and a single central atom. Inhibitors must therefore 

contain a functional group capable of chelating the catalytic domain of MMPs, thus 

preventing binding of the substrate [43,86].  

CHX in restorative dentistry is either applied extrinsically as a dentine pre-treatment agent, 

or added in restorative materials and adhesives, which would act as a carrier or CHX-

reservoir.  

CHX as dentine pre-treatment agent 

Application of CHX in a prepared cavity as dentine pre-treatment is shown to suppress 

collagenolytic activity in dentine in vitro [77,15,80,16,110,117,84,109,17,118–123,16,125] 

and in vivo [63,64,126,127,120,128], even in low concentrations [110] and short-time 

applications (15 – 30 seconds), in presence of caries-affected [129,130,122] or artificially 

eroded dentine [121]. Although CHX shows no specificity against certain MMP types, 

there is a distinct difference between CHX concentrations which are able to inhibit MMP 

activity when CHX is applied on dentine; 0.002% for MMP-9, 0.0001% for MMP-2 and 

0.02% for MMP-8 [110], but Colares et al. 2013 [17] showed that this correlation is not 

clear. CHX concentration seemed to have no effect on bond strength degradation after 12 

months [16]. In most studies CHX solution as dentine pre-treatment is used at 0.2% - 2% 

concentrations and is rubbed against or applied and let to act on the etched dentine surface 

for 15 – 60 seconds [109]. Two studies also demonstrated that application method (with or 

without rinsing, before or after etching) had no impact on immediate bonding efficiency 

[131,132]. CHX solutions are produced either with water, with ethanol [133–135] or as 

CHX-methacrylate [49]. Despite the fact that both solutions (in water or in ethanol) are 

equally saturated by dentine substrate [135], studies show that ethanol based CHX solutions 

exhibit a worse behavior in terms of bond strength, when evaluated immediately or after 

storage [134,133]. CHX as dentine pre-treatment does not generally affect the immediate 

bond strength with dentine negatively with either total-etch or self-etch adhesives [132], 

when used in 0.2% [136] in 2% [109,7,131,137,138,121,129,122,132,139,140], in 4% 

[108], or in 5% concentration [122], since wettability of dentine surface by water or 

ethanol, which are components of the respective dental adhesive, is shown not to be 
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compromised by CHX [141] and moreover, formation of hybrid layer is enhanced [125]. A 

single study even demonstrated that use of 2% CHX led to higher immediate bond strength 

[84].  

Despite the fact that CHX could be tracked in the hybrid layer after 5 years [142] and 

although it has become the most popular specific MMP inhibitor, it is not known how long 

the inhibition effect after its application on dentine can last [56]. Studies provide 

contradictory results, which looks as if they are related to the concentration of CHX and / 

or to the chemical composition of the adhesive [109]. Some show that CHX pre-treatment 

exhibits a positive effect after 6-months [134,77,129,143,144], 9 months [138], 1 year 

[16,49], 2 years even at lower 0.2% concentration [80] or even  5 years [142]. Moreover, 

there are some studies exhibiting that CHX application does not produce better bonding 

values immediately [145,109,137,139,140], after 15 days [146] or after 6-

[123,133,136,140,147], 15-month storage [133] or 2 years [122]. No difference was shown 

when instead of a CHX solution, dentine was pre-treated with a CHX-containing air-

abrasion powder [148]. Last but not least, other studies indicate that its positive effect on 

bonding preservation at 6 [109] or 9 months [149], is lost after long-term storage and 

despite its substantivity CHX eventually leaches out of the hybrid layer due to its 

electrostatic nature of binding with water, which in turn acts as the desorption medium 

[113]. Even when CHX is tracked inside the hybrid layer after 8 weeks [16,115] or 5 years 

[142], the concentration may still be very low to exhibit a therapeutic result. 

Clinical trials provide controversial data, as some studies suggest that 2% CHX application 

on Class V dentine, provides after 36 months reduced retention – however not significantly  

[150] – and after 6 or 18 months delivered same retention rates [109,151,152] as without 

CHX. Marginal quality of restorations with and without CHX pre-treatment showed no 

difference after 12 months [128]. Clinical results in Class I cavities are more encouraging, 

since they exhibited increased μTBS after 6 months [127,63], 12 months [153,64], 14 

months [126] or up to 20 months [120].  
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Addition of CHX in dental materials 

Avoiding to add another step in the adhesive procedure while treating dentine, investigators 

have been studying the incorporation of CHX in dental materials, either being etchants, 

adhesives or restorative materials, since 1983 [154]. 

CHX exhibited positive results regarding bond strength preservation when admixed with 

the etchant [155,156,142], the adhesive on permanent teeth [157,144,158,142,36,159,160], 

the adhesive on primary teeth [161] or with restorative materials [103,20]. Hence, addition 

of an external component in restorative materials, may influence their water sorption, 

solubility, degree of conversion and mechanical properties [20,21]. However admixing 

CHX into resins up to 1% concentration exhibited no alteration in their degree of 

conversion and immediate bond strength [21,162,157]. On the contrary, addition of 1% 

CHX in restorative composites significantly decreased their compressive strength [154] and 

CHX release led afterwards to pore formation, diminished mechanical properties [163] and 

water induced swelling, which is enhanced by the hydrophilicity of the respective 

composites, resulting in undesirable situations [20]. Similarly, when mixed with glass-

ionomer cements, it led to 30% decrease in their fluoride release, due to fluoride interaction 

with CHX [164] and the material demonstrated decreased compressive strength [165], just 

as composite resins.CHX is also believed to interfere with the bonding mechanism and 

maturation reaction of resin-modified glass-ionomer cements, when added in their 

composition [166]. 

Since literature shows that restorative materials may be compromised by CHX addition, 

adhesives were then studied, however studies are scarce. A 2-step total-etch adhesive with 

0.2% built-in CHX is commercially available, but according to literature, it can only inhibit 

anaerobic bacteria [22] and CHX has no effect on the bond strength after 6-month storage 

[23]. Their degree of conversion was not influenced when CHX was mixed with the 

adhesives [157,167] but adhesives may become stiffer, as its elasticity decreased [167]. 

Solubility and water sorption remain unaffected after 28 days [158] or longer [168]. 2% 

CHX incorporated into the primer showed better inhibition of MMPs after 20-second 

application [169]. In another study, 2% CHX replaced liquid A of a two-bottle self-etch 

adhesive, and whatsoever did not alter its bonding efficiency even after 6-month storage 
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[170]. The authors attributed these results to the similar ionizing effect of CHX solution 

and liquid A, the later composed by water and HEMA. CHX added into experimental 

adhesives was proven not to jeopardize immediate bond strength to dentine 

[159,162,168,144,36] and moreover reduced bond degradation after 12-months  

[159,160,22,168,36]. CHX addition in adhesives has been investigated in concentrations 

0.01% - 5% (Table 1, page 17-18). However, if a long-term release is feasible from this 

CHX-reservoir, lower concentration of CHX could be preferably admixed in terms of 

safety regarding mechanical properties. In that direction, it has recently been proposed, that 

CHX delivery could be accomplished through incorporated nanocapsules, a method which 

showed adequate CHX release up to 25 days [171]. Since clinical studies with CHX 

experimental materials are difficult to be performed due to ethical issues, only one in vivo 

study with self-etch CHX-adhesives is available and exhibits no difference in retention 

rates of 126 restorations after 2 years [172]. 

The biggest advantage of creating a CHX-reservoir inside the material instead of applying 

CHX on dentine, would be its elongated release and long-term action. Mechanism of CHX 

release has however been associated to water-induced swelling [20], which is enhanced by 

the unavoidable hydrophilicity within the adhesive interface structure. Despite the fact that 

the exact duration of CHX action is not known, CHX released from CHX-etchant and 

CHX-primer has been identified inside a 5-year hybrid layer [142], possibly due to its high 

substantivity [115]. Rate of CHX release is increased when mixed with hydrophilic 

materials [20] and in acidic environment due to the increased solubility of CHX in low pH 

[163]. A 24-hour burst of CHX release from dental materials followed by a rapid decrease 

has also been noted [21], as with most of the antibacterial substances [173]. 
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2.4.3 Inhibition of bacterial action 

Despite the fact that restorative materials have evolved regarding their basic mechanical, 

physical and bonding properties, an innovation would be the exhibition of “therapeutic 

effect”. Modern restorative materials should be able to interact with dental tissues and the 

oral environment in a favorable manner – the so-called bioactive materials – and among all 

possible interactions, their antibacterial action is highlighted as one of the most important 

theurapeutic effects. Inhibition of bacterial action via incorporation of antibacterial 

substances in many dental materials, such as composite resins, resin cements, glass-

ionomer cements, provisionary cements and adhesives is extensively discussed  

[5,69,94,5,174]. However, a review of the Cochrane Collaboration concludes that there is 

not enough clinical data to assess the ability of antibacterial restorative materials to prevent 

dental caries [94]. Despite the fact that adhesives possess an antibacterial effect 

themselvesdue to their low pH, this is limited to 24 – 48 hours [175] and their acidity is 

neutralized by their contact with the tooth tissues [5]. Therefore, materials with a longer-

lasting anti-bacterial effect were developed, mainly by incorporation of antibacterial 

substances in their composition, which can be i) releasing, soluble antibacterial agents, ii) 

non-releasing co-polymerized antibacterial agents and iii) inorganic fillers [69,5]. The main 

advantage of soluble antibacterial agents, such as CHX, is that they can easily be released 

from the restorations to the oral environment. Immobilization of polymerizable 

antimicrobials such as quartenary ammonium salts (MDPB being the most popular) is a 

different approach, offering long-lasting activity. Antibacterials which are added into the 

materials in forms of fillers are silver and zinc oxide [173,176]. The antibacterial 

substances which are released from the materials used as carriers may challenge their 

kinetics of release or affect the physical properties of their carriers. Inevitably, their 

antibacterial activity decreases over time [69]. Issues concerning the physical properties of 

the carrier-materials and their release potential also arise for the non-releasing antibacterials 

that are in-situ polymerized. Moreover immobile antibacterials can only kill bacteria which 

come in contact with the adhesive [5]. Regarding antibacterial fillers, and especially silver, 

polymerization may be negatively influenced by them, let alone their poor color appearance 

[177]. 
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Resin cements containing 3-4% CHX exhibited CHX release for 5 weeks and antibacterial 

action for 2 weeks, while no CHX release was detected when its concentration in the 

cement was 2% or lower [103]. No inhibition zone against bacteria was produced by CHX-

containing resin after 2-week storage [20], showing that CHX concentration was not 

enough. When CHX was incorporated in ion-exchanging materials, such as glass-ionomer 

cements, its antibacterial activity against S. mutans increased to 90 days [164,154,178] and 

their inhibition zones were not dependent upon CHX content [174]. In vivo, CHX-

containing glass-ionomer cements decreased the microbial count in dentine under the 

restoration after 7 days [179] and after 3 months [180], but a CHX-containing glass-

ionomer cement pit-and-fissure sealant did not increase caries reduction in 12 months 

[181]. There was no published clinical study investigating the antibacterial effect of CHX 

in adhesives. 

2.5 Caries models 

Experimental tests to simulate dental caries have greatly varied since Magitot, 1878 [182], 

Miller, 1905 [183] and Pickerill, 1919 [184] reported their first attempts to generate cares 

in vitro. Many methods have since then appeared in the literature [69], but are all 

derivations of two basic systems: bacterial cultures with nutrient systems, known as 

bacterial models or omission of bacteria [14,185,176] and chemical systems, known as 

chemical or static models [186,187], which use either acidic gels or buffered solutions 

[186]. 

The ultimate goal of the caries models is to produce a caries-like lesion corresponding to 

the three zones of an early enamel lesion; from inner to outer being the translucent zone, 

the dark zone and the body of lesion [188]. It is demonstrated that dentine caries produced 

by caries models resembles natural dentine caries both histologically and 

microradiographically, since both include subsurface mineral loss, producing different 

zones [189]. Others state that artificial dentine lesions represent usually only a single 

demineralisation phase and this contrasts with the natural way of caries production which 

consists of multiple de- and remineralisation cycles [186]. When it is attempted to mimic 

lesions observed in vivo with caries models, several factors such as substrate type, lesion 

type and depth, severity of cariogenic challenge and type of microflora may influence the 
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reactivity of hard tissue, and hence development of the lesion [186]. Fundamental 

requirements for an effective caries model are: pH control, pH cycling reproducing de- and 

remineralisation phases, simulation of intra-oral sugar effects for the demineralisation 

phase, adjustment of saliva effect and of sugar clearance for the remineralisation phase and 

choice of nutrition medium being exactly adjusted to the bacteria under investigation [190].  

Clinical studies are regarded as the ultimate way to gather scientific evidence on the clinical 

effectiveness of a restorative treatment [191]. However, by producing caries-like lesions in 

vitro, factors implicated in caries aetiology can be separately investigated, a large number 

of samples can be studied and ethical issues connected to animal trials are set aside [187]. 

Compared to clinical studies, caries model tests are often less expensive and results are 

produced much quicker. Since variations in dietary patterns in real-life are moderate [192], 

caries models which standardize the sugar intake, are able to provide results that correspond 

well with the majority of dietary patterns. The purpose of a caries model is to separate a 

complex system into more simple parts, so as to study defined aspects of caries under 

controlled experimental conditions. Most of the studies performed with antibacterial agents 

in adhesives involved evaluation of their effect in with the agar diffusion methods, 

assessment of bacterial growth through colonies counting, minimum inhibitory 

concentration or bactericidal, biofilm accumulation or bacterial adherence tests [69]. All the 

fore-mentioned methods provide however an indirect assessment of the antibacterial 

potential in the oral cavity. Since experimental adhesives cannot be tested in situ and since 

ethical issues arise with animal studies, let alone their differences to human teeth, bacterial 

microcosm models may offer simulated oral cavity conditions [69]. The first study 

designed to test anti-caries agents in a caries model, was conducted by Pigman and 

Newbrun, 1962 [193]. Models can be of great value in predicting behaviours, but by 

definition a model will always differ from the natural situation; the question is to what 

extent. For that reason, the extent of resemblance of artificial caries-like lesions against 

natural ones is an issue under discussion. 

In general an early caries lesion is observed clinically as a white opaque spot, being softer 

than the surrounding sound enamel. Lesions produced by caries model have the 

macroscopical appearance of initial caries and encircle the restorations [194]. In vivo initial 
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enamel lesions do not have a surface layer but develop this mineral-rich layer later on 

[195]. Absence of the dark zone in experimental caries is also discussed [194]. It is also not 

clear if demineralisation is combined with erosion in caries model systems, even in 

bacterial models, since both tooth defects are related to hypomineralized tissues but the 

etiology of mineral loss differs. In cases of erosion, enamel is demineralised by direct 

contact with acids and is primarily a surface phenomenon, while caries is formed by the 

action of acids produced by bacteria, and begins as a subsurface lesion that eventually leads 

to a pit in the tooth surface [196]. However, chemical caries models present more 

parameters which may influence the similarity of these lesions to natural caries, like 

viscosity of the fluids, [194] and are not able to simulate factors such as biofilm 

concentration, saliva flow and collagen degradation [186]. Plaque thickness built around 

restorations at bacterial models, using carbohydrate broth inoculated with S. mutans, results 

to different potential of penetration through marginal gaps and thus different caries 

induction at cavity walls [197]. Bacterial caries models result in caries-like dentine lesion 

with similar surface hardness, lesion depth, and calcium and phosphate ion concentration as 

natural lesions, thereby providing a more realistic simulation of oral conditions than 

chemical caries models or even in situ experiments, the latter of whichcan only have a 

limited duration of time [186]. Bacterial caries model are also able to create an infected 

outer layer and an affected inner layer like in natural dentine caries [186]. Metabolic and 

pH behavior of plaque produced by bacterial caries models is typical of natural plaque 

[198] and de Campos et al. 2015 [199] suggested an optimal period of 8 days for producing 

non-cavitated caries-like lesions.  

2.6 Bond strength tests 

Bond strength testing is accomplished by manufacturing adhesive interfaces, in most cases 

tooth – material specimens, which is loaded to failure with either shear or tensile load or in 

push-out mode. By definition, the ideal bond strength test should be easy, in order to have 

low technique-sensitivity and be reproducible and fast, in order to permit loading of 

multiple specimens [191]. According to the extent of the adhesive area, bond strength 

testing methods can be divided into “macro” and “micro” tests, referring to bonded area 

below 2 mm2 [200]. After Okumo et al. 1970 [201] introduced the idea of μ-tensile bond 
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strength (μTBS) and Sano et al. 1994 [202] tested it in human and bovine dentine, this 

method has been widely used and accepted as an “ideal technique for evaluating the long-

term durability of resin-hard-tissue bond” [203]. μTBS is calculated as the tensile load at 

failure divided by the adhesive are of the bonded interface. Although a consensus or 

standardized approach does not exist in dentistry, bond strength testing remains useful and 

necessary for the control of new products and study of experimental variables [200]. 

Among its benefits is that it allows for measurement of high bond strengths without 

cohesive failure in dentine, it subjects specimens to uniform loading, and permits multiple 

measurement to be performed from a single tooth. 

In contrast to clinical studies, laboratory testing such as a bond strength test, allows for 

quick gathering of data with relative ease and minimum cost, simultaneously testing more 

groups with one study set-up, measuring one parameter while keeping the other variables 

constant, incorporating aging methods in the study and directly comparing experimental or 

new materials with that of the current “gold standard” [191]. The final objective however of 

an in vitro test, such as bond strength testing, should obviously be the prediction of the 

eventual clinical outcome according to the gathered laboratory data. It is noted that in vitro 

immediate μTBS are higher than in vivo bond strengths recreated in the same study [153]. 

That resemblance was not however observed in μTBS values after in vitro (5000 

thermocycles) and in vivo aging (6 months in oral function) [153]. It is also shown that 

there is an association between clinical outcomes and laboratory results of bond strength 

studies [204].  
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3. Aim of the study – Null hypotheses (H0) 

The aim of the study was to test CHX adhesives for their ability to inhibit formation of 

secondary caries-like lesions around Class V composite restorations when loaded 

biologically with S. mutans in an artificial caries model and for their potential to bond to 

dentine despite CHX addition, to maintain bond strength after 6- and 12-month storage and 

to withstand adhesive bond deterioration after biological loading. The following questions 

were placed: 

1. Is experimental or industrial addition of CHX in the adhesives able to inhibit secondary 

caries formation around Class V composite restorations? 

2. Is it possible for the CHX adhesives to have bond strength values at baseline, after 6- and 

12-month storage same to the control group? 

3. Can CHX adhesives maintain their bond strength after 6- and 12-month storage compared 

to baseline? 

4. Is there a difference between artificial saliva and distilled water used as storage media in 6- 

and 12-month storage? 

5. Can CHX adhesives withstand bond strength reduction after biological loading with S. 

mutans? 

Null hypotheses (H0): 

1. Experimental or industrial addition of CHX in the adhesives is not able to inhibit secondary 

caries formation around Class V composite restorations. 

2. It is not possible for CHX adhesives to have bond strength values at baseline, after 6- and 

12-month storage same to the control group. 

3. CHX adhesives cannot maintain their bond strength after 6- and 12-months storage 

compared to baseline. 

4. There is no difference between artificial saliva and distilled water as storage media in 6- 

and 12-month storage. 

5. CHX adhesives cannot withstand bond strength reduction after biological loading with S. 

mutans.  
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4. Materials & Methods 
4.1 Teeth collection & storage 

Upon approval of the Ethical Committee of the Medical Faculty of Justus Liebig University 

Giessen (AZ 143/09), n=224 healthy, intact upper and lower human 3rd molars were 

collected, immediately after extraction, cleaned with a scaler (H5 Hygienist/U15 Towner 

Scaler, Hu-Friedy, Frankfurt) under water irrigation and stored in 0.5% Chloramin-T 

solution (Chloramin T trihydrate, Carl Roth, Karlsruhe) in 5-7oC for up to 30 days. In case 

longer storage was needed, teeth were refrigerated (-15oC) in distilled water until further 

use. After visual examination under 3X magnifying dental loupes, teeth which were 

identified with signs of caries, visible fractures or damage during extraction were excluded 

from the study.A single operator performed all experimental steps. After collection, teeth 

were divided into five experimental groups according to the adhesive protocol used (Figure 

1, page 28).  

4.2 Adhesive systems 

Five different adhesive bonding protocols were used, including a 3-step bonding system, 

two experimental CHX adhesives and a 2-step etch-and-rinse CHX adhesive (Table 2, page 

26). The experimental adhesives were built on the basis of the 3-step bonding system, 

according previous literature [160,162]. Application procedure is demonstrated in Table 3, 

page 27. During adhesive application brush tip was allowed to soak in the solutions and 

was then rubbed against dentine for 10 seconds. For μ-tensile test specimens, application 

time for all liquids was doubled in order to cover the larger area of the exposed dentine 

surface. Primer was air-dried in order to allow for sufficient solvent evaporation and air-

thinning was performed for the bonding agent, until no visible liquid movement. No rinsing 

was performed after application of CHX as dentine surface pre-treatment. Polymerization 

was performed with a LED polymerization unit for 20 seconds according to manufacturer’s 

instructions (1200 mW/cm2 light intensity, Elipar™, 3M Healthcare, Seefeld).  
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  Table 2: Information of materials used according to manufacturer’s data. 
 

Product – 

Manufacturer 
Type Composition (% by wt.) LOT 

Adper Scotchbond™ 

Multipurpose 

Adhesive System, 3M 

Healthcare 

3-step  

etch-and-rinse  

bonding system 

Scotchbond™ Etchant: 

55-65% Water, 30-40% Phosphoric 

Acid, 5-10% Synthetic Amorphous 

Silica 

Primer: 

40-50% Water, 35-45% 2-HEMA, 10-

20% Copolymer of acrylic and itaconic 

acids 

Bonding: 

60-70% BISGMA, 30-40% 2-HEMA, 

<0.5% Triphenylantimony 

516827 

 

 

 

 

N510460 

 

 

 

 

N515442 

Peak® Universal 

Bond with 0.2% 

Chlorhexidine, 

Ultradent, Cologne 

2-step  

etch-and-rinse  

bonding system 

Ultra-etch: 

<45% Phosphoric Acid 

Adhesive: 

<20% Ethyl Alcohol, ≤16% 2-HEMA, 

≤6% Methacrylic Acid, <0.3% 

Chlorhexidine di(acetate), 7.5% Fillers 

B8ZG1 

Gluco-CHeX 2%, 

Cerkamed, Stalowa 

Wola, Poland 

Chlorhexidine 

Digluconate 
2% Chlorhexidine gluconate 1806131 

Filtek™ Z250,  

3M Healthcare 
Composite Resin 

75-85% Silane Treated Ceramic, 1-

10% BISEMA6, 1-10% UDMA, 1-

10% BISGMA, <5% TEGDMA, <5% 

Aluminum Oxide, <0.5% 

Benzotriazol, <0.2% EDMAB 

N512895 

N561790 

N608865 

N635023 
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For the experimental adhesives 2% chlorhexidine digluconate (Gluco-Hex 2% Solution, 

Cerkamed) was admixed into the primer or bonding agent (Table 3). Final solutions 

contained 0.1% CHX. Adhesive and CHX were thoroughly mixed with a 2-mm sized brush 

applicator for 20 seconds and the mixture was allowed to set for 10 seconds. Fresh quantity 

of CHX adhesive was prepared for each tooth. Following groups were formed: 1) control 

group (CTRL), 2) 2% CHX dentine pre-treatment (DENT), 3) 0.1% CHX in primer 

(PRIM), 4) 0.1% CHX in bonding agent (BOND), 5) Peak® Universal Bond with 0.2% 

CHX (PEAK). 

Table 3: Application directions of the adhesives used. 
 

Bonding system used Group 
Preparation of 

CHX adhesives 
Application Steps 

 

 

 

Adper Scotchbond™ 

Multipurpose Adhesive 

System,  

3M Healthcare 

CTRL - 1, 2, 3, 4, 5, 6, 7 

DENT - 1, 2, 9, 3, 4, 5, 6, 7 

PRIM 

Mix 0.5 μL of 2% CHX 

digluconate and 9.5 μL 

Scotchbond™ Primer 

= 5% v/v CHX PRIMER 

1, 2, 3 (CHX PRIMER),  

4, 5, 6, 7 

 

BOND 

Mix 0.5 μL of 2% CHX 

digluconate and 9.5 μL 

Scotchbond™ Bonding 

= 5% v/v CHX BOND 

1, 2, 3, 4, 5 (CHX BOND), 6, 

7 

Peak® Universal Bond  

with 0.2% 

Chlorhexidine, Ultradent 

PEAK 
CHX industrially 

admixed 
1, 2, 8, 4, 7 

1 Etch enamel (30 s) and dentine (15 s) with phosphoric acid, 2 Rinse for 30 s and dry, 3 Apply primer with an applicator 

brush to enamel and dentine for 10 s, 4 Air-dry gently for 5 s from 10 cm distance, 5 Apply Bonding with an applicator 

brush to enamel and dentine for 10 s, 6 Air-thinning, 7 Light-cure for 20 s, 8 Apply adhesive with applicator sponge and 

scrub for 10 s, 9 Apply 2% CHX on dentine with an applicator sponge for 10 s and air-dry. 
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4.3 Study design 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Number of specimens in each group. Teeth are regarded as specimens for the Class V caries 
model, while sticks are the specimens for μTBS test.  
 

Group 

 
Caries 
Model 

(number of 
teeth) 

 

μ-tensile bond strength test 
(number of sticks) 

*n=5 teeth for each group 

Caries 
Model 

Class V 

Day 1 
(baseline) 

Caries 
Model 
Sticks 

6-
month 
water 

6-
month 
saliva 

12-
month 
water 

12-
month 
saliva 

CTRL 12 99 102 115 93 96 84 

DENT 12 105 109 96 106 92 92 

PRIM 12 108 99 111 106 88 106 

BOND 12 106 107 98 99 85 115 
PEAK 12 103 105 90 102 81 81 

TOTAL 60 521 522 510 506 442 478 

Figure 1: Schematic demonstration of the study design and steps of the two tests performed i) caries model 
with Class V restorations and ii) μTBS test at baseline, after biological loading and after 6- and 12- month 
storage (n=number of teeth). 
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4.4 Specimens 

4.4.1 Fabrication of specimens for caries model (Class V caries model) 

Standardized buccal Class V cavities (4-5 mm in width mesio-distally, 2-3 mm height, 2 

mm depth) (Figure 2, page 31) with margins located 50% in enamel and 50% in dentine or 

cementum were prepared with a cylindrical round-end diamond bur (Revelation Diamond 

#881-014C, SS-White Burs, Pennsylvania, USA) and a high-speed handpiece (Alegra TE-

95, W&H Dentalwerk, Bürmoos, Austria) under water irrigation. Consequently a 2-mm 

depth-indicator bur (Diamond Bur FG 2mm, Meisinger, Neuss) was used with a contra-

angle 1:5 handpiece (Synea WK-99 LT, W&H Dentalwerk) in order to standardize cavity 

depth.  No bevels were made and axial were parallel and sharp, with no undercuts.Cavity 

dimensions were checked with a periodontal probe (Qulix Periodontal Probe, Hu-Friedy) 

and inner walls were smoothed with a cylindrical round-end diamond bur (Piranha 

Diamond #881-010F, SS-White Burs). Bur was replaced after 5 preparations or in case of 

signs of bur damage. In case of pulp exposure, tooth was discarded and replaced by another 

in its group.  

Cavities were restored according to the adhesive protocols (Table 3, page 27) and finally 

with composite resin (Filtek™ Z250, 3M Healthcare), placed in a two diagonal layers and 

polymerized for 40 sec each with a LED polymerization unit (Elipar™, 3M Healthcare). 

Excess material at restoration margins was removed with a scaler (H5 Hygienist/U15 

Towner Scaler, Hu-Friedy) and restorations were polished with Al2O3-coated polishing 

discs in successive roughness (Sof-Lex™ Discs and Sof-Lex™ Wheels, 3M Healthcare), in 

order to eliminate composite overhangs and obtain an absolutely composite-free margin.  

4.4.2 Storage and thermocycling 

Restored teeth were stored in distilled water in 37oC (Incubator IP20 Function Line, 

Heraeus, Hanau) for 2 weeks in order to stabilize water sorption from the composite. 

Specimens were then subjected to 10000 thermocycles (±5°C and ±55°C with 15’’ dwell 

time and 15’’ transfer time) (Thermocycler, Thermo Fisher Scientific™, Waltham, 

Massachusetts, USA) (Figure 3, page 31). 
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4.4.3 Impressions before caries model 

After thermocycling the first set of impressions with vinylpolysiloxane impression material 

was taken. Tray adhesive (VPS Tray Adhesive, 3M Healthcare) was applied on plastic trays 

(Miratray®-Mini, Hager Werken, Duisburg) and impressions were taken with the single-

step double-mix technique with putty (Panasil® Putty, Kettenbach, Eschenburg) and light-

body impression material (Panasil® Initial Contact Light, Kettenbach) according to 

manufacturer’s instructions. Impressions were then casted with a polyurethane precision 

model die-material (AlphaDie MF Ivory, Schütz Dental, Rosbach) under pressure (2 bars) 

in a pressure pot (Polyclav®, Dentaraum, Ispringen) following manufacturer’s instructions. 

Replicas were removed after 1 hour and were cleaned using a thin scalpel (Surgical 

Disposable Scalpel, B Braun, Melsungen) for removal of excess die material and a 

toothbrush for polyvinylsiloxane remnants. The same procedure was repeated for the 

second set of impressions after caries model, resulting in two sets of polyurethane replicas 

which proceeded to scanning electron microscopy, with this non-destructive method which 

maintained the original specimens (Figure 3, page 31). 

4.4.4 Preparation before insertion into caries model 

Apical root thirds were removed with a slow-speed diamond saw (Isomet 1000 Precision 

Saw, Buehler, Uzwil, Switzerland) with a diamond disc (Isomet Diamond Wafering Blades 

15LC Diamond [127 x 0.4 mm], Buehler) at 975rpm, in order to expose the pulp complex 

to the disinfecting agent. Remaining pulp tissue was removed with a scaler (H5 

Hygienist/U15 Towner Scaler, Hu-Friedy). Teeth were then mounted on chewing simulator 

metal plates (custom-made plates, Festo Systemtechnik, Denkendorf) with wax (Supradent-

Wachs, Chemisches Dental-LaborOppermann-Scwedler, Pluradent, Offenbach am Main) 

and were immersed into 70% ethanol solution (Pharmacy of the University Clinic) for 2 

hours [205]. Every 30 minutes the solution was carefully stirred in order to shake up 

bubbles and achieve full disinfection. Teeth were then transferred into the sterilized 

reaction chamber and were positioned at its Teflon base (Bretthauer, Dillenburg) by means 

of sterilized tweezers (PluLine St Nr. 43083, Pluradent) under a Clean Bench (Clean bench, 

Thermo Fisher Scientific™) in order to avoid contamination. Teeth chamber was 
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previously filled with sterilized distilled water, in order to avoid specimen damage in case 

of an accidental drop (Figure 2). 

  

Figure 3: Schematic demonstration of experimental steps for caries model with class V 
restorations. 

Figure 2: Placement of 12 specimens on chewing simulator 
plates in the reaction chamber of the caries model. 
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4.4.5 Calibration for μTBS 

Calibration was performed with five human third molars, restored with Optibond™FL, 

Kerr Dental (LOT: Prime 5682054, Adhesive 5662314) and Filtek™ Z250, 3M Healthcare 

(LOT: N561790), according to manufacturers’ instructions. This adhesive is regarded as a 

gold-standard regarding its bonding performance [191]. Based on the methodology 

described in Tilch, 2015 [206], specimen preparation, sectioning in sticks (Isomet 5000 

Linear Precision Saw, Buehler) and bond strength testing parameters were modified until a 

standard deviation of 30-50% among sticks of the same tooth was reached. Those 

standardized parameters were applied at the μTBS main study. 

4.4.6 Fabrication of specimens for μTBS 

For the preparation of μTBS specimens, roots from 150 third molars were removed and 

mid-coronal dentine was exposed in a microtome (Isomet 1000 Precision Saw, Buehler) 

(Figure 4). Teeth were mounted on microtome table with screws and the section was made 

in the middle of the crown using the microtome blade (Isomet Diamond Wafering Blades 

15LC Diamond [127 x 0.4 mm], Buehler) at speed 975 rpm and with a weight of 75 gr. 

 

 

 

 

 

 

 

 

 

 Figure 4: Exposed mid-coronal dentine was polished and a standardized 
smear layer was formed before the application of the adhesives.  



Materials & Methods 

33 
 

Exposed dentine was polished in a grinding machine (Beta Grinder-Polisher, Buehler) 

(Figure 4, page 32) with silicon carbide sandpaper in roughness P 600 – Grit 360, followed 

by decreasing roughness P 1200 – Grit 600 (Silicon Carbide Grinding Paper Grit 360 and 

Grit 600, Buehler Met II, Buehler), under water irrigation. Dentine surfaces were dried and 

checked under light for enamel remnants.  Subsequently, dentine was further polished with 

P 1200 – Grit 600 sandpaper for 60 sec manually forming “8-routes” in order to remove 

debris and to create a standardized and even smear layer zone.Teeth were randomly divided 

in 5 groups and subsequent application of the adhesives followed (Table 3, page 27). First 

layer of composite resin (Filtek™ Z250, 3M Healthcare) was applied and was 

homogenously thinned to approximately 0.5 mm (Comporoller 5300, Kerr Dental). 

Consecutive composite layers of 1 mm thickness were placed, building up composite height 

up to approximately 6 mm. Each layer was separately polymerized for 40 seconds with a 

LED polymerization unit with 1200 mW/cm2 light intensity (Elipar™, 3M Healthcare). 

Specimens were stored in distilled water in 37oC (Incubator IP20 Function Line, Heraeus) 

for 24 hours, in order to balance water intake of the composite [207].  

Teeth were then mounted on a microtome table with wax (Supradent-Wachs, Chemisches 

Dental-Labor Oppermann-Scwedler, Pluradent) with the composite build-up facing 

downwards. Specimens’ total height was measured with a periodontal probe (Qulix 

Periodontal Probe, Hu-Friedy), in order to adjust the cutting depth and produce sticks of 

adequate length. Diamond blade (127 mm X 0.4 mm) (Isomet Diamond Wafering Blades 

15LC Diamond, Buehler) of precision microtome (Isomet 5000 Linear Precision Saw, 

Buehler) was cleaned and sharpened prior to sectioning. 

Specimens were sectioned vertically buccolingually, were then rotated 90o and sectioned 

againmesiodistally (Figure 5, page 34). Both sections were made with direction from the 

apex to the crown. First cut was made 1.5 – 2 mm from the edge and external slices were 

discarded, since composite was bonded to enamel. Approximately 18-25 sticks were 

fabricated from each tooth. Microtome settings were: Rotating speed: 3450 rpm / Cutting 

speed: 2.5 mm/min / Section length: 14 mm / Specimen size: 0.716 mm / Sections: 10 / 

Slice size: 0.381 / Cutting depth: 6-7 mm (measured for each specimen). Sticks were 

removed from the underlying composite using a thin scalpel (Surgical Disposable Scalpel, 
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B Braun), were measured using a digital caliper (ABSOLUTE 500-196-20 digital caliper, 

stainless steel, +/-0.001’’ accuracy, 0.0005’’ resolution, Mitutoyo Germany, Neuss) and 

were then either immediately loaded or stored in sealed tubes until bond strength testing, 

according to the group they belonged. Sticks dimensions were 0.68 mm X 0.68 mm, 

resulting in rectangle-shaped bonded area of 0.46 mm2 (±0.04 mm2). Inclusion criteria 

were: i) a macroscopically intact bonding area between tooth and composite, ii) adequate 

amount of tooth or composite to enable fixation on the microtome table, iii) void-free 

composite build-up at the adhesive area. Sticks were excluded from the study when the 

following drop-out criteria were met: i) inadequate length of composite and of dentine ( > 3 

mm), ii) voids at the adhesive zone or in the composite, iii) signs of dentine caries or any 

other flaw macroscopically visible, iv) incorrect dimensions of the adhesive area, v) non-

rectangle adhesive surface. Bond failure during sectioning was evaluated as pre-test failure 

and was regarded as “zero” value (Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Production of sticks by sectioning of tooth in two perpendicular 
directions. Composite-dentine sticks which broke during sectioning were
regarded as pre-test failures (right). Composite-enamel sticks were excluded. 
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4.4.7 Preparation for 6- and 12-month storage for μTBS 

Sticks planned for long-term storage were stored in sealed tubes at 37oC (Incubator IP 20 

Function Line, Heraeus) for 6 or 12 months, in distilled water or artificial saliva, according 

to the storage protocol. Artificial saliva was produced as described below at preparation for 

caries model, page 41. Storage media were not renewed during storage time. Despite the 

fact that all containers were tightly closed, 12-month storage containers were refilled with 

storage medium at 6 months, due to evaporation because of the high temperature in the 

incubator. No refill was needed for the 6-month groups. 

4.4.8 Preparation for caries model before μTBS (μTBS caries model) 

Sticks were not removed from sectioned teeth which were planned for biological loading in 

the caries model before μTBS, and thus sectioned teeth were mounted as a whole on 

chewing simulator plates(custom-made plates, Festo Systemtechnik)  with wax (Supradent-

Wachs, Chemisches Dental-Labor Oppermann-Scwedler, Pluradent) (Figure 5, page 34). 

Following to that, they proceeded to disinfection for 60 min (Braunol 7,5 gr Povidon-Jod, B 

Braun). Teeth were then transferred into the sterilized reaction chamber of the caries model 

under a Clean Bench (Clean bench, Thermo Fisher Scientific™) in order to avoid 

contamination (Figure 6).  

Figure 6: Schematic demonstration of experimental steps for μTBS. 
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4.5 Caries model 

4.5.1 Description of caries model 

A fully automated caries model was used in the present study, which was developed by 

Ritzmann, 2008 [190] and further updated at the Department of Paediatric Dentistry, Justus-

Liebig University of Giessen [185] (Figure 7, page 38). The model consists of five 

containers i. Reaction chamber, ii. Waste container, iii. Reservoir-container, iv. Artificial 

saliva container, v. Nutrition medium container connected with tubes (Platinum-treated 

silicone pump tubes, autoclavable, wall thickness 1.6 mm, inside 4.8 mm, outside 8.0mm, 

Carl Roth) with the mediation of three drip-systems (Glass dripping system manufactured 

by the Chemical Institute, University Erlangen-Nürnberg); between the nutrition medium 

container and the reservoir container, between the reservoir container and reaction chamber 

and between the artificial saliva container and the reaction and four pumps (Cyclo II 

Pumps, Carl Roth) which enable fluid movement through the tubes (Figure 8, page37). 

Tubes are equipped with male/female plug-in metal connectors (metallic tube extensions 

conical for Luer- Lock (LLW) female P337.1 (21023012) and (LLM) male P341.1 

(31027022), Carl Roth) to allow for easy mantling/dismantling. By installation of drip-

systems reverse flow of the solutions is avoided and bacterial colonization of the containers 

is prevented. All connected parts were assembled before each experimental cycle and could 

be easily disassembled in order to be separately cleaned and sterilized or checked for 

damage. All parts of the caries model were placed in an incubator (IPS Memmert, 

Memmert, Schwabach) at 37oC, except from the container for artificial saliva and for 

nutrition medium, which were placed outside the incubator for practical reasons. A 

personal computer (operating system Windows XP) was connected with the caries model 

and collectedall the information of the experimental circles, saved the data and operated the 

pumps automatically according to the 24-hour biological protocol (Table 7, page 51) by 

means of a software (LeC Operating Software for Relay Module 8X-serial, Conrad 

Electronics SE, Hirschau). The software operated according to the desired duration of the 

experiment - 2 days for the biological loading of the sticks before μTBS and 10 days for the 

biological loading of Class V composite restorations. Operation of caries model was 

controlled thrice per day (connections, pH and temperature control, level of media in 

containers to avoid flooding or insufficiency) and waste container was changed every two 
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days. During the 10-day caries model, change of artificial saliva container after 5 days was 

required for the quantity of media to suffice. In order to double the number of specimens 

which were tested simultaneously, two independent caries models could be connected with 

the personal computer and run at the same time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 7: Caries model set up with two independent caries models. A: reaction chamber, B: 
reservoir-container with S. mutans, C: pumps, D: waste container, E: pH and temperature 
measuring device, F: input lines for artificial saliva and nutrition medium, which are located outside 
the incubator, G: connection of the caries model with the personal computer. 

Figure 8: Schematic drawing of caries model set up in association to figure 9. A: reaction 
chamber, B: reservoir-container with S. mutans, C: pumps, D: waste container, F: input lines 
for artificial saliva and nutrition medium. 
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4.5.2 Containers 

i. Reaction Chamber 

The reaction chamber (300-4100 Reusable Filter Holder with Receiver, Thermo Fisher 

Scientific™ Nalgene ™ Labware, Rochester, NY, USA) (Figure 9, page 40) is a sterilized, 

plastic container, where teeth are placed and provided with media for the growth of the 

bacterial biofilm and the development of caries-like lesions and with artificial saliva for the 

remineralisation phases. Inside the chamber, a Teflon base (Bretthauer GmbH) is placed 

(Figure 9, page 40), where fixed specimens on the chewing simulator metal plates (custom-

made plates, Festo Systemtechnik) are positioned. The screwable cap of the reaction 

chamber (Carl Roth) contains two air-filters (Pressure Compensation Filter PTFE 0.20 μm, 

Duran® Group, Mainz), two input lines (Carl Roth); one for the insertion of the bacterial 

solution for the demineralisation phase and one for the artificial saliva for the 

remineralisation phase (Figure 9, page 40). The pH electrode (Blueline N1048 1M-DIN-ID 

with temperature sensor Serial No: A133114003, SI Analystics, Mainz) is placed in the 

reaction chamber through a Telfon holder (Bretthauer GmbH) at the centre of the cap, is 

connected with the measuring device inside the incubator (pH Measuring Instrument 

Lab870, SI Analystics) and consequently to the personal computer. This way pH and 

temperature are monitored continuously throughout the experiment (MultiLab® pilot 

v4.7.2, WTW, Weilheim). At the bottom of the reaction chamber one output line (Carl 

Roth) for the waste, is also installed. The reaction chamber is mounted on a metallic basket 

in order to be stabilised, to avoid tilting and allow for easy handling during sterilisation 

(Figure 7, page 37). 

ii. Waste Container 

The polypropylene waste container (Nalgene™ 10 l Container with vented closure, Thermo 

Fisher Scientific™) is connected with the bottom of reaction chamber with a tube (Carl 

Roth) and collects all the waste produced during the experiment (Figure 7, page 37). This 

container is capped with a properly vented closure with an air-filter (Duran® Group) and is 

sterilized, in order to avoid a reverse contaminationthrough the connecting tubes. Even if 

not full, every two days the waste container was changed to avoid an external 

contamination.  
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iii. Reservoir-Container 

In order to maintain a constant amount of bacteria throughout the experiment a sterilized 

reservoir-container (500 ml Erlenmeyer wide-neck flask, diameter 50 mm, Duran® Group) 

is used (Figure7). On the top of the Erlenmeyer flask a sponge serves as a cap, through 

which bacteria can be injected without removing it. At the beginning of every experimental 

circle, the bacterial solution is formed in the reservoir-container by insertion of the nutrition 

medium into the reservoir-container through a fixed tube (Carl Roth) on the sponge-cap of 

the Erlenmeyer flask (Duran® Group), following by injection of bacteria through the 

sponge. At the bottom of the Erlenmeyer flask (Duran® Group) an output line for the 

bacterial solution is installed, which after 6 hours of bacterial prolliferation can be pumped 

through a tube (Carl Roth) into the reaction chamber. A magnetic bar (Rotilabo® Economy 

25 mm magnetic bars, Carl Roth) is placed inside the Erlenmeyer flask (Duran® Group), 

and the reservoir-container is positioned on amagnetic stirrer (IKA® - Werke, Staufen) to 

achieve constant stirring of the bacterial solution, at the lowest speed. Four fine-pore stones 

(Klarwasser Bio Filter RöhrchenfürAquarien, Dennerle, Vinningen) are also placed inside 

the reservoir-container in order to support mechanical settlement of bacteria and thus avoid 

significant reduction of their concentration (Figure10, page 40). 

iv. and v.  Artificial Saliva and Nutrition Medium Bottles 

Both media are maintained in 20 l glass bottles (Duran® Group) to make sterilization of 

large amounts of solutions possible. Glass bottles are placed in suitable metallic baskets 

(Systec, Linden) to allow for easy handling during transportation and sterilization. The 20 l 

containers are placed outside the caries model incubator in order to provide simple handling 

during the assembling and disassembling of the caries model (Figure 10, page 40).Through 

connecting tubes (Carl Roth) installed at the screwable cap (Systec) of the bottles, artificial 

saliva is directly inserted into the reaction chamber for the remineralisation phase, while 

nutrition medium is first inserted into the reservoir-container, in order to promote bacterial 

growth, and then the bacterial solution is inserted into the reaction chamber for the 

demineralisation phase (Figure 7, 8, page 37). The cap is also equipped with an air-filter 

(Duran® Group) in order to facilitate pressure compensation during sterilization and with a 

metallic pipeline (Systec) for the placement of the temperature sensor during sterilization. 
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4.5.3 Pumps 

In order to achieve movement of the solutions though the tubes, four pumps (Cyclo II 

Pumps, Carl Roth) are installed (Figure7, 8, page 37). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 10: Containers of the caries model. Reservoir-containers with 
S. mutans, placed on magnetic stirrers during a double caries model 
(left). Note the biofilm accumulation at the inner walls of the flask after 
a few days of operation and the white fine-pore stones, which are 
visible through the bacterial solution. Artificial saliva (clear) and 
nutrition medium (dark) 20 l glass bottles are placed outside the 
incubator due to limited space (right). 

Figure 9: The screwable cap (left) and the Teflon base (right) of the 
reaction chamber. Chewing simulator plates with waxed specimens are 
placed in the 12 holes of the Teflon base. The central opening holds 
the pH-electrode.  
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The following connections are made (Figure 8, page 37): i) from the artificial saliva to the 

reaction chamber (Pump 1), ii) from the nutrition medium to the bacterial reservoir-

container (Pump 2), iii) from the reservoir-container to the reaction chamber (Pump 3), iv) 

from the reaction chamber to the waste container (Pump 4). 

4.5.4 Artificial Saliva 

A mineral solution with pH=7 and phosphate buffer (2.2 mmol / l KH2PO4, 4.59 mmol / l 

K2HPO4) was used as artificial saliva in the caries model, in order to simulate the 

remineralisation phase in the oral cavity. 20 l artificial saliva was produced according to 

[208](BBL ™ Trypticase TM Peptone,Becton, Dickinson and Company, Sparks, MD, USA 

/ di-kaliumhydrogenphosphate, Calciumchloride dihydrate, Kaliumdihydrogenphosphate, 

Natriumhydrogenphosphate, Magnesium chloride hexahydrate, Kaliumchloride, Carl Roth) 

using 20 l distilled water (Milli-Q® water purification system, LS Orbital Sanitary Process 

Equipment, Schwechat, Austria), while exact quantities of powders were determined with a 

calibrated laboratory balance (Kern PBS-PBJ, Balingen). Artificial saliva was produced 

twice for every caries model cycle, due to the multiple rinsings with artificial saliva 

according to the biological protocol (Table 7, page 51). Its preparation took place in 20 l 

glass bottles (Duran® Group) which were sterilized with their cap partially closed in order 

to allow steam movement during the sterilization cycle. To avoid contamination of the 

sterilized half-closed container during removal from the autoclave, cap was protected with 

aluminium foil (Aluminium folieRotilabo 30 μm, Carl Roth). Immediately after removal, 

cap was tightly screwed and the glass bottle was stored in cold-storage room (4oC) of the 

Medical Microbiology of the University Clinic of Giessen and Marburg. Sterilization 

settings were chosen so as to prevent qualitative degradation of the solution. Change of 

artificial saliva glass bottle during the fifth day of the caries model cycle was performed by 

dismantling the metal connector of the empty glass bottle, flame sterilizing and attaching it 

at the new artificial saliva bottle over a flame (BIC® Lighter, Society BIC.ClinchyCedex, 

France). In order to maintain sterility of the connectors, when needed, sterilized plastic caps 

(Plastic stops Combi - Stopper, B Braun) were used as further protection after dismantling 

and before mounting of the connectors.   
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4.5.5 Nutrition medium 

The bacterial solution used for the demineralisation phase consists of bacteria and nutrition 

mediumfor bacterial growth. The nutrition medium was produced according to the 

manufacturer’s instructions, by diluting 28.4 gr of Schaedler Broth powder (BBLTM 

Schaedler Broth, Becton, Dickinson and Company, LOT: 3240102 and LOT: 4022232) into 

1 l distilled water (Milli-Q® water purification system, LS Orbital Sanitary Process 

Equipment), until completely dissolved and was composed of pancreatic digest of casein, 

peptic digest of animal tissue, papaic digest of soybean meal, dextrose, yeast extract, 

sodium chloride, dipotasium phosphate, hemin, L-cystine and TRIS (hydroxymethyl) 

aminomethane. The preparation of the nutrition medium took also place in 20 l glass bottles 

(Duran® Group); their handling, sterilization and storage being same as with artificial 

saliva glass bottles (page 41). Nutrition medium was not renewed during the caries model 

cycle.  

4.5.6 Bacteria 

Many types of microorganisms inhabit the oral cavity and those implicated in the carious 

process form complicate biofilms. However, in order to design a simple yet effective in 

vitro caries model, S. mutans (DSMNr: 20523, Leibniz Intitute DSMZ – German Collection 

of Microorganisms and Cell Cultures, Braunschweig) was used as a monobacterial culture. 

Freeze-dried bacteria, stored in portioned glycerin cultures in -80oC, were used and 

cultivated for insertion in the caries model (Figure 11, page 44), as exhibited in detail in 

Table 5. Two overnight cultures were cultivated, as back-up in case of contamination or 

insufficient bacterial growth (Figure 12, page 44). After determination of the optical 

density(Spectrophotometer Bio UV / Visible geneszs 10S, Thermo Fisher Scientific™), the 

bacterial solution with OD600nm closest to ~1 proceeded to purity controland was injected in 

the caries model using sterilised single-use syringes (Syringes Omnifix-F 1m mL, B Braun 

/ Needles Sterican 21G, B Braun). All routine procedures took place under a Clean Bench 

(Clean bench, Thermo Fisher Scientific™) and instruments were flame sterilized (Safety 

Burner Fireboy Eco, Integra Biosciences Deutschland, Biebertal). Dilutions were 

performed with the help of mechanical pipettors (Sartorius mLine® Biohit Pipettes / 20-
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200 μl and 100-1000 μl, Sigma-Aldrich, Darmstadt) and an automated stirrer (Mixer 

Vortex Genie-2, Sigma-Aldrich) in order to obtain homogenous solutions. 

Table 5: Cultivation of bacteria for insertion into the caries model. 
 

Step Process Materials LOT 

Bacterial 

culture 

(Figure 11, 

page 44) 

Unfreezing of S. mutans, 

inoculation of blood agar base 

with 1 inoculation loop S. mutans 

and incubation at 37oC, under 

anaerobic conditions for 48 hours. 

-Columbia Agar Plates with 

sheep blood plus, OXOID, Wesel 

167234 

 

 

-Freeze-dried S. mutans 

(DSMZ 20523) 

 

Overnight 

culture 

(Figure 12, 

page 44) 

Dilution of 1 inoculation loop S. 

mutans in 20 ml Schaedler-Broth 

and incubation at 37oC, under 

unaerobic conditions for 12 hours. 

-BBLTM Schaedler Broth, Becton, 

Dickinson and Company 

3240102 

and 

4022232 

Dilution Control of bacterial growth via 

opacity of the solutions, further 

1:10 dilution with Schaedler-

Broth and incubation at 37oC, 

under unaerobic conditions for 8 

hours 

Control of 

bacterial 

proliferation 

Measurement of optical density 

(OD600nm) at 600 nm using a 

negative control (20 ml Schaedler 

Broth) (Table 8, page 62). 

-Spectrophotometer Bio 

UV/Visible Genesys 10S, 

Thermo Fisher Scientific™ 

 

Injection in 

caries model 

Injection of 1 ml bacterial solution 

into the reservoir-container in 

order toproliferate for 8 hours 

before the caries model start. 

-Needles Sterican 21G, B Braun 

-Syringes Omnifix-F 1m mL, B 

Braun 

 

 

Purity 

control 

(Figure 13, 

page44) 

Dilution of 100 μl bacterial 

solution up to 10-6 with 1X PBS 

and aerobculture in BHI-plates for 

48 hours. 

-Phosphate-buffered saline (PBS) 

-Bacto Brain Heart Influsion/BHI 

Plates, Becton, Dickinson and 

Company 

4191852 
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Figure 11:S. mutans (DSM Nr: 20523) culture after 48 hours incubation. 1 
inoculation loop is taken in order to dilute the bacteria for the overnight culture.  

Figure 12: Control of bacterial growth via opacity after overnight culture. 0 (left): 
negative control, 1 (middle): No 1 bacterial solution, 2 (right): No 2 bacterial solution. 

 

Figure 13: Purity control before each caries model cycle. It is impossible to count 
the colonies at 10-1 plate (left), while 28 S. mutans colonies are visible at plate with 
bacterial solution diluted up to 10-5. 
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4.5.7 Microbial count and purity control 

At the beginning of each caries model cycle and after the end of the experiment, microbial 

colony count and purity control of the bacterial solutions were performedby diluting the 

solutions up to 10-6 with 1X PBS, pH=7.4 (Natrium chloride, Kalium chloride, KH2PO4 

anhydrous, Na2HPO4 x 2 H2O). For the purity control at the beginning, the bacterial 

solution which was injected in the caries model was used, while purity control at the end of 

the caries model was performed with the bacterial solution drained from the reaction 

chamber, after the last demineralisation phase. After 48 hours, individual, visible colonies 

were counted usually on the 10-5 or 10-6 plates, as the colonies were not dense and thus 

easier to distinguish S. mutans or any other external species. Colour, odour and morphology 

of cultures made identification of S. mutans possible through optical observation. Purity 

control at the end of the experiment confirmed the presence/absence of external 

contamination. B. cereus was usually detected at the purity controls at the end of the caries 

model (Figure 14), but since it is not acid-producing [124], it has no influence on the 

experiment.  

 

 

 

 

 

 

 

 

 

 

  

Figure 14: B.cereus colony usually detected at the purity control at 
the end of a caries model cycle. 
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4.5.8 pH-measurement 

pH and temperature in the reaction chamber were constantly monitored during each caries 

model cycle by means of a pH-electrode with temperature sensor (Blueline N1048 1M-

DIN-ID with temperature sensor Serial No: A133114003, SI Analystics) which was 

connected to the measuring device (pH Measuring Instrument Lab870, SI Analystics) and 

from there to the personal computer. pH electrode was calibrated before each experiment 

with standard buffer solutions according to DIN 19 266 (Buffer Solution pH=4.01 ± 0.01 in 

Glass Ampoules, LOT: 120116A, and Buffer Solution pH=6.87 ± 0.01 in Glass Ampoules, 

LOT: 111616A, Schott, Mainz) which corresponded to the expected pH values. Calibration 

was performed according to manufacturer’s instructions under a Clean Bench (Clean bench, 

Thermo Fisher Scientific™). Immediately afterwards, pH electrode was disinfected with 

70% ethanol solution (Pharmacy of the University Clinic) for 3 minutes, cleaned with 

sterile distilled water and was inserted in the reaction chamber through an opening at its cap 

designed to hold the pH electrode (Teflon holder, Bretthauer). Graphic presentation of pH 

and temperature variations was performed by software MultiLab® pilot v4.7.2 (WTW), and 

were a visual aid in controlling the progress of the experiment, monitoring malfunctions or 

leakage and evaluating the results afterwards (Figure 15). 

 

Figure 15: Continuous control of pH (up) and temperature in oC (down) inside the reaction chamber 
throughout biological loading in two independent caries models (caries model No 1: yellow, caries model No 2: 
red). Downward peaks correspond to pH decrease during demineralisation. Caries model runs undisturbed 
when pH curves are symmetrical and even.  
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4.5.9 Preparation of caries model 

Preparation before every caries model test included i) sterilization of the model (Autoclave 

Systec VX-75, Systec / Milli-Q® water purification system, LS Orbital Sanitary Process 

Equipment) (Table 6) and assembling, ii) preparation and sterilisation of the solutions 

(artificial saliva and nutrition medium for bacteria) (see pages 41-42)  iii) cultivation of 

bacteria (Table 5, page 43), iv) purity control of bacterial solution (see page 45), v) 

calibration of pH-electrode (see page 46). 

 

Table 6: Sterilization programms 
 

Type of container-medium Process 

Sterilization 

Temperature 

(oC) 

Sterilization 

Time (min) 

Waste container (10l), 

reservoir-container, reaction 

chamber, tubes 

Sterilization of the 

containers or tubes in the 

beginning (dry) 

121 20 

Waste container (10 l), 

reservoir- container, 

reaction chamber, tubes 

Sterilization of the waste 

within the containers or 

tubes at the end (wet) 

121 15 

Artificial saliva and 

nutrition medium glass 

bottles (20 l) 

Sterilization of media 

before each experimental 

cycle 

121 15 

 

All parts of the caries model were separately packed and prepared for dry sterilization. Plug 

connections were covered with aluminum foil (Aluminium folieRotilabo 30μm, Carl Roth) 

and then tubes and caps of containers and glass bottles were double-packed with aluminum 

foil. Wet sterilization was performed at the end of each caries model cycle and for during 

the caries model for the waste container. Caries model was disassembled; tubes and 

containers with were sterilized with their infectious content and proceeded to further 

cleaning and preparation for the next caries model cycle.  
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4.5.10 Biological protocol 

Specimens – either being composite restorations or sticks - were loaded in the caries model 

according to a biological protocol (Table 7, page 51), which determined the alternation of 

demineralisation / remineralisation phases and the duration of specimens’ incubation with 

S. mutans. The biological protocol was adjusted before the start of the caries model cycle, 

according to the desirable experimental conditions and was controlled by the operating 

program of the caries model (Conrad Electronics SE) [190]. The biological loading 

protocol consisted of alternating demineralisation and remineralisation phases, induced by 

bacterial solution (pH=4.2 - 4.3) and artificial saliva (pH=7) consecutively. Teeth placed 

into the reaction chamber (Figure 2, page 31) were incubated in the demineralising 

(bacterial solution) and remineralising media (artificial saliva), which were provided by 

bath, instead of using a drip technique, in order to obtain a more realistic simulation of the 

oral environment (Figure 16, page 49). 

Eight hours before the beginning of each caries model series S. Mutans (DSM Nr.: 20523) 

was injected in the reservoir-container using sterilised single-use syringes and allowed to 

proliferate in approx. 250 ml nutrition medium, before the first demineralisation phase. 

This offered the bacteria the extra time to adapt and reproduce. First demineralisation 

begins with drainage of approximately 250 ml bacterial solution from the reservoir-

container into the reaction chamber via pump 2 and lasts for 1 hour. At the same time a new 

amount of nutrition medium is pumped into the reservoir-container via pump 1 and further 

bacterial proliferation continues parallel. After 6 hours of proliferation, bacterial solution 

can be drained again for the next demineralisation phase. Upon completion of the 

demineralisation phase, bacterial solution is drained into the waste container via pump 4. 

Acidic remnants from the bacterial solution cannot be immediately neutralized, due to low 

phosphate concentration in the artificial saliva, and thus a neutral pH value cannot be 

reached. Therefore rinsing the reaction chamber twice with approximately 250 ml mineral 

solution for 2 minutes and for 28 minutes is mandatory, by pumping artificial saliva via 

pump 3. The remineralisation phase starts with the first rinsing and lasts for 5 hours, 

including both rinsing phases. Aftereach rinsing with artificial saliva and upon completion 

of the remineralisation phase the bacterial solution is drained into the waste container via 
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pump 4. Drainage of the bacterial solution of the last demineralisation phase took place in a 

separate glass bottle (500 ml Erlenmeyer wide-neck flask, diameter 50 mm, Duran® 

Group) which was attached through a three-way valve (Metal valve Luer Lock female 

LLW to male LLM, side female LLW, Carl Roth) with the tube connecting the reaction 

chamber with the waste container. Bacterial solution was collected and proceeded to purity 

control at the end of the caries model cycle (see page 45). Demineralisation (1 hour) and 

remineralisation phases (5 hours) interchanged and were repeated 4 times within 24 hours, 

resulting in 4 hours / day incubation of specimens with S. mutans (Table 7, page 51).  

Biological loading in Class V caries model and μTBS caries model operated under the same 

biological protocol. However, composite restorations were loaded for 10 days, resulting in 

40 demineralisation / remineralisation phases or 40 hours incubation with S. mutans, and 

loading of sticks was limited to 2 days, with 8 demineralisation / remineralisation phases 

(Figure 16) or totally 8 hours of incubation with S. mutans due to the fragility of the 

sectioned sticks. When pH of the first demineralisation did not reach the critical value 

range (for enamel 5.0 – 5.5) an additional demineralisation phase took place at the end of 

the caries model cycle in order to reach the total amount of demineralisation phases 

planned, namely 40 for Class V caries model and 8 for μTBS caries model. 

 

 

 

 

 

 

 

 

  
Figure 16: Reaction chamber during demineralisation (left) and 
remineralisation phase (right) filled with the appropriate medium. 
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Five caries model series were planned for the Class V caries model and four for the μTBS 

caries model. A maximum of 12 teeth could be simultaneously inserted into the caries 

model and specimens were in every case randomized. Since bond strength testing should 

follow immediately after the end of the μTBS caries model cycle, up to 5 teeth with 

sectioned sticks were simultaneously tested. Regarding Class V caries model, two 

independent caries models were able to run parallel. Therefore two caries model sets were 

assembled in the incubator and a total of 24 specimens were loaded at once. Although each 

caries model was autonomous, their operation was coordinated, to allow for easier control 

of the alteration between the phases. 

4.5.11 Follow-up processing after caries model 

Upon completion of the caries model cycle specimens were removed from the reaction 

chamber with tweezers (PluLine St Nr. 43083, Pluradent) and Class V caries model 

specimens (Figure 17) were disinfected with 70% ethanol solution (Pharmacy of the 

University Clinic). Sectioning along the vertical tooth axis and through the composite 

restoration followed (Isomet 1000 Precision Saw, Buehler) resulting in two tooth halves, 

which were stored in distilled water. μTBS caries model sticks (Figure 18, page 51) were 

disinfected with Braunol (Braunol 7.5 gr Povidon-Jod, B Braun) for 30 minutes. They were 

then rinsed with distilled water and were removed from the chewing simulator plates (Festo 

Systemtechnik). Disinfected sticks were then separated from the underlying composite 

using a scalpel and were stored in distilled water until bond strength testing, in order to 

avoid dessication.  

 

 

  

Figure 17: Class V caries model specimen after the 10-day biological protocol. 
Demineralisation in enamel and substance loss in dentine are macroscopically 
visible around the restoration. 
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Table 7: Biological protocol for the caries model in 24 hours. 

Demineralisation 1 hour 1 Demineralisation 1 hour 3 

Rinsing with mineral solution 2 
minutes 

Rinsing with mineral solution 2 
minutes 

Rinsing with mineral solution 28 
minutes 

Rinsing with mineral solution 28 
minutes 

Remineralisation 4.5 hours Remineralisation 4.5 hours 

Demineralisation 1 hour 2 Demineralisation 1hour  

4 Rinsing with mineral solution 2 
minutes 

Rinsing with mineral solution 2 
minutes 

Rinsing with mineral solution 28  
minutes 

Rinsing with mineral solution 28 
minutes 

Remineralisation 4.5 hours Remineralisation 4.5 hours 

 

Figure 18: μTBS caries model sticks after the 2-days biological protocol under microscope due to 
illustration reason. Demineralisation of dentin is visible due to its opacity (left: light microscope 15X 
magnification) or due to its fluorescence (right: fluorescence microscopy 15 X magnification). Substance 
loss due to demineralisation is the distance between the dotted white line and dentin surface in both 
images.  
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4.6μ-Tensile Bond Strength (μTBS) 

Bond strength of sticks was evaluated in μ-tensile at day 1 (baseline), after 6- and 12-month 

storage in distilled water and artificial saliva and after biological loading in caries model. 

4.6.1 μTBS at baseline 

μTBS was performed at Bond Strength Testing Machine Syndicad TC-550, Munich with its 

accompanying operating software (TC-550 Zug-/Druck-Messsoftware V3_1, Munich). 

Self-calibration and distance specification between table plates which would hold the 

sticks, took place automatically each time the device was turned on. Test parameters for 

loading in μ-tensile mode were adjusted at the testing machine: Units: Newton (Strength), 

Specimen: rectangle (a. 0.610 / b. 0.610), Force Direction: Tensile Force, Max: 40 N, 

Speed: 1 mm / min. After 24 hours storage in distilled water (baseline), sticks were allowed 

to dry on blotting paper to remove excess moisture and were then placed one by one on the 

metallic plates. One edge of the specimen (e.g. dentine) was placed at one plate and the 

other edge of the specimen (e.g. composite) was placed at the opposing plate, keeping the 

adhesive interface between the plates. Both ends of each stick were fixed at both sides with 

flowable composite resin (Dyract Flow, Dentsply De Trey) which was allowed to flow up 

to 0.5 mm distance from the adhesive interface (Figure 19, page 53) and was then 

polymerized for 40 seconds  (Bluephase G2 Curing Unit, IvoclarVivadent, Schaan, 

Lichtenstein / light intensity: 1200 mW/cm2). The adhesive interface had no contact with 

the plates and distance between the plates was set at 1 mm. In order to ensure horizontal 

placement and even tensile force distribution, avoiding simultaneous shear strain, metallic 

plates were of equal thickness. Sticks were loaded at a speed of 1 mm / min until fracture, 

maximum force was recorded by the software in Newton (N) (Figure 20, page 53) and 

inserted by the operator in an Excel worksheet (Excel for Windows), where conversion in 

Mega Pascal (MPa) took place. Type of bond failure (adhesive, cohesive in composite, 

cohesive in dentine, mixed in dentine and in adhesive area, mixed in composite and in 

adhesive area, mixed in dentine, composite and adhesive area)was assessed under light and 

4X magnification (Magnifier Glass Lamp 1.75/4X, Model No: 8093. Bulb: 12W, MBFZ 

toolcraft, Spalt) by a single examiner. Selected specimens were investigated under 

fluorescence microscope (AZ 100 Macroscope, Nikon, Tokyo, Japan) (Figure 21, page 54). 
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Fractured sticks were stored in sealed tubes (SafeSeal Reagiergefäß 0.5 ml, Sarsted) in 

distilled water. Upon completion of loading the sticks of a single tooth, mean bond strength 

value was calculated for each tooth, using Excel for Windows and standard deviation was 

checked to be within the acceptable limits of 30-50% of the mean value [200]. In case this 

condition was not met, tooth was excluded from the study and replaced with another in the 

group.  

 

  

Figure 19: Placement of the stick on the metal plates of the bond strength 
testing machine and fixation with flowable composite resin. 

Figure 20: Screenshot of μTBS software TC-550 in operation. Parameters can 
be adjusted at the left side, while the red curve shows the tensile loading of the 
stick until bond failure. Maximum force applied is displayed in N.  
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4.6.2 μTBS after 6- and 12-month storage 

Stored sticks proceeded to μTBS after the designated 6- or 12-month storage duration.They 

were rinsed with distilled water and were blot-dried before being fixed on the bond strength 

testing device and loaded until fracture, as described above. Sticks which broke during 

storage time were regarded as pre-test failures and evaluated as “zero”. Sticks which broke 

during handling were regarded as pre-test failures and were excluded from the evaluation.  

4.6.3 μTBS after caries model 

After 2 days biological loading with S. mutans and repeated demineralisation and 

remineralisation phases teeth proceeded to μTBS within the next 24 hours.Sticks were blot-

dried, fixed on the bond strength testing device and loaded until bond failure as described 

above. No stick broke during biological loading in caries model. Sticks which broke during 

separation from the underlying composite or during handling were regarded as drop-outs 

and were excluded from the evaluation. 

  

Figure 21: Failure modes under fluorescence microscope in 15X magnification 
for illustration reasons. Adhesive failure (up), cohesive failure in composite 
(middle) and mixed failure in composite and in adhesive interface. Composite 
remnants on the adhesive interface are marked with red asterisk. 
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4.7 Microscopic evaluation 

Microscopic evaluation after Class V caries model and after biological loading and storage 

of sticks was performed by means of fluorescence microscopy and scanning electron 

microscopy, by a single examiner (Figure 3, page 31).  

4.7.1 Fluorescence Microscopy 

The two tooth halves which were produced after sectioning (see page 50) proceeded to 

microscopic evaluation. Overview images of restoration halves with adjacent enamel or 

dentine (n=120) were first taken under light microscope (AZ 100 Macroscope, Nikon) 

(Figure 22, page 56), and then under fluorescence microscope (AZ 100 Macroscope, 

Nikon) using a FITC filter (excitation filter 450 – 490 nm, blocking filter 515 – 565 nm) 

(Figure 22, page 56). Overview images were standardised with the following parameters: 

objective 1X, zoom 1X and exposure 100-400 ms, therefore resulting in 6x magnification 

(calculated by multiplying objective 1x * zoom 1x * ocular 10x * tube factor 0.6x). In order 

to evaluate enamel – composite and dentine – composite margins, images at 72X 

magnification (objective 3x * zoom 4x * ocular 10x * tube factor 0.6*) were further taken 

under fluorescence microscope and measurements followed using NIS-Elements AR 

4.00.07 (64 bit) for Windows XP, with pixel size 0.9 μm. For every specimen two enamel – 

composite images and two dentine – composite images were taken, resulting in 240 images. 

Since depth of fluorescence corresponds to the depth of demineralisation, and 

demineralised tissue fluoresces stronger than healthy tissue, demineralisation depth, tooth 

substance loss due to demineralisation and total demineralisation were calculated at 

restoration margins and at 300 μm and 500 μm away from the margins. Since composite 

volume is not affected by biological loading [70], in order to measure tooth substance loss, 

a reference horizontal line was drawn which corresponded to the initial height of enamel or 

dentine, with regards to the composite restoration top surface. Total demineralisation was 

calculated as the sum of demineralisation and substance loss due to demineralisation 

(Figure 23, page 56). Marginal gap width and marginal gap depth at enamel and at dentine 

were also measured. Marginal gap width was measured as the distance between composite 

and enamel or dentine at the tooth surface, while marginal gap depth was calculated as the 

distance between the deepest point of the marginal gap and the meeting point of the line 
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starting from the deepest point and the line connecting the composite and tooth tissue edges 

(or marginal gap width line) (Figure 23).  

 

 

Figure 22: Overview image of the restoration after caries model under light microscope (left) and 
fluorescence microscope (right) (AZ 100 Macroscope, Nikon, 6X magnification). 

Figure 23: Evaluation of fluorescence microscope capture at restoration margins. The following parameters 
are determined: substance loss due to demineralisation (gelb), demineralisation depth (red), marginal gap 
width (white), marginal gap depth (white-stripped). 
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4.7.2 Scanning Electron Microscopy (SEM) 

Class V restorations 

Marginal gap analysis was performed at enamel and dentine margins of all Class V 

composite restorations in order to compare marginal deterioration and gap formation before 

and after biological loading in the caries model (Figure 3, page 31). For this reason 120 

polyurethane replicas were fabricated by first (N=60 before caries model) and second 

(N=60 after caries model) set of impressions (see page 30). First set of replicas (before 

caries model) was demonstrated with letter A and second set of replicas (after caries model) 

was demonstrated with number B, following specimen numbering. Each replica was fixed 

on aluminium stub (Nr. G301, Plano GmbH, Wetzlar) with a carbon conductive cement 

(Leit-C nachGöcke, Plano GmbH, Wetzlar) and was allowed to dry overnight. Specimens 

were gold-spattered under argon gas vacuum (Sputter Coater, Polaron, SC502, Fisons 

Instruments, Ipswich, UK) with pressure 10 Pafor approximately 75 seconds each. In case 

gold-spattering was incomplete, the process was repeated for the same replica. Gold-

spattered replicaswere then inserted into Scanning Electron Microscope (SEM) (SEM 

Amray Model 1610 Turbo, Amray, Bedford, MA, USA).  

Overlapping and continuous images at enamel and dentine margins were taken at 200X 

magnification (acceleration voltage 10 kV) using Software Digital Image Scanning System 

5 (DISS 5, point electronic, Halle (Saale)) and were then processed and saved using Digital 

Image Processing System 2.9 (DIPS 2.9, point electronic). Approximately 7-10 SEM 

images were taken at each side (enamel or dentine margins), and were stitched pairwise in 

order to illustrate the total length of restoration margin. Digital stitching was performed by 

means of Fiji is just ImageJ Software (Freeware, https://fiji.sc) (Figure 24). 

Figure 24: Stitched SEM images (200X magnification) demonstrating the dentin / composite margin before 
biological loading. 
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Stitched images of enamel and dentine restoration margins proceeded to quantitative 

marginal gap analysis, according to the criteria described by Schmidt, 2013 [209]. By 

means of computer software KHKs_jQuantiGap (Prof. Dr. med. dent. Karl-Heinz 

Kunzelmann, Ludwig-Maximilians-University Munich; http://www.dent.med.uni-

muenchen.de/~kkunzelm/htdocs/6_software-imagej-quantitative_margin_analysis.html) 

margins were evaluated as follows: perfect margin, overhang, underfilled, gap, fracture, not 

evaluable (Figure 25). As a result, quality of enamel/ composite and dentine/ composite 

margins was assessed as a percentage of perfect or imperfect margin length / total length. 

 

μTBS sticks 

Exemplary intact, not μTBS loaded sticks, proceeded to qualitative SEM evaluation at 

baseline, after 6- and 12-month storage and after caries model in order to study the adhesive 

interface. 9 - 10 sticks were chosen from each group (Figure 6, page 35). The surface to be 

evaluated was manually polished on sandpaper with decreasing roughness (360 – 600 – 

1200 – 2000 Grit Silicon Carbide Grinding Paper Grit 360, Buehler Met II, Buehler) under 

water irrigation, in order to attain a standardised surface. The opposite surface (other than 

the composite-dentine interface under investigation) was marked with a waterproof marker 

to help positioning of the stick. Half of the sticks, namely 4 – 5 sticks of each group were 

planned for qualitative evaluation of the adhesive area zones (Figure 26, page 60) and the 

other half proceeded to removal of their inorganic content, in order to assess characteristics 

of the hybrid layer such as thickness of the hybrid zone, or composite tag formation and 

maintenance throughout storage (Figure   27, page 60). Sticks were immersed in 4% NaOCl 

solution (diluted from 12% NaOCl, Carl Roth) for 20 minutes, rinsed with distilled water 

Figure 25: Color-coded evaluation of dentin / composite margin of figure 24. Dark blue corresponds to perfect 
margin, while turquoise shows marginal gap. 



Materials & Methods 

59 
 

and placed in 20% HCl (diluted from 37% HCl, Sigma-Aldrich) for 30 minutes and rinsed 

again with distilled water. This way partial removal of the inorganic content of dentine was 

achieved. Sticks which were planned for evaluation of the hybrid zone and their composite 

tags, proceeded to further handling with 37% HCl for 6 hours, until dentine was completed 

dissolved. All sticks were then dehydrated, by immersion in ascending ethanol-series (60 – 

70 – 80 – 90 % for 20 minutes each, 100% for 1 hour). Finally, sticks were inserted in 

1,1,1,3,3,3-Hexamethyldisilazane (Merk Schuchardt, Hohenbrunn) for 10 minutes, in order 

to obtain a preferably complete desiccation and were allowed to dry further overnight 

[210]. Same procedure for dehydration was followed for all sticks, with or without removal 

of the inorganic content, since specimens had to be anhydrous and electrically conductive, 

in order to be observed in SEM. Fixing and gold-spattering of all sticks followed, as 

described above for the polyurethane replicas (see page 57). Images for all sticks were 

taken field by field in various magnifications from 150 X - 2000 X. 
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Figure 26: Qualitative evaluation of the adhesive area (yellow arrows) 
with SEM at 1000X magnification. Red mark showing composite resin 
fillers. 

Figure 27: Qualitative evaluation of hybrid zone (yellow arrows) and 
composite tags (red marks) with SEM at 1000X magnification, after 
removal of the inorganic content. Picture corresponds to the same 
specimen as figure 26. 



Materials & Methods 

61 
 

4.8. Statistical analysis 

Description of the results was performed with mean value, standard deviation, min. value, 

max. value and median. Statistical analysis was performed with Statistical Package for 

Social Sciences – SPSS, version 15.0 (SPSS, Chicago, IL, USA) for Windows. Level of 

significance was set at p<0.05.  

4.8.1 Caries model 

Fluorescence microscope evaluation 

Differences within the same group between the 5 randomized caries model series, were 

checked with Mann-Whitney U test. Normal distribution of the obtained data was checked 

with Kolomogorov-Smirnov test. Comparisons between enamel and dentine, margins and 

500 μm away from the margins, or between 300 μm and 500 μm away from the margins, 

were performed with Student’s T-Test. Analysis of variance was performed with One-way 

ANOVA and post-hoc analysis Fisher’s Least Significant Difference (LSD) test was 

conducted to explore the presence of significant differences between specific comparisons 

for each variable.  

SEM evaluation 

Normal distribution was checked with Kolomogorov-Smirnov test. Comparisons between 

values before and after caries model were performed pairwise for every adhesive and every 

variable with the non-parametric Friedman Test. Differences between the tested adhesives 

were checked with One-way ANOVA followed by post-hoc analysis with Fisher’s Least 

Significant Difference (LSD).  

4.8.2 μTBS 

Normal distribution of the obtained μTBS values was checked with Kolomogorov-Smirnov 

test. Analysis of variance was performed with One-way ANOVA and in cases of significant 

results, post-hoc test for multiple comparisons followed with Fisher’s least significant 

difference (LSD). Significant differences between failure modes were investigated with 

Mann-Whitney U test.  
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5. Results 

Table 8: Information on caries model series. Nr 1 – 5: 10-day biological loading of Class V restorations. Nr 6 – 9: 2-
day biological loading before μTBS 

Nr OD 
600nm 

Concentration 
CFU/ml of  
S. mutans 

injected in the 
beginning / end 
of caries model 

DEM 
– 

REM 
(hours/ 

pH) 

Comments 

 
1 

 
0.958 

800.000  S.mutans 
40 / 4.2 

- 
218 / 7 

Pump 2 failed during the experiment and specimens remained in 
artificial saliva for ~ 10 hours. 

External species detected during purity control at the end: 
Pseud. Aeruginosa (due to pH-electrode change), B. Cereus. 

Normal odor during operation. 
11.000.000 S.mutans 

 
2 

 
1.006 

200.000  S.mutans 40 / 4.2 
- 

200 / 
7.2 

Caries models Nr. 2 and Nr. 3 operated simultaneously. 
External species detected during purity control at the end:  

B. Cereus. 
3.000.000 S. Mutans 
1.000.000 B. cereus 

 
3 
 

 
1.006 

200.000  S.mutans 40 / 4.3 
- 

200 / 7 

Caries models Nr. 2 and Nr. 3 operated simultaneously. 
External species detected during purity control at the end:  

B. Cereus. 
5.000.000 S. Mutans 
1.000.000 B. cereus 

4  
0.882 

1.440.000 S.mutans 40 / 4.2 
- 

200 / 
7.1 

Caries models Nr. 4 and Nr. 5 operated simultaneously. 
External species detected during purity control at the end:  

P. Aeruginosa (on plates 10-1 – 10-5), B. Cereus. 
30.000.000 S. 
Mutans 
10.000.000 B. cereus 

 
5 

 
0.882 

1.440.000 S.mutans 40 / 4.2 
- 

200 / 7 

Caries models Nr. 4 and Nr. 5 operated simultaneously. 
External species detected during purity control at the end:  

P. Aeruginosa (on plates 10-1 – 10-5) 
10.000.000 S. 
Mutans 
No B. cereus 

6 1.025 
480.000 S.mutans  

8 / 4.3 
- 

16 / 7.1 

External species detected during purity control at the end:  
L. monocytogenesand micrococci at plate 10-6. 

Caries model cycle was excluded. 
131.000S. Mutans 
10.000 Listeria 

7 1.039 

1.440.000  S.mutans 
8 / 4.7 

- 
16 / 7 

Analysis with MALDI-TOF to confirm presence of S. mutans 
due to size variations on the plates. 

External species detected during purity control at the end:  
B. Cereus. 

50.000.000 S. 
Mutans 
20.000.000  B. 
cereus 

8 0.977 

360.000 S.mutans 
8 / 4.5 

- 
16 / 7.1 

Caries model Nr. 8 and Nr. 9 operated simultaneously. 
External species detected during purity control at the end:  

B. Cereus. 
4.000.000S. Mutans 
6.000.000 B. cereus 

9 0.977 
360.000 S.mutans 8 / 4.4 

- 
16 / 7 

Caries model Nr. 8 and Nr. 9 operated simultaneously. 
External species detected during purity control at the end:  

B. Cereus. 
50.000.000S. Mutans 
80.000.000B. cereus 
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5.1 Caries model 

Table 8 in page 62 summarizes the concentration of S. mutans colonies which were injected 

in the caries model before each caries model series and the concentration of S. mutans and 

of B. Cereus which were measured on BHI-plates (Becton, Dickinson and Company) after 

the end of the 10-day biological loading. The plating was performed in terms of purity 

control. In case contamination with external bacterial species was detected, caries model 

series was excluded from the study, if the external bacteria were acid-producing or had an 

influence on S. mutans. P. Aeruginosa (Pseudomonas Aeruginosa) was detected on BHI-

plates (Becton, Dickinson and Company) during purity control at the end of caries model 

nr. 1 (possibly due to the need for pH-electrode change during the experiment), nr. 4 and 5 

(possibly due to handling during assembling, since both caries models were assembled and 

operated simultaneously) (Table 8). Caries model nr. 6 which was contaminated with L. 

monocytogenes (Listeria monocytogenes) was excluded from the study (Table 8). Mean pH 

was 4.2 during demineralisation and 7 during remineralisation for Class V caries model, 

while 4.5 during demineralisation and 7 during remineralisation for μTBS caries models. 

Artificial plaque was detected around all restoration margins. No premature restoration loss 

was recorded during operation of caries model, due to failed retention. 

5.1.1 Fluorescence microscope results  

Descriptive statistic (mean value and standard deviation, SD) of demineralisation, 

substance loss due to demineralisation and total demineralisation as the sum of the two 

aforementioned variables, at restorations margins, at 300 μm and at 500 μm away from the 

margins, in enamel and in dentine, as well as marginal gap depth and width in both tooth 

tissues are presented in Tables 9, 10, 11, pages 65, 66, 67. Rounding of descriptive statistic 

data was performed to zero decimal places, since measurements were performed at pixel 

size of 0.9 μm. Data for all variables tested were normally distributed (p>0.05, 

Kolomogorov-Smirnov). Despite specimens were randomized, no significant difference 

was reported for none of the variables between the 5 Class V caries model series, which 

were compared in pairs with Mann-Whitney (p>0.05), although S. mutans counts differed 

(Table 8, page 62). 
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Between enamel and dentine 

As expected, significant differences were noted in demineralisation, substance loss and 

total demineralisation, marginal gap depth and marginal gap width between enamel and 

dentine for all tested adhesives, at restoration margins, at 300 μm and at 500 μm away from 

the margins (p<0.05, T-Test), except from total demineralisation for PEAK at 500 μm away 

from the margins, which exhibited small statistical significance (p=0.054, T-Test). All other 

comparisons showed significantly higher values in dentine (p<0.05, T-Test).  

Between restoration margins and 500 μm away from the margins 

As expected, demineralisation, substance loss and total demineralisation at restoration 

margins was significantly higher for all tested adhesives in comparison to corresponding 

variables at 500 μm away from the margins (p<0.05, T-Test), except from total 

demineralisation for CTRL in enamel (p=0.144, T-Test) and total demineralisation for 

BOND in dentine (p=0.21, T-Test).  

Between 300 μm and 500 μm away from the margins 

No significant difference was noted for demineralisation, substance loss and total 

demineralisation between 300 μm and 500 μm away from the restoration margins for all 

tested adhesives (p>0.05, T-Test), exhibiting that despite distance away from the margins 

was randomly chosen, it had no significant impact on the results.  

Between the adhesives 

No significant differences between the adhesives were noted for total demineralisation 

values at 300 μm and at 500 μm away away from enamel or dentine margins (p>0.05, 

ANOVA) (Tables 9, 10, pages 65, 66). Results at enamel and dentine margins are 

separately discussed below. 

  



Results 

65 
 

- Enamel margins 

Significant differences were exhibited between the tested adhesives for the variables total 

demineralisation (TOTAL) at enamel margins (p=0.03, ANOVA), for demineralisation and 

substance loss at dentine margins (p=0.003, ANOVA), and for marginal gap depth in 

enamel (p=0.029, ANOVA). Further analysis withpost hoc test LSD showed that PRIM 

(p=0.007, mod. LSD), BOND (p=0.012, mod. LSD) and PEAK (p=0.008, mod. LSD) 

exhibited total demineralisation values in enamel margins, which were significantly higher 

than the CTRL. DENT showed however no statistical difference with any of the groups 

(p>0.05, mod. LSD) (Table 9 and Appendix I, page 129).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 9: Results of enamel demineralisation (μm, [SD]) after biological loading of 
Class V restorations for 10 days in the caries model.  
 

Enamel 
Demineralisation 
μm, [SD] 

DEM SUB TOTAL 
At restoration margins 

CTRL 55 [21] 6 [8] 61 [19] A, B, C 
DENT 66 [18] 7 [15] 73 [23] 
PRIM 69 [16] 13 [17] 81 [16] A 
BOND 74 [12]  6 [12] 80 [14] B 
PEAK 68 [15]  15 [20] 82 [19]C 
 300 μm away from the margins 
CTRL 48 [16] 7 [13] 55 [12]  
DENT 36 [17] 24 [34] 60 [28] 
PRIM 39 [23] 20 [21] 58 [14] 
BOND 51 [15]  18 [14]  69 [10] 
PEAK 41 [25] 14 [17] 54 [21] 
 500 μm away from the margins 
CTRL 50 [15] 3 [11] 53[13] 
DENT 38 [18] 15 [27] 54 [25] 
PRIM 40 [16] 22 [28] 62 [19] 
BOND 47 [19] 18 [17] 65 [23] 
PEAK 37 [23] 13 [22] 50 [32] 
 
Demineralisation (DEM), substance loss due to demineralisation (SUB) and total 
demineralisation (TOTAL) in enamel after biological loading in the caries model 
for 10 days. TOTAL = DEM + SUB. Adhesives exhibiting statistically significant 
differences are marked with the same capital letters. 
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- Dentine margins 

No significant differences were noted for total demineralisation (TOTAL) in dentine. 

However adhesives showed significantly worse demineralisation (DEM) indentine margins 

in comparison to CTRL; DENT (p=0.001, mod. LSD), PRIM (p=0.07, mod. LSD), BOND 

(p=0.000, mod. LSD) and PEAK (p=0.006, mod. LSD). On the contrary substance loss due 

to demineralisation (SUB) at dentine margins was significantly higher for CTRL in 

comparison to BOND (p=0.004, mod. LSD) and PEAK (p=0.023, mod. LSD) (Table 10 

and Appendix II, page 129).  

Table 10: Results of dentinedemineralisation (μm, [SD]) after biological loading 
of Class V restorations for 10 days in the caries model.  
 

Dentine 
Demineralisation 
μm, [SD] 

DEM SUB TOTAL 
At restoration margins 

CTRL 34 [25]A,B, C, D 105 [38] E, F, G 144 [21] 
DENT 74 [19]A 76 [40] G 150 [37] 
PRIM 65 [29] B 93 [34] K 158 [28] 
BOND 77 [18] C 58 [34] E, K 135 [31] 
PEAK 68 [39] D 67 [47] F 134 [39] 
 300 μm away from the margins 
CTRL 48 [21] G, H, J   65 [26] 113 [33] 
DENT 75 [21] G 46 [31] 122 [38] 
PRIM 69 [16] H 62 [19] 131 [22] 
BOND 61 [20] 50 [24] 111 [33] 
PEAK 70[30] J 56 [38] 126 [32] 
 500 μm away from the margins 
CTRL 52 [16] 52 [24] 104 [21] 
DENT 71 [35] 42 [36] 114 [63] 
PRIM 66 [10] 53 [27] 119 [25] 
BOND 64 [14]  51 [14] 116 [24] 
PEAK 65 [31]  35 [34] 101 [50] 
 
Demineralisation (DEM), substance loss due to demineralisation (SUB) and total 
demineralisation (TOTAL) in dentine after biological loading in the caries model 
for 10 days. TOTAL = DEM + SUB. Adhesives exhibiting statistically significant 
differences are marked with the same capital letters. 
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- Marginal gap width & depth 

Concerning marginal gap depth in enamel, CTRL showed significantly higher values in 

comparison to every CHX adhesive; specifically with DENT (p=0.009, mod. LSD), PRIM 

(p=0.007, mod. LSD), BOND (p=0.007, mod. LSD). No difference was exhibited for 

marginal gap width in enamel or in dentine and for marginal gap depth in dentine (p>0.05, 

ANOVA) (Table 11).  

 

  

Table 11: Results of marginal gap formation (μm, [SD]) in enamel and in dentine after biological 
loading of Class V restorations for 10 days in the caries model.  
 

Marginal gaps 
 Enamel Dentine 
Marginal gap in 
μm, [SD] 

Marginal 
gap depth  

Marginal 
gap width 

Marginal gap 
depth  

Marginal gap 
width  

CTRL 35 [66] A, B, C 8 [14] 59 [37] 26 [18] 
DENT 0 [0] A 0 [0] 55 [42] 30 [17] 
PRIM 0 [0] B 0 [0] 68 [25] 37 [16] 
BOND 0[0] C 0[0] 72 [58] 26 [17] 
PEAK 5 [17] 10 [31] 69 [37] 30 [16] 
 
Adhesives exhibiting statistically significant differences are marked with the same capital letters. 
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5.1.2 Marginal analysis with SEM 

Descriptive statistic (mean value % and standard deviation, [SD]) regarding marginal 

quality before and after biological loading in caries model, in enamel and in dentine, are 

presented in Tables 12, 13, page 69). Data for all variables tested were normally distributed 

(p>0.05, Kolomogorov-Smirnov). 

Before and after caries model 

Significant differences were exhibited in enamel for the variable “perfect” before and after 

caries model for all tested adhesives (p<0.05, Friedman), as the percentage of perfect 

margins decreased after biological loading (Table 12, page 69). On the contrary, no such 

difference was demonstrated for dentine, except for adhesives BOND (p=0.021, Friedman) 

and PEAK (p=0.001, Friedman) (Table 13, page 69). At the same time, percentages for the 

variable “gap” increased significantly after biological loading (p<0.05, Friedman). 

Marginal gaps in dentine were significantly increased after caries model for PRIM 

(p=0.021, Friedman) and PEAK (p=0.001, Friedman) (Table 13, page 69).  

Between the adhesives 

Significant differences between the adhesives were only exhibited for the variable “gap”. 

No difference was noted between the tested adhesives, regarding the percentage of perfect 

margins in enamel or in dentine, before or after caries model (p>0.05, ANOVA) (Tables 

12, 13, page 69). DENT exhibited significantly lower enamel gap values compared to all 

other groups (p=0.001, ANOVA). Regarding dentine margins, DENT showed significantly 

lower gap percentage compared to the CTRL (p=0.025, mod. LSD). 
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Table 12: Marginal analysis before and after caries model in enamel for variables perfect margin, overhand 
and gap, demonstrated in % percentage mode. 

Mean value % 
of total margin 

length [SD] 
 

Before caries model After caries model 
Perfect Over

hang 
Gap Perfect Over 

hang 
Gap 

CTRL 83 [14]A 1 [0] 14 [4]A 8 [2]A, a 0 [0] 98 [6]A, a 
DENT 95 [7]A 1 [0] 2 [0]A 78 [4]A,  a, b, c, d 4 [0] 52 [5]A, a, b, c, d 
PRIM 81 [20]A 1 [0] 17 [2]A 6 [2]A, b 4 [0] 93 [14]A, b 
BOND 87 [19]A 0 [0] 12 [1]A 2 [2]A, c 0 [0] 100 [0]A, c 
PEAK 78 [27]A 4 [1] 16 [2]A 19 [12]A, d 18 [14] 81 [18]A, d 
 
Variables underfilled, fracture and not evaluable are not included since they range ≈0% for all tested 
adhesives. Adhesives exhibiting statistically significant differences before and after caries model (horizontal) 
are marked with the same capital letters, while significant differences between the adhesives (vertically) are 
marked with same lowercase letters. 
 

Table 13: Marginal analysis before and after caries model in dentine for variables perfect margin, 
overhand and gap, demonstrated in % percentage mode.  
 

Mean value % of total 
margin length [SD] 

Before caries model After caries model 
Perfect Over 

hang 
Gap Perfect Over 

hang 
Gap 

CTRL 49 [2]a 19[6] 46 [2]a 33 [6] 0 [0] 63 [2] 
DENT 69 [2] a 5 [1] 25 [2]a 45 [2] 7 [1] 44 [2] 
PRIM 60 [3] 8 [1] 31 [2]A 29 [2] 2 [0] 67[19]A 
BOND 68 [9]A 1 [0] 30 [2] 44 [19]A 5 [0] 50 [19] 
PEAK 76 [17]A 6 [1] 36 [14]A 27 [21]A 9 [1] 63 [22]A 

 
Variables underfilled, fracture and not evaluable are not included since they range ≈0% for all tested 
adhesives. Adhesives exhibiting statistically significant differences before and after caries model 
(horizontal) are marked with the same capital letters, while significant differences between the 
adhesives (vertically) are marked with same lowercase letters. 
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5.2 Calibrationfor μTBS 

Comparison of μTBS data from operator of the present study (mean value 54.6 MPa   ± 

14.7) was performed against an already calibrated operator (mean value 65.1 MPa  ± 25.2). 

Data were normally distributed (Kolomogorov-Smirnov, p>0.05). Comparison exhibited 

statistically higher bond strength values compared to the already calibrated operator 

(p<0.001, ANOVA). 

5.3 μTBS 

Mean values and standard deviations of the descriptive statistic for μTBS of the adhesives 

at day 1 (baseline), after μTBS caries model and after long-term storage in different storage 

media, is reported in Tables 14, 15, 16, pages 71, 72, 73. Since data were normally 

distributed (p>0.05, Kolomogorov-Smirnov), significant differences were calculated with 

ANOVA, mod. LSD between the adhesives and within each adhesive regarding μTBS 

values for day 1, after μTBS caries model, and after long-term storage. 

5.3.1 Comparison between the adhesives 

Day 1 

CTRL exhibited significantly higher μTBS in comparison to PRIM (p=0.000, mod. LSD), 

BOND (p=0.002, mod. LSD) and PEAK (p=0.000, mod. LSD), while DENT exhibited 

better performance compared to PRIM (p=0.006, mod. LSD) and PEAK (p=0.004, mod. 

LSD) (Table 14, page 71 – upper case). Moreover, DENT showed significantly less 

adhesive fractures compared to both aforementioned groups; with PRIM (p=0.022, Mann-

Whitney) and PEAK (p=0.002, Mann-Whitney). No difference in fractures was evident 

between CTRL and DENT, or between PRIM, BOND and PEAK (p>0.05, ANOVA) 

(Figure 28, page 74).  
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Caries Model 

CTRL and BOND showed the lowest values after biological loading in caries model (Table 

14). CTRL demonstrated significantly lower μTBS compared to DENT (p=0.000, mod. 

LSD), PRIM (p=0.008, mod. LSD) and PEAK (p=0.000, mod. LSD). Same behavior was 

noted by BOND in comparison to DENT (p=0.000, mod. LSD), PRIM (p=0.003, mod. 

LSD) and PEAK (p=0.001, mod. LSD) (Table 14 – upper case). DENT (p=0.029, Mann-

Whitney), PRIM (p=0.002, Mann-Whitney) and BOND (p=0.001, Mann-Whitney) 

exhibited less adhesive and more cohesive fractures than CTRL, while PEAK showed 

significantly more adhesive fractures than PRIM (p=0.04, Mann-Whitney) and BOND 

(p=0.023, Mann-Whitney) (Figure 29, page 74). 

 

  

Table 14: Comparison of μTBS values between day 1 (baseline) and after biological loading in caries 
model.  

Groups 
Day 1 Caries Model 
Nr. of 
sticks MPa, [SD] Nr. of 

sticks MPa, [SD] 

CTRL 99 58,82 [19,55]A, B, C, a 102 30,44 [16,92] F, G, H, a 
DENT 105 54,00 [18,22] D, E, a 109 45,55 [17,7] F, I, a 
PRIM 108 45,70 [16,05]A, D, a 99 40,13 [13,41] G, J, a 
BOND 106 49,60 [18,59] B, a 107 32,37 [13,08] I, J, K, a 
PEAK 103 45,22 [15,41]C, E, a 105 40,83 [14,85] H, K, a 
 
Statistically significant differences between the groups (vertically) are marked with same upper case 
letters, while differences before and after biological loading (horizontally) are marked with same lower 
case letters. 
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Water storage 

Within the adhesives, μTBS decreased significantly between baseline and 6 months or 

baseline and 12 months (p<0.01, ANOVA). No significant interaction between CHX 

adhesives was noted after 6-month storage in water (p>0.05, ANOVA), except from PRIM 

and BOND (p=0.002, mod. LSD). PEAK exhibited significantly less adhesive failures than 

CTRL (p=0.001, mod. LSD), PRIM (p=0.001, mod. LSD) and BOND (p=0.02, mod. LSD). 

Concerning 12-month storage, only μTBS of DENT was significantly higher to CTRL, 

PRIM, BOND and PEAK (p=0.000, mod. LSD) (Table 15 – upper case). Adhesive 

fractures of DENT were also significantly lower in comparison to all aforementioned 

groups (p=0.000, Mann-Whitney) (Figure 30, page 75). 

 

  

Table 15: Comparison of μTBS values between day 1 (baseline) and after 6- and 12-month storage in distilled 
water.  

Groups 
Day 1 6 – Month Storage Water 12 – Month Storage Water 
Nr. of 
sticks MPa, [SD] Nr. of 

sticks MPa, [SD] Nr. of 
sticks MPa, [SD] 

CTRL 99 58,82 [19,95] 

A, B, C, a 115 33,84 [18]a 96 23,59 [14,79] K, a 

DENT 105 54,00 [18,22] 

D, E, a 96 37,94 [13,07] F, a 92 39,14 [16,29] K, L, 

M, N, a 
PRIM 108 45,70 [16,05] 

A, D, a 111 33,26 [13,97]a 88 26,94 [11,57] L, a 

BOND 106 49,60 [18,59] 

B, a 98 29,84 [13,55] F, a 85 23,68 [8,84] M, a 

PEAK 103 45,22 [15,41] 

C, E, a 90 34,30 [14,14]a 81 22,02[11,49] N, a 
 
Statistically significant differences between the groups (vertically) are marked with same upper case letters, 
while differences after 6- or 12-month storage within each group (horizontally) are marked with same lower 
case letters. 
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Saliva storage 

Within the adhesives, μTBS decreased significantly between baseline and 6 months or 12 

months (p<0.05, ANOVA), except for PRIM which showed no significant reduction after 

12 months compared to baseline (p>0.05, ANOVA). DENT exhibited significantly higher 

μTBS compared to PRIM (p=0.013. mod LSD) and BOND (p=0.000, mod. LSD) after 6-

month storage in saliva. PEAK also demonstrated higher bond values against PRIM 

(p=0.037, mod. LSD) or BOND (p=0.001, mod. LSD), although its difference with PRIM 

was at the borderline (PEAK=34.3 MPa and PRIM=33.26 MPa) (Table 16). No significant 

interactions where noted between bond failure mode at 6-months (p>0.05, Mann-Whitney). 

After 12 months, more significant interactions presented, as CTRL had significantly lower 

μTBS in comparison to DENT (p=0.002, mod. LSD), PRIM and BOND (p=0.000, mod. 

LSD), as well as significantly more adhesive failures (p<0.001, Mann-Whitney).As CTRL 

and PEAK showed the same lowest μTBS values (p=1.000, ANOVA), PEAK exhibited 

significantly lower values to DENT, PRIM BOND as well (Table 16 – upper case). 

 

 

Table 16: Comparison of μTBS values between day 1 (baseline) and after 6- and 12-month storage in 
artificial saliva.  

Groups 
Day 1 6 – Month Storage 

Saliva 12 – Month Storage Saliva 

Nr. of 
sticks MPa, [SD] Nr. of 

sticks MPa, [SD] Nr. of 
sticks MPa, [SD] 

CTRL 99 58,82 [19,95] 

A, B, C, a 93 36,35 [13,67]a 84 32,12 [16,84] K, L, 

M, a 
DENT 105 54,00 [18.22] 

D, E, a 106 38,11 [13,96] 

G, H, a 92 41,39 [14,63] K, N, a 

PRIM 108 45,70 [16,05] 

A, D, a 106 31,62 [14,68] 

G, I, a 106 43,29 [14,43] L, O 

BOND 106 49,60 [18,59] 

B, a 99 29,45 [14,08] 

H, J, a 115 43,26 [18,83] M, P, a 

PEAK 103 45,22 [15,41] 

C, E, a 102 37,52 [16,41] I, 

J, a 81 33,89 [17,01] N, O, P, 

a 
 
Statistically significant differences between the groups (vertically) are marked with same upper case letters, 
while differences after 6- or 12-month storage within each group (horizontally) are marked with same lower 
case letters. 
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Fracture modes 

Mode of bond failures is demonstrated in Figures 28 - 31.The failure pattern is described in 

% percentage terms. Some pre-test failures appeared after 12-month storage. After 

biological loading, DENT (p=0.029, Mann-Whitney), PRIM (p=0.002, Mann-Whitney) and 

BOND (p=0.001, Mann-Whitney) exhibited significantly less adhesive fractures than 

CTRL.PEAK exhibited significantly less adhesive failures than CTRL (p=0.001, mod. 

LSD) after 6 months in water. Adhesive fractures of DENT after 12-month storage, were 

significantly lower in comparison to all other groups in water (p=0.000, Mann-Whitney) or 

in saliva (p<0.001, Mann-Whitney). 

  

Figure 29: Mode of bond failure after caries model. Colors correspond to 
different types of fractures, which are presented in percentage %. Adhesive 
failures have increased compared to baseline. 

Figure 28: Mode of bond failure at day 1 (baseline). Colors correspond to different 
types of fractures, which are presented in percentage %. 
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Figure 31: Mode of bond failure after 12-month storage in distilled water and artificial saliva. 
Colors correspond to different types of fractures, which are presented in percentage %. Pre-
test failures were only observed in CTRL, in both storage conditions. 

Figure 30: Mode of bond failure after 6-month storage in distilled water and artificial saliva. 
Colors correspond to different types of fractures, which are presented in percentage %. Few 
pre-test failures are observed in CTRL in water and in PEAK in saliva. 
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5.3.2 Comparison within the adhesives 

CTRL 

CTRL exhibited, as expected, significantly higher μTBS values at baseline, compared to 

biological loading, after 6- and 12-month storage in water or saliva (p=0.000, mod. LSD). 

Comparison between 6- and 12- months in saliva showed no statistical difference (p=1.000, 

mod. LSD).  

DENT 

DENT exhibited significantly higher μTBS values at baseline, compared to biological 

loading, after 6- and 12-month storage in water or saliva (p=0.000, mod. LSD), exactly as 

the CTRL group (CTRL). Comparison between 6- and 12- months in water or saliva 

showed no statistical difference (p=1.000, mod. LSD).  

PRIM 

PRIM showed significantly lower μTBS values after μTBS caries model (p=0.038, mod. 

LSD). Significant μTBS reduction in comparison to baseline values was also noted after 6-

month storage in water (p=0.028, mod. LSD) or saliva (p=0.000, mod. LSD) and after 12-

month storage in water (p=0.000, mod. LSD). No difference was reported for 12-month 

saliva storage (p=1.000, mod. LSD). Storage medium had no effect on μTBS values after 6-

months (p=1.000, ANOVA), but 12-month storage in saliva demonstrated significantly 

higher μTBS values compared to water (p=0.000, mod. LSD). Values were significantly 

higher at 6-month compared to 12-month storage in water (p=0.028, mod. LSD) and in 

saliva (p=0.000, mod. LSD).  

BOND 

BOND exhibited significantly lower μTBS values after μTBS caries model (p=0.000, mod. 

LSD) and after 6-month storage in water or saliva, and after 12-month water storage 

(p=0.000, mod. LSD), like PRIM. 12-month storage in saliva also exhibited statistically 

lower values compared to baseline (p=0.032, mod. LSD). μTBS values were significantly 

higher at 6-month compared to 12-month storage in water (p=0.000, mod. LSD). No such 

difference was shown for the same comparison in saliva (p=1.000, mod. LSD).  



Results 

77 
 

PEAK 

PEAK exhibited significantly lower μTBS values after μTBS caries model (p=0.000, mod. 

LSD) and after 6-month storage in water or saliva, and after 12-month water storage 

(p=0.000, mod. LSD), like the previous CHX adhesives. 12-month storage in saliva also 

showed lower μTBS values (p=0.000, mod. LSD), like BOND. Same with BOND were the 

significant differences exhibited between 6- and 12-month storage in water (p=0.000, mod. 

LSD) and saliva (p=1.000, mod. LSD).  

5.3.3 Comparison between storage media 

No significant difference was noted between storage media at 6-months (p=1.000, mod. 

LSD) for any of the adhesives under investigation. At 12-month storage, no difference was 

reported for DENT (p=1.000, mod. LSD), while PRIM, BOND and PEAK exhibited 

statistically lower μTBS values in water compared to saliva (p=0.000, mod. LSD). On the 

other hand, CTRL exhibited significantly lower values in water storage, but level of 

significance was lower (p=0.011, mod. LSD) (Table 17).  

 

 

 

 

  

Table 17: Comparison of μTBS values (MPa, [SD]) between storage media after 6- and 12-month storage in 
distilled water or artificial saliva.  

Groups 6 – Month 
Storage Water  

6 – Month 
Storage Saliva 

12 – Month 
StorageWater 

12 – Month 
Storage Saliva 

CTRL 33,84 [18] 36,35 [13,67] 23,59 [14,79] A 32,12 [16,84] A 
DENT 37,94 [13,07] 38,11 [13,96] 39,14 [16,29] 41,39 [14,63] 
PRIM 33,26 [13,97] 31,62 [14,68] 26,94 [11,57]B 43,29 [14,43]B 
BOND 29,84 [13,55] 29,45 [14,08] 23,68 [8,84]C 43,26 [18,83]C 
PEAK 34,30 [14,14] 37,52 [16,41] 22,02[11,49] D 33,89 [17,01]D 
 
Statistically significant differences between storage media for each storage duration (horizontally) are 
marked with same upper case letters. 
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5.3.3 Qualitative SEM evaluation 

Qualitative SEM evaluation was performed in exemplary samples at 1000X magnification. 

Presence of resin tags, width of hybrid layer and quality of the adhesive interface was 

compared within each group between different loading and storage conditions. CTRL 

exhibited evident degradation of its adhesive zone, expecially after 6-month storage in 

water and 12-month storage in saliva (Figure 32, page 79). This corresponded well with the 

μTBS values shown in Table 15, page 72 and Tabe 16, page 73, showing a significant 

decrease of μTBS overtime in both storage media (p<0.05, mod. LSD). Adhesive interface 

quality was preserved in DENT up to 6 months, but resin tags collapsed after 12-month 

storage in both storage media (Figure 33, page 80). However, a significant decrease in 

μTBS values was monitored both in 6- and in 12-month storage (p<0.05, mod. LSD) (Table 

15, page 72 and Table 16, page 73) but adhesive fractures decreased in 12 months (Figure 

31, page 78). Similarly, PRIM presented a well-preserved adhesive interface up to 6 

months, which was degraded especially after 12-month storage in water (Figure 34, page 

81). However, a significant decrease in μTBS values was monitored in 6-month storage 

(p<0.05, mod. LSD) (Table 15, page 72 and Table 16, page 73) but not for 12-month 

storage in saliva (p>0.05 ANOVA) (Table 16, page 73), which corresponds well with the 

qualitative SEM evaluation. Although μTBS showed significant decrease overtime after 

storage for BOND and PEAK (p<0.05, mod. LSD) (Table 15, page 72 and Table 16, page 

73), resin tags in BOND were well preserved after 12-month in water (Figure 35, page 82) 

and PEAK showed no alteration regarding its adhesive interface in SEM pictures after 6-

month storage in both media. Resin tags in PEAK disappeared completely after 12 months 

(Figure 36, page 83).  
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CONTROL GROUP (CTRL) 

 

Figure 32: SEM pictures 1000X showing adhesive interfaces in CTRL group for Day 1 (baseline), 
Caries Model, 6-month water storage, 6-month artificial saliva storage, 12-month water storage, 12-
month artificial saliva storage. Degradation of resin tags is evident after storage in both media. 
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12-month water 12-month saliva 12-month saliva 

6-month saliva 
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2% CHX AS DENTINE PRE-TREATMENT(DENT) 

Figure 33: SEM pictures 1000X showing adhesive interfaces in DENT group for Day 1 (baseline), 
Caries Model, 6-month water storage, 6-month artificial saliva storage, 12-month water storage, 
12-month artificial saliva storage. Resin tags were preserved up to 6-month storage, but they 
collapsed after 12 months storage in distilled water or artificial saliva. 
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0.1% CHX IN PRIMER (PRIM)  

Fig. 34: SEM pictures 1000X showing adhesive interfaces in PRIM group for Day 1 (baseline), 
Caries Model, 6-month water storage, 6-month artificial saliva storage, 12-month water storage, 
12-month artificial saliva storage. Resin tags are well preserved after 6 months and only after 12-
month storage in artificial saliva. 12-month storage in water destroyed the tags. 
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0.1% CHX IN BONDING RESIN (BOND)  

Figure 35: SEM pictures 1000X showing adhesive interfaces in BOND group for Day 1(baseline), 
Caries Model, 6-month water storage, 6-month artificial saliva storage, 12-month water storage, 
12-month artificial saliva storage. Resin tags collapsed after 6- or 12-month storage in saliva, but 
were well preserved after 12 months in distilled water. 

Caries Model 

6-month water 6-month saliva 

Day 1 

12-month water 12-month saliva 



Results 

83 
 

PEAK BONDING AGENT WITH 0.2% CHX (PEAK) 

  

Figure 36: SEM pictures 1000X showing adhesive interfaces in PEAK group for Day 1 
(baseline), Caries Model, 6-month water storage, 6-month artificial saliva storage, 12-month 
water storage, 12-month artificial saliva storage. Resin tags were preserved up to 6 month 
storage but disappeared in 12-month storage samples. 
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6. Discussion 

6.1 Discussion of material and methods 

6.1.1 Addition of CHX in adhesives 

Incorporation of CHX in dental materials has been investigated since 1983 [154], as a way 

of avoiding the addition of one more step of separate CHX application on dentine, during 

the adhesive procedure. Since addition of CHX in restorative composites is related to 

serious side-effects in their physicomechanical properties [154,165,163,20], it was decided 

to alternatively test CHX addition in adhesive systems. CHX diglugonate was admixed to 

the primer and bonding agent of a commercially available adhesive according to Zhou et al. 

2009 [160,162]. By loading the adhesives with CHX, these could act as CHX carriers 

deeper into the adhesive zone, hypothetically offering a double benefit: i) a potentially 

slower CHX release due to its increased depth and deeper localization, and thus longer 

duration of antimicrobial action and ii) closer proximity to the source of endogenous 

proteases (MMPs and CCs), therefore increasing its anti-collagenolytic action. Moreover, 

the adhesive interface is the weakest link of the composite restorations and thus more 

vulnerable to bacterial attack. Therefore, loading the adhesives with antimicrobials instead 

of the restorative materials could be advantageous in terms of localized action. On the 

contrary, the ability of an antibacterial adhesive to inhibit progression of secondary caries is 

directly proportional to the contact area between biofilm and the adhesive [211], and 

adhesives, unlike composite resins have a limited exposed area at the tooth-restoration 

interface.  

6.1.2 How much CHX is too much 

Since literature presents controversial results regarding degree of conversion [157,167], 

elasticity [167], water sorption [158,168] and bond strength [170,162,159,168,144]  when 

CHX is admixed into adhesives in concentrations up to 5%, a safe concentration of 0.1% 

CHX was chosen as one of the lowest concentration evaluated in the literature (Table 1, 

page 17-18). In that direction, alteration of the physicomechanical properties of the 

experimental adhesives PRIM and BOND would be minimal or even avoided. On the other 

hand, it is unclear whether this very low – but safe – CHX concentration would be able to 
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induce an antibacterial and anti-proteolytic effect. According to Gendron et al. 1999 [110], 

a much lower CHX concentration of 0.0001% is needed to suppress MMP-2 activity, 

0.002% for MMP-9 and 0.02% for MMP-8, the latter not being covered by the 

experimental adhesives of the study. These values however correspond to the appropriate 

CHX concentration at the site of action and not to the CHX concentration initially delivered 

on dentine or admixed with the adhesives. Moreover, since CHX concentration changes 

overtime due to kinetics, it is questionable how long could CHX be delivered, even in those 

minimum amounts, regardless of its initial concentration. On the contrary, after application 

of CHX on dentine or after its release from the adhesives, it can be bound to dentine [105] 

due to its excellent substantivity, which is not affected by its concentration either being 

0.2% or ten times higher (2%) [115]. Since CHX is classified as a soluble agent [69,5], 

potential of release of admixed CHX from the adhesives raises no arguments.In order to 

obtain an antibacterial effect, CHX levels should however be higher than those discussed 

for its anti-proteolytic activity. Even then, CHX release could be monitored for up to 5 

weeks [103] and decrease in bacteria counts up to 3 months [180], both observation times 

being within the timeframe of the present experiment for CHX antibacterial and 

antiproteolytic action. However, since the chemical integrity of the adhesive is a critical 

factor in the adhesive procedure, it seems logical not to overload adhesives with CHX in 

order to achieve higher release. CHX industrially added (PEAK) reached a higher final 

concentration of 0.2% according to the manufacturer compared to the experimental CHX 

adhesives, PRIM and BOND (Tables 2, page 26 and Table 3, page 27). In order to comply 

with literature, which shows that 2% CHX as dentine pre-treatment suppresses 

collagenolytic activities in dentine [77,15,80,16,110,117,84,109,17,118–125,63,64,126, 

127,120,128], same concentration was used in the present study. 

6.1.3 Caries model set-up 

A mono-bacterial, automated caries model (Figure7, 8, page 37) was used in the present 

study, according to the biological protocol (Table 7, page 37) established by earlier studies 

[185,209]. Simulation of demineralisation was achieved by S. mutans, which is regarded as 

the main pathogen that causes dental caries [88]. Therefore it is widely used in artificial 

mouth set-ups [212,213,185,209,176]. Among its positive characteristics regarding in vitro 
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studies, is that as facultative anaerobic bacteria, they are able to grow in both aerobic and 

anaerobic conditions, which allows for caries models to function without the need of air 

exchange, thus eliminating communication of the caries model with the external 

environment and possible external contaminations. S. mutans are also easily recognizable in 

cultures from their arrangement “like a row of pearls” [190], allowing for an ease way to 

perform purity control before and after each caries model cycle. B. Cereus (Bacillus 

Cereus) which was visually detected on BHI-plates (Becton, Dickinson and Company) 

during purity control at the end of the most caries model series (Figure 14), is resistant to 

disinfection with alcohol [214,215] and to acidic pH [124] but there is no evidence that it 

can influence tooth demineralisation. Therefore caries model series where B. cereus was 

detected, were not repeated.Although bacterial counts differed between caries model series 

(Table 8, page 62), no significant difference was noted between demineralisation values of 

randomized specimens from different caries model series (p>0.05, Mann-Whitney), thus 

exhibiting that the biological protocol was repeatable. Simulation of secondary caries-like 

lesions, as close as possible to the clinical situation, was achieved through constant 

alteration between de- and remineralisation phases [216], which caused interchangeable pH 

values imitating Stephan’s curve [217]. Remineralisation was induced by artificial saliva 

which neutralized bacterial acids. Prerequisites for its action were adequate concentration 

of calcium and phosphate ions and sufficient duration of time [216], both of which were 

met according to the biological protocol (Table 7, page 51) and the composition of the 

artificial saliva.It is important to acknowledge that in vitro studies have limitations because 

they cannot simulate all the complexity of an in vivo environment, such as tooth brushing, 

dietary alterations and different sugar intake among individuals, bacterial concentration and 

salivary flow. However literature supports that bacterial counts are not related with caries 

activity or caries risk [91] and that variations in dietary patterns in real-life are moderate 

[192]. The computer-controlled caries model set-up used in the present study gathered a lot 

of favorable characteristics which bring the simulation of secondary caries production as 

close to the intraoral conditions as possible; among them interchangeable de- and 

remineralisation phases, continuous culture of S. mutans, possibility of recharging 

containers under aseptic conditions, controlled flow of artificial saliva and nutrition 

medium, availability of two reaction chambers operating independently, continuous pH 
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monitoring, intraoral sugar clearance before each remineralisation phase, exposure of all 

specimens to the same pH and temperature, plaque accumulation and biofilm formation. 

Moreover, attention was given to the following details. Bacteria were allowed to proliferate 

in the reservoir container (Figure 10, page 40) for 6 hours before inserting them into the 

reaction chamber. This time interval allows for the production of the appropriate amount of 

bacteria, which would result in sufficient acid production for the induction of 

demineralisation. Since bacterial concentration was not high enough from the first 

demineralisation phase at the beginning of a caries model, this first demineralisation, was 

excluded and repeated at the end of the caries model cycle, in order to end up with totally 

40 (for the Class V caries model) or 8 (for the μTBS caries model) sufficient 

demineralisations. In order for a demineralisation to be considered sufficient, pH of the 

bacterial solution should be 4.2 – 4.3. This enables sufficient demineralisation of both 

enamel and dentine. Each demineralisation lasted for 1 hour and every day specimens were 

incubated with S. mutans for 4 hours. This induces secondary caries-like lesions 

comparable to clinical situations, while smooth surface caries, like Class V secondary 

caries, are also induced at even shorter demineralisation periods [190]. A problem with in 

vitro caries models is a rather destructive demineralisation of the whole tooth surface as 

well as erosion of more soluble dental biomaterials such as cements working according to 

acid / base reactions [218]. Therefore, a potassium buffer (potassium dihydrogen phosphate 

buffer and dipotassium hydrogen phosphate buffer) was used in the caries model setup as 

described already previously [176]. Finally the effect of intraoral sugar clearance was 

simulated by rinsing the reaction chamber three times with artificial saliva after each 

demineralisation and before the following remineralisation phase begins. This action 

removed nutrition medium and bacterial remnants from the reaction chamber, which would 

otherwise impede pH rise.   

6.1.4 Specimen preparation 

Regarding Class V cavities, they were chosen because they are simple to prepare and 

restore, no special skills are needed and specimen standardisation is obtained easily. In 

contrast to MOD-cavities preparation depth is easier to standardise [219], while compared 

to MOD or Class I cavities, removal of excess material at occlusal restoration margins is 
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not controllable due to the complex occlusal morphology. Finally, the microscopic 

evaluation of a three-surface restoration (versus a single-surface restoration) is would create 

additional difficulties. Class V cavities were prepared only on buccal surface. Preparation 

of cavities on lingual surfaces would immediately double the number of specimens, reduce 

the experimental costs and shorten the duration of the experiment, but it was not preferred, 

due to the fact that bacterial concentration could be different on buccal and lingual sides, 

leading to inhomogeneous biological loading and to false results. Class V restorations are 

preferred when assessing the effectiveness of adhesives since they do not provide any 

mechanical retention, they challenge the materials by their high C-factor (5 bonded surfaces 

/ 1 free surface) [220], their margins are located in enamel as well as in dentine, preparation 

is minimal and restoration technique is easy therefore reducing operator variability. 

Clinically, secondary caries occurs more often in the cervical areas of restorations [10] and 

biofilm tends to form and mature at the cervical area of the tooth [92]. From that point, 

Class V lesions are a common clinical finding and such restorations are frequently placed. 

Although the study on which the development of the caries model was based [190], 

suggested placing composite restorations without prior etching, so as to provoke a larger 

marginal gap for more bacteria to gather and proliferate, in the present study, adhesives 

were used according to the directions of the manufacturer. This offers a realistic simulation 

of the clinical procedure and avoids extreme biological challenge. The experimental 

adhesives, which were built on the base of the control adhesive (CTRL), were also used 

according to the same instructions. Composite was placed in two diagonal layers 

(incremental technique), which were separately polymerized for 40 sec each, so as to 

control the polymerization side-effects, being polymerization shrinkage stress and cusp 

deflection, and thus improve marginal adaptation [220]. In that way, marginal gap 

formation was limited to that during controlled aging via thermocycling. No evidence of 

the number of cycles likely to be experienced in vivo was found, but an estimate of 

approximately 10000 cycles per year is suggested [221]. Class V restorations were high-

gloss finished to prevent bacteria from adhering on the restoration and therefore altering the 

bacterial concentration during the experiment. During polishing and finishing material 

excess was carefully removed from restoration margins, in order not to block marginal gap 

formation and gathering of bacteria.  
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Regarding μTBS, similar studies have been performed with either sticks or hourglass-

shaped beams. Sticks are most commonly encountered (Table 1, page 17-18), and thus 

preferred in order to generate comparable data. Regarding the extent of the adhesive area, it 

is shown that the smaller the interface, the lesser the risk for cohesive failures [200]. The 

adhesive area in the present study was smaller compared to similar studies (Table 1, page 

17-18). A sufficient number of sticks was included in each group in order to provide 

accurate results. Compared to other CHX adhesive studies (Table 1, page 17-18), number 

of specimes per group was notably higher.  

6.1.5 Impressions before and after caries model 

Impressions of Class V restorations taken before and after caries model, provided an 

effective and accurate replicating technique [222] in order to ensure dimensional stability 

and allow for multiple evaluations or long term storage. In cases where teeth are inserted in 

SEM, dehydration in vacuo may exhibit false positive results in space measuring between 

restoration and dentine [98] thus margin dimensions may alter in absence of moisture 

[223]. The materials used for the impressions (polyvinylosiloxanePanasil® Putty and 

Panasil® Initial Contact Light, Kettenbach) and replica fabrication (polyurethane AlphaDie 

MF Ivory, Schütz Dental) were used in previously established caries model studies 

[185,148,209,176]. The casting was performed under pressure in a pressure pot to avoid 

bubble formation.  

6.1.6 μTBS test 

μTBS was chosen as an easy and well-documented bond strength technique. In contrast to 

macro tensile bond strength test, micro bond strength values tend to be 2X – 4X higher, 

because the defect concentration in the small adhesive interface is lower [224,191]. 

Similarly, smaller specimens are more durable than larger ones, due to lower possibility of 

presenting a critical-sized defect, aligned in a crack opening orientation relative to the 

applied load [200]. Adhesive interface of the present study was 0.46 mm2, while published 

studies in the same field ranged from 0.6 – 1 mm2. Smaller sticks are generally harder to 

manufacture due to many drop-outs but bond strength results correspond to the true 

strength of the adhesive, since cohesive failures are rare [200]. Loading speed was set to 1 

mm / min which is also widely used in literature. Another alternative also widely used 
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would be 0.5 mm / min. Handling of sticks during sectioning and before insertion in the 

bond strength machine may alter bond strength values. Attention was given so as to prevent 

sticks from dehydrating, which would make them more brittle and would decrease their 

bond strength values. During μTBS loading, sticks were covered from all sides with 

flowable composite, which was allowed to flow as close to the adhesive interface as 

possible, without covering it and were in that way tightly fixed on the metallic plates, in 

order to avoid vibrations during tensile loading. Another factor related to specimen fixation 

on the plates of the testing maching is degree of polymerization of the fixation composite. 

Insufficient polymerization may lead to incorrect fixation of the stick allowing for minor 

movement, while excessive polymerization may lead to increased hardness of the 

composite and thus inability to absorb vibrations during loading. Polymerization time was 

for this reason standardized at 40 seconds. Disinfection of the sticks before insertion into 

μTBS caries model was performed with Braunol instead of 70% ethanol solution which 

was used for Class V caries model, in order to avoid harming the adhesive area or 

dessicating dentine. Regarding mode of failure, categorization is related to the level of 

magnification, as a failure that is labeled as adhesive under low magnification, can be listed 

as cohesive or mixed when evaluated under an optical microscope, where small composite 

or dentine remnants on the adhesive interface would be visible. While this may result in 

less adhesive failures, there is no standardization of the level of magnification for μTBS 

studies. In the present study, the level of magnification was in accordance with relevant 

literature. Moreover due to the large number of specimes (2979 sticks) it was not possible 

to evaluate failure mode under an optical microscope.  

6.1.7 Aging methods 

In order to mimic the aging process in the intraoral environment, Class V restorations were 

thermocycled prior to insertion in caries model. Thermomechanical cycling challenges 

restorative materials due to volumetric changes related to thermal expansion during 

temperature increase and contraction during its decrease, which happens at different rates 

due to different coefficients of thermal expansion [225]. It has been demonstrated that when 

thermocycling is used in combination with long-term water storage, it may be useful in 

forecasting the decline in strength of resin-dentinebonds created in vivo [226]. In the 
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present study, thermocycling was conducted before Class V caries model and water storage 

served as an aging method for μTBS sticks.  

Thermocycling was used in order to provoke a marginal opening around Class V 

restorations which would allow for sufficient bacterial concentration and accelerate caries 

formation around marginsduring the 10-day cariogenic challenge. However, a direct shift 

from cold (5oC) to hot (55oC) israrely encountered in the oral cavity. Thermal changes of 

dietary origin are often smoother, and maximum tooth surface temperature is 

approximately 47oC (extremes being 0oC – 67oC) [227]. The thermal shock that materials 

underwent before insertion in the caries model aimed in marginal opening which would 

provide nestling for the bacteria. In other words, if restorations were inserted in the caries 

model with intact margins, no proper S. mutans concentration would be reached and no 

proper demineralisation would be attained. This is also the case in clinical situations, as 

described by Kidd et al. 1992, marginal gaps are the prerequisite for the development of 

secondary caries [9]. The number of thermal cycles (10 000) was in agreement with 

previous studies performed with the same caries model [185,209,190,176], although 

marginal changes can already be seen after 2000 cycles [228].  

The most used aging protocol in CHX studies is storage in artificial saliva or water [109]. 

CHX adhesives were mostly stored in water (Table 1, page 17-18). It has been 

demonstrated that use of water instead of Ca- and Zn-containing artificial saliva as an aging 

medium may underestimate the hydrolytic activity of MMPs [82]. In the present study, 

storage in water did not exhibit greater bond strength values either at 6- or at 12-months, 

but on the other hand, no Zn was contained in the artificial saliva used for storage  

[185,209]. It should however be noted, that sticks – and not teeth – are stored for in vitro 

purposes, imposing a great challenge on dentine – composite bond, which is directly 

exposed in storage solution. Therefore, no direct correlation of in vitro storage time and 

duration of clinical performance of the tested adhesives can be made.  When conducting a 

long-term storage study, following parameters which could contribute to heterogenic 

results, should be kept in mind: type different water solutions used (distilled or deionized 

water), type of specimens stored (sticks or teeth samples), temperature, water pH and 

number of times the solution was renewed or refilled [109]. Finally, in order to prevent 
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bacterial growth during storage, antibacterial solutions such as sodium azide, chlorhamine 

or antibiotics are suggested [2], but since a potential interference with resin – dentine bond 

degradation is demonstrated [109], no such solution was used in the present study, so as to 

examine the sole effect of CHX. 

6.2 Discussion of the results 

It is hypothesized that dental adhesives with CHX could i) minimize secondary caries 

progression due to the antibacterial action of CHX and ii) inhibit adhesive bond 

degradation over time due to its anti-proteolytic effect. For the first hypothesis, it is 

mandatory that CHX will be released from the adhesive possibly through the adhesive 

interface and act extrinsically around the restoration margins. On the other hand, the second 

hypothesis requires that CHX will remain within the hybrid layer, exhibiting its protective 

activity against collagenolytic enzymes intrinsically. Since the amount of added CHX is in 

every case limited in terms of protection of the physichomechanical properties of the 

adhesives, it is logical that these two scenarios are antagonistic. The possible interference 

of external CHX addition with the adhesives’ components and the mechanism of CHX 

release – either towards dentine or towards the restoration – are critical factors which 

determine the behavior ofthe CHX adhesives studied.  

6.2.1 Caries model 

Despite the fact that CHX reduces the number of S. mutans when applied as dentine pre-

treatment [102], CHX adhesives were partially able to protect restoration margins from 

demineralisation in the caries model (Null hypothesis 1).  

- Enamel margins 

Specifically around enamel margins of Class V composite restorations, CHX addition in the 

adhesives (in primer; PRIM, in bonding; BOND, or industrially added in a 2-step adhesive; 

PEAK), resulted in significantly higher total demineralisation values, compared to the 

control group without CHX (p<0.05, mod. LSD) (Table 9, page 65), showing that not only 

did it not manage to protect the margins, but it made the situation worse. This could be 

explained in two ways, which represent two totally different directions; either due to the 

inability of CHX adhesives to bond efficiently to enamel due to their altered chemistry, 
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thus initially leaving a greater marginal gap for further biological degradation by S. mutans 

or due to the hermetic closure between enamel and composite [4], which does not allow 

CHX to be released outside from the restoration [204]. Marginal analysis with SEM shows 

a definite deterioration of enamel margins after caries model for PRIM, BOND and PEAK, 

as there is a significant difference between the percentage of perfect margins before and 

after caries model, and the percentage of gaps before and after caries model (p<0.05, 

Friedman) (Table 12, page 69). This strengthens the first scenario, supporting the 

inefficiency of CHX adhesives to bond to enamel. Moreover, negative results for PEAK, 

can be explained by the fact that as demonstrated in a recent study, this adhesive could only 

inhibit anaerobic bacteria and not facultative anaerobic bacteria, such as S. mutans [22]. 

Another possible explanation would be the short duration of CHX release, as a study about 

CHX-containing copolymers shows [21]. This bonding insufficiency is however not noted 

for dentine pre-treatment with CHX (DENT), as it exhibited significantly higher percentage 

of perfect enamel margins after caries model (78%), compared to all the other groups (2% - 

9%) (p=0.001, ANOVA) along with the lowest percentage of gaps (52%) compared to the 

other adhesives (81% - 100%) (p=0.001, ANOVA). These results indicate that 2% CHX as 

dentine pre-treatment offers an advantage in protection of enamel margins against 

secondary caries. Release of CHX through the margins where its protective effect was 

exhibited, may be due to marginal gap induction during water storage and thermocycling, 

and due to the fact that enamel margins were not bevelled. Although Table 11, page 67 

shows that not only 2% CHX as dentine pre-treatment (DENT), but also CHXfrom the 

primer (PRIM), or from the bonding agent (BOND) managed to significantly decrease 

marginal gap depth in enamel (p<0.01, mod. LSD) due to demineralisation, the 

measurements refer to a single point of the restoration margins, where the tooth was 

sectioned in two halves. Therefore, since SEM marginal analysis (Tables 12, 13, page 69) 

involved the total length of restoration margins, can be regarded as more accurate. The fact 

that DENT, PRIM and BOND significantly decreased marginal gap depth and not marginal 

gap width (Table 11, page 67), shows that CHX was possibly able to inhibit bacterial 

activity when in close proximity with bacteria or when its concentration was higher, e.g. 

when bacteria managed to reach at the adhesive area where it was applied.  
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Despite the fact that none of the CHX adhesives inhibited secondary caries formation in 

enamel, 2% CHX dentine pre-treatment managed tolimit marginal gap formation in 

enamelcompared to the other adhesive protocols in the study. 

 

- Dentine margins 

Regarding dentine margins, CHX addition in adhesives did not affect total demineralisation 

compared to the control group (CTRL) (p>0.05, ANOVA) (Table 10, page 66), thus 

showing no secondary caries inhibition in dentine. The control group (CTRL) (49% before 

vs 33% after), dentine pre-treatment with CHX (DENT) (69% before vs 45% after) and 

addition of CHX in the primer (PRIM) (60% before vs 29% after) maintained their 

percentage of perfect dentine margins after biological loading (p>0.05, Friedmann), 

however PRIM showed significantly more gaps (31% before vs 67% after) after caries 

model(p=0.021, Friedman), which is controversial, but can be partially explained from its 

high standard deviations (Table 13, page 69). Therefore, since CHX adhesives showed 

similar behaviour to the control group (CTRL), it can be concluded that they do not exhibit 

favourable behaviour regarding caries inhibition around dentine margins, either due to the 

inability of CHX to be released outside of the restoration, or due to its low concentration 

and therefore short-term releasealready during storage of specimens and thermocycling, 

procedures which lasted for 3 weeks. Industrial addition of CHX (PEAK) was also not able 

to protect dentine margins from deterioration and gap formation after caries model, since 

both the percentage of perfect margins (76% before vs 27% after) and gaps (36% before vs 

63% after) showed significant differences before and after caries model (p=0.001, 

Friedman) (Table 13, page 69) and a possible explanation is already discussed for enamel 

margins.  

Neither experimental, nor industrial addition of CHX in the adhesives, or dentine pre-

treatment with 2% CHX could provide protection against secondary caries or marginal 

deterionration in dentine. 
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6.2.2 μTBS 

After 1 day 

Experimental (PRIM, BOND) or industrial addition of CHX in adhesives (PEAK) 

decreased immediate bond strength to dentine, compared to the control group (CTRL) 

(p<0.01, mod. LSD) (Null hypothesis 2). This is in contrast with previously published 

studies, which showed that immediate bond strength was not affected by admixing CHX in 

adhesives [159,162,168,158,144], or even by replacing an adhesive component (liquid A) 

by 2% CHX [170]. However the aforementioned studies have tested small samples (36 – 43 

sticks / experimental group) (Table 1, page 17-18) corresponding roughly to 1/3 of the 

sample size in the present study, thus questioning the accuracy and reproducibility of the 

results. According to a critical review of micro bond strength tests [200] in vitro bond 

strength studies require ‘‘a sufficient number of specimens for its testing condition for 

statistical analysisbecause of the probabilistic strength distribution’’. Small numbers of 

samples may cause heterogeneity of the bond strength results, due to consequently higher 

standard deviations [109]. Moreover, these studies have tested CHX addition in self-etch 

adhesives [162,144] and when total-etch adhesives were used [146,159], these were 2-step 

adhesives, meaning primer and bonding agent were delivered from the same bottle. Since 

the present study separately evaluated CHX addition in the primer or the bonding step of 3-

step total-etch adhesive, comparison with the existing literature would be ineffectual. A 

single published study which included an CHX 3-step total-etch adhesive also 

demonstrated that CHX addition did not affect immediate μTBS to dentine [36], but had 

even smaller sample size than the studies mentioned before (2 – 4 sticks / group) (Table 1, 

page 17-18), and cannot be compared with the results of present study, which tested 99 – 

108 sticks / group regarding immediate μTBS (Table 4, page 28). Differences were also 

found in the adhesive interface dimensions and at the speed of tensile loading (Table 1, 

page 17-18), both of which are related to the bond strength testing methodology, further 

justifying the disagreement.   

There was no difference in bond strength values between experimental (PRIM or BOND) 

and industrial CHX addition (PEAK) (p>0.05, ANOVA).There is no published data in the 

literature concerning this comparison, but it is demonstrated that after PEAK application, as 
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well as with other 2-step total-etch adhesives of the same study, MMP activation was not 

prevented, despite the addition of 0.2% CHX in its composition [83]. Pre-treatment of 

dentine with 2% CHX did not alter the ability of the total-etch adhesive to bond to dentine 

(p>0.05, ANOVA), exhibiting that it is possible to obtain similar bond strength values with 

the control group (CTRL) (Null hypothesis 2). The finding correlates well with the existing 

literature, which shows no harmful effect on immediate bond strength after 2% CHX 

dentine pre-treatment [109,7,131,137,138,121,129,122,146,229]. Hybrid layer and resin tag 

formation in BOND appeared degraded, as evaluated qualitatively in exemplary SEM 

pictures (Figure 35, page 82). In agreement with literature [125], dentine treated with 2% 

CHX before the application of either a total-etch adhesive had clear presence of a hybrid 

layer and resin tags remained unaffected. No clear difference in failure pattern was 

observed between the control and the CHX adhesives, and this is also in agreement with 

literature findings [36].  

According to the results of the present study, it is preferred in terms of immediate bond 

strength protection, to add an extra step in the adhesive procedure by separately pre-treating 

dentine with 2% CHX, than admixing CHX into adhesives.  

Effect of biological loading 

Despite the fact that the oral cavity is exposed daily to cariogenic challenge, the effect of 

bacteria on bond strength is rarely evaluated. It was investigated whether S. mutans would 

negatively affect dentine bond stability and whether CHX adhesives could prevent it. The 

decreased bond strength after biological loadingin all groups under investigation (p<0.05, 

ANOVA) (Table 14, page page 71) (Null hypothesis 5) correlated well with the literature, 

which has shown that cariogenic bacteria can degrade dental resin composites and 

adhesives [70] and negatively affect μTBS [230]. However qualitative evaluation of the 

hybrid layer at exemplary specimens of each CHX group, did not show any alteration in the 

appearance of the hybrid layer or presence of resin tags (Figure 32 – 36, pages 79-83). On 

the contrary Borges et al. 2014 [231], demonstrated opposite results, which showed no 

reduction of adhesive bond strengths after a 4 hour / day cariogenic challenge. However the 

latter study did not took into account the alternating between demineralisation and 



Discussion 
 

97 
 

remineralisation phases, and although duration of demineralisation was the same with the 

present study, the cariogenic challenge did not simulate oral cavity conditions. 

Bond strength of CHX adhesives after cariogenic challenge varies. DENT, PRIM and 

PEAK exhibited significantly better performance compared to the control group (CTRL) 

(p<0.01, mod LSD) (Table 14, page 71) (Null hypothesis 5), pointing out the protective 

effect of CHX against bacterial degradation of the adhesive bond. Up to now, there is no 

other published data concerning biological loading of CHX adhesives.  

CHX adhesives did not protect their bond to dentine. However, when 2% CHX is used as 

dentine pre-treatment, added in primer or industrially added in adhesive, loss of adhesion 

was less extended.  

Effect of 6- and 12-month storage 

Literature shows that long-term storage in water or other aging media may affect the 

durability of the dentine bonds. The loss of stability of the adhesive interfaces overtime was 

related to the loss of stability of the polymer components, due to water penetration through 

nanoleakage channels, resulting in lower bond strengths and interfacial failure [73,66]. 

Adding to that, MMPs and CCs are activated by water and contribute to further enzymatic 

degradation of the adhesive area [8,109,30,232,44]. μTBS of all 6- and 12-months groups 

after aging provided evidence of a detrimental effect imposed by water or saliva on  dentine 

bonds, except from PRIM after 12-months storage in saliva (p>0.05, ANOVA) (Table 16, 

page 73) (Null hypothesis 3). CHX adhesives are faced with the limitation of uncontrolled 

release lasting for a short period of time [21]. The positive behavior of CHX added in the 

primer can be attributed to the fact that the primer may have acted as a carrier of CHX 

inside the complex network of the hybrid layer and since it was not in situ polymerized 

[49], CHX could be released. Addition of CHX in the primer of a 3-step total-etch adhesive 

and storage in water for 12 months [36], demonstrated same outcome with the present 

study, however concentration of CHX was different. There is no exact literature to support 

the findings of the present study, however addition of 2% CHX in a 2-step total-etch 

adhesive showed reduction of bond degradation after 12 months in artificial saliva [159]. 

The difference to the present study is that CHX was added in a primer – bonding agent 

mixture and in 20-times higher concentration (2% vs 0.1%) [159], therefore no direct 
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comparison can be made between the studies. Experimental total-etch adhesives with 

addition of 2% CHX have also exhibited positive results after 12-month storage [168], but 

published research on the topic is generally scarce. It is however confirmed that bond 

strength results of CHX adhesives depend on the type of adhesive system used, and it is 

suggested that CHX should be used in combination with total-etch adhesive [139], as in the 

present study. 

Dentine pre-treatment with 2% CHX does not produce better bonding values after 6 or 12 

months and this is confirmed by literature for a time interval from 6 months up to 2 years  

[123,133,136,140,147,122]. Other studies which may exhibit favorable bond strength 

results of CHX as dentine pre-treatment in the beginning indicate that the effect is lost after 

long-term storage [109,149], despite CHX’s substantivity. These results are in agreement 

with the present study, since 2% CHX as dentine pre-treatment (DENT) showed 

significantly worse μTBS values after storage, compared to baseline (p<0.05, Mann-

Whitney). This can be explained by the fact that CHX eventually leaches out of the hybrid 

layer due to its electrostatic nature of binding with water acting as the desorption medium 

[113] and even when CHX is tracked inside the hybrid layer after 8 weeks [16,115] or 5 

years [142] the concentration may still be very low to exhibit a therapeutic result. If CHX 

was released by the adhesives during the storage time in the storage media solution, no 

effect in dentine should be expected. Last but not least, even if CHX deactivates MMPs and 

CCs initially, re-activation of the enzymes by water or acidic metabolic products by 

microorganisms in the storage media, and therefore further deterioration of the bond 

strength, is also possible in the long run and could explain the absence of significant 

differences after storage. 

Clinical studies agree with the findings of the present study, regarding the absence of long-

term effect of CHX application on dentine, since enzymatic degradation by MMPs and CCs 

is not the only reason for bond failure and cannot be counteracted in total by CHX. 

Presence of CHX does not eliminate the negative impact of water sorption, ultimately 

leading to bond degradation. Even if collagen matrix can be preserved by MMP- and CC-

inhibitors, loss of integrity through the degradation of the adhesive component itself will 

remain [7]. Data from clinical studies with CHX exhibit no benefit from use of CHX as 
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dentine pre-treatment in 120 non- restorations for up to 18 months [151] and in 70 

restorations for up to 3 years [150]. On the other hand, clinical application of CHX is 

limited in Class I restorations with enamel margins [63,64], which provide an excellent 

marginal seal. The action of CHX against enzymatic degradation may be more evident at 

dentine – composite interface, where bonding is challenging. Even when Class V 

restorations with margins in enamel as well as in dentine are monitored [150,152], those 

were non-carious lesions [151,150]. Despite the fact that there is an association between 

clinical outcomes and laboratory results of bond strength studies [204], this is just one 

factor that influences the effectiveness of dentine adhesion. It should be noted that in vitro 

storage time does not correspond to the duration of clinical monitoring in vivo, since 

exposure of the resin-dentine sticks during laboratory storage is more challenging, therefore 

the 6- or 12-month results of the present study. Moreover, the duration of the clinical study 

may not be long enough for the adhesive bond of the control group (CTRL) to deteriorate 

in such an extent that a significant difference with the CHX pre-treatment would be 

exhibited.  

Industrial addition of 0.2% CHX in the adhesive (PEAK) did not offer any benefit after 6- 

or 12-month storage, and achieved significantly lower values after 12-months compared to 

CHX application as dentine pre-treatment (DENT) (p<0.05, mod. LSD) (Table 16, page 

73).The outcomes of the present study for 6-month storage correlate well with existing 

literature for the same adhesive [23]. There is no published data regarding its 12-month 

behavior. Generally, 2-step etch-and-rinse adhesives, such as PEAK, have performed less 

favorably in clinical circumstances than the conventional 3-step approach [191]. In vitro 

studies have corroborated this performance, relating their poorer performance to their 

higher hydrophilicity and reduced hybridization potential within the hybrid layer [191].  

Bonding efficiency did not alter at 6-month storage in water or artificial saliva for CHX 

adhesives compared to the control group (CTRL), possibly due to the fact that the time 

interval was relatively small to induce significant changes. Bond strength values at 12 

months storage differed significantly among the tested CHX adhesives (p<0.05, ANOVA). 

2% CHX dentine pre-treatment (DENT) showed better inhibition of bond degradation at 12 

months storage in water, compared to every other adhesive (p<0.05, ANOVA). After 12 
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months in artificial saliva, 2% CHX dentine pre-treatment (DENT), CHX in primer (PRIM) 

or in bonding agent (BOND) (p<0.01, mod. LSD) showed better μTBS values compared to 

the control group (CTRL) (Table 16, page 73). This showed that when CHX was added 

with one of the three aforementioned ways, it managed to suppress collagenolytic effects in 

dentine compared to the control group (CTRL) (comparison between the adhesives), but 

not in such an extent so that it could significantly protect bond strength throughout the 

long-term storage (comparison within the adhesive).  

Fracture analysis revealed cohesive and adhesive fractures of the CHX adhesives with a 

tendency to fail more adhesively over time (Figure 28 – 31, page 74-75). This is in 

agreement with literature [123,137,36]. On the contrary another study showed that storage 

in artificial saliva decreased the number of adhesives failures over time [77], although not 

significantly [138]. Despite the fact that number of pre-test failures increases with time in 

long-term storage studies [142], this was mainly observed at the control group (CTRL) in 

the present study. CHX adhesives had very few or no pre-test failures after long-term 

storage (Figure 30, 31, page 75). 

Addition of CHX in the primer managed to inhibit bond strength degradation after 12 

months storage in saliva, compared to baseline. Since the shelf-life and stability of this 

experimental formulation was not evaluated in the present study, further research should be 

planned in that direction.  

Effect of storage medium 

The majority of storage studies – also those with CHX adhesives – use either water or 

artificial saliva as storage medium. In the present study both storage solutions were used at 

6- and 12-month storage, in order to perform a comparison under the same circumastances. 

No other published study exists on CHX adhesives and their long-term storage in both 

media. Results of the present study showed that the effect of storage solution was not 

significant during 6-month storage for every adhesive tested (p=1.000, mod. LSD). 

However, differences between 12-month water and 12-month saliva bond strength data 

were demonstrated for PRIM, BOND and PEAK. Those performed significantly worse 

when stored in water (p<0.001, mod. LSD) (Null hypothesis 4). Control group (CTRL) 

followed the same trend, but level of significance was lower (p=0.011, mod. LSD). This 



Discussion 
 

101 
 

exhibits that storage medium plays an important role [233], especially in long-term storage 

studies, and results from different studies should be interpreted on that base. Moreover, 

since storage in artificial saliva resembles the clinical situation, it should be preffered. 

 

6.3 Discussion of the null hypotheses (H0) 

Null hypothesis 1: Experimental or industrial addition of CHX in the adhesives is not able 

to inhibit secondary caries formation around Class V composite restorations. 

Null hypothesis 1 was partially accepted. Regarding total demineralisation values, null 

hypothesis was accepted since CHX adhesives in enamel exhibited worse behaviour in 

enamel margins and same as the control group (CTRL) in dentine (p=0.03, ANOVA) 

(Table 9, page 65 and Table 10, page 66). Regarding marginal gap formation, null 

hypothesis was partially accepted, as DENT (p=0.009, mod. LSD), PRIM (p=0.007, mod. 

LSD) and BOND (p=0.007, mod. LSD) managed to eliminate gap formation in enamel 

after biological loading, especially in terms of marginal gap depth. In terms of marginal 

quality assessment, the null hypothesis was partially accepted, as the percentage of formed 

gaps in enamel after caries model for DENT, were significantly less (p<0.05, ANOVA) 

compared to all other testedgroups (Table 12, page 69). 

 

Null hypothesis 2: It is not possible for the CHX adhesives to have bond strength values at 

baseline, after 6- and 12-month storage, same to the control group (CTRL). 

Null hypothesis 2 was partially accepted for baseline, since DENT demonstrated no 

significant difference in immediate μTBS compared to the CTRL (p>0.05, ANOVA) 

(Tables 15, page 72 and Table 16, page 73) and showed significantly less adhesive 

fractures compared to PRIM (p=0.022, Mann-Whitney) and PEAK (p=0.002, Mann-

Whitney) (Figure 30, 31, page 75). Null hypothesis was not accepted for 6- or 12-month 

storage. 
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Null hypothesis 3: CHX adhesives cannot maintain their bond strength after 6- and 12-

months storage compared to baseline. 

Null hypothesis 3 was partially accepted, since PRIM demonstrated no significant 

difference after 12-month storage in saliva (p>0.05, ANOVA). All other groups failed to 

maintain their immediate μTBS throughout 6- and 12-month storage. (Table 15, page 72 

and Table 16, page 73). Null hypothesis was also partially accepted regarding comparison 

between the adhesives. DENT exhibited significantly better values compared to all other 

adhesives (p<0.05, ANOVA) at 12-month storage in water and DENT (p=0.002, mod. 

LSD), PRIM (p=0.000, mod. LSD), BOND (p=0.000, mod. LSD) showed better μTBS 

values at 12-month storage in saliva, compared to the CTRL (Table 16, page 73). CHX 

adhesives failed to present higher bond strength compared to the CTRL after 6 months 

storage. 

 

Null hypothesis 4: There is no difference between artificial saliva and distilled water as 

storage media in 6- and 12-month storage. 

Null hypothesis 4was partially accepted, as PRIM (p=0.000, mod. LSD), BOND (p=0.000, 

mod. LSD) and PEAK (p=0.000, mod. LSD), demonstrated significant differences between 

the storage media at 12 months. No significant difference was evident at 6-month storage 

(Table 17, page 77). 

 

Null hypothesis 5: CHX adhesives cannot withstand bond strength reduction after 

biological loading with S. mutans. 

Null hypothesis 5 was partially accepted. CHX adhesives, as well as CTRL,could not 

withstand the biological degradation andexhibited significantly lower μTBS values after the 

10-day biological loading (p<0.05, ANOVA) (Table 14, page page 71). However, DENT 

(p=0.000, mod. LSD), PRIM (p=0.008, mod. LSD) and PEAK (p=0.001, mod. LSD) 

exhibited significantly higher μTBS after caries model compared to the CTRL after caries 

model (Table 14, page 71). 
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6.4 Future directions 

This dissertation set out to investigate the role of CHX in improving composite 

restorations maintainance in terms of antibacterial and antiproteolytic protection. According 

to the results, 0.1% or 0.2% CHX in adhesives did not provide any antibacterial effect, 

regarding secondary caries. 0.1% CHX in the primer managed to withstand bond strength 

degradation after 12 months, however the adhesive’s bonding performance at baseline was 

damaged. Further research should be pointed towards testing the antibacterial and 

antiproteolytic effect of higher CHX concentrations in the adhesives, in a form of delivery 

that would provide controlled release and would not harm the material’s properties. 

Nanocapsules loaded with CHX could be an option. Self-life of CHX-adhesives is also a 

questionable aspect and was not evaluated in the present study, as CHX was freshly mixed 

with the experimental adhesives before each application. Since only total-etch adhesives 

were examined, research should be further expanded to comparison between CHX total-

etch and CHX self-etch systems. Moreover, comparison of CHX-adhesives with adhesives 

loaded with other potential antibacterials and/or enzyme inhibitors under standardized 

parameters, could be suggested as a natural direction for future research. Last but not least, 

CHX adhesives should be clinically tested with randomized controlled trials in order to 

confirm their clinical significance in the long-term maintance of restorations.  
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6.5 Conclusions 

According to the results of the present study and within its limitations it can be concluded 

that: 

� Despite the fact that none of the CHX adhesives inhibited secondary caries formation, 2% 

CHX dentine pre-treatment managed to limit marginal gap formation in enamel compared 

to the other adhesive protocols in the study.  

� Neither experimental, nor industrial addition of CHX in the adhesive procedure could 

provide protection against secondary caries in dentine. 

� It is preferred to add an extra step in the adhesive procedure by separately pre-treating 

dentine with 2% CHX, than admixing CHX into adhesives. When CHX was admixed with 

the primer or with the bonding agent in 0.1% concentration or was 0.2% industrially added, 

bond strength values at baseline dereriorated. 

� CHX adhesives did not manage to protect dentine bond from bacteriaduring biological 

loading with S. mutans. However, when 2% CHX was used as dentine pre-treatment, added 

in primer or industrially added in adhesive, loss of adhesion was less extended.  

� Addition of 0.1% CHX in the primer managed to inhibit bond strength degradation after 12 

months storage in saliva.  

� Regarding comparison between the storage media, 12-month storage in artificial saliva 

exhibited more favorable μTBS and differed significantly from water storage. That effect 

was not evident at 6 months storage. 

In general, 2% CHX application as dentine pre-treatment performed better regarding its 

inhibition of demineralisation at enamel margins – but not at dentine margins –, did not 

interfere with the baseline bond strength of the 3-step total-etch adhesive to dentine and 

limited loss of adhesion due to biological loading. 0.1% CHX in primer was also able to 

limit loss of adhesion after the cariogenic challenge and protected the adhesive bond from 

further hydrolytic and enzymatic degradation up to 12 months in vitro. All other CHX 

adhesives failed to protect adhesive restorations against bacteria or endogenous enzymes.  
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7. Summary – Zusammenfassung 

Summary 

Objective 

Aim of the study was to investigate the antibacterial and antiproteolytic effect of 

chlorhexidine (CHX) when added in the adhesive procedure, at baseline, after biological 

loading and after 6- or 12-month storage in distilled water or in artificial saliva. 

Materials & Methods 

The study consisted of two parts: biological loading of restorations in a bacterial caries 

model (n=60 teeth) and μTBS at baseline, after biological loading and after storage 

(n=2979 sticks). Following groups were formed: i) Control group (CTRL), 3-step adhesive 

Adper Scotchbond™ Multipurpose, 3M ESPE, ii) 2% CHX as dentine pre-treatment 

(DENT), iii) 0.1% CHX in primer (PRIM), iv) 0.1% CHX in bonding (BOND), v) 2-step 

adhesive Peak® Universal Bond with 0.2% CHX (PEAK). PRIM and BOND were 

fabricated on the basis of the 3-step adhesive used. Class V composite restorations were 

loaded in caries model with S. mutans according to a 10-day biological protocol. 

Demineralisation was evaluated with fluorescence microscopy and marginal analysis was 

performed with SEM. For μTBS (Syndicad TC-550), dentine-composite sticks with 0.46 

mm2 adhesive interface were fabricated and tested at baseline, after 2-day caries model, 

after 6- and 12-month storage in distilled water or artificial saliva. Fracture mode analysis 

followed and exemplary sticks were evaluated under SEM.  

Results 

None of the CHX adhesives inhibited secondary caries formation but 2% CHX dentine pre-

treatment (DENT) managed to limit marginal gap formation in enamel (p<0.05). Bond 

strength of CHX adhesives at baseline was worse compared to the CTRL (p<0.05) and 

decreased significantly after caries model (p<0.05). Only PRIM exhibited same μTBS 

values after 12-month storage in saliva, compared to baseline.  
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Conclusions 

2% as dentine pre-treatment inhibited marginal degradation at enamel margins, but no CHX 

adhesive protected composite restorations against secondary caries. 0.1% CHX in primer 

protected bond strength degradation after 12 months in artificial saliva, exhibiting a 

potential antiproteolytic effect. 
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Zusammenfassung 

Zielsetzung 

Das Ziel dieser Dissertation war die Untersuchung von antibakteriellen und 

antiproteolytischen Effekten des Chlorhexidins als Zusatz während verschiedener Schritte 

der Adhäsivtechnik zur Baseline, nach mikrobiologischer Belastung mit S. mutans, sowie 

nach 6- bzw. 12-monatiger Lagerung in destilliertem Wasser oder künstlichem Speichel. 

Material und Methode 

Die vorliegende Studie besteht aus 2 Teilen, auf der einen Seite die Untersuchung der 

restaurierten Zähne nach mikrobiologischer Belastung im Karies Modell (n=60 Zähne) auf 

der anderen Seite die Bestimmung von Haftwerten mittels Mikrozugversuch zur Baseline, 

nach mikrobiologischer Belastung sowie nach Lagerung (n=2979 Stäbchen). Es wurden 

folgende Gruppen gebildet: i) Kontrollgruppe (CTRL), 3-Schritt Adhäsiv Adper 

Scotchbond Multipurpose™, 3M ESPE, ii) 2% CHX als Dentin-Vorbehandlung (DENT), 

iii) 0.01 % CHX im Primer (PRIM), iv) 0.01 % CHX im Adhäsiv (BOND), v) 2-Schritt 

Adhäsiv Peak® Universal Bond mit 0.2 % CHX, Ultradent (PEAK). PRIM and BOND 

wurden auf der Basis des gebräuchlichen 3-Schritt Adhäsivs hergestellt. Klasse V- 

Komposit-Restaurationen wurden im Kariesmodell mit S. mutans gemäß Protokoll über 10 

Tage belastet. Die Auswertung der Demineralisationen erfolgte fluoreszenzmikroskopisch, 

die Randspaltananlyse mittels REM. Die Haftwerte wurden im μ-Zuggerät TC 550 

(Syndicad) ermittelt. Dazu wurden Dentin-Komposit-Stäbchen mit einem Adhäsiv-

Interface von 0.46 mm² hergestellt, die zur Baseline, nach 2-tägiger Belastung im 

Kariesmodell  sowie nach 6- und 12-monatiger Lagerung in destilliertem Wasser oder 

künstlichem Speichel dem μ-Zugversuch unterzogen wurden. Es erfolgte eine Analyse des 

Frakturmodus und eine exemplarische Beurteilung mittels REM. 

Ergebnisse 

Keines der CHX-Adhäsive hemmte die Bildung von Sekundärkaries, jedoch konnte die 

Dentinvorbehandlung mit 2 %-igem CHX (DENT) die Randspaltbildung im Schmelz 

begrenzen (p<0,05). Die Haftwerte der CHX Adhäsive waren schlechter im Vergleich zu 

denen der Kontrollgruppe (CTRL) (p<0,05). Nur die Gruppe PRIM nach 12-monatiger 
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Lagerung in künstlichem Speichel zeigte die gleichen Haftwerte verglichen mit den Werten 

der Baseline. 

Schlussfolgerung 

2% CHX verhindert als Dentin-Vorbehandlung die Randspaltbildung, jedoch schützte kein 

CHX-haltiges Adhäsiv die Restauration vor Sekundärkaries. 0.01 % CHX im Primer 

schützte vor einer Verminderung der Haftwerte nach 12-monatiger Lagerung in 

künstlichem Speichel, vermutlich durch einen antiproteolytischen Effekt. 
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9. Appendix 
9.1 Appendix I – III 

Appendix I. Boxplot of total demineralisation (TOTAL) in enamel after 10 days biological loading in caries 
model.Total demineralisation (TOTAL) = demineralisation (DEM) + substance loss due to demineralisation
(SUB). Evaluation took place at restoration margins, 300 μm and 500μm away from the margins. Values 
displayed in Table 9. 

Appendix II. Boxplot of total demineralisation (TOTAL) in enamel after 10 days biological loading in caries 
model.Total demineralisation (TOTAL) = demineralisation (DEM) + substance loss due to demineralisation
(SUB). Evaluation took place at restoration margins, 300 μm and 500μm away from the margins. Values 
displayed in Table 10. 
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Appendix III. μTBSvalues in MPa. Graphs correspond to values in Tables 14-16. 
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9.2 Abbreviations list 

 

ANOVA  Analysis of variance 

B. Cereus  Bacillus Cereus 

BHI   Brain heart infusion 

BOND   Chlorhexidine in bonding 

CC   Cysteine cathepsin 

CFU   Colony forming unit 

CHX   Chlorhexidine 

CTRL   Control 

DNA   Deoxyribonucleic acid 

DEM    Demineralisation 

DENT   Dentine pre-treatment with 2% chlorhexidine 

DSMZ   Deutsche Sammlung von Mikroorganismen und Zellkulturen 

FDI    Federation Dentaire Internationale 

LED   Light emitting diode 

L. monocytogenes Listeria monocytogenes 

LP   Light polymerization 

LSD   Least significant difference 

MMP   Matrix metalloproteinase 

MOD   Mesio-occlusal-distal 

MPa   Megapascal 

mRNA   Messenger ribonucleic acid 

rpm   Revolutions per minute 

OD   Optical density 

P. Aeuruginosa Pseudomonas aeruginosa 

PBS   Phosphate buffered saline 

PEAK   Peak® Universal Bond with 0.2% Chlorhexidine 

PRIM   Chlorhexidine in primer 



Appendix 

135 
 

SD   Standard deviation 

SEM   Scanning electron microscope 

S. mutans  Streptococcus mutans 

spp.    species 

SUB   Substance loss 

TIMP   Tissue inhibitor of MMP 

TOTAL  Total deminerlisation 

μTBS   Microtensile bond strength 
oC   Degree of Celcius  
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9.3  Tables – figures list 

Tables Page 

Table 1 Summary of in vitro studies with CHX added into adhesives. 17 

Table 2 Information of materials used according to manufacturer’s information. 26 

Table 3 Application directions of the adhesives used. 27 

Table 4 Number of specimens in each group. Teeth are regarded as specimens for the 

Class V caries model, while sticks are the specimens for μTBS test.  

28 

Table 5 Cultivation of bacteria for insertion into the caries model. 43 

Table 6 Sterilization programms. 47 

Table 7 Biological protocol for the caries model in 24 hours. 51 

Table 8 Information on caries model series. Nr 1 – 5: 10-day biological loading of 

Class V restorations. Nr 6 – 9: 2-day biological loading before μTBS 

62 

Table 9 Results of enamel demineralisation (μm, [SD]) after biological loading of Class 

V restorations for 10 days in the caries model.  

65 

Table 10 Results of dentinedemineralisation (μm, [SD]) after biological loading of Class 

V restorations for 10 days in the caries model.  

66 

Table 11 Results of marginal gap formation (μm, [SD]) in enamel and in dentine after 

biological loading of Class V restorations for 10 days in the caries model.  

67 

Table 12 Marginal analysis before and after caries model in enamel for variables perfect 

margin, overhand and gap, demonstrated in % percentage mode. 

69 

Table 13 Marginal analysis before and after caries model in dentine for variables perfect 

margin, overhand and gap, demonstrated in % percentage mode.  

69 

Table 14 Comparison of μTBS values between day 1 (baseline) and after biological 

loading in caries model. 

71 

Table 15 Comparison of μTBS values between day 1 (baseline) and after 6- and 12-

month storage in distilled water. 

72 

Table 16 Comparison of μTBS values between day 1 (baseline) and after 6- and 12-

month storage in artificial saliva.  

73 

Table 17 Comparison of μTBS values (MPa, [SD]) between storage media after 6- and 

12-month storage in distilled water or artificial saliva.  

77 
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Figures Page 
Figure 1 Schematic demonstration of the study design and steps of the two tests 

performed i) caries model with Class V restorations and ii) μTBS test at 

baseline, after biological loading and after 6- and 12- month storage (n=number 

of teeth). 

28 

Figure 2 Placement of 12 specimens on chewing simulator plates in the reaction chamber 

of the caries model. 

31 

Figure 3 Schematic demonstration of experimental steps for caries model with Class V 

restorations. 

31 

Figure 4 Exposed mid-coronal dentine was polished and a standardized smear layer was 

formed before the application of the adhesives.  

32 

Figure 5 Production of sticks by sectioning of tooth in two perpendicular directions. 

Composite-dentine sticks which broke during sectioning were regarded as pre-

test failures (right). Composite-enamel sticks were excluded. 

34 

Figure 6 Schematic demonstration of experimental steps for μTBS. 35 

Figure 7 Caries model set up with two independent caries models. A: reaction chamber, 

B: reservoir-container with S. mutans, C: pumps, D: waste container, E: pH and 

temperature measuring device, F: input lines for artificial saliva and nutrition 

medium, which are located outside the incubator, G: connection of the caries 

model with the personal computer. 

37 

Figure 8 Schematic drawing of caries model set up in association to figure 9. A: reaction 

chamber, B: reservoir-container with S. mutans, C: pumps, D: waste container, 

F: input lines for artificial saliva and nutrition medium. 

37 

Figure 9 The screwable cap (left) and the Teflon base (right) of the reaction chamber. 

Chewing simulator plates with waxed specimens are placed in the 12 holes of 

the Teflon base. The central opening holds the pH-electrode. 

40 

Figure 10 Containers of the caries model. Reservoir-containers with S. mutans, placed on 

magnetic stirrers during a double caries model (left). Note the biofilm 

accumulation at the inner walls of the flask after a few days of operation and the 

white fine-pore stones, which are visible through the bacterial solution. Artificial 

40 
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saliva (clear) and nutrition medium (dark) 20 l glass bottles are placed outside 

the incubator due to limited space (right). 

Figure 11 S. mutans (DSM Nr: 20523) culture after 48 h incubation. 1 inoculation loop is 

taken in order to dilute the bacteria for the overnight culture.  

44 

Figure 12 Control of bacterial growth via opacity after overnight culture. 0 (left): negative 

control, 1 (middle): No 1 bacterial solution, 2 (right): No 2 bacterial solution.  

44 

Figure 13 Purity control before each caries model cycle. It is impossible to count the 

colonies at 10-1 plate (left), while 28 S. mutans colonies are visible at plate with 

bacterial solution diluted up to 10-5. 

44 

Figure 14 B.cereus colony usually detected at the purity control at the end of a caries 

model cycle. 

45 

Figure 15 Continuous control of pH (up) and temperature in oC (down) inside the reaction 

chamber throughout biological loading in two independent caries models (caries 

model No 1: yellow, caries model No 2: red). Downward peaks correspond to pH 

decrease during demineralisation. Caries model runs undisturbed when pH 

curves are symmetrical and even.  

46 

Figure 16 Reaction chamber during demineralisation (left) and remineralisation phase 

(right) filled with the appropriate medium. 

49 

Figure 17 Class V caries model specimen after the 10-day biological protocol. 

Demineralisation in enamel and substance loss in dentine are macroscopically 

visible around the restoration. 

50 

Figure 18 μTBS caries model sticks after the 2-days biological protocol under microscope 

due to illustration reason. Demineralisation of dentine is visible due to its 

opacity (left: light microscope 15X magnification) or due to its fluorescence 

(right: fluorescence microscopy 15 X magnification). Substance loss due to 

demineralisation is the distance between the dotted white line and dentine 

surface in both images.  

51 

Figure 19 Placement of the stick on the metal plates of the bond strength testing machine 53 
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and fixation with flowable composite resin. 

Figure 20 Screenshot of μTBS software TC-550 in operation. Parameters can be adjusted 

at the left side, while the red curve shows the tensile loading of the stick until 

bond failure. Maximum force applied is displayed in N.  

53 

Figure 21 Failure modes under fluorescence microscope in 15X magnification for 

illustration reasons. Adhesive failure (up), cohesive failure in composite 

(middle) and mixed failure in composite and in adhesive interface. Composite 

remnants on the adhesive interface are marked with red asterisk. 

54 

Figure 22 Overview image of the restoration after caries model under light microscope 

(left) and fluorescence microscope (right) (AZ 100 Macroscope, Nikon, 6X 

magnification). 

56 

Figure 23 Evaluation of fluorescence microscope capture at restoration margins. The 

following parameters are determined: substance loss due to demineralisation 

(gelb), demineralisation depth (red), marginal gap width (white), marginal gap 

depth (white-stripped). 

56 

Figure 24 Stitched SEM images (200X magnification) demonstrating the dentine / 

composite margin before biological loading. 

57 

Figure 25 Color-coded evaluation of dentine / composite margin of figure 24. Dark blue 

corresponds to perfect margin, while turquoise shows marginal gap. 

58 

Figure 26 Qualitative evaluation of the adhesive area (yellow arrows) with SEM at 1000X 

magnification. Red mark showing composite resin fillers. 

60 

Figure 27 Qualitative evaluation of hybrid zone (yellow arrows) and composite tags (red 

marks) with SEM at 1000X magnification, after removal of the inorganic 

content. Picture corresponds to the same specimen as figure 26. 

60 

Figure 28 Mode of bond failure at day 1 (baseline). Colors correspond to different types of 

fractures, which are presented in percentage %. 

74 

Figure 29 Mode of bond failure after caries model. Colors correspond to different types of 

fractures, which are presented in percentage %. 

74 
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Figure 30 Mode of bond failure after 6-month storage in distilled water and artificial 

saliva. Colors correspond to different types of fractures, which are presented in 

percentage %. Few pre-test failures are observed in CTRL in water and in PEAK 

in saliva. 

75 

Figure 31 Mode of bond failure after 12-month storage in distilled water and artificial 

saliva. Colors correspond to different types of fractures, which are presented in 

percentage %. Pre-test failures were only observed in CTRL, in both storage 

conditions. 

75 

Figure 32 SEM pictures 1000X showing adhesive interfaces in CTRL group for Day 1 

(baseline), Caries Model, 6-month water storage, 6-month artificial saliva 

storage, 12-month water storage, 12-month artificial saliva storage. Degradation 

of resin tags is evident after storage in both media. 

79 

Figure 33 SEM pictures 1000X showing adhesive interfaces in DENT group for Day 1 

(baseline), Caries Model, 6-month water storage, 6-month artificial saliva 

storage, 12-month water storage, 12-month artificial saliva storage. Resin tags 

were preserved up to 6-month storage, but they collapsed after 12 months 

storage in distilled water or artificial saliva. 

 

80 

Figure 34 SEM pictures 1000X showing adhesive interfaces in PRIM group for Day 1 

(baseline), Caries Model, 6-month water storage, 6-month artificial saliva 

storage, 12-month water storage, 12-month artificial saliva storage. Resin tags 

are well preserved after 6 months and only after 12-month storage in artificial 

saliva. 12-month storage in water destroyed the tags. 

81 

Figure 35 SEM pictures 1000X showing adhesive interfaces in BOND group for Day 

1(baseline), Caries Model, 6-month water storage, 6-month artificial saliva 

storage, 12-month water storage, 12-month artificial saliva storage. Resin tags 

collapsed after 6- or 12-month storage in saliva, but were well preserved after 12 

months in distilled water. 

82 

Figure 36 SEM pictures 1000X showing adhesive interfaces in PEAK group for Day 1 

(baseline), Caries Model, 6-month water storage, 6-month artificial saliva 

storage, 12-month water storage, 12-month artificial saliva storage. Resin tags 

were preserved up to 6 month storage but disappeared in 12-month storage 

samples. 

83 
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