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1. Abstract 
The spindle apparatus and the zona pellucida are two essential organelles in oocytes, 

which can be viewed by PolScope microscopy non-invasively, due to their composition of 

molecularly ordered, paracrystalline fibres. The spindle apparatus is responsible for the 

high fidelity of chromosome segregation during oogenesis. Disturbances in spindle 

assembly increase the risk of chromosome mal-segregation in oocytes. Accordingly, 

oocytes possessing a birefringent spindle in PolScope microscopy tend to have a better 

developmental potential compared to those without a spindle. The zona pellucida is an 

extracellular matrix surrounding mammalian oocytes and pre-implantation embryos with 

an essential role in oocyte development, fertilization and implantation. Failures in 

expression of zona proteins correlate to subfertility or infertility in animals. Low 

expression of the zona proteins by the growing human oocyte may indicate reduced 

developmental potential. Retardance of light and magnitude of birefringence is linearly 

correlated to number and alignment of microtubules. Therefore, high mean retardance 

magnitude may reflect oocytes with healthy, robust spindle and/or zona pellucida that 

have a high developmental potential. Low birefringence might be indicative of structures 

with few and unaligned fibres and oocytes with lower developmental capacity. To test this 

notion, the current study employed PolScope microscopy in the IVF centre of Giessen 

University to non-invasively and quantitatively assess spindle and zona morphology in 

living human oocytes before they were subjected to intracytoplasmic sperm injection 

(ICSI). Quality and viability of the embryos after insemination of oocytes with high or 

low birefringence was compared retrospectively.  

 

In total, oocytes from 182 stimulated ICSI cycles were screened by PolScope after 

informed consent of patients. For the assessment of spindle morphology and texture, 676 

oocytes (mean age of patients was 32.5 ± 4.4 years) were analysed that developed into 

pre-embryos and were assessed for PN scores to select embryos for transfer, blindly with 

respect to spindle birefringence. Mean magnitude of retardance of spindles and pole-to-

pole length was retrospectively compared between all oocytes giving rise to high or low 

PN score embryos, and was also analysed with respect to maternal age. Mean retardance 
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was also compared between oocytes developing into non-transfer embryos and those 

selected for transfer after ICSI, respectively.  

For the assessment of the zona morphology and texture, retardance magnitude and 

thickness of the inner, middle and outer layers of the ZP were quantitatively analysed by 

PolScope in 166 oocytes selected for transfer after ICSI (63 of the 103 cycles; mean age 

32.8 ± 4.4 years) on the basis of pronuclear score at day 1. Blastomere number was 

determined at day 2. Data were compared between oocytes giving rise to conception 

cycles (CC; 65 oocytes/23 cycles) and non-conception cycles (NCC; 101 oocytes/40 

cycles) and with respect to maternal age. 

 

Results of the spindle analysis showed that magnitude of light retardance by the oocyte 

spindle was positively correlated to embryo quality after ICSI according to PN score in 

the IVF centre in Giessen. Good PN score pre-embryos were from oocytes with 

significantly higher birefringent spindles compared to lower PN score pre-embryos (P < 

0.001). In addition, oocytes developing to pre-embryos with very poor quality had a 

significantly shorter spindle compared to those forming embryos with highest PN score (P 

< 0.001). Mean retardance was significantly higher in spindles of oocytes selected for 

transfer compared to non-transfer oocytes (P < 0.001). There was no clear relationship 

between maternal age and mean retardance in the cohort containing few patients ≥ 36 

years.  

 

Zona pellucida scoring revealed three distinctly different layers of the extracellular coat 

surrounding the human oocyte, whereas the zona appeared comparatively translucent, 

when viewed by a conventional light microscope equipped with Hoffmann interference 

optics. Embryos in the CC group tended to develop faster. The thickness of the inner zona 

layer was significantly different (P < 0.001), and the mean magnitude of light retardance 

was nearly 30% higher (P < 0.001) in the inner layer of the zona pellucida of oocytes 

contributing to a CC compared to a NCC. Nearly 90% percent of the oocytes containing a 

ZP with a mean retardance magnitude over 3.0 nm of the inner ZP layer contributed to a 

CC, significantly more compared with the NCC (χ²-test, P < 0.001).  
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In conclusion, the study shows that oocytes with a high mean retardance of light by the 

spindle develop into pre-embryos with good PN score. This finding has been confirmed 

by a small cohort of 59 oocytes from an IVF centre in Milano, Italy. PN-scoring was 

originally developed to identify presumably high quality embryos and may be predictive 

for aneuploidy. Since PN-scoring cannot be used for selection in some counties due to 

ethical and legal considerations, analysis of mean spindle retardance by PolScope 

microscopy may be as useful as PN-scoring to identify oocytes with higher or lower 

developmental potential, and combining with PN-scoring may provide additional 

information on oocyte health and quality.  

A high birefringent and thick ZP is related to the presence of a dense coat of highly 

ordered ZP filaments and thus appears to reflect health and developmental potential of an 

oocyte. The mean magnitude of light retardance by the ZP inner layer presents a new, 

unique, non-invasive marker for embryo viability after ICSI. Combining screening for 

birefringence of the spindle apparatus and the zona pellucida together with other methods 

like PN-scoring, analysis of oocytes by quantitative PolScope microscopy may contribute 

significantly to identify the highest quality oocytes in ICSI cycles, to reduce multiple 

embryo transfers, and to improve oocyte handling and treatment of patients. 
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2. Introduction 
2.1 Oocyte Growth, Maturation, Fertilization, Implantation and Developmental 

Potential of Embryos after Fertilization  

Truly in the sense of the Aristoteles words "Ex Ovo Omnia" oocytes are amongst the most 

remarkable animal cells. According to their totipotency, oocytes (or rather eggs) can 

differentiate into all germ cell layers and can develop into a new individual after 

fertilization. While parthenogenetic development may occur in several animal species, it 

is the maternal as well as the paternal genome that is required for normal development of 

the zygote in mammals (Illmensee et al., 2006); imprinting processes and epigenetic 

marks contribute to define the developmental potential of germ cells as well as stem cells 

and differentiated somatic cells in mammals (De Rycke et al., 2002). However, only in 

the last decades it has become clear that ooplasm contains unique still undefined factors, 

which are essential for normal embryonic development and may even reset the 

programme of differentiated somatic cell nuclei to provide conditions for development 

and differentiation from somatically derived chromatin for cloning (Rodriguez-Mari et al., 

2005). Thus, it is still one of the most important and intriguing questions in reproductive 

biology, but also of immense clinical relevance, in particular in assisted reproduction, to 

assess the basis of the origin, differentiation, quality and function of mammalian oocytes. 

 

2.1.1 Oogenesis and Female Meiosis 

Oogenesis is the development of a female gamete (oocyte), which begins already during 

prenatal life in primates. The details of oogenesis vary from species to species in 

mammals, but the general stage is similar. Primordial germ cells (PGCs) migrate to the 

forming gonad to become oogonia, which proliferate by mitosis for a period before 

differentiating into primary oocytes. As the PGCs move from the base of the allantois, 

they embark upon a complex migration, first into the endodermal epithelium of the hind 

gut, then into the mesentery, and finally into the genital ridges, which are bands of 

mesodermal tissue lying in the roof of the peritoneum. The mechanisms by which the 

PGCs are translocated from extragonadal sites to the genital ridges probably involve the 

active movement of PGCs, either along the tracts of extracellular matrix material or in 

response to chemotactic gradients by molecules released by the cells of the genital ridge 
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(Bendel-Stenzel et al., 1998; Saito et al., 2004). While oogonia divide mitotically, 

primary oocytes enter meiosis in female mammals in response to a stimulus provided by 

the somatic cells of the genital ridges (Yamaguchi et al., 2005), while in males testicular 

cords develop and mitotic divisions eventually cease in the early embryonic gonad.  

Meiosis is a unique process restricted to germ cells. Meiosis comprises usually a meiotic 

S-phase during which chromosomes replicate, followed by two successive nuclear 

divisions without intervening replication to produce one (in the female) or four (in the 

male) haploid gametes (Figure 2.1.1). After DNA replication and meiotic pairing and 

exchange bivalent chromosomes are formed which contain two recombined homologues 

each with two sister chromatids and homologues connected by chiasmata. Homologues 

usually separate at the first meiotic division reductively from each other (Figure 2.1.1). 

This is achieved by release of cohesion between chromatid arms resulting in chiasma 

resolution (Kudo et al., 2006). During the second meiotic division the sister chromatids 

separate equationally, with detachment/ loss of centromere cohesion of sister chromatids, 

comparable to mitosis and without an intermittent DNA replication (Figure 2.1.1). Most 

processes in genetic recombination and exchange between originally paternally and 

maternally derived homologous chromosomes occur in prophase I. Following S-phase, 

the long prophase of meiosis I can be subdivided according to morphological criteria into 

five distinct stages, namely, leptotene, zygotene, pachytene, diplotene and diakinesis, 

associated with the assembly (synapsis) and disassembly (desynapsis) of the 

synaptonemal complex. 
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Figure 2.1.1 Reductional and equational separation of 
chromosomes at meiosis I and meiosis II 
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a. The leptotene stage is resumed by the end of the pre-meiotic DNA synthesis. 

During this stage chromosomes start to condense and each of them is attached to 

the nuclear envelope via an attachment plaque at its telomeres (Pawlowski and 

Cande, 2005). Along the chromosome arms the lateral elements of the 

synaptonemal complex begin to form (Figure 2.1.2). 

b. In the zygotene stage, homologous chromosomes pair with each other over the 

entire chromosome length. The synaptonemal complexes fully develop with 

lateral elements at the chromosome axis and a central core that attaches the two 

homologues to each other. In addition, the chromosomes condense and shorten 

considerably during this stage (Figure 2.1.2).   

c. At pachytene, synapsis is complete; the homologues further condense and now 

are fully paired. Genetic exchange occurs at sites defined by presence of 

recombination enzymes in recombination nodules on the synaptonemal complex 

 
Figure 2.1.2 Formation of the synaptonemal complex and pairing of homologous 
chromosomes during prophase I of meiosis. A single bivalent is shown. At leptotene, the two 
sister chromatids condense, with chromatin extending from a common protein axis (red). The 
homologous sites get in contact such that in the pachytene stage two laterals and one 
central element composed of proteins of the synaptonemal complex (blue and red) mediates 
fulls synapsis. At diplotene stage homologous chromosomes disjoin and the synaptonemal 
complex disassembles, leaving chromosomes connected at sites of exchange where they 
remain physically attached at sites which later are recognized as chiasmata. Meiosis arrests 
after resolution of the synaptonemal complex after diplotene (termed dictyate stage) for up to 
decades in human oocytes (modified from Alberts et al., 2002). 
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(Pawlowski and Cande, 2005; Cohen et al., 2006) between two non-sister-

chromatids in bivalents allowing meiotic exchange to take place. Later these 

sites are recognized as chiasmata (Figure 2.1.2).  

d. Desynapsis occurs already in the stage of diplotene when homologous lose 

contact except for sites of cross-over. The sister chromatids remain attached to 

each other (Figure 2.1.3) by cohesion proteins. These binding points remain 

present for weeks, months or decades in the human: In oogenesis attachment 

needs to be maintained between the sister chromatids throughout the first 

meiosis arrest, termed dictyotene or dictyate stage until re-initiation of meiosis is 

triggered and homologues finally segregate after resumption of meiosis at 

anaphase I, shortly before the oocyte becomes ovulated. This means that the 

cohesion proteins remain stable or are sufficiently replaced to mediate 

chromosome contact by cohesion between sister chromatids and stabilize thus 

preservation of chiasmata.  

 

 

 

 

 

 

 

 

e. In general, at meiosis arrest (throughout dictyate stage), the chromatin is 

decondensed in the nucleus of resting or growing oocytes except for 

heterochromatic regions. One or several nucleoli are formed which are needed 

for rRNA synthesis during oocyte growth, before resumption of maturation takes 

place. Lampbrush chromosomes for rapid rRNA synthesis may be formed in 

some vertebrates, like in amphibia, while oocytes in mammals like mouse and 

human possess characteristic non-surrounded nucleoli (NSN) and are highly 

transcriptionally active. Only shortly before resumption of maturation fully 

grown, maturation and developmentally competent dictyate stage oocytes with 

 
 

Figure 2.1.3 Paired homologous chromsomes during the transition to metaphase of 
meiotic division I (Alberts et al., 2002).  
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intact nucleus (germinal vesicles, GV) possess a surrounded nucleolus (SN) and 

become transcriptionally repressed (De Felici et al., 2005; Eichenlaub-Ritter, 

1996).  

 

In mammals, there are major differences in oogenesis and spermatogenesis. Male meiosis 

is continuously taking place without a meiotic arrest only after birth when puberty is 

reached. Spermatocytes undergo most of their differentiation after their nuclei have 

completed meiosis to become haploid. Unlike sperm, oocytes proliferate only in the fetus, 

enter meiosis before birth, and become arrested as primary oocytes in the first meiotic 

prophase, in which state they may remain for several decades within primordial follicles 

(Eichenlaub-Ritter, 1998). Individual oocytes mature from this strictly limited stock and 

are ovulated at intervals, generally one at a time, beginning at puberty. Although there is 

currently a debate on reformation of oocytes after birth, relevance of such de novo 

formation has been questioned (Eggan et al., 2006). 

 
2.1.2 Oocyte Arrest and Growth 

After completion of pachytene stage and acquiring somatic cells enveloping the primary 

oocyte to form a primordial follicle with flattened granulosa cells surrounding the oocyte, 

mammalian oocytes remain arrested in the diplotene stage for a long period, which 

corresponds to the G2-phase of the cell cycle, with decondensed chromosomes. Only after 

birth the first wave of oocytes within primordial follicles may enter the growing stage 

(primary follicular stage), folliculogenesis takes place with excessive proliferation of 

granulosa cells (early preantral stage), and finally differentiation of the granulosa cells 

into mural and cumulus cells in response to oocyte-derived factors (Thomas and 

Vanderhyden, 2006) and antrum formation take place (see below). Only few or one of the 

follicles stimulated to resume growth becomes dominant and survives while others 

become atretic and die. Finally, depending on species, one (human) or several (e.g. 

rodents) fully-grown oocytes from large antral follicles may resume meiosis to metaphase 

II after the female has reached sexual maturity in response to the surge of lutenising 

hormone (LH) (Conti et al., 2006). Continuously during the reproductive period cohorts 

of oocytes from primordial follicles enter the growing primary follicle pool and initiate 

growth and maturation, attaining the competence to be fertilized and support 
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embryogenesis (Gilbert et al., 1983). Oocyte maturation encompasses a number of 

complex cellular processes (Gosden and Bownes, 1995; Briggs et al., 1999; Moor et al., 

1998). Besides meiosis, cytoplasmic growth, organelles production and redistribution, 

stable transcription and translation occurs to support early embryonic cleavage, nuclear 

maturation (the acquisition of competence to resume meiosis at the time of antrum 

formation) and cytoplasmic maturation (with the acquisition of competence for sperm 

head penetration, decondensation of chromatin and support of embryogenesis from 

maternally provided gene products). Oocyte growth and maturation appear to be 

vulnerable to disruption by environmental insults, nutritional imbalances or hormonal 

disturbance that may ultimately lead to chromosomal anomalies or embryo loss (Moor et 

al., 1998). Many studies have shown that the oocyte is incapable of resuming meiosis 

until it is fully grown (e.g. Eppig, 1993; Harada et al., 1997; Papanikolaou et al., 2005).  

Within the primordial follicle, the human oocyte is initially very small, with a diameter of 

around 30µm. Following initiation of growth, the oocyte undergoes a 60-fold increase in 

volume, reaching its full diameter of 120µm at the time of antrum formation; well before 

the follicle reaches its full pre-ovulatory size (Gosden, 1999). Oocytes resume meiosis 

either after the LH (luteinizing hormone) surge, or following removal from the cumulus 

mass. In vivo, follicle size largely correlates with developmental potential (Eppig, 1993), 

showing that there is a progressive attainment of competence to resume meiosis, undergo 

fertilization, then complete meiosis and embark on embryogenesis (Mehlmann, 2005; 

Tsafriri et al., 2005; Miyano et al., 2003). Administration of hormones may accelerate the 

nuclear maturation of oocytes (Roberts et al., 2005). Asynchrous nuclear and cytoplasmic 

maturation may affect chromosomal alignment on the spindle and predispose to 

chromosomal abnormalities (Roberts et al., 2005), which correlate directly with reduced 

female fertility.  

 

2.1.3 Folliculogenesis  

Folliculogenesis is a lengthy process, encompassing initiation of growth of a cohort of 

primordial follicles from the resting pool, oocyte growth and granulosa cell proliferation. 

During foetal life, the developing ovaries become populated with primordial germ cells 

(oogonia), which continue to divide rapidly by mitosis until a few weeks before birth 
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(Gosden, 1999). The meiotically arrested oocytes become surrounded by somatic cells, 

forming primordial follicles which represent the first stage of folliculogenesis. Primordial 

follicles are recruited from a quiescent state into the growing pool by a still undefined 

signal (Nilsson et al., 2002; Fortune et al., 2000). Later, the maturing follicle becomes 

responsive to hormones, and produces steroids and growth factors, creating a specialized 

micro-environment for oocyte maturation. From early in gestation, many foetal oogonia 

enter meiosis and progress to the first prophase, where they arrest; these are now termed 

oocytes. Remarkably, they can remain arrested for up to 50 years until they start growing. 

At this stage, the oocyte is small and surrounded by a single layer of squamous 

“pregranulosa” cells on a basement membrane (Figure 2.1.4). The stimulation which 

initiates growth of the primordial follicle remains unknown (Carlsson et al., 2006; 

Feyereisen et al., 2006; Visser et al., 2006). Most follicles in women of all ages are at the 

primordial stage, although the total number declines exponentially with age. From before 

birth, throughout later childhood, puberty, pregnancy and lactation, there is continual 

recruitment of small numbers of primordial follicles to start folliculogenensis. Initiation of 

growth is thought to be largely gonadotrophin independent (Picton et al., 2003) and 

continues until the supply of primordial follicles is virtually exhausted, just after 

menopause. During the early stages of growth, with the formation of a primary follicle, 

the granulosa cells become cuboidal in shape and undergo cell division. Subsequently, the 

oocyte becomes surrounded by increasing layers of granulosa cells. When the follicle 

reaches the secondary stage, with two or more layers of granulosa cells, a layer of theca 

cells differentiates from the surrounding stroma around the follicle, and the oocyte starts 

to secrete the zona pellucida (Figure 2.1.4). During this time the human oocyte itself is 

growing, until it reaches its mature size of about 120µm in diameter. When there are 

several layers of granulosa cells, oocyte derived factors initiate differentiation into mural 

and cumulus granulosa cells (Picton et al., 2003), and when the oocyte is fully grown, a 

fluid filled cavity (the antrum) appears within the follicle and starts expanding (Figure 

2.1.4). A number of factors are thought to be important in early follicular development. 

For example, kit ligand (stem cell factor), expressed by granulosa cells in primordial 

follicles may be involved in the initiation of oocyte growth via the c-kit receptor present 

on the oocyte (Picton et al., 1998). Conversely, the oocyte itself produces growth factors 
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that regulate granulosa cell proliferation, steroidogenesis and extracellular matrix 

deposition. Growth differentiation factor 9 (GDF-9) produced by the oocyte is essential 

for follicular development beyond the primary stage (Hussein et al., 2006). Other growth 

factors that have been detected in early follicles include members of the insulin-like 

growth factor family (Walters et al., 2006) and the transforming growth factor family (Jin 

et al., 1997).  

 Follicular development from the stage of antrum formation to ovulation is subject to 

endocrine control, predominantly by FSH (follicle-stimulating hormone). In the later 

stages of follicle growth, the rate of cell division in the granulosa population slows down, 

and the cells differentiate and become steroidogenic, utilizing theca-derived androgen to 

produce increasing amounts of oestradiol. Complex para- and autocrine signalling events 

are required to regulate folliculogenesis and full acquisition of developmental competence 

by the oocyte (Eppig et al., 2005; Sugiura et al., 2005) 

The primary oocyte of a large antral dominant follicle resumes meiotic maturation in 

response to the onset of the mid-cycle surge of LH (Conti et al., 2006). A number of 

cytological events take place around the time the oocyte resumes meiosis, including 

organelle redistribution (e.g. mitochondrial clustering; migration of the cortical vesicles to 

the oolemma) and changes in the interactions between the oocyte and the cumulus (e.g. 

alterations in gap-junctional communication) (Albertini and Barrett, 2003). Increases in 

activity of phosphodiesterases and reduction in activity of protein kinase A are 

intrinsically involved in meiotic resumption, initiated by activation of maturation 

promoting factor (MPF or cyclin-dependent kinase 1) (Jensen et al., 2002). The germinal 

vesicle breaks down, the spindle is formed, chromosomes align and then segregate to two 

spindle poles, and visibly, the first polar body is extruded. During this time, the 

previously tightly packed cumulus and corona cells become mucified and expands 

(Shimada et al., 2006). The oocyte (now termed a secondary oocyte) is ovulated at 

metaphase II of meiosis, where it arrests again under the influence of CSF (cytostatic 

factor), and is only stimulated to complete meiosis by calcium- stimulated processes after 

fertilization (Hansen et al., 2006; Shoji et al., 2006).   
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2.1.4 Spindle Formation and Cell Divisions 

The spindle apparatus is an essential cellular organelle, which is required for the 

segregation of homologous chromosomes during the first meiotic division (a reductional 

division) and sister chromatids during the second division (an equational division) at 

spermatogenesis and oogenesis. The spindle is a complex and highly dynamic assembly, 

suspended in a state of dynamic equilibrium and tensed for action that will begin in 

anaphase (Figure 2.1.5).  

Spindle microtubule is a highly dynamic cylindrical structure formed of 13 linear 

protofilaments which are composed of many tubulin dimmers consisting of two 

monomers termed α- and β-tubulin (Figure 2.1.5 A). In the tubulin dimmer, α dimmer is 

always found with non-exchangeable GTP, whereas the nucleotide associated with the β 

dimmer can exchange freely (Alberts et al., 2002). All of the spindle microtubules, except 

the kinetochore microtubules, are in a state of dynamic instability, with their free plus 

ends shifting stochastically between slow growth and rapid shrinkage (Figure 2.1.5 A). In 

addition, the kinetochore and overlapping microtubules exhibit a behaviour called 

poleward flux, with a net addition of tubulin subunits at their plus end, balancing a net 

loss at their minus ends, near the spindle poles (Figure 2.1.5 A, B). At the pole, 

depolymerization of microtubule minus ends (poleward flux) reels in attached 

chromosomes. At the inner region of the kinetochore, MCAK/XKCM1 induces 

microtubule depolymerization, while CENP-E localized to the outermost region of the 

kinetochore, the fibrous corona, and maintains attachment to the plus ends of shrinking 

microtubules. Cytoplasmic dynein, in association with dynactin, ZW10 and ROD, also 

localizes to the fibrous corona where its minus end-directed motility drives chromosomes 

poleward (Wordeman and Mitchison, 1995; Rieder and Salmon, 1998; Figure 2.1.5). A 

complex interaction between microtubules and motor proteins help oocytes to self-

organize spindles (Maro et al., 1985; Hyman et al., 1991) 

In meiosis the transition to M-phase and spindle assembly are induced by a high level of 

active MPF consisting of the cyclin-dependent kinase p34/cdc2 and M-phase cyclin B 

(Brunet and Maro, 2005). Spindle formation begins after the replication of MTOCs 

(microtubule-organizing centre), while chromosomes are condensing in the nucleus 

during prophase I. The MTOC organizes the assembly of microtubules in the cytoplasm. 
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In mitotic cells the centrosome consisting of a pair of centrioles and pericentriolar 

material is at the center of the MTOC (Bornens et al., 1984; De Brabander, 1982). In 

mammalian oocytes is organized by multiple MTOCs, which do not contain centrioles in 

the presence of pericentriolar material (Szollosi et al., 1972). In the first divisions after 

fertilization there is neo-formation of centrioles in mouse embryos while other mammals 

like humans have the centrioles of the sperm to organize the cytoplasmic microtubule 

network (Gueth-Hallonet et al., 1993; Sathananthan et al., 2006). This demonstrates that 

the pericentriolar material (PCM) is the substance which carries out the function of the 

A:

B: 

A:

B: 

Figure 2.1.5 The highly dynamic structure of spindle apparatus (Banks and Heald, 
2001). A:  The microtubule is a cylindrical structure formed of 13 linear protofilaments 
composed of α- and β-tubulin dimmers.  B: Depolymerisation of microtubule minus 
ends reels in attached chromosome.  



 
 
 
 

 Introduction                                                      - 16 - 

MTOC in the oocyte. There are many proteins in the PCM which are required for the 

assembly of microtubules (Maro et al., 1985; Brunet and Maro, 2005). After breakdown 

of the nuclear membrane (germinal vesicle breakdown, GVBD), the microtubules of the 

spindle attach to the kinetochores on the chromosomes in order to arrange them on the 

metaphase plate. When the anaphase-promoting complex (APC, Figure 2.1.6), an 

ubiquitin ligase that targets the regulatory protein cyclin B for degradation resulting in 

chromatid separation is activated to induce degradation of the regulatory subunit of the 

MPF, cyclin B1, the oocyte enters anaphase (Homer 2006). Activation of APC also 

results in proteolysis of securin, a protein found in a complex with separase, a protease in 

M-phase. Release from securin activates separase to proteolytically cleave proteins from 

the cohesion complex holding the sister chromatids together (Eichenlaub-Ritter 1998; 

McKee 2004; Homer, 2006). Upon loss of cohesion at chromosome arms, chiasmata are 

resolved and sister chromatids are separated and drawn to both spindle poles by the 

spindle microtubules (Kudo et al., 2006). After cytokinesis, on transition to the next 

interphase the chromosomes of mitotic cells are released and surrounded by the reformed 

nuclear membrane. At meiosis, second prometaphase and metaphase II are entered, and 

the loss of cohesion between centromeres of sister chromatids is again, triggered by 

activation of APC after fertilization.  

All processes of spindle assembly are controlled by a regulatory system – the spindle 

assembly checkpoint system (SAC) (Tan et al., 2005; Maiato et al., 2004; Homer 2006; 

Figure 2.1.6). Many proteins have been identified as components of the spindle 

checkpoint. Mad (mitotic arrest-deficient) and bub (budding uninhibited by benomyl) 

proteins are known components of this system (Hoyt et al., 1991; Li and Murray 1991 and 

Roberts et al., 1994). During regulation of the cell cycle, the spindle checkpoint system is 

responsible for monitoring the attachment of microtubules to kinetochores on 

chromosomes and development of tension forces on bi-oriented chromosomes (Tan et al., 

2005). When the SAC is activated, it prevents activation of the anaphase-promoting factor 

(APC) and the transition from metaphase to anaphase (Figure 2.1.6). Exit from mitosis or 

meiosis may be delayed until disturbances are eliminated (Rudner and Murray, 1996; 

Homer 2006), or a long, persistent block may be induced. Long mitotic arrest may 

ultimately induce apoptosis and removal of aberrant somatic cells, e.g. in protection from 
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chromosomal aberrations and tumor progression (Weaver and Cleveland 2005; Kolman, 

2005). 

 

 
Compared to the mitotic spindle, the meiotic spindle in oocytes exhibits some 

characteristic features that are not common to other somatic cells. The meiotic spindle is a 

symmetrical, barrel-shaped structure containing anastral broad poles, located peripherally 

and radially oriented. In oocytes, pericentriolar material (PCM) carries out the function of 

MTOC (Szollosi et al., 1972). In the cytoplasm of oocytes arrested in prophase I the 

critical concentration for tubulin assembly is so high that PCM cannot organize the 

polymerization of microtubules in the cytoplasm of oocytes before resumption of meiosis 

(Maro et al., 1985). Oocyte growth is required to permit the oocyte to increase its size and 

synthesize the necessary RNA and proteins for cell cleavage after fertilization and early 

embryo development. The meiotic spindle checkpoint system appears different to the 

mitotic system in order to control the progression through two successive M-phases of 

meiosis I and II without an intermittent interphase. Oogenesis in humans and many other 

Figure 2.1.6 Stages at which checkpoint controls can arrest passage through 
the cell cycle. DNA damage due to irradiation or chemical modification 
prevents G1 cells from entering the S phase and G2 cells from entering 
mitosis. Unreplicated DNA prevents entry into mitosis. Defects in assembly of 
the mitotic spindle or the attachment of kinetochores to spindle microtubules 
prevent activation of the APC polyubiquitination system that leads to 
degradation of the anaphase inhibitor. Consequently, cells do not enter 
anaphase until all kinetochores are bound to spindle microtubules (adapted 
from Alberts et al., 2002). 
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mammals is discontinuous in that oocytes remain arrested at metaphase II after ovulation, 

in spite of the alignment of chromosomes at the spindle equator, a situation that leads to 

activation of APC in mitotic cells (Sun and Nagai, 2003). This is due to the activity of the 

cytostatic factor (CSF) involving synthesis and activity of the Mos kinase, MAP kinase 

activation and differential phosphorylation of several proteins in oocytes (Brunet and 

Maro, 2005).  

According to the previous finding, it appeared initially that the spindle checkpoint is more 

relaxed in oogenesis relative to mitosis and male meiosis (LeMaire-Adkins et al., 1997; 

Yin et al., 1998b). Now it is known that especially the aged oocytes may contain fewer 

messages of components of the spindle checkpoint (Steuerwald et al., 2005) Alterations in 

expression with age could thus have profound influences on oocyte quality and ability to 

segregate chromosomes correctly. It is unknown whether and to what extent sub-optimal 

conditions during oocyte growth and maturation may compromise checkpoint controls. 

Some components of the spindle checkpoint system, e.g. Mad2, behave differently in 

female meiosis as compared to male meiosis and mitosis. In female meiosis Mad2 protein 

is constitutively present at centromeres of metaphase II chromosomes in spite of aligned 

chromosomes, whereas it becomes dissociated from kinetochores at metaphase I and II 

upon congression of chromosomes in spermatogenesis and mitosis (Kallio et al., 2000; 

Wassmann et al., 2003). Emi 1 and Emi 2 are components of CSF inhibitors of the oocyte 

APC, which at the metaphase to anaphase transition at meiosis II (Schmidt et al., 2006). 

Calcium transients and activation of Calcium calmodulin kinase II by fertilization then 

ultimately inactivates Emi2, causes release from inactivation of APC, and finally, APC 

activation, proteolysis of cyclin and cohesion protein and progression to anaphase II in 

mammalian oocytes (Schmidt et al., 2006). 

 

2.1.5 Aged Oocytes 

Spindle aberrations are a hallmark of aged oocytes (Battaglia et al., 1996; Volarcik et al., 

1998; Eichenlaub-Ritter et al., 2004) and may also indicate that the expression patterns 

for cytoskeletal proteins and maternal factors are disturbed in the oocyte (Hamatani et al., 

2004). Certainly, exposures during maturation (Eichenlaub-Ritter et al., 2002), freezing 

(Rienzi et al., 2005; Bianchi et al., 2005) and ageing processes (Eichenlaub-Ritter et al., 



 
 
 
 

 Introduction                                                      - 19 - 

2004) causing disturbances in the regulation of spindle formation are associated with a 

high risk of chromosome mal-segregation, and, in consequence, may lead to a reduced 

reproductive potential and survival of embryos and live births in humans (Plachot, 1992). 

Critical assessment of spindle integrity and function plays therefore an important role in 

determination of oocyte health and developmental competence in assisted reproduction 

(Keefe, 2003; Eichenlaub-Ritter et al., 2002). 

 

2.1.6 Zona Pellucida Formation 

Growing and fully maturing oocytes are protected by a multi-laminar glycoprotein coat, 

termed the zona pellucida. The zona glycoproteins appear to be co-ordinately secreted by 

the oocyte during folliculogenesis, as shown in the mouse (Epifano et al., 1995; Soyal et 

al., 2000), while there is evidence from other species, including the human, that granulosa 

cells may also contribute to stage-dependent zona protein expression during 

folliculogenesis e.g. in humans (Sinowatz et al., 2001; Bogner et al., 2004; Gook et al., 

2004). Human oocytes express three highly conserved zona proteins, which change 

conformation after cortical granule extrusion at fertilization, as in the mouse (e.g. Moos et 

al., 1995; Nikas et al., 1994). Another human zona protein (ZPB) may contribute in 

unknown ways to species-specific sperm–oocyte interactions in human fertilization 

(Lefievre et al., 2004). ZP1 proteins are required for the structural integrity of the zona 

pellucida (Greve and Wassarman, 1985; Wassarman et al., 2004). At the ultrastructural 

level, the three-dimensional highly ordered filament structure of the zona pellucida has 

been confirmed by studies in mammalian oocytes, including human oocytes (Figure 2.1.7 

A; Familiari et al., 1992; Green, 1997; Wassarman et al., 1999 and 2004; Oehninger, 

2003). On the molecular level, the zona pellucida consists of a paracrystalline, three 

dimensional network structure composed of heterodimeric filaments of ZP2 and ZP3 

proteins, cross-linked by ZP1 proteins, as originally proposed by Wassarman (Figure 

2.1.7 B; Wassarman, 1988; Qi et al., 2002; Wassarman et al., 2004). Within the zona, the 

projections may form a hexagonal network together with zona fibrils, and thus may 

contribute to the three-dimensional organization of the extracellular space (Motta et al., 

1994; Albertini and Rider, 1994; Albertini and Barrett, 2003). Polarization microscopy 
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showed that the inner layer of fibres is radically organized while the outer layer envelopes 

the oocyte circularly (Figure 2.1.7 B, arrows).  

 

 

 

A 

A B

Figure 2.1.7 The three dimensional network of zona pellucida. A: The network 
structure of zona pellucida imaged by transmission electron-microscopy (Magerkurth 
et al., 1999); B: The molecular orientation of zona pellucida shown with vectors 
(arrows) by PolScope microscopy; C: The network structure in molecular level 
(modified from Green, 1997). 
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ZP1 proteins are required for the structural integrity of the zona pellucida (Greve and 

Wassarman, 1985; Wassarman et al., 2004). Although oocytes of mice lacking the ZP1 

gene are still secreting the ZP2 and ZP3 proteins, they possess a thinner and more loosely 

organized zona pellucida, relative to the wild type. The diameter of ovulated oocytes from 

the ZP1 -/- homozygote is on average only half of that of oocytes from the wild type 

(Rankin et al., 1999). This suggests that effective granulosa cell-oocyte signalling may 

depend on the presence of a functional, highly structured zona, and that disturbances 

cause sub-fertility. Apart from this, reduced expression of zona proteins during oocyte 

growth and folliculogenesis may indicate general problems in the highly orchestrated 

processes of maturation at the critical phase of oogenesis and folliculogenesis when 

oocytes acquire full nuclear and developmental competence.  

The zona pellucida is also essential for oocyte fertilization and implantation development 

in vivo (e.g. Rankin et al., 2001b). It serves taxon-specific sperm-binding (Tsubamoto et 

al., 1999; Miller et al., 2002; Wassarman, 2002), prevents polyspermy (Yanagimachi, 

1994; Hoodbhoy and Dean, 2004), and protects embryos from mechanical stress prior to 

implantation (Herrler and Beier, 2000). Accordingly, defects in the zona pellucida are 

usually associated with fertilization problems or developmental abnormalities. For 

instance, mice lacking ZP3 or ZP2 genes are unable to form a zona pellucida and are 

sterile (Liu et al., 1996; Rankin et al., 2001a). Postovulated aging of oocytes associated 

structural changes and increased fertilization failures in mouse zona pellucida (Diaz and 

Esponda, 2004). Formation and retaining a functional structure of zona pellucida is 

therefore essential for the female fertility.  

 

2.1.7 Organisation of Spindle Apparatus and Zona Pellucida May Reflect the 

True State of Oocyte Healthy and Their Developmental Competence     

The spindle is formed during prophase I and serves to properly segregate chromosomes 

during meiosis. Experimental data obtained mainly from in vivo or in vitro maturing 

mouse oocytes suggest that formation of asymmetric, aberrant or mono- or multipolar 

spindles (e.g. de Pennart et al., 1993;  Eichenlaub-Ritter and Betzendahl, 1995; Zuelke et 

al.,1995; Tarin et al., 1996; Yin et al., 1998a,b; Can and Semitz, 2000; Cukurcam et 

al.,2004), disturbances in tubulin turnover or activity of motor proteins (Mailhes et al., 
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2004), and ablation of surveillance mechanisms sensing chromosome attachment and 

spindle integrity (Eichenlaub-Ritter et al., 2005; Homer et al., 2005) frequently occur in 

association with oocyte aneuploidy, which may lead to an aneuploid oocyte and embryo 

with reduced developmental capacity, implantation failures or spontaneous abortion 

(Battaglia et al., 1996; Shen et al., 2005; Hodges et al., 2002). In addition, spindle 

abnormalities and aberrant behaviour of chromosomes may be induced by failures in 

chromatin regulation, chromosome condensation or physical detachment of chromosomes 

at anaphase (e.g. Mailhes et al., 1996; Tateno and Kamiguchi, 2001; De la Fuente et al., 

2004; Akiyama et al., 2006).  

Although the zona pellucida is formed already at early stages of oocyte growth it is 

involved in several important events during ovarian folliculogenesis and after fertilization. 

The zona pellucida is crossed by radially arranged transzonal cytoplasmic projections 

from the cumulus granulosa cells which project onto the oolemma or even invade the 

cytoplasm of the oocyte during oocyte growth and maturation. Cell-cell contacts on these 

cell processes provide the conditions for direct junctional coupling, cell-to-cell signalling, 

and exchange of molecules between the oocyte and the somatic compartment (Motta et 

al., 1994; Albertini and Rider, 1994), which are important for oocyte growth and 

sustained meiotic arrest (Eppig 1991; Webb et al., 2002). The zona pellucida is important 

for oocyte growth and folliculogenesis. Lacking in any ZP proteins may lead to 

dysfunction of the zona pellucida and disturbances in the granulosa cell-oocyte signalling 

events. Defects in the zona pellucida are usually associated with fertilization problems 

and developmental abnormalities (Liu et al., 1996; Rankin et al., 2001a). A treatment 

with anti-zona antibodies, which were detected in some infertile patients (Shivers and 

Dunbar, 1977), induced a significant reduction of mucification rate of follicles and 

maturation as well as fertilization rate of oocytes in mouse (Koyama et al., 2005). 

Therefore, the organisation and texture of both spindle apparatus and zona pellucida may 

therefore help to identify the state of oocytes during growth and maturation as well as the 

autocrine signalling between the oocyte and the somatic compartment in the follicle, 

which is directly correlated with oocyte developmental competence after fertilization.  
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2.2 Methodologies to Evaluate the Sub-microscopic Structures (Spindle and Zona 

Pellucida) in Human Oocytes  

2.2.1 Invasive Analysis Procedures for Illumination of Spindle Apparatus and 

Zona Pellucida 

Biological materials are transparent or translucent. To view the ultrastructure of oocytes 

under a light microscope, exogenous dyes or fluorescent labels have been employed to 

enhance the contrast or colour of images/ cell organelles (fluorescent microscopy). 

Another way to study the fine structure of a biological sample is electron-microscopy 

using an electric beam which becomes altered by presence of heavy metals bound to 

cellular structures after fixation. However, both procedures are invasive. However, only a 

static view of the structure in fixed oocytes can be provided using those procedures.  

 

2.2.1.1  Indirect Anti-tubulin Immunofluorescence and Laser Scanning 

Confocal Microscopy 

Indirect anti-tubulin immunofluorescence is a method to assess spindles morphology and 

chromosomal behaviour (Eichenlaub-Ritter and Betzendahl, 1995). Conventionally, 

oocytes have to be extracted, fixed and placed on a poly-L-lysine coated slide for 

staining and later evaluation (Eichenlaub-Ritter and Betzendahl, 1995). A monoclonal 

anti-α-tubulin antibody binding to tubulin molecules specifically and a second 

polyclonal FITC conjugated antibody binding to the first monoclonal antibody can be 

employed for immune staining. The spindle can be analyzed by fluorescent microscopy 

and images saved for demonstration or evaluation by a digital camera. However, 

especially in oocytes treated by non-ionic detergent for better antibody penetration 

during or before fixation, the spindle may be flattened on the slide during the attachment 

process. Usually, with conventional fluorescence microscopy a two-dimensional image 

is obtained. In contrast, the oocyte spindle in the living state is three-dimensional and 

quantitative information on relative thickness or density of spindle fibres is hard to 

obtain (Shen et al., 2005). The introduction of a clotting technique in which oocytes are 

first embedded in a matrix of a fibrinogen/thrombin clot prior to fixation and extraction 

to retain their 3-D dimensional shape and restrict extraction can overcome some of these 

problems but requires complex three-dimensional image reconstruction software (Hunt 
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et al., 1995). Under these conditions, however, spindles may be oriented by chance 

parallel or upside down or oblique with respect to the plane of view. Some programs 

have been developed to combine optical sections, and tilt them in the desired orientation 

for qualitative and quantitative assessments. However, this requires large data bases and 

optimizing to take optical sections of the spindle using laser beams by the confocal 

microscope.  

Imaging by laser scanning confocal microscope has made it thereby possible to view the 

3-D structure of spindle morphology and analyze chromosome congression accurately 

within the spindle body and the oocyte. The basic concept of confocal microscopy was 

originally developed by Marvin Minsky in the mid-1950s (Minsky, 1961; Minsky, 

1988). Following Minsky’s work, M. David Egger and Mojmir Petran fabricated a 

multiple-beam confocal microscope in the late 1960s that utilized a spinning disk for 

examining unstained brain sections and ganglion cells. During the late 1970s and the 

1980s, advances in computer and laser technology, coupled to new algorithms for digital 

manipulation of images, led to a growing interest in confocal microscopy (Amos and 

White, 2003). Tony Wilson, Brad Amos and John White demonstrated the utility of 

confocal imaging in the examination of fluorescent biological specimens (Amos and 

White 2003, Hamilton and Wilson, 1982). Confocal microscopy offers several 

advantages over conventional wide field optical microscopy, including the ability to 

collect serial optical sections from thick specimens and reconstruct three-dimensional 

images that cannot be obtained through the microscope eyepieces by conventional 

microscopy.  

 

2.2.1.2 Electron-Microscopy 

Electron microscopes are scientific instruments that use a beam of highly energetic 

electrons to examine objects on a very fine scale. It was developed due to the limitations 

of conventional light microscopes, which are restricted in resolution by the physics of 

light and the aperture of the lenses to a maximal 500x or 1000x magnification. Electron 

microscopy can yield the information of the shape and size of particles/structures in the 

object, e.g. in biological samples usually those structures and cell organelles stained by 

osmium tetroxide, uranyl acetate and/or lead citrate. However, similar to 
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immunofluorescence microscopy, only fixed specimens can be observed by electron 

microscopy, and hundreds of sections sized only few micrometers in diameter have to be 

combined to yield a 3-D image of the fairly large human oocyte. Thus, only restricted 

numbers of cells have been studied in most cases; images are static, and, depending on 

contrast obtained by introduction of heavy metal staining after fixation by aldehydes, 

processes that may lead to morphological alterations. 

 

2.2.2 Non-invasive Analysis of Ultra-Structures in Mammalian Oocytes 

2.2.2.1  Development History of Polarized Light Microscopy 

In order to avoid fixation of living cells for an analysis of morphology, e.g. in the study of 

spindle structure and formation, polarization microscopy has been employed in biology 

and medicine. Macromolecular structures, which are composed of ordered molecules, 

such as membranes, microtubules, microfilaments, have been observed with this method 

for about 50 years (Inoué, 1953). The images are obtained due to the optical properties of 

such components, namely birefringence. Birefringence is an intrinsic property of a 

sample, which contains structures with a crystalline/paracrystalline molecular order- 

irrespective of whether this is in a biological sample or ordered matter, for instance in 

crystals.  

The conventional polarization microscope (Figure 2.2.1 b) is equipped with a polarizing 

filter to produce polarized light - usually linearly polarized light. An analyser lens is 

oriented such that only light vibrating in a plane perpendicular to that of the polarizer can 

pass. An additional optical system, termed compensator, is required to view biological 

materials, due to their weak birefringence, relative to the non-biological sample (Sato et 

al., 1975; Oldenbourg, 1999). The compensator can be rotated and manually adjusted 

relative to the light path to allow light whose path has been changed by passing through 

the object to be viewed against a dark background to perform qualitative and quantitative 

polarization microscopy. When a birefringent specimen is placed between the polarizer 

and analyser, and the compensator optics is rotated such that the polarised light can pass 

through, it becomes visible (Figure 2.2.1 b). Due to the orientation dependence and the 

complicated manipulation of imaging, the application of conventional polarization 

microscopy in analysis of biological specimens has been limited for years.  



 
 
 
 

 Introduction                                                      - 26 - 

Ten years ago, a new type of polarized light microscope, computer-assisted polarization 

microscopy (PolScope microscopy), was developed and has been used to detect 

birefringent structures in living cells (Oldenbourg et al., 1993; Figure 2.2.1 a). This new 

system uses nearly circularly polarized light as an illumination source so that it is now 

possible to view birefringent structures irrespective of the orientation of the sample within 

the plane of view. In addition, the employment of a computer controlled liquid crystal 

compensator enhanced the sensitivity of the polarizing microscopy and ensured a 

quantification of the birefringence property of the sample without any mechanical 

readjustment to the optical components. A Colour-coded Doppler camera (CCD camera) 

and analysis software make it possible, to measure the specimen birefringence for all 

points of the image. For a couple of years, PolScope microscopy has been employed to 

analyze the spindle integrity and morphology in living oocytes of mouse, hamster and 

human (Liu et al., 2000 a; Silva et al., 1997; Wang et al., 2001 a;b;c). Liu et al. (2000a) 

noted that the PolScope light intensity used to illuminate the sample (60µW) is similar to 

that of differential interference contrast (DIC), which was already employed in in vitro 

fertilization (IVF) in assisted reproduction for more than 20 years. Importantly, the initial 

analysis and more recent reports confirm that the developmental capacity of oocytes do 

not differ between the control and oocytes illuminated with the PolScope (Liu et al., 

2000a). 
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2.2.2.2 Quantitative Analysis of Birefringence Property Using 

Polarized Light Microscopy 

When a light beam enters a birefringent body, it is split into two beams whose vibration 

planes are perpendicular to each other. One beam, which is called ordinary ray satisfies 

Snell’s law of refraction [sin α (incidence angle) /sin β (refraction angle) = const.]. The 

other one does not satisfy Snell’s law. It is called extraordinary ray. This is due to a 

difference in refractive index of the birefringent body for the two orthogonally polarized 

light beams (Oldenbourg, 1991; 1996). Polarization microscopy measures the relative 

change in phase between the two polarized beams, termed retardance, to quantify the 

birefringent property of the sample. Sato et al. (1975) was the first to quantify the 

birefringence of the spindle apparatus using polarization microscopy. It was demonstrated 

that highly aligned, paracrystalline ordered microtubules within the spindle were at the 

basis of the birefringent properties of this cell organelle. Furthermore, a positive 

correlation between spindle density and the retardance of light in the spindle has been 

determined using the conventional polarized light microscope. Thus, the relative 

magnitude of light retardation is an indicator for density, high order alignment, or 

thickness of a birefringent object. In 1993, Oldenbourg and his colleagues developed the 

computer supported enhanced polarization microscope (PolScope) to measure the 

distribution of birefringence in asters dispersed in lysates of Spisula oocytes (Oldenbourg 

et al., 1993). In the following year, Tran et al. were the first to measure the birefringence 

of striated muscle using the newly developed PolScope (Tran et al., 1994). They also 

quantified the retardance of polarized light by single and bundled in vitro polymerized 

microtubules (Tran et al., 1995). A linear correlation between the peak retardance of light 

and the mean number of microtubules has been detected. It confirmed the previous 

finding that the birefringent property positively correlated with the density of a structure. 

Based on the positive correlation between fibre density and the retardance of light in the 

ultrastructure, quantitative analysis of the retardance has also been performed to assess 

oocyte health and developmental capacity. Oldenbourg et al. (1998) developed a novel 

quantification method to measure the birefringent property in two-dimensional levels. 

Recently, LaFountain and Oldenbourg (2004) succeeded to measure quantitatively by 

PolScope microscopy the retardance of light by kinetochore fibers of individual 
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chromosomes in meiotically dividing crane fly spermatocytes with respect to their 

behaviour on the spindle. They calculated microtubule density and traction forces on 

chromosomes that were segregating normally or had so called merotelic attachments 

(attachment of one centromere of a chromosome to both spindle poles).  

 

2.2.2.3 Non-invasive Nature of PolScope Microscopy 

The polarized light microscope has the potential to measure submicroscopic molecular 

order dynamically and non-destructively in living cells. The design of PolScope is based 

on the same principle of light, as used for differential interference contrast (DIC), which 

has been used for clinical purpose for over 20 years. PolScope utilizes nearly circular 

polarized light with a wavelength of 546 nm as light source, which contains no 

detrimental component in either infrared or ultraviolet fields. Moreover, the light intensity 

in the sample is approximately 60µW, which is also in the safe zone (Liu et al., 2000a). 

Meiotic spindles in oocytes of many different mouse strains, such as CF1, C57B6, 

B6C3F1, as well as hamster have been viewed by PolScope microscopy (Liu et al., 

2000a). Studies with mouse oocytes viewed by PolScope suggested that PolScope 

microscopy is non-invasive since imaged oocytes had a similar developmental capacity in 

cleavage rate and pregnancy rate, in comparison with controls (Liu et al., 2000a). A 

further study with 770 human oocytes from 87 ICSI cycles showed that the light 

illumination with PolScope did not appear to affect oocyte and embryo health in humans 

(Wang et al., 2001c).  

Observations in human oocytes that were subjected to ICSI for assisted conception 

supported the notion of the non-invasive nature of the technique and its safety with human 

oocytes. The rate of blastocyst formation of oocytes illuminated by PolScope (Wang et 

al., 2001c) is equal to the rate of oocytes without illumination (Ebner et al., 2005).  

PolScope allows assessing the dynamic changes in polymerization kinetics of organized 

sub-microscopic molecular structures of spindle (Liu et al., 2000b). Thus, PolScope has 

the potential to observe the spindle in individual cells and provides a new tool to assess 

the spindle in human oocytes for clinical purposes and in experimental animals to test for 

dynamic interactions with spindle formation. 
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2.3 Human Infertility and Current Practices in Assisted Reproduction 

2.3.1 Current Practices in Assisted Human Reproduction 

Infertility affects more than 80 million people around the world. Although infertility may 

not be a public health priority in many countries, it is a central issue in the lives of the 

individuals who suffer from it.  

Since the first birth of a child by in vitro fertilization, nearly 1 million babies have been 

born with the help of assisted reproductive technology (ART) (Soini et al., 2006). The 

introduction of ART has resolved social and psychological pressures for infertile couples, 

particularly for the woman. In the past decades ART has been greatly improved. The 

introduction of intracytoplasmic sperm injection (ICSI) ensures a much better outcome for 

infertile couples with a male factor, a condition for which results of traditional treatment 

have not been satisfactory. 

With all these advances, however, many challenges are still to be faced. The treatment of 

infertility by ART is expensive. The success rate of ART is currently around 25% live 

births per cycle (Fauser et al., 2002). In other words, each couple should, in principle, 

repeat the ART program four times, to get a live birth. The relative high cost of ART 

procedures leaves many infertile people without the option of treatment. There is room for 

improving the success rates of assisted reproduction, in order to reduce the economic cost 

and psychological pressures on the patients. How to make ART more widely available 

and affordable for all who need is the current challenge that cuts across all others.  

To improve the outcome of ART, more than one embryo is transferred back to the uterus 

in most countries. However, increase in the number of embryos for transfer induces an 

increased risk of multiple pregnancies (Soini et al., 2006). An achievement of IVF 

treatment requires that methods should be improved such that a relatively large number of 

high quality oocytes can develop to live births for each patient.  

However, it is well known that the risk of aneuploidy increases with advanced maternal 

age in oocytes, embryos and live birth such decreasing dramatically the implantation rates 

after in vitro fertilization (Gianaroli et al., 2003). Certainly, selection of chromosomally 

normal embryos could help to improve the low success rate in ART, especially in women 

of advanced age (Battaglia et al., 1996). Transferring euploid embryos has decreased the 

clinical abortion rate and increased the implantation rate in assisted reproductive 
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technologies (ART) (Munne, 2005; Soini et al., 2006; Verlinsky et al., 2004). 

Unfortunately, embryos with aneuploidy cannot be identified accurately using only the 

presently available morphological criteria (Gianaroli et al., 2003; Magli et al., 2001).  

The attitudes towards embryo selection vary substantially in different countries. In most 

IVF programmes, embryos are transferred to the uterus at the cleavage stage at day 2 or 3 

post-insemination (Dawson et al., 1995). The implantation rate is around 12.5-15% in the 

last 15 years (Edwards and Craft, 1990). According to German Embryo Protection Law, 

embryo selection after IVF and ICSI have to occur at 18 hours post-insemination (Zollner 

et al., 2002) using a pronuclear scoring system, based on the morphological character of 

the pronuclear configurations (PN) (Scott, 2003) or other morphological characteristics 

like presence of a halo etc.. Only those embryos, which are selected to be transferred, can 

be legally cultured after the PN stage. Culture of more than three embryos to cleavage 

stage or blastocyst stage is therefore prohibited. In Germany, the implantation rate with a 

selection of pre-embryos at PN stage is around 15% (DIR Jahrbuch 2004). In Italy, 

selection can be only on oocytes, not embryos, the timing of embryo selection, such that 

decisions are placed even before insemination, due to the ethical and legal constrains 

(Simini et al., 1999). A prolonged culture to blastocyst stage, which by itself may result in 

development of the healthiest embryos, has been shown for some laboratories to improve 

the implantation rate after blastocyst transfer up to approximate 25 – 30% (Feinberg et al., 

2006). However, such methods are prohibited in those countries with religious or ethical 

concerns regarding the destruction of non-selected but basically viable embryos. Clearly, 

the presently used morphological criteria for pre-embryo selection (pronuclear scoring 

system) appear less efficient compared to the selection systems based on evaluations and 

criteria inherent to the embryo at the blastocyte stage. Improving the assessment criteria 

for oocyte quality, in order to select oocytes and embryos with the highest developmental 

potential as early as possible for transfer, is therefore becoming an essential issue, which 

may help to improve implantation rates, especially in counties like Germany or Italy.  
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2.3.2 In vitro Maturation of Human Oocytes is Becoming a Novel Method 

for Some Infertile Patients 

Assisted reproduction technology (ART) has been successfully used to overcome male 

and partially female infertility, since the birth of the first child by in vitro fertilization 

(IVF) 20 years ago (Cohen et al., 2005). However, IVF is time-consuming and expensive, 

and generates much stress, side effects and risk for complications. In general, IVF utilizes 

the principle of gonadotrophin administration for oocyte maturation prior to oocyte 

retrieval from mature follicles. There are several conditions, which restrict success of 

IVF. For instance, patients with ovarian hyperstimulation syndrome (OHSS) may suffer 

from severe side effects of the stimulation protocol. In addition, most oocytes remain at 

the germinal vesicle stage up to retrieval in some patient groups. For instance, patients 

with polycystic ovarian syndrome (PCOS), tend to have lower sensitivity to 

gonadotrophin stimulation. Therefore, in vitro maturation (IVM) of immature oocytes 

followed by fertilization in vitro and embryo transfer offers an alternative to conventional 

IVF treatment with increasing requirement for gonadotrophin non-sensitive patients. 

Treatment of IVM has many advantages, such as reduced cost, fewer potential side effects 

and, in particular, the risk of developing ovarian hyperstimulation syndrome (OHSS), due 

to the minimised drug administration (Chian, 2004; Mikkelsen, 2005). IVM technology 

also benefits young patients, especially those who have to undergo a potentially sterilizing 

chemo- or radiotherapy treatment prior to engaging in reproduction activities. In such 

cases, the ovary tissue of patients can be cryopreserved in liquid nitrogen at –196°C. 

Oocytes can be matured and fertilized in vitro before embryo transfer after the 

chemotherapy is over, patients are adult and want to conceive children of their own 

genetic background. Moreover, IVM technology also provides donor oocytes for patients 

who experience premature ovarian failure or those with gonadal dysgenesis.  

Hormone stimulation promotes the maturation of most meiotic competent oocytes in vivo, 

but there are some oocytes (5-15%) remaining at germinal vesicle stage at the time of 

puncture. Fortunately, the majority of naked immature oocytes from ICSI patients mature 

spontaneously in vitro after 24-36 hours of culture (Combelles et al., 2002). IVM can 

therefore provide more competent oocytes for fertilization in vitro and increase the chance 

of pregnancy in ICSI patients.  
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2.3.3 Assessing Oocyte Quality as a Way to Improve ART Outcomes 

Oocytes are the only mammalian cells capable of forming a new individual after 

fertilization, whereas sperm provides mainly its chromatin/DNA and the sperm aster to 

the new offspring. Oocytes can therefore be regarded as the main source of cytoplasmic 

components beside of contributing their genome for the genesis of an embryo. 

Unfortunately, up to now oocytes with poor quality can still not be identified non-

invasively by the present assessment criteria (Gianaroli et al., 2003), whereas well-

defined morphological criteria for sperm and embryo have been established (Henkel and 

Schill, 2003; Scott, 2003; Edwards and Hansis, 2005). Many morphological features 

associated with poor developmental competence have been demonstrated (Bolton et al., 

1989). However, the currently used imaging techniques in assisted reproduction provide 

only few essential information for diagnosis of oocyte dysfunction. The application of 

preimplantation genetic diagnosis (PGD) against aneuploidy and other chromosome 

abnormalities helps to select embryos with normal karyotype for transfer and reduce the 

rate of spontaneous abortion after implantation (Twisk et al., 2006). However, invasive 

methods such as chromosomal analysis in polar bodies and blastomere are complicated, 

expensive and produce more pressure on patients. Up to now, only a few predictive non-

invasive markers for oocyte quality have been identified on the basis of morphological 

criteria, which can be assessed in assisted reproduction by using conventional microscopy 

prior to insemination (Ebner et al., 2003; Rienzi et al., 2005). 

Thus, the identification of non-invasive markers to achieve a high success rate of 

infertility treatment has raised increasing interest. The search should be intensified in 

order to achieve pregnancies since there appear currently only few options to improve 

treatment regimens and it would be in the interest of the clinician as well as to the benefit 

of the patients to simple, cheap and safe methods to identify oocyte of the highest quality. 

In this respect, orientation independent polarizing microscopy (PolScope) was a 

breakthrough. Two essential structures in oocytes are composed of a molecularly ordered 

structure that has been accessible to polarization microscopy, the spindle apparatus and 

the zona pellucida. According to the finding in earlier studies (Sato et al., 1975; Tran et 

al., 1994; 1995; Oldenbourg et al., 1998), the birefringent property may describe the 

organisation, i.e. density and texture, of a macromolecular structure properly. The newly 
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developed method has been successfully employed in a preliminary study to investigate 

the alteration of spindle morphology in the presence of tubulin-depolymerising and 

stabilising agents (Nocodazole and Taxol) in in vitro maturing mouse oocytes. During 60 

minutes exposure to 1μM Taxol the time and dose-dependent elongation of spindle was 

observed in living oocytes (Eichenlaub-Ritter et al., 2002). The dose response in 

shortening of interpolar distance of meiotic spindle induced by Nocodazole was also 

determined in living mouse oocytes and confirmed by conventional immunofluorescence 

in fixed oocytes (Shen et al., 2005). The study using animal material showed that 

PolScope is an especially sensitive method to reveal influences of chemicals on spindle 

integrity in oocytes and established a novel system to assess spindle mass and integrity in 

vivo, based on the birefringent property of spindle. The newly developed non-invasive 

methodology has been therefore employed to retrospectively assess the quality of human 

oocytes by analysing for the first time the optical properties of spindle and zona pellucida 

by analysing mean retardance magnitude of light using polarization microscopy.  
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3. Aim of the Study and Experimental Design 
3.1 Requirement of Identifying the Oocyte Quality to Improve the Success Rate of 

ART 

The number of infertile couples is increasing not least because of advanced maternal age. 

Also, the quality of gametes has deteriorated owing to lifestyle habits and environmental 

factors. Since the first birth of a baby by IVF in 1978, we have seen an explosive 

development in human assisted reproduction. ART is becoming the major procedure to 

overcome human infertility. However, large reviews of studies on the safety of ART 

suggest a slight elevated risk of birth defects in children born following ART (Hampton, 

2004; Ludwig and Diedrich, 2002). Besides multiple gestations there is also a growing 

concern for structural anomalies and long term health effects. Embryo culture appears to 

be a powerful diagnostic tool, yielding useful information regarding the viability of the 

human embryo (Balaban and Urman, 2003). However, embryo culture and embryo 

selection at cleavage or blastocyst stage are prohibited in some countries due to religious 

or ethical considerations regarding the destruction of non-selected but viable embryos 

(Zollner et al., 2002; Simini, 1999). Thus, predictive and accurate selection of healthy 

oocytes and pre-embryos with high viability is essential in countries with restrictive 

legislation and religious or ethical considerations regarding the embryo protection, to 

improve the success rate of ART.  

 

3.2 Aims of the Study 

The study was mainly designed to establish an efficient, non-invasive strategy for 

selection of high quality human oocytes prior to ICSI by analysis of mean magnitude of 

retardance of light by the oocyte spindle and zona pellucida using polarization 

microscopy. This method may provide more information of the oocytes’ developmental 

capacity after insemination, than the currently used non-invasive morphological criteria, 

and may therefore also be useful in quality control (e.g. optimising handling/culture of 

oocytes), treatment of patients (e.g. with respect to hormonal regimen etc.), counselling 

(e.g. identification of patients with low/high quality of oocytes), and optimising success 

rate (e.g. by selection of the best high quality oocytes/embryos for transfer). Furthermore, 

the study was aimed at exploring the potential of non-invasive analysis to reduce numbers 
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of transfer embryos and optimise timing for ICSI (e.g. ICSI in metaphase II but not 

telophase I oocytes).  

The diploma study published recently (Shen et al., 2005), was already focussed on 

exploring the potential of PolScope microscopy to assess spindle structure in mammalian 

oocytes, using the mouse as a suitable animal model (Eichenlaub-Ritter and Boll, 1989). 

In this, high numbers of maturation competent oocytes can be obtained from ovaries of 

prepubertal or young, adult females, they can be matured to metaphase II and 

methodology for conventional immunofluorescence, for confocal microscopy and 

chromosomal analysis after spreading and C-banding were available (Tarkovski, 1966). 

PolScope microscopy was initially established in this model, to ensure its non-invasive 

nature and potential to reveal spindle aberrations before progressing to human oocytes. In 

fact, it was possible to successfully employ PolScope microscopy in this mouse model to 

study the dose-dependent shortening of the spindle pole-to-pole distance in mouse oocytes 

matured in the presence of tubulin-depolymerising cytostatic drug nocodazole and show 

dynamic elongation of the metaphase II spindle in mouse oocytes exposed to the 

microtubule stabilising drug taxol (Eichenlaub-Ritter et al., 2002). Initial analysis of 

human oocytes to optimise handling in protection of living human oocytes, spare 

immature oocytes from ICSI cycles were in vitro matured to metaphase II and viewed by 

PolScope (Wang et al., 2001c).  

The optimised methodologies, which can be employed within the present study performed 

with cumulus-cell denuded human oocytes from ICSI cycles with consent of patients and 

the ethical committee, addressed the following questions:  

1. Qualitative assessment:  

a. Is PolScope microscopy a safe methodology for clinical use? Does the imaging 

of human oocytes using PolScope microscopy induce a reduction of 

implantation rate and pregnancy rate? 

b. Can the findings of previous studies be confirmed that the presence of a 

birefrigent spindle and the location of a birefringent spindle relative to the  

first polar body correlate positively with fertilization rate, the quality of pre-

embryos and pregnancy rate?  
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c. Can immature human oocytes from a hormone-stimulated cycle develop 

normally to metaphase I and express a birefrigent spindle at meiosis I and II 

when placed into appropriate media and cultured in vitro? Is the proportion of 

in vitro maturing oocytes expressing a birefringent spindle as high as the one 

in in vivo maturing oocytes?   

 

2.  Quantitative Analysis: 

a. Is there a correlation between organisation of spindle fibres assessed by 

retardance magnitude and the interpolar distance of the spindle and the 

developmental potential of oocytes after fertilization determined by PN score?  

b. How do high-order network structure of the human zona pellucida and zona 

thickness correlate to quality of human oocytes and embryos obtained after 

ICSI and transfer?  

c. How predictive is quantitative assessment of the human zona pellucida by 

PolScope for quality of oocytes in assisted reproduction? 

 

3.3 Experimental Design 

Oocytes from ICSI cycles with consent of patients were included in the study. After 

puncture, mature oocytes were imaged by PolScope within two hours after retrieval. Data 

were saved for further qualitative and quantitative analysis of spindle apparatus and zona 

pellucida. Eighteen hours post-insemination, fertilization rate and the quality of pre-

embryos (according to pronuclear score) were assessed in all inseminated oocytes. 2-3 

pre-embryos with presumably highest developmental potential were selected for embryo 

transfer (ET) at day 2 or day 3. 2-3 weeks after ET, the hCG level in blood was 

determined to assess the biochemical pregnancy.  

Immature oocytes (at germinal vesicle stage at retrieval) from stimulated cycles were 

cultured in vitro continually for up to 48 hours. Oocytes were imaged by PolScope for the 

expression of a metaphase I and II birefringent spindle during the in vitro maturation. 

Oocytes were fixed for immunofluorescence after analysis by PolScope.  
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4. Materials and Methods 
4.1 Source of Human Oocytes 

In total, oocytes from 182 ICSI patients (mean age, 32.5 ± 4.5 years) were imaged by 

PolScope microscope during a period of 2 years after informed consent of the patients. 

Male sub-fertility was the indication in all cases. In the initial part of the study, fate of 620 

oocytes from 77 ICSI cycles (mean maternal age, 33.2 ± 4.7) viewed by PolScope were 

compared to 950 oocytes from 130 ICSI cycles (mean maternal age, 32.3 ± 4.8) randomly 

allocated to "control" (no PolScope analysis). In the quantitative assessment for spindle 

retardance 676 oocytes from 103 cycles were included.  For analysis of spindle expression 

56 oocytes matured in vitro with a mean age of 31.9 ± 4.4 years and 1369 oocytes 

matured in vivo with a mean age of 32.5 ± 4.5 years were used. The quantitative analysis 

of zona pellucida included 166 transferred oocytes of 63 ICSI cycles. The study protocol 

and design was approved by the ethic committee of the University Hospital of Giessen. 

 

4.2 Retrieval and Culture of Oocytes 

Throughout the study, human oocytes were obtained from ICSI patients undergoing 

controlled ovarian stimulation induced by GnRH agonist (HMG, Menogon®, Ferring 

Germany) in either a long- (130 patients; with a mean maternal age of 30.2 ± 2.8 years) or 

a short-treatment protocol (52 patients, with a mean maternal age of 37.2 ± 1.7 years). 

Ovulation was trigged by administration of 10.000 human chorionic gonadotrophin (hCG, 

Organon Germany) 36 hours prior to puncture, when the dominant follicles were > 20 mm 

in diameter and E2-level in blood was approximately 1,000 pg/ml. 

Retrieval of oocytes was performed by ultrasound-guided transvaginal aspiration. 

Cumulus-oocyte-complexes (COCs) were retrieved and collected in HEPES-buffered 

human tubule fluid medium (HTF medium, Irvine Scientific, USA) supplemented with 

10% human serum albumin (Behring, Marburg Germany). After briefly exposure to 80 

IU/ml hyaluronidase (Sigma, Germany), cumulus cells were removed by repeated gentle 

aspiration with hand-drawn glass pipette. Denuded oocytes were washed two times in 

fresh HTF + 10% HSA. Nuclear maturity of oocytes was identified under a 

stereomicroscope (Olympus SZH-ILLK, Japan). Mature oocytes (PB) were fertilized in 

vitro with sperm microinjection in 2 hours after oocytes retrieval. Oocytes arrested at 
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germinal vesicle (GV) stage, which were excluded from an ICSI program, were collected 

and cultured in vitro (s. Chapter 4.3).  

 

4.3 Analysis of Maturation Kinetics of Immature GV-stage Human Oocytes in vitro 

After retrieval, oocytes with an intact germinal vesicle (GV) were cultured in vitro in 

universal IVF medium (Cat. 10310060, MediCult) equilibrated at 37°C in an atmosphere 

of 5% CO2 plus 95% air up to 48 hours. Oocytes were scored for the proportion of polar 

body formation at 12, 24, 30, 36 and 48 hour of the culture under a stereo microscope and 

the expression of a birefringent metaphase I and metaphase II spindle using PolScope 

microscopy. Oocytes possessing a birefringent spindle or without spindle were fixed for 

indirect anti-tubulin immunofluorescence.  

 

4.4 Invasive Analysis of Spindle Apparatus in Fixed Oocytes by Indirect Anti-

tubulin Immunofluorescence 

For analysis of spindle morphology of in vitro maturing human oocytes, indirect anti-

tubulin immunofluorescence was employed in this study. Oocytes were either fixed and 

then viewed directly or were fixed by the clotting-technique procedure according to 

procedures developed by Hunt et al. (1995) and Eichenlaub-Ritter and Betzendahl (1995).  

 

4.4.1 Solutions and Chemicals  

4.4.1.1 Ring-solution and Fibrinogen Preparation for Use in Fibrin clots 

For immunofluorenscence analysis oocytes had to embedded in a thrombin/fibrinogen 

clot. Fibrinogen (Calbiochem, 341-573) was aliquoted and stored at -20°C. Shortly before 

use, 0.005g fibrinogen was dissolved in 500µl ringer-solution and pre-warmed to 37°C. 

The components and concentration of the ringer-solution is shown in the Table 4.1.  

 

4.4.1.2 PBS Solution 

PBS tablets were purchased from Oxoid, England. 1 PBS tablet was dissolved in 100ml 

ddH2O. PBS solution was autoclaved and stored at room temperature for use. PBS plus 

2% Triton X-100 (Sigma, T-9284) was made up and stored at 4°C. During fixation of 

oocytes the solution was pre-warmed and kept at 37°C. 
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   Table 4.1 Components of solutions. 

Solutions Chemicals 

Ringers (50ml) NaCl 0.45g 

 KCl  0.021g 

 CaCl2  0.0125g 

 ddH2O Up to 50 ml, sterile filtered and stored at 4°C 

10% NGS (500 ml) 50ml normal goat serum (Gibco BRL) 

 500µl Triton X-100 (Sigma, T-9284) 

 0.1g Na-Azid (Sigma, A-2002) 

 450 ml PBS solution 

 Saved at 4°C for 1 month use 

5% NGS (20ml) 1 ml normal goat serum 

 19 ml PBS solution 

0.1% NGS (500ml) 500µl normal goat serum 

 500ml PBS solution 

 Stored at 4°C 

Thrombin solution 250 units thrombin 

 1.5 ml PBS 

 1 ml ddH2O 

5x SB-stock (50ml) 
7.55g Pipes (Sigma, P-6757) 
It should be dissolved at first in 50ml dd H2O. PH should be 
adjusted to 7.5 prior to adding following chemicals. 

 0.25g MgCl2
.6H2O 

 0.235g EGTA (Sigma, E-4378) 

Simple-Fix (10ml) 2ml 5xSB-stock 

 100 µl Triton X-100 (Sigma, T-8787) 

 540µl Formaldehyde (Sigma, F-1268). Formaldehyde should 
be added shortly before use. 

 

0.5 mM Taxol (Sigma, T-7402) stock was made up in DMSO 
at first and stored at -20°C. 20µl stock solution was added into 
Simple-Fix to make a final concentration of Taxol in Fix = 
1µM. 

 ddH2O 7.34ml 

PBS/Triton PBS + 2% Triton X-100 
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4.4.1.3 Thrombin-Solution 

Thrombin from bovine plasma was purchased from Sigma (T-6634). 250 units thrombin 

was dissolved in 1ml ddH2O (Baxter Belgian, 001428) and 1.5ml PBS. The solution was 

aliquoted and kept frozen at -20°C until use.   

 

4.4.1.4 NGS Wash Solution  

NGS wash solutions (0.1% and 10%) were made up for washing fixed specimen and 

storing slides. In addition, 5% NGS solution was used for dilution of antibodies.  

 

4.4.1.5 5x SB-stock  

5xSB-stock solution was composed of PIPES, MgCl2 and EGTA. PIPES has to be solved 

at a pH of 6.1-7.5. Therefore, the pH of PIPES solution should be adjusted to 7.5, before 

the addition of the other chemicals. 

 

4.4.1.6 Simple-fix 

To make up the fixative solution, 2 ml 5x SB-stock was diluted in 7.34ml ddH2O. 100µl   

Triton X-100 and 20µl 0.5mM Taxol were added to the solution afterwards. Shortly 

before use, 540µl Formaldehyde was freshly added to the solution. 

 

4.4.1.7 Other Chemicals 

The chemicals in Table 4.2 were also used for the indirect anti-tubulin 

immunofluorescence. 

Table 4.2 other chemicals and solutions used for indirect anti-tubulin 
immunofluorescence. 
Poly-L-Lysine (Sigma, P-1524) 1mg/ml solution for coating slides 
1,4-Diazobicycles-octane (DABCO, 
Sigma) 

2mg DABCO was in 1 ml PBS with 20% 
glycerol and stored at 4°C. 

Methanol  100% Methanol was stored at -20°C for use. 
Propidium Iodide (Sigma, Deisenhof) 1µg/ml in 5% NGS 
Monoclonal anti-α-tubulin antibody 
from mouse (Sigma, T-9026) 

Stored at -70°C, diluted 1:400 in 5% NGS 
wash solution before use 

Polyclonal anti-mouse antibody from 
rabbit FITC conjugated (Sigma, F-7506) 

Stored at -20°C shortly before use diluted 
1:50 in 5%NGS wash solution before use  

Vulcanising solution (Tip Top 
Stahlgruber, Munich, Germany) 
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4.4.2 Procedure 

4.4.2.1 Preparation of Slides 

Slides were immersed into 100% methanol for 1 minute for cleaning of slides. Two rings 

of 1 cm diameter were then marked with a vulcanising solution (Tip Top Stahlgruber, 

Munich). Slides were dried in air for more than one night. Shortly before transferring 

oocytes to the slides, the marked area (ring 2) on the slides was washed with drops of the 

following solution (Figure 4.4.1): 

• 1 mg/ml poly-L-lysine 

• 2 x washing with ddH2O 

The coating with poly-L-lysine was necessary to attach the Fibrin clot stably onto the 

slide.  

 

 

 

 

 

 

 

 

 

 

4.4.2.2 Preparation of Clot 

3 µl fibrinogen was placed in ring 1 (wash drop), 1 µl fibrinogen in ring 2 (clot drop). 

Both droplets were covered with mineral oil and pre-warmed to 37°C. Thrombin solution 

was kept on ice for use. 

 

4.4.2.3 Placement of Oocytes in a Fibrin Clot  

Oocytes were individually fixed onto slides within the clot, so that each slide contained 

one oocyte. For this, the oocyte was transferred into the wash drop on the slide at first. A 

minimal amount of medium, transferred with the oocyte was transferred into the wash 

Figure 4.4.1 Preparation of slides for immunofluorescence: 3µl and 1µl 
Fibrinogen solutions were placed in ring 1 and ring 2, respectively, and 
covered with mineral oil. Oocytes was drawn from medium and washed in 
ring 1 shortly. Then it was transferred to ring 2. 1 µl Trombin solution was 
added immediately into ring 2 to embed oocytes into the Fibrin clot. 
 

Ring 1 
Ring 2 
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drop. After washing, the oocyte was immediately transferred to the clot drop in ring 2. 1µl 

Thrombin solution was added to the clot drop quickly to induce clotting. 

 

4.4.2.4 Fixation of Oocytes 

After placing on the warm object stage heated at 37°C for 30 seconds, the slide was then 

washed with pre-warmed PBS containing 2% Triton-X-100 non-ionic detergent. The 

oocytes trapped within the fibrin clots were fixed subsequently in pre-warmed simple-fix 

solution containing 2% formaldehyde, 1% Triton X-100, 0.1 M PIPES, 5 mM MgCl2, 

1µM Taxol and 2.5 mM EGTA (all chemicals were purchased from Sigma, Deisenhofen, 

Germany) in a plastic slide holder for 15 minutes and washed in 0.1% NGS for 15 

minutes. After washing, oocytes were moved to 10% NGS for at least 1 hour. The fixed 

oocytes were stored in 10% NGS for labelling by antibody.  

 

4.4.2.5 Indirect Anti-Tubulin Immunofluorescence 

Monoclonal anti-α-tubulin antibody was diluted with 5% NGS (1:400). 15µl of antibody 

solution was transferred to the slide, and the oocyte was incubated in a humid atmosphere 

with the first antibody at 37°C for 1 hour. Alternatively oocytes covered by antibody 

solution were stored at 4°C over night. Slides were subsequently washed in pre-warmed 

10% NGS at 37°C for 1 hour. The second antibody (polyclonal anti-mouse fluorescence 

isothiocyanate (FITC) conjugated antibody) was diluted with 5% NGS (1:50). Incubation 

of the second antibody was also for 1 hour at 37oC. Slides were finally washed in 10% 

NGS at 37°C for 1 hour before chromosome staining with 1 µg/ml Propidium Iodide was 

carried out for 10 minutes in the dark. 

Before sealing the slide the silicon ring was removed and 20µl anti-fading solution 

(DABCO) was added. After covering with a cover slip the slide was sealed with 

vulcanising solution and stored at 4°C in the dark until viewing by confocal microscope.  

 

4.4.3 Analysis of Spindle Morphology and Chromosomal Behaviour  

Spindles were illuminated with a TCS SP2 laser scanning confocal microscope (Leica, 

Germany). Images were saved as *.tif files with the appropriate software. Optical images 

of the spindle were combined to provide an image of the whole spindle apparatus and the 

relative positioning and congression (alignment) of chromosomes on the spindle. 
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4.5 Non-invasive Analysis of Birefringent Structures in Living Oocytes by 

PolScope Microscopy 

The SpindleView™ imaging (SPV) system is a fully-integrated set of microscope 

accessories that combines a unique liquid crystal-based orientation-independent 

polarizing light (PolScope) technology to assess the morphology and integrity of 

birefringent structures in living oocytes non-invasively. The PolScope™ technology is 

based on techniques originally developed by Dr. Rudolf Oldenbourg at the Marine 

Biological Laboratory at Woods Hole, Massachusetts (Oldenbourg, 1995 and 1996). 

 

4.5.1 Installation of the Hardware 

SpindleView™ imaging system consisted of a Pentium III 800Hz computer, a spindle 

view controller box, a LC-compensator, CCD camera and the SpindleView™ analysis 

software. For the current study the SpindleView™ imaging system was installed on a 

Nikon Eclipse TE-2000 inverted microscope, equipped with Hoffman interference optics, 

10 x, 20 x and 40 x strain-free objective lenses (Figure 4.5.1).  

 

 

Figure 4.5.1 The set-up overview of SpindleView™ imaging system (s. 
Chapter 4.5). A: Nearly polarized light producer composed of a polarized 
filter in 546 nm and a Hoffman HMC condenser. B: LC polarizing 
compensator optics was connected through the control box to a Pentium III 
computer. C: Images were recorded by a CCD camera and saved as *.bmp 
files in the computer. 

A: 

C: 

B: 
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4.5.2 The SpindleView Software and Oocyte Imaging 

The imaging software, SpindleView imaging system, was pre-installed in the computer. 

The user interface of the SPV system is shown in Figure 4.5.2. To achieve oocyte’s 

imaging more easily and quickly, the major steps, which were required for imaging of 

oocytes, are listed in the user interface (Item A on the Figure 4.5.2); all the action buttons 

are shown on the left in tool bar (Item E). In the camera view window, the live video 

image of the oocyte is identical to the one observed by the eyepiece (Item B); the 

processed image is shown in the active image window (Item C); the identification data of 

samples of patients are stored under the image window (Item D). 

 

 

 
4.5.3 Imaging of Birefringent Structures in Living Human Oocytes  

2 h after retrieval, oocytes were transferred individually to a pre-warmed 5-μl droplet of 

injection medium (HEPES buffered human tubule fluid medium) overlaid with 

B. Camera View 

A. User Guide

C. Processed Image D. Sample Record Data 

E. Tool Bar 

Figure 4.5.2 The full-screen view of the SpindleView software. A. Interactive 
User Guide; B. Live Video Window; C. Active Image Window; D. Sample 
Record Window; E. Tool Bar 
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equilibrated mineral oil (Sigma, Germany) in a WillCo Wells BV dish (Ref. No.: GWSt-

5040, Amsterdam, Netherlands). To avoid any prolonged handling and viewing of the 

oocytes before ICSI, the images of oocytes obtained by standard illumination through the 

oocyte equator and automatic microscope setting (see below) were saved for quantitative 

analysis without using them for selection of embryos. The object stage of the microscope 

was heated by a temperature control system at 37°C (Minitub HT300, Tiefenbach, 

Germany) during the observation. Alignment of the microscope and calibration of the 

software were performed before oocyte imaging. For a calibration failure the following 

steps have to be check out, if   

1. the liquid crystal (LC) polarizing compensator optic module was installed on the 

microscope and connected to the cable to the connector on the back of spindle 

view controller box. 

2. the spindle view controller box was connected to the computer. Then connect 

power transformer to the back of the controller box. 

3. a 546 nm (wavelength) green interference filter was placed in the supplementary 

lens pocket. 

4. the video cables was connected to the computer. 

5. the condenser turret turned to “A” position.  

6. the controller box was turned on before start the spindle view software. 

Quantitative analysis of the retardance magnitude of the birefringent structures in oocytes, 

namely zona pellucida and spindle apparatus, was performed along a line scan across the 

entire structure. All the measurements were performed by the same person and blindly 

with respect to clinical factors, such as the age of patients, numbers of additional oocytes 

and pregnancy rate. 

 

4.5.3.1 Quantitative Assessment of the Birefringent Property of the Zona 

Pellucida 

The organisation of ZP fibres and the thickness of zona pellucida were quantitatively 

analysed in 63 ICSI cycles in 2003 (Table 4.3). The quantitative analysis of the thickness 

and retardance of zona pellucida was performed along three line scans across the entire 

zona pellucida, which was perpendicular to the cell membrane on a cord from the oocyte 
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centre towards the oolemma and zona (Figure 4.5.3). Since thickness and texture of the 

human zona pellucida may be heterogeneous for individual oocytes and within each zona 

layer, one line scan was usually performed in an area away from the first polar body 

providing a profile of thickness and magnitude of retardance of the tri-layered structure at 

0.5 µm steps (Figure 4.5.3, area A). A second line scan was located approximately 180º 

away from the first one, extending the line from the first measurement through the oocyte 

centre outwards (area B). The third area of a line perpendicular to the first two scans was 

performed (at an angle of about 90°, area C). So, three measurements were performed in 

different areas of the zona of each oocyte. The average retardance magnitude was 

calculated for each oocyte from three cross-section scans of each individual oocyte.  

 

Table 4.3 Summary of data on patient included in quantitative PolScope analysis 
of zona pellucida  
 CC NCC 
Patients:   
Number of Patients 23 40 
Maternal Age1 32.7 ± 3.8 32.9 ± 4.7 
Number of Attempts1 2.0 ± 1.4 2.5 ± 1.2 
Peak Oestradiol Levels (ng/ml)1 1670.7 ± 783.5 1566.3 ± 651.5 
Number of Follicles1 12.2 ± 3.6 12.4 ± 5.2 
Number of Mature Oocytes1 7.9 ± 3.2 7.9 ± 3.7 
Fertilization Rate (%)2 82.8 84.5 
Transferred Oocytes:   
Number of Transferred Oocytes 65 101 
Percentage of Transferred Oocytes 
with Birefringent Spindles (%)2 93.2 95.0 

Percentage of Oocytes with 
Displaced Spindle (%)2 12.3 9.9 

Average Number of Transferred 
Embryos/ Patient1 2.8 ± 0.4 2.6 ± 0.6 

Percentage of Embryos Transferred 
at day 2 (%)2 100 95 

Percentage of Embryos Transferred 
on day 3 (%)2 0 5 

1 T-test, P > 0.1, no significant difference between the CC and NCC group. 
2 Chi2-test, P > 0.1, no significant difference between the CC and NCC group. 
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Maximal differences (in percent of the highest value) in zona retardance of the inner layer 

between the three measurements in each oocyte were compared statistically. 

For quantitative comparisons between retardance of zona layers in germinal vesicle 

oocytes, metaphase II oocytes and pre-implantation embryos, Pelletier et al. (2004) 

defined the retardance magnitude of individual layers of the zona by taking one value at 

the midpoint of eight cords through the layer and then calculating the average of the eight 

points. However, the zona pellucida is an extremely heterogeneous, net-like structure in 

oocytes (Magerkurth et al., 1999). The value of single measure point cannot describe the 

three dimensional organisation of ZP protein fibres within the zona pellucida. The mean 

values of the retardance magnitude were therefore calculated using all measurement 

points spaced 0.5 μm apart along the whole cross section curve for each layer (Figure 

5.4.2), except for the two outermost points (indicated by the area between the arrows in 

Figure 5.4.2). Since the retardance may steeply increase or rise more gradually going 

from the inside towards the outside of the zona, and retardance in the perivitelline space 

may not be close to zero, the outer measurement points of the layers defining boundaries 

for determination of thickness of each zona layer were usually designated at the site of an 

increase over two measurement points (indicated by vertical stippled lines in Figure 

5.4.2). The middle layer was defined by the dark area between the boundaries of the outer 

and inner layer (between the dotted vertical lines in the middle of Figure 5.4.2). The 

A

B 

C 

Figure 4.5.3 Quantitative measurement 
of retardance magnitude and thickness 
through three line scans across entire 
zona pellucida (dotted line). The 
measurements were performed in three 
different areas. The first and second 
measurements were located ~ 180º from 
each other (area A and B) and the third 
measurement (area C) was 
perpendicular to the two first 
measurements. Bar = 30 µm 
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average retardance was calculated initially from the three line scans for each individual 

oocyte.  

For comparison between the conception cycles (CC) and non-conception cycles (NCC), 

average retardance and thickness was normalized from two to three oocytes used in 

transfer for each patient to avoid bias between two and three embryo transfers. It has been 

avoided to measure an area with an abnormal zona phenotype, e.g. in cases where a zona 

layer was split into two sub-layers (Figure 5.4.1 F, arrows). In these cases, the three 

measurements were performed in areas close to the normal cross-section regions but 

adjacent to the split zona area, such that the zona was still in close proximity to the 

oolemma. Only 3 such oocytes were examined. In each case only one single oocyte with a 

split zona was used in transfers including one to two additional embryos.   

A few oocytes, which were used for transfer, could not be evaluated for zona morphology 

because granulosa cells were still attached after isolation, and the boundaries of the zona 

layers could not be unambiguously identified. However, all of the 65 oocytes comprising 

embryos transferred after ICSI in the CC group and 101 oocytes of the 104 embryos later 

used for transfer in the NCC group were included in the calculations.  

 

4.5.3.2 Quantitative Assessment of the Birefringent Property of the Spindle 

Apparatus 

Oocytes obtained during a period of two years from 182 stimulation cycles for ICSI with 

a mean maternal age of 32.5 ± 4.5 years were initially examined non-invasively by 

PolScope after informed consent. The quantitative study is reporting exclusively the data 

from 103 cycles of these 182 cycles, with a total of 1140 oocytes, in which quantitative 

rather than only qualitative PolScope microscopy was performed (Table 4.4). Fertilization 

with respect to positioning of the spindle in individual oocytes could be also analysed in 

731 of 739 oocytes with a spindle from a total of 1140 polar body oocytes from patients 

with a mean maternal age of 32.5 ± 4.4 years (Table 4.4). Furthermore, 792 embryos from 

oocytes with (n = 676) and without (n = 116) spindle were analysed for pronuclear-score 

18 h after ICSI (Table 4.4). 676 oocytes developing into pre-embryos, in which 

pronuclear (PN) scores were determined individually, were included in the quantitative 

assessments of mean length and retardance of the spindle, and PN sores were compared to 

116 oocytes without birefringent spindle obtained from the same patients (Table 4.4). 
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From the 676 embryos obtained after ICSI and pronuclear scoring 268 embryos were 

selected for transfer, 254 of which contained a birefringent spindle before fertilization 

(Table 4.4). Mean retardance of spindles of transfer oocytes in conception cycles (100 

oocytes) was compared to that in non-conception cycles (154 oocytes) (Table 4.4). Also, 

maternal age and mean retardance was compared between all oocytes/embryos in 

conception (n = 246) and non-conception cycles (n = 430), including transfer and non-

transfer oocytes (Table 5.2). 

According to the expression of a birefringent spindle oocytes were divided into two 

groups. One comprised oocytes expressing a birefringent spindle (Figure 5.2.2 D), while 

no spindle was detectable in the other group of oocytes (Figure 5.2.2 E). Fertilization of 

oocytes with and without a spindle was scored retrospectively. The development of 

oocytes with and without spindle to pre-embryos was determined quantitatively with 

respect to PN score of the pre-embryos.  

In oocytes with spindle, irrespective of spindle localization, spindle length and 

retardance of light was quantitatively assessed by PolScope software along a line scan 

parallel to the spindle long axis from one to the other spindle pole in the centre of the 

spindle body (Figure 5.3.1a). Similar to ZP, the mean retardance magnitude of the 

spindle in each oocyte was also calculated by averaging retardance of points spaced 0.5 

µm apart along the whole cross section curve. The two outermost points were not 

included in assessment (as indicated by the arrows in Figure 5.3.1e).  

The localisation of the metaphase II spindle relative to the first polar body was analysed 

in oocytes containing a birefringent spindle, as well. Spindle deviation angle was 

described by the line connecting the oocyte centre with the middle of the meiotic spindle 

and a line connecting the oocyte centre with the centre of the first polar body (Figure 

5.2.5). Fertilization rate was assessed and compared between those oocytes containing a 

spindle close to the first polar body  (≤40° distance, Figure 5.2.5) and those with the 

spindle located further away from first polar body (deviation angle of >40°, Figure 5.2.5 ). 

The proportion of oocytes developing to a pre-embryo with 2 PN, with abnormal 

fertilization pattern (1PN and ≥3 PN) and the number of unfertilised oocytes was 

determined for the group of oocytes with and without spindle, and for oocytes with the 

spindle in proximity (≤ 40°) or away from the first polar body (> 40°). 
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Table 4.4 Summary of data on patients included in qualitative PolScope analysis of spindles in 
oocytes, numbers of oocytes with and without spindle, numbers of oocytes assessed for pronuclear 
scores and variables between patients whose oocytes contributed to a CC or NCC. 

Qualitative Analysis Total CC NCC  
Patients:    
Number of Patients  103 42 61 
Maternal Age1 32.5 ± 4.4 32.5 ± 3.9 32.4 ± 4.3 
Number of Attempts1  2.1 ± 1.6 2.7 ± 1.4 
Peak Oestradiol Levels (ng/ml)1  1643.7 ± 735.5 1553.6 ± 645.5 
Number of Follicles1  11.8 ± 3.7 12.2 ± 5.0 
Number of Polar Body Oocytes1   8.5 ± 3.6 8.8 ± 4.1 
Fertilization Rate (%)2  81.2 82.3 
Oocytes:    
Total Number of Oocytes 1140 
Number of Mature Oocytes  
Mature Oocytes with Spindle (%) 

897  
739 (82.4)  

Oocytes Assessed for 
Displacement of Spindle before 
ICSI 
(Without / With Displacement) 

731 
(620/111) 

Oocytes Assessed for PN scoring 
after ICSI 
(With / Without Spindle) 

792 
(676/116) 

Oocytes Assessed for Mean 
Retardance and PN score after 
ICSI 
(Non-transferred / Transferred) 

676 
(422/254) 

Oocytes Transferred after ICSI: Total CC NCC 
Number of Transferred Oocytes 
after ICSI 268 105 163 

Transfer of Oocytes with 
Birefringent Spindles (%)2 254 100 

(95.2) 
154 

(94.5) 
Oocytes with Displaced Spindle  
(%)2  6/100 

(6) 
22/154 
(14.3) 

Oocytes Stimulated by Short 
Protocol (%)2  21/105 

(20) 
35/163 
(21.5) 

Average Number of Transferred  
Embryos/ Patient1  2.5 ± 0.6 

 
2.7 ± 0.8 

 
Transfers  
at day 2 (%)2  41/42 

(97.6) 
57/61 
(93.4) 

Mean Retardance of Light by 
Spindle in Transfer Oocytes (nm) 1  1.65 ± 0.43 1.67 ± 0.44 

Mean Length of Spindle in 
Transfer Oocytes (µm)1  12.9 ± 2.0 12.8 ± 1.8 

1 t-test, P > 0.1, no significant difference between the CC and NCC group. 
2 Chi2-test, P > 0.1, no significant difference between the CC and NCC group. 
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4.6 Assessment of PN score for Embryo Selection, Development of Embryos at Day 

2 and Pregnancy 

The selection of eggs used for embryo transfer was performed at the pronuclear stage, 18 

hours post-insemination. The criteria of PN score were according to standard criteria used 

in the IVF centre at Giessen University. The criterion of PN score was developed in IVF 

centre Giessen, based on Scott and Smith (1998). If the pronuclei were separated, non-

equal in size or difficult to identify, they were given a score of E. If the pronuclei were 

clear and closed aligned, they were given a score from A to D, based on the position of 

nucleolar precursor bodies (NPB) as following: a) NPBs aligned at the pronuclear 

junction and the number of NPB was between 3 and 10, score A; b) if the NPBs were 

polarised at the pronuclear junction but aligned not very well, score B; c) NPBs scattered 

in cytoplasm and their number was over 7, score C; d) asymmetric alignment of NPBs or 

the number of NPBs was over 10 or below 5, score D.  

Selection was based on the position of both pronuclei and the alignment of NPB in the 

pronuclei (modified scoring criteria from Scott and Smith, 1998) (see Figure 4.6.1) as 

well as the overall morphology of the pro-embryo. 

In embryo selection for transfer the following factors were especially considered: 

1. PN score of the embryo should be as high as possible, usually A-D according to 

our criteria, but in a few cases, where no other embryos were available, embryos 

with PN score E were also used for transfer.  

2. The cytoplasm should be homogenous and the oocyte without deformations. 

3. The localization of the nucleoli should be similar in both pronuclei (Nagy et al., 

2003). A peripheral accumulation of nucleoli in only one PN would be 

considered as an indicator of poor quality of the embryo (see Figure 4.6.1).  

4. The presence of a halo was considered as an indicator of high quality of the 

embryo (Stalf et al., 2002), and was therefore used as additional indicator in 

embryo selection, especially when selection occurred between embryos of 

otherwise similar morphology. 

 

In embryos with a score of A and B (group 1), there was close nuclear apposition and 

NPB were symmetrically distributed either in close apposition to the nuclear periphery 

where pronuclei face each other (score A) or were similar in number and still in close 
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proximity to each other in the half of the nucleoplasm where pronuclei were apposed to 

each other (score B). Embryos with a score of C were assigned to group 2 for assessment 

of average retardance. Embryos with a score of D with uneven numbers, and/or 

asymmetric distribution of nucleoli within the nucleoplasm of the paternal and maternal 

pronuclear were assigned to group 3. Finally, embryos with a score of E with nuclei 

and/or NPB not clearly distinct or unevenly sized nuclei or such away from each other 

together with embryos possessing 1 or ≥3 pronuclei were assigned to group 4. The mean 

retardance magnitudes for spindles in oocytes giving rise to an embryo in each of the four 

groups was compared. Furthermore, average retardance of spindles of oocytes selected for 

transfer after ICSI was also compared with mean retardance of spindles in oocytes not 

used for transfer. 

 
 

D 

A B

E 

C 

Figure 4.6.1 Pronuclear-scoring system modified from Scott and 
Smith 1998 (s. Chapter 3.6). (A–D) Score A–D: pronuclei closely 
apposed, further designation according to the position of nucleoli 
as follows: (A) Score A: three to 10 NPB aligned at the pronuclear 
junction. (B) Score B: NPB polarized but not highly apposed at 
pronuclear junction. (C) Score C: More than seven NPB scattered 
in nucleoplasm. (D) Score D: asymmetric distribution of NPB 
and/or numbers of NPB >10 or <5. (E) Score E: NPB spatially 
separated, unequal in size and/or not clearly distinguishable. 
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Two to three embryos with the presumably best quality were selected for embryo transfer, 

blindly with respect to spindle data. Embryos were usually transferred to the uterus on day 

2. In a few cases (5 cycles), embryos were transferred only on day 3 after oocyte retrieval, 

due to practical considerations. A pregnancy was considered, when the patient had 

positive results in the pregnancy test three times, two weeks after embryo transfer.  

 

4.7 Statistical Analysis 

Two-tailed Student T-Test was used for the quantitative analysis of the retardance 

magnitude of zona and spindle, and thickness of zona layers. Linear regression test was 

used to calculate the relationship of retardance and thickness of the inner zona layer. Two-

way-ANOVA test was used for assessing the correlation between zona thickness and 

retardance and reproductive age within the CC and NCC groups. Chi2-test was performed 

to compare the fertilization rate of oocytes with and without a birefringent spindle, and 

the proportion of 2PN formation in the oocytes containing a spindle nearby the polar body 

and far away from the polar body, and to compare the number of oocytes with a high 

retardance magnitude (> 3 nm), intermediate magnitude of retardance (3-2 nm), and low 

magnitude of retardance (< 2 nm) of the inner layer of the zona between the CC and NCC 

group. U-Test was used for the analysis of the heterogeneous properties of the zona 

pellucida. Logistic regression analysis was performed to assess the sensitivity of the 

retardance data in comparison to PN score and embryo development at day 2. 

Significance was considered as P < 0.05 for each statistical analysis. All the analyses were 

performed with SPSS 12.0 and SAS software. 
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5. Results  
5.1 Assessment of Spindle Formation in Immuature Oocytes from ICSI Cycles 

56 immature human oocytes from 33 ICSI cycles with a mean patient age of 31.9 ± 4.4 

years were included in the analysis. After retrieval, GV-stage oocytes were cultured for 

12h to 48 h in 5 µl microdroplets of universal IVF medium (MediCult, 10310060) and 

analysed at 12 h, 24 h, 30 h, 36 h and 48 h by PolScope. Some oocytes were subsequently 

fixed for immunofluorescence analysis. Characteristically, GV-stage oocytes did not 

contain a birefringent spindle or a first polar body. Tubulin immunofluorescence revealed 

a dispersed network of cytoplasmic microtubular fibres, no spindle apparatus, and 

chromatin retained within a nucleus (Figure 5.1.1 a, a'). By 12 hours of culture in vitro 

64.3% of the immature oocytes had resumed meiosis and undergone GVBD. Most oocytes 

did not contain a visible spindle apparatus and were cultured further. However, in a few 

oocytes, a birefringent metaphase I spindle was first identified at this time (Figure 5.1.2). 

At 24 h of culture, only 6% of all immature oocytes remained arrested at the GV stage. 

The majority, 62.5% of the human oocytes (35 from 56 oocytes), underwent GVBD and 

16.1% of the GVBD oocytes expressed a birefringent metaphase I spindle by 24 h of 

culture. Fixation revealed well-aligned bivalents on the metaphase I spindle, composed of 

a dense network of microtubule fibres and a typical barrel-shaped spindle that had 

migrated to the cell periphery (Figure 5.1.1 b, b'). Although spindle microtubules appeared 

parallel aligned and ordered in the fixed meiosis I oocytes, frequently, oocytes were still 

in late prometaphase I stage with chromosomes in the process of congression and not all 

aligned at the equator (Figure 5.1.1 b'). Approximately 17.9% of the oocytes had reached 

telophase I and 14.3% of them had emitted a first polar body at 24 h of maturation in vitro 

(Figure 5.1.2). Oocytes fixed at telophase I had typically a central, interpolar microtubular 

bundle (Figure 5.1.1 c'), which was sometimes already quite devoid of microtubules while 

other oocytes contained a more dense assembly of microtubular fibres in the interpolar 

space (not shown). At 30 h of culture the majority of the in vitro maturing oocytes had 

emitted a first polar body although most did not possess a birefringent metaphase II 

spindle at this time (Figure 5.1.2). A birefringent spindle was detected in only 16.1% of 

the PB oocytes at 30 h of culture. After 36 h of culture, the percentage of oocytes with PB 

had increased to 66.1%. However, only about one third of these in vitro maturing oocytes
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(11 PB of 56 cultured oocytes, 19.6 %) possessed a birefringent spindle (Figure 5.1.2). 

This was significantly different from oocytes matured in vivo (83.9% of total 1369 

oocytes; P < 0.001).  

Tubulin immunofluorescence revealed a compact barrel-shaped spindle with well-aligned 

chromosomes in in vitro maturing metaphase II oocytes (Figure 5.1.1 d, d'). Oocytes 

without a visible birefringent spindle often contained also a spindle apparatus, but the 

latter was frequently asymmetric, and contained only few, unordered spindle fibres, and 

scattered chromosomes (Figure 5.1.1 e, e'). Interestingly, the percentage of oocytes 

expressing a birefringent spindle (MII in Figure 5.1.2) decreased dramatically upon 

prolonged culture of oocytes from 36 h to 48 h (Figure 5.1.2), while that without spindles 

(PB in Figure 5.1.2) increased, indicating that spindles were highly susceptible to 

degenerate upon a meiotic arrest of only 12 h to 18 h. Overall the analysis of in vitro 

maturing oocytes by PolScope accurately depicted the formation of a metaphase I and 

metaphase II spindles, as well as the kinetics of spindle formation with respect to polar 

body emission and percentage of mature oocyte capable to develop  to and arrest at 

meiosis II non-invasively under defined culture conditions and stimulation protocols.  

 

 

Figure 5.1.2 Kinetics of spindle formation in in vitro maturing naked oocytes retrieved 
from follicles in ICSI cycles at GV stage. GV: Oocytes with a germinal vesicle; GVBD: 
Oocytes without a detectable birefringent spindle at germinal vesicle breakdown stage; 
MI: Oocytes with a detectable metaphase I spindle; Telo: oocytes at telophase I stage; 
PB: Oocytes with first polar body but without a detectable metaphase II spindle; MII: 
Oocytes with first polar body and a birefringent metaphase II spindle. 
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5.2 Qualitative Analysis of Expression of a Birefringent Spindle Apparatus in 

Human in vivo Maturing Oocytes Using PolScope Microscopy 

5.2.1 Non-invasive Nature of PolScope Microscopy 

PolScope has been employed to non-invasively analyse the oocyte’s health and their 

developmental potential after insemination since several years (Wang et al., 2001a;b;c; 

Rienzi et al., 2003; 2005). In the current study biochemical pregnancy rate of patients 

(PolScope group; n = 77) whose oocytes were viewed by PolScope has been compared to 

that of patients randomly allocated to "control" group (no PolScope group; n = 130), in the 

initial part of the current study to ensure that PolScope viewing has no detrimental effect 

on oocyte quality and developmental potential.  

The biochemical pregnancy rate in the PolScope group was 31.2 %. It was comparable to 

the pregnancy rate of group of patients who had not been subjected to PolScope analysis 

prior to ICSI (32.3 %). Thus, there was no statistical significance in pregnancy rate 

between the control and PolSope group groups (P > 0.1; Figure 5.2.1).  

In view of the apparent non-invasive nature of PolScope microscopy, the study could be 

continued in a retrospective way to compare initially the presence or absence of a spindle 

in oocytes with outcomes after ICSI.  

31.2%
32.3%

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

Biochemical pregnancy rate

Fig. 4.2.1 Comparison of biochemical pregnancy rate in Polscope and 
non Polscope group

PolScope (n=77) non PolScope (n=130)

Figure 5.2.1 
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5.2.2 Presence of a Birefringent Spindle in Human Living Oocytes Matured in 

vivo 

Oocytes from 182 stimulated ICSI cycles were included in the 2-year study. In total, 1821 

oocytes were retrieved by ultrasound-guided transvaginal aspiration. On average 10.0 ± 

6.1 oocytes were retrieved per cycle. After denudation of oocytes, 324 oocytes arrested at 

GV (Figure 5.2.2 A) and GVBD (Figure 5.2.2 B) stage were excluded from the study 

(Table 5.1). 1497 oocytes with a first polar body (PB) were subjected to the PolScope 

analysis. During the observation, telophase I spindles were detected in 128 PB oocytes by 

PolScope (Figure 5.2.2 C). These 128 oocytes in telophase I stage were excluded from the 

quantitative assessment and comparisons with outcomes in the study. Finally, the presence 

of a birefringent spindle was analysed in 1369 PB oocytes (Figure 5.2.2 D; Table 5.1). 

83.9% of the 1369 oocytes expressed a birefringent metaphase II spindle (Figure 5.2.2 D), 

whereas the spindle apparatus was not detected by PolScope in 16.1% of the retrieved 

oocytes (n = 220, Figure 5.2.2 E).  

In the examined 182 stimulated cycles, 430 oocytes from a cohort from 73 patients did not 

contain a birefringent spindle. All 13 oocytes from 2 cycles contained no birefringent 

spindle at all (Table 5.1). No significant differences in mean patient age and average 

number of oocytes per cycle were detected in cohorts contributing to cycles with one or 

all oocytes without spindles versus those that contained only oocytes with spindles.  
Table 5.1 Summary of data on expression of a birefringent spindle of total 182 cycles 

 Number 
of cycles 

Mean patient 
age per cycle 

(years)* 

Number of 
MII oocytes 

Number of 
oocytes per 

cycle* 
Cycles in which all  oocytes 
had a birefringent spindle 

73 32.8 ± 5.0 430 5.9 ± 2.9 

Cycles in which all oocytes 
failed to express a 

birefringent spindle 

2 32.5 ± 3.5 13 6.5 ± 3.5 

Cycles with one or few 
oocytes without a 

birefringent spindle 

107 32.3 ± 4.1 926 8.7 ± 4.9 

Total 182 32.5 ± 4.4 1369 7.5 ± 4.5 

* One-way ANOVA: no significant differences, P>0.1. 
 

GV
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5.2.3 Fertilization Rate of Oocytes with and without Birefringent Spindles  

Fertilization occurred in 88.4% of the oocytes possessing a spindle and in only 66.4% of 

the oocytes possessing no birefringent spindle. χ²-test revealed a significantly difference 

between the two groups (P < 0.001; Figure 5.2.3). Accordingly, absence of a birefringent 

spindle appeared to correlate to a high risk of fertilization failure.   

 

 

 

Figure 5.2.2 Oocytes retrieved from stimulated cycles. A: Oocytes arrested at the 
germinal vesicle (GV) stage; B: Meiotically delayed or blocked oocytes with 
germinal vesicle breakdown; C: Oocytes with a telophase I spindle in the process 
of first polar body formation; D: Oocyte with a birefringent metaphase II spindle; 
E: Typical oocytes without a birefringent spindle but a visible first polar body. Bar 
in A for A and B = 40µm, Bar in C for C-E = 40µm.

A

C D

A

C D

MII spindle Telophase 
spindle 

b 

E

B

Germinal vesicle 
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5.2.4 Fate of Oocytes with and without a Birefringent Spindle 

At 18 hours post-insemination the fertilization and quality of pre-embryos was assessed 

using a modified pronuclear (PN) scoring system initially proposed by Scott and Smith 

(1998) (Stalf et al., 2002). Due to practical reasons, data of the assessment were only 

collected in 103 ICSI cycles in the course of the current study (Figure 5.2.4). The 

development to a good, mediocre or suboptimal PN score embryo of the 792 fertilized 

oocytes from 103 cycles is shown in Figure 5.2.4 (676 oocytes with birefringent spindle 

and 116 oocytes without birefringent spindle). The proportion of pre-embryos with PN 

score A, B and C, which are presumably of highest quality from the cohort was 

significantly higher for oocytes possessing a birefringent spindle, compared to oocytes 

without a birerefringent spindle (* 34.2% vs. 19.9%; P < 0.001; Figure 5.2.4). Conversely, 

the percentage of oocytes forming a pre-embryo with a score D or E, or with abnormal 

fertilization tended to be higher in the oocytes without a birefringent spindle, although 

differences did not reach statistical significance. The data suggest that the presence of a 

birefringent spindle is usually associated with formation of an embryo of best PN score 

and developmental potential.  

 

 

 

  

88.4% 

66.4%

0.0% 

50.0% 

100.0% 

Fertilization rate

Figure 5.2.3 Fertilization rate of oocytes with and without a birefringent spindle

Oocytes with a 
birefringent spindle
(n=1149) 

Oocytes without a
birefringent spindle
(n=220)
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5.2.5 Fate of Oocytes with and without a Displaced Spindle 

731 oocytes from the 103 cycles were included in the analysis of the localisation of the 

metaphase II spindle relative to the PB in the oocyte. The majority of the 731 oocytes 

contained a spindle close to the first polar body with a deviation angle below 40° (Figure 

5.2.5). A spindle displacement over 40° relative to the first polar body was found in only 

15.2% of the oocytes. The oocytes without pronounced spindle displacement had a 

relatively higher fertilization rate with formation of a 2PN pre-embryo compared to the 

oocytes with displacement of the spindle from the first polar body (P < 0.01) (Figure 

5.2.5). In contrast, the rate of oocytes showing abnormal fertilization patterns (one 

pronucleus or more than three pronuclei) was similar in both groups (Figure 5.2.5). 
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Score A-C Score D&E Abnor. Fertil.

With Spindle, n = 676 Without Spindle, n=116

* 

Figure 5.2.4 Development of oocytes with and without birefringent spindle: Grouping 
of pre-embryos according to pronuclear score A-C, D&E or abnormal fertilization. The 
proportion of presumably high quality embryos with good PN score (A-C) was 
statistically significantly lower for oocytes possessing no birefringent spindle (grey 
bars) compared to oocytes with a spindle (open bars) (* 19.9% vs. 34.2%; P < 0.001) 
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5.3 Quantitative Assessment of Spindles in Oocytes with Respect to Developmental 

Potential/PN score  

5.3.1 Oocytes Included to the Quantitative Assessment 

The quantitative study is reporting exclusively the data from 103 cycles of these 182 

cycles (Table 4.4). In total, 1140 oocytes were retrieved from 103 stimulated cycles. 792 

embryos from the total of 1140 oocytes with (n = 676) and without (n = 116) spindle were 

analysed for pronuclear-score 18 h post-insemination (Table 4.4). 676 oocytes expressing 

a birefringent metaphase II spindle and developing into pre-embryos, in which pronuclear 

(PN) scores were determined individually, were included in the quantitative assessments 

of mean length and retardance of the spindle. PN sores of the 676 oocytes with spindle 

have been compared to 116 oocytes without birefringent spindle obtained from the same 

patients (Chapter 5.2.4). According to PN scoring assessment, 268 of the 676 pre-embryos 

were selected for embryo transfer, in which 105 embryos from 42 cycles contributed to a 

*

Spindle 40 μ

m40 μ
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80

90 %

2PN 1 or > 2PN Unfertilized

Spindle ≤40° to PB, n=620

Spindle > 40° to PB, n=111

Spindle

Polar 
body 

Figure 5.2.5 Comparison of the fertilisation rate and development to 2 PN pre-embryos or 
pre-embryos with 1 or >2 PN of cohorts of oocytes with a spindle close to the first polar 
body  (≤ 40o) and such with the spindle located at an angle of > 40° away from the spindle 
in 731 oocytes from 103 stimulation cycles (*χ²-test, P < 0.01). 
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conception and the other 163 embryos from 61 cycles failed to contribute to a conception 

(A conception was determined, when the patient had positive results in the pregnancy test 

three times in two weeks after embryo transfer.). In 268 embryos, 254 of them (94.8%) 

contained a visible metaphase II spindle prior to fertilization (Table 4.4).    

 

5.3.2 Retardance Magnitude and Pole-to-pole Distance of the Meiotic Spindle 

of Human Oocytes 

The presence of a birefringent metaphase II spindle was not only qualitatively but also 

quantitatively analysed as described in material and methods. Similar to previous studies 

(Wang et al., 2001c; Moon et al., 2003), the majority (over 80%) of in vivo maturing 

human oocytes contained a birefringent spindle. The presence of a birefringent spindle 

correlated with a high fertilization rate (Figure 5.2.3) and high pre-embryo quality (Fig 

5.2.4).  

To obtain more information on correlations between spindle morphology and average 

retardance and developmental potential, 676 embryos were grouped into 4 subgroups, 

according to their PN score.  

Subgroup 1contained oocytes forming embryos with a PN score of A or B;  

Subgroup 2 contained oocytes forming embryos with a PN score of C; 

Subgroup 3 contained oocytes forming embryos with a score of D; 

Subgroup 4 contained oocytes forming embryos with a score of E or with an abnormal 

fertilization (one PN or more than three PNs). 

Characteristic images and the patterns of line scans of spindles in human oocytes 

developing into embryos of higher or sub-optimal PN score are shown in Figure 5.3.1.  

Light retardance was measured at 0.5 μm intervals across the entire spindle in a cross-

section along a line scan of the long axis of the meiotic spindle in human oocytes. In 

Figure 5.3.1 e, the striped line was from an oocyte developing into a pre-embryo with PN 

score A (Figure 5.3.1 b), characteristic for oocytes in subgroup 1. The solid line was from 

an oocyte forming a pre-embryo with a PN score D after fertilization, characteristic for 

subgroup 3 (Figure 5.3.1 c). The dotted line marked by triangles corresponds to the 

retardance curve of an oocyte developing into a pre-embryo with lowest quality (abnormal 

fertilization) (Figure 5.3.1 d). 
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The line scan across the entire spindle
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1,5
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Distance (um)

e

Spindle

Polar 
body

a b c d

Score A Score D Abnormal Fertilization

PN-Score A                           PN-Score D                      Abnormal Fertilization 

10 μm 40 μm

Figure 5.3.1 Line scan of the meiotic metaphase II spindle for analysis of retardance (a) and 
images of oocytes forming a pre-embryo with pronuclear score A (b) and D (c), or abnormal 
fertilization (d). Characteristic examples of retardance curve of a line scan (e) through the 
spindle apparatus of an oocyte forming a pre-embryo with score A (striped line), with a 
score D (solid line) or with abnormal fertilisation (dotted line). Vertical dotted lines depict 
outer boundaries of the spindle measured on the line scan of the oocyte developing into a 
pre-embryo with pronuclear score D. Open arrows show the outer boundary and the two 
measurement points excluded from the calculation of the average magnitude of retardance 
of light by the spindle. Bar in a: 10 µm. Bar in b for b-d: 40 µm. 
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Table 5.2: Quantitative assessment of mean retardance of light and spindle length in all oocytes 
selected or non-selected for transfer developing into pre-embryos with different PN score after ICSI: 
PN score of pre-embryos of all oocytes from patients of different age according to criteria by Scott 
and Smith (1998). 

 
Two tailed Students T-Test: Significant difference to group 1:  aP < 0.05; bP < 0.001; cP=0.001. Significant 
difference to group 3: d P=0.005. 
 

The mean retardance magnitudes of meiotic spindles was quantitatively analysed for each 

sub-group. Oocytes of group 1 forming embryos with a PN score of A or B contained 

spindles with the highest birefringence with a mean value of 1.72 nm. The mean 

retardance magnitudes were 1.53 nm and 1.52 nm for subgroups 2 and 3, respectively. 

These values were not statistically different from each other, but significantly lower 

compared to subgroup 1 (P < 0.001, Tab 5.2). The oocytes developing into embryos with 

poor quality (subgroup 4) had a spindle with an even lower retardance magnitude of only 

1.39 nm (Table 5.2), significantly lower compared to subgroup 1 and 3. The retardance 

magnitude of subgroup 4 was nearly 20% lower compared to group 1. 

PN score of  
Pre-embryo 

 

Numbers of  
Pre-embryos 
Derived by 

Oocytes with 
Spindle 

 

Mean Maternal 
Age / Oocyte 

Mean 
Retardance 

(nm) 

Mean 
Length of 
Spindle 

(μm) 

Group 1: 
Score A,B 180 31.9 ± 4.2 1.72 ± 0.43 12.7 ± 1.8 

Group 2: 
Score C 51 32.0 ± 3.8 1.53 ± 0.40a 12.5 ± 1.6 

Group 3: 
Score D 324 32.2 ± 4.0 1.52 ± 0.44b 12.6 ± 1.7 

Group 4: 
Score E and 
Abnormals 

121 31.2 ± 4.3 1.39 ± 0.46b 11.7 ± 1.7 c,d 

Total 676 32.2 ± 4.2 1.55 ± 0.45 12.5 ± 1.8 

Total in Non-
Conception Cycles 430 32.1 ± 3.7 1.56 ± 0.46 12.4 ± 1.8 

Total in Conception 
Cycles 246 32.3 ± 4.5 1.53 ± 0.44 12.6 ± 1.8 
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The pole-to-pole distance of the metaphase II spindle in living human oocytes was also 

analysed by PolScope microscopy in the four sub-groups. Mean spindle length was 

similar in sub-group 1, 2 and 3. However, a significantly shorter spindle was characteristic 

for oocytes developing into embryos with poor quality (subgroup 4) compared to the other 

three groups (Table 5.2, P < 0.001). However, there was no significant difference in mean 

length of spindles in cohorts of oocytes giving rise to a conception cycle (CC; 12.6 ± 1.8 

µm; Table 5.2) versus those of a non-conception cycle (NCC; 12.4 ± 1.8 µm; Table 5.2). 

 

5.3.3 Maternal Age and Spindle Organisation 

Mean maternal age of patients having oocytes with a highly birefringent spindle (mean 

retardance over 1.55 nm) was compared to that giving rise to oocytes with a spindle with 

low birefringence (mean retardance below 1.55 nm). Mean age of patients with highly 

birefringent spindle was 32.3 ± 4.1 (324 oocytes) while that with low birefringence was 

31.5 ± 4.1, respectively, (352 oocytes) not significantly different from each other for this 

group of patients, in which 4 to 20 oocytes were available for analysis. Mean retardance 

of spindles in all oocytes of patients older than 36 years (1.53 ± 0.44 nm) did also not 

differ much from that in intermediate age (31-35 years; 1.54 ± 0.42 nm) or younger 

patients (≤ 30 years; 1.58 ± 0.49 nm). However, there was a tendency for a slight decrease 

in mean retardance of the spindle in older compared to younger oocytes selected for 

transfer (Table 5.3), but this did not reach statistical significance.   

 

5.3.4 Biochemical Pregnancy in Oocytes with Lower or Higher Mean 

Retardance of the Spindle 

The mean retardance of spindles in oocytes, which were selected at pronuclear stage for 

transfer after ICSI (254 oocytes) was significantly higher, compared to oocytes giving rise 

to pre-embryos, which were not selected for transfer according to their comparatively 

poorer PN score (422 oocytes) (1.66 ± 0.43 nm vs.1.49 ± 0.43 nm, P < 0.001; Table 5.3). 

Of the total of 268 transfer oocytes, 254 possessed a spindle (Table 4.4). There was no 
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significant difference in mean retardance of spindles between transfer oocytes giving rise 

to conception cycles versus those contributing to a non-conception cycle (1.65 ± 0.43 nm 

vs.1.67 ± 0.44 nm; Table 4.4). There was also no significant difference in mean retardance 

magnitude of spindles in non-transferred oocytes between CC versus NCC cycles (1.46 ± 

0.43 nm vs.1.50 ± 0.46 nm) or in the total cohort of oocytes obtained by individual 

patients, including transfer and non-transfer oocytes between CC and NCC oocytes (1.53 

± 0.44 nm vs. 1.56 ± 0.46 nm; Table 5.2). There was also no other parameter like number 

of follicles or number of polar body oocytes, or fertilization rate, which could be 

identified to be distinct between the CC and NCC group (Table 4.4). In conclusion, from 

the cohort of patients most of which were belonging to the age range up to 35 years there 

was no conclusive evidence that mean retardance of the spindle was dramatically reduced 

in oocytes. However, there was a slight decrease in mean retardance by the spindles of 

oocytes chosen for transfer (presumably the best ones from the cycles) between the groups 

under and over 36 years.   
 

5.3.5 Mean Retardance in Relation to Transfers with Good or Mediocre/Low 

PN scores and Preganancy Rate 

Usually, more than one embryo of same or different PN score (2-3 embryos) were actually 

transferred in each cycle. If only one high quality oocyte/embryo is needed and 

responsible for the pregnancy, averaging may not be useful to reveal correlations between 

retardance, PN scores and conception. Therefore oocytes were grouped according to 

transfers, in which either 2 to 3 good PN score embryos (PN score A-C, corresponding to 

group 1 and 2 in Table 5.2) were present or only one good pre-embryo together with 

embryos of PN score D-E (group 3 and 4 in Table 5.2), or transfers in which only two to 

three embryos of lowest PN scores (D and E) were present.  

About 43-47% of those cycles with at least one good PN score embryo of PN score A-C 

led to a conception (Table 5.4). In contrast, only 31.4% of cycles involving low PN score 

embryos resulted in a conception. The percentage of pre-embryos contributing to 

conceptions with transfer of only 2-3 low PN score embryos was significantly lower 

compared to those with at least one embryo with PN score A-C (Table 5.4). Of note, mean 

retardance of the spindle of transfer oocytes was lowest in the group with no good PN 

score embryo at transfer (1.55 ± 0.36 nm), significantly lower compared to the groups 
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with one good embryo (1.63 ± 0.45 nm) and with 2 or 3 good pre-embryos with score A-C 

in transfers (1.78 ± 0.47 nm; Table 5.4). Mean spindle length was similar in all three 

groups. Thus, oocytes with low birefringent spindles appeared to develop frequently into 

low PN score pre-embryos after ICSI and subsequently contributed significantly less 

frequent to a conception compared to those with highly birefringent spindles. 

 

5.4  Quantitative Analysis of the Zona Pellucida of Human Oocytes Using 

PolSocpe Microscopy and Developmental Potential 

In order to find another potentially critical parameter related to high developmental 

potential and cytoplasmic maturity of oocytes, the zona pellucida was retrospectively 

analysed in images of oocytes taken before ICSI and later chosen for transfer according 

to criteria defined by pre-embryo morphology/ PN score on day 2.  

 

5.4.1 Characteristic Morphology of the Human Zona Pellucida in Oocytes of 

the CC and NCC Group 

The human zona pellucida appears transparent and fairly uniform in structure when 

viewed with a conventional light microscope equipped with phase contrast or 

differential interference (DIC) optics (Figure 5.4.1 A). In contrast, enhanced polarized 

light microscopy reveals three distinctly different layers of the extracellular coat 

surrounding the human oocyte (Figure 5.4.1 B). An inner layer appears as the lightest 

refractile, bright and thickest layer of the human zona pellucida in all oocytes observed 

by PolScope imaging in this study. The inner (IL) and the outermost layer (OL) facing 

the medium or cumulus are separated by a thin middle layer (ML), which does not 

change the light path much and therefore appears dark and non-refractile (Figure 5.4.1 

B). However, as noticed already by Pelletier et al. (2004), the morphology of the zona 

pellucida may be rather heterogeneous around individual oocytes (Figure 5.4.1 D-F), 

and within cohorts of oocytes from individual patients. The texture of the zona pellucida 

was quite homogenous in individual oocytes from other cohorts (Figure 5.4.1 C).  
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The variability in zona morphology within cohorts of oocytes from individual patients 

and between oocytes from different patients appeared mainly related to differences in 

the relative homogeneity and birefringence and brightness of the inner layer of the zona 

pellucida (Figure 5.4.1 C-F). In a few oocytes the zona pellucida appeared especially 

irregular or thin (Figure 5.4.1 D), and sometimes the inner layer of the zona was sub-

divided into 2 layers with a hollow appearing space in between (Figure 5.4.1 F, arrows) 

as if the patterning or the secretion of protein was temporarily interrupted during the 

formation of this part of the extracellular coat during oocyte growth, or the zona was 

ruptured by mechanical stress at retrieval or separation from cumulus.  

Figure 5.4.1 Images of human oocytes selected for embryo transfer. A: The zona 
pellucida of human oocytes imaged by light microscope appears transparent and 
uniform; B: The three-laminar architecture of zona pellucida imaged by PolScope-
microscopy; C: Oocytes of CC group contained a bright and thick zona pellucida. D-
F: Oocytes from non-pregnant patients showed different abnormal phenotypes of 
zona pellucida: thin (D), irregular (E) or sub-split into two layers (F). Bar=25μm 
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 Two characteristic examples of cross sections along a line scan at 0.5 μm spaced 

measurement points to determine light retardance across the entire zona pellucida are 

shown by Figure 5.4.2. One characteristic scan is from the cohort of oocytes in the CC 

group (upper solid line), the other is characteristic for an oocyte of the NCC group 

(lower dotted line). The inner layer (IL) exhibits the highest retardance magnitude and 

cross-section thickness for both examples. The retardance magnitude of the outer layer 

(OL) tends to be overall lower than the inner layer as demonstrated in both line scans, 

while the middle layer (ML) consistently appears dark and least changing the light path. 

As can be seen in all images of oocytes in Figure 5.4.1 B-F, which were later used in 

transfers after ICSI, the majority of oocytes used for transfer in both groups contained a 

bi-polar, barrel-shaped meiotic spindle, which was localised close to the first polar body 

in most cases (Figure 5.4.1, double arrows).  

 

 

Figure 5.4.2 Retardance-curve of oocytes from CC and NCC group. One scan belongs to the 
cohort of oocytes in the CC group (solid line), the other is characteristic for the NCC group 
(dotted line). 
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Table 5.5 Mean retardance magnitude and thickness of the individual zona layers 
as assessed by PolScope microscopy in oocytes contributing to CC and NCC 
group. 

 CC (transferred) NCC (transferred) 

Patients 23 40 

Oocytes 65 101 

Zona inner layer (x ± SD) 
Retardance (nm) 

 
2.81 ± 0.601 

 
2.15 ± 0.41 

Thickness (μm) 11.25 ± 1.441 9.36 ± 1.74 

Zona middle layer (x ± SD) 
Retardance (nm) 0.35 ± 0.08 

 
0.35 ± 0.07 

 

Thickness (μm) 3.92 ± 0.76 3.66 ± 0.65 

Zona outer layer (x ± SD) 
Retardance (nm) 0.55 ± 0.18 

 
0.55 ± 0.14 

 

Thickness (μm) 4.80 ± 1.40 5.55 ± 1.03 

Zona total thickness (x ± SD) 
(μm) 19.87 ± 1.922 

 
18.58 ± 1.82 

 
1 t-test, P < 0.001, significantly different from the NCC group. 
2 t-test, P < 0.01, significantly different from the NCC group. 

 

 

5.4.2 Quantitative Analysis of Retardance Magnitude and Thickness of the 

Zona Layers in CC and NCC Groups 

Mean retardance magnitude along the line scan across the zona pellucida has been 

quantitatively analysed. The quantitative analysis by PolScope revealed that the average 

retardance magnitude of the zona pellucida differed considerably between cohorts of 

oocytes in CC and NCC cycles. While differences in mean retardance were insignificant 

in the middle and outer layer, the mean magnitude of retardance of the inner layer of the 

zona pellucida was significantly higher in the oocytes of cycles leading to a conception 
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compared to those in the NCC group (2.81 ± 0.60 nm vs. 2.15 ± 0.41 nm, P < 0.001; 

Table 5.5). The mean retardance magnitude which reveals the density and organisation 

of zona pellucida appeared therefore correlated positively to a conception cycle. 

Similar to the magnitude of retardance, thickness of the middle and outer layers did not 

differ significantly between groups, but the thickness of the inner layer was significantly 

increased in the pregnant group (11.25 ± 1.44 μm) compared to the non-conception 

group (9.36 ± 1.74 μm, P < 0.001, Table 5.5). The thickness of the zona pellucida was 

statistically different between the two groups although the magnitude of the absolute 

difference in thickness was low, on average only about 1.3 μm (Table 5.5). It appears 

that the relative thickness of the zona inner layer leads to an overall increase in thickness 

of the entire zona pellucida: It was significantly higher in a conception compared to a 

non conception cycle.  

 

5.4.3 Mean Retardance as Predictive Parameter for Conception 

After ICSI of all oocytes, only 2-3 embryos per patient are usually transferred. The 166 

oocytes from 23 CC and 40 NCC were selected for embryo transfer at 18 hours post-

insemination according to PN score and the general morphological criteria described 

above (s. Chapter 4.6). From the 166 oocytes transferred to patients after ICSI, over 

60% in both groups comprised embryos with high PN score (A – C, high quality), while 

around one third of the oocytes used for transfer in both groups had developed to a pre-

embryo with a PN score of D (lower quality; Figure 5.4.3 A). Only 3 oocytes with lower 

score (score = E) were selected also for transfers, notably, these were later shown to 

belong to the non-conception group. Therefore, the average number of embryos with 

good PN score used for transfer in CC and NCC groups did not differ much (numbers of 

embryos with PN score A-C were 1.8 ± 0.75 and 1.6 ± 0.85 in CC and NCC group, 

respectively). In contrast to the small differences in PN score between the two groups, 

retrospective comparison of embryo development on day 2 after fertilization between 

those embryos comprising the CC and the NCC group revealed striking differences in 

mitotic cycles at early embryogenesis (Figure 5.4.3 B). In total, 53.8% of the embryos in 

the CC group had developed to the 4-5-cell stage on day 2, whereas only 34.7% of 

embryos giving rise to the NCC group had reached this advanced stage (chi2-Test, P < 
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0.05). In contrast, about 60% of the embryos in the NCC group had only ≤ 3 cells on 

day 2 of development after oocyte retrieval (Figure 5.4.3 B).  In conclusion, the 

observations imply that high quality embryos, which can facilitate implantation and 

induce an increase in hCG-level in blood, developed faster than embryos, which failed 

to induce a pregnancy, in agreement with other reports in the literature (e.g. Lundin et 

al., 2001; Neuber et al., 2003; Nagy et al., 2003). Although the embryos in the CC and 

NCC groups had a quite different developmental rate, the PN-stage oocytes selected by 

the Scott’s score criteria at day 1 after ICSI were similar between the two groups at the 

one-cell stage. In fact, embryos with a Scott’s score of A – C had the same chance 

(about 50%) to contribute to a conception after implantation, as the embryos with a 

score of D.   

To obtain more information on oocyte quality, the 166 oocytes were divided into three 

groups based on their mean retardance magnitude of the inner layer of the zona 

pellucida. Group 1 had a retardance of over 3.0 nm; group 2 a retardance between 2.0 

nm and 3.0 nm, and group 3 a retardance below 2.0 nm. Nearly 90% of the oocytes in 

the group 1 (25 oocytes) comprising oocytes with a retardance over 3.0 in the zona inner 

layer from a total of 28 oocytes were associated with a clinical pregnancy (Figure 5.4.4). 

In contrast, a retardance magnitude of over 3nm was observed in only 3 oocytes of the 

NCC group.  
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 With the decrease of the magnitude of retardance in the zona inner layer, the percentage 

of oocytes resulting in a pregnancy cycle became dramatically reduced. Only 11.4% of 

the oocytes in the lowest retardance group belonged to a CC after ICSI and embryo 

transfer while the majority did not contribute to a conception (Figure 5.4.4; χ²-test, P < 

0.001).  

 
5.4.4 Relationship Between Thickness and Retardance 

In a previous study, it has been suggested that the retardance of the zona pellucida, 

especially the inner layer of the zona pellucida, is positively correlated with zona 

thickness in a small cohort (Pelletier et al., 2004). However, the relationship of two 

parameters correlated to a conception cycle was not analysed by Pelletier et al. (2004). 

In the current study, the correlation of retardance magnitude and thickness of the inner 

layer of the human zona pellucida was analysed in CC and NCC groups. The data are 

represented in Figure 5.4.5. Obviously, data for individual oocytes do not distribute 

randomly confirming the suggestion of Pelletier et al. (2004). The correlation 

coefficients of the retardance-thickness curves are slightly different with 0.43 and 0.56 

Figure 5.4.4 Quantitative analysis of the inner layer of the zona pellucida. With the 
decrease of the retardance magnitude in the inner layer of zona pellucida, the 
number of oocytes inducing a pregnancy reduced significantly (*χ²-test, P < 0.001). 
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for the CC and NCC groups, respectively. The data reveal that the retardance-thickness 

correlation is more clearly depicted by the regression analysis in the oocytes of the CC 

group, since the correlation coefficient of CC is higher than that of the NCC group (0.56 

vs. 0.43). 

 
5.4.5 Influence of Maternal Age and Differences in Zona Thickness and 

Retardance between Transfer and Non-transfer Oocytes 

The mean retardance and thickness of the zona inner layer and total zona were also 

compared between oocytes in CC and NCC from younger and more reproductively aged 

women (Table 5.6). In total, the numbers of patients in the young, middle and aged 

groups were 77, 54, and 35, respectively.  

Figure 5.3.5 The linear relationship between retardance and thickness of the inner 
layer of the zona pellucida in oocytes of CC and NCC groups. 
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Among the total of 23 CC patients and 40 NCC patients, no significance was found in 

the mean retardance and thickness between the zona of oocytes from different age 

belonging to the group ≤ 32 years (group 1), 32 – 37 years (group 2) and ≥ 37 years 

(group 3), while values for mean retardance and thickness were lower in all oocytes 

from the NCC compared to the CC group at each age (Table 5.6).  
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6. Discussion  
6.1 Analysis of Spindle Formation by PolScope in Improvement of in vitro 

Maturation and Selection of Human Oocytes  

Hormone stimulation in IVF programmes usually promotes the maturation of most 

meiotic competent oocytes in vivo, but there are still some oocytes remaining at the 

germinal vesicle stage at the time of puncture, possibly due to a sub-optimal 

microenvironment in the follicle (Hardy et al., 2000). It may be expected that such 

meiotically incompetent oocytes have a comparatively low maturational and 

developmental potential after culture without cumulus.  

However, in the present study it was shown that a large proportion of the GV oocytes 

obtained from ICSI cycles were able to resume nuclear maturation, develop to metaphase 

II and emit a polar body. In comparison to previous studies, the yield of PB oocytes was 

high under the chosen culture conditions. For instance, 60.6% of failed in vivo matured 

GV oocytes cultured to metaphase II in the study by Cekleniak et al. (2001) and 67% of 

immature GV oocytes from stimulated cycles that were transiently arrested by 

phosphodiesterase 3 (PDE3) inhibitor reached metaphase II after recovery from the block 

(Nogueira et al., 2005), similar to present data with oocytes that were maturation 

incompetent in vivo (66.1% with polar body at 36 h). However, only a limited number of 

oocytes emitting a PB in vitro had a well-organized spindle visible as a birefringent cell 

structure, similar to observations in previous studies (Wang et al., 2002; Combelles et al., 

2002). This suggests that quality of the immature oocytes is comparatively low. It would 

require prospective studies with groups of patients donating oocytes from un-stimulated 

or stimulated cycles, or, possibly, such at risk for hyperstimulation syndromes, polycystic 

ovary syndrome etc. to evaluate maturation success, rate of spindle formation and 

developmental potential to further improve culture conditions and success in assisted 

reproduction. 

In addition to previous work the present study shows that the proportion of in vitro 

maturing oocytes expressing a birefringent spindle was significantly lower compared to 

the in vivo maturing oocytes from the same patients (P < 0.001). Furthermore, the 

percentage of PB oocytes with birefringent spindles decreased substantially within only 

12-18 h of metaphase II arrest (Figure 5.1.2). The dramatic reduction in the expression of 

a birefringent spindle may be due to accelerated ageing of in vitro maturing human 
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oocytes, similar to the observation in a previous study characterized by defaulted 

progression into interphase within 24 h of polar body emission of in vitro maturing human 

oocytes (Combelles et al., 2002). According to experiences with unfertilized in vivo 

maturing human oocytes from other groups, e.g. in Italy where only those oocytes 

selected for embryo for transfer are inseminated, spindles are retained for over 24h 

provided oocytes are kept under suitable conditions (Laura Rienzi, personal 

communication). Thus, the present observations on rapid degeneration of the spindle of 

immature, in vitro cultured oocytes support the notion that this cohort should usually not 

be considered for fertilization and transfer, as long as other mature oocytes are available, 

because they appear to be mostly of low quality. 

IVF utilizes the principle of gonadotrophin administration for oocyte maturation in vivo 

prior to ovulation. Some patients with polycystic ovarian syndrome (PCOS) have lower 

sensitivity to gonadotrophin stimulation and most oocytes after retrieval remain at 

germinal vesicle stage. In vitro maturation (IVM) of immature oocytes is becoming an 

attractive new alternative to obtain oocytes for IVF and ICSI, especially in patients with 

PCOS or predisposed to developing ovarian hyperstimulation syndrome (OHSS). 

Although maturation of oocytes in vitro from mildly stimulated or unstimulated cycles are 

continuously improved (e.g. Chian, 2004; Mikkelsen, 2005; Papanikolaou et al., 2005, 

Rao and Tan, 2005), the success rate of IVM is still very low, due to the sub-optimal 

culture conditions. The data from in vitro maturing oocytes confirm that many GV-stage 

oocytes from stimulated ICSI cycles matured in vitro do not reach full cytoplasmic 

maturity to maintain spindle integrity and meiosis II arrest and that a large percentage fail 

to form a normal spindle, which can be responsible for the high risk for errors in 

chromosome segregation (Nogueira et al., 2000). Besides the intrinsic defects in some of 

the oocytes (Combelles et al., 2003) sub-optimal culture conditions in absence of cumulus 

may additionally contribute to the low quality of the oocytes that might be overcome by 

co-culture systems (Combelles et al., 2005). Further studies with PolScope on kinetics of 

spindle formation and degeneration, including quantitative assessment of birefringence, 

could help to improve conditions for in vitro maturation. As compared to oocytes matured 

in vivo, the majority of oocytes matured in vitro did not express a birefringent spindle 

(19.6% vs. 83.9%). Due to the dramatically reduced rate on the expression of a 

birefringent spindle, the introduction of PolScope to evaluate quality of oocytes provides 
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new, essential information on oocyte quality in IVM. It may thus help to select oocytes 

with the best quality for fertilization, and by this greatly improve the clinical outcome 

from this source. For patients suffering from PCOS and OHSS the introduction of natural 

cycle in vitro maturation and ICF may be promising (Chian et al., 2004) and should be 

assessed with respect to spindle integrity in oocytes.  

 

6.2 PolScope Analysis  of Birefringent Spindles in in vivo Maturing Oocytes 

6.2.1 Non-invasive Nature of PolScope Analysis in ICSI cycles 

The data in chapter 5.2.1 shows that the pregnancy rate of patients, whose oocytes were 

evaluated by PolScope is not significantly lower than the rate of patients whose oocytes 

were not viewed with the PolScope (Figure 5.2.1). Exposure to PolScope illumination did 

not affect the oocytes’ health and their viability after fertilization. The design of PolScope 

is based on the same principle of light, as used for differential interference contrast optics 

(DIC), which has been used for clinical purposes for over 20 years. PolScope utilizes 

nearly circular polarized light with a wavelength of 546 nm as light source, which 

contains no detrimental component in either infrared or ultraviolet fields and therefore 

should not damage oocytes that are briefly examined. Moreover, the light intensity in the 

sample is approximately 60µW, which is also in the safe range that should not cause 

damage to oocytes (Liu et al., 2000a). Studies with mouse oocytes viewed by PolScope 

showed that PolScope microscopy is non-invasive since imaged oocytes had a similar 

developmental capacity in cleavage rate and pregnancy rate, in comparison with controls 

(Liu et al., 2000a). A further study with 770 human oocytes from 87 ICSI cycles 

confirmed that the light illumination with PolScope did not affect oocyte and embryo 

health in the human (Wang et al., 2001c). PolScope has been used by several laboratories 

for non-invasive observation of the meiotic oocyte spindle and also the high order 

structure of the thick extracellular coat of human oocytes, the zona pellucida, in routine 

assisted reproduction (Wang et al., 2001a,b,c; Eichenlaub-Ritter et al., 2002; Rienzi et al., 

2003; Moon et al., 2003; Pelletier et al., 2004; Shen et al., 2005). The rate of blastocyst 

formation of oocytes illuminated by PolScope (Wang et al., 2001c) is equal to the rate of 

oocytes without illumination (Ebner et al., 2005). Observations in human oocytes that 

were subjected to ICSI for assisted conception in the present study support the notion of 

the non-invasive nature of the technique and its safety with human oocytes.  
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6.2.2 Predictive Value of Qualitative Assessment of Spindle Birefringence in in 

vivo Maturing Human Oocytes  

6.2.2.1 Predictive Value of Imaging the Meiotic Spindle by PolScope for 

Determination of Oocyte Maturity 

Currently, the absence of germinal vesicle and extrusion of first polar body are used for 

determination of oocyte maturity. In the two-year study, 324 oocytes, which contained 

germinal vesicle and/or did not form a first polar body, were recognized as immature 

oocytes under a stereomicroscope after retrieval (Figure 5.2.2 A & B). However, still 

some immature oocytes arrested at the telophase I stage (n = 128) could not be determined 

(Figure 5.2.2 C), because they also possessed the first polar body and appeared 

morphologically similar to mature oocytes under an optical microscope. Thus, the current 

criteria for assessing mature oocytes appear to be inadequate. Imaging meiotic spindle by 

PolScope microscopy seems to be a more accurate parameter for determination of oocyte 

maturity. It can be used as an additional parameter for assessing meiotic maturation of 

oocytes. In fact, a recent study by Montag et al. (2006) revealed that it is possible to 

determine the ideal time for ICSI in such delayed oocytes by PolScope such that they 

have developed to metaphase II before being injected with sperm (Montag et al., 2006). 

 

6.2.2.2 Predictive Value of Qualitative Analysis of Spindle Presence  

Most of the in vivo maturing oocytes expressed a birefringent spindle (83.9% of 1369 

oocytes) comparable to observations by other groups (e.g. Wang et al., 2001 a;b;c; Rienzi 

et al., 2003; Moon et al., 2003). In agreement with previous studies (Wang et al., 

2001a;b;c; Rienzi et al., 2003; Moon et al., 2003), oocytes without spindle had an overall 

lower capacity to develop into a normal embryo, and absence of a birefringent spindle 

was associated with a significantly higher risk for fertilization failure compared to oocytes 

with spindle (Figure 5.2.4, P < 0.001). Moreover, fertilization rate and percentage of 

oocytes forming a pre-embryo with a "good" PN score (score A-C) was higher in the 

oocytes with spindle compared to those without spindles. The data were also differently 

analysed, such that the “good” PN score was defined only by embryos with score A and 

B. The statistical significant difference on forming presumably high quality pre-embryos 

(score A and B) still existed between oocytes with and without birefringent spindle.  
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The poor quality of oocytes without spindles may be caused by an aberrant spindle with 

unordered spindle fibres and scattered chromosomes. Conventional microscopy showed 

the presence of unordered spindles and chromosomes in oocytes without birefringent 

spindle in the cohort that could be fixed from the immature in vitro cultured oocytes 

(Figure 5.1.1). From the seemingly mature oocytes of ICSI cycles which were fertilized 

128 oocytes were still in telophase I according to the PolScope observation (Chapter 

5.2.2; Figure 5.2.2 C). These data supported the idea that some of the oocytes which did 

not contain a birefringent spindle might not have reached metaphase II stage yet, at 38 

hours after hCG administration. Such oocytes may be expected to have a lower potential 

to form high quality embryos compared to those in metaphase II. A dynamic observation 

of the meiotic cell cycle in human oocytes demonstrated that the meiotic spindle 

disappeared for around 40-60 minutes during the transition from metaphase I (MI) to 

metaphase II (MII) (Montag et al., 2006). Thus, a spindle could not be detected in oocytes 

arrested in the MI/MII transition. The presence of a birefringent spindle is, therefore, an 

indicator for either oocyte quality or oocyte maturity. In the future it might be possible to 

wait for ICSI of such oocytes without spindle to assess presence of a spindle at a later 

time and thereby improve outcomes, in particular when none or only few oocytes with 

spindle are available in a patient. It is feasible that they suffer from prolonged oocyte 

maturation and that this could affect the potential to become pregnant after ICSI. Further 

studies have to show whether "postmaturation" for one to two hours might be helpful in 

such cases. 

Generally, the mere analysis of presence/absence of a birefringent spindle in human 

metaphase II oocytes from ICSI cycles is of limited value for oocyte selection in IVF 

since the vast majority of oocytes (83.9%) had a birefringent spindle apparatus. From the 

oocytes without spindle some still developed to pre-embryos with good PN score. The 

latter may present oocytes that had only reached late telophase I or pre-metaphase II 

although they possessed a PB. The yield of high quality pre-embryos may therefore be 

improved by repeat assessment of the potentially "immature" meiosis II oocytes and 

fertilization at a later time. Especially in cases, where all or most oocytes from a patient 

are without spindle, it may become possible to improve outcomes by either prolonging the 

culture before ICSI (in cases with delayed development) or adjusting stimulation protocol 

and oocyte retrieval (e.g. in cases of accelerated maturation and degeneration of oocytes). 
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Visualization of meiotic spindle by PolScope may also help to determine the spindle 

position according to the first polar body, in order to avoid any damages of spindle 

apparatus during oocyte manipulation, for instance, during laser-assisted polar body 

biopsy (Montag et al., 2004).  In the present study it did not appear possible to assess 

alignment of the chromosomes at the equatorial plane, as has been for instance reported 

for mouse oocytes of controls and mice with mitochondrial dysfunction and accelerated 

ageing (Thouas et al., 2006). It may be that the oocytes examined in the course of this 

study had most robust and dense spindles so that the area occupied by chromosomes did 

not show up against the surrounding spindle fibres. Since other groups showed images of 

birefringent meiosis II spindles with a clear middle area, it remains to be determined if 

this is related to the timing of PolScope analysis (directly after retrieval or 1-2h later/ 

directly after removal of cumulus or later) or culture/handling conditions and/or quality of 

oocytes. In this study, oocytes were imaged within 2 hours after retrieval, i.e. in 38 hours 

after hCG administration. It is the optimal timing to visualise meiotic spindle in oocytes 

from stimulated cycles (Cohen et al., 2004). Since there was no adverse effect of 

PolScope imaging compared to outcomes in the controls, currently there is no evidence 

for suboptimal handling which might lead to changes obscuring chromosome positioning. 

One possible explanation is that the sensitivity of the PolScope imaging system in IVF 

Giessen is not high enough to obtain a high quality birefringent picture of the spindle. The 

sensitivity of the PolScope system (SpindleView 3.9) is 0.1 nm. However, the sensitivity 

of the PolScope system used in other laboratory may reach 0.02 nm (Silva et al., 1997; 

1999). Furthermore, using a more stable temperature controlling system, e.g. delta system 

(Wang et al., 2001c), and a heated objective might help to improve observation of 

chromosomal positioning. For this in the future the determination of the direction of 

orientation of spindle fibres may have to be optimised by viewing retardance at any point 

of the image. Further work is required to see whether it will be possible to modify the 

protocols without adverse influence on oocytes to assess also chromosomal alignment, 

since it might contribute to assess spindle function, chromosomal constitution and oocyte 

quality.    
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6.2.2.3 Predictive Value of Spindle Positioning 

Another approach to identify high and/or low quality oocytes is based on analysis of 

spindle position relative to the first polar body. There is an ongoing debate on the 

significance and origin of spindle displacement from the first polar body with respect to 

developmental potential (Rienzi et al., 2003; Hardarson et al., 2000; Cooke et al., 2003; 

Ebner et al., 2003). In the present study a lower number of oocytes had spindles displaced 

for > 40° away from the PB compared to other reports (16.9% vs. 62.6% from Cooke 

group, Cooke et al., 2003), fair proportion of the fertilized oocytes with displaced spindles 

still developed into pre-embryos with high or mediocre PN score in the present study. A 

larger deviation angle of > 40o of the metaphase II spindle correlated positively to the rate 

of fertilization failure but not to the rate of multi-pronuclear formation that might be 

caused by damage of the spindle apparatus during sperm microinjection (Figure 5.2.5). In 

contrast to in vivo maturing oocytes, the spindle was essentially always located close to 

the PB in denuded in vitro maturing oocytes (Rienzi et al., 2003). Deviation of the spindle 

from the first polar body may therefore be mainly caused by the mechanical stress by 

manipulation at or after oocyte retrieval, and this may be related to reduced oocyte quality 

(Rienzi et al., 2003). In conclusion, the present observations support notions by other 

studies suggesting that the assessment of spindle positioning is not very predictive of 

oocyte quality and may be only useful in cases where the creation of supernumerary 

embryos is to be avoided (Rienzi et al., 2003).  

 

6.2.3 Reliability of Quantitative Assessment of Spindle Birefringence in Living 

Human Oocytes  

By analysis of birefringence of kinetochore microtubules in images through optical planes 

through spindles of the fairly flat crane fly spermatocytes using PolScope, LaFountain and 

Oldenbourg (2004) recently succeeded in calculating the numbers of microtubules 

attached to each individual homologous chromosome in bivalents with respect to 

chromosome alignment. Such optical sectioning of spindles was not possible in the large, 

spherical human oocytes with the standard microscope equipment and 40 x or 20 x 

objective lenses used in this study. Although calculation of mean retardance of the spindle 

does not provide an absolute quantitative assessment of numbers of microtubule fibres in 

spindles and density of fibres at each point of measurement, the analysis of mean 
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birefringence provides information on the quality of the spindle with respect to 

density/high order of spindle fibres and length and width of the spindle apparatus. Still, 

one has to keep in mind that the oocyte spindle is not a homogenous organelle and is 

highly dynamic. Previous quantitative measurements assessed major retardance, e.g. upon 

thawing after freezing of human oocytes (Bianchi et al., 2005). The line scan was in the 

middle of the spindle body, along the long axis of the spindle, irrespective of whether 

longer or shorter segments of chromosome arms might be located in this region and might 

have contributed to background or to a lower value in the assessment of average 

retardance. As there are differences in optics and culture conditions it is difficult to 

standardize measurements and compare absolute values between different laboratories. 

Liu et al. (2000b) encountered a similar difficulty when they calculated mean retardance 

in mouse oocyte spindles after parthenogenetic activation or fertilization either in the 

whole spindle area or in line scans through the spindle equator. They found for both 

methods of calculation different absolute values of mean retardance but concordantly and 

reproducibly observed significant increases in mean retardance values upon activation 

(Liu et al., 2000b; Navarro et al., 2005). It appears that calculation of mean retardance of 

the spindle along a line scan under standard conditions in a unit helps to minimize 

experimental variables and provides a good semi-quantitative estimate of the overall order 

and density of tubules within the spindle apparatus in assessment of oocyte quality.  

 

6.2.4 Predictive Value of Quantitative Analysis of the Birefringent Properties of 

the Meiotic Spindle in Oocytes 

Data in the current and previous studies showed that the majority of in vivo maturing 

oocytes contained a birefringent spindle (Wang et al., 2000c, Moon et al., 2003; Rienzi et 

al., 2003). In addition, the study revealed that there are quantitative individual differences 

in birefringence properties of the oocyte spindle and these appear related to the oocytes’ 

quality and developmental potential. Clearly, qualitative and quantitative PolSope 

imaging alone may not be suitable alone to select top oocytes and embryos with high 

viability for implantation. However, the present study shows for the first time that the 

mean retardance magnitude revealing the density and organization of spindle apparatus 

correlates positively with the quality of pre-embryos after insemination.  
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Several recent studies suggest that pre-embryos with low PN score are more likely to 

develop into chromosomally aberrant embryos compared to those with high PN score 

(Chen et al., 2003; Gianaroli et al., 2003; Balaban et al., 2004; Kahraman et al., 2002; 

Edirisinghe et al., 2005). In accordance, oocytes with spindles with low birefringence that 

develop to pre-embryos with lower PN scores may be more frequently abnormal 

compared to healthy oocytes with robust spindles that presumably have highly organized 

microtubular fibres and normal chromosomal constitution. Observations on conception 

involving transfers with high and low PN score embryos confirmed that PN scoring was 

positively correlated with conception cycles and that transfer with embryos of lower 

scores were associated with failures to conceive much more frequently than those 

involving better PN score embryos, irrespective of the scoring systems. Concomitantly, 

mean magnitude of retardance of light by the spindle was positively correlated to 

conception cycles. The observations were confirmed by data from a study with a small 

cohort of oocytes obtained in the IVF Unit in Hospital Raffaele, Milan Italy. In total, a 

small cohort of 59 oocytes from 28 ICSI cycles (mean maternal age 33.7± 4.3 years) was 

evaluated by PolScope, due to the prescription in Italy that a maximum of three embryos 

is allowed to generate during each cycle. Oocytes were grouped according to pronuclear 

score described by Tesarik and Greco (1999), including morphological features of 

pronuclear and cytoplasm. As in the present study there was a tendency that more oocytes 

producing pre-embryos of higher quality (score 0) had high spindle retardance and those 

developing into embryos with mediocre quality (score 1 & 2) or poor quality had lower 

mean retardance (score 3-5) (Tab. 6.1). The pronuclear scoring system described by 

Tesarik und Greco (1999) is similar to the Scott scoring system (Scott and Smith, 1998). 

Both systems used presently account for pronuclear size and position, number and 

alignment of NPB (nucleolar precursor bodies), and the morphological feature of 

cytoplasm. The limited size of the samples in both centres and the relative heterogeneity 

of patients precluded to compare effectiveness between PN scoring according to the Scott 

and Smith (1998) or the Tesarik and Greco (1999) criteria. Pregnancy and implantation 

rates were high during the course of the study in the Giessen IVF unit and future 

prospective studies have to reveal whether quantitative PolScope imaging as an additional 

parameter for selection of best embryos for transfer may help to increase rates of 

conceptions further.  
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Due to the strict legal regulations in Germany, embryo quality was only assessed by PN 

scoring in selection of pre-embryos for transfer since legal restrictions do not allow 

studying non-transfer embryo fate and development further. From the present data it 

appears that effectiveness of scoring according to mean retardance rather than PN scoring 

may overcome limitations of the PN scoring systems and thus contribute to identification 

of high quality oocytes already before ICSI. Low retardance due to spindle abnormality 

and chromosomal imbalance may be just the tip of the iceberg indicating deficiencies in 

the oocytes causing development of low quality embryos. Other problems, for instance, 

changes in expression pattern (Hamatani et al., 2004) or failure to mediate activation of 

zygotic gene expression may all contribute to failure in conception from such oocytes. 

 

Table 6.1: Quantitative assessment of spindle retardance in oocytes developing into 
pre-embryos with different PN score in the IVF Unit in Hospital Raffaele, Milan 
Italy, mean maternal age, mean retardance of spindle in oocytes developing into 
pre-embryos that contribute to a conception cycle (CC; gestational sac) or non-
conception cycle (NCC); PN score of pre-embryos from selected oocytes from 
patients of different age according to criteria by Tesarik and Greco (1999). 

Chi-Square: Significant difference to group 1:  aP < 0.05; Significant difference to group 2: bP < 0.05. 
T-Test: Significant difference to NCC, c p = 0.002. 

 
 

PN score 
(Tesarik & 

Greco) 

Numbers 
of 

Pre-
embryos 

Mean 
Maternal 
Age (y) 

Mean 
Retardance of 

all 
(nm) 

Implantation 
(Sacs) 
(%) 

Mean 
Retardance 

in CC 
(nm) 

Group 1: 
Score 0 15 32.5 ± 5.2 2.15 ± 0.86 4 (26.7) 3.02 ± 1.05 

Group 2: 
Score 1 16 34.9 ± 3.6 1.96 ± 0.39 3 (18.8) 2.46 ± 0.48 

Group 3: 
Score 2 20 34.8 ± 3.2 1.86 ± 0.67 2 (10.0) 2.68 ± 0.14 

Group 4: 
Score 3-5 8 33.4 ± 4.8 1.59 ± 0.35a, b 0 (0)  

Total 
 59 33.7 ± 4.3 1.93 ± 0.64 9 (15.3) 2.76 ± 0.73 

Total in NCC 
(From Group 1-

5) 
50 33.9 ± 4.1 1.78 ±0.50   

Total in CC 
(From Group 1-

3) 
9 32.6 ± 5.2 2.76 ±0.73c   
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Thus, mean retardance by spindles in oocytes was not correlated to conception cycles 

comprising 2-3 oocytes that were chosen for transfer after ICSI. From the observation it 

appears that these oocytes were, in fact, the best ones from the individual patients, since 

mean retardance of spindles of transfer oocytes was significantly higher compared to 

those of the non-transfer oocytes. According to present observations, the oocytes with the 

most robust spindles were therefore selected for transfer by employing PN scoring. The 

retrospective studies suggest that both methods for selection appear equivalent, and that 

selection by spindle analysis may be as powerful as PN scoring to identify healthy 

oocytes. 

 

6.2.5 Correlation Between Morphology of the Meiotic Spindles and  Maternal 

Age 

A large cohort of patients who had between 4 and 20 oocytes at retrieval was included in 

this study. The data suggest that oocytes with low mean retardance magnitude of spindle 

mainly develop to pre-embryos with presumably poor quality according to PN score. Due 

to legal restrictions further development of embryo could only be analysed in embryos 

which were selected for transfer. There was no evidence for a significant correlation 

between length or mean retardance by the spindle and maternal age when comparing age 

groups of patients ≤ 30 years, 31-35 years and over 36 years (Table 5.3), although there 

was a minor age-related reduction in mean retardance value. Mean retardance of spindles 

was also calculated in all oocytes of individual patients with respect to high and low 

numbers of retrieved oocytes or cycles that had or had no immature GV stage at retrieval 

and did not detect a correlation. This suggests that overall oocyte quality in terms of 

spindle retardance is not directly influenced by stimulation response resulting in 

maturation of few or large numbers of oocytes.  

The present study may have failed to detect age-associated correlations since cycles with 

very low or high numbers of oocytes were excluded from the analysis. For instance, it is 

feasible that predominantly poor responders with three or even fewer oocytes may have 

short spindles with low mean retardance, or that stimulation of maturation of more than 

20 oocytes has adverse effects on the overall quality of the retrieved oocytes. The short 

protocol used in stimulation of aged patients may also optimise follicular and oocyte 

maturation in vivo such that some age-related effects are reduced. Data from the small 
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cohort in Milan including more patients of advanced age and cycles with few oocytes 

showed a significant correlation between mean retardance magnitude and maternal age. It 

supports the notion that overall spindle quality may decline with advancing age, in 

accordance with immunofluorescent studies and previous reports (Battaglia et al., 1996; 

De Santis et al., 2005).  

 

6.3 Highly Ordered Structure of the Zona Pellucida May Reflect Health and 

Quality of Living Human Oocytes 

The zona pellucida is an extracellular matrix that comprises a three dimensional structure 

composed of heterodimeric filaments of ZP2 and ZP3 proteins and linked by ZP1 protein 

(Green, 1997). Studies in animal models with defined genetic constitution and mutations 

have shown the relevance of a functionally intact zona (Liu et al., 1996; Rankin et al., 

1999 and 2001a,b). It has been suggested that the oocyte’s zona morphology may be 

influenced by hormonal homeostasis and reproductive age of the woman (Bertrand et al., 

1996), and that the thickness of the zona pellucida in individual embryos from a patient 

might be correlated to developmental capacity and implantation rate (Gabrielsen et al., 

2001). 

Due to the paracrystalline network structure of the zona (Wassarman et al., 2004), 

orientation-independent polarization microscopy can now be used for qualitative and 

quantitative analyses in living oocytes, similar to studies on spindle expression 

(Oldenbourg, 1996; Keefe et al., 1997; Silva et al., 1997; Pelletier et al., 2004; 

Eichenlaub-Ritter et al., 2002 and 2004; Wang et al., 2001a,b;c; Keefe et al., 2003, Moon 

et al., 2003; and Rienzi et al., 2003 and 2005). Using PolScope microscopy to image and 

quantitatively analyze birefringence of the spindle and zona pellucida in mammalian 

oocytes may, therefore, obtain more essential information for the assessment of oocyte 

quality and risk assessment in aneuploidy research, especially from oocytes subjected 

directly to a treatment in infertile patients. The procedure is fast, provides immediate 

information and has no adverse effects on the oocytes. Oocytes from 63 cycles, which 

were assessed for spindle birefringence, were also assessed for morphology and integrity 

of the zona pellucida in the current study. Electron microscopic analysis by other groups 

showed two layers with zona filaments: a tight or looser meshed network on the outside 

and repetitive structures characterized by numerous short and straight filaments 
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anastomosing with each other in the inner layer, separated by a translucent space 

(Familiari et al., 1992; Nikas et al., 1994). PolScope analysis confirms the bilaminar, 

tripartite nature of the zona (Keefe et al., 1997; Pelletier et al., 2004) as identified in 

several species (Baranska et al., 1975; Andrews et al., 1992; Gilchrist et al., 1997; Green, 

1997; Keefe et al., 1997; Ebenspaecher et al., 2001; Dunbar et al., 2001; El Mestrah et 

al., 2002; Sinowatz et al., 2001; Jimenez-Movilla et al., 2004). Filaments of the inner 

zona are oriented radically, whereas filaments of the outer zona are oriented tangentially. 

The middle layer represents minimal birefringence due to the random orientation of 

filaments in the layer (Keefe et al., 1997; Silva et al., 1997). Such order can be analysed 

by examining vector orientation in PolScope microscopy (Figure 2.1.7 B). The inner and 

outer layers are, therefore, highly birefringent, as expected from the paracrystalline 

arrangement of zona fibrils, while the middle layer appears dark.  

When human oocytes mature from the GV-stage to meiosis II the thickness of the zona 

increases progressively but becomes thinner after fertilization prior to hatching (Dirnfeld 

et al., 2003; Pelletier et al., 2004). Accordingly, there was evidence that the retardance 

magnitude of the zona pellucida changes stage-specifically and correlates with the overall 

zona thickness at the immature and mature stages of oogenesis and the pre-implantation 

period (Pelletier et al., 2004). Stage-specific alterations in zona thickness were interpreted 

to reflect the maturation status: the extent of cross-linking and the degree of deposition of 

zona fibres, as well as fertilization-induced changes in structural and functional properties 

of the zona associated with normal development. It has been suggested that the overall 

variability in zona thickness at day 2 of human embryogenesis is an indicator for 

implantation potential (Gabrielsen et al., 2001). The data from the present study showed 

that the retardance magnitude and thickness of zona inner layer varied between different 

oocytes. Oocytes with a high retardance of the inner layer of the zona pellucida 

contributed significantly more often to a conception cycle compared to those with low 

retardance of the zona inner layer. These data demonstrated a positive correlation between 

the texture of the zona, as quantitatively assessed by the magnitude of retardance of light 

in PolScope microscopy in freshly retrieved human oocytes, and pregnancy rate after 

ICSI. A brief report using semi-quantitative Polarization methods recently confirmed the 

present observations suggesting that high zona retardance is associated with high quality 

embryos (Montag et al., 2006) 
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6.3.1 Mean retardance magnitude of the inner layer is a novel indicator of 

oocyte developmental capacity after fertilization 

Although significant in comparison, the differences in thickness between CC and NCC 

groups were not extensive in the present study (on average 1.3 μm). Accordingly, it does 

not appear to be useful to measure zona thickness for oocyte selection. In contrast, the 

magnitude of retardance in the inner layer of the zona is over 30% higher in oocytes of the 

CC compared to NCC group before actual in vitro fertilization by ICSI, and before zona 

hardening and thinning had been initiated. This correlated with fast embryonal 

development, as may be characteristic for embryos with high developmental potential and 

a normal chromosomal constitution (e.g. Lundin et al., 2001; Neuber et al., 2003; 

Gianaroli et al., 2003; Nagy et al., 2003; Ziebe et al., 2003).  

A robust zona with high-order structured fibres probably reflects the health of an oocyte 

and its full maturation to metaphase II (Pelletier et al., 2004). It indicates that the oocyte, 

and possibly the granulosa cells within the follicle, (Sinowatz et al., 2001; Gook et al., 

2004) were capable of secreting co-ordinately large amounts of glycosylated zona 

proteins, which were assembled into a high-order network during folliculogenesis and 

oocyte growth (Nikas et al., 1994). Expression of zona proteins from the oocyte and other 

sites may contribute in unknown ways to establish polarity gradients, improve 

oocyte/somatic cell signalling e.g. by transzonal projections (Albertini and Barrett, 2003), 

and thus support oocyte maturation and acquisition of high developmental potential, 

irrespective of functions at and after fertilization (Thompson, 2006).   

A thick and solid zona could also be of advantage in ICSI, because it protects the oocyte 

particularly well from mechanical stress during the microinjection procedure and stress-

related changes during the preimplantation development affecting, for instance, amino 

acid uptake (Leese, 2004). However, ICSI has been successful in cases of zona-free 

human oocytes (Ding et al., 1999; Takahashi et al., 1999; Hsieh et al., 2001; Stanger et 

al., 2001), while implantation appeared more jeopardized by absence of a zona in some 

patients (Hsieh et al., 2001). Zona pellucida thickness also appears positively correlated to 

embryo quality after IVF (Dirnfeld et al., 2003).  

The efficient association of embryonal and uterine factors with the zona of the embryo 

could be of importance, in that an accumulation of autocrine and paracrine factors at the 

zona could enhance oocyte or embryo development (Celik-Ozenci et al., 2003) and help 
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to create a specific micro-milieu around the embryo prior to hatching, which supports and 

enhances development during the preimplantaion period (Seshagiri et al., 1994; for 

discussion see Herrler and Beier, 2000; Herrler et al., 2003). The embryo secretes 

gonadotrophines, growth factors and components mediating signalling in the extracellular 

space with potentially autocrine and paracrine stimulatory effects (Herrler et al., 2003; 

Liu and Armant, 2004). Recent scanning electron-microscopic studies demonstrated that 

growth hormone can alter the structure and pore size of the zona pellucida of blastocysts 

in the bovine (Kolle et al., 2004) and may act in concert with IGF-I to optimise blastocyst 

development (Markham and Kaye, 2003). Assisted zona hatching was not performed in 

the protocol suggesting that a robust zona with a highly structured inner layer in oocytes 

prior to ICSI does not compromise implantation after ICSI. However, there were no 

oocytes with extremely thick zona observed in the presently analysed cohort. It may be 

that extremes can compromise fertilization and development (Nawroth et al., 2001). 

Further studies need to be exploring this possibility, which could not be performed in the 

present study due to the limited number of cycles. Since not all oocytes from a patient’s 

cohort were screened for zona thickness, it is also currently not possible to discriminate 

between predictive value of zona retardance for most oocytes of a patient or usefulness of 

quantitative analysis to select oocytes from a cohort. 

 

6.3.2 Maternal age and organisation of zona pellucida 

From polar body analysis and pre-implantation genetic diagnosis it appears that 

chromosomal imbalance is a major cause of developmental arrest and implantation failure 

in ART, especially in aged patients (e.g. Munne, 2003; Pellestor et al., 2003; Clyde et al., 

2001; Kuliev et al., 2003; Ziebe et al., 2003). Nearly 50% of the embryos transferred in 

the youngest age group involved conception cycles but only about 30% of the embryos 

transferred in the age groups over 32 years involved in the zona study. Certainly, zona 

thickness and texture are not expected to relate to chromosomal constitution of the oocyte, 

and it is doubtful whether analysis of the zona pellucida will improve pregnancy rate in 

aged patients, in which aneuploidy of the embryo may be the primary source of 

implantation failure (Pellestor et al., 2003; Munne et al., 2004). A clear correlation 

between zona thickness and retardance and reproductive age within the CC and NCC 

groups was not found in the limited sample. However, when calculating overall zona 
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retardance of the inner layer including oocytes of the CC and the NCC group, there was a 

minor reduction in retardance of the inner layer from about 2.5 nm in the youngest to 2.4 

nm in the intermediate and 2.2 nm in the oldest age group. Patients subjected to ICSI are 

in general comparatively young, and presumably less susceptible to meiotic errors at 

oogenesis compared to more aged cohorts. In a large cytogenetic study with nearly 1400 

human oocytes only 9% of the unfertilized human oocytes of patients aged about 32 years 

were chromosomally unbalanced (Pellestor et al., 2003), in contrast to about fifty percent 

or more aberrant oocytes examined directly by cytogenetics or by polar body analysis 

with fluorescent in situ hybridisation in women of an average age of about 38 years 

(Pellestor et al., 2003; Kuliev et al., 2003). In fact, nearly all oocytes used for transfer, 

which were included in this study, contained birefringent spindles as assessed by 

PolScope. Probably, most were euploid since they developed into an embryo with a good 

PN score (Magli et al., 2001; Gianaroli et al., 2003; Gamiz et al., 2003; Balaban et al., 

2004). Selection for morphological criteria may reduce the risk to transfer a 

chromosomally unbalanced embryo (Ziebe et al., 2003), and may contribute to select 

good quality oocytes in younger patients with male factor indication. From the study it 

appears that fast developmental rate correlated not only with pregnancy cycles but that it 

also correlated with magnitude of zona retardance in the inner layer of the zona of the 

unfertilised oocyte. So, zona retardance may be a valuable early and non-invasive marker 

of oocyte quality. The positive correlation between zona birefringence and oocyte 

developmental potential after insemination has been confirmed by a prospective study 

(Montag et al., 2006). Zona birefringence was analysed in oocytes from 30 ICSI cycles. 

Two embryos with possibly high retardance magnitude of zona inner layer were selected 

for embryo transfer per cycle. Due to the small number of cycles, a significant difference 

on pregnancy rate was only found in cycles in which 2 embryos with high zona 

birefringence were transferred and the cycles in which both embryos presenting low zona 

birefringence (Montag et al., 2006). This study supported the idea that the birefringence 

of the zona inner layer may be a novel indicator for oocyte quality diagnosis. Predictive 

analysis of zona birefringence using PolScope may become a powerful tool to improve 

the success rate of ICSI and the treatment of infertile couples. Still, controlled prospective 

studies of a large number of patients are now required to validate whether quantitative 
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zona imaging can improve pregnancy rate, or can help to identify embryos with high 

developmental capacity in order to reduce numbers of transferred embryos.  

 

6.4 Application of PolScope Microscopy in Assessment of Oocyte Quality in 

Human Assisted Reproduction 

Although more than one embryo is usually transferred, rates of implantation and 

pregnancies in assisted reproduction are still fairly low (Fauser et al., 2002). Especially, 

when ethical and legal considerations limit selection after fertilization, it appears 

important to identify non-invasive markers of oocyte quality to obtain reasonable 

implantation and pregnancy rates (e.g. Zollner et al., 2002; Ebner et al., 2003). Although 

oocytes that failed to be fertilized or those with fertilization abnormalities from IVF 

programmes provided a large source for information on the ultrastructure of the spindle 

and zona pellucida (Hodges et al., 2002; Magerkurth et al., 1999; Familiari et al., 2001), 

it has not been possible to relate this to oocyte developmental potential. Electron 

microscopy, immunochemical and molecular methods require invasive techniques (e.g. 

Philips and Shalgi, 1980; Takagi et al., 1989; Eichenlaub-Ritter and Betzendahl 1995; 

Vanroose et al., 2000; Bogner et al., 2004). Metabolic and morphological markers 

obtained during culture (e.g. Houghton and Leese, 2004) cannot be used in such cases. 

Suitable assays and parameters of predictive factors in the cumulus or in the follicular 

fluid of the oocyte, which are associated with quality and developmental competence of 

an individual oocyte from a cohort, are currently not available, and biopsy and 

chromosomal analysis of the first and second polar body (Kuliev et al., 2003; Gitlin et al., 

2003) are costly, time consuming and also not considered acceptable by some patients. 

Therefore, the search for cheap and fast, non-invasive methods to identify factors 

associated with structural and functional integrity of the oocyte has been intensified 

(Wang et al., 2001a;b;c; Keefe et al., 2003; Eichenlaub-Ritter et al., 2002; Rienzi et al., 

2003).  

PolScope microscopy has more advantages in comparison with other invasive procedures 

mentioned above. It is safe, non-toxic, easy to manipulate and suitable for clinical use. 

PolScope microscopy may provide more data on morphology and organisation of ultra 

structures in living status, which reflect the health and developmental potential of living 
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oocytes. Therefore, the introduction of the newly developed non-invasive procedure may 

greatly improve the success rate in assisted reproduction. 

 

6.4.1 Novel Ways to Assess Oocyte Quality Non-invasively 

To improve the success rate, embryos with presumably high implantation potential have 

been selected for transfer in IVF/ICSI programmes. The prolonged culture of embryos to 

blastocysts stage enables a high implantation rate following the transfer of selected 

blastocysts (Gardner et al., 1998). The approach of accounting for pronuclear size and 

position, and number and alignment of NPB (nucleolar precursor bodies) at the pronuclear 

stage is an alternative to predictively assess human embryo quality in countries where the 

selection of embryos at blastocysts stage is restricted by ethical and legal considerations. 

The pronuclear scoring system was originally introduced by Scott and Smith (1998) and 

supported by Tesarik and Greco (1999). This scoring system includes morphological 

features such as clear cytoplasmic halo, and has been commonly and successfully 

employed in IVF and ICSI programmes to assess embryo quality (Scott, 2003; Payne et 

al., 2005). However, in some countries, such as Italy, the quality assessment and selection 

have to be performed even before the fertilization of oocytes. Due to the Italian IVF law, 

the generation of more than three embryos per cycle is prohibited. Thus, the approach to 

predictively and non-invasively identify oocytes and embryos with highest developmental 

potential is extremely interesting for countries with a strict embryo protection law, such as 

Germany and Italy. The present study showed that mean retardance magnitude of the 

spindle in living oocytes was positively correlated to PN score and conception cycles. The 

findings suggest that selection by spindle analysis may be as powerful as or even better 

than PN scoring to identify healthy oocytes in a patient’s cohort. From the present data it 

appears that effectiveness of scoring according to mean retardance rather than PN scoring 

may overcome limitations of the PN scoring system and thus contribute to identification 

of high quality oocytes already before ICSI. This notion was supported by the analysis of 

conception in patients with transfers with more than one high PN score embryo and such 

with low PN score embryos (Table 5.4).  

Furthermore, the quantitative analysis of mean retardance magnitude of zona pellucida 

suggests a more clear view of oocyte health and quality. In the 23 CC and 40 NCC cycles 

included in zona study, PN score did not differ greatly between embryos of both groups 
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nor were there striking differences in the expression of a spindle. In contrast, embryos in 

the CC and NCC groups had a quite different developmental rate and fate (Figure 5.4.3). 

Compared to the currently used PN scoring system, retardance magnitude of zona 

retardance may reflect the real fate of embryos in the early developmental stage more 

accurately, and appears, therefore, to present a novel unique marker for oocytes and 

embryos with high developmental potential, which possess an otherwise similarly good 

morphology.  

To improve the sensitivity of the PN selection criteria, a complete multi-factor selection 

system based on the optical property of spindle apparatus and zona pellucida will be 

developed in the future for quick and efficient quantitative assessment of mean retardance 

by the spindle and the zona inner layer. Measurements should provide a straightforward 

approach to score oocytes in ICSI cycles non-invasively before fertilization. Such 

screening might present an option to improve selection, especially in conditions where 

ethical and legal regulations restrain suitability of post-insemination screening. The novel 

PolScope selection criteria may provide a unique aspect of embryo quality and the 

developmental capacity. The predictive quality assessment by PolScope may help to 

greatly improve the efficiency of the embryo selection, especially to accurate determine 

pre-embryos quality, which contain a similar score, and therefore, help to reduce the 

number of embryo for transfer as well as the risk of multiple pregnancies in the countries, 

where the ethical and legal considerations prohibit the selection of embryos at an early 

embryo stage, such as Germany. The expected improvement of ART outcomes may 

benefit more infertile couples by resolving their psychological and social suffering. 

To determine the efficiency of the novel non-invasive criteria, the fertilization rate and 

pregnancy rate of the oocytes selected by the newly developed criteria will be compared 

with the oocytes (control) selected by the morphological assessment criterion. The 

information by PolScope can be used together with other parameters for oocyte selection 

before or after ICSI. Especially in cases where legal and ethical considerations prohibit 

selection at a more advanced stage of embryogenesis, including screening at the 

pronuclear stage, zona imaging may offer new options in oocyte selection since the 

procedure is fast, provides immediate information and has no adverse effects on the 

oocytes. In fact, it can be employed together with routine screening for expression and 

localisation of the spindle in living oocytes by enhanced polarising technology. 
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Due to the low birefringence property, chromosome behaviour cannot be analysed by the 

currently used PolScope imaging system. Polar body biopsy should be employed in 

combination with PolScope microscopy in future studies, to directly evaluate whether a 

highly ordered spindle revealed by a high mean retardance magnitude correlates with a 

lower risk of abnormal chromosome constitution compared to a spindle with low 

retardance. The novel non-invasive quantitative parameter of PolScope may also reveal a 

normal oocyte growth in follicles. An optimal stimulations protocol may thus be 

generated for individual patients by the way of analysing the mean retardance magnitudes 

of spindle and zona pellucida. In addition, analysis of the displacement of the meiotic 

spindle may also help to resolve the handling problem during oocyte manipulation.  

The advantage of PolScope microscopy, to directly and non-invasively evaluate oocyte’s 

ultrastructures in vivo, also enables the application of PolScope in epidemiological 

research, such as the identification of negative-positive factors in environment, nutrition 

and lifestyles. It has been reported that exposure to aneugen affecting polymerization of 

spindle microtubules may induce chromosomal congression failures in the spindle and 

chromosomal non-disjunction to produce aneuploid oocytes in mouse (Shen et al., 2005).  

The current study confirmed that the PolScope illumination does not produce any adverse 

effects on oocyte health. However, a prolonged exposure of oocytes during observations 

used for quantitative assessments of spindle and zona birefringence may cause a drop in 

temperature or alterations in the pH of the culture media. Currently, the calculation of 

birefringence using the first generation of PolScope software is still fairly complicated 

and time-consuming. Thus, future studies should aim at the analysis program to be 

improved continually to ensure a brief imaging period and a fast and exact calculation of 

birefringence of the subject. Recently, an advanced user platform with ultra-sensitive 

digital camera and powerful measurement tools, named "Oosight" system, has been 

developed for a more convenient observation using PolScope methodology (Figure 6.4.1 

A). Oosight provides a fast and effortless solution for the real-time detection and 

assessment of birefringent structures in the oocytes, opening possibilities to study and 
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 record also spindle dynamics. Besides the measurement of birefringence through a line 

scan, Oosight provides also an “area measurement” function to measure the birefringence 

of a defined region of interest (Figure 6.4.1 B). The birefringent data can be displayed 

directly on the screen (Figure 6.4.1 B). This might produce even better and more accurate 

information of spindle and birefringent properties of organelles in oocytes.  

The current work clearly demonstrates that PolScope microscopy is a novel procedure of 

predictive and non-invasive control of oocyte quality and maturity. It may provide useful 

Figure 6.4.1 The newly 
developed PolScope imaging 
system – Oosight Imaging 
System 

 

A: The Oosight™ Imaging 
System is a next-generation, 
improved version of PolScope 
system.  

B: A birefringent image of 
human oocyte with 
pseudocolour overlay of 
retardance taken by Oosight 
system. The colour indicates 
the retardance magnitude of 
individual pixel on the image 
(Blue = 0 nm; Red = 4.89 nm).  
 
Open arrow: Mean retardance 
magnitude of an interest 
region, i.e. spindle region, can 
be defined by selecting an 
area on the image. 
 

A 

B

1.76 nm 
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information on improvement of the experimental protocol and condition in IVF 

laboratory, i.e. prolongation of the culture period of oocytes after punctures waiting for 

the delayed maturation to metaphase II stage and optimal timing of fertilization for all 

oocytes, etc. introduction of the PolScope system in ART has thus the potential to 

increase the success in the IVF laboratory in an easy and feasible way, and might help to 

greatly improve the treatment of infertile couples. 
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