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1. Introduction 

 

Cardiovascular diseases due to atherosclerosis are the leading causes of death in the western 

world
1, 2

. The current strategies to prevent atherosclerotic lesions aim to reduce the major risk 

factors, e.g. hypertension or diabetes. Genetic risk factors also play a major role in the 

development of vascular proliferative diseases, but the pathophysiology of most of these 

genetic aberrations is poorly understood
3
. Factor VII activating protease (FSAP), a novel 

plasma protease, has been shown to be linked to vascular diseases in humans, since the 

Marburg I (MI, G534E) polymorphism of FSAP is a prominent risk factor for atherosclerosis 

and stroke
4, 5

. In the Bruneck study, a prospective population based clinical survey, the odds 

ratio of advanced atherosclerosis in homozygous MI-patients was 6.63 (1.58-27.72) and 

exceeded even the risk profile for diabetes mellitus
4
. In the European population, there are 

~5% of heterozygous carriers of the MI-polymorphism, and further clinical studies are on the 

way to investigate the risk profile of the affected patients. However, it is not known how the 

gene is involved in the disease process. On the basis of our in vitro studies, we therefore 

aimed to elucidate the complex role of FSAP in the pathogenesis of vascular diseases in vivo. 

 

1.1    Atherosclerosis 

 

Atherosclerosis is a chronic inflammatory disease of the arterial wall and can result in 

coronary heart disease, stroke, or aneurysm formation
6
. The major risk factors are 

hypertension, diabetes mellitus, hypercholesteremia, and smoking
7
. These factors cause an 

endothelial dysfunction, which is characterized by a shift
 
toward reduced vasodilatation,

 

prothrombotic properties, and a proinflammatory state in general
8
. Low-density lipoproteins 

(LDL) infiltrate the arterial intima and are retained in the endothelial layer. Oxidation or 

enzymatic modification of LDL leads to an activation of the endothelium by bioactive 

lipids
9
. Particularly at sites of hemodynamic shear stress, the endothelial cells (EC) express 

adhesion molecules, such as vascular cell adhesion molecule (VCAM)-1 or intercellular 

adhesion molecule (ICAM)-1, and secrete pro-inflammatory mediators
10

. Thrombocytes are 

the first cells adhering to the activated endothelium, followed by a rolling of leucocytes 

along the vascular surface
11

. Predominantly monocytes and T-cells adhere to these sites and 

start to infiltrate the subendothelial space
12, 13

. This process of chemotactic attraction is 
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regulated by various chemokines produced in the inflamed intima, e.g. the monocyte 

chemoattractant
 
protein (MCP)-1 /CC motif receptor 2 (CCR2) axis

14, 15
 (fig.1).  

 

 

Figure 1. Infiltration of LDL and recruitment of leucocytes 

 

Oxidative and enzymatic modifications of the infiltrating LDL are followed by an up-regulation of 

adhesion molecules on the endothelial layer, and thus a recruitment and transmigration of leukocytes. 

The modified LDL particles are taken up by macrophages, which evolve into foam cells. 

 

The next important step for the development of atherosclerosis is the differentiation of the 

infiltrated monocytes into macrophages by the macrophage-colony stimulation factor (M-

CSF)
16

. This step is associated with the expression of a special pattern of cell-surface 

receptors on the macrophages, including scavenger receptors
17

. Directed by these receptors, 

the activated macrophages can internalize oxidated LDL particles resulting in an 

accumulation of cholesterol in numerous cytosolic vesicles
18

. In the course of time, these 

macrophages slowly turn into large foam cells (fig.1). By ingesting more and more oxidated 

LDL particles, the foam cells can possibly burst and in turn accelerate the progression of the 

lesion
19

. This early state of atherosclerosis appears as “fatty streaks”, which are even 

prevalent in young people and can eventually disappear again
20

 (fig. 2). 
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Figure 2. Fatty-streak formation during atherosclerosis 

 

Fatty streaks mainly consist of foam cells interspersed with T-lymphocytes. These cells secrete 

various growth factors, including platelet-derived growth factor (PDGF)-BB and transforming growth 

factor (TGF)-β, to stimulate proliferation and migration of local vascular smooth muscle cells (VSMC) 

toward the intima, thus forming a fatty streak. 

 

If the offending risk factors continue to be present, the fatty streaks progress to atheromata
6
. 

Activated macrophages or dendritic cells in the lesion fuel the inflammatory process by 

secreting cytokines, proteases, or by promoting oxidation
19

. Additionally, they act as antigen-

presenting cells and bind via toll-like receptors (TLRs) to pathogen-like molecular patterns in 

the plaques, e.g. to stress proteins or DNA motifs
21

. The antigen fragments are presented by 

major-histocompatibility complex (MHC) class II molecules to surrounding CD4+ T cells
22

. 

The type 1 helper T (Th1) effector cells start to produce interferon (IFN)-γ, which improves 

the efficiency of antigen presentation and augments synthesis of inflammatory cytokines, such 

as tumor necrosis factor (TNF)-α and interleukin (IL)-1
23

. These cytokines initiate the 

production of large amounts of other pro-inflammatory cytokines, which in turn further 

stimulate the process of atherosclerosis
3
. As a result of the downstream targets in this 

cytokine cascade, elevated levels of interleukin (IL)-6 and C-reactive protein (CRP) may be 
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detected in the peripheral circulation
24

. High-sensitivity CRP, a nonspecific marker of 

inflammation, is even a potential biomarker for predicting the risk of cardiovascular diseases 

independent of other risk factors
25

.  

Another key process of atherosclerosis involves the proliferation of vascular smooth muscle 

cells (VSMC)
26

. The cytokines and growth factors, released in the intima by thrombocytes, 

inflammatory cells, and EC, stimulate the proliferation and migration of VSMC from the 

medial layer and even from the adventitia
27

. Important growth factors are amongst others 

platelet derived growth factor (PDGF), basic fibroblast growth factor (bFGF), thrombin, and 

angiotensin II
26

. The quiescent “contractile” phenotype of VSMC changes to the active 

“synthetic” state, and the VSMC synthesize extracellular matrix (ECM) components such as 

collagen, elastic fibers, and proteoglycans on the luminal side of the vessel wall
28

. At the 

same time, the VSMC start to proliferate and migrate toward the intimal layer secreting 

further growth factors as well as inflammatory mediators and vasoactive substances
26

. In this 

fibro-proliferative state, VSMC, lipid laden macrophages, T-lymphocytes, connective tissue 

as well as debris from both apoptotic and necrotic cells form the lipid core of the lesion
6
. A 

fibrous cap is composed of VSMC and covers this core, in order to prevent contact of the pro-

thrombotic material with the blood. The cap has a protective function and endows stability to 

the plaque
29

 (fig. 3). 
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Figure 3. Formation of an advanced, complicated atherosclerotic lesion  

 

VSMC and ECM components form a fibrous cap that covers the lipid core and protects the plaque 

from rupture. The lipid (or necrotic) core is highly thrombogenic and consists of a mixture of 

leukocytes, foam cells, modified LDL particles, and debris. 

 

As a regulatory process, inflammatory mediators induce the production and secretion of a 

broad spectrum of extracellular proteases by macrophages, but also by EC and VSMC. These 

contain in particular cathepsin S and K, urokinase type plasminogen activator (uPA), and 

members of the matrix metalloproteinases (MMP) family with their tissue inhibitors of 

metalloproteinases (TIMP) 
30, 31

. These extracellular proteinases can degrade the ECM and 

therefore induce thinning of the fibrous cap, thus rendering the plaque susceptible to 

rupture
32

. Once the fibrous cap ruptures, exposure of the pro-thrombotic content of the lipid 

core to the blood leads to an accumulation of thrombocytes, a thrombus formation, and finally 

a myocardial infarction
33

. A rupture usually occurs in the shoulder regions of a plaque, the 

weakest portion, where the stress is highest and the MMP-activity increased
34

. (fig. 4). 

Hence, the transformation of a stable plaque into a vulnerable plaque is of particular interest 

in the pathogenesis of an acute coronary syndrome, and FSAP possibly influences this 

turnover in an essential way. 
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Figure 4. Thrombus formation due to plaque rupture 

 

A ruptured fibrous cap can cause a fatal myocardial infarction. Proteolytic enzymes as well as 

apoptosis of VSMC are responsible for the thinning of the fibrous cap covering the pro-thrombotic 

material of the lipid core. 

 

1.2  Neointima formation and restenosis 

 

The neointima formation concerns patients after percutaneous transluminal angioplasty 

(PTA), bypass operation, or graft vasculopathy
35

. In cardiology, it mainly occurs after 

percutaneous transluminal coronary angioplasty (PTCA), e.g. for chest pain or after a 

myocardial infarction
36

. A catheter is inserted via the femoral artery to inflate a balloon in the 

affected coronary artery, compressing the plaque and dilatating the narrowed coronary artery 

to restore a sufficient blood flow. This procedure is typically accompanied by inserting an 

expandable metal stent to impede the subsequent collapse of the artery and to prop it open. 

Because of the unavoidable injury of the endothelium, the pro-thrombotic subendothelial 

components of the artery are exposed to the blood. Activated thrombocytes adhere to the 

vessel wall, and an inflammatory process starts by means of chemokines and growth factors, 

thus leading to an accumulation of leucocytes. This cascade culminates in the proliferation 
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and migration of resident VSMC, which secrete ECM proteins and build up a neointimal 

tissue
37

 (fig. 5).  

 

 

Figure 5. Balloon angioplasty and stent insertion 

 

Dilatation of an atherosclerotic plaque is usually followed by the insertion of a stent to impede the 

collapse of the artery. Since the endothelium is damaged by the angioplasty, an inflammatory process 

is initiated. The growth factors secreted in the process initiate the proliferation and migration of medial 

VSMC, which possibly re-narrow the lumen of the artery. 

 

The spreading tissue can in turn re-narrow the lumen and restrain the blood flow of the artery, 

so that a following PTCA is often unavoidable. Therefore, drug-eluting stents (DES) have 

been introduced into clinical practise to anticipate this proliferative process, and indeed the 

rates of restenosis could be reduced in major clinical trials from 14.3 % to 7.7 %, 

respectively
38

. Nevertheless, the permanent use of the more expensive drug-eluting stents is 

currently reassessed because of a higher rate of thromboembolic events caused by a delayed 

re-endothelialization
39

.  

A murine model of wire induced neointima formation of the femoral artery has been 

established by Sata et al. 
40

 (fig. 6). Until recently, it was widely accepted that intimal VSMC 

in vascular remodeling processes arise exclusively from resident medial cells
6
. Experiments 

on bone marrow (BM) transplanted mice, however, suspected circulating bone-marrow 
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derived progenitor cells (BMPC) of being the source of a substantial fraction of VSMC in the 

neointima and in atherosclerotic plaques
41, 42

. Following wire-induced injury, a significant 

amount of neointimal (63.0 ± 9.3%) and medial (45.9 ± 6.9%) cells were found to be of BM 

origin
42

. In the same publication, an analysis of atherosclerotic plaques in ApoE
-/-

-mice 

concluded that a significant amount (42.5 ± 8.3%) of the α-smooth muscle actin positive (α-

sma
+
) cells in the lesions were BM derived, as well. Because of a lack of high-resolution 

confocal microscopy analyses, this pathway remains controversial and has been challenged in 

mouse models of transplanted allografts and atherosclerosis induced with a collar technique
43, 

44
. Furthermore, the BMPC were only shown to express α-sma, but not more specific markers 

for VSMC like calponin or vimentine. Hence, a transdifferentiation of BMPC into highly 

differentiated VSMC remains speculative. 

 

 

Figure 6. Neointima formation in a murine wire induced injury model 

 

Hematoxylin & eosin (H & E) staining of a developing neointima: Uninjured artery (a), dilatated artery 

at 3 days with hardly any remaining medial VSMC (b), dilatated artery at 14 days with adhering 

leucocytes forming the neointima (c), and at 28 days after dilatation with a neointima consisting of 

VSMC (d). Arrows mark medial layer and arrowheads neointima formation. 

 

1.3 Thrombus formation and hemostasis 

 

Upon vascular injury, the hemostatic system prevents life-threatening blood loss by initiating 

the wound-healing process. The primary hemostasis describes the adhesion and aggregation 

of thrombocytes to the pro-thrombotic material of the subendothelium
45

. The glycoprotein VI 

and the glycoprotein Ib/V/IX complex on the thrombocytes bind to
45

 von-Willebrand factor 

(vWF) on the ECM of the disrupted vessel and mediate the initial adhesion at arterial shear 

rates
46, 47

. The platelets get activated and secrete mediators such as adenosine diphosphate 

(ADP), thrombin, and thromboxane A2, in order to amplify and sustain the recruitment of 
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circulating thrombocytes
48

. Platelet activation causes changes in the glycoprotein IIb/IIIa 

receptor, which binds fibrinogen molecules in order to form bridges among the platelets and 

facilitate thrombus formation. Since the binding of fibrinogen to glycoprotein IIb/IIIa receptor 

is the principle mechanism of platelet aggregation, inhibitors of the glycoprotein IIb/IIIa 

receptor have have been introduced into clinical practise in treating pro-thrombotic 

disorders
45, 49

.    

The secondary hemostasis is referred to as the stabilization of the platelet aggregation by the 

formation of fibrin. The vascular wall components (extrinsic) as well as blood-borne 

components (intrinsic) can initiate the coagulation cascade, leading to the production of 

thrombin
50

. The extrinsic pathway is initiated by tissue factor (TF, factor III), which is 

predominantly expressed on fibroblasts, pericytes, and VSMC in the vascular wall
51

. Factor 

VII from the circulation gets activated to factor VIIa and forms a complex with TF
52

. This 

complex in turn activates factor X to factor Xa, which forms the prothrombinase complex on 

membrane surfaces with its cofactor Va and activates prothrombin to thrombin. Additionally, 

factor VII can also be activated by thrombin, plasmin, FXIa, FXII, and FXa. The 

prothrombinase complex can also be initiated by the intrinsic pathway, namely factor VIIIa 

and its cofactor IXa, referred to as the tenase complex
50

. Hence, both pathways lead to the 

formation of thrombin
53

 (fig. 7). The primary role of thrombin is the conversion of fibrinogen 

to fibrin, but it also activates other coagulation factors, the physiological anticoagulant protein 

C (PC), and thrombocytes
54

. 
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Figure 7. Pathways of thrombin activation in secondary hemostasis 

 

 

The complex of tissue factor (TF) with circulating factor VIIa represents the extrinsic initiation of the 

coagulation system and has three substrates: factor VII, factor IX, and most importantly factor X. 

Factor IXa binds to factor VIIIa and forms the tenase complex, which can also activate factor X to 

factor Xa. Factor Xa with its cofactor Va form the prothrombinase complex and activate prothrombin to 

thrombin. In turn, the thrombin generated in this cascade activates the factors VIII and V, leading to a 

further boost in thrombin production. Picture modified after
45 

 

Several antagonistic mechanisms have been developed to prevent uncontrolled hemostasis. 

On intact EC, the important TF-factor VIIa complex gets inhibited by tissue factor pathway 

inhibitor (TFPI) 
55

. Protein C (PC) and its cofactor protein S (PS) proteolytically inactivate 

factor Va as well as factor VIIIa. PC gets activated by thrombin, and this activation is further 

promoted by thrombomodulin, which is present on EC
56

. Furthermore, antithrombin (AT) is 

an important inhibitor of thrombin and other coagulation factors
57

.    

Taken together, the primary and secondary hemostatic systems get parallely activated by 

prothrombotic subendothelial material, so that the rupture of an atherosclerotic plaque leads to 

a thrombus formation, which in turn might result in an occlusive vessel disease, e.g. a 

myocardial infarction. 

 



1. Introduction 

 

11 

1.4 The plasminogen activation system and fibrinolysis 

 

The central conversion of the plasminogen activator (PA) system is the formation of plasmin, 

a serine protease, which degrades fibrin to its degradation products. There are two different 

PA, the tissue type (t-PA) and the urinary type (u-PA) plasminogen activator. The first is 

synthesized by EC and then secreted to the circulation. In order to activate plasminogen, t-PA 

is highly dependent on the presence of cofactors, such as fibrin
58

. The concentration of uPA in 

plasma is lower, and it is predominantly expressed in tissues
59

. Both PA are regulated by 

inhibitors, most notably PA inhibitor (PAI)-1 and -2, which are present at high concentrations 

in plasma
60

. Additionally, uPA plays an important role in vascular remodelling, partly by 

activating plasminogen but also independent of this conversion
61

. The murine neointima 

formation in u-PA
-/-

 mice is significantly impaired, and the vascular lesion induced by ferric 

chloride did not contain many VSMC but acellular thrombotic material
62

. In contrast, a defect 

in t-PA does not affect cell proliferation or migration, and the neointima of t-PA
-/-

 mice does 

virtually not differ from that in wild-type (WT)-mice
63

. Furthermore, uPA is described to 

accumulate in atherosclerotic plaques, and overexpression of uPA in macrophages accelerated 

atherosclerosis in ApoE
-/-

-mice
64

. Both functional and total uPA were increased several-fold 

in extracts of advanced lesions, but interestingly the uPA activity showed a high turnover in 

unstable plaques
65

. Since proliferation and migration of VSMC are dependent on uPA 

activity, a down-regulation of uPA could possibly destabilize the plaque by inhibiting the 

protective function of the VSMC in the fibrous cap.  

 

1.5   Factor VII activating protease (FSAP) 

 1.5.1   Structure and physiology 

 

The serine protease FSAP was originally described as plasma hyaluronan-binding protein 

(PHBP), when it was first purified from human plasma. FSAP is predominantly produced in 

the liver and circulates in plasma at concentrations of ~12 µg/ml. The structure of FSAP is 

composed by various structural modules, including three epidermal-growth-factor (EGF)-like 

domains, a kringle domain and a serine protease domain
66

. There is a high structural 

homology to uPA, plasminogen, or hepatocyte growth factor
67

. FSAP is produced as a single 

chain inactive zymogen in the liver and gets activated by cleavage of the serine protease 

domain from the other domains
68

. The two-chain active protease is then linked by a disulfide 

bond and can activate further FSAP molecules in an autocatalytic fashion
69

. In addition to its 
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ability to bind hyaluronic acid, FSAP was also found to have a strong affinity to other 

negatively charged polyanions, including mast cell derived heparin, platelet derived 

polyphosphates, and extracellular RNA
70, 71

. The autocatalytic activation of FSAP is 

particularly promoted by the interaction with these negatively charged substances. FSAP may 

be activated to a certain extend by uPA, but no other physiologically relevant activators have 

been described
68

. The activated two-chain FSAP is rapidly inhibited by various serine 

protease inhibitors (Serpins), including α1-proteinase inhibitor, α2-plasmin inhibitor, C1-

inhibitor as well as plasminogen activator inhibitor (PAI)-1 and protease nexin (PN)-1
72

. 

Binding of FSAP to PN-1 leads to an inhibition of the protease, and the complex in turn binds 

to the low-density lipoprotein receptor-related protein (LRP) on the cell surface and gets 

internalized
73

.  

This neutralization of FSAP by various serine protease inhibitors is also promoted by contact 

with negatively charged polyanions
74

. Since there is a release of negatively charged anions 

after tissue damage, the activation and the subsequent inactivation of FSAP from the 

circulation is very likely to be involved in pathological processes such as atherosclerosis or 

neointima formation. In addition to the circulating protein, FSAP expression and FSAP 

mRNA were also found to be present in monocyte derived macrophages, but it is not 

produced by other cells in the vasculature
75

. 

 

 1.5.2   FSAP in hemostasis and fibrinolysis 

 

FSAP was named after its ability to activate factor VII independently of TF. Since 

exogenously added FSAP did shorten the pro-thrombin time (PT, extrinsic pathway) but not 

the activated partial thromboplastin time (aPPT, intrinsic pathway), the extrinsic pathway 

seems to be influenced by an action of FSAP
76

. Simultaneously, pro-uPA is activated by 

exogenous FSAP and a fibrinolytic effect is observed in whole blood
77

. The current 

hypothesis is that the fibrinolytic effect of FSAP is much more prominent than the activation 

of factor VII (our unpublished observations, fig. 8). This activation of pro-uPA could also 

possibly influence the uPA-mediated effects on proliferation and migration of VSMC in 

atherosclerosis or neointima formation. 
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Figure 8. FSAP in hemostasis and fibrinolysis 

 

 

FSAP can activate F VII independently of TF. However, our unpublished data suggest a more 

prominent effect on the fibrinolytic system by activating pro-uPA.  

 

 1.5.3   FSAP interaction with growth factors 

 

FSAP has been identified as a potent inhibitor of PDGF-BB dependent VSMC proliferation 

and migration in vitro
78, 79

. This growth factor and its receptor PDGFRβ have been described 

in various studies of atherosclerosis and neointima formation as key players of VSMC 

proliferation and migration
80, 81

. FSAP binds to PDGF-BB with high affinity and can 

specifically cleave the growth factor in a region that is crucial for receptor binding and 

activation. The inhibitory effect of FSAP on PDGF-BB is significantly enhanced by heparin 

or extracellular RNA, whereas an inactivation of the enzymatic activity of FSAP neutralizes 

the effect
82

. Accordingly, the enzymatically less active MI-FSAP failed to degrade PDGF-BB, 

although the binding characteristics remained the same
79

. WT-FSAP also strongly inhibited 

PDGF-stimulated DNA synthesis, whereas the inhibition with MI-FSAP was much weaker. 

Similarly, PDGF-BB-stimulated phosphorylation of p42/p44 mitogen-activated protein 

kinases (MAPK)/ extracellular signal-regulated kinases (ERK) was inhibited by WT-FSAP 

but not by MI-FSAP. Apart from PDGF-BB, FSAP did not inhibit DNA synthesis or 
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phosphorylation of p42/p44 MAPK induced by insulin-like growth factor (IGF)-1, thrombin, 

sphingosine-1-phosphate (S1P), transforming growth factor (TGF)- , basic fibroblast growth 

factor (bFGF) and hepatocyte growth factor (HGF)
79

. In contrast to VSMC, the activation of 

fibroblasts by bFGF was enhanced in the presence of FSAP
83

. 

 

 1.5.4   FSAP and uPA in atherosclerosis 

 

FSAP is not present in normal vessels, but immuno-localization studies showed substantial 

immunostaining particularly in unstable atherosclerotic plaques in humans
78

. In a clinical 

study with 40 patients, FSAP immunostaining was significantly higher in plaques from 

patients with unstable angina pectoris and myocardial infarction compared to those with 

stable angina. Interestingly, the distribution of FSAP throughout the plaque was similar to that 

of uPA, which was predominantly associated with areas of high macrophage density. 

Additionally, macrophages have been shown to express FSAP protein and FSAP mRNA, and 

the expression was up-regulated by inflammatory mediators
75

. Since proliferation and 

migration of VSMC are dependent on uPA, the ability of FSAP to activate pro-uPA might 

regulate the activity or expression of uPA
62, 63

. The urokinase-system can activate 

plasminogen, and plasmin in turn activates a broad spectrum of MMP
32, 84

. These proteases 

generally promote migration of VSMC, and MMP-2 and MMP-9 have been constitutively up-

regulated in the vessel wall after vascular injury
85

.  

 

 1.5.5   The Marburg I (MI, G534E) polymorphism of FSAP 

 

The MI single nucleotide polymorphism (SNP) of FSAP is characterized by an amino acid 

exchange from Gly to Glu in the serine protease domain of FSAP
86

. Approximately 5 % of 

the European population are carriers of the MI-polymorphism, which is a prominent risk 

factor for carotid stenosis as well as cardiovascular complications. In the analysis of the 

Bruneck Study, which involved 810 men and women aged 40 to 79 years, the homozygous 

allele of the MI-polymorphism was a strong and independent risk predictor of 

incident/progressive carotid stenosis (multivariate odds ratio [95%CI], 6.63 [1.58 to 27.72]) 

and exceeded even the risk profile for diabetes mellitus
4
 (fig. 9).  
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Figure 9. Risk profile of atherogenic factors in the Bruneck study 

The odds ratio of the MI-SNP for advanced atherogenesis exceeded all other risk factors including 

elevated lipoproteins and diabetes mellitus. Values presented are mean ± SD or number (%). (Picture 

adapted from
4
) 

 

In another clinical trial, the MI-SNP was also determined as a risk factor for cardiovascular 

disease in general
5
. Concerning the relation of MI-FSAP to venous thromboembolism, the 

former observations of an elevated risk in MI-FSAP carriers has been challenged recently
87, 

88
. In vitro, MI-FSAP had a lower activating capacity towards pro-uPA but an unchanged 

ability to activate factor VII compared to wild type (WT)-FSAP
86

. This modulation of the 

proteolytic activity of FSAP due to the amino-acid exchange in the active center is most likely 

the key to the reduction of pro-uPA activation and PDGF-BB-cleavage, but until now the in 

vivo effects of FSAP have not been explored at all.   
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2. Aims 

 

The clinical findings of accelerated atherosclerosis in MI-carriers as well as the FSAP staining 

predominantly in unstable plaques emphasize the importance of the protease in vascular 

remodeling
4, 75

. However, the exact mechanisms of action of FSAP remain uncertain. On the 

basis of the molecular effects of FSAP in vitro, a mouse model of injury induced neointima 

formation was used to elucidate the effects of FSAP on VSMC proliferation and migration in 

vivo. The concrete aims of this project were to answer the the following questions: 

 

1. What is the expression of FSAP in different murine tissue extracts? 

 

2. Do WT-FSAP and MI-FSAP influence neointima formation in a wire induced injury 

model? Does this exogenously administered FSAP diffuse into the denuded artery?  

 

3. How do WT-FSAP and MI-FSAP influence the pericellular proteolysis system in the 

vasculature?  

 

4. What effects does FSAP have on neointima formation in uPA
-/-

- and uPAR
-/-

- mice?  

 

5. What is the effect of FSAP on transdifferentiation of BM derived progenitor cells in the 

neointimal lesions? 
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3. Material and Methods 

3.1  Material 

 

3.1.1   Devices 

Product: Company: 

ANOVA statistical package Manugistics, Rockville, MD, USA 

Autoquant Deblur 9.3 Media Cybernetics, Bethesda, MD, USA 

Dissecting microscope: Leica S4E Leica Microsystems, Wetzlar, Germany 

FACS cell sorter BD Pharmingen, Franklin Lakes, NJ, USA 

Fluorescence microscope: Leica DMRB Leica Microsystems, Wetzlar, Germany 

IKA® Vibrax VXR IKA® Works Inc., NC, USA  

Kryostat: Leica CM 1900 Leica Microsystems, Wetzlar, Germany 

Laser scanning microscope: Leica TCS SP Leica Microsystems, Wetzlar, Germany 

Metamorph Imaging software 7.0 Molecular Devices, Downingtown, PA, USA 

Sigma Plot 8.0/ Sigma Stat 2.03 Systat Software, Erkrath, Germany 

 

3.1.2   Reagents 

Product: Company: 

2-Mercaptoethanol Sigma-Aldrich Chemie, Munich, Germany 

2-Propanol Merck, Darmstadt, Germany 

Acetone 99,8% Merck, Darmstadt, Germany 

Agarose Molecular Probes, Leiden, The Netherlands 

Amiloride Sigma-Aldrich Chemie, Steinheim, Germany 

Antibody diluent reagent solution Zymed  Laboratories Inc., San Francisco, CA, USA 

Aqua ad iniectabilia (H2Odd) Baxter, Unterschleißheim, Germany 

Arginine Sigma-Aldrich Chemie, Munich, Germany 

Bovine serum albumine (BSA) Sigma-Aldrich Chemie, Munich, Germany 

Captopril Sigma-Aldrich Chemie, Munich, Germany 

DAPI Linaris, Wertheim, Germany 

DQ-casein Molecular Probes, Leiden, The Netherlands 

DQ-gelatine Molecular Probes, Leiden, The Netherlands 

Dulbecco„s modified eagle medium (D-MEM) Invitrogen, Karsruhe, Germany 

Dulbecco‟s phosphate buffered saline (PBS) PAA Laboratories, Pasching, Austria 

Enrofloxacin (Baytril ) Bayer, Leverkusen, Germany 

Eosin Y Disoldium salt Sigma-Aldrich Chemie, Munich, Germany 

Erythrocyte lysis buffer Biolegend, San Diego, CA, USA 

Ethanol Riedel-de Haën Sigma-Aldrich, Seelsze, Germany 

Fetal calf serum (FCS)  Invitrogen, Karsruhe, Germany 
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Formalin solution (PFA) Carl Roth, Karlsruhe, Germany 

Glycerol Sigma-Aldrich Chemie, Munich, Germany 

Glycine Sigma-Aldrich Chemie, Munich, Germany 

Hematoxylin solution Merck, Darmstadt, Germany 

Heparin Ratiopharm, Ulm, Germany 

Histofix 4 % (PFA) Carl Roth, Karlsruhe, Germany 

Hydrogen Peroxide 30% (H2O2) Merck, Darmstadt, Germany 

Lysine Sigma-Aldrich Chemie, Munich, Germany 

Methanol Merck, Darmstadt, Germany 

Non-immune goat serum 10% Zymed  Laboratories Inc., San Francisco, CA, USA 

Penicillin / Streptomycin PAA Laboratories, Pasching, Austria 

Phloxine B Sigma-Aldrich Chemie, Munich, Germany 

Plasminogen From blood of healthy volunteers 

Pluronic F-127 gel, 25% wt/vol Sigma-Aldrich Chemie, Munich, Germany 

RMPI medium 1640 Invitrogen, Karsruhe, Germany 

Sodium acetate Fluka Chemie, Buchs, Switzerland 

Sodium chloride 0,9% (NaCl) B. Braun, Melsungen, Germany 

Sodium chloride solution Baxter S.A., Lessines, Belgium 

Sodium citrate Carl Roth, Karlsruhe, Germany 

Sodium dodecyl sulfate (SDS) Carl Roth, Karlsruhe, Germany 

Triton X-100 Sigma-Aldrich Chemie, Munich, Germany 

Trypan blue solution (0.4%) Sigma-Aldrich Chemie, Munich, Germany 

Tween 20 Sigma-Aldrich Chemie, Munich, Germany 

Vectashield  mounting medium H 1000 for 

fluorescence 

Vector Laboratories, Burlington, CA, USA 

Xylocaine 2 % AstraZeneca, Wedel, Germany 

 

3.1.3   Surgical Instruments 

Product: Company: 

Artery forceps BH111 Aesculap, Tuttlingen, Germany 

Cautery ZIK- Medizintechnik, Marktheidenfeld, Germany 

Iris dissecting forceps OC021R Aesculap, Tuttlingen, Germany 

Iris dissecting forceps OC022R Aesculap, Tuttlingen, Germany 

Straight spring wire C-SF-15-20 William Cook Europe, Bjaeverskov, Denmark 

Vannas style Eye scissors OC498R Aesculap, Tuttlingen, Germany 
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3.1.4   Drugs used for anesthesia 

Product: Company: 

Atropinsulfate-solution 0,5 mg/ml Fresenius Kabi, Bad Homburg, Germany 

Isoflurane Baxter, Unterschleißheim, Germany 

Ketamine 50 mg/ml Inresa, Freiburg, Germany 

Xylazine 2 % (Rompun )  Bayer, Leverkusen, Germany 

 

3.1.5   Further materials 

Product: Company: 

Butterfly perfusion set Micro Flo ,  

0,5  20 mm (25 Gau) 

Ind. Biomedica, Spa, Italy 

Cover glass for slides Menzel, Braunschweig, Germany  

Dako  Pen DakoCytomation, Glostrup, Denmark 

Diamand  D10/100/200 

Certified Quality Tips 10 l//100 l/200 l 

Gilson  International B.V., Den Haag, The 

Netherlands 

Ethilon  6-0 Silk suture 

polyamid, not absorbable 

Ethicon , Johnson  Johnson,  St.Stevens-Woluwe, 

Belgium 

Ethilon  7-0 Silk suture, polyamid, not absorbable Ethicon , Johnson  Johnson,  St.Stevens-Woluwe, 

Belgium 

Nylon sieve BD Pharmingen, Franklin Lakes, NJ, USA 

Fix-o-gum, Rubber-cement Marabuwerke, Tamm, Germany 

Parafilm® American National Can™, Neenah, WI, USA 

Pipettes 1000 l / 200 l / 100 l / 10 l Eppendorf, Wesseling-Betzdorf, Germany 

Safe Seal Microcentrifuge Tubes 0.65 ml/2 ml Sorenson  Bioscience, Inc., Salt Lake City, UT, 

USA 

Single-use syringe 1ml , Injekt F, Tuberkulin B. Braun, Melsungen, Germany 

Single-use syringe 5ml , Injekt Solo B. Braun, Melsungen, Germany 

Skin disinfection Softasept® B. Braun, Melsungen, Germany 

Slides Super Frost  Plus Menzel, Braunschweig, Germany 

Sterile needle, 20 Gau, 0,9  70 mm Terumo  Euope, Leuven, Belgium 

Sterile needle, 30 Gau, 0,3  13 mm Terumo  Euope, Leuven, Belgium 

Sterile needle, BD Microlance TM  26 Gau, 0,45 13mm BD Drogheda, Ireland 

Tissue Tek  OCT  Compound Sakura Finetek Europe B.V., Zoeterwoude, The 

Netherlands 
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3.1.6   Antibodies and staining kits 

 

Primary Antibodies 

Antibody Source Isotype Company 

-Smooth Muscle Actin mouse IgG monoclonal 

Cy3 conjugated 

Sigma-Aldrich Chemie GmbH, 

Munich, Germany 

Anti human FSAP (mAb1189) mouse IgG monoclonal CSL Behring, Marburg, Germany 

Anti human FSAP (mAb677) mouse IgG monoclonal CSL Behring, Marburg, Germany 

Anti mouse FSAP rabbit IgG polyclonal CSL Behring, Marburg, Germany 

CD31 (PECAM-1) rat IgG2a, k BD Pharmingen, Franklin Lakes, NJ, 

USA 

CD41 (integrin αIIb chain) rat IgG1, k BD Pharmingen, Franklin Lakes, NJ, 

USA 

CD45 rat IgG monoclonal Serotec, Oxford, UK 

CD68 (macrosialin) rat IgG monoclonal Serotec, Oxford, UK 

Control antibody rabbit,  

rat, goat 

various Santa Cruz Biotechnology, Santa 

Cruz, CA, USA 

eGFP rabbit IgG polyclonal Santa Cruz Biotechnology, Santa 

Cruz, CA, USA 

Fibrinogen rabbit IgG polyclonal Dako, Glostrup, Denmark 

MMP-2 goat IgG polyclonal R&D Systems, Mineapolis, MN, USA 

MMP-9 goat IgG polyclonal R&D Systems, Mineapolis, MN, USA 

MoMa-2 rat IgG monoclonal Serotec, Oxford, UK 

uPA rabbit IgG polyclonal American Diagnostica, Pfungstadt, 

Germany 

vWF  rat IgG polyclonal Dako, Glostrup, Denmark 

 

Secondary antibodies 

Antibody Source Isotype Company 

Alexa Flour  488 nm, green goat IgG polyclonal, anti-

rabbit 

Molecular Probes, Eugene, Oregon, 

USA 

Alexa Flour  546 nm, red goat IgG polyclonal, anti-

rat 

Molecular Probes, Eugene, Oregon, 

USA 

Alexa Flour  546 nm, red donkey IgG polyclonal, anti-

goat 

Molecular Probes, Eugene, Oregon, 

USA 

 

Staining of proliferation 

PCNA Staining Kit, Lot No.30476714 Zymed  Laboratories Inc., San Francisco, CA, USA 
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Staining of apoptosis 

In Situ Cell Death Detection Kit 

C 2156793 TMR red 

Roche Diagnostics GmbH, Mannheim, Germany 

 

   

3.2  Methods 

 

3.2.1 Mouse femoral artery injury model of neointimal hyperplasia 

 

FSAP was isolated and provided by CSL Behring (Marburg, Germany). For all the 

experiments, FSAP was retained in a buffer (5mM sodium citrate, 50mM sodium chloride, 

250mM arginine, and 200 mM lysine). Consequently, the controls were always performed by 

adding the same volume of the buffer.  

 

Animals 

Experiments were performed on adult male C57/BL6 mice purchased from Charles River 

(Sulzfeld, Germany). All procedures concerning animal experiments were in accordance with 

local ethical guidelines and had been approved by the institutional committee for animal 

research at Giessen University. The uPA
-/-

 mice as well as the uPAR
-/-

 mice with a C57/BL6 

background were kindly provided by Dr. T. Bugge, NIH, Bethesda, Maryland, U.S.A. 

 

Anesthesia 

The mice were anesthetized by intramuscular injection of ~3 mg ketamine and ~2.5 µg 

xylazine (Rompun
®
) diluted in 0.9% sodium chloride solution into the right hind limb. 

Subsequently, 5 µg atropine was injected into the contralateral limb to antagonize the vagal 

effects of the anesthesia.  

 

Surgery 

Surgery was carried out using a dissecting microscope. Following anesthesia, the mice were 

fixed with tape and underwent transluminal mechanical injury of the left femoral artery by 

insertion of a straight spring wire (0.38 mm in diameter) for > 1 cm toward the iliac artery. 

This method was previously described by Sata et al. and modified by our group as described 

below
40

. In brief, the fur on the left hind limb was carefully removed with a scissor and 

afterwards the region of operation was disinfected. The skin was cut off from the distal end of 
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the leg in proximal direction for approximately 1 cm. The connective tissue around the 

femoral artery was removed with microsurgery forceps and the femoral nerve and femoral 

vein were carefully separated from the femoral artery by blunted dissection. This process was 

followed by preparation of the profunda femoris artery, where the arteriotomy was carried out 

to insert the spring wire. For this purpose, the femoral artery was looped proximally (Ligation 

I) with 6-0 silk suture for temporary vascular control during the procedure. In addition, the 

profunda femoris artery was ligated distally (Ligation II) with Ethilon 7-0 silk sutures. In 

preparation of the following dilatation, the ligations were stretched to prevent blood flow 

during the insertion of the wire. The exposed profunda femoris branch was dilated by topical 

application of xylocaine (2 %). Transverse arteriotomy was performed on the profunda 

femoris artery using Vannas style eye scissors (fig. 10). 

  

 

Figure 10. Wire induced endovascular injury of the femoral artery (1) 

 

The left femoral artery was dissected, looped proximally with a 6-0 silk suture for temporary vascular 

control during the procedure (a, b). The profunda femoris branch was isolated and ligated distally with 

a 7-0 silk suture. Transverse arteriotomy was performed on the profunda femoris artery. 

 

The straight spring wire was then carefully inserted into the profunda femoris branch and 

pushed forward to injure the femoral artery for approximately 1 cm. The wire was left in place 

for 1 min to denude and dilatate the artery (fig. 11).  
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Figure 11. Wire induced endovascular injury of the femoral artery (2) 

The straight spring wire was inserted and pushed forward into the femoral artery for more than 1 cm 

(a, b). The wire was left in place for 1 minute to denude and dilatate the artery. 

 

The wire was removed, and the silk suture looped at the proximal portion of the profunda 

femoris artery was laced up to prevent blood loss from the arteriotomy. Blood flow of the 

femoral artery was restored by releasing the suture placed at the proximal side of the femoral 

artery.  

 

Figure 12. Wire induced endovascular injury of the femoral artery (3) 

After removal of the wire, the proximal portion of the profunda femoris branch was tied off. Blood flow 

of the femoral artery was restored (a, b). 

 

Immediately after dilatation, the artery was covered with 100 µl of a 25% thermosensitive 

pluronic F-127 gel containing FSAP (concentrations indicated in results) or buffer control. 

The fluid pluronic F-127 gel was administered at a temperature of 4°C and then solidified 

around the artery. The skin incision was closed with a 6-0 Prolene® silk suture.  

 



3. Material and Methods 

 

24 

Vessel harvesting 

At the time points indicated, the mice were killed by an overdose of isoflurane. At death, the 

mice were perfused via the left ventricle with 2% PFA in PBS (pH 7.4). The femoral arteries 

were carefully excised, rinsed in PBS to remove remained blood and post-fixed in 2% PFA 

overnight at 4°C. The arteries prepared for zymography have not been fixed, respectively. 

Afterwards, the arteries were embedded in Tissue Tek
®

 snap-frozen in liquid nitrogen and 

stored at -80°C until use. The whole arteries were systematically sectioned on a cryostat. The 

cross-sections (6 µm) were placed on poly-L-lysine coated slides for further staining. 

 

3.2.2 Light microscopy staining and morphometry 

 

Hematoxylin and Eosin (H & E) Staining 

Hematoxylin and eosin staining was used on tissues for staining nuclei (blue, hematoxylin) 

and cytoplasm (red, eosin). Cryoslides were fixed in 4% PFA at room temperature for 10 min 

and rehydrated with PBS for 15 min. Hematoxylin staining was performed using Gill´s 

hematoxylin III for 6 sec and non-specific hematoxylin staining was removed by rinsing the 

slides with acetic acid. The slides were washed in running tap water for 10 min and then 

immersed in the eosin staining solution for 5 sec. The solution was prepared with 100 ml 

Eosin, 10ml Phloxin, 4 ml acetic acid, and filled up to the volume of 1 l with 95 % ethanol. 

This step was followed by dehydration in ascending alcohol solutions: 2 min 96% isopropyl 

alcohol supplemented with 0.6% acetic acid and twice with 100% isopropyl alcohol for 2 min 

each. The slides were mounted with Vectashield Mounting Medium and analyzed under the 

microscope. 

 

Morphometric analysis 

All sections were stained for hematoxylin and eosin before examination under a Leica DMRB 

microscope. Morphometric analysis was performed using Metamorph imaging software 7.0. 

The external elastic lamina, internal elastic lamina, and the lumen circumferences, as well as 

medial and neointimal area of six sections per artery were measured.  

 

PCNA staining 

To detect proliferating VSMC in neointimal tissue, mouse artery cross-sections were stained 

for the proliferating cell nuclear antigen (PCNA) by using Zymed‟s PCNA staining kit 

according to the manufacturer‟s instructions. In brief, tissue cross-sections were fixed in 4°C 
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PFA for 15 min, rehydrated in PBS for 10 min and then blocked with Blocking Solution 

(Reagent 1) for 10 min all at room temperature. The biotinylated mouse anti-PCNA primary 

antibody (Reagent 2) was applied for 60 min at room temperature to the sections. This step 

was followed by rinsing with PBS for 3x 2 min and application of the strepdavidine 

peroxidase (Reagent 3) for 10 min at room temperature. The slides were washed with PBS for 

3x 2 min and the DAB chromogen mix was added to incubate for 5 min. The slides were 

counterstained with hematoxylin (Reagent 5) for 2 min and subsequently washed in running 

tap water and rinsed with H2Odd until the sections turned blue. The slides were dehydrated in 

a graded series of alcohol, and cleared with xylene before covered with Histomount (Reagent 

6) and a coverglass. 

 

3.2.3 Immunohistochemistry 

 

Immunohistochemistry   

The following antibodies were used in the dilution indicated: 

Antibody Dilution Antibody Dilution 

-Smooth Muscle Actin 1:500 FSAP antibodies 1:100 

CD31 (PECAM-1) 1:200 eGFP 1:200 

CD41 (integrin αIIb chain) 1:200 MMP-2/9 1:100 

CD45 1:200 MoMa-2 1:200 

CD68 (macrosialin) 1:200 uPA 1:100 

Fibrinogen 1:200 Von Willebrand Factor 1:100 

 

Slides were fixed in 4% PFA for 15 min at room temperature, rehydrated in PBS for 15 min 

and blocked for 10 min with 10% normal goat serum. The primary antibodies were diluted in 

ready-to-use antibody diluent and incubated overnight at 4°C. Subsequently to rinsing with 

PBS for 3x 5 min, the slides were incubated with Cy5- or Cy3-coupled secondary antibodies 

diluted in antibody diluents (1:200) for 1 h at room temperature in a dark chamber. After 

incubation, the slides were rinsed again with PBS for 3x 5 min. The cross-sections were 

counterstained with DAPI dissolved in Vectashield
® 

Mounting Medium. DAPI was used to 

identify the nuclei of the cells. In the case of anti-mouse FSAP antibodies using the N-

terminal peptide as an antigen, an excess of free peptide was applied to test the specificity of 

the staining. Monoclonal antibodies to human FSAP and -sma were labelled directly with 

Alexa 488 or Cy3, respectively. Negative controls were conducted by substituting the primary 
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antibody through an appropriate species and isotype matched control antibody. The cross 

sections were analyzed using fluorescent light microscopy. 

 

TUNEL-staining 

Staining for apoptotic cells was performed using Roches‟s in situ cell death detection kit. 

DNA fragmentation in apoptotic cells was detected by TdT-mediated dUTP-biotin nick end-

labeling (TUNEL) according to the manufacturer‟s instructions. The slides were fixed in 4% 

PFA for 20 min at room temperature, rehydrated in PBS for 30 min and blocked with 3 % 

H2O2 in methanol for another 10 min. The slides were then incubated with a permeabilisation 

solution for 2 min at 2°C, which contained 0.1 % Triton X-100 and 0.1 % sodium citrate 

dissolved in PBS to permeabilize the cell membrane. The slides were rinsed with PBS for 3x 

2 min. The cross-sections were then incubated with the TUNEL reaction mixture for 1 h in a 

dark and humidified chamber at 37°C and additionally covered with parafilm. After 

incubation, the slides were rinsed with PBS for 3x 2 min, counterstained with DAPI in 

mounting medium and analyzed using fluorescence microscopy.   

 

Microscopical analysis 

Tissue samples were analyzed using immunofluorescence imaging with deconvolution 

analysis of high resolution z-axis image stacks. This technique was performed in a subset of 

sections by using a blind 3D deconvolution algorithm (Autoquant Deblur 9.3; Autoquant 

Imaging).  Furthermore, we performed laser scanning microscopy in a subset of sections. 

 

3.2.4 Zymography 

 

In situ zymography of MMP2/ MMP-9 and uPA: 

In situ zymography was performed on frozen and unfixed sections (6 m) as described 

before
89

. In brief, sections were overlaid with a mixture of agarose and dye quenched (DQ)-

gelatin, and the fluorescence was measured immediately to detect the background staining. 

After an incubation time of 24h, fluorescence images were captured again, and gelatinolytic 

activity (MMP-2 and MMP-9) was determined as an increase in fluorescence over 

background. Presence of the Zn
2+

 ion chelator, captopril, inhibited all gelatinolytic activity. 

To measure the activity of plasminogen activators by casein zymography, the overlay 

consisted of DQ-casein, plasminogen and agarose. The PA in the tissue activated plasminogen 

to plasmin, which in turn cleaved the DQ-casein. Fluorescence reached its maximum after 4 
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hours. Amiloride, an urokinase inhibitor, reduced plasminogen activation, thus indicating that 

active uPA was present in the tissue section. As another control, uPA
-/-

 mice showed a 

strongly reduced cleavage of DQ-casein. Immunolocalization of the respective proteases was 

performed with an anti-uPA antibody and anti-MMP-2 as well as anti-MMP-9 antibodies 

according to the methods described before.  

 

3.2.5   Irradiation and bone marrow transplantation (BMTx) 

   

Irradiation 

Male C57/BL6 mice purchased from Charles River were irradiated at the Institute for 

radiotherapeutics with either 10.5 Gy or 9.5 Gy of gamma-radiation (as indicated in results). 

The aim of the irradiation was to ablate the BM of the mice. 

 

BMTx 

At one day after irradiation, the mice were transplanted with BM from enhanced green 

fluorescence protein positive (eGFP
+
) mice. The eGFP

+
 mice were kindly provided by Dr. R. 

Voswinckel, MPI, Bad Nauheim. For this purpose, the eGFP
+
 mice were euthanized and the 

BM of the femur as well as the tibia was rinsed out with RMPI Medium 1640 containing 1 % 

fetal calve serum (FCS) and penicillin/streptomycin. This suspension was filtered through a 

nylon sieve (20µm), and an erythrolysis was performed using erythrocyte lysis buffer. After 

counting the cells using a hemocytometer (Neubauer‟s counting chamber), we injected ~3 x 

10
6
 bone marrow cells into the tail vein of each irradiated mouse (fig. 13). Enrofloxacin 

(Baytril®) was administered to the drinking water for 2 weeks after transplantation. Wire 

induced dilatation of the mouse femoral artery was performed at 8 weeks after BMTx as 

described before, and vessels were harvested at the dates indicated in results. 
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Figure 13. Irradiation and BMTx of eGFP+ cells 

The mice were irradiated with 9.5 Gy and subsequently rescued by transplanting eGFP
+
 BM cells into 

the tail vein. 

 

Flow cytometry 

At 8 weeks after transplantation, flow cytometry analysis of blood samples was performed on 

five randomly chosen chimeric mice. The mice were killed at 2 h after an i.p. injection of 

heparin. Approximately 200µl of whole blood was lysed in erythrocyte lysis buffer. The 

fraction of eGFP
+
 leucocytes in peripheral blood was measured in a forward-side scatter gate. 

In addition, we analyzed peripheral blood leucocytes at the time points of harvesting the 

arteries. 

 

3.2.6 Western Blotting 

 

Western blotting analysis of human FSAP released from pluronic F-127 gel:  

Single chain FSAP (10 g/ml) was added to 25% (wt/vol) pluronic F-127 gel at 4°C. The 

mixture was then heated and allowed to solidify for 30 min at 37°C. Thereafter, an equal 

volume of serum-free D-MEM was added to the solidified gel. At the indicated times (5 sec to 

46 h), the buffer as well as the solidified gel were separated and mixed with SDS sampled 

buffer and boiled. For the analysis of FSAP, the samples were either non-reduced or reduced 

with 2-mercaptoethanol (10%, vol/vol). For Western blot analysis of human FSAP, a 
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combination of two monoclonal mouse antibodies (mAb677 against the light-chain and 

mAb1189 against the heavy-chain) was used as described before
78

.  

 

3.2.7  Statistical analysis 

Data were stored and analyzed on personal computers using Excel 2003 (Microsoft) and 

Sigma Plot 8.0 with Sigma Stat 2.03. Data between the study groups were analyzed by 

ANOVA followed by pairwise comparison with Fisher‟s least significance test. All
 

calculations were made with the Statgraphics plus statistical package. 
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4. Results 

 

4.1 Physiological expression of FSAP in tissue extracts 

 

FSAP is predominantly produced as an inactive single-chain zymogen in the liver and then 

secreted into the circulation
66

. In Western blot experiments, an anti-mouse FSAP antibody 

could detect single-chain FSAP and its degradation products in mouse plasma with 

concentrations probably comparable to the levels observed in human plasma (data provided 

by Dr. Kanse). 

Immunofluorescence analysis with a polyclonal anti-mouse FSAP antibody using the N-

terminal peptide as an antigen showed an intensive staining for FSAP in the liver of the mice. 

To show the specificity of the staining, an exogenously added excess of free peptide was used 

as a control and revealed a negative staining. In the media of native vessels, only a faint 

scattered staining of FSAP was observed. In the developing neointima of dilatated arteries, the 

FSAP staining was analyzed at 7 days and 21 days after injury. At the early time point, the 

staining was not enhanced, and leucocytes adhering to the disrupted endothelium did virtually 

not express FSAP. At 21 days after dilatation, however, the staining pattern of FSAP was 

generally enhanced (fig. 14). Interestingly, the staining of mouse FSAP was similar to that of 

macrophages, which were particularly located in the medial layer. In a co-staining for mouse 

FSAP and CD 68 (marker for macrophages), this observation could be confirmed.  

No FSAP mRNA transcripts were detected in resident cells of femoral or carotid arteries, but 

high levels were found in the liver and also in monocyte-derived macrophages (qPCR data 

provided by Dr. Kanse). Hence, FSAP in the vasculature is not produced locally but is derived 

by diffusing from the circulation and by infiltrating monocyte-derived macrophages.  
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Figure 14. Localization of endogenous mouse FSAP 

Immunofluorescence analysis was performed with a polyclonal anti-mouse FSAP antibody on 

uninjured vessels, dilatated vessels after 7 and 21 days, and the liver as a positive control. Only a faint 

staining was observed in the vessel wall. At 21 days after dilatation, there was generally more staining, 

especially in the macrophage rich medial layer. 

 

4.2 Release of FSAP from Pluronic F-127 gel 

 

Human FSAP used in the experiments was provided by CSL Behring (Marburg, Germany), 

and the specific effects of human FSAP on mouse VSMC have been well demonstrated
78

. 

There was no recombinant mouse FSAP available at the times of the experiments, so that 

exogenous human FSAP was applied to the denuded mouse arteries. The release of FSAP 

from the thermosensitive pluronic F-127 gel was investigated in vitro and in vivo.  

In the in vitro experiments, there was a slow sustained release of intact FSAP from the 

pluronic F-127 gel over a period of 24 h (fig. 15 A). Furthermore, 100 µl of pluronic F-127 
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gel containing FSAP was applied to a mouse artery and the amount of FSAP present in the gel 

was analyzed at various timepoints. When applied abluminally to mouse arteries in vivo, 

FSAP was released from the gel within 1h. There was a complete resorption of FSAP from 

the gel at later timepoints, thus indicating that FSAP indeed diffused into the artery (fig. 15 

B). 

 

 

Figure 15. FSAP release from pluronic F-127 gel in vitro 

FSAP was added to pluronic F-127 gel in PBS at 4°C, and then the mixture was shifted to 37°C and 

covered with a buffer. The supernatants and the pluronic gels were separated at the indicated time 

points and analyzed for human FSAP using a mixture of two monoclonal antibodies. Since pluronic F-

127 gel influences the migration properties of proteins in SDS-PAGE, it gives rise to artifacts (A). For 

an in vivo experiment, we added 1 µg of FSAP to 100 µl of pluronic F-127 gel and applied the mixture 

to a mouse artery. At the indicated time points, the pluronic gel was recovered and analyzed for the 

presence of human FSAP (B).   
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To verify the presence of exogenous human FSAP in the vascular wall, we performed 

immunofluorescence staining of FSAP in dilatated arteries. Application of human FSAP 

immediately after injury markedly increased immunoreactivity in vessels after 12 and 48 h. 

After 21 days, the staining dominated the circumference of the artery. The vessels treated with 

buffer showed virtually no immunoreactivity (fig. 16). The monoclonal anti-human FSAP 

antibody used for these experiments (mAb677) did neither cross-react with mouse FSAP in 

plasma samples, nor with tissue extracts of mouse aorta or liver in Western blotting 

experiments (data provided by PD Dr. Kanse).  Hence, FSAP was constantly released from 

the gel, and it was present in the artery at an early and crucial phase of neointima formation.  

 

 

Figure 16. Uptake of FSAP into the vessel wall  

FSAP diffused from the pluronic F-127 gel into the vessel wall and could be detected 12h and 48h 

after dilatation with an anti-human FSAP antibody (mAb677). At 21 days after dilatation, the 

exogenously administered FSAP was predominantly present in the surrounding of the vessel. 

 

4.3 FSAP attenuates neointima formation 

 

The influence of FSAP on neointimal thickening was determined at 3 weeks after dilatation. 

Wild-type (WT)-FSAP was administered in concentrations of 1µg, 0.5 µg and 0.2 µg in 

pluronic F-127 gel to the denuded artery. Since the in vitro inhibitory effect of FSAP on 

VSMC was neutralized after protease inactivation, we compared these different 

concentrations to 1 µg of the active-site inhibited Phe-Pro-Arg-chloromethyketone (PPACK-) 

FSAP, 1µg Marburg I (MI-) FSAP, and a buffer control group. In contrast to WT-FSAP, MI-

FSAP has reduced proteolytic activity towards its direct chromogenic substrate, and it is also 
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a weaker activator of pro-uPA. Active-site inhibited PPACK-FSAP did not possess any 

enzymatic activity but was otherwise equivalent to normal FSAP
79

 (data provided by Dr. 

Kanse). 

Each group of dilatated mice consisted of 6 mice, and 6 different sections of a defined range 

of the artery were analyzed for the morphometry of the neointima. WT-FSAP application led 

to a significant and dose dependent decrease in intima/ media ratio. The maximal inhibition 

(~70%) was achieved by application 0.5-1µg WT-FSAP to the denuded artery compared to 

the buffer control group. Accordingly to the in vitro data, MI-FSAP showed only a marginal 

and non-significant reduction, and PPACK-FSAP had no effect on neointima formation (fig. 

17 A, B). There were corresponding alterations in the lumen area and the intimal area in the 

different treatment groups but no changes in the medial area. 

As a further control,
 

we inhibited the in vivo effects of the exogenously applied WT-FSAP by 

additionally administering aprotinin to the pluronic F-127 gel, in order to neutralize the 

proteolytic activity of FSAP. Aprotinin (1.4 μg/mouse) by itself reduced neointima/ media 

ratio, but in combination with FSAP it reversed the inhibitory effect of FSAP. This reversal 

was not complete and the original vehicle-control levels were not attained indicating a general 

inhibitory effect of aprotinin on neointima formation independently of the neutralization of 

FSAP.  

Since FSAP was applied locally to the injured artery, the hypothesis is that FSAP diffuses into 

the artery and thereby mediates its inhibitory effect rather than having a more systemic mode 

of action. This was further investigated by applying FSAP to the contralateral uninjured artery 

and not directly to the denuded artery. Distant application of FSAP on the contralateral artery 

was ineffective in reducing neointima/media ratio.  

Hence, the exogenously administered FSAP attenuates neointima formation in a dose 

dependent manner and promotes its inhibitory effect by diffusing locally into the artery rather 

than having a more systemic mode of action. This hypothesis is also in accordance with the 

immunofluorescence analysis of human FSAP released from pluronic F-127 gel in vivo.    



4. Results 

 

35 

 

Figure 17. WT-FSAP inhibits neointima formation in a dose dependent manner 

Immediately after injury, 100 µl of pluronic F-127 gel was applied to the artery containing either buffer, 

human WT-FSAP (0.2, 0.5, 1 µg), PPACK-FSAP, or MI-FSAP (1.0 µg). In the hematoxylin and eosin 

(H&E)-stained sections, arrowheads indicate the neointimal lesion and arrows mark the medial layer 

(A). The neointima/ media ratio was calculated (mean ± SD, n = 6 mice) with Metamorph 7.0 software 

(B).  

  

4.4 FSAP inhibits VSMC proliferation in the developing neointima 

 

FSAP inhibited PDGF-BB derived proliferation of VSMC in vitro and was shown in the first 

experiments to reduce neointima formation in vivo
78

. In regard to these results, the 
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immunofluorescence staining of α-sma as a marker for VSMC was significantly reduced in 

WT-FSAP-treated vessels compared with the control groups. The extent of staining correlated 

with the size of neointimal thickening, indicating that WT-FSAP inhibits the accumulation of 

VSMC in the neointima in a dose dependent manner. The staining of α-sma in the media 

showed virtually no difference among the treatment groups (fig. 18 A). 

 

 

Figure 18. FSAP inhibits proliferation of VSMC  

The antibody detecting α-sma was directly conjugated with Cy-3 (red), whereas vWF was stained with 

a FITC-conjugated secondary antibody to detect endothelial cells. PCNA was stained brown with a 

biotin-streptavidin peroxidase kit (A) and numbers of proliferating cells have been calculated (B).  
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Furthermore, the number of proliferating cell nuclear antigen (PCNA; or Ki76)-positive cells 

in the neointima and in the media was systematically analyzed. At 3 weeks after dilatation, the 

number of PCNA-positive cells in the neointima was reduced by ~70% after WT-FSAP 

application compared to the control group (fig. 18 B). Hence, proteolytic active FSAP inhibits 

VSMC proliferation in vivo and thus reduces neointima formation. 

 

4.5 Effects of FSAP on apoptosis of VSMC, accumulation of monocytes/ 

macrophages and re-endothelialization 

 

The neointima formation is not only dependent on the proliferation/ migration of medial 

VSMC but also on the rate of apoptotic VSMC after injury and triggering mechanisms, e.g. 

infiltration of monocytes/ macrophages to the sites of the denuded vessel
90, 91

. Most of the 

medial VSMC undergo apoptosis immediately after dilatation of the artery. To examine the 

effects of FSAP on injury induced apoptosis, the number of TUNEL-positive cells in WT-

FSAP treated vessels (1µg) and in the buffer control group was analyzed at 24 h after 

dilatation. Application of FSAP to the denuded artery did not modulate the rate of apoptosis 

of VSMC, as determined by the percentage of TUNEL-positive cells in relation to all 

remaining cells (DAPI) within the media. Hence, FSAP does not influence this early step of 

neointima formation (fig. 19).   

The recruitment of monocytes/ macrophages was also not altered after FSAP treatment. At 3 

weeks after dilatation, macrophages could predominantly be detected in the medial layer and 

in the surrounding of the artery (CD68 staining). There was virtually no difference after 

treatment with WT-FSAP compared to the control groups. The neoinitmal lesion, however, 

was also interspersed with macrophages. Since the size of the neointima was reduced in FSAP 

treated vessels, the absolute number of macrophages in the neointimal layer was reduced, 

respectively.  
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Figure 19. Influence of FSAP on apoptosis of VSMC after dilatation  

After injury, 100 µl of pluronic F-127 was applied to each artery either containing human WT-FSAP (1 

µg) or buffer. After 24 h, the vessels were stained with an apoptosis detection kit based on TUNEL 

staining (Roche Diagnostics). The percentage of apoptotic cells was defined as TUNEL-positive cells 

in relation to all remaining cells (DAPI) within the media (mean ± SD, n = 6 mice).  

 

Since FSAP is involved in both the coagulation and the fibrinolysis system, we stained the 

dilatated arteries for fibrin deposition. Interestingly, the reduced neointima in FSAP treated 

mice featured a higher density in fibrin staining (fig. 20 A). 

After wire induced endoluminal rupture of the endothelium, there was virtually no difference 

in re-endothelialization with or without FSAP treatment at 3 weeks after dilatation. In all 

analyzed groups, the immunofluorescence staining for platelet/ endothelial cell adhesion 

molecule (PECAM)-1 (or CD31) as well as vWF revealed an intact endothelial layer at 3 

weeks after injury (fig. 20 B). 
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Figure 20. Fibrin deposition and Re-endothelialization  

Immunofluorescence staining for fibrin and PECAM-1 was performed after FSAP treatment or buffer 

treatment alone. Re-endothelialization was determined by estimating the lumen coverage on a scale of 

0-6 (0, no coverage; 6, complete coverage). 
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4.6 Effect of FSAP on the plasminogen activation system and the matrix- 

metalloproteinases (MMP) in vascular remodeling 

 

Since FSAP has the ability to activate pro-uPA, the inhibition of proliferation and neointima 

formation in the vessel wall is possibly related to modulation of endogenous plasmin or MMP 

activity. In EC and VSMC, a down-regulation of uPA was observed in the presence of FSAP 

(our unpublished observations). To examine the alterations of the pericellular proteolysis 

balance by FSAP in the process of vascular remodeling, we performed in situ zymography 

and investigated the effect of FSAP treatment on the plasminogen activation system and on 

MMP-2 and MMP-9 (MMP-2/9) activation. The vessels were dilatated, and either 1 µg of 

WT-FSAP, 1 µg of MI-FSAP, or the control buffer was administered to the pluronic F-127 

gel. The arteries were harvested at 2 days (n=2), 14 days (n=3) and 21 days (n=3) after injury 

without being perfused and fixed with PFA, respectively. The activity of MMP-2/9 was 

measured by gelatin zymography, and this activity could be specifically inhibited by the Zn
2+

 

chelator, captopril. In the course of neointima formation, the MMP-2/9 activity markedly 

increased. At 14 days after injury, the MMP-2/9 activity was predominantly located in the 

medial layer, whereas after 21 days the developing neointima was more prominent in MMP-

2/9 activity. WT-FSAP treated arteries exhibited increased gelatinolytic activity after 14 and 

21 days (fig. 21 A), and there was a concomitant increase in MMP-2 and in MMP-9 

immunostaining compared to MI-FSAP or buffer control (fig. 21 B). 
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Figure 21. Effects of FSAP on the pericellular proteolysis system (1) 

An in situ gelatin-zymography was performed to determine the activity of MMP-2/9 activity with or 

without additional application of captopril at 2 weeks after injury (A). Furthermore, 

immunohistochemistry was performed to confirm the zymography results. Staining for MMP-9 is 

shown at 2 weeks after injury for different treatment groups (B). 
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In situ zymography with casein as a substrate in the presence of plasminogen was used to 

quantify the endogenous plasminogen activation capacity. This activity was inhibited in the 

presence of the uPA inhibitor, amiloride. The uPA activity was rather low in non dilatated 

vessels, and it increased in all treatment groups in the course of neointima formation. The 

activity of uPA also dominated the medial area at 14 days after injury and was then notably 

detected in the neointima at 21 days after injury. In conformity with the up-regulation of the 

pericellular proteolysis system in vessels treated only with the control buffer, a concomitant 

staining of PCNA revealed high proliferative indices of SMC in the media at 14 days and in 

the neointimal lesion at 21 days of neointima formation. Interestingly, the uPA activity was 

decreased in WT-FSAP treated vessels at 14 and 21 days after injury (fig. 22). Furthermore, 

there was a parallel decrease in uPA immunostaining in accordance with the results obtained 

from the zymography experiments.  

 

 

Figure 22. Effects of FSAP on the pericellular proteolysis system (2) 

An in situ casein-zymography was performed to determine the endogenous plasminogen activators at 

3 weeks after injury.  After additional application of the uPA inhibitor, amiloride, the activation capacity 

of endogenous plasminogen activators was reduced, thus indicating the importance for uPA in 

endovascular plasminogen activation. 
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4.7 Neoinitma formation in uPA
-/-

 mice 

 

The neointima formation in uPA
-/-

 mice has been characterized before in models of ferric 

chloride, perivascular electric injury or carotid artery ligation. All these experiments 

demonstrated the importance of the uPA-system for the proliferation of VSMC in vascular 

remodeling. The uPA
-/-

 mice did not develop a cell-rich neointima and media, but the lumen 

of the arteries, however, was narrowed with acellular thrombotic material at the sites of 

injury
62, 63

. 

To further investigate the effects of FSAP on uPA activity, age matched uPA
-/-

 mice were 

dilatated with application of WT-FSAP or control buffer to the pluronic F-127 gel. The 

arteries of the mice (n=6) were analyzed 3 weeks after injury and compared to the control 

group of WT-mice. The size of the neointima was not reduced, but it consisted mainly of 

acellular thrombotic material. In contrast, the size of the media was attenuated, and only a few 

VSMC could be detected in the neointima or in the media of the artery (fig. 23 A, B). 

Consequently, the number of PCNA (or Ki76) positive cells was also reduced in uPA
-/-

 mice 

compared to WT-mice. FSAP application did not influence neointima formation in uPA
-/-

 

mice, and it did not change the size or the organization of the acellular thrombotic material. 

The proliferation and migration of VSMC in neointima formation have already been 

substantially inhibited by the knock out of the uPA-system, so that an additional effect of 

FSAP could not be attained in uPA
-/-

 mice. However, since FSAP led to a down-regulation of 

the endovascular uPA activity over time, the analog reduction of VSMC proliferation in 

FSAP treated WT-mice and uPA
-/-

 mice suggests the mode of action of FSAP to be dependent 

on the uPA-system. Hence, the markedly reduced cellularity in uPA
-/-

 mice shows the 

importance of the uPA-system in arterial remodeling, and the down-regulation of uPA in wild 

type mice after treatment with WT-FSAP partly reflects the effects on arterial remodeling in 

uPA
-/-

 mice.   
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Figure 23. Neointima formation in uPA-/- mice  

In uPA
-/-

 mice, the neointima was not composed of VSMC but thrombotic and acellular material, as 

determined by staining for α-sma (A). The neointima/ media ratio was calculated (mean ± SD, n = 6 

mice) (B). 

 

4.8  Effect of FSAP on the transdifferentiation of bone marrow derived progenitor 

cells (BMPC) into VSMC in neointima formation 

 

Recent studies claim that circulating bone marrow derived progenitor cells play an important 

role in neointima formation and atherosclerosis by transdifferentiating into VSMC
42, 92

. 

Moreover, FSAP reduced the in vitro differentiation of c-kit/ stem cell antigen (sca)-1 positive 

cells into α-sma expressing cells from 82,1% to 19,1% (20ng/ml PDGF-BB and 20ng/ml 
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SDF-1α, unpublished observations by Dr. Kanse). Since we could show a strong inhibitory 

effect of FSAP on VSMC in vivo, it was examined, whether this effect might be due to an 

impairment of BM-derived cell transdifferentiation. 

C57BL/6 mice were irradiated with 10.5 Gy and subsequently rescued with bone marrow 

cells from eGFP
+
 mice. FACS analysis of chimeric mice revealed that 85-95% of circulating 

mononuclear cells expressed eGFP at 8 weeks after BMTx.  

 

 

Figure 24. Flow cytometry analysis of chimeric mice 

The fraction of eGFP
+
 leucocytes in peripheral blood was measured in a forward-side scatter gate at 8 

weeks after BMTx. 

 

The mice were then dilatated, and the pluronic F-127 gel was applied to the denuded artery 

containing either 1 µg of WT-FSAP or the control buffer. The arteries were harvested at 4 

weeks after injury (n=6) and subjected to histological analysis. The later time point for the 

extraction of the vessels was chosen because of the deleterious effects of the irradiation on 

neointima formation described in the literature
93, 94

.  

The eGFP
+
 cells were analyzed for the expression of α-sma using immunofluorescence 

imaging and deconvolution analysis of high resolution z-axis image stacks as well as confocal 

microscopy. Surprisingly, following careful analysis throughout the complete lesion range, 

the expression of α-sma in eGFP
+
 cells occurred to be a very rare event in the neointimal 

lesions of both control arteries and arteries treated with FSAP (fig. 25 A). 
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After irradiation with 10.5 Gy and subsequent BMTx, the size of the neointima at 4 weeks 

after injury was reduced compared to the neointimal lesion at 3 weeks after dilatation in non 

pre-treated mice (neointima/ media ratio 1.90±0.17 vs. 2.11±0.15). Direct application of 1 g 

FSAP to the denuded artery led to a reduction in neointimal thickening in BM-transplanted 

mice by 69% (fig. 25 B). The neointima of the control group consisted of regular organized 

VSMC, as determent by α-sma staining (fig. 25 A). The eGFP
+
 cells in these lesions were 

predominantly identified as monocytes/ macrophages. In contrast, FSAP treatment led to a 

neointima that nearly completely lacked VSMC and consisted mainly of eGFP
+
 leucocytes 

(CD45 staining) and thrombocytes (CD41 staining) as the principal components. According to 

the results in the non-irradiated mice, the density of fibrin staining was enhanced after 

application of FSAP, as well. 

In the neointima of FSAP-treated vessels, a 43% higher percentage of eGFP
+
 cells was 

detected due to an almost complete lack of resident VSMC after 4 weeks. The absolute 

number of eGFP
+
 cells, however, was not significantly different with or without FSAP 

treatment. Positive cells for CD68 targeting macrophages were predominantly detected in the 

medial layer and in the surrounding of the vessel. There was virtually no difference after 

FSAP treatment except for the alignment of the cells in the unequal neointima. Interestingly, 

the CD31 staining for endothelial cells revealed a missing re-endotheliazation in the FSAP- 

treated vessels at 4 weeks after injury in the irradiated and BM-transplanted mice (fig. 25 A). 

In the buffer treated arteries, the endothelium lining the neointima was well developed at 4 

weeks after dilatation. The lack of VSMC and EC in FSAP-treated arteries suggests an 

impaired stability of the neointima, but no differences in thrombus formation were detected 

compared to buffer treated vessels.  
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Figure 25. Effect of FSAP in irradiated and BM transplanted mice  

After irradiation and BMTx, application of FSAP to the denuded artery led to a reduction of the 

neointima/ media ratio. Importantly, the neointimal lesion nearly completely lacked VSMC and EC in 

FSAP treated arteries (A). The neointima/ media ratio was significantly reduced and corresponded to 

the results obtained in non-irradiated mice (mean ± SD, n = 6 mice) (B). 
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Hence, FSAP inhibits proliferation as well as migration of resident VSMC. Since the absolute 

numbers of eGFP
+
 cells did not differ significantly, FSAP does not imply any in vivo effects 

on adhesion of BM-derived cells to the injured artery. Or, if it does, these mechanisms cannot 

be detected in the model of neoinitma formation used in the experiments. There was no in 

vivo transdifferentiation of BMPC at all, so that a possible inhibition of FSAP on cells derived 

from the circulation could be ruled out. 

 

4.9  Time course analysis of BMPC transdifferentiation in vascular remodeling 

 

On the basis of the results obtained from the first BMTx experiments, the aim was to further 

elucidate the role of circulating BMPC into VSMC during vascular remodeling. Since only 

little information is available about the time points of accumulation, differentiation and the 

long term contribution of BMPC compared to media derived VSMC, a time course 

experiment was performed. After irradiation with 9.5 Gy, mice were reconstituted with bone 

marrow cells from eGFP
+
 mice according to the first experiment. FACS analysis again 

revealed that 85-95% of circulating mononuclear cells expressed eGFP at 8 weeks after 

transplantation. Wire induced dilatation of the mouse femoral artery was performed, and 

vessels were harvested after 3 days, 1, 2, 3, 4, 6 and 16 weeks (n=8 animals per time point). 

The size of the neointima increased over a time period of 4 weeks (neoinitma/ media ratio of 

2.13 + 0.26) and slightly decreased thereafter until 16 weeks of vascular remodeling 

(neointima/ media ratio of 1.78 + 0.19) (fig. 26 A, B). At 3 days after dilatation, the 

endothelium was disrupted and the denuded/injured luminal surface was lined with 

thrombocytes, as determined by CD41 staining. In the first weeks, the neointima was 

predominantly composed by accumulating eGFP
+
 leucocytes to the injury site. In response to 

wire induced injury, a substantial fraction of medial VSMC underwent apoptosis directly after 

dilatation. However, VSMC could steadily be detected in the medial layer at all time points 

after dilatation. At 2 weeks after injury, a peak in the recruitment of eGFP
+
 leucocytes was 

observed, and at 3 weeks, the first α-sma expressing cells started to accumulate in the 

neointima (fig. 26 A).  
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Figure 26. Time course experiment on the origin of VSMC 

Thrombocytes adhered to the disrupted endothelial layer at 3 days after wire-induced injury followed 

by an accumulation of leucocytes. At 3 weeks after injury, the first resident and eGFP negative cells 

started to migrate toward the neointimal lesion and reached a maximum in size after 4 weeks. At 16 

weeks after injury, hardly any eGFP
+
 cells could be detected in the neoinitma (A). The size of the 

neointima increased over a time period of 4 weeks and slightly decreased thereafter until 16 weeks of 

vascular remodeling (B). The absolute number of eGFP
+
 cells in the neointima as well as the eGFP

+
 

cells/ all neontimal cells ratio continuously declined at later time points (C). 
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Especially at 2 and 3 weeks after injury, the proliferative indices of VSMC in the medial layer 

of the dilatated arteries were very high, as determined by PCNA staining.  Furthermore, the 

medial VSMC proximal of the dilatated area showed very high proliferative indices, as well. 

The complete lesion range was carefully analyzed using deconvolution analysis of z-axis 

image stacks and high resolution confocal microscopy. In accordance with the previous 

results, the expression of α-sma in GFP
+
 cells of the vessel wall occurred to be a very rare 

event.  

The absolute number of eGFP
+
 cells in the neointima as well as the eGFP

+
 cells/ all neontimal 

cells ratio continuously declined at later time points after injury due to both high apoptotic 

indices of eGFP
+
 cells and increasing numbers of eGFP negative VSMC in the neointima. 

Consequently, only very few BM-derived cells could be detected in the neointima at later time 

points (fig. 26 C). According to the decline of eGFP
+
 cells, there was no long term 

contribution of any transdifferentiated BM-derived VSMC to arterial remodeling (fig. 26 A). 

The eGFP
+
 cells in the vessel wall were predominantly identified as macrophages. 

Hence, these data provide evidence that transdifferentiation of BMPC into VSMC lineages 

seems to be a relatively rare event. Moreover, the contribution of BMPC to the cellular 

compartment of the neointimal lesion is limited to a temporary time period of the 

inflammatory response to the vascular injury. This time course experiment clearly indicates 

that the effect of FSAP on neontimal thickening is derived from the inhibition of resident 

VSMC and does not have any effect on BMPC transdifferentiation.  
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5. Discussion 

 

The MI-SNP of FSAP is associated with late complications of carotid stenosis and is a general 

risk factor for atherosclerosis
4, 5

. Since this polymorphism is present in ~5% of the European 

population, the effect of FSAP on vascular pathophysiology is an interesting and important 

question considering the large number of patients suffering from atherosclerosis related 

illnesses.  For the studies presented here, the in vitro experiments characterized MI-FSAP as a 

protease with a weaker enzymatic activity compared to WT-FSAP. MI-FSAP is also a weaker 

inhibitor of PDGF-BB derived cell proliferation and cell migration
79

. In the wire induced 

dilatation model of neointima formation, WT-FSAP inhibits neointima formation but MI-

FSAP does not. From these results it can be inferred that the function of endogenous FSAP is 

to inhibit VSMC cell proliferation and that in patients with the MI-genotype this inhibition is 

lost, thus leading to an odds ratio of 6.63 in the risk profile of advanced atherogenesis in the 

Bruneck study
4
. 

On the other hand, VSMC do have beneficial functions in atherosclerotic plaques, as well
29

. 

They form the fibrous cap and protect the lipid core from rupture and cardiovascular events. 

Indeed, FSAP was shown to be present in instable human plaques, so that the inhibition of 

PDGF-BB may lead to a thinning of the VSMC in the fibrous cap. Additionally, FSAP 

expression and FSAP mRNA could be detected in macrophages, and a co-localization with 

uPA was observed
75

. The down-regulation of uPA and the up-regulation of MMP-2/9 by 

FSAP in our in situ zymography experiments are absolutely concordant with the clinical 

observations of elevated vulnerability of the plaques expressing FSAP. In FSAP treated 

vessels of irradiated and BM-transplanted mice, the neointima was predominantly composed 

of thrombocytes and leucocytes. The neointimal lesion was further characterized by an almost 

complete lack of VSMC and an impaired re-endothelialization probably due to the additional 

effects of FSAP and irradiation on the resident cells. Since the control mice developed a cell 

rich neointima after BMTx and dilatation, the local application of FSAP destabilized the 

neointima by reducing the cellularity of the lesion. We identified the cleavage of PDGF-BB, 

the down-regulation of uPA as well as the up-regulation of MMP as the key processes in 

FSAP activity. 

Hence, further powerful clinical trials are warranted to shed more light on the clinical features 

of the MI-SNP with respect to cardiovascular events and rates of restenosis. A detailed 

analysis of the morphology of the plaques in MI-carriers is also indispensable for discussing a 
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possible treatment of these patients in cooperation with the results from basic research 

experiments and the ongoing clinical studies.  

In regard to the potential therapeutic effects of FSAP on proliferating VSMC in neointima 

formation, the use of FSAP on drug-eluting stents could be beneficial to prevent restenosis. In 

non-irradiated arteries, FSAP did not inhibit re-endothelialization at 3 weeks after injury 

despite a strong inhibition of VSMC, which is an important condition to prevent in-stent 

thrombosis after PTA and stenting. However, because of the incomplete endothelial layer 

after irradiation and FSAP treatment, we cannot definitely exclude a possible inhibition of re-

endothelialization by FSAP. Furthermore, FSAP has been shown to influence the proliferation 

of endothelial cells in vitro
95

, and an inhibitory effect of FSAP on angiogenesis was detected 

in a murine tumor model (our unpublished observations). In conclusion, the effects of FSAP 

on EC need further experimental efforts to be clarified.  

Since administration of FSAP to the contralateral vessel did not mediate a systemic effect on 

the neointimal lesion in our in vivo model, a systemic effect of FSAP derived from a stent on 

atherosclerotic lesions apart from the dilatated artery seems unlikely. Accordingly, FSAP as 

an endogenous protease can rapidly be inhibited by serine protease inhibitors after dissolving 

from a stent to the circulation
96

. 

 

5.1 Inhibition of proliferating VSMC via platelet derived growth factor (PDGF)-BB 

cleavage 

 

In our in vitro experiments, FSAP inhibited the PDGF-BB stimulated DNA synthesis in 

VSMC and concomitantly blocked the PDGF-BB-dependent phosphorylation of p42/p44 

MAPK (ERK) and tyrosine phosphorylation of other proteins. These effects have not been 

observed by MI-FSAP and have been linked to the enzymatic activity of WT-FSAP
79

.  

The analysis of dilatated arteries clearly showed an inhibitory effect of FSAP on VSMC 

proliferation and migration. The application of FSAP led to a 70% reduction in neointima 

formation and to a significant decrease in the number of PCNA (or Ki76) positive cells at 

multiple time points. Hence, the in vitro effects of FSAP on PDGF-BB inhibition can 

probably be directly transferred to the situation in vivo.  

A number of investigations have concluded that PDGF-BB inhibition at early time points of 

neointima formation plays a key role to inhibit neointimal growth
80, 97

. These observations 

from various animal models are concordant with the in vitro finding that only PDGF-BB and 

no other growth factors have been essentially inhibited by FSAP. Lately, drug-eluting 
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balloons have been introduced into clinical practice, because application of anti-proliferative 

drugs at such early time points has been shown to potently inhibit the rates of restenosis
98

. 

Adhesion of thrombocytes and leucocytes to the disrupted endothelial layer along with the 

release of PDGF-BB are known to be crucial steps in the early phase of neointima 

formation
11, 99

. These pathophysiological features could also be demonstrated in our 

experiments. Since there was no difference in the accumulation of leucocytes to the ECM of 

the disrupted endothelial layer, the specific cleavage of PDGF-BB by WT-FSAP but not MI-

FSAP had a more important effect than a possible alteration of adhesion molecules in 

leucocytes. However, there are preliminary data showing a possible regulation of adhesion 

molecules by FSAP (our unpublished observations), but at least with the model of neointima 

formation we could not detect any significant differences in vivo. Hence, specific cleavage of 

PDGF-BB is one of the major mechanisms by which FSAP is able to reduce cell proliferation 

and migration in the neointima. 

 

 

5.2  FSAP influences the proteolytic system in the vascular wall 

 

WT-FSAP and MI-FSAP differ in their ability to activate pro-uPA
100

. In cell culture 

experiments, there was a down-regulation of uPA in EC and in VSMC after incubation with 

WT-FSAP but not MI-FSAP (our unpublished observations). The in situ zymography of 

dilatated vessels exactly confirmed this effect in vivo. At 14 and 21 days after injury, the uPA 

activity was reduced in WT-FSAP treated vessels. Indeed, the importance of the uPA-system 

for proliferating VSMC has been described in various animal models
62, 63

. In our own 

experiments of wire induced injury, the uPA
-/-

 mice did not develop a regular neointima 

composed of VSMC but a lesion of acellular thrombotic material. These results indicate that 

uPA is essential for maintaining the cellularity and, possibly, the stability of the plaques, both 

by preventing excessive fibrin accumulation at the sites of injury and by facilitating cell 

migration and invasion. The neointima of dilatated and FSAP treated arteries after irradiation 

and BMTx did not consist of VSMC but of leucocytes and thrombocytes. It featured both a 

high density in fibrin staining and an impaired re-endothelialization. The morphometry of 

these arteries was similar to that in uPA
-/-

 mice, which almost completely lacked VSMC in the 

neointima. According to the acellular material forming the neointima in uPA
-/-

 mice, the 

reduced uPA activity in FSAP treated vessels could, at least in part, account for the instable 

appearance of the neointima in irradiated and transplanted mice as compared to the irradiated 

mice of the control group. Thus, the inhibitory effects of FSAP on neointima formation may 
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be explained by a down-regulation of uPA in addition to the specific cleavage of PDGF-BB. 

Evidently, the knock out of the uPA-system markedly inhibited the proliferation and 

migration of VSMC per se, so that it was not possible to provide evidence for any effects of 

FSAP in uPA
-/-

 mice.  

In regard to the results from the in vivo experiments, it is not surprising that FSAP has been 

co-localized with uPA predominantly in unstable plaques
75

. Furthermore, advanced 

atherosclerotic lesions in humans show enhanced uPA inactivation and turnover
65

. Because of 

this uPA down-regulation, which is possibly induced by FSAP, the layer of VSMC forming 

the fibrous cap is thinned out and makes the plaque susceptible for rupture. Hence, the clinical 

observations perfectly fit with the results obtained from the in vivo experiments presented 

here. 

Indeed, neointima formation is associated with increased activity of plasminogen activators 

and MMP
32

.  FSAP decreases plasminogen activation potential but increases MMP activity. 

However, the latter observation is actually not consistent with an inhibition of neointima 

formation. MMP-2 and MMP-9 have been believed to crucially influence vascular 

remodeling, but other reports have relativized their importance. Filippov et al. provide 

evidence that membrane type (MT)-1 MMP (MMP-14) is the key player of the MMP-family 

in neointima formation and that MMP-2/9 do not significantly influence this process
101

. 

Consequently, the data from the literature on MMP activity in vascular remodeling are 

controversy, and the definite role of FSAP in this interplay is very difficult to evaluate. 

Nevertheless, it is clear that FSAP alters the balance of the proteolytic systems in vascular 

remodeling. Furthermore, the activation of MMP-2/9 by FSAP matches with the clinical 

finding of FSAP immunostaining in instable atherosclerotic plaques. The elevated MMP 

activation digests the ECM components and therefore attenuates the stability of the plaque 

and renders it more susceptible for rupture
32

. 

 

5.3 FSAP does not affect bone marrow derived progenitor cell (BMPC) 

transdifferentiation during neointima formation 

 

In recent in vivo studies, BMPC were claimed to be the origin of more than 60% of the 

neointimal cells
42

. That was already reason enough to investigate the effect of FSAP on 

transdifferentiation of BMPC into VSMC. Additionally, FSAP was found to substantially 

reduce the in vitro transdifferentiation of BMPC (our unpublished observations). Surprisingly, 

the expression of α-sma in eGFP
+
 cells occurred to be a very rare event in both FSAP treated 
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arteries and buffer treated arteries. We performed further experiments to verify that BM 

derived VSMC do not contribute to the cellularity of neointimal lesions, and the results will 

be discussed below. 

The lack of VSMC in the neointimal lesion and the impaired re-endothelialization were 

probably due to the additive effects of FSAP and irradiation on VSMC. Especially the 

impaired re-endothelialization should be taken into account for a possible clinical use of 

FSAP on drug-eluting stents, since this might increase the risk of in-stent-thrombosis after 

PTA. In contrast, the neointimal lesion in non-irradiated arteries consisted of VSMC and we 

could also detect an adequate re-endothelialization by staining for CD31 and vWF. 

Nevertheless, the effects of FSAP on irradiated vessels have always been compared to control 

vessels of identically pre-treated mice. Because of the regular cellularity of the irradiated and 

buffer treated vessels, we thus refer the lack of VSMC and the delayed re-endothelialization 

to the inhibition of resident vascular cells by FSAP. 

However, irradiation causes many deleterious effects on recipient animals. In many clinical 

studies on brachytherapy for preventing restenosis after PTA, irradiation was shown to reduce 

viability and proliferation of host cells
94

. However, the effects of a single shot irradiation at 8 

weeks before induction of neointima formation in mice have not been systematically studied 

so far, and this was also not one of the primary aims of this study. Since we used different 

irradiation doses in our experimental setting, we can conclude that irradiation attenuates 

neointima formation in a dose dependent manner. In comparing the neointima formation in 

mice after irradiation and BMTx to non-pretreated mice, a delay of this process probably due 

to the irradiation could be confirmed. In contrast, control mice irradiated with 11.5 Gy hardly 

developed any neointimal lesion at 4 weeks after dilatation at all. 

 

5.4   Contribution of BMPC transdifferentiation to vascular remodeling 

 

To further investigate the role of BMPC in the process of neointima formation, a time course 

experiment confirmed that the transdifferentiation of BMPC into VSMC and EC appears to be 

a very rare event. Furthermore, there was no long term contribution of BMPC after the 

inflammatory response to the vascular injury had resolved, and most of the eGFP
+
 cells in the 

neointima were identified to be macrophages. Recent studies have clearly demonstrated that 

BM-derived cells accumulate to the injured artery
99

. However, a transdifferentiation of BMPC 

into highly differentiated VSMC remains speculative, because these cells were only positive 

for α-sma, but not for more specific VSMC markers like calponine or vimentine. Since 
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macrophages can express α-sma under some circumstances, as well, we investigated the long 

term contribution of BM derived cells in vascular remodeling
102

. Importantly, the number of 

eGFP
+
 cells in the neointima continuously declined during vascular remodeling, so that these 

cells do not imply a definite contribution to the cellular mass of the neointima over time. 

Moreover, we only find very low rates of transdifferentiated BMPC at earlier time points after 

wire induced injury. These results are in contrast to other publications, which claim to detect 

more than 60 % of eGFP and α-sma double positive cells after wire-induced injury
42

. To 

explain these controversial data, we have to face methodological limitations of many studies 

in the past. It is of critical importance that the use of unfixed tissue and a lack of high 

resolution microscopy do not provide convincing evidence for the process of 

transdifferentiation
103

. Indeed, when we abstained from immediate fixation with 4 % PFA 

after killing the mice, the tracer molecule diffused all over the tissue and could no longer be 

specifically detected in the eGFP
+
 cells. Interestingly, a recent report by Bentzon et al. could 

not confirm the suggested transdifferentiation of BM-derived cells into VSMC in a model of 

collar induced atherosclerosis. The authors did not find a single VSMC of donor BM origin 

using fixed tissue and high resolution microscopy, thus providing excellent evidence that 

highly differentiated VSMC in atherosclerotic lesions originate entirely from the local vessel 

wall. However, it is claimed that the amount of transdifferentiated BMPC might be dependent 

on the severity of the injury. Indeed, a wire induced dilatation causes a distinctive 

inflammatory response and can account for false positive results by an overlap of GFP
+
 cells 

and local derived VSMC. This artifact will be dependent on the number of infiltrating cells 

and thus on the severity of the injury. Moreover, the infiltrating macrophages can also 

temporarily express α-sma
102

. Consequently, these “differentiated SMC-like macrophages”, as 

these cells were called in a recent editorial by Drs. Iwata and Sata, lose their relevance in the 

course of time. At 16 weeks after wire induced injury, the highly differentiated VSMC are 

exclusively derived from pre-existing local cells, and their “contractile” phenotype very much 

corresponds to the VSMC in a non dilatated artery. 

This conclusion is also important for the clinical problem of restenosis after balloon induced 

dilatation of an occluded artery. The claimed BM-origin of VSMC in arterial remodeling 

would shift therapeutic attempts towards an inhibition of BMPC transdifferentiation in 

clinical burdens, such as in-stent-restenosis, venous graft failure, or transplant atherosclerosis. 

Although monocytes/ macrophages play an important role in neointima formation, our data 

provide evidence that transdifferentiation of BMPC into VSMC seems to be a very rare event.        
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5.5 Inhibition of proliferating VSMC and plaque stability: Positive or negative role 

for FSAP? 

 

The accelerated atherosclerotic plaques in MI-carriers can be explained by the missing 

inhibitory effect of FSAP on PDGF-BB cleavage as well as a possible effect on the 

endovascular uPA system. In this study, these mechanisms were identified as the key players 

of FSAP action in an in vivo model of vascular remodeling. 

On the other hand, a stable fibrous cap can protect the plaques from rupture
29

. FSAP staining 

was predominantly found in macrophage rich areas of instable atherosclerotic lesions in co-

localization with uPA
75

. The inhibitory effect of FSAP on VSMC could account for a thin 

muscular layer, thus making the plaque susceptible for rupture. The observed FSAP induced 

activation of MMP-2/9 can additionally destabilize the plaque and explain the clinical 

findings. 

Interestingly, there are parallels between the FSAP treated vessels and the time course 

experiment after irradiation and BMTX with respect to the stability of the neointimal lesion. 

The FSAP treated vessels at 4 weeks after dilatation looked very similar to the buffer control 

treated vessels at 2 weeks after injury. Thus, the FSAP treated vessels seem to maintain an 

earlier developing status due to a lack of proliferation/ migration of resident VSMC. The 

stability of a plaque or the neointima is generally dependent on VSMC secreting ECM 

proteins and forming a fibrous cap. Since the neointima of FSAP treated arteries without a 

previous irradiation consists of regular VSMC, irradiation obviously has additional and 

deleterious effects on vascular remodeling
93

. However, the control arteries have been 

irradiated in the same way, and the inhibitory effect of FSAP on VSMC has also been 

demonstrated in a model without preceding irradiation, so that these two inhibitory effects 

probably worked in an additive way, thus leading to an instable appearence of the neointima. 
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Figure 27. FSAP functions in vascular remodeling 

FSAP can directly cleave PDGF-BB, which is an important growth factor vor VSMC proliferation. 

Moreover, FSAP decreases the activity of uPA over time and thus further inhibits the proliferation of 

VSMC.  MMP are activated by uPA generated plasmin, however, the MMP activity was enhanced after 

FSAP treatment. Therfore, FSAP seems to have a direct effect on MMP activity. Hence, FSAP inhibits 

VSMC proliferation and regulates the protease balance at sites of tissue remodelling.   

 

5.6  Perspective 

 

In the presented work, we could provide evidence for an inhibitory effect of FSAP on VSMC 

by a specific inhibition of PDGF-BB signaling and a down-regulation of uPA in vivo. 

Additionally, there was no effect of FSAP on transdifferentiation of BMPC in the neointimal 

lesion.  

Recently, we have generated FSAP
-/-

 mice. The first dilatated mice showed a very pronounced 

neointima formation at 2 weeks after dilatation. Since FSAP inhibits VSMC proliferation, 

these results confirm our previous findings. 

The aim of the future studies on FSAP will deal with other animal models to mimic the 

process of atherosclerosis more precisely. In addition to the wire induced injury model, a cuff 

model of atherosclerosis will be used
104

. Therefore, the FSAP
-/-

 mice can be backcrossed with 
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ApoE
-/-

 mice, or lipoproteins of FSAP
-/-

 mice can be knocked down by intravenously injected 

siRNA. The latter experimental setting has been recently established in the laboratory of 

Molecular Cardiology in Giessen
105

. 

Since FSAP can now be recombinantly produced, we are no longer dependent on the use of 

FSAP isolated from human plasma for our future work (unpublished data). Furthermore, 

adenoviral vectors encoding the FSAP gene have been developed, so that FSAP can be 

overexpressed in WT mice or reconstituted in the FSAP
-/-

 mice. Accordingly, we can either 

target the liver to achieve a higher FSAP concentration in the circulation by injecting the 

vector intravenously, or we can apply the vector in a thermosensitive pluronic F-127 gel 

directly to the artery. As confirmed with other adenoviral vectors, they can also be 

intraluminally injected either into the external carotid artery or into the femoral artery, while 

the more proximal side of the artery is transiently ligated to stop the blood flow for several 

minutes
106

.   

In the vascular wall, FSAP is predominantly expressed in macrophages of instable 

atherosclerotic plaques. Although there was virtually no difference in the infiltration of 

monocytes/ macrophages after dilatation, it remains elusive, whether an uptake of FSAP by 

monocytic cells can possibly influence the regulation of adhesion molecules. Recent in vitro 

experiments performed in the Institute of Biochemistry showed that FSAP can up-regulate 

adhesion molecules, e. g. VCAM-1, in monocytes and therefore possibly promote their effect 

in atherosclerosis. However, we need to test these effects in more specific models of 

leucocyte adhesion, but in regard to the reduction of neointima formation after FSAP 

treatment, our in vivo experiments do not favor this effect to be of essential importance.  

Interestingly, Wasmuth et al. could recently show that in patients with the MI-SNP the risk for 

HCV-induced liver fibrosis and cirrhosis is significantly increased
107

. They explain this effect 

probably due to the impaired PDGF-BB-mediated hepatic stellate cell proliferation by MI-

FSAP. 

With ~5% of heterozygous carriers of the MI polymorphism in the European population, the 

various effects of FSAP, either the good or the bad, are of fundamental interest for the care of 

millions of people. Although we were able to shed more light on the in vivo effects of FSAP 

in the vasculature, this work was just the beginning of more complex and refined methodical 

studies in the future. Therefore, it is indispensable that the molecular and clinical research 

complement one another in finding the best strategy to elucidate the wide range of FSAP 

functions in the human body. 
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6. Summary 

 

Factor VII activating protease (FSAP), a novel plasma protease, can activate both Factor VII 

independently of tissue factor and pro-uPA. The FSAP gene has been linked to vascular 

diseases in humans, since the Marburg I (MI, G534E) polymorphism is a prominent risk 

factor for atherosclerosis and stroke
4, 5

. Furthermore, enhanced FSAP staining was detected in 

instable atherosclerotic plaques. In contrast to WT-FSAP, MI-FSAP has lower enzymatic 

activity and does not inhibit proliferation of vascular smooth muscle cells (VSMC) due to 

specific cleavage of platelet-derived growth factor (PDGF)-BB in vitro. 

The effect of WT- and MI-FSAP on neointima formation was investigated in a mouse model 

of wire induced injury of the femoral artery. WT-FSAP was locally applied to the denuded 

artery in different concentrations and was then compared to MI-FSAP, as well as the active 

site-inhibited Phe-Pro-Arg-chloromethylketone (PPACK)-FSAP, and a buffer control. WT-

FSAP attenuated neointima formation in a dose dependent manner and inhibited proliferation 

of VSMC, as determined by PCNA expression. Since MI-FSAP and PPACK-FSAP did not 

attenuate neointima formation, the effects of FSAP were mainly due to its proteolytic activity. 

Following in situ zymography, application of WT-FSAP changed the proteolysis balance in 

the vessel wall by reducing endogenous plasmin activity. Corresponding to this regulation, the 

neointima in uPA
-/-

 mice was mainly acellular and nearly completely lacked VSMC. 

Furthermore, FSAP application did not influence the transdifferentiation of bone marrow 

derived progenitor cells into VSMC. Indeed, these cells were predominantly identified as 

macrophages and could no longer be detected in the vascular wall, when the inflammatory 

response to the vascular injury had calmed down. 

The inability of MI-FSAP to inhibit VSMC proliferation in vivo explains the observed linkage 

between the MI-polymorphism and increased cardiovascular risk. Moreover, FSAP is a 

prominent regulator of the proteolysis balance at sites of tissue remodelling and could thus 

account for its association with plaque stability. Hence, FSAP is an important regulator of 

vascular remodelling with high clinical relevance.   
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7. Exposée 

 

Die Faktor VII aktivierende Protease (FSAP) ist ein Plasmaprotein, das sowohl Faktor VII als 

auch pro-uPA aktiviert
86

. Der Marburg I (MI, G534E) Polymorphismus des FSAP-Gens gilt 

als bedeutender Risikofaktor für Atherosklerose
4, 5

. FSAP konnte in einer klinischen Studie in 

instabilen atherosklerotischen Plaques nachgewiesen werden
75

. MI-FSAP zeigte eine 

reduzierte proteolytische Aktivität und inhibiert im Gegensatz zu WT-FSAP nicht die 

Proliferation von glatten Gefäßmuskelzellen durch eine spezifische Spaltung von Platelet-

derived growth factor-BB (PDGF-BB) in vitro
79

. 

In einem Mausmodel wurde durch Dilatation der A. femoralis eine Neointimaentwicklung 

induziert. Anschließend wurden verschiedene Konzentrationen von WT-FSAP um die Arterie 

gegeben, und diese mit MI-FSAP, dem am aktiven Zentrum inhibierten Phe-Pro-Arg-

chloromethyketone (PPACK-) FSAP oder einer Kontrolle ohne FSAP verglichen. Die 

Applikation von WT-FSAP verminderte konzentrationsabhängig die Neoinitmabildung und 

inhibierte die Proliferation glatter Gefäßmuskelzellen, während MI-FSAP nur einen 

marginalen und PPACK-FSAP keinen Effekt hatte. Weiterhin konnten wir in einer in situ 

Zymographie zeigen, dass die Expression von aktivem uPA im Zeitverlauf nach Dialtation 

durch Applikation von WT-FSAP herunterreguliert wurde, was ebenfalls die Proliferation und 

Migration von glatten Gefäßmuskelzellen hemmte. In diesem Zusammenhang zeigte sich 

auch ein Fehlen von glatten Gefäßmuskelzellen in der Neointima von uPA
-/-

 Mäusen. 

Weiterhin hatte FSAP keinen Einfluss auf die Transdifferenzierung von aus dem 

Knochenmark stammenden Progenitorzellen in glatte Gefäßmuskelzellen. Bei diesen Zellen 

handelte es sich fast ausschließlich um Makrophagen, die langfristig im vaskulären 

Remodeling nicht mehr nachweisbar waren.  

In einem in vivo Model zeigte sich eine inhibierende Wirkung von WT-FSAP auf glatte 

Gefäßmuskelzellen und eine Beeinflussung der perizellulären Proteolyse. Durch die 

vermehrte Atherosklerose in Trägern des MI-Polymorphismus sowie die Färbung von FSAP 

insbesondere in instabilen Plaques lassen sich die Ergebnisse direkt auf die klinische Situation 

übertragen und unterstreichen die Wichtigkeit von FSAP im vaskulären Remodeling.
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9. Acronyms and abbreviations 
 

α-sma    α-smooth muscle actin 

α-sma
+
    α-smooth muscle actin positive 

µg    microgram 

µM    micromolar 

ADP    adenosine diphosphate 

ApoE    apolipoprotein E 

AT    antithrombin 

bFGF    basic fibroplast growth factor 

BM    bone-marrow 

BMPC    bone-marrow derived progenitor cells 

BMTx    bone-marrow transplantation 

BSA    bovine serum albumin 

CCR2    CC motif receptor-2 

CD    cluster of differentiation 

CRP    C-reactive protein 

d    day 

DAPI    4',6-diamidino-2-phenylindole 

D-MEM   Dulbecco‟s modified eagle medium 

DNA    deoxyribonucleic acid  

DQ    dye quenched 

EC    endothelial cells 

ECM    extracellular matrix 

EGF    epidermal growth factor 

eGFP    enhanced green fluorescent protein 

ERK    extracellular signal-regulated kinases 

F    factor 

FCS    fetal calve serum 

fig    figure 

FSAP    factor seven activating protease 

Glu    glutamic acid 

Gly    glycine 

GPI    glycosylphosphatidylinositol 
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Gy    Grey 

h    hour 

H2Odd    aqua ad iniectabilia 

H & E    hematoxylin & eosin 

HGF    hepatocyte growth factor 

ICAM    inter-cellular adhesion molecule 

IFN-γ    interferon-γ 

IGF    insulin-like growth factor 

IL    interleukin-1 

LDL    low-density lipoprotein 

LRP    lipoprotein receptor-related protein 

MAPK    mitogen-activated protein kinases 

MCP    monocyte chemoattractant protein 

M-CSF   macrophage-colony stimulation factor 

MHC    major-histocompatibility complex 

MI-FSAP   Marburg I-FSAP 

min    minute 

ml    millilitre 

mM    milimolar 

MMP    matrix metallo proteinases 

MPI    Max-Planck-Institute 

mRNA    messanger ribonucleic acid 

n    number 

NaCl    sodium chloride 

n. s.    not significant 

NI    neointima   

PAI    plasminogen activator inhibitor 

PBS    phosphate buffered saline 

PC    protein C 

PCNA    proliferating cell nuclear antigen 

PDGF    platelet derived growth factor 

PDGFR   platelet derived growth factor receptor 

PECAM   platelet/endothelial cell adhesion molecule 

PFA    paraformaldehyde 
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PHBP    plasma hyaluronan-binding protein 

PN    protease nexin 

PPACK-FSAP  Phe-Pro-Arg-chloromethyketone-FSAP 

PS    protein S 

PTA    percutaneous transluminal angioplasty  

PTCA    percutaneous transluminal coronar angioplasty 

qPCR    quantitative polymerase chain reaction 

RNA    ribonucleic acid 

Sca    stem cell antigen 

SD    standard deviation 

SDF    stromal cell-derived factor  

SDS-PAGE   sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SNP    single-nucleotide polymorphism 

TF    tissue factor; factor III 

TFPI    tissue factor pathway inhibitor 

TGF    transforming growth factor 

Th1    type 1 helper T cell     

TIMP    tissue inhibitors of metalloproteinases 

TLR    toll-like receptor 

TNF-α    tumor necrosis factor-α  

tPA    tissue type plasminogen activator 

TUNEL   Terminal deoxynucleotidyl transferase dUTP nick end labeling 

uPA    urokinase type plasminogen activator 

uPAR    urokinase type plasminogen activator receptor 

VCAM   vascular cell adhesion molecule 

VSMC    vascular smmoth muscle cells 

vWF    von-Willebrand factor 

w    week 

WT-FSAP   wild-tipe-FSAP 

WT-mice   wild type mice 
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