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1. Introduction and Aims 

1.1 Oilseed crops as an alternative for low-input c ropping systems 

Oilseed crops play a major role both in human nutrition and as a protein source 

for animal feed. Furthermore they act as a valuable renewable resource for the 

oleo-chemical industry and for the production of hydraulic oil and lubricants. 

Moreover, during the past few decades biodiesel from oilseeds has become 

one of the major contributors of renewable fuel worldwide. The diesel demand 

of the European Union in 2004 comprised around 185 million t (Eurostat, 2006), 

with the highest consumption occurring in France and Germany. WOOD 

MACKENZIE (2006) projected annual increases of about 2.5% for the diesel 

market in Europe between 2003 and 2015. With limited quantities of fossil 

diesel, biodiesel is playing an important role in meeting this constant increase 

in demand. In the temperate climate of Western Europe, rapeseed oil or 

rapeseedoil methyl ester (RME, biodiesel) is the most suitable locally-available 

raw material for biodiesel production, meeting all required quality standards. In 

the European Union in 2005 a total of around 17.6 million t of plant oil were 

produced, 2.4 million t of which were utilized for the production of biodiesel. 

Since the majority of this production derived from rapeseed oil, this means that 

around half of the usable rapeseed oil in Europe was used for biodiesel 

(WALLA 2006).  

At the current rate of yield increases through advances in breeding and 

agronomy, the production of key food and energy crops may not satisfy the 

growing worldwide demand in the coming decades without major increases in 

production intensity. However, a sustainable production of agricultural crops for 
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bioenergy and/or food purposes can only be achieved by reduction of the 

production intensity, for example with reduced fertilization and pesticide 

applications. So-called low-input crops are of great importance in this regard. In 

particular, the production of some energy crops, including oilseed rape, is 

coming under increasing criticism with regard to atmospheric nitrogen oxide 

release caused by excessive nitrogen fertilisation requirements (KRÜTZEN et 

al. 2007). On the other hand, oilseed rape and related cruciferous oilseeds are 

a valued component in crop rotations, due to their positive influence on soil 

structure and soil nitrogen contribution to following cereal crops. In order to 

improve the energy balance of whilst sill providing the positive contribution to 

crop rotations, nitrogen-efficient oilseed crops with improved N-absorption 

and/or utilization efficiency are a major breeding goal for sustainable biodiesel 

production. Oilseed crops suitable for low input production systems would be a 

valuable alternative for high-value crop production in marginal agricultural 

locations (e.g. Figure 1) with poor soils or sub-optimal climatic conditions. 
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Figure 1: (a) Marginal location in Niederhörlen, Lahn-Dill District, with cool climate and poor 
soils (b) characterized by decomposed acidic slate soil with stones and a very poor 
nutrient balance  

a 

b 
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The work presented in this thesis is based on previous studies (MÜLLER et al. 

1998, 1999, MÜLLER 2002, FRIEDT et al. 2003) that identified winter oilseed 

rape hybrids, on the one hand, and Camelina sativa on the other hand as 

promising alternatives for targeted breeding activities with regard to improved 

performance under low-input production conditions. Winter oilseed rape 

(Brassica napus L.) is presently the commanding oil-crop in Germany and 

Europe, due to its high seed and oil yield in temperate climates, and has a 

positive effect in crop rotations due to an improvement of soil fertility and the 

reduction of soil erosion damage. The related crucifer species Camelina sativa 

(also known as false flax, Gold of Pleasure, camelina or German sesame; see 

VOLLMANN et al. 1996) was a quite common crop in Europe and North 

America until the middle of the last century, but since then has continually lost 

in importance so that it is now virtually unknown in Europe. However, with an 

increased interest in renewable resources this summer annual oil plant has 

been re-discovered. Over the last years the importance of camelina as an 

alternative oilseed crop with special oil quality is rising. Camelina is particularly 

interesting as an alternative spring-sown oilseed crop because of its 

adaptability to adverse environmental conditions and its comparatively short 

vegetation time. In some areas of North America the seed and oil yields of 

camelina are comparable to those of spring canola, although camelina has 

considerably lower nutrient and plant protection requirements.  
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1.2 Oilseed rape (Brassica napus ssp. napus) 

Oilseed rape (Brassica napus ssp. napus; Figure. 2) is the most important 

oilseed crop in Europe, followed by sunflower and soybean. Worldwide oilseed 

rape is the second most important oilseed crop after soybean.  

 

 

The production area of oilseed rape in Germany in 2007 was 1.5 million ha, 

compared with 1.43 million ha in 2006, 1.3 million ha in 2005 and less than 1 

Figure 2: Flower of oilseed rape (Brassica napus ssp. napus)  
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million ha during the 1990s. Due to this rapidly-growing economic importance, 

largely the result of political requirements for mixing of biodiesel into fossil 

diesel fuels, a further increase of rapeseed cultivation is anticipated in the 

coming years. Production areas as high as 1.7 million ha have been projected 

for Germany by the year 2010 (Workshop of the Society for the Promotion of 

Private German Plant Breeders – GFP, 2006).  

The seed oil of B. napus, a member of the mustard family (Brassicaceae), 

naturally contains high levels of the anti-nutritive fatty acid erucic acid (C22:1) 

and is therefore unsuitable as a vegetable oil. However, almost all modern 

oilseed rape varieties carry a mutation in two copies of the fatty acid elongase 

gene FAE1 (ECKE et al. 1995, DAS et al. 2002), which results in a seed oil 

almost free of C22:1 and instead containing large quantities of oleic acid 

(C18:1). This erucic-acid free oil is considered as one of the most nutritionally 

valuable edible plant oils available (DE LORGERIL et al. 2001), while at the 

same time it is also highly suitable for renewable products, e.g. as a feedstuff 

for oleochemicals and for biodiesel.  

Oilseed rape is a facultative outcrosser, meaning that it can be bred using both 

inbreeding methods and via hybrid techniques based on male sterility. The 

worldwide first restored oilseed rape hybrid variety was released in Germany in 

1995, and since then the importance of hybrids has grown continually. Hybrid 

oilseed rape cultivars tend to show a higher adaptability and yield stability 

under sub-optimal growth conditions, which makes them particularly interesting 

for use in low-input cropping systems. 

However, the gene pool of double-low quality oilseed rape (zero erucic acid, 

low seed glucosinolate) is relatively narrow (HASAN et al 2006, 2008), meaning 
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that the yield performance of currently available hybrids is not always 

considerably higher than that of the best open-pollinated varieties. On the other 

hand, combining the distinct genetic pools of conventional high yielding 

breeding lines or cultivars with novel high-erucic acid rapeseed (HEAR) lines as 

respective cross parents is a promising route to enhance hybrid vigour. Such 

new hybrids may be of particular interest for increasing nitrogen efficiency and 

hence for use in low-input farming systems. For maximizing the heterosis effect 

and achieving a consequent high grain yield and yield stability, it is important to 

consider not only the productivity of the parental lines per se. A sufficient 

genetic diversity between the potential cross parents and a superior combining 

ability are also of crucial importance. 

 

1.3 Camelina sativa Crtz. (Camelina) 

Camelina sativa Crtz. (Figure 3), a member of the Brassicaceae family, has 

been grown in Europe since the Bronze Age (SCHULTZE-MOTEL 1979). It 

was broadly cultivated throughout Europe and North America until the 1950s. 

The importance of camelina has diminished considerably over the last half 

century, however its positive agronomic attributes with regard to sustainable 

agriculture have recently rekindled interest in this spring-sown oilseed crop.  
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Figure 3: Flowering Camelina sativa Crtz. in field plots 

 

Camelina is a high-value, multi-use crop with applications in food, feed and 

industry (Pilgeram 2007)  It produces a seed oil rich in poly-unsaturated fatty 

acids, making it a valuable renewable feedstock for the oleochemical industry. 

At present, the oil is used mainly in non-food applications as a drying oil, 

however recently it has gained increasing attention as a potential alternative 

bio-fuel crop to spring-sown canola. A revival of interest in camelina oil for food 

purposes has also occurred in recent years, mainly due to its comparatively 

high concentration (35-40%, see Figure 4) of α-linolenic acid, an ω3 fatty acid 
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that is generally found in substantial quantities only in linseed and fish oils. 

Development of camelina as an alternative spring oilseed for modern crop 

rotations offers an opportunity to diversify crop production while supplying the 

growing demand for edible oils rich in ω3 fatty acids (Matthäus 2004).  

 

 

Figure 4: Fatty acid composition of camelina oil 

 

Camelina possesses numerous valuable agronomic attributes that make it 

attractive as an alternative spring-sown crop both for tight crop rotations and 

marginal locations. It combines a good adaptability to adverse environmental 

conditions (Makowski 2003) and a short growing season (Müller et al. 1999) 

with a diverse food and non-food application of the seed oil. An important 

feature of camelina is its high level of resistance against insect pests and plant 

pathogens (Volmann et al. 2003). Its positive agronomic attributes also include 

high nutrient efficiency, which makes the crop suitable for low-input cropping 

systems with reduced N-fertilization and considerably reduced fungicide and 

pesticide applications (Schuster and Friedt 1995; Müller 2002). Due to the low 
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interest in the crop throughout the late 20th century, breeding efforts for the 

crop have been limited. As a result very few registered varieties and advanced 

breeding lines are available. In preliminary work, however, a good degree of 

phenotypic variation could be observed among camelina accessions (Müller, 

1999). This provides a basis for phenotypic selection towards further 

improvements of the major agronomic and quality characteristics. 

In contrast to the vegetable and oilseed Brassica species, almost no 

information was available prior to the beginning of this study with regard to the 

genomic makeup of C. sativa and the genetic control of complex agronomic 

traits in this species. A genetic map of camelina would represent a valuable tool 

for future genomics-assisted improvement of this crop. 

 

1.4  The principle of heterosis 

The term heterosis, used to described the increased performance of an F1 

hybrid compared with the mean performance of two parental homozygous 

lines, is a basic quintessence in plant breeding. Since its discovery at the 

beginning of the 20th century (EAST 1908; SHULL 1908), exploitation of 

heterosis has become one of the most important means for increasing yield 

performance in the breeding of outcrossing crop species. The general genetic 

basis of heterosis is still not completely clear, however in different situations it 

is thought that dominance (DAVENPORT 1908; BRUCE 1910; JONES 1917), 

overdominance (HULL 1945; CROW 1948) and epistasis (POWERS 1944; 

WILLIAMS 1959) play important roles.  
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As a facultative outcrossing species, utilisation of heterosis in oilseed rape by 

hybrid breeding is today an important means to improve the yield potential. 

Hybrid cultivars afford a systematic use of heterosis and therefore a better 

consumption of the yield potential and higher yield stability. Due to their 

heterozygous genotype, hybrid cultivars can also potentially achieve a higher 

yield stability under unfavorable conditions (LÉON 1991; DIEBENBROCK 

2000). In rapeseed, a higher yield potential of 20 to 50% compared to the 

parents has been observed in experimental hybrids (SCHUSTER and 

MICHAEL 1976; LÉFORT-BUSON et al. 1987; BRANDLE and McVETTY 1990; 

McVETTY et al. 1991, SCHUSTER et al. 1999). According to SAUERMANN 

and FINKE (1998), winter oilseed rape hybrid varieties can reach 5-12% yield 

advantage compared to open-pollinated varieties. 

Different researchers have reported substantial heterosis in the major oilseed 

Brassicas (for a review see Leon and Becker 1995) that stimulated a worldwide 

interest for developing hybrid cultivars. In Canada, China and Europe, hybrids 

are today exceeding open-pollinated varieties as the major winter and spring 

oilseed rape cultivar types (DIANRONG 1999; FRAUEN et al. 2003). This is 

particularly the case in Germany, where the world’s first restored rapeseed 

hybrids were released in 1995 and hybrid varieties meanwhile make up more 

than half of the seed production (SNOWDON et al. 2006). The increased yield 

potential of hybrids (heterosis) is influenced by two main factors: the individual 

performance of the parental lines and their combining ability. Besides the 

average ability of a crossing parent (general combining ability, GCA), the 

heterotic potential of two specific crossing parents is described by their specific 

combining ability (SCA). Both GCA and SCA are heritable, quantitative traits. 
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1.5  Quantitative Trait Loci (QTL) and low-input pe rformance 

Analysis of quantitative trait loci (QTL) helps to clarify the inheritance of 

complex, quantitative traits (e.g. seed or oil yield) with a continuous phenotype 

variation that does not allow the identification of defined gene effects. With the 

help of the genetic linkage maps developed on the basis of molecular marker 

screening in a segregating population, along with phenotypic data gathered in 

different environments, genome regions associated with effects on complex 

traits can be detected. To locate the most likely position of a QTL on a 

chromosome, the chromosome intervals between adjacent molecular markers 

are analyzed regarding phenotypic effects using multiple regression or 

maximum likelihood functions. The theory and methods of QTL detection in 

segregating populations are outlined in detail by LANDER and BOTSTEIN 

(1989), KNAPPS et al. (1990) and HALEY and KNOTT (1992).  

Numerous seed quality traits, seed yield and yield parameters along with many 

other important agronomical traits like winter hardiness and important pathogen 

resistance have been investigated in various B. napus crosses by QTL analysis 

(see SNOWDON et al. 2006 for a detailed review). Particular attention has 

been paid to QTL detection for flowering time (CAMARGO and OSBORN 

1996), oil content (BURNS et al. 2003; ZHAO et al. 2006), fatty acid content ad 

composition (ECKE et al. 1995; HU et al. 1995, 1999; JOURDREN et al. 

1996b; SOMERS et al. 1998; RAJCAN et al. 1999), glucosinolate content 

(TOROSER et al. 1995; UZUNOVA et al. 1995, HOWELL et al. 2002) as well 

as disease resistance (e.g. DION et al. 1995; PILET et al. 1998, 2001; ZHAO 

and MENG 2003, RYGULLA et al. 2008). On the other hand very little is known 

about the genetic control of adaptability of oilseed rape to marginal cropping 
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conditions, or of its performance under low-input agronomy systems. Field 

testing of appropriate mapping populations in multiple environments under 

normal and reduced-input conditions, respectively, could potentially generate 

suitable data for identification of important QTL involved in nutrient uptake and 

assimilation efficiency. In C. sativa no QTL studies had been published prior to 

the work described in this thesis. This is due to the absence of a genetic map 

for this species, which is a prerequisite for QTL detection. 

 

1.6  Objectives  

The papers presented in this thesis describe an analysis of yield performance 

in pre-selected rapeseed and camelina genotypes that were studied under 

reduced nitrogen regimes at different locations. The sites used for the study 

ranged from optimal agricultural conditions, under which oilseed rape already 

plays a key role in crop rotations, to marginal locations (e.g. Figure 4) with poor 

soils, low rainfall and a cool climate where oilseed crops are currently less 

widespread. The underlying objective of the work was to identify genotypes and 

breeding lines with superior adaptability to sub-optimal growth conditions, as a 

basis towards development of oilseed cultivars as a valuable alternative crop 

for marginal locations.  

 

The key aims of the work were: 

- Development of a population of camelina inbred lines and genetic analysis of 

their yield performance and seed quality traits under low-input cropping 

conditions; 
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- Generation of the first genetic map for C. sativa and localization of 

quantitative trait loci (QTL) for seed quality and yield traits under low-input 

conditions, as a basis for future marker-assisted improvement of camelina as a 

renewable resource; 

- Development of new low glucosinolate, zero erucic acid (00 quality) winter 

oilseed rape hybrids with high performance under low-nutrient conditions and in 

marginal locations; 

- Development of high erucic acid, low glucosinolate (+0-quality) winter oilseed 

rape hybrids and identification of hybrid combinations with consistently high 

seed and oil yields under low-nutrient conditions and in marginal locations. 
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I. Publication 1  

 

Genetic mapping of agronomic traits in false flax ( Camelina sativa subsp.  

sativa) 

 

Gehringer A., Friedt W., Lühs W. and Snowdon R.J. 

 

Published 2006 in Genome, Vol. 49, No. pp. 1555-1563 
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Abstract 

The crucifer oilseed plant false flax (Camelina sativa subsp. sativa) possesses 

numerous valuable agronomic attributes that make it attractive as an alternative 

spring-sown crop for tight crop rotations. The oil of false flax is particularly rich 

in polyunsaturated C18 fatty acids, making it a valuable renewable feedstock 

for the oleochemical industry. Due to the low interest in the crop throughout the 

20th century breeding efforts for the crop have been limited. In this study a 

genetic map for C. sativa was constructed using AFLP markers in a population 

of recombinant inbred lines that were developed via single seed descent from a 

cross between the phenotypically distinct parental varieties ’Lindo’ and ’Licalla’. 

Three Brassica SSR markers were also integrated into the map, and one of 

these shows linkage to oil content loci in both C. sativa and Brassica napus. 

Fifty-five further SSR primer combinations showed monomorphic amplification 

products, indicating partial genome homoeology with Brassica species. Using 

data from field trials with different fertilization treatments (0 and 80 kgN/ha, 

respectively) at multiple locations over a total of three years, the map was used 

to localise quantitative trait loci (QTL) for seed yield, oil content, 1000-seed 

weight and plant height. Some yield QTL were found only in the N0 treatment 

and may represent loci contributing to the competitiveness of camelina in low-

nutrient soils. The results represent a starting point for future marker-assisted 

breeding. 

 

Key words: False flax, Camelina sativa, genetic map, QTL 
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Introduction 

Oil crops count among the most valuable basic agricultural trade materials, and 

as the world population expands and fossil resources decline the demand for 

refined edible oil products and renewable industrial oils continues to grow. 

Presently the international oilseed market is dominated by soybean, rapeseed 

and sunflower; however under increasing production areas the pressure on 

crop rotations in terms of sustainable production has increased the requirement 

for greater diversification of oil crops. Of growing interest in this respect are 

alternative crops that combine positive agronomical properties, for example 

nutrient efficiency, pathogen tolerance and a short growing season, with a 

diverse food and non-food application of the seed oil. The crucifer oilseed 

species Camelina sativa (variously known as camelina, false flax, gold of 

pleasure or German sesame; see Vollmann et al. 1996) is of particular interest 

in this regard.  

Although camelina has been cultivated in Europe since the Bronze Age 

(Schultze-Motel 1979), it is presently an underexploited oilseed crop. Until the 

late 18th century false flax was cultivated throughout eastern, central and 

western Europe and to a limited extent in North America, however since the 

middle of last century cultivation has all but disappeared. In Germany and 

Austria C. sativa, an annual oilseed plant belonging to the mustard family 

(Brassicaceae), is grown on a limited scale mainly in mixed cropping systems 

(Paulsen et al. 2003; Makowski 2003). Compared to other oil plants it is 

particularly competitive in semi-arid regions and in low-fertility or saline soils 

(Budin et al. 1995). Like its polyploid relative oilseed rape (Brassica napus), 
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false flax exhibits a high adaptability to adverse environmental conditions 

(Makowski 2003) and its competitive growth character means that herbicide 

requirements are also minimal (Zubr 2003). An important feature of camelina is 

its high level of resistance against insect pests and plant pathogens, which may 

be partly due to the production of anti-microbial phytoalexins (Vollmann et al. 

2001). Its positive agronomic attributes also include high nutrient efficiency; 

hence false flax can be produced in low-input cropping systems with reduced 

N-fertilization and without fungicide or pesticide applications (Schuster and 

Friedt 1995; Müller 2002). The comparatively short vegetation period of 

approximately 120 days makes it particularly suitable as an alternative annual 

crop for renewable resource production within tight crop rotations (Agegnehu 

and Honermeier 1997; Müller and Friedt 1998; Müller et al. 1999) The seed oil 

of false flax is rich in polyunsaturated C18-fatty acids, making it a valuable 

renewable feedstock for the production of oleochemicals, particularly as a 

drying oil for paints and varnishes but also as an alternative source of biodiesel 

(Bernardo et al. 2003; Zubr 2003; Fröhlich and Rice 2005; Matthäus and Zubr 

2000). On the other hand the high (35-40%) content of α-linolenic acid, a ω3 

fatty acid otherwise found in substantial quantities only in linseed and fish oils 

(Matthäus 2004), has also led to a recent revival of interest in camelina oil for 

food purposes. 

Mature C. sativa plants grow to a height of 30 to 120 cm and produce seed with 

an average 1000-seed weight (TSW) between 0.7 and 1.6 g depending on the 

variety and growing conditions (Putnam et al. 1993). Seed yields range from 2 

to 3 t/ha, with an oil content ranging from 28 to 42%. Despite this relatively high 

variation in agronomic properties, little effort has been made to date with regard 
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to the improvement of false flax through breeding. The main objective of the 

present study was to investigate the productive efficiency of false flax as a 

renewable primary resource for food and non-food oil production, particularly in 

low-input cropping systems. For this purpose yield performance and stability of 

a group of inbred lines were studied under different nitrogen fertilization 

regimes at three locations with major differences in soil characteristics in 

Hesse, Germany. Furthermore we produced a first genetic map of C. sativa 

based on AFLP markers, and used it to localise quantitative trait loci (QTL) 

related to agronomic characters including seed plant height, oil content, TSW 

and seed yield. The data allowed identification of potential genotypes for further 

improving the adaptability and performance of false flax as a crop for marginal 

locations and low-input systems, and will serve as a first basis for future 

marker-assisted breeding of improved varieties. 

 

Material and Methods 

Plant Material  

A total of 187 recombinant inbred lines were created from a cross between the 

registered German false flax varieties ’Lindo’ and ’Licalla’ (Deutsche 

Saatveredelung, Lippstadt, Germany) using single-seed descent (SSD) as 

described by Seehuber et al. (1987). Plants were grown in the greenhouse 

under water and nutrient stress, enabling production of two to three generations 

per year. The SSD lines were continued to the F6 generation. The parents used 

to produce the inbreds showed considerable variation in seed yield, TSW, plant 

height and seed oil content. 
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Field trials 

The SSD lines and parental genotypes were grown in 3.75 m2 plots with two 

replications of a 14 x 14 lattice experimental design in a total of four different 

environments (year x location) at three diverse locations in Hesse, Central 

Germany. The environments differed considerably in climate and soil type 

(Table 1).  

 

Environ-
ment 

Location Nmin 
(kgN/ha) 

Mean annual 
precipitation 

(mm) 

Mean annual 
temperature 

(°C) 

Altitude 
(m ASL) 

Soil 
classification# 

Soil 
pH 

RH03 Rauischholzhausen 43 581 9.4 200-295 70-80 6.8 

RH04 Rauischholzhausen 50 626 9.0 200-295 70-80 6.6 

NH04 Niederhörlen 21 834 7.1 340-380 25-35 5.5 

GG05 Gross Gerau 30 573 11 91 20-25 7.0 

Table 1: Climatic features, Nmin contents and soil properties of the four environments used for 
field trials. 

# German soil classification scale (Görz and Hock 1939) 

 

The sites at Rauischholzhausen (RH, around 70km north of Frankfurt) and 

Gross Gerau (GG, 30km south of Frankfurt) are situated on University of 

Giessen experimental farms. The RH site is characterised by good cropping 

conditions with mainly loess soils, whereas the GG site has a mild climate and 

predominantly sandy soil. The marginal location Niederhörlen (NH, situated in 

the Lahn-Dill District) has a considerably colder climate than the other two sites 

and is characterised by decomposed acidic slate soil with a poor nutrient 

balance. Field trials were performed in the years 2003 (RH03), 2004 (RH04, 

NH04) and 2005 (GG05).  
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For each location the experiments were repeated with two different nitrogen 

fertilization treatments, hereafter referred to as N0 and N80. The soil Nmin 

content (measured at a depth of 0-90 cm) varied from 21 kgN/ha (NH04) to 50 

kgN/ha (RH04). Independent of the Nmin content no additional nitrogen fertilizer 

was applied to the N0 treatment, whereas in the N80 treatment 80 kg/ha 

calcium ammonium nitrate containing 27% N (KAS) was applied in two volumes 

of 40 kgN/ha at two and six weeks after sowing. During the course of the 

vegetation period the date of flowering and plant height at flowering were 

recorded, and seed yield, TSW and seed quality traits were determined after 

harvest. 

 

Quality analysis 

Oil and water contents of the harvested seed were determined by pulsed 

nuclear magnetic resonance (NMR) using a Bruker Minispec analyzer (Bruker 

Analytische Messtechnik, Rheinstetten, Germany). Fatty acid composition was 

determined by gas-liquid chromatography on a TRACE GC 2000 (Thermo 

Finnigan, Italy) with a flame-ionization detector and automatic injector using 

helium as a carrier gas.  

 

Genetic mapping 

Genomic DNA from all SSD lines and the parental genotypes was extracted 

using CTAB extraction, as described by Doyle and Doyle (1990), from young 

leaves from plants grown in the greenhouse. A total of 256 AFLP primer 

combinations were screened for polymorphisms between the two mapping 
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parents, and the 44 primer combinations with the highest rate of polymorphism 

were used to genotype the 181 SSD lines. In addition a set of 400 publicly 

available Brassica SSR primers (www.brassica.info; Suwabi et al. 2002; Lowe 

et al. 2004) were screened in the parental lines. The majority of the SSR 

primers did not amplify loci in C. sativa, however eight polymorphic SSR 

markers were identified of which four could be integrated into the genetic map. 

The genetic linkage map was calculated with JoinMap® 3.0 (Kyazma Software, 

Wageningen, Netherlands; see Stam 1993) using only loci that showed the 

expected 1:1 allelic segregation ratio. Markers were assigned to linkage groups 

using the Kosambi mapping function with a minimum LOD score parameter of 

2.00 and a maximum recombination frequency of 40cM.  

 

Data analysis and QTL localisation 

Analysis of variance (ANOVA, p=0.001) for all agronomic traits was performed 

using the mixed-model procedure in the statistical software package SAS 9.1, 

in order to test for significant differences among the SSD lines and to estimate 

variance components. Broad sense heritability for mean values over 

environments was calculated following Hill et al. (1998) from components of 

variance as: 

h2 = Vg/(Vg + Vge/E + Vr/ER) 

where Vg, Vge and Vr represent the respective variance components for 

genotype (g), genotype*environment (ge) and residual variance (r), and E and 

R are the number of environments and replicates, respectively. Correlations 

among traits were calculated separately using the respective data from the N0 
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and N80 treatments, in order to detect possible effects of nutrient deficiency on 

trait interactions. Correlation analysis was performed with SPSS 12.0.1 for 

Windows. 

For all phenotypic traits QTL analysis was performed using mean values from 

the two replicates of each genotype for each treatment and at each location. 

QTL were localised in the genetic map by composite interval mapping (CIM), 

after stepwise regression analysis based on single marker genotypes of 

markers with significant effects on the trait analysed, using Windows QTL 

Cartographer, Version 2.5 (Zeng et al. 1994; 

http://statgen.ncsu.edu/qtlcart/WQTLCart.htm). LOD thresholds for QTL 

detection were established by permutation analysis using 1000 permutations 

and a significance threshold of p=0.05. The QTL analysis was repeated using 

first the mean phenotype data from individual locations, years and treatments, 

respectively, then with data averaged over the different locations or treatments, 

and finally using means from the cumulative data from all environments, 

treatments and years. 

 

Chromosome counts 

Because the chromosome number of C. sativa is variously reported as 2n=20 

(Warwick et al. 2000), 2n=21 (Schuster 1992), and n=6 or 14, 2n=12, 26 or 40 

(Canadian Biodiversity Information Facility, 

http://www.cbif.gc.ca/spp_pages/brass/index_e.php), chromosome counts were 

performed on the two parental genotypes used for the production of the SSD 

population. Chromosome preparations were generated from root-tip 
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preparations treated with 2mM 8-hydroxyquinoline using the procedure 

described for Brassica chromosomes by Schelfhout et al. (2004), and after 

staining with the blue fluorescent dye DAPI the mitotic chromosomes were 

counted in ten metaphases from each line under a fluorescence microscope.  

 

Results 

Agronomic characters 

Table 2 describes variation in mean seed yield, TSW, plant height and oil 

content in the SSD lines under different nitrogen fertilization treatments in the 

four environments RH03, RH04, NH04 and GG05.  

Environment Nitrogen 
treatment 

Seed yield 
(t/ha) 

Oil content  
(% DM) 

Plant height 
(cm) 

TSW 
(g) 

RH03 N0 1.46a 40a 79a 1.41a 

 N80 1.67b 38b 85b 1.32b 

RH04 N0 1.49a 44c 70cd 1.58cd 

 N80 2.05c 42d 75e 1.57cd 

NH04 N0 1.17d 40a 67d 1.71e 

 N80 1.86e 40a 73ce 1.76f 

GG05 N0 1.15d 39e 50f 1.55c 

 N80 2.20f 38b 59g 1.60d 

 LSD (p=0.05) 0.12 0.58 3.26 0.05 

Table 2: Variation in mean seed yield, oil content, plant height and TSW in the SSD lines under 
varying N-fertilization treatments (N0, N80) in the four environments RH03, RH04, 
NH04 and GG05, displayed as comparisons of means with respect to least significant 
d difference (LSD, p=0.05) for each variable. For each trait the environments and 
treatments with show non-significant differences are assigned the same superscript 
letter. 
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As expected, the mean yield was always significantly higher with N-fertilization 

(N80) than in the treatment with no added nitrogen (N0), and particularly strong 

yield improvements were obtained at the two locations with the lowest Nmin 

values. Some SSD lines yielded up to 2.5 t/ha with N80 at both NH and RH in 

2004, while the highest yield of a single line (3 t/ha) was achieved at GG in 

2005. When seed yields were averaged over all treatments and environments, 

45 SSD lines (24% of the population) showed higher grain yield than the best-

performing cross parent, ‘Lindo’. This indicates transgressive segregation of 

positive alleles for seed yield, which could be confirmed by a combination of 

positive alleles from both parents at the major QTL contributing to yield. When 

least significant differences (LSD, p=0.05) for mean seed yields over all 

environments and treatments were calculated, five SSD lines showed 

significantly higher grain yield than the best parent ‘Lindo’ (Table 3). These 

lines are interesting candidates for further improvement/breeding. 

 Seed yield (t/ha) 

 RH03 RH04 NH04 GG05 Mean (all 
environments & 

treatments) Genotype N0 N80 N0 N80 N0 N80 N0 N80 

Lindo 1.64 1.88 1.55 1.84 1.10 1.84 1.22 1.81 1.61 

SSD-10 2.06 2.27 1.66 1.96 1.21 1.94 1.38 2.65 1.89 

SSD-88 1.93 1.93 1.61 2.10 1.56 2.25 1.56 2.20 1.89 

SSD-177 1.71 2.13 1.58 1.96 1.47 2.12 1.30 2.25 1.82 

SSD-186 1.68 2.09 1.55 1.98 1.20 1.88 1.80 2.24 1.80 

SSD-241 1.71 2.02 1.71 1.92 1.36 1.90 1.28 2.48 1.80 

LSD 
(p=0.05) 

0.33 0.39 0.22 0.34 0.21 0.34 0.53 0.68 0.12 

Table 3: Seed yields (t/ha) over all environments (RH03, RH04, NH04, GG05) and N-
treatments (N0, N80) of five SSD lines with mean seed yields in excess of the best 
parent ‘Lindo’. Yield values in italics represent lines with significantly greater yields 
(p=0.05) than the best parent calculated by the least significant difference (LSD). 
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Analysis of variance showed highly significant effects for seed yield (p=0.001) 

due to N-fertilization, genotype and the interaction environment*genotype, 

respectively. Environment and the interaction environment*N-fertilization had 

significant effects on yield (p=0.05); however no significant effects for seed 

yield were observed in the interactions N-fertilization*genotype or 

environment*N-fertilization*genotype. Heritability for grain yield was calculated 

to be h2=0.54. TSW showed a very high heritability of h2=0.94, and the large 

differences in TSW among SSD lines (0.95 to 2.10 g) were consistent at the 

different locations without being significantly affected by the fertilization 

treatment. Significant differences in TSW between the N0 and N80 treatments 

were observed in all environments except RH04. The highest TSW (2.10g) was 

achieved at the marginal location NH. This indicates that TSW increases as a 

response to sub-optimal nutrient supply, possibly in association with a reduced 

number of seeds per plant. For plant height considerable variation was 

observed among the SSD lines (30-100 cm), and the heritability for plant height 

was relatively high at h2=0.68. In all environments significant differences in 

plant height were seen between the N0 and N80 treatments (Table 2). 

Analysis of variance for seed oil content revealed significant effects (p=0.05) 

from the environment and from the interaction environment*N-fertilization. 

Highly significant genetic variation in oil content (p=0.001) was achieved 

between N-fertilization levels, between genotypes and due to the interaction 

genotype*environment, whereas no significant environment*N-

fertilization*genotype interaction could be observed. The very high heritability 

for oil content of h2=0.89 emphasises the strong dependence of this trait on the 

genotype and underlines the potential for improvement through breeding. The 
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minimum oil content was 32%, whereas the best SSD lines achieved maximum 

oil contents of up to 49% of seed dry weight. This was only achieved in the N0 

treatment, however, suggesting that the high oil content was probably obtained 

at the expense of a reduction in seed protein due to a nitrogen deficit during 

seed ripening.  

 

Fatty acid composition 

A relatively large variation was observed in the contents of the main fatty acid 

components. Using mean data over the N0 and N80 treatment the content of 

oleic acid (C18:1) ranged from 13% to 20%, whereas the unsaturated linoleic 

acid (C18:2) varied from 13% to 22% and linolenic acid (18:3) from 30% to 

40%. The content of eicosenic acid (20:1) ranged from 10% to 17%, whereas 

erucic acid (22:1) content varied between 2% and 9%. This comparatively low 

natural content of erucic acid in C. sativa is unusual for a member of the 

Brassicaceae.  

 

Correlations between agronomic traits 

Correlations among seed yield, oil content, TSW and plant height for the N0 

and N80 treatments are shown in Figure 1.  
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Figure 2: Correlations among seed yield, oil content, TSW and plant height for the N0 and N80 
treatments averaged over all environments. Correlation values (r) with one asterisk 
are significant at p=0.05, while correlations with two asterisks are significant at 
p=0.01. 

 

With the exception of TSW and plant height all other trait combinations showed 

significant correlations in both treatments. As expected the N0 and N80 

treatments showed noticeable differences in the correlations among the traits. 

The correlations between plant height and the other traits were always stronger 

in the N80 treatment than with N0, while the respective correlations between 

seed yield and oil content with all traits except plant height were always 

stronger in the N0 treatment. Seed yield and TSW were found to be negatively 

correlated, and seed oil content was positively correlated to seed yield. 

Interestingly, plant height was found to have a positive correlation with both 

seed yield and oil content. This suggests possible pleiotropic effects or a 
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linkage between gene loci involved in these three traits, in which case plant 

height could be useful as a selection criterion for yield and oil content. 

 

Chromosome counts, genetic mapping and QTL localisation 

A chromosome number of 2n=40 was confirmed in all ten mitotic metaphases 

from each of the parental genotypes. Accordingly, the linkage map of Camelina 

sativa (Figure 2) was constructed containing 157 AFLP markers and three 

Brassica SSR markers on a total of 20 linkage groups corresponding to n=20. 

The map covers a total length of 1385.6 cM cM with an average marker interval 

of 8.6 cM. A total of 47 AFLP and four SSR markers deviated from the 

expected 1:1 segregation and were not included in the map. 
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Figure 3: Genetic map of Camelina sativa, comprising 157 AFLP and 3 SSR markers, 
constructed using 181 single seed descent (SSD) lines from the cross ’Lindo’ x 
’Licalla’. Shown on the map are the positions of major QTL for seed yield, oil content, 
plant height, 1000-seed weight (TSW) and fatty acids (18:1 oleic acid, 18:2 linoleic 
acid, 18:3 linolenic acid, 20:1 eicosenic acid, 22:1 erucic acid) measured under 
different nitrogen fertilization levels (N0 and N80) in field trials at four different 
environments (RH03, RH04, NH04, GG05). 

 

Details of all significant QTL detected for seed yield, oil content, plant height, 

TSW and fatty acid composition using mean data over all environments for the 

respective treatments are presented in Table 4.  
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Trait Treatment LG Nearest associated marker LOD A R2 (%) 
Seed yield N0 4 E32M61_188 3.89 0.40 10.51 

 N0 4 E40M49_580 3.50 0.32 6.45 
 N0 8 E33M58_150 3.18 0.30 5.81 
 N80 8 E33M58_150 2.73 0.35 6.93 
 N0 16 E32M52_260 3.17 0.31 6.50 
       

Oil content N80 1 E31M50_215 4.73 0.39 8.72 
 N0 3 E37M50_275 5.36 0.46 9.81 
 N80 3 E37M50_275 3.39 0.33 5.73 
 N80 4 E32M61_188 3.03 0.28 4.42 
 N0 7 E31M48_145 3.57 0.44 9.09 
 N80 7 E31M48_145 3.67 0.39 8.14 
 N0 8 Ol10B07 4.56 0.41 8.48 
 N80 8 Ol10B07 3.33 0.32 5.71 
 N0 9 E39M54_230 8.88 0.58 16.84 
 N80 9 E39M54_230 7.45 0.49 13.40 
 N0 12 E42M59_677 3.07 -0.34 5.57 
 N80 12 E42M59_677 4.06 -0.34 6.49 
 N0 15 E35M56_380 3.03 0.35 5.96 
       

Oleic acid N0 8 Ol10B07 3.72 0.50 8.10 
 N80 8 Ol10B07 3.35 0.51 7.42 

Linoleic acid N0 1 E33M49_260 3.58 -0.43 6.82 
 N80 1 E33M49_260 3.22 -0.41 6.17 
 N0 8 Ol10B07 3.26 -0.41 6.40 

Linolenic 
acid 

N0 
1 E31M51_369 3.13 0.45 8.05 

 N80 1 E31M51_369 3.86 0.52 9.54 
 N0 9 E39M54_230 3.45 0.44 7.79 

Eicosenic 
acid 

N0 
1 E33M49_260 3.78 0.22 7.17 

 N80 1 E33M49_260 3.35 0.25 6.33 
 N0 8 Ol10B07 3.49 0.23 8.06 

Erucic acid N0 6 E33M57_55 3.66 -0.33 9.50 
       

Plant Height N0 19 E38M62_330 4.63 1.01 10.96 
 N80 19 E38M62_330 2.64 0.81 6.36 
       

TSW N0 9 E40M49_105 5.85 49.28 13.48 
 N80 9 E40M49_105 5.19 43.04 12.79 
 N0 10 E33M61_210 3.55 -37.37 7.70 
 N80 10 E33M61_210 3.32 -31.53 7.03 

Table 4: Linkage groups (LG), nearest associated marker, LOD value (logarithm of odds), 
additive main effect (A) and percentage of phenotypic variation explained by the 
locus (R2) for all significant QTL for seed yield, oil content, plant height, TSW and 
fatty acids detected in the N0 and N80 treatments. The QTL marked in italics were 
detected over all locations in both the N0 and N80 fertilization treatments. 
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A total of eight significant QTL were detected for oil content, four for seed yield, 

one for plant height, two for TSW, one for oleic acid, two for linoleic acid, two 

for linolenic acid, two for eicosenic acid and one for erucic acid. 

Seven of the QTL for oil content were detected with mean phenotype data from 

the normal (N80) fertilization treatment, whereas one QTL for oil content on 

LG15 (LOD=3.03, R2= 5.96) was only detected using data from the N0 

treatment. Because protein content in the seed is negatively correlated to oil 

content, these QTL may represent loci involved in the interaction of oil and 

protein content with nitrogen treatment, for example via regulation of nitrogen 

use efficiency with a subsequent influence on protein content. In LG8 and LG9 

two QTL for oil content co-localized with QTL for long-chain fatty acids, as is 

expected due to the correlation of the oil volume with the extension and 

unsaturation of the fatty acid carbon chains. Despite the low variation in erucic 

acid in the cross we used, a significant QTL for C22:1 could be localised on 

LG6 with the pooled N0 data. For both the N0 and N80 treatments one QTL for 

oleic acid co-localized on LG8 with QTL for linoleic acid and eicosenic acid, 

whereas on LG1 a co-localization of QTL for linoleic, linolenic and eicosenic 

acid was observed in both fertilization treatments. Interestingly, the QTL on 

LG8 localised at the position of the Brassica SSR marker Ol10B07. In Brassica 

napus an SSR locus amplified by Ol10B07 is localised on chromosome N13 

adjacent to a QTL for oil content, oleic acid and erucic acid content (own 

unpublished results) that presumably corresponds to the copy of the FAE1 

gene for erucic acid biosynthesis on N13 (Ecke et al. 1995, Zhao et al. 2005).  

A total of four QTL for seed yield (two loci on LG4 and one each on LG8 and 

LG16) were identified with the pooled data from all N0 treatments. None of 
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these QTL were detected above the significance level under the N80 treatment, 

however with the pooled N80 data a clear peak also occurred on LG8 at the 

same position as the QTL for yield at N0. The three remaining QTL for yield 

were detected at the same positions at N80 in the different environments, albeit 

with LOD values below the permuted significance threshold. The fact that these 

QTL consistently co-localised suggests that they may represent contributing 

loci with only a small effect on yield. Two of these QTL, on LG4 and LG8, co-

localised with QTL detected in multiple environments for oil content and 

presumably contribute to the high correlation observed between these two 

traits. 

Four significant QTL for plant height were detected for the individual locations 

and treatments. Two of these QTL were located very close to two significant 

QTL for seed yield localized on LG4 and LG16. An interaction between plant 

height and seed yield is also implied by the relatively high correlation between 

these traits. For TSW two significant QTL on LG9 and LG10 were detected in 

both the N0 and N80 treatments at multiple locations in all years, whereas 

further QTL on LG1 (two loci), LG12, LG14 and LG20 were only detected in 

individual environments. One of the QTL for TSW on LG12 was located at the 

same position as one of the major QTL for oil content and may contribute to the 

negative correlation among these traits.  
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Discussion 

Interest in cultivation of the alternative crucifer oilseed species C. sativa as a 

renewable resource has been rekindled in recent years. In the present study 

the high yield potential of camelina could be confirmed, and even in a marginal 

location with poor soils it was possible with moderate fertilization levels (80kg 

N/ha) to achieve competitive yields of more than 1.6 t/ha. Furthermore, the 

maximum seed yield of 3.0 t/ha achieved by some of the SSD lines we 

developed demonstrates that further breeding for seed yield has the potential to 

further improve the profitability of camelina as a spring oilseed crop. In 

particular, six SSD lines significantly showed stable high yields in excess of the 

best cross parent across a range of environments. This shows the potential for 

further yield improvements in camelina through combination of positive alleles 

from different sources. The yields observed with improved lines in the present 

study were comparable with mean yields of other summer annual oil plants like 

spring rapeseed (Brassica napus), which typically yields around 2-3 t/ha at the 

best locations used in the present study (own unpublished data). 

A significant negative correlation was observed between TSW and oil content. 

An increase in seed size without a corresponding increase in oil content could 

be explained either by an increase in protein content, or alternatively by a 

thicker seed coat with an associated reduction in the relative proportion of both 

oil and protein in the seed. In the former case, however, a different effect would 

be expected in the N0 treatment, where N-deficiency should lead to reduced 

protein and a corresponding increase in oil content. This was not the case, 

suggesting that the high oil content of some genotypes may be due to a thinner 

seed coat. Further analyses of protein and fibre contents in the seeds may 
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assist in selection of varieties with high oil combined with reduced fibre content 

due to reduction of the seed coat. 

Molecular breeding today plays an important role in the genetic improvement of 

Brassica oilseed crops (Snowdon and Friedt 2004), however to our knowledge 

no molecular genetic resources have been developed to date for C. sativa and 

little is known about the inheritance of major agronomical traits in this species. 

To a limited scale intertribal somatic hybridization and RFLP analyses have 

been used to investigate and utilize disease resistance properties of camelina 

(Hansen 1998; Sigareva and Earle 1999; Khadhair et al. 2001), and genetic 

diversity within the species was investigated via RAPD markers (Vollmann 

2005). This study is the first we know of to generate a molecular genetic map 

for C. sativa, and is also the first report of QTL for agronomic characters this 

species. Based on these data we are now in a position to fine-map significant 

QTL for identification of closely linked markers, as a first step towards marker-

assisted breeding for important yield and quality traits. In previous work we 

were able to positively influence yield performance and oil content in camelina 

by selection (Müller and Friedt 1998; Müller 2002). Although we were only able 

to detect seed yield QTL above the significance threshold in the N0 treatment 

and not in the N80 treatment, the yield was positively correlated with both plant 

height and oil content in both treatments. Hence the major QTL we detected for 

oil content on LG4, which also co-localises with a QTL for seed yield, may be a 

promising target for simultaneous marker assisted improvement of seed yield 

and oil content.  

A moderate level of DNA sequence conservation between C. sativa and the 

Brassica A, B and C genomes was demonstrated by the ability of 55 out of 406 
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tested Brassica SSR primer combinations to amplify microsatellite loci in C. 

sativa. On the other hand, only three polymorphic SSR markers could be 

integrated into the C. sativa genetic map, while five further polymorphic 

markers remained unlinked to the C. sativa linkage groups, so that the degree 

of genome co-linearity between camelina and other Brassica oilseeds cannot 

yet be compared. Nevertheless, the small amount of data available revealed a 

first putative genome similarity associated with genes involved in fatty acid 

biosynthesis. A Brassica SSR marker that in oilseed rape is linked to a QTL for 

erucic acid biosynthesis and oil content was the nearest marker to a QTL for 

oleic acid, linoleic acid, eicosenic acid and oil content in C. sativa. Interestingly, 

a large proportion (31 of 55) of the homoeologous SSR primers amplified more 

than one locus in camelina, and the large proportion (21%) of AFLP markers 

that had to be excluded from the genetic mapping due to a skewed segregation 

also suggests a polyploid or duplicated structure of the C. sativa genome. 

Polyploidy may also explain the differing reports of chromosome number in the 

literature. Among the tribe Brassiceae a base chromosome number as high as 

n=20, as was determined for C. sativa in the present study, has only been 

found among known alloploids or autoploids (Warwick et al. 2000). 

Amphidiploidy and extensive gene duplication in B. napus are thought to 

contribute to a certain level of so-called “fixed heterosis” in oilseed rape 

(Osborn et al. 2003; Abel et al. 2005), and could be a factor in the high degree 

of phenotypic plasticity and adaptability observed in camelina crops grown 

under marginal or low-input cropping conditions.  
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Summary 

Winter oilseed rape (Brassica napus L.) is the most important oil crop in 

Europe. Due to a continually increasing demand for rapeseed oil for food and 

non-food uses, the production of hybrid cultivars with higher seed and oil yields 

has become increasingly important in recent years. However, the systematic 

use of heterosis for hybrid breeding in oilseed rape is limited by the relatively 

narrow genetic basis of adapted germplasm, which can impede the generation 

of distinct heterotic pools. In the present study experimental hybrids were 

developed from a population of 190 DH lines derived from a cross between an 

elite, double-low seed quality (zero erucic acid, low glucosinolate content) 

winter oilseed rape variety and a semi-synthetic line derived from a genetically 

diverse resynthesised rapeseed line with high erucic acid and glucosinolate 

contents. The DH lines were crossed with a male sterile tester and the resulting 

test hybrids were examined for yield performance at two locations in Hesse, 

Germany, that exhibit extreme differences in climatic conditions and soil 

characteristics. Mid-parent heterosis for seed yield was determined at both the 

agronomically optimal location Rauischholzhausen and the marginal site 

Niederhörlen. A value of up to 43 % mid-parent heterosis for seed yield could 

be observed among selected test hybrids compared to that of their parental DH 

lines. The heterosis level for yield was particularly high at the nutrient-poor site, 

where the best test hybrids showed significantly higher yields than elite open-

pollinating and hybrid varieties. This demonstrates the suitability and 

adaptability of highly heterotic rapeseed hybrids on marginal locations and 

suggests the existence of a strong heterotic effect on nutrient uptake efficiency. 

Key Words: Oilseed rape, hybrids, heterosis, marginal conditions. 
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Introduction 

Winter rapeseed (Brassica napus L.; genome AACC, 2n=38) is the most 

important oilseed crop in the European Union, with an acreage of 5.4 million ha 

in 2005 (data from FAOStat: http://faostat.fao.org/). Worldwide oilseed rape is 

the second most produced oilseed species after soybean, with extensive 

production in Europe, North America and China. The seed oil of rapeseed, a 

member of the mustard family (Brassicaceae), is widely used both as a high-

quality edible oil and also for non-food purposes as an important renewable 

resource. The production of rapeseed has increased rapidly over the past 

decade due to a massively growing demand for renewable fuels and 

biodegradable lubricants as an alternative to mineral oils. Besides a major 

increase in production area, the best current winter rapeseed varieties also 

display improved yield performance and oil contents; in Germany a nationwide 

average seed yield of more than 4 t/ha was achieved in 2004. 

In Germany more than 50 % of the current winter oilseed rape production is 

derived from hybrid cultivars, and similar trends towards hybrid production are 

apparent in all the other major rapeseed-producing countries. Identifying 

parental combinations with strong heterosis for yield is the most important step 

in the development of new hybrid cultivars (Diers et al. 1996, Becker et al. 

1999, Melchinger 1999), and heterosis effects are generally more pronounced 

in crosses between genetically distinct materials. In oilseed rape, however, the 

level of genetic diversity in adapted winter oilseed rape breeding material with 

double-low seed quality (zero erucic acid, low glucosinolate content) is 

relatively low due to strong selection for these vital nutritional traits for the seed 

oil and meal, respectively. This severely hinders the generation of genetically 
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diverse germplasm pools for hybrid development. On the other hand, B. napus 

genotypes containing high levels of erucic acid (C22:1) and seed 

glucosinolates (++ quality) represent a comparatively genetically divergent 

source of germplasm for hybrid breeding (Röbbelen and Nitsch 1975, 

Thompson 1983, Schuster 1987), and novel B. napus genotypes with ++ 

quality can also be resynthesised from interspecific crosses between the two 

diploid ancestors of B. napus, namely Brassica rapa (A genome, 2n=20) and B. 

oleracea (C genome, 2n=18).  

Oilseed rape F1-hybrids generated from crosses between resynthesised 

rapeseed and elite breeding lines can exhibit high levels of yield heterosis 

(Seyis et al. 2006). Unfortunately, most primary resynthesised rapeseed 

genotypes are not well-adapted to the western European climatic conditions. 

On the other hand, since the so-called semi-synthetic lines derived by 

backcrossing resynthesised rapeseed to adapted oilseed rape material can still 

contain a high degree of genetic diversity combined with a more adapted 

oilseed phenotype, such material represents a potentially interesting source of 

germplasm for hybrid production. 

In experimental rapeseed hybrids, yield increases of up to 20-50 % can be 

recorded compared to those of the parents (Brandle and McVetty 1990, 

McVetty et al. 1991, Schuster et al. 1999), while the yield potential of hybrid 

cultivars was reported by Sauermann and Finck (1998) at levels of 5-12 % 

above those of standard cultivars. Besides their generally better exploitation of 

yield potential, hybrid cultivars often also show a higher yield stability and 

improved adaptability; furthermore, their heterozygous genotype implies that 

this superior yield potential and yield stability can also be achieved under 
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unfavourable conditions (Léon 1991, Diepenbrock 2000). The breeding of 

rapeseed hybrid genotypes that are adaptable to marginal locations is 

attracting increasing interest due to the rapidly growing acreage of oilseed rape 

production; highly heterotic rapeseed hybrids represent a potentially profitable 

alternative oilseed crop for less productive agricultural land that would enable 

further expansion in production without additional strain on already tight crop 

rotations. 

In the present study a set of test hybrids was produced by crossing DH lines, 

derived from a cross between an elite winter oilseed rape cultivar and a 

genetically diverse semi-synthetic line, with an elite male sterile line from a 

different genetic pool. The intention was to combine different combinations of 

exotic alleles from the semi-synthetic line with alleles from two different elite, 

double-low quality winter oilseed rape genetic backgrounds, in order to select 

hybrid combinations showing the highest levels of heterosis for seed yield. 

Particular emphasis was placed on the identification of hybrids that showed 

high levels of mid-parent heterosis at marginal locations.  

 

Material and Methods 

 

Plant material 

A population of 190 microspore-derived doubled haploid (DH) lines was 

generated from a cross between the elite, double-zero seed quality (zero erucic 

acid, low glucosinolate content) winter oilseed rape variety ‘Express’ 

(Norddeutsche Pflanzenzucht Hans-Georg Lembke KG Hohenlieth, Germany) 
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and the semisynthetic breeding line ‘V8’. The genetically diverse ++ quality ‘V8’ 

parent of the DH population was derived from a resynthesised B. napus 

produced via embryo rescue from an interspecific cross between the Indian B. 

rapa ssp. triloculoris (Yellow Sarson) variety ‘YSPb-24’ and the cauliflower 

(B. oleracea L. convar. botrytis) accession ‘Super Regama’ (Lühs and Friedt 

1995a). To transfer this exotic germplasm into an adapted genetic background, 

the resynthesised rapeseed was backcrossed to a high erucic acid breeding 

line, resulting in the parental line ‘V8’ (Lühs and Friedt 1995b). 

All the DH lines from ‘Express’ x ‘V8’ were crossed with the male sterile tester 

‘MSL Falcon’. The MSL system (Male Sterility Lembke) is based on the use of 

spontaneous male sterile mutants that were selected in the nursery of the 

breeding company Norddeutsche Pflanzenzucht Hans-Georg Lembke KG, 

Hohenlieth, Germany (Paulmann und Frauen 1998), who kindly provided seeds 

from ‘MSL Falcon’ which were used to produce a set of 190 test hybrids from 

the 190 DH lines. Oilseed rape hybrids produced with the MSL system are 

characterized by a high fertility restoration and a low glucosinolate content 

(Girke 2002). Seeds of the test hybrids were produced in 2003 and 2004 in 

2.25 m² (150cm x 150cm x 180cm) isolation tents using colonies of solitary 

bees (Osmia cornuta). A total of 25 male sterile plants were grown together in 

each isolation tent with 10 plants from each respective DH line. The fertile 

pollinators were removed after flowering and F1 seeds from the MSL lines were 

harvested. 
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Field trials 

To evaluate heterosis for yield, the experimental hybrids along with their 

parental DH lines were grown in 3.75 m2 plots using a triple-replicated 14 x 14 

lattice experimental design at two diverse locations in Hesse, Central Germany. 

The planting density was 64 seeds/m2 for the experimental hybrids and 80 

seeds/m2 for the DH lines. As shown in Table 1, the two locations differed 

considerably in both climatic conditions and soil types.  

 

Location Nmin 
(kgN/ha) 

Mean annual 
precipitation 

(mm) 

Mean annual 
temperature 

(°C) 

Altitude 
(m ASL) 

Soil 
classific-
ation1) 

Soil 
pH 

Rauischholzhausen 50 626 9.0 200-295 70-80 6.6 

Niederhörlen 21 834 7.1 340-380 25-35 5.5 

Table 1:Climatic features and soil properties of the two field trial locations, Rauischholzhausen 
and Nierhörlen 

1) German classification scale for agricultural land (Görz and Hock 1939) 

 

The field trial sites were evaluated according to the German classification scale 

for agricultural land (Görz and Hock 1939), which differentiates fields on a scale 

from 10 (extremely poor) to 100 points (excellent) based on soil characteristics 

and prevailing climatic conditions. The site at Rauischholzhausen (RH, around 

70km north of Frankfurt), located on an experimental farm belonging to the 

University of Giessen, is characterized by good cropping conditions with high-

quality loess soils (70-80 points), whereas the marginal location Niederhörlen 

(NH, situated in the Lahn-Dill District) has a considerably colder climate and is 

characterized by decomposed acidic slate soil with a poor nutrient balance (25-

35 points). The soil Nmin content (measured at a depth of 0-90 cm) ranged from 

21 kgN/ha at the location NH to 50 kgN/ha at RH. At each location, the 
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experimental hybrids were treated with 160 kg/ha calcium ammonium nitrate 

containing 27% N (KAS). 

Field trials were performed in the growing season 2004/2005. To compare the 

yield performance, the experimental hybrids were cultivated together with a 

total of six registered German winter oilseed rape cultivars as standards, 

including the three open-pollinated varieties ‘Oase’ (Deutsche Saatveredelung 

GmbH, Lippstadt), ‘Express’ and ‘Falcon’ (Norddeutsche Pflanzenzucht Hans-

Georg Lembke KG, Hohenlieth) and the three hybrid cultivars ‘Titan’, ‘Trabant’ 

and ‘Talent’ (Norddeutsche Pflanzenzucht Hans-Georg Lembke KG, 

Hohenlieth). 

  

Yield determination and quality analysis 

Plots were harvested in July 2005 using a plot harvester. Crude composition of 

intact seeds, including oil, protein, glucosinolate, erucic acid and moisture 

contents, was determined by near-infrared reflectance spectroscopy (NIR 

System 6500, WinISI II software, FOSS GmbH Rellingen, Germany), as 

described by Daun (1995) with a standardization and calibration from VDLUFA 

(Verband Deutscher Landwirtschaftlicher Untersuchungs- und 

Forschungsanstalten, Kassel, Germany; NIRS-networks for rapeseed). 

 

Data analysis  

Analysis of variance (ANOVA, p=0.001) for all the agronomic traits was 

performed using the mixed-model procedure with restricted maximum likelihood 
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(REML) in the statistical software package SAS 9.1, in order to test for 

significant differences in the measured traits among the DH lines and 

experimental hybrids. Heterosis for seed yield was estimated as follows: mid-

parent heterosis (MPH) = test hybrid value (TH) - mid-parental value (MPV); 

relative MPH = ((TH – MPV)/MPV) x 100. 

 

Results 

Seed yield and oil content 

The pooled analysis of variance (ANOVA) for seed yield of the DH population 

and experimental hybrids over the two locations revealed highly significant 

differences (p=0.001) between the genotype and location*genotype interaction. 

Significant genetic variation in seed yield (p=0.05) was achieved between 

locations (data not shown). Table 2 shows the variation (minimum, mean and 

maximum values) for seed yield and oil content of the experimental hybrids 

compared to those of the DH population and the six standards. At both 

locations, the mean yield averaged over all the test hybrids was higher than the 

mean yield averaged over all the parental lines, with an improvement of 1.9 

dt/ha at NH and 2.6 dt/ha at RH, respectively. However, the seed yield of the 

best individual DH lines was comparable to, and in some cases significantly 

higher than the seed yield of the best test hybrids. At the marginal location NH, 

the best DH lines and the best test hybrids achieved significantly higher 

maximum yields than all the open-pollinating and hybrid varieties used as 

standards. At the agronomically optimal location RH, the best DH lines and test 

hybrids gave comparable yields to those of the two best-performing standard 



Publication 2 - New oilseed rape (Brassica napus) hybrids with high levels of heterosis for seed yield 

52 

varieties ‘Oase’ (open-pollinating line variety) and ‘Talent’ (MSL-based hybrid 

variety), respectively. 

  
Seed yield (dt/ha) Oil content (% DM) 

  NH RH NH RH 

DH population Min 10.50 17.22 46.68 45.03 

 Mean 33.93 53.01 51.54 52.50 

 Max 48.81 74.24 56.56 57.17 

Test hybrids Min 20.64 45.02 43.49 48.46 

 Mean 35.83 55.58 47.18 52.28 

 Max 47.03 66.56 50.62 55.49 

Standards ‘Titan’ (H) 39.34 58.13 47.42 50.59 

 ‘Trabant’ (H) 31.32 55.70 47.76 50.87 

 ‘Talent’ (H) 34.41 67.47 46.26 51.34 

 Mean (H) 35.02 60.43 47.15 50.93 

 ‘Oase’ (L) 36.38 66.61 49.45 53.32 

 ‘Express’ (L) 33.08 52.97 47.95 50.91 

 ‘Falcon’ (L) 25.36 50.82 46.49 50.21 

 Mean (L) 31.61 56.80 47.96 51.48 

 LSD 4.88 5.21 1.35 1.51 

Table 2: Minimum, mean and maximum values of seed yield and oil content of the experimental 
hybrids compared to the DH population and standards (H: hybrid cultivar; L: open-
pollinated line cultivar) at the marginal location Niederhörlen (NH) and the optimal 
location Rauischholzhausen (RH). Differences among values are compared with 
respect to least significant difference (LSD, p=0.05) for each variable 

 

Estimation of heterosis for yield 

The magnitude of heterosis for seed yield varied considerably within the 

population of test hybrids and between the two locations. High levels of 

heterosis were observed in many of the test hybrids at the marginal location 

NH, where the absolute MPH values for seed yield ranged from -16.62 to 12.90 

dt/ha, corresponding to a maximum relative MPH value of 43.38 %. At the 

superior site RH, the absolute MPH values ranged from -16.61 to 13.21, 

corresponding to a maximum relative MPH value of 35.7 %. The significantly 

higher MPH value at the marginal location NH suggested the existence of a 
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higher adaptability of the experimental hybrids to poor soils or low-nutrient 

conditions. 

A relative MPH value above 30 % was recorded in a total of twenty-three test 

hybrids at the marginal location NH (Fig. 1a). Although the absolute yield 

potential of these hybrids was obviously lower in the poor soils and under the 

unfavourable climatic conditions of the marginal location, compared to the 

yields observed at RH, in many of them a negligible or absent heterosis for 

yield was recorded at RH (Fig. 1b). This may suggest possible advantages of 

these hybrids in terms of capacity for nutrient uptake or assimilation, or a better 

pre-winter plant development resulting in an improved yield performance.  
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Figure 1: Hybrid performance. Seed yield (hybrid performance) of twenty-three experimental 
hybrids with relative mid-parent heterosis (MPH) values above 30 % at (a) the 
marginal location Niederhörlen (NH) compared to the (b) performance at the optimal 
location Rauischholzhausen (RH). Values of hybrid performance are separated into 
parental mean (grey bars) and mid-parent heterosis values (black bars) 

 

Seed yield and oil content of the selected test hybrids at the two different 

locations NH and RH are listed in Table 3 along with the relative MPH values 

for seed yield. Heterosis for oil content was not calculated because the oil 

content is strongly influenced by the erucic acid content, which varied 

considerably among the DH lines. 
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Test 
hybrid No. 

Location 

Niederhörlen Rauischholzhausen 

Seed yield 

Oil content 
(% DM) 

Seed yield 

Oil content 
(% DM) 

Absolute 
(dt/ha) MPH (%) 

Absolute 
(dt/ha) MPH (%) 

4 26.41 32.63 43.72 50.28 35.66 51.00 

7 37.13 36.08 43.15 53.65 4.88 48.46 

8 40.15 30.31 48.79 59.45 6.08 54.33 

14 41.50 43.29 45.92 54.72 -1.27 50.81 

17 38.33 34.90 44.78 48.58 -9.47 51.54 

50 38.83 35.44 45.51 53.30 11.18 52.30 

78 43.21 32.88 43.83 61.81 10.53 51.34 

83 40.20 37.11 45.57 56.82 -0.49 51.76 

91 35.14 34.16 43.36 48.96 -3.91 50.34 

93 40.44 31.92 48.19 53.63 -5.66 53.33 

98 40.82 30.67 46.01 54.99 3.37 51.05 

107 38.65 35.92 42.95 48.69 -8.91 50.74 

136 41.04 30.51 45.69 58.48 11.86 53.01 

138 38.32 30.33 45.45 59.58 6.29 52.13 

140 39.35 32.17 45.95 51.48 -6.26 51.17 

152 38.77 30.56 45.68 54.27 -1.65 53.05 

154 47.03 37.79 47.67 61.65 11.95 54.29 

162 39.41 31.96 47.74 55.41 5.06 53.34 

165 41.65 37.53 47.02 58.29 14.83 53.71 

167 43.93 39.02 46.39 59.02 15.98 52.04 

180 41.16 43.38 43.49 56.89 5.27 50.78 

181 37.99 35.08 47.15 58.92 3.93 53.41 

182 42.54 34.73 46.06 60.35 8.92 51.32 

LSD 4.16  1.41 9.62  1.92 

Table 3: Absolute values for seed yield and oil content along with mid-parent heterosis (MPH) 
values for seed yield at the marginal location Niederhörlen and the optimal location 
Rauischholzhausen. The twenty-three experimental hybrids exhibited MPH values for 
yield above 30 % at Niederhörlen. Differences among values are compared in terms 
of least significant difference (LSD, p=0.05) for each variable 

 

Discussion 

In winter oilseed rape, elite breeding material displays a comparatively low 

genetic diversity (Hasan et al. 2006) due to the bottlenecks caused by intensive 

selection for double-low seed quality (zero erucic acid, low glucosinolate 

content) during the past two decades. Therefore, genetically diverse 
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resynthesised rapeseed genotypes from interspecific crosses between the 

diploid parents of B. napus, namely B. oleracea and B. rapa, can exhibit a 

considerably higher heterosis potential than conventional rapeseed (Seyis et al. 

2006). Girke (2002) obtained an improved heterosis effect of up to 22% in 

experimental hybrids by using resynthesised rapeseed as crossing parents. 

This is presumably because resynthesised rapeseed forms can harbor a 

comparatively high proportion of rare alleles (Seyis et al. 2003) that will 

potentially increase the degree of heterozygosity when they are used as 

parents for hybrid combinations with elite oilseed rape lines.  

The location NH is characterized by soils with a low Nmin content in autumn and 

a low nitrogen mineralization rate in spring. In the present study, we identified a 

number of new genetically diverse oilseed rape test hybrids that appeared to 

show a high heterosis level under these sub-optimal growing conditions, 

coupled with a per se yield performance that was superior to that of open-

pollinating and hybrid varieties used as standards. These results suggest that 

F1 rapeseed hybrids display a comparatively wider adaptability to adverse soil 

and climatic conditions than open-pollinating lines, along with a high yield 

potential and yield stability in general. On the other hand, in some of the DH 

lines used as parents for the experimental hybrids, yields were higher than 

those of the best test hybrids. This might be ascribed to fixed heterosis within 

the amphidiploid oilseed rape genome (Abel et al. 2005), which can be 

expected to be comparatively high in DH offspring with a combination of alleles 

from genetically diverse parental lines. In the test hybrids this fixed heterosis 

may have been diluted because the tester ‘MSL-Falcon’ was derived from the 

narrow gene pool of 00 winter oilseed rape and, therefore, presumably 
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harbored many of the same alleles as those of the ‘Express’ parent of the DH 

lines. In other words, the level of heterozygosity among homoeologous genes 

may be higher in some of the DH lines than in the corresponding test hybrids 

generated from them. The level of heterosis in the best test hybrids was 

comparable to the heterosis levels observed previously in the F1 hybrid from 

‘V8’ x ‘MSL-Falcon’, indicating that the potential for enhancing the heterotic 

character of the genetically diverse parent ‘V8’ was exploited to near its 

maximum in the test hybrids from the DH lines. This is particularly interesting in 

the case of genetically diverse lines that exhibit 00 seed quality despite a 

genetically diverse background derived primarily from the ++ gene pool 

(Basunanda et al. 2007). The two test hybrids derived from the DH lines 14 and 

78 exhibited low (<20µmol.g-1) seed glucosinolate levels and low to moderate 

seed erucic acid levels (Basunanda et al. 2007). On the other hand, while the 

erucic acid content is controlled by only two genes in oilseed rape (Fourmann 

et al. 1998) and can be relatively easily eliminated by recurrent selection, the 

glucosinolate content is a complex trait that can often cause an undesired 

linkage drag in materials derived from synthetic rapeseed. Hence these two 

lines are particularly interesting candidates for further variety development. The 

genome of the DH line 78 was derived to almost 60% from that of the 

genetically diverse semisynthetic B. napus parent ‘V8’ (Basunanda et al. 2007) 

and showed a high heterosis level at both NH and RH in the present study. 

In conclusion, our results demonstrated that Brassica napus displays a 

considerable potential for heterosis breeding using single-cross hybrids, based 

on a DH population obtained by using a semi-synthetic line with ++ quality as 

pollinator. This underlines previous suggestions (e.g. Röbbelen and Nitsch 
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1975, Thompson 1983, Schuster 1987) that B. napus genotypes containing 

high levels of erucic acid and GSL represent a comparatively genetically 

divergent source of germplasm for hybrid breeding. 
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Abstract 

The seed oil from oilseed rape and canola (Brassica napus L.) cultivars with 

zero erucic acid (C22:1) and low seed glucosinolate content (00 quality) is 

widely used both as a high-quality edible oil and also as an important source of 

bio-fuel. In Europe and North America the production of 00-quality oilseed rape 

has expanded enormously over the past two decades due to a growing 

demand for renewable fuels. The great increase in growing area for bio-diesel 

production has raised concerns in recent years in the context of food-fuel 

competition, the energy balance of major bio-diesel crops and environmental 

considerations related to intensifying production inputs. In this context, high 

erucic acid rapeseed (HEAR) cultivars with a large increase in oil yield per 

hectare and a considerably improved nutrient efficiency may be an interesting 

alternative for bio-fuel production. Erucic acid vegetable oils can be co-refined 

with fossil oil in existing refineries, where isomerisation of the C22:1 chain 

results in a high-quality fuel with a renewable vegetable oil component. In this 

study we report on novel, high erucic acid rapeseed hybrids that combine very 

high oil content with high seed yield. The seed and oil yields of the new hybrids 

were compared with existing 00-quality and erucic acid rapeseed cultivars in 

multi-year, multi-location field trials with variable nitrogen fertilization inputs. 

Three new hybrid combinations were found to combine high seed yields with 

very high oil content, enabling oil yield per hectare gains of up to 20% 

compared to existing 00 rapeseed and open-pollinated HEAR cultivars. 

Furthermore, high oil yields in the HEAR hybrids were also achieved under 

reduced nitrogen input. Such high-performing erucic acid hybrid cultivars could 

potentially play an important role in the generation of renewable energy on less 
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productive soils or in low-input production systems, considerably improving the 

environmental sustainability of bio-fuel production in comparison to 

conventional bio-diesel. 
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Introduction 

The seed oil from oilseed rape and canola (Brassica napus L.) cultivars with 

zero erucic acid and low seed glucosinolate content (00 seed quality) is a high-

quality edible oil, but today it is particularly important as a source of renewable 

fuel in the form of either crude or purified rapeseed oil or bio-diesel (rapeseed 

methyl ester, RME). In Europe and North America the production of 00-quality 

oilseed rape has increased enormously over the past two decades, largely due 

to the massively growing demand for renewable, non-fossil fuels. For example, 

around half of the rapeseed oil produced in Europe in 2005 was used for fuel 

production (Walla 2006), and around 80% of the rapeseed oil produced in 

Germany, Europe’s largest producer of commodity rapeseed, is today used as 

RME or bio-diesel (UFOP, 2008). The inherent suitability of 00 rapeseed oil for 

both food and fuel production makes the crop particularly attractive for the oil 

processing industry. Conversely, the availability and market price of 00-quality 

food oil from rapeseed or canola is strongly influenced by both the food and 

fuel markets. On the other hand HEAR oil is a strictly non-food product that has 

practically no influence on food-fuel competition. 

The production area for winter oilseed rape in Germany was 1.5 million ha in 

2007, an almost two-fold increase in only around 15 years. Particularly in 

Eastern Europe further massive increases in rapeseed production are projected 

as the market demand for RME and bio-diesel continues to rise. This rapid and 

dramatic increase in growing area for bio-diesel production has raised concerns 

in recent years in the context of food-fuel competition, the energy balance of 

major bio-diesel crops and other environmental considerations related to 
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intensifying production inputs. For example, Crutzen et al. (2008) claimed that 

bio-diesel production from oilseed rape has a negative rather than positive 

effect on greenhouse gas volumes due to atmospheric nitrous oxide (N2O) 

release. This is because high seed yields are generally only achievable in 

oilseed rape with considerable input of mineral nitrogen fertilizers, and a 

relatively low nitrogen use efficiency of the crop causes high post-harvest N 

losses (Rathke et al. 2006). 

Rapeseed cultivars with high contents of erucic acid (C22:1) tend to have an 

elevated volume of seed oil compared to erucic acid-free cultivars. This is 

because the latter possess oleic acid (C18:1) as the primary fatty acid with a 

shorter carbon chain. Disregarding potential variation in the quantity of 

triacylglycerol subunits, the extent of fatty acid elongation is one of the limiting 

factors governing the total oil volume in the seed. The zero-erucic acid 

rapeseed cultivars that today dominant the oilseed market resulted from 

spontaneous mutations in two copies of the gene fatty acid elongase 1 (FAE1) 

which extends C18:1 fatty acids to C22:1 molecules. In nutritional oils erucic 

acid is a non-desired fatty acid due to its non-neutral flavor and an implication 

in the cause of cardiac health problems. On the other hand, the oil from high 

erucic acid rapeseed (HEAR) is an important renewable raw material in plastic 

film manufacturing, in the synthesis of nylon and in the lubricant and emollient 

industries (Barret et al. 1998, Taylor et al. 2001). However, the relatively small 

markets for these products mean that production is very limited. Due to the 

highly different end-use requirements for 00 and HEAR oils, the cropping and 

processing of 00-quality rapeseed oil is strictly separated from HEAR 

production and processing. 
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HEAR oil is not used at all for bio-diesel or RME production. In contrast to the 

C16 and C18 fatty acids that predominate in palm oil, soybean and rapeseed 

oil, respectively, C22 fatty acids have a poorer boiling behaviour (boiling curve), 

which prevents a uniform fuel injection into the engine. This can cause carbon 

accumulation at the injection nozzle and have a negative effect on the 

combustion behaviour of engines using HEAR oils. Furthermore, fuels with 

higher C22 contents tend to leak into the engine oil, necessitating a more 

frequent service and oil change. The preference of the automobile industry is 

for vegetable oils with C12 fatty acids, for example lauric acid-rich oil from 

genetically modified rapeseed (Voelker et al. 1996), however such oils cannot 

currently be produced in temperate climates. Alternatively, co-refining of C22:0-

based HEAR oil together with petroleum-based fuels in conventional oil 

refineries leads to isomerisation (so-called "cracking") of the olefin chains, 

resulting in the desired shorter carbon chain lengths and consequently greatly 

improved properties as an automotive fuel. In this way HEAR oils can 

potentially be implemented as a vegetable oil-based bio-fuel supplement that is 

compatible with current refining and automotive technologies. 

As a facultative outcrossing species, oilseed rape cultivars can be developed 

either by traditional inbreeding techniques or by hybrid breeding. In the latter 

case pure F1 hybrid seed is produced on male-sterile maternal plants using a 

selected line as pollinator. The F1 hybrid plants grown from this seed by the 

farmer tend to have an improved yield performance compared to their parental 

inbred lines, due to the expression of hybrid vigour (heterosis). Hybrid vigour is 

generally more strongly expressed in crosses between genetically diverse 

parental lines. 
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The degree of heterosis in 00-quality oilseed rape is low compared with 

classical hybrid crops like maize and sunflower. One reason for this is that 

modern oilseed rape cultivars derive from a relatively small gene pool, due to 

an intensive bottleneck selection for 00 seed quality in the 1970s: The zero 

erucic acid and low glucosinolate traits each derived from single cultivars that 

were used as the basis for international backcrossing programs to convert 

rapeseed cultivation to 00-quality variety types. On the other hand, HEAR 

material has a much broader genetic diversity (Hasan et al. 2006), hence the 

potential for exploitation of heterosis to increase yield potential is much greater. 

In this study a set of new, high-performing, genetically diverse HEAR inbred 

lines were used as pollinators to produce F1 hybrid seed in combination with a 

male-sterile mother line. The performance of the F1 hybrids in comparison to 

check cultivars with 00 and +0 seed quality was evaluated in field trials in six 

environments spanning three years at a total of four different locations. In each 

environment three variable nitrogen fertilization regimes were tested. The 

performance of the best hybrids is described in the context of sustainable bio-

fuel production from oilseed rape under low-input cropping conditions.  

 

Material and Methods 

Plant Material 

In this study, three HEAR inbred lines with good agronomical performance and 

low seed glucosinolate content (V23, V24 and V24) were selected from 

performance trials in a breeding nursery for use as female parents of crosses to 

produce HEAR experimental hybrids. Pure F1 hybrid seed as generated by 
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controlled pollination of the male-sterile HEAR maternal line ‘MSL-Eruca’ 

(Norddeutsche Pflanzenzucht Hans-Georg Lembke KG, Hohenlieth, Germany), 

which carries a genic male sterility known as Male Sterility Lembke (MSL; 

Frauen and Paulmann 1999). Pure F1 hybrid seed was produced by controlled 

pollination of male-sterile maternal plants using colonies of solitary bees 

(Osmia cornuta) in insect-proof isolation tents; V23, V24 or V25 plants in the 

respective isolation tents served as pollen donors. The hybrids from V23, V24 

and V25 were designated V23-H, V24-H and V25-H, respectively. 

Two sets of registered winter oilseed cultivars were used as checks to evaluate 

the performance of the test hybrids. The first set comprised the hybrid cultivars 

‘Artus’, ‘Panther’, ‘Pronto’ and ‘Talent’ and the two line varieties, ‘Express’ and 

‘Falcon’. The MSL-hybrid ‘Talent’ was the top-selling winter oilseed rape 

cultivar in Germany in the mid 2000s, while ‘Express’ preceded ‘Talent’ as the 

top-selling cultivar in Germany during the late 1990s and early 2000s. The 

second set of checks comprised the HEAR line varieties cultivars, ‘Maplus’, 

‘Maruca’ and ‘Zeruca’ along with the only current HEAR hybrid available in 

Germany, ‘Marcant’. 

 

Field trials 

For evaluation of seed quality traits, oil content, seed yield and oil yield under 

field conditions, the experimental hybrids V23-H, V24-H and V25-H were grown 

together with all check cultivars in performance trials in the years 2003-2006 

(three vegetation periods) at four geographically distinct locations in the state of 

Hesse, Germany. All trials were performed in 10 m2 plots in a lattice design, 
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and three randomized replications per variant to account for neighbour effects. 

The trial sites at Rauischholzhausen (approx. 90km north of Frankfurt) and 

Wöllstadt (20 km north of Frankfurt) are characterized by good cropping 

conditions with predominantly loess soils, while Gross Gerau (30 km south-

west of Frankfurt) has a warmer climate but sandy soil. The site at Niederhörlen 

(120km northwest of Frankfurt) has a considerably colder climate due to a 

higher altitude and is characterized by decomposed acidic slate soil with a poor 

nutrient balance. The soil Nmin content (measured at a depth of 0-90 cm) varied 

from a minimum of 17 kgN/ha at Niederhörlen to a maximum of 60 kgN/ha at 

Rauischholzhausen. A total of 6 different environments (year x location 

combinations) were tested: Niederhörlen in 2004, Groß Gerau in 2005, 

Wöllstädt in 2006 and Rauischholzhausen in 2004, 2005 and 2006, 

respectively. 

In order to evaluate the relative performance of the materials under low-input 

cropping conditions, three different nitrogen (N) fertilization levels were applied 

as variants in all six environments. The N fertilization variants are hereinafter 

referred to as N0, N100 and N200, respectively. Independent of the Nmin 

content, no additional nitrogen fertilizer was applied in the N0 treatment, 

whereas in the N100 and N200 treatments 100 or 200 kg/ha of calcium 

ammonium nitrate (CAN) containing 27% N was applied, respectively. The 

nitrogen application was split into two equal applications over the growing 

season. An application of up to 200 kg/ha CAN is common practice in 

European winter oilseed rape production, while 100 kg/ha N can be regarded 

as a “low-input” application; production with no added nitrogen is not common 

practice due to the high N-demand of oilseed rape. The plots were harvested 
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using a Nurserymaster plot combiner (Wintersteiger, Ried, Austria). Seed yields 

per plot were measured for each of the three replicate plots per variant and 

location, and individual plot samples were collected for laboratory tests to 

measure seed quality traits. 

 

Seed quality analysis 

The crude composition of intact seeds, including contents of oil, protein, 

glucosinolates and major fatty acids, were determined by near-infrared 

reflectance spectroscopy using the NIR System 6500 with WinISI II software 

(FOSS GmbH, Rellingen, Germany) using a standardization and calibration 

(NIRS-Networks for Rapeseed) from the German Agricultural Analysis and 

Research Organisation VDLUFA (Verband Deutscher Landwirtschaftlicher 

Untersuchungs- und Forschungsanstalten, Kassel, Germany). 

Statistical analysis 

Statistical analysis of the yield and quality data from the field trials was 

performed using the software packages SAS 8.02 (SAS Institute, Cary, North 

Carolina, USA) and SPSS 12.0.1 (SPSS Inc., Chicago, Illinois, USA). Relative 

performance data (% of mean reference value) for seed and oil yield values 

were generated using the following references: 1) ‘Talent’ (best-performing 00 

cultivar check); 2) ‘Marcant’ (best-performing +0 cultivar check); 3) mean of all 

00 cultivar checks; 4) mean of all +0 cultivar checks. In order to compare the 

potential of the new hybrids for improved oil production under reduced N-input 

conditions, compared with current optimal production levels under common-

practice cropping conditions, the relative seed and oil yields of the N0 and 
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N100 variants were calculated in relation to the performance in the N200 

treatment of the best 00 and +0 cultivars, and with the means of the 00 and +0 

cultivars, respectively.  

 

Results 

An overview of the seed yield, oil content and oil yield of the three new 

experimental hybrids V23-H, V24-H and V25-H, along with the six 00 cultivar 

checks and the five +0 (HEAR) cultivar checks, is given in Table 1.  

 

    Mean seed yield (t/ha)   Mean oil content (% DW)   Mean oil yield (t/ha) 

Type Accessi
on N0 N100 N200 Overall  N0 N100 N200 Overa

ll  N0 N100 N200 Overall 

 00 
varieties Artus 3.62 4.73 4.90 4.33  52.76 47.97 46.68 49.14  1.91 2.27 2.29 2.13 

 Express 3.45 4.11 4.62 4.04  53.75 50.43 48.48 50.89  1.85 2.07 2.24 2.06 

 Falcon 3.42 4.17 4.56 3.92  52.31 49.23 46.26 49.27  1.79 2.05 2.11 1.93 

 Panther 3.18 4.37 4.83 4.18  53.72 48.42 47.69 49.86  1.71 2.11 2.30 2.08 

 Pronto 3.58 4.56 5.04 4.30  52.94 49.11 46.37 49.47  1.89 2.24 2.34 2.13 

 Talent 3.48 4.90 5.39 4.52  53.23 49.88 47.54 50.22  1.85 2.44 2.56 2.27 

  
Mean all 
00 3.45 4.47 4.89 4.21  53.12 49.17 47.17 49.81  1.83 2.20 2.31 2.10 

 Maplus 2.71 3.71 4.34 3.66  54.55 53.17 50.26 52.57  1.48 1.97 2.18 1.92 

 Marcant 3.65 4.76 5.21 4.49  57.81 53.93 51.41 54.39  2.11 2.57 2.68 2.44 

 Maruca 2.70 3.64 4.28 3.71  56.97 54.56 53.07 54.87  1.54 1.98 2.27 2.03 

 Zeruca 2.92 3.74 4.68 4.14  57.78 53.94 52.03 54.59  1.68 2.02 2.43 2.26 

 
Mean all 
+0 2.99 3.95 4.63 4.00  56.78 53.90 51.69 54.10  1.70 2.14 2.39 2.16 

New +0 
hybrids V23-H 3.44 4.49 5.23 4.36  57.79 55.86 53.84 55.83  1.99 2.51 2.81 2.44 

 V24-H 3.76 4.75 5.11 4.56  57.88 55.03 53.06 55.32  2.17 2.61 2.71 2.52 

  V25-H 3.42 4.70 5.14 4.34   58.61 55.36 53.66 55.88   2.01 2.60 2.76 2.43 

Table 1: Mean seed yield, oil content and oil yield of the experimental HEAR hybrids V23-H, 
V24-H and V25-H along with six 00 quality winter oilseed rape cultivar standards and 
four +0 cultivar standards. Mean values were calculated over a total of six year-by-
location combinations for each nitrogen fertilization treatment (N0, N100, N200; see 
text for details) and three replications per genotype per treatment. Fisher’s least 
significant difference values (LSD; p = 0.05) were to identify groups of genotypes 
(denoted by common superscript letters) with significantly different means for each 
trait.  
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The performance is given as the mean of each accession over all replications, 

locations and years for each of the three N fertilization variants, along with the 

overall mean over all replications, years, locations and N variants. Figure 1 

compares the overall mean seed yields and oil contents of the experimental 

hybrids and checks.  

 

Figure 1: Average seed yields and oil contents from the new HEAR hybrids V23-H, V24-H and 
V25-H compared with six 00 quality winter oilseed rape cultivar standards and four 
+0 cultivar standards. Mean values were calculated over a total of six year-by-
location combinations with three different fertilization treatments (N0, N100, N200) at 
each location and three replications per genotype per treatment. 

 

The overall yield levels of V23-H, V24-H and V25-H were similar to or higher 

than the seed yields of the 00 and 0+ hybrid cultivar checks, with the top yield 

performance being achieved by V24-H. The overall seed yields of V23-H and 

V25-H were exceeded only by the top 00-hybrid ‘Talent’. This indicates a 
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substantial degree of hybrid vigour in the experimental hybrids and an excellent 

overall agronomic performance.  

As expected due to their high erucic acid content, the oil content per seed dry 

weight was significantly higher (LSD, p<0.05) in V23-H, V24-H, V25-H and the 

HEAR check cultivars than in the 00 checks. Whereas the generally poor seed 

yields of the open-pollinated HEAR line varieties resulted in a low oil yield, the 

three new HEAR hybrids and the registered HEAR hybrid ‘Marcant’ all 

combined high oil contents with a high seed yield and hence resulted in 

excellent oil yields per harvested area.  

Tables 2 and 3 give the relative mean seed yield and oil yield, respectively, for 

each of the accessions tested with respect to (a) the best performing 00 hybrid 

cultivar ‘Talent’, (b) the best-performing HEAR hybrid cultivar ‘Marcant’, (c) the 

mean of all 00 cultivar checks, and (d) the mean of all HEAR cultivar checks 

under different N-fertilization treatments. Averaged over all treatments, years 

and locations, the four HEAR hybrids gave a relative oil yield per ha of between 

115% and 120% compared to the mean of the 00 varieties. An even higher 

level of improvement in oil yield (118% to 122% compared to the mean 

performance of the 00 varieties) was seen when only the N200 treatment 

(standard practice in European winter oilseed rape production) was considered.  
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Relative overall seed yield (%) compared to 
best 00 variety Talent  

Relative seed yield at N0 (%) compared to 
best 00 variety Talent at N0 

Relative seed yield at N100 (%) compared to 
best 00 variety Talent at N100 
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If the mean of the 00 varieties is taken as a rough estimate of current yield 

potential in European winter oilseed rape production, this indicates that HEAR 

hybrids could potentially enable between 15 and 22% greater oil production per 

production area with no additional increase in production costs or energy input. 

Even in comparison to the best-performing 00 hybrid cultivar ‘Talent’ the HEAR 

hybrids achieved an overall oil yield increase of between 6 and 11%, with an 

increase of between 5 and 9% under optimal N-fertilization. These comparative 

data represent a remarkable potential improvement in oil production per unit 

cropping area with no additional input costs; hence HEAR hybrids could 

contribute significantly to improving the energy balance of rapeseed oil 

production as a feedstock for renewable fuel.  

On the other hand, the energy and environmental balance of rapeseed oil 

production could also be significantly improved by reducing the input of mineral 

nitrogen fertilizer during rapeseed production. Even with a reduction of the 

standard N application level by 50% to 100 kg N/ha, the HEAR hybrids still 

achieved oil yields that were 8 to 13% higher than the mean oil yields of all 00 

varieties, and equivalent to the oil yield of the best 00 hybrid ‘Talent’ with 200 

kg N/ha. Furthermore, even with no additional N fertilizer (N0 treatment) the 

HEAR hybrid still achieved a remarkable 86 to 94% of the mean oil yields of the 

00 varieties.  

The seeds of all three new HEAR hybrids consistently contained very high 

contents of erucic acid (Figure 2). Besides having a positive impact on the oil 

volume, the long C22:1 fatty acid chain of erucic acid is a valuable raw material 

in the form of erucamide for the production of industrial lubricants and 

biodegradable plastics, for example.  
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Figure 2: Mean erucic acid (C22:1) content (% dry weight) of the new HEAR hybrids V23-H, 
V24-H and V25-H (green bars) in comparison to six 00 cultivar controls (blue bars) 
and four HEAR cultivar controls (blue bars). The whiskers on the bars show standard 
deviation in each genotype over a total of 56 replicates (six environments with three 
different fertilization treatments each, three replications per genotype per 
environment and treatment). 

 

The two hybrids V23-H and V24-H showed levels of erucic acid that were 

significantly higher than all of the HEAR cultivar checks. Interestingly, the 

seeds of the V23-H hybrid also contained very low levels of glucosinolates 

(GSL; Figure 3), with a mean seed GSL content of 7.28 µMol/g dry weight over 

all environments and a maximum of 9.65 µMol/g. Only the HEAR cultivar 

‘Maruca’ (mean GSL content 8.10 µMol/g, maximum 11.50 µMol/g) and the 00 

cultivar ‘Pronto’ (mean GSL content 10.08 µMol/g, maximum 13.35 µMol/g) had 

GSL levels which were not significantly higher than V23-H.  
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Figure 3: Mean seed glucosinolate content (µMol/g dry weight) of the new HEAR hybrids V23-
H, V24-H and V25-H (green bars) in comparison to five 00 cultivar controls (blue 
bars) and four HEAR cultivar controls (blue bars). The whiskers on the bars show 
standard deviation in each genotype over a total of 56 replicates (six environments 
with three different fertilization treatments each, three replications per genotype per 
environment and treatment). 

 

The content of antinutritive seed GSL is a particularly important trait with 

respect to utilization of the seed meal in animal feed mixtures, a factor which is 

of considerable importance to the overall value of seed products used for large-

scale bio-diesel production. The current standard for the maximum accepted 

level of GSL in canola seed meal is is 30µMol/g DW (see http://www.canola-

council.ca/). Depending on the oil content this corresponds to approx. 18 

µMol/g of total seed DW, which is the current limit in European 00 rapeseed 

varieties (Sauermann and Gronow 2008). A reduction to levels close to zero 

would be extremely beneficial to enable increased supplementation of 

rapeseed meal in animal feed mixtures. 



III. Manuscript 1: Increasing the sustainability of vegetable oil based bio-fuel production High-yielding 
erucic acid rapeseed hybrids 

81 

Discussion 

At the current rate of yield increases through advances in breeding and 

agronomy, the production of key food and energy crops will not satisfy the 

growing worldwide demand in the coming decades without major increases in 

production intensity (Ewert et al. 2005). On the other hand, energy crops 

represent an important component of currently available strategies for 

increased independence from fossil fuels. A more efficient and simultaneously 

more environmentally sustainable production of major crops for energy use is 

today a central theme in agriculture. To date only a limited range of suitable, 

high-yielding temperate crops are available for energy utilization in temperate 

climates. Under European cropping systems, the major adapted energy crops 

are maize, for ethanol or biogas production, and oilseed rape for bio-diesel or 

rapeseed methyl ester. Due to the available infrastructure for processing and 

utilization of these two crops, it seems obvious that the greatest short-term 

gains in environmental sustainability and energy-use efficiency for bio-fuel 

production in Europe can be achieved by significantly increasing the production 

efficiency of these major existing crops. In the long term, alternative crops and 

other innovative strategies will doubtless replace many existing bio-energy 

sources, but optimization of existing possibilities is an important priority until 

such alternatives are realized. 

Winter oilseed rape achieves high seed yields of up to 5 t/ha in Western 

Europe (FAOstat data), and the high oil content of almost 50% of seed dry 

weight makes this crop the most prolific sources of bio-diesel under temperate 

cropping conditions. On the other hand, high-intensity winter oilseed rape 

production can lead to considerable post-harvest N losses by nitrate leaching, 
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in the range of 50-100 kg N ha-1 a-1 (Aufhammer et al. 1994, Colnenne et al. 

1998, Gabrielle et al. 1998, Sieling & Christen 1999, Sieling et al. 1997, 

Trinsoutrot et al. 2000), and the consequent release of atmospheric N2O can 

arguably have a negative impact on net greenhouse gas emissions (Crutzen et 

al. 2007). Improving the nitrogen use efficiency of winter oilseed rape to allow 

lower fertilizer applications would therefore an immediate impact on the 

greenhouse gas balance of bio-diesel production from rapeseed. The reduced 

necessity for N fertilization would also considerably improve the energy balance 

of winter rapeseed production, both in terms of the energy invested in fertilizer 

production and in terms of the fossil fuel usage during fertilizer applications.  

The results presented in this paper present compelling arguments for high 

erucic acid rapeseed hybrids as an alternative source of bio-diesel in terms of 

improved energy balance, reduced soil N leaching and potentially reduced 

atmospheric N2O pollution. Being a hydrocarbon of high calorific value with a 

very low flash point, high cetane rating and good lubrication qualities, erucic 

acid can be a valuable component of bio-diesel. On the other hand, production 

of erucic acid-containing rapeseed must be strictly separated from 00-quality 

rapeseed production for nutritional purposes due to the risk of outcrossing. This 

problem could be overcome by allocation of specific production areas for HEAR 

cropping, for example in regions currently not used for oilseed rape production 

due to suboptimal soils are climatic conditions. As seen in the current study, an 

environmentally sustainable low-input production of HEAR oil for bio-diesel or 

industrial usage is also a feasible option under sub-optimal cropping conditions. 

Broadening of the geographical scope for energy crop production to include 

land areas not currently used for arable agriculture has the further advantage of 
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avoiding the so-called food-fuel controversy often associated with energy 

crops. Bio-diesel from high-yielding HEAR hybrids with very high oil content 

could potentially play a significant role in future, environmentally sustainable 

bio-fuel production strategies without further compromising agricultural 

diversity.  
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2. Discussion 

A major objective for sustainable agriculture is the development of crops with 

improved yield and yield stability under simultaneously reduced production 

input. So-called “low-input” crops, with reduced applications of chemical plant 

protection and fertilizers, are particularly relevant with regard to the generation 

of renewable resources (e.g. biofuels, oleochemicals), where a positive energy 

balance requires minimal chemical input and reduced fossil fuel consumption 

during production. Low-input crops can also serve as an important option for 

peripheral agricultural regions where poor soils or suboptimal climatic 

conditions prevent an economically viable agricultural food production. Due to 

their relatively good yield stability on substandard locations, the oilseed crops 

rapeseed and camelina could be viable options for a competitive biofuel and 

oleochemical oil production in marginal areas. One prerequisite for this is the 

development, testing and identification of breeding lines with improved 

performance under low-fertilisation conditions. 

 

2.1 Camelina sativa as an alternative crop for marginal locations 

Today molecular breeding plays an important role in the genetic improvement 

of Brassica oilseed crops (SNOWDON and FRIEDT 2004). The genome of the 

major oilseed crop rapeseed and other major Brassica crops has been 

extensively investigated, however in Camelina sativa very few molecular 

genetic resources have been developed to date and little is known about the 

inheritance of major agronomical traits in this species. Intertribal somatic 

hybridization and RFLP analyses have been used to investigate and utilize 
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disease resistance properties of camelina (HANSEN 1998; SIGAREVA and 

EARLE 1999; KHADHAIR et al. 2001), and VOLLMANN (2005) investigated 

genetic diversity within the species via RAPD markers. No previous study 

reported a genetic map of camelina and even the size of the genome was 

reported differently in various studies. 

In this study, a first genetic map for C. sativa was constructed using AFLP 

markers in a population of recombinant inbred lines that were developed via 

single seed descent from a cross between the phenotypically distinct parental 

varieties ’Lindo’ and ’Licalla’. The map was used to publish the first analysis of 

quantitative trait loci (QTL) in this species (GEHRINGER et al. 2006). Three 

Brassica SSR markers were integrated into the genetic map and five further 

polymorphic SSR markers remained unlinked to the C. sativa linkage groups. 

One of the integrated SSR markers that in oilseed rape is linked to a QTL for 

erucic acid biosynthesis and oil content was the nearest marker to a QTL for 

oleic acid, linoleic acid eicosenic acid and oil content in C. sativa. Furthermore, 

55 further SSR primer combinations showed monomorphic amplification 

products, indicating partial genome homoeology with Brassica species. 

Interestingly, a large proportion of these SSR primers (31 of 55) amplified more 

than one locus in camelina suggests a polyploid or duplicated structure of the 

C. sativa genome. This may explain the different reports of chromosome 

number in the literature, which range from n=6 till n=21. In this study a base 

chromosome number for camelina of n=20 was determined – a number which 

among the Brassicaceae has only been found among known alloploids or 

autoploids (WARWICK et al. 2000). Amphidiploidy and extensive gene 

duplication e.g. in B. napus are thought to contribute to a certain level of so-
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called “fixed heterosis” in oilseed rape (OSBORN et al. 203; ABEL et al. 2005) 

and could be a factor in the high degree of phenotypic plasticity and 

adaptability observed in camelina crops grown under marginal or low-input 

cropping conditions.  

The analysis and evaluation of the data collected in this study and the 

availability of a first genetic map of camelina allowed the identification of a total 

of 23 QTLs related to oil content, seed yield, plant height, oleic acid, linoleic 

acid, linolenic acid, eicosenic acid and erucic acid. Seed yield QTL above the 

significance threshold were only detected in trials with no added nitrogen 

fertilizer, and may represent loci contributing to the competitiveness of 

camelina in low-nutrient soils. The seed yield was also positively correlated with 

both plant height and oil content. The high yield potential of camelina was 

confirmed, whereby even on sandy soils a maximum seed yield potential of up 

to 19 dt/ha without any N-fertilization and up to 30 dt/ha with 80 kgN/ha was 

achieved. This represents a significantly higher seed yield potential than both of 

the parental varieties of the SSD population, Lindo and Licalla, and 

demonstrates that further breeding for seed yield has the potential to further 

improve the profitability of camelina as a spring oilseed crop. In particular, six 

SSD lines showed stable, high yields in excess of the best cross parent across 

a range of environments, including the marginal locations Niederhörlen and 

Groß-Gerau under an N0 regime. These high-yielding SSD lines show 

comparable yields as high as mean yields of other summer annual oil plants 

like spring rapeseed (Brassica napus) which reaches seed yields around 20-30 

dt/ha at the best locations used in the present study (own unpublished data). 

Especially under sandy soil conditions camelina outperforms other summer 
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annual crops and shows a particularly high yield potential (MAKOWSKI 2003). 

The current study succeeded in identification of potential genotypes for 

improving the adaptability of this crop to marginal locations and low-input 

systems, and it also showed the potential for further yield improvements in 

camelina through combination of positive alleles from different sources. The 

genet map and QTL data that were generated are a valuable tool for future 

marker-assisted breeding efforts. Since the publicaiton of the genetic map the 

SSD population has been distributed to research groups in Canada and the 

USA and is being used as a reference population for further QTL analysis 

studies, genetic mapping and genome analysis. 

 

2.2 Heterosis for seed yield of rapeseed hybrids on  marginal areas 

The importance of restored hybrid varieties with improved yield stability and 

adaptability has increased dramatically during the past decade, and today 

hybrids have the largest market share in most major oilseed rape and canola 

growing areas worldwide. However, the yield gain of hybrid varieties compared 

to homozygous varieties is relatively low compared to classical hybrid crops like 

maize or rice. In official plot trials in Germany, winter oilseed rape hybrids 

achieve a mean yield advantage of only around 6% compared to open-

pollinated varieties (cumulative data from state variety trials), while in practical 

winter oilseed rape production the 10-year mean yield advantage of hybrids is 

currently around 11% (data from Kleffmann Group/Norddeutsche 

Pflanzenzucht H.-G. Lembke KG). A significant improvement in yield 

performance through more efficient exploitation of heterosis is therefore an 
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important breeding aim. Correspondingly, the identification of parental 

combinations with strong yield heterosis is a vital step in developing hybrids 

(DIERS et al. 1996; BECKER et al. 1999; MELCHINGER 1999).  

In winter oilseed rape, elite breeding material has a comparatively low genetic 

diversity (HASAN et al. 2006) due to bottlenecks caused by intensive selection 

for double-low seed quality (zero erucic acid, low glucosinolate content) during 

the past two decades. To widen the genetic pool, new resynthesized rapeseed 

genotypes developed from interspecific crosses between the diploid parents of 

B. napus, namely B. oleracea and B. rapa, could be used to provide a higher 

genetically diversity with considerably higher heterosis potential for seed and oil 

yield than conventional rapeseed (SEYIS et al. 2006). GIRKE (2002) obtained 

an improved heterosis effect of up to 22% in experimental hybrids by using 

resynthesised rapeseed as crossing parents. In our study we could reach up to 

43% mid-parent heterosis for seed yield, under reduced N-fertilization, in test-

hybrids produced from semisynthetic rapeseed father lines. A total of 23 

experimental hybrids attracted attention regarding their heterosis potential, 

particularly under low-input conditions. This suggested the existence of a 

higher adaptability of the experimental hybrids to poor soil or low-nutrient 

conditions. These results demonstrate that considerable potential exists in 

Brassica napus for heterosis breeding using single cross hybrids on the basis 

of high erucic acid, semi-synthetic DH lines as pollinator. This underlines 

previous suggestions (e.g. RÖBBELEN and NITSCH 1975, THOMPSON 1983, 

SCHUSTER 1987) that B. napus genotypes containing high levels of erucic 

acid and GSL represent a comparatively genetically divergent source of 

germplasm for hybrid breeding. Responsible for this enhanced performance 
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could be a probably comparatively high proportion of rare alleles (SEYIS et al 

2005) in resynthesised rapeseed forms, which leads to a potential increase in 

the degree of heterozygosity when they are used as parents for hybrid 

combinations with elite oilseed rape lines. 

Nitrogen is the most limiting nutrient for plant production. Considering the 

relatively high cost of N fertilizer and environmental concerns associated with 

excessive N application, increasing N use efficiency of cropping systems is an 

imprtant consideration for sustainable production of field crops (SZUMIGALSKI 

AND VAN ACKER 2006). The production of winter oilseed rape has been 

characterized by a comparatively high input of nitrogen (N). The high intensity 

of production leads to a considerable risk of post-harvest N losses by nitrate 

leaching in the range of 50-100 kg N ha-1 a-1 (AUFHAMMER et al. 1994, 

COLNENNE et al. 1998, GABRIELLE et al. 1998, SIELING & CHRISTEN 1999, 

SIELING et al. 1997, TRINSOUTROT et al. 2000). A reduction of nitrogen input 

and/or an increase in N efficiency of oilseed rape cultivars is expected to 

reduce the risk of nitrate leaching (RIEMER et al. 1998, KESSEL & BECKER 

1999A, 1999B, KESSEL 2000, SEIFFERT 2000, ZHOU 2000, MÖLLERS et al. 

2000, MÜLLER 2002). Use of crop varieties with a lower demand for resources 

(in particularly reduced fertilization and plant protection, coupled with reduced 

fossil fuel inputs) will contribute to the maintenance of a high efficiency of 

agricultural plant production with a simultaneously more sustainable agriculture. 

Breeding varieties with an improved N-use efficiency is attracting attention 

world-wide, due to (1) economical grounds, such as the increasing prices of 

fertilizer, (2) ecological reasons, such as pollution of groundwater resulting from 

nitrate leaching, and (3) socio-economical reasons, such as the need to expand 
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agricultural production to marginal lands for non-food production in order to 

avoid competition with agricultural food production. 

The location Niederhörlen (NH) is a good example for a marginal region 

because it is characterized by a low Nmin content in autumn and a low nitrogen 

mineralization rate in spring, plus additional lower mid-year temperature. 

Especially under these sub-optimal growing conditions, a number of new 

genetically diverse oilseed rape test hybrids showed high heterosis coupled 

with a per se yield performance that was superior to existing open-pollinating 

and hybrid varieties used as standards. These results tend to underline the 

supposition that F1 rapeseed hybrids have a comparatively wider adaptability 

to adverse soil and climatic conditions than open-pollinating lines, along with a 

high yield potential and yield stability in general. On the other hand, some of 

the DH lines used as parents for the experimental hybrids showed a better yield 

performance than the best test hybrids. ABEL et al. (2005) explained such a 

phenomen with so-called “fixed heterosis” within the amphidiploid oilseed rape 

genome. Intergenomic heterozygosity leading to fixed heterosis can be 

expected to be comparatively high in DH offspring that carry a combination of 

alleles from genetically diverse parental lines. In the present case it appears 

that some combinations of alleles  from the semisynthetic parental line ‘V8’ with 

alleles from the recurrent parent ‘Express’ result in considerable fixed 

heterosis. On the other hand the combination of DH lines from ‘Express’ x ‘V8’ 

with ‘MSL-Falcon’ may not show exteremely high levels of heterosis due to the 

relatively narrow gene pool of 00-rapeseed from which both ‘Express’ and 

‘MSL-Falcon’ are derived. In conclusion the may be higher level of 

heterozygosity among homoeologous genes in some of the DH lines 
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outperforming the level in the corresponding test hybrids generated from them. 

The level of heterosis in the best test hybrids was comparable to heterosis 

levels observed previously in the F1 hybrid from ‘V8’ x ‘MSL-Falcon’, indicating 

that the potential for increasing the heterotic potential of the genetically diverse 

parent ‘V8’ was exploited to near its maximum in the test hybrids from the DH 

lines. This is particularly interesting in the case of genetically diverse lines that 

exhibit 00 seed quality despite a genetically diverse genetic background 

derived primarily from the ++ gene pool (BASUNANDA et al. 2007). The two 

test hybrids derived from DH lines 14 and 78 exhibited low seed glucosinolate 

levels (<20 µmol.g-1) and low to moderate seed erucic acid levels 

(BASUNANDA et al. 2007). Whereas erucic acid content is controlled by only 

two genes in oilseed rape (FOURMANN et al. 1998) and can be relatively 

easily eliminated by recurrent selection, glucosinolate content is a complex trait 

that can often cause undesired linkage drag in materials derived from synthetic 

rapeseed. Hence these two lines are particularly interesting candidates for 

further development with regard to variety development. The DH line 78 has a 

genome composition of almost 60% from the genetically diverse semisynthetic 

B. napus parent ‘V8’ (BASUNANDA et al. 2007) and showed high heterosis at 

both NH and RH in the present study. 

 

2.3 High-erucic acid rapeseed (HEAR) hybrids as an alternative 

resource for sustainable biofuel production 

The great increase in growing area for bio-diesel production has raised 

concerns in recent years in the context of food-fuel competition, the energy 
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balance of major bio-diesel crops and environmental considerations related to 

intensifying production inputs. In this context, high erucic acid rapeseed 

(HEAR) cultivars with a large increase in oil yield per hectare and a 

considerably improved nutrient efficiency may be an interesting alternative for 

bio-fuel production. Erucic acid vegetable oils can be co-refined with fossil oil in 

existing refineries, where isomerisation of the C22:0 chain results in a high-

quality fuel with a renewable vegetable oil component.  

The proportion of rapeseed oil produced in Germany that is used for non-food 

purposes has grown during the past decade to around 80%. From the total 

rapeseed oil  produced and processed in Germany, currently around 2.5 million 

tonnes per year, only about 0.5 Mio. t are used for nutritional purposes 

(FRIEDT and SNOWDON 2009). Around 1.5 Mio. t are processed into 

biodiesel (rapeseed oil methyl ester, RME), while some 0.5 Mio. t of processed 

oil are directly used in engines of tractors or lorries.  (source 

http://www.biofuelstp.eu/fuelproduction.html). This fact emphasize the 

increasing relevance of  non-food rapeseed production as important source of 

revenue for farmers. The utilization of the rapeseed oil as non-food oil is 

manifold and it is suited for renewable products as biofuel, as bio-lubricant, as 

feedstock for oleo chemicals and for the production of industrial valuable fatty 

acids like erucic acid (C22:1). Oil with high erucic acid has broad industrial 

applications (TAO and HE 2005) with a high viscosity and a high smoke point 

(LAZZERI et al., 2004) and its found in many Brassica species. High-erucic 

acid rapeseed (HEAR) varieties contain a high proportion of erucic acid (45-

60 % of the oil), and this long chain fatty acid and its derivates are important 

renewable raw materials used in plastic film manufacture, in the synthesis of 
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nylon 13,13 and in the lubricant and emollient industries (BARRET et al. 1998; 

TAYLOR et al. 2001). Regarding this a varied use combined with a high yield 

potential underline the status of rapeseed as an outstanding renewable 

resource.  

At the current rate of yield increases through advances in breeding and 

agronomy, the production of key food and energy crops will not satisfy the 

growing worldwide demand in the coming decades without major increases in 

production intensity (EWERT et al. 2005). To date only a limited range of 

suitable, high-yielding temperate crops are available for energy utilization in 

temperate climates. In Europe the key energy crops are maize for ethanol and 

biogas production, and oilseed rape for bio-diesel or rapeseed methyl ester. By 

significantly increasing the production efficiency of these major existing crops, 

an environmental sustainable and energy-efficient bio-fuel production could be 

achieved.  

The current cultivation area in Germany of high-erucic acid rapeseed is 

estimated at 20.000 to 30.000 ha (SAUERMANN 2006). Correspondingly the 

variety spectrum is small as well, with only three registered varieties currently 

on the market. These three varieties, ‘Maplus’, ‘Maruca’ and ‘Hearty’, all derive 

from the same breeding company (Norddeutsche Pflanzenzucht Hans-Georg 

Lembke KG Hohenlieth). Whereas for 00-quality oilseed rape the cultivation 

area of hybrids exceeds that of open-pollinated varieties, hybrid HEAR varieties 

are of only secondary importance with only a single hybrid cultivar, ‘Maruca’, 

being released to date. In the present study it was clearly demonstrated that 

through breeding of new HEAR hybrids the seed and oil yield per hectare could 

be significantly increased, and a high adaptability of the crop to marginal areas 
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and low-input growing condititons could be achieved.  Three new HEAR hybrid 

combinations were found in multi-year, multi-location field evaluations to 

combine high seed yields with very high oil content. This enabled oil yield per 

hectare gains of up to 20% compared to existing 00 rapeseed and open-

pollinated HEAR cultivars. Furthermore, high oil yields in the HEAR hybrids 

were also achieved under reduced nitrogen input. Such high-performing erucic 

acid hybrid cultivars could potentially play an important role in the generation of 

renewable energy on less productive soils or in low-input production systems, 

considerably improving the environmental sustainability of bio-fuel production in 

comparison to conventional bio-diesel. HEAR hybrids therefore represent a 

highly interesting alternative source of bio-diesel in terms of improved energy 

balance, reduced N-fertilizer input, reduced soil N leaching and potentially 

reduced atmospheric N2O pollution.  

 

2.4 Conclusions 

This thesis presents materials and data from three oilseed crops that show 

great potential for production of food and non-food vegetable oils on marginal 

lcoations or under low-input cropping conditions. The alternative oilseed crop 

camelina was shown to be a suitable summer annual crop with high yields on 

locations with dry or nutrient-poor soils, and a basis was laid for further 

breeding of this rediscovered crop using modern molecular breeding tools. New 

winter rapeseed hybrids with 00 seed quality were found to show high hybrid 

vigour under low-input conditions and could serve as a resource for broadening 

the narrow genetic basis of current 00 oilseed rape varieties. The high potential 
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of hybrids for marginal locations as an enrichment for crop rotations was 

demonstrated. Finally, a set of extremely high-performing, high erucic acid 

rapeseed (HEAR) hybrids was generated that could potentially play an 

important role in the generation of renewable energy on less productive soils or 

in low-input production systems. In future the materials generated in this work 

might play a role in improving the environmental sustainability of bio-fuel 

production and increasing agricultural options for marginal locations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Summary 

99 

3. Summary 

In this study the productive efficiency and stability of winter oilseed rape 

(Brassica napus L.) and camelina (Camelina sativa Crtz.) genotypes has been 

tested for production under low-input conditions (reduced N-fertilization and 

plant protection) in the Lahn-Dill region (Hesse, Germany). Furthermore these 

studies aimed at the identification of superior varieties and breeding lines 

regarding adaptability to marginal conditions (locations, N-fertilization) as a 

starting material for subsequent breeding programmes. 

The crop species Camelina sativa is basically suitable for low input production 

systems because of its good adaptability to adverse environmental conditions 

and its comparatively short vegetation time. On the basis of the achieved 

selection progress concerning productivity further improvements of the major 

agronomic and quality characteristics should be possible by breeding. In this 

study a first genetic map for C. sativa was constructed using AFLP and 3 

Brassica SSR markers in a population of recombinant inbred lines resulting 

from a cross of phenotypically distinct parents. The map was used to localize 

QTLs for different agronomical traits of interest (1,000 seed weight, seed yield, 

oil content, and plant height) and additional promising lines from the yield tests 

with improved yield performance could be selected. The results represent a 

starting point for future marker-assisted camelina breeding.  

Oilseed rape is the most important oil crop in Europe and in particular, winter 

rape is very well suitable for low input production systems, since it produces the 

highest grain yield of all adapted oil crops even under less intensive 

agronomical conditions. Today, the high yield potential of oilseed rape is 
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successfully exploited by hybrid breeding. In this study a value of up to 43% 

mid-parent heterosis for seed yield could be observed among selected test 

hybrids compared to that of their parental DH lines particularly at the nutrient-

poor site. This demonstrates the suitability and adaptability of highly heterotic 

rapeseed hybrids on marginal locations and suggests the existence of a strong 

heterotic effect on nutrient uptake efficiency. 

But regarding renewable fuels not only rapeseed with 00-quality attracts 

attentions. In this context high erucic acid rapeseed (HEAR) cultivars with a 

large increase in oil yield per hectare and a considerably improved nutrient 

efficiency may be an interesting alternative for bio-fuel production. In this study 

three new hybrid combinations were found to combine high seed yields with 

very high oil content, enabling oil yield per hectare gains of up to 20% 

compared to existing 00 rapeseed and open-pollinated HEAR cultivars. 

Furthermore high oil yields in the HEAR hybrids were also achieved under 

reduced nitrogen input. Such high-performing erucic aid hybrid cultivars could 

potentially play an important role in the generation of renewable energy on less 

productive soils or in low-input production systems, considerably improving the 

environmental sustainability of bio-fuel production in comparison to 

conventional bio-diesel.  
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4. Zusammenfassung 

Ziel der vorliegenden Untersuchungen war zunächst die Erfassung von 

Kriterien der Leistungsfähigkeit der einheimischen Ölpflanzen Winterraps 

(Brassica napus L.) und Leindotter (Camelina sativa Crtz.) für die Produktion 

an marginalen Standorten und unter low-input Bedingungen (reduzierte 

Stickstoffdüngung und minimaler Pflanzenschutz) in der Lahn-Dill Region 

(Hessen, Deutschland). Ferner sollten durch diese Untersuchungen Potentiale 

zur züchterischen Verbesserung der Anpassungsfähigkeit an Grenzstandorte 

und verminderte N-Düngung identifiziert und entsprechende Zuchtprogramme 

initiiert werden.  

Leindotter ist aufgrund seiner guten Anpassungsfähigkeit an widrige 

Bedingungen und kurzen Vegetationszeit prinzipiell für low-input 

Produktionssysteme geeignet. Auf der Basis der erzielten Selektionsfortschritte 

bzgl. Ertragsfähigkeit sollten weitere Verbesserungen der 

Nutzungseigenschaften durch Kombinationszüchtung möglich sein. In der 

vorliegenden Untersuchung wurde eine erste genetische Karte für Leindotter 

erstellt, im wesentlichen bestehend aus AFLP-Markern sowie drei Brassica 

SSR-Markern. Die dafür verwendete Population resultierte aus einer Kreuzung 

von phänotypisch unterschiedlichen Eltern. Auf der genetischen Karte konnten 

verschiedene QTLs für agronomisch relevante Merkmale (Ertrag, Ölgehalt, 

Pflanzenhöhe und Tausendkorngewicht) lokalisiert und zusätzlich aus den 

Feldversuchen vielversprechende Leindotterlinien mit verbesserter 

Ertragsleistung selektiert werden. Die Ergebnisse bilden einen Ansatzpunkt für 

eine zukünftige Marker-gestützte Leindotter-Züchtung. 
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Winterraps ist die bedeutendste Ölpflanze in Europa und die zweitwichtigste 

Ölsaat weltweit. Raps ist gut geeignet für low-input Produktionssysteme, da er 

die höchsten Kornerträge aller Ölpflanzen selbst an weniger günstigen 

Standorten zeigt. Das Ertragspotential von Raps wird heutzutage durch die 

systematische Nutzung der Heterosis in Form der Hybridzüchtung im besser 

ausgeschöpft. In dieser Arbeit konnten aus einer Serie von Testhybriden bis zu 

43% Heterosis für den Kornertrag im Vergleich zum Mittel der elterlichen DH-

Linien erzielt werden. Dabei war die Überlegenheit der Hybriden unter 

extensiven Standortbedingungen besonders hoch, so dass man von einem 

ausgesprochenen Heterosis-Effekt für Stickstoffaufnahmeeffizienz sprechen 

kann. Dieser Befund verdeutlicht die gute Eignung der Rapshybriden für eine 

sowohl ökonomisch tragfähige als auch ökologisch akzeptable 

Ölsaatproduktion an marginalen Standorten. 

Aber hinsichtlich erneuerbarer Brennstoffe ist nicht allein Qualitätsraps mit 00-

Qualität von Interesse sondern insbesondere auch Hoch-Erucasäure Raps 

(HEAR, high erucic acid rapeseed). HEAR-Hybriden zeigen einen signifikant 

höheren Ölertrag pro Hektar und eine bessere Stickstoffeffizienz als 00-Raps, 

so dass HEA-Raps ggf. eine Alternative zu 00-Raps für die 

Biokraftstoffproduktion sein könnte. In der vorliegenden Studie konnten drei 

neue Hybridkombinationen identifiziert werden, die bei reduzierter 

Stickstoffdüngung einen sehr hohen Ertrag erreichen: der Ölertrag dieser 

Hybriden lag mehr als 20% über dem Durchschnittsertrag gängiger 00-

Rapssorten und offen abblühenden HEAR-Linien Solche hochleistungsfähigen 

Hoch-Erucaraps Sorten könnten künftig ggf. eine größere Rolle in der 

Produktion von erneuerbarer Energie in Low-input Produktionssystemen unter 
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marginalen Bedingungen spielen. Damit könnte letztendlich die Energie- und 

Umweltbilanz der Produktion von Biokraftstoffen im Vergleich zur heutigen 

Biodieselerzeugung  möglicherweise verbessert werden. 
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