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1 

1 Introduction 

1.1 Motivation 

Copper and zinc complexes in general are interesting due to their importance in biological 

processes.2-7 Proteins containing copper or zinc ions in their active centers participate in the 

metabolism of prokaryote and eukaryote organisms.8-9 The functions of the different 

enzymes reach from selective DNA binding zinc finger proteins, where zinc dictates the 

structure of the active core, to copper proteins like tyrosinase that selectively oxidizes 

phenol to catechol. Additionally, there are essential enzymes with heterobinuclaer active 

sites containing copper and zinc ions. Human copper zinc superoxide dismutase (Cu/Zn 

SOD) for example, rapidly binds and deactivates superoxide radicals occurring during 

respiration processes.10 An excess amount of this highly reactive molecule causes severe cell 

damage leading to cell death. Therefore, it is involved in aging processes.11 Binding and 

converting this radical into less reactive species like peroxide that is further deactivated by 

catalases, is crucial for living organisms. The structure of the active core of Cu/Zn SOD and a 

proposed reaction mechanism for its reaction with superoxide radicals is shown in Figure 1 

to demonstrate the different functions of the two transition metals.8  

 
Fig. 1 Catalytic cycle of human Cu/Zn SOD deactivating the highly reactive superoxide radical.8 
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While zinc(II) is important for the structure of the active core and influences the reduction 

potentials, the copper ion is involved in the redox chemistry of the enzyme.12-13 Knowledge 

about the mechanisms of such biological processes is important, not only due to 

pharmaceutical aspects, but furthermore for possible application in chemical processes in 

industry.14-15 Mimicking the active cores of enzymes is therefore of special interest for 

chemical researchers with regard to gain knowledge about natural processes and the 

synthesis of new coordination compounds with extraordinary properties. 

Therefore, modeling the functionality of such metalloproteins using low molecular weight 

transition metal complexes has turned out to be an interesting research area in bioinorganic 

chemistry and homogeneous catalysis. In regard to obtain useful model compounds, ligand 

design plays an important role. Here, bispicolylamine (bispic) as binding motif for various 

transition metal complexes is well known and offers a great variety of different complex 

properties.16-18 The facile selective derivatisation of bispicolylamine provides a coordination 

motive for transition metals with the possibility of combination with additional 

functionalities (e.g. electron donors for further coordination, hydrogen bond donors or 

tuning of the electronic properties of the ligand). Figure 2 shows the molecular formulas of 

bispicolylamine and some prominent relatives that are well-known for the extraordinary 

properties of the related metal complexes. 

 
Fig. 2 Structures of bispicolylamine and related ligands. 

Studies involving copper and zinc complexes using derivatives of bispicolylamine as ligand 

were performed previously and are described in more detail in the following chapters.  

1.2 Activation of Small Molecules 

1.2.1 Activation of Dioxygen 

The redox chemistry of copper(I) coordination compounds as active cores in enzymes is of 

growing interest due to its catalyzing capability for selective oxidation reactions under mild 

conditions. Enzymes containing copper in their active site serve as catalysts for various 

reaction types. Figure 3 depicts a summary of the different functions of selected enzymes. 

Mimicking the active centers, or at least mimicking the functionalities of the natural 
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prototypes remains a challenging aim. Nevertheless, it is very promising in regard to the 

knowledge that is still to be gained about natural processes and the benefits of possible 

applications deriving from the new findings. 

 

Fig. 3 Selected reaction types catalyzed by copper containing enzymes.4 

The activation of dioxygen by copper(I) complexes is well known and numerous active 

species could be isolated and were structurally characterized so far.4, 19-21 Figure 4 gives an 

overview of the currently known species.  

 
Fig. 4 Side- and end-on copper dioxygen species.22 
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In contrast to related iron chemistry, a copper(III)-oxido species has not been isolated until 

now. This is interesting in so far that this species is regarded as an important intermediate 

in oxidation reactions. 

To give an example of bispic related molecules involved in the studies of reactive oxygen 

intermediates, the tripodal ligand tris(methylpyridyl)amine (tmpa) (see Figure 1) is a 

perfect candidate. Tmpa has a fourth nitrogen donor group, however its close relationship to 

bispic is still obvious. Already in 1988 Karlin and co-workers reported the structure of a 

copper bis-μ-peroxido species stabilized by tmpa as ligand.23 More recently, Würtele et al. 

were able to present a series of room temperature stable copper bis-μ-peroxido complexes 

with tmpa and selected derivatives as ligands.24 In solid state the bulky tetraphenylborate 

anion was used to protect the active species leading to an extremely extended lifetime of the 

complexes. Furthermore, the catalytic activity of these complexes to oxidize toluene could 

be demonstrated.24 

1.2.1.1 C-H Bond Activation 

Oxidative C-H bond functionalization is crucial for the synthesis of many important organic 

compounds.25 A challenging aim is the utilization of dioxygen as an oxidant in the synthesis 

of complex organic targets like pharmaceuticals. In that regard the biologically inspired 

oxidation reactions using copper or iron complex compounds that mimic the reactivity of 

the corresponding enzymes are very promising due to the advantages they provide: 

substrate specificity, regio- and stereoselectivity and the operation under mild conditions.26 

An overview of the proposed O2 activation mechanisms of various iron and copper 

compounds is shown in Figure 5. 

 
Fig. 5 Proposed O2 activation mechanisms for heme (a), di-iron or dicopper metallo oxygenases (b) and 

mononuclear non heme iron and copper complexes.26 

In contrast to heme iron chemistry understanding of related oxidation reactions in copper 

chemistry is limited. Especially the missing link, a copper-oxido species described above 
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awaits its detection and characterization. So far its occurrence is only postulated. Recently, 

Karlin and co-workers published the first example of an intermolecular C-H bond activation 

mediated by a copper(II) superoxido species, that could be of relevance for the reactivity of 

dopamine-β-monooxygenase (DβM) and peptidylglycine-α-hydroxylating monooxygenase 

(PHM) enzymes.18 The presented superoxido compound is not reactive towards substrates 

with weak C-H bonds like dihydroanthracene. However, as a strong H atom (H•) and hydride 

(H−) donor it leads to the decay of the substrate that could be detected at -125 °C. In this 

case the homolytical cleavage of the activated C-H bond is most likely the initial step of the 

reaction. Figure 6 shows the proposed reaction mechanism. 

 
Fig. 6 Reaction mechanism of the H- abstraction with a copper(II) superoxido complex using a ligand closely 

related to tmpa.18 

More recently, Tolman and co-workers reported the synthesis and characterization of a new 

reactive copper(III) hydroxido intermediate that has been described by spectroscopy and 

theoretical calculations.27 Formally, this intermediate could be considered as a protonated 

form of the copper(III) oxido species that is capable of rapid hydrogen abstraction from 

dihydroanthracene, leading to a copper(II) aqua complex. The rearomatisation of 

dihydroanthracene into anthracene is energetically rather simple. Never the less this species 

could be of importance in many oxidation reactions involving copper coordination 

compounds.  

These two examples of model compounds for the enzymatic activation of C-H bonds 

illustrate, that mechanistic insights in this field are limited to systems that incorporate weak 

C-H bonds. So far reactive intermediates described above could not be observed and 

identified in the activation mechanism of C-H bonds with bond-strengths comparable to the 

substrates of their natural prototypes. To demonstrate the potential and importance of 

copper-catalyzed selective aerobe oxidation reactions for the synthesis of complicated 

targets e.g. in the pharmaceutical industry, Wendlandt et al. reported a good overview as an 

alternative to the widespread palladium catalysis.28 
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1.2.2 Activation of Carbon Dioxide 

The fixation and activation of carbon dioxide has attracted increasing interest in the past 

due to limited amount of fossil resources. Efforts to use carbon dioxide as C1 source and to 

convert it into usable liquid fuels or other organic basic compounds are challenging. Figure 7 

shows a generalized path from carbon dioxide to methanol in three steps.29 

 

Fig. 7 Generalized pathway of the overall reduction of CO2 to methanol 

Thus, numerous investigations are concerned with metal complexes that are able to 

reversibly bind and activate carbon dioxide from air. Examples of organic compounds, 

transition metals in complexes and simple salts are known that are able to transform it into 

carbonate salts or carbamates. Selective reductive conversion and the generation of CO2• - as 

active species are more ambitious aims.29-30 

In this regard Angamuthu et al. reported an interesting electrocatalytic conversion of carbon 

dioxide using a copper(I) complex with a bispicolylamine ligand unit.17 They postulated a 

catalytic cycle presented in Figure 8, where carbon dioxide from air coordinates to a 

dinuclear copper(I) complex and is reduced to the reactive CO2• - radical in a first step. The 

recombination of four radicals leads to the formation of two oxalate anions that build a 

tetranuclear coordination unit. 

 
Fig. 8 Proposed catalytic cycle for the formation of oxalate from carbondioxide.17 
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In order to recover the catalytic active copper(I) species, oxalate is removed by addition of 

Li+ and the formation of hardly soluble lithium oxalate in acetonitrile. The copper(II) 

complex coordinated by acetonitrile is electrochemically reduced to the active copper(I) 

species.17 While there is room for improvement for this reaction the results clearly 

demonstrate that copper(I) complexes with dipicolylamine units are useful for the reduction 

of carbon dioxide leading to more useful organic compounds.  

1.3 Zinc Coordination Compounds as Selective Ion Sensors 

Selective detection of zinc or the sensing of different anions in solution by emission 

spectroscopy is of great importance for the research on natural processes and further 

insight into chemical reactions therein. Zinc is an essential element for living organisms and 

is crucial for the functionality of many enzymes involved in cellular processes.31 Improved 

techniques to monitor zinc in these natural processes would provide an easy way of 

monitoring the progress of a specific reaction in situ or even in vivo by measuring the 

wavelength shift of emission or the enhanced or quenched emission intensity of the solution 

under changing conditions. This would help to answer numerous questions in chemical 

biology.32 To achieve this goal, several obstacles have to be overcome: the compounds need 

to be soluble in aqueous solution; they have to be non toxic to cells and the emission 

properties have to change selectively upon reaction with the target molecules. 

Derivatisation of potential organic sensor molecules again is a versatile instrument to 

influence the properties of the used compounds. One strategy is adding electron donating 

functionalities to strongly colored or fluorescent organic molecules to enable the specific 

binding of metal ions. Bispic binding units are used because of their affinity to zinc(II) ions 

compared to alkaline or alkaline-earth metal ions omnipresent in cellular milieu.33  Upon 

complexation of the metal ion the highest occupied molecular orbital/lowest unoccupied 

molecular orbital (HOMO/LUMO) energy gap of the compound is influenced. Therefore, the 

emission wavelength is shifted or the emission intensity is quenched or enhanced. As an 

example, “Turn-on” sensors can often be explained with the photoinduced electron transfer 

(PET) effect depicted in Figure 9.34 

 

Fig. 9 Photoinduced electron transfer effect of metal ion coordination on the emission of a fluorophore.34 
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The electron donating bispic units lead to a quenched emission, until the nitrogen atoms are 

coordinated to a metal ion. This inhibits the quenching PET process and the coordination 

compounds show a strong fluorescence.  

Recently, Lippard and co-workers reported detailed studies on ditopic fluorescence sensors 

containing bispic as zinc(II) binding receptor.33 The emission behavior of the archetype of 

the presented sensor molecule is strongly influenced by the pH and the changing 

protonation grade of the amine functions of the bispic receptors, shown earlier by the same 

group.35-36 As a good example for the potential of rational ligand design, derivatisation of the 

latter lead to a decreased background fluorescence due to lowering of the basicity of the 

binding pockets. This enabled a larger pH spectrum, where the sensor could be applied. 

Figure 10 depicts the unbound sensor molecule consisting of two binding bispic pockets 

bound to a fluorophore body and their different proposed analogous emissive zinc 

complexes.35 

 

Fig. 10 Free Sensor molecule and different zinc coordination compounds leading to altering emission 
behavior. 

These receptors show an interesting OFF-ON-OFF behavior towards increasing zinc ion 

concentration. At lower concentrations only one binding site is occupied by a zinc(II) ion 

and upon coordination of the second ion, the compound exhibits a significantly enhanced 

fluorescence. The maximum intensity at a ligand/zinc(II) ratio of 0.5 provides an easy 

protocol to determine the zinc(II) concentration.35 

Additional to metal ion sensing, ligand design for specific binding of the metal complexes to 

biomolecules can also lead to significant changes of the fluorescence and is therefore of 

great interest. Important targets are phosphate groups, present in many biomolecules. The 

real time detection of phosphorylated biomolecules by fluorescence sensors is an active 

field of research.37 To achieve this goal one attempt is to mimic the recognition strategy of 

metalloenzymes containing more than one metal ion like alkaline phosphatase that carries 

two zinc(II) ions in its active site.38 On this basis Hamachi and co-workers designed a set of 

chemosensors specific for phosphate derivatives that are based on two zinc ions 

coordinated by bispic.39 They introduced three different recognition strategies: (a) 

simultaneous use of two zinc binding motifs for a monophosphorylated species; (b) cross 

linking interaction with a multi phosphorylated protein; (c) chemosensor combined with a 

phosphoprotein binding pocket (see Figure 11). Coordination of the zinc(II) ion to the 

phosphate functionality results in a change of the emission signal in different ways, 
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demonstrated with ATP detection. Principals of the sensing modes are depicted in Figure 12. 

39 

 
Fig. 11 Recognition strategies of ditopic zinc coordination compounds.39  

 

 

Fig. 12 Different sensing modes.39 
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Nevertheless, phosphate recognition is not limited to the described mechanisms. Recently, 

Huang et al. reported a macrocyclic zinc(II) coordination compound where the coordination 

of phosphate causes a structural change inhibiting π-stacking of the two anthracene 

residues and thus the excimeric emission.40 The strong monomeric emission wavelength of 

the new formed complex is hypsochromically shifted and can easily be distinguished from 

the excimer. More recently, Kim et al. published the first liposome based fluorescence sensor 

coupled with a zinc(II) bispic recognition unit on a micro array chip demonstrating the 

increasing applicability of artificial chemosensors of this type.41  

The activity in this research field is furthermore described briefly in chapter 3.1. It 

demonstrates the importance of selective ion sensing for the understanding and monitoring 

of natural processes and gives an idea of bispic derivatives as versatile recognition units. 

Although great improvements could be achieved, there is still need for more basic research 

and the exploration of different residues that are capable of increasing the selectivity and 

applicability of this type of chemosensors. 

1.4 Formation of Coordination Polymers 

Organic Polymers are well known and of great importance for our daily life. More 

uncommon are coordination polymers, which were described for the first time about 50 

years ago. At this time one-dimensional coordination polymers (1D CPs) consisting of metal 

ions linked via bridging organic molecules were introduced.42 These compounds exhibit 

interesting electrochemical, optical or magnetic properties that could be exploited in new 

materials.43 

Today, coordination polymers are an active field of research due to their extraordinary 

possibilities concerning functional materials. Hoskins et al. promoted the development of 

coordination compounds when they first described the synthesis of three-dimensional 

Metal-organic frameworks (MOFs) 20 years ago.44-45 MOFs consist of a network of metal 

ions and organic linkers with definite topology leading to highly porous structures. Since 

that time coordination polymers have attracted a lot of attention due to their highly 

interesting properties. Functional properties are dominated by the pore sizes, shapes and 

environments.46 Therefore, directed synthesis of such compounds is of special interest. 

Various strategies are applied to achieve the desired products. While metalorganic chemists 

prefer electrochemical, mechanochemical or precursor concepts as well as in situ linker 

synthesis, zeolite chemists use solvothermal reaction conditions, structure directing agents, 

mineralizers or microwave assisted synthesis instead.47 Although great progress has been 

made in the synthetic strategies of MOFs, so far efforts to really design such materials were 

not successful. A recent review by Stock et al. describes the numerous routes to various 

MOFs.48  

Due to the high number of possible applications deriving from the extraordinary high 

porosity, research in the field of coordination polymers concentrates on MOFs as targets.46 

Nevertheless, 1D CPs that initialized the field of research still attract attention due to their 

magnetical, optical electrical or mechanical properties. Only recently, Leong et al. gave a 

good overview on the variety of different types of 1D CPs with selected examples for 
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compounds with extraordinary properties.49 In Figure 13 various common structure motifs 

for 1D CPs are depicted. The majority of compounds consist of linear or zigzag shaped 

building blocks that assemble in bigger superlattices mediated by solvent, anion or other 

attractive or repulsive interactions. Interestingly, there are 1D CPs exhibiting permanent 

porosity and gas storage/separation capability.49 

 
Fig. 13 Common structure motifs of 1D CPs.49 

Again, discrete structures are difficult to design due to the numerous possible interactions 

that influence the formation of coordination polymers. Schröder and co-workers described 

supramolecular interactions in coordination polymers based on silver bipyridine 

compounds and attempted to correlate these with structural characteristics.50 There are in 

most cases too many different variables to consider. The crystallizing conditions as well as 

the solvent or the used anion, for example, participate in the structure forming process. 

Thus, serendipity is most likely to be the biggest driving force for the discovery of new, 

unexpected applications and structures.  

In the following, some examples of 1D CPs with outstanding properties are presented to 

underline the relevance of this class of compounds beside the omnipresent MOFs. Cui and 

co-workers recently reported a zigzag-shaped CP, that is forming definite pores and is 

capable of separating cyclohexane from benzene utilizing the disability of aliphatic 

cyclohexane to adsorb on the hydrophobic pore surface in contrast to benzene that is 

strongly adsorbed.51 Lee et al. described an example of a linear 1D CP that exhibits high 

porosity in the solid state and is capable of hydrogen storage. Interestingly, single crystals of 

the reported compound undergo reversible single crystal to single crystal (SCSC) 

transformation upon dehydration. Additionally, guest molecules capable of forming 

hydrogen bonds can be intercalated.52 As an example for extraordinary properties of the 

more exotic ladder type structure, Mc Manus et al. reported a fluorescent zinc compound 

that intercalates aromatic solvent molecules into the cavities of the zinc bipyridine 

framework, leading to a conformational change observable through a shift of the emission 

wavelength.53 Furthermore, 1D CPs are applicable as polymeric gels, fibers and 

nanostructures.49 Only recently, Zamora and co-workers presented a good overview on the 

progress of 1D CPs on surfaces and their potential to be utilized as single molecule devices.54 
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Here again the bispicolylamine coordination motif can be applied. Thus, Lippard and co-

workers reported on a two-dimensional coordination polymer containing a trimetallic 

copper(II) building block as binding motif for permetallate anions.55 Figure 14 shows the 

bispicolylamine containing ligand and the trimetal unit. The copper(II) chlorido complex 

forms a two-dimensional structure with hexagonal pores (  = 20 Å). The trimetallic units 

are connected through intermolecular chlorido bridges between two copper units.  

 

Fig. 14 a) Ligand tris-dpa and b) the trimetallic copper(II) chlorido unit forming the two-dimensional 
coordination polymer. 

Upon addition of perrhenate, the weakly bound PF6- anion is readily exchanged. The new 

formed compound exhibits two forms of anion trapping, one of which being the formation of 

a (μ3-ReO4-) bridge, where the anion is covalently bound to the copper(II) atoms. The second 

perrhenate anion is located in a cavity of the polymeric skeleton, immobilized by binding 

coulomb interactions. A possible application is trapping of anions that are able to disturb 

physiological processes and therefore affect human health. Pertechnetate occurring as 

nuclear fission waste product with a good environmental mobility is one of the addressed 

targets. Technetium reacts very similar to rhenium, hence the published work provides a 

first promising step towards pertechnetate trapping. Furthermore, both technetium as well 

as rhenium are applied as radionucleoides in medicine.55 

1.5 Goals 

This work is intended to provide further insight in the interesting and versatile chemistry of 

copper and zinc complexes using several derivatives of bispicolylamine as ligands. This class 

of ligands, including tripodale amine ligands closely related to tmpa (see Figure 1), have a 

high potential for useful applications of their transition metal complexes. Hence, basic 

research concerning the properties of new coordination compounds using this ligand type is 

promising. Starting point is the synthesis and characterization of new and well-known 

relatives of the parent amine bispicolylamine. Among the variety of transition metals this 

work focuses on copper(I), copper(II), and zinc(II) as central atoms for coordination 

compounds. 
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The synthesis and structural characterization of new, so far unknown metal complexes with 

the ligands as the next step is intended to enable studies on possibly interesting properties 

of these compounds. Amongst others, the reactivity of copper(I) complexes towards 

dioxygen, emission properties of zinc(II) complexes and the ability to form coordination 

polymers are topics that are addressed in the following.  
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2 Ligands Containing Bridged Bispicolylamine Units 

2.1 Syntheses, Characterization and Magnetic Studies of Copper(II) 

Complexes with the Ligand N,N,N’,N’-Tetrakis(2-pyridylmethyl)-

1,3-benzenediamine (1,3-tpbd) and its Phenol Derivative 2,6-

Bis[bis(2-pyridylmethyl)amino]-p-cresol] (2,6-Htpcd) 

This work has been published previously in Inorganic Chemistry 2012, 51(1), 88-97. 

Sabrina Turba,a Simon P. Foxon,a Alexander Beitat,a Frank W. Heinemann,b Konstantin 

Petukhov,c Paul Müller,c Olaf Walter,d Francesc Lloret,e Miguel Julve,*e and Siegfried 

Schindler*a 

aInstitut für Anorganische und Analytische Chemie, Justus-Liebig-Universität Gießen, 

Heinrich-Buff-Ring 58, 35392 Gießen, Germany 

bInstitut für Anorganische Chemie, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 

91058 Erlangen, Germany 

cPhysikalisches Institut III, Universität Erlangen-Nürnberg, Erwin-Rommel-Strasse 1, 

91058 Erlangen, Germany 

dInstitut für Technische Chemie – Chemisch-Physikalische Verfahren (ITC-CPV), 

Forschungszentrum Karlsruhe, Postfach 3640, 76021 Karlsruhe, Germany 

eInstituto de Ciencia Molecular, Universidad de Valencia, C/ Catedrático José Beltrán 2, 

46980 Paterna (Valencia), Spain 

The copper(II) complexes [Cu4(1,3-tpbd)2(H2O)4(NO3)4]n(NO3)4n·13nH2O (1), [Cu4(1,3-

tpbd)2(AsO4)(ClO4)3(H2O)](ClO4)2·2H2O·0.5CH3OH (2), [Cu4(1,3-tpbd)2(PO4)(ClO4)3 

(H2O)](ClO4)2·2H2O·0.5CH3OH (3), [Cu2(1,3-tpbd){(PhO)2P(O)2}2]2(ClO4)4 (4) and 

[Cu2(1,3-tpbd){(PhO)PO3}2(H2O)0.69(CH3CN)0.31]2(BPh4)4·Et2O·CH3CN (5) [1,3-tpbd = 

N,N,N’,N’-tetrakis(2-pyridylmethyl)-1,3-benzenediamine, BPh4– = tetraphenylborate] 

were prepared and structurally characterized. Analyses of the magnetic data of 2, 3, 4, 

and [Cu2(2,6-tpcd)(H2O)Cl](ClO4)2 (6) [2,6-tpcd = 2,6-bis[bis(2-pyridylmethyl)amino]-p-

cresolate] show the occurrence of weak antiferromagnetic interactions between the 

copper(II) ions, the bis-terdentate 1,3-tpbd/2,6-tpcd, µ4-EO4 (E = As and P) µ1,2-OPO and 

µ-Ophenolate appearing as poor mediators of exchange interactions in this series of 

compounds. Simple orbital symmetry considerations based on the structural knowledge 

account for the small magnitude of the magnetic couplings found in these copper(II) 

compounds. 
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2.1.1 Introduction 

Molecular magnetism is an important research field in coordination chemistry. Some 

highlights on molecular magnets have been summarized previously by Verdaguer and 

Linert.56 Inorganic chemists are especially interested in the synthesis of polynuclear 

transition metal complexes with predictable magnetic properties. Here Kahn and others 

have provided extensive detailed experimental and theoretical studies in the past to 

allow some predictions on the magnetic properties of such compounds.57-67 Blocking 

ligands and bridging groups play an important role in the synthesis of polynuclear 

complexes. In our own work we have used tetra-N-functionalized 1,3-benzenediamine 

(m-phenylenediamine) as a building block (together with copper(II) ions and co-ligands) 

for the formation of polynuclear complexes. Thus, the ligand N,N,N’,N’-tetrakis(2-

pyridylmethyl)-1,3-benzenediamine (1,3-tpbd) and a series of its dinuclear copper(II) 

complexes (Figure 15) has been prepared in the past by Schindler and co-workers.68-72 

1,3-tpbd is a versatile ligand that binds various metal ions in a structurally rigid 

framework.69 The phenol-based derivative of 1,3-tpbd, 2,6-bis[bis(2-pyridylmethyl) 

amino]-p-cresol (2,6-Htpcd), once deprotonated, forms dinuclear copper(II) complexes, 

too (Figure 15).69 

   

Fig. 15 (left)1,3-tpbd-bridged dicopper(II) complexes with X and L being possible ligands, L can also be a 
bridging ligand (right). Representation of compound 6 (charges are omitted). 

A magnetic study of the structurally characterized perchlorate-bridged dicopper(II) 

complex [Cu2(1,3-tpbd)(H2O)2(ClO4)3]ClO4, with a large intramolecular Cu···Cu 

separation of 5.873(1) Å, had shown a significant ferromagnetic coupling (J = +9.3 cm–1, 

the Hamiltonian being defined as H = –JS1·S2), which is mediated by the m-

phenylenediamine unit.70 Ferromagnetic coupling (parallel spin alignment) is difficult to 

accomplish because the antiparallel alignment of the local spins (antiferromagnetic 

coupling) is the most common situation for the magnetic interaction between 

paramagnetic centers through diamagnetic bridging ligands. Ferromagnetic coupling 

between copper(II) ions arising from spin polarization effects across polyatomic bridges 

are rare. Taking into account that the values of the exchange coupling (J) were quite 

large, we became interested in investigating such complexes further. However, more 

recent results with regard to magnetic properties of complexes with 1,3-tpbd as a 

bridging ligand were somewhat frustrating. No magnetic coupling was observed when 

the perchlorate group in [Cu2(1,3-tpbd)(H2O)2(ClO4)3]ClO4 was replaced by acetate or by 
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sulfate in the tetranuclear complex [Cu4(1,3-tpbd)2(H2O)2(SO4)2](SO4)2.70 Furthermore, 

substitution of the perchlorate anions in [Cu2(1,3-tpbd)(H2O)2(ClO4)3](ClO4) by azide 

afforded the dicopper(II) complex [Cu2(1,3-tpbd)(N3)4] for which only weak 

antiferromagnetic coupling was observed (J = –2.1 cm–1).71 On the other hand, when 

oxalate was used as an anion, it caused strong antiferromagnetic coupling between the 

copper(II) ions (J = –366 cm–1).71 

A further study that included copper complexes with the isomeric ligands 1,2-tpbd and 

1,4-tpbd as well as a structurally related ligand capable of forming mononuclear 

complexes, clearly demonstrated the advantage of the 1,3-tpbd ligand system in 

mediating ferromagnetic interactions.72 In spite of the finding that the dicopper(II) 

complex [Cu2(1,3-tpbd)Cl4] did not show ferromagnetic coupling (the magnetic behavior 

is practically identical to the azide complex [Cu2(1,3-tpbd)(N3)4]), we observed an 

intramolecular ferromagnetic interaction in [Cu2(1,3-tpbd)(H2O)2(S2O6)]S2O6 whose 

magnitude is very similar to the structurally related complex [Cu2(1,3-

tpbd)(H2O)2(ClO4)3](ClO4).72-74  

Using the same 1,3-tpbd ligand, we thus had achieved magnetic properties ranging from 

antiferromagnetic to ferromagnetic coupling, which could be tuned by additional co-

ligands. Therefore, we became interested in further developing this system by 

introducing co-ligands that would provide larger polynuclear complex units with 

interesting magnetic properties. Promising candidates as co-ligands were arsenate and 

phosphate. Both anions lead to three-dimensional frameworks. Arsenate more recently 

gained interest in that regard and different extended structural motifs of iron(III/II) and 

zinc(II) arsenates have been reported.75-76 

2.1.2 Results and Discussion 

2.1.2.1 Syntheses 

N,N,N’,N’-Tetrakis(2-pyridylmethyl)-1,3-benzenediamine (1,3-tpbd) was prepared in 

good yield according to a literature procedure.68 The copper(II) complexes were 

obtained by mixing stoichiometric amounts of the respective copper(II) salts, 1,3-tpbd 

and co-ligands in water/methanol mixtures. 

2.1.2.2 Molecular Structures of Copper(II) Complexes 

2.1.2.2.1 [Cu4(1,3-tpbd)2(H2O)4(NO3)4]n(NO3)4n·13nH2O (1) 

Previous efforts to obtain single crystals of a nitrate relative of [Cu2(1,3-

tpbd)(H2O)2(ClO4)3]ClO4 were unsuccessful. Whereas the perchlorate anions could be 

readily substituted, partially or completely by nitrate ions, the crystal structure obtained 

could not be refined satisfactorily. Finally, it was recognized that the isolated crystals 

were quickly deteriorating due to the loss of solvent molecules from the crystal lattice. 

Keeping the crystals in their mother liquor allowed 1 to be structurally characterized. A 

fragment of the cationic chain of 1 is depicted below in Figure 16. Crystallographic data 
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for 1, together with those of the remaining structures reported in this work (complexes 

2–5), are listed in Table 1, whereas the main bond lengths and angles of 1–5 are 

displayed in Table 2. 

 

Fig. 16 Perspective view of a fragment of the copper(II) chain [Cu4(1,3-tpbd)2(H2O)4(NO3)4]n
4n+ of 1. 

Hydrogen atoms and solvent molecules are omitted for clarity. 

Complex 1 crystallizes as a copper(II) chain that consists of dinuclear [CuII2(1,3-tpbd)] 

units with intra- and interdimer µ1,2-nitrate groups. Each of the copper(II) ions is 

surrounded by three nitrogen donor atoms, two nitrate ions and one oxygen atom of a 

water molecule forming a “4+2” distorted octahedral environment quite similar to 

[Cu2(1,3-tpbd)(H2O)2(ClO4)3]ClO4. The distance between the two copper(II) ions in one 

1.3-tpbd-containing dicopper(II) unit is 5.7976 Å, a value which is close to 5.873(1) Å 

reported earlier for [Cu2(1,3-tpbd)(H2O)2(ClO4)3]ClO4.68  

Table 1 Crystallographic data of complexes 1–5 

Compound 1 2 3 4 5 

Empirical Formula C30H45Cu2N10O19.5 C60H64AsCl5Cu4N12O27.5 C60.5H64Cl5Cu4N12O27.5P C108H104Cl4Cu4N12O32P4 
C177.25H166.63B4 

Cu4N14.63O10.38P 

Mr 984.4 1905.57 1861.62 2601.87 3026.97 

Temperature [K] 200(2) 200(2) 200(2) 200(2) 200(2) 
Radiation (λ [Å]) Mo-Kα, 0.71073 Mo-Kα, 0.71073 Mo-Kα, 0.71073 Mo-Kα, 0.71073 Mo-Kα, 0.71073 

Crystal color and shape green blocks blue prisms blue blocks turquoise prisms green rhombuses 

Crystal size [mm] 0.4 × 0.4 × 0.4 0.3 × 0.2 × 0.045 0.4 × 0.3 × 0.3 0.33 × 0.25 × 0.04 0.3 × 0.2 × 0.045 
Crystal system monoclinic monoclinic monoclinic triclinic monoclinic 

Space group C2/c (No. 15) P21/c (No. 14) P21/c (No. 14) P-1 (No. 2) P21/n (No. 14) 

a [Å] 36.691 (2) 18.662(2) 18.566(2) 16.312(2) 15.664(2) 
b [Å] 8.9054 (6) 19.355(2) 19.326(2) 18.040(2) 27.742(3) 

c [Å] 24.997 (2) 22.504(2) 22.596(2) 22.835(3) 17.767(1) 

α [°] 90.0 90.0 90.0 105.968(2) 90.0 
β [°] 96.667 (1) 109.639 109.328(1) 103.670(2) 94.20(1) 

γ [°] 90.0 90.0 90.0 105.645(2) 90.0 

V [Å3] 8112.7 (9) 7655.9(8) 7650(1) 5080(1) 7700(2) 
Z 8 4 4 2 2 

ρcalcd [g cm-3] 1.613 1.653 1.616 1.474 1.306 
μ [mm−1] 1.140 1.787 1.379 0.944 0.632 

F(000) 4072 3860 3788 2672 3163 

Scan range θ [°] 1.64 to 28.29 1.42 to 28.32 1.42 to 28.32 1.29 to 28.34 3.35 to 25.68 
Index ranges –48 ≤ h ≤ 48 –24 ≤ h ≤ 24 –24 ≤ h ≤ 24 –21 ≤ h ≤ 21 –19 ≤ h ≤ 19 

 –11 ≤ k ≤ 11 –25 ≤ k ≤ 25 –25 ≤ k ≤ 25 –24 ≤ k ≤ 23 –33 ≤ k ≤ 33 

 –33 ≤ l ≤ 32 –29 ≤ l ≤ 29 –30 ≤ l ≤ 29 –30 ≤ l ≤ 30 –21 ≤ l ≤ 21 
Reflections collected 46831 92298 90912 59537 69542 

Unique reflections 9915 18858 18761 27966 14426 

Rint 0.0437 0.1445 0.1039 0.2432 0.1062 

Data/restraints/parameters 9915/36/572 18858/43/1056 18.761/56/1047 27966/28/1492 14426/1950/1331 

Goodness-of-fit on F2 1.059 1.019 1.018 0.928 1.006 

Final R indices [I > 2σ(I)] R1 = 0.0665 R1 = 0.0776 R1 = 0.0761 R1 = 0.1021 R1 = 0.0648 
 wR2 = 0.1927 wR2 = 0.2133 wR2 = 0.2150 wR2 = 0.1957 wR2 = 0.1225 

R indices (all data) R1 = 0.0924 R1 = 0.1967 R1 = 0.1667 R1 = 0.3480 R1 = 0.1495 

 wR2 = 0.2100 wR2 = 0.2585 wR2 = 0.2586 wR2 = 0.2940 wR2 = 0.1478 
Largest diff. peak/hole 

[eÅ–3] 
2.087/–0.950 1.496/–1.320 1.556/–2.091 1.639/–0.830 0.653/–0.420 

The terminal nitrate ions are weakly coordinated to the copper(II) ions as one terminal 

nitrate ion has been replaced by a water molecule, an effect which was observed 
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previously for the crystallographically characterized copper(II) acetate complexes with 

1,3-tpbd.70 Similar polynuclear compounds with copper(II) ions coordinated by nitrogen 

donors that are intramolecularly linked by nitrate anions were published earlier.77-79 

2.1.2.2.2 [Cu4(1,3-tpbd)2(AsO4)(ClO4)3(H2O)](ClO4)2·2H2O·0.5CH3OH (2)  

Initially it was attempted to prepare a dinuclear complex by mixing 1,3-tpbd, 

Cu(ClO4)2·6H2O and Na2HAsO4 in a stoichiometric ratio of 1:2:1. However, given that the 

tetranuclear copper(II) complex 2 was always isolated as the product, the reaction 

conditions were modified accordingly. Blue crystals of 2 obtained were analyzed by X-

ray diffraction studies and the tetracopper(II) cationic unit of 2 is shown in Figure 17. 

Three copper(II) ions Cu(1), Cu(2) and Cu(4) are coordinated by three nitrogen atoms of 

the 1,3-tpbd ligand, one arsenate oxygen atom and a perchlorate oxygen atom, whereas 

for the remaining copper atom [Cu(3)], the perchlorate anion has been replaced by a 

water molecule. Each of the four copper(II) ions is “4+1” coordinated in a slightly 

distorted square-pyramidal arrangement. The intramolecular distance between the 

copper(II) atoms bridged by 1,3-tpbd in 2 [Cu(1)···Cu(2) = 4.358 Å] is much shorter than 

in 1. The separation between the copper(II) atoms (not bridged by 1,3-tpbd) 

[Cu(1)···Cu(4) = 6.139 Å] is considerably longer.  

 

Fig. 17 Molecular structure of the [Cu4(1,3-tpbd)2(AsO4)(ClO4)3 (H2O)]2+ cation of 2. Hydrogen atoms and 
solvent molecules are omitted for clarity. 

The trigonality index parameter τ80 ranges from 0.08 for Cu(1) to 0.13 for Cu(4) [(τ = 

(β–α)/60°, with α and β being the two largest coordination angles around the metal 

atom) (τ = 0 and 1 for ideal square-pyramidal and trigonal-bipyramidal coordination, 

respectively)]. The basal plane of the coordination sphere around each copper(II) ion in 

2 is formed by the two pyridyl nitrogen atoms of 1,3-tpbd, which are trans to each other, 

the tertiary amine nitrogen of 1,3-tpbd and the coordinated arsenate oxygen atom. The 

apical position is occupied by a perchlorate oxygen atom [Cu(1), Cu(2) and Cu(4)] and 

the oxygen atom of a coordinated water molecule [Cu(3)]. 



Chapter 2 Ligands Containing Bridged Bispicolylamine Units 

19 

Only a small number of complexes containing a Cu–O–As moiety have been structurally 

characterized. For example, Doyle et al. described a copper(II) 2,2’-bipyridine (bipy) 

complex, in which two copper(II) ions are bridged by two H2AsO4– anions.81 

Furthermore, some polyoxidometallates are known that contain this binding mode.82-84 

Table 2 Selected bond lengths [Å] and angles of 1–5 

Atoms 1 Atoms 2 3 Atoms 4 Atoms 5 

Cu(1)-O(1) 1.972(3) Cu(1)-O(1) 1.865(6) 1.874(4) Cu(1)-O(4) 1.964(7) Cu(1)-O(11) 1.941(3) 
Cu(1)-N(2) 1.972(3) Cu(1)-N(3) 1.986(7) 1.988(6) Cu(1)-N(3) 1.970(9) Cu(1)-N(10) 2.026(3) 

Cu(1)-N(3) 1.986(3) Cu(1)-N(2) 1.990(7) 1.989(5) Cu(1)-N(2) 1.971(9) Cu(1)-N(20) 2.002(3) 

Cu(1)-N(1) 2.091(3) Cu(1)-N(1) 2.039(6) 2.061(5) Cu(1)-N(1) 2.072(9) Cu(1)-N(1) 2.086(3) 
Cu(1)-O(3) 2.313(3) Cu(1)-O(11) 2.40(2) 2.36(2) Cu(1)-O(1) 2.168(7) Cu(1)-O(14*) 2.115(3) 

Cu(1)-O(7) 2.729(3) Cu(2)-O(2) 1.877(6) 1.884(5) Cu(2)-O(8) 1.958(7) Cu(2)-O(12) 1.935(3) 

Cu(2)-N(5) 1.966(4) Cu(2)-N(5) 1.978(8) 1.990(8) Cu(2)-N(6) 1.967(9) Cu(2)-N(50) 1.991(4) 
Cu(2)-N(6) 1.974(4) Cu(2)-N(6) 2.003(8) 1.988(7) Cu(2)-N(5) 1.980(9) Cu(2)-N(40) 1.992(3) 

Cu(2)-O(2) 1.979(4) Cu(2)-N(4) 2.055(7) 2.066(6) Cu(2)-N(4) 2.057(8) Cu(2)-N(2) 2.081(3) 

Cu(2)-N(4) 2.097(3) Cu(2)-O(21) 2.383(8) 2.410(8) Cu(2)-O(5) 2.152(7) Cu(2)-O(2) 2.221(7) 
Cu(2)-O(4) 2.313(3) Cu(3)-O(3) 1.906(6) 1.885(5)     

Cu(2*)-O(8) 2.792(4) Cu(3)-N(8) 1.999(7) 1.994(6)     

  Cu(3)-N(9) 2.016(8) 2.011(6)     
  Cu(3)-N(7) 2.050(7) 2.057(5)     

  Cu(3)-O(31) 2.268(6) 2.269(5)     

  Cu(4)-O(4) 1.888(6) 1.871(5)     
  Cu(4)-N(12) 1.994(8) 1.999(6)     

  Cu(4)-N(11) 2.012(8) 2.014(6)     

  Cu(4)-N(10) 2.069(7) 2.051(6)     
  Cu(4)-O(41) 2.369(6) 2.424(5)     

         

         
N(2)-Cu(1)-O(1) 94.97(2) O(1)-Cu(1)-N(3) 94.6(3) 95.7(2) O(11)-Cu(1)-N(3) 95.4(3) O(11)-Cu(1)-N(20) 91.0(2) 

N(2)-Cu(1)-N(3) 161.13(2) O(1)-Cu(1)-N(2) 100.7(3) 99.1(2) O(11)-Cu(1)-N(2) 97.2(3) O(11)-Cu(1)-N(10) 100.9(2) 

O(1)-Cu(1)-N(3) 96.41(2) N(3)-Cu(1)-N(2) 163.7(3) 164.0(2) N(20)-Cu(1)-N(2) 165.3(4) N(20)-Cu(1)-N(10) 161.2(2) 
N(2)-Cu(1)-N(1) 83.58(2) O(1)-Cu(1)-N(1) 168.7(3) 165,7(2) O(11)-Cu(1)-N(1) 148.2(3) O(11)-Cu(1)-N(1) 145.6(2) 

O(1)-Cu(1)-N(1) 174.09(2) N(3)-Cu(1)-N(1) 82.0(3) 82.6(2) N(20)-Cu(1)-N(1) 82.7(4) N(20)-Cu(1)-N(1) 80.9(2) 

N(3)-Cu(1)-N(1) 83.57(2) N(2)-Cu(1)-N(1) 81.9(3) 81.6(2) N(10)-Cu(1)-N(1) 82.6(4) N(10)-Cu(1)-N(1) 81.1(2) 

N(2)-Cu(1)-O(3) 106.59(2) O(1)-Cu(1)-O(11) 96.0(6) 101.4(4) O(11)-Cu(1)-O(1) 113.8(3) 
O(11)-Cu(1)-

O(14*) 
108.8(2) 

O(1)-Cu(1)-O(3) 87.33(2) N(3)-Cu(1)-O(11) 78.9(6) 78.3(3) N(20)-Cu(1)-O(1) 91.9(3) 
N(20)-Cu(1)-

O(14*) 
94.6(2) 

N(3)-Cu(1)-O(3) 88.95(2) N(2)-Cu(1)-O(11) 105.1(4) 104.4(4) N(10)-Cu(1)-O(1) 90.0(3) 
N(10)-Cu(1)-

O(14*) 
95.2(2) 

N(1)-Cu(1)-O(3) 98.57(2) N(1)-Cu(1)-O(11) 94.0(6) 92.2(4) N(1)-Cu(1)-O(1) 98.0(3) N(1)-Cu(1)-O(14*) 105.2(2) 

N(5)-Cu(2)-N(6) 160.58(2) O(2)-Cu(2)-N(5) 102.1(3) 99.6(3) O(8)-Cu(2)-N(6) 99.7(3) P(1)-O(11)-Cu(1) 150.4(2) 

N(5)-Cu(2)-O(2) 94.91(2) O(2)-Cu(2)-N(6) 92.7(3) 95.5(3) O(8)-Cu(2)-N(5) 93.6(3) P(1)-O(14)-Cu(1*) 125.1(2) 
N(6)-Cu(2)-O(2) 96.24(2) N(5)-Cu(2)-N(6) 164.9(3) 164.7(3) N(6)-Cu(2)-N(5) 165.2(4) O(12)-Cu(2)-N(50) 93.0(2) 

N(5)-Cu(2)-N(4) 83.39(2) O(2)-Cu(2)-N(4) 159.0(3) 158.6(3) O(8)-Cu(2)-N(4) 157.8(3) O(12)-Cu(2)-N(40) 102.3(2) 

N(6)-Cu(2)-N(4) 83.94(2) N(5)-Cu(2)-N(4) 82.8(3) 82.4(3) N(6)-Cu(2)-N(4) 83.3(4) N(50)-Cu(2)-N(40) 164.1(2) 
O(2)-Cu(2)-N(4) 174.26(2) N(6)-Cu(2)-N(4) 82.3(3) 82.6(3) N(5)-Cu(2)-N(4) 82.0(4) O(12)-Cu(2)-N(2) 162.7(2) 

N(5)-Cu(2)-O(4) 106.66(2) O(2)-Cu(2)-O(21) 102.9(3) 104.9(3) O(8)-Cu(2)-O(5) 106.6(3) N(50)-Cu(2)-N(2) 81.6(2) 
N(6)-Cu(2)-O(4) 89.46(2) N(5)-Cu(2)-O(21) 95.8(3) 101.3(3) N(6)-Cu(2)-O(5) 92.4(3 N(40)-Cu(2)-N(2) 82.5(2) 

O(2)-Cu(2)-O(4) 88.65(2) N(6)-Cu(2)-O(21) 83.4(3) 77.0(3) N(5)-Cu(2)-O(5) 89.8(3) O(12)-Cu(2)-O(2) 105.4(2) 

N(4)-Cu(2)-N(4) 97.09(2) N(4)-Cu(2)-O(21) 96.9(3) 95.5(3) N(4)-Cu(2)-O(5) 95.2(3) N(50)-Cu(2)-O(2) 89.0(2) 
  O(3)-Cu(3)-N(8) 104.4(3) 101.3(3)   N(40)-Cu(2)-O(2) 91.3(3) 

  O(3)-Cu(3)-N(9) 91.8(3) 95.0(2)   N(2)-Cu(2)-O(2) 91.0(2) 

  N(8)-Cu(3)-N(9) 163.3(3) 163.2(3)   P(1)-O(12)-Cu(2) 132.9(2) 
  O(3)-Cu(3)-N(7) 156.0(3) 154.8(2)     

  N(8)-Cu(3)-N(7) 82.8(3) 82.6(3)     

  N(9)-Cu(3)-N(7) 80.8(3) 80.9(3)     
  O(3)-Cu(3)-O(31) 94.4(3) 97.5(2)     

  N(8)-Cu(3)-O(31) 91.9(3) 91.2(2)     

  N(9)-Cu(3)-O(31) 90.5(3) 90.6(2)     
  N(7)-Cu(3)-O(31) 108.4(3) 107.3(2)     

  O(4)-Cu(4)-N(12) 101.7(3) 100.3(3)     

  O(4)-Cu(4)-N(11) 94.3(3) 96.4(3)     
  N(12)-Cu(4)-N(11) 163.8(3) 163.1(3)     

  O(4)-Cu(4)-N(10) 171.5(3) 171.6(2)     

  N(12)-Cu(4)-N(10) 81.6(3) 81.1(2)     
  N(11)-Cu(4)-N(10) 82.2(3) 82.0(3)     

  O(4)-Cu(4)-O(41) 96.7(2) 101.0(2)     

  N(12)-Cu(4)-O(41) 96.4(3) 96.1(2)     
  N(11)-Cu(4)-O(41) 84.6(2) 82.8(2)     

  N(10)-Cu(4)-O(41) 90.7(2) 87.0(2)     

* denotes a symmetry equivalent atom 



Chapter 2 Ligands Containing Bridged Bispicolylamine Units 

20 

However, to the best of our knowledge 2 represents the first example of a µ4-AsO43– 

coordination mode in a copper(II) complex. 

2.1.2.2.3 [Cu4(1,3-tpbd)2(PO4)(ClO4)3(H2O)](ClO4)2·2H2O·0.5CH3OH (3)  

Complex 3 was prepared in an analogous manner to 2, with NaH2AsO4 being replaced by 

NaH2PO4. The blue needles obtained were analyzed by single crystal X-ray diffraction. 

The molecular structure of the tetracopper(II) cationic unit of 3 (see Figure 18) is 

isostructural to that of 2. The separation of the copper(II) ions bridged by 1,3-tpbd 

[Cu(1)···Cu(2) = 4.226 Å] is similar to that found in 2. However, the separation between 

the copper(II) ions not bridged by 1,3-tpbd [Cu(1)···Cu(4) = 5.869 Å] is shorter than the 

distance found in 2. 

Dinuclear copper(II) complexes with bridging phosphate groups are well known and 

they have been used in the past to model the active site of purple acid phosphatases.85-88 

In contrast, the µ4-binding mode is less common and is usually limited to phosphate 

groups embedded in polyoxidometallates89-92 and sheet-like structures.93-95 To the best 

of our knowledge, so far only two other structurally characterized complexes with a 

discrete µ4-PO4–Cu4 coordination mode (as in 3) have been reported in the literature.96-

97 Furthermore, it deserves to be noted that Anslyn et al. prepared copper(II) complexes 

of tripodal ligands, which act as receptors with an extraordinary capacity for binding 

phosphate and arsenate ions as well as various phosphate esters in neutral aqueous 

solutions.98-101 

 

Fig. 18 Molecular structure of the [Cu4(1,3-tpbd)2(PO4)(ClO4)3 (H2O)]2+ cation of 3. Hydrogen atoms and 
solvent molecules are omitted for clarity. 

2.1.2.2.4  [Cu2(1,3-tpbd){(PhO)2P(O)2}2]2n(ClO4)4n (4)  

Introducing sterically demanding organic groups on the phosphate anion should 

suppress formation of a tetranuclear complex such as 3. Therefore, diphenylphosphate 

was chosen as a bridging group. The complex [Cu2(1,3-tpbd){(PhO)2P(O)2}2]2n(ClO4)4n 

(4) was obtained by mixing diphenylphosphate, 1,3-tpbd and Cu(ClO4)2·6H2O in a 

stoichiometric ratio. The turquoise crystals obtained were analyzed by X-ray diffraction 
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studies and demonstrated that a coordination polymer had formed. A view of the 

repeating unit including the copper(II) ions connecting the individual units of 4 is shown 

in Figure 19.  

The coordination environment around the crystallographic independent copper(II) ions 

in 4 is best described as “4+1” distorted square-pyramidal with τ values80 of 0.285 at 

Cu(1) and 0.123 at Cu(2). Interestingly, the diphenylphosphate ligands neither act as 

bridges between the two adjacent copper(II) ions nor form a tetranuclear unit such as 

observed in 2 and 3. Instead, they connect to another dinuclear complex unit, resulting 

in a chain-like structure, most likely due to the consequence of the steric crowding of the 

phenyl groups around the phosphorus atom. An eight-membered ring is formed 

between the two dinuclear units that are made up by two copper(II) ions, two 

phosphorus atoms and four oxygen atoms. 

 

Fig. 19 Perspective view of a fragment of the [Cu2(1,3-tpbd) (PhO)2P(O)2 2]n
2n+ cationic chain of 4. 

Hydrogen atoms are omitted for clarity. 

A copper(II) complex forming a similar six-membered ring was published earlier by 

Chin and co-workers.102 They studied the phosphate diester cleavage capability of this 

dicopper(II) complex in a similar fashion to that reported for 6.69 The ring formed by 

two copper-, one phosphorus- and three oxygen atoms plays an important role in the 

postulated diester cleavage mechanism.102  

2.1.2.2.5 [Cu2(1,3-tpbd)((PhO)PO3)2(H2O)0.69(CH3CN)0.31]2(BPh4)4·Et2O·CH3CN (5) 

In order to relieve some of the steric strain shown in 4, a monophenylphosphate was 

used in the synthesis of complex 5. The molecular structure of the tetracopper(II) 

cationic part of 5 is shown in Figure 20. 

The tetranuclear unit of 5 comprises two 1,3-tpbd molecules, each of them coordinating 

two copper(II) ions, and two monophenylphosphate molecules. As in 4, an eight-

membered ring with two copper(II) ions, two phosphorus atoms and four oxygen atoms 

is formed. Moreno et al. and Phuengphai et al. both reported a similar structural motif 

with the 1,10-phenanthroline ligand (phen) where mono-/diphenylphosphate was 

replaced by dihydrogenphosphate.103-104 The Cu–O bond lengths reported therein are in 

good agreement with those of 4 and 5. Complex 5 crystallizes with an inversion center 

located in the middle of the Cu–P–O eight-membered ring. The four copper(II) ions are 
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connected via the monophenylphosphate groups resulting in a tetranuclear complex, 

which is built up of two dinuclear symmetry-related units. 

 

Fig. 20 Molecular structure of the [Cu2(1,3-tpbd){(PhO)PO3}2(H2O)0.69(CH3CN)0.31]2
4+ cation of 5. 

Hydrogen atoms and solvent molecules are omitted for clarity. 

The coordination environment around the copper(II) ions in one of the two units in 5 is 

again “4+1” distorted square-pyramidal. The distortion differs remarkably for Cu(1) and 

Cu(2). The trigonality index parameter τ80 has values of 0.263 [at Cu(1)] and 0.023 [at 

Cu(2)]. 

2.1.2.2.6  [Cu2(2,6-tpcd)(H2O)Cl](ClO4)2·2H2O (6) 

The crystal structure of the dinuclear complex 6 was previously reported.69 Its structure 

is reproduced in Figure 21, the pertinent feature being that the phenolate oxygen atom 

occupies the apical position at each copper(II) ion.  

 

Fig. 21 Molecular structure of [Cu2(2,6-tpcd)(H2O)Cl]2+ cation of 6. Hydrogen atoms, solvent molecules 
and uncoordinated anions are omitted for clarity. 
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The magnetic properties of this compound are reported here as a model compound in 

the interpretation of the magnetic properties of 2–5. 

2.1.2.3 Magnetic Properties of 2, 3, 4, and 6 

The ferromagnetic coupling observed in [Cu2(1,3-tpbd)(H2O)2(ClO4)3]ClO4, following the 

spin polarization mechanism, was successfully interpreted using density functional 

theory (DFT) calculations.70 This finding is in good agreement with a related 

benzenediamine-based dinuclear complex that also showed ferromagnetic coupling (J = 

+16.8 cm–1) between two copper(II) ions over a large distance.105 More recently, 

ferromagnetic coupling has been observed in m-phenylenediamine-bridged tris(2-

aminoethyl)amine copper(II) complex units106 and oligo-m-phenyleneoxalamide 

copper(II) mesocates.107 These last examples can be viewed as electro-switchable 

ferromagnetic metal organic wires. For the nitrate complex 1, the fast deterioration that 

it undergoes due to the loss of solvent precludes its magnetic study. However, a 

structural comparison between 1 and [Cu2(1,3-tpbd)(H2O)2(ClO4)3]ClO4 suggests that 

most likely a ferromagnetic coupling would occur between the copper(II) ions through 

the 1,3-tpbd bridging ligand. Here the loss of solvent molecules in the copper(II) 

complex can cause subtle structural changes, which prevent detailed magnetic analysis, 

a situation experienced previously for the acetate system.70 Therefore, magnetic 

measurements were only performed on 2, 3, 4, and 6. 

The magnetic properties of complex 6 (Figure 21) under the form of the χMT versus T 

plot [χM is the magnetic susceptibility per two copper(II) ions] are shown in Figure 22. 

At room temperature, χMT is equal to 0.80 cm3 mol–1 K, a value which is as expected for 

two magnetically isolated spin doublets (χMT = 0.75 cm3 mol–1 K with g = 2.0). A Curie 

law behavior is observed upon cooling until ca. 30 K. χMT decreases sharply in the low 

temperature domain and a value of 0.55 cm3 mol–1 K at 1.9 K is attained. A maximum of 

the magnetic susceptibility is quasi reached, the temperature of such a maximum being 

slightly below 1.9 K (see the inset of Figure 23). These features are consistent with the 

occurrence of a weak intramolecular antiferromagnetic interaction between two local 

spin doublets leading to a singlet ground spin state. 

In light of the discrete dinuclear structure of compound 6,69 its magnetic data were 

analyzed through a simple Bleaney–Bowers expression [eq (1)], which was derived 

through the isotropic Hamiltonian H = –JS1·S2  

 χM = (2Nβ2g2/kT) [3 + exp(–J/kT)] –1  (1) 

where J and g are the singlet-triplet energy gap and the average g factor for the 

dicopper(II) unit, and N, β and k have their usual meanings. Least-squares fitting leads to 

the following parameters: J = –1.70(1) cm–1, g = 2.07(1) and R = 1.2 × 10–5 (R is the 

agreement factor defined as Σ[(χM)obs–(χM)calc]2/Σ[(χM)obs]2). The computed curve 

matches well the experimental one in the temperature range investigated. The small 

value of the weak intramolecular magnetic interaction in 6 can be understood by looking 
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at the respective orientation of the magnetic orbitals involved. In fact, each copper(II) 

ion of this compound is found in a square pyramidal environment, the basal plane being 

defined by the N(4), N(5), N(6) and O(2) [at Cu(1)] and N(1), N(2), N(3) and Cl(1) [at 

Cu(2)] set of atoms (see Figure 26). A phenolate oxygen atom [O(1)] fills the apical 

position, the copper to O(1) bond distances being longer than 2.1 Å. In such a case, the 

unpaired electron at each copper(II) ion is located in the equatorial plane (the magnetic 

orbital) and a weak overlap is predicted between the two magnetic orbitals through the 

phenolate oxygen atom because of the small spin density at the apical position. Also the 

magnetic coupling through the long σ in-plane Cu(1)–N(4)–C(17)–C(18)–C(13)–N(3)–

Cu(2) pathway [syn-syn conformation according to the relative orientation of the Cu(1)–

N(4) and Cu(2)–N(1) bonds] is expected to be very weak.70 The low efficiency of both 

exchange pathways in 6 accounts for the weak magnetic coupling observed. 

 

Fig. 22 Temperature dependence of the χMT product for 6: (o) experimental data; (–) best-fit curves 
through eq (1) (see text). The inset shows the χM versus T plot for T < 10 K. 

The magnetic properties of complex 4 under the form of the χMT versus T plot [χM is the 

magnetic susceptibility per two copper(II) ions] are shown in Figure 23. At room 

temperature, χMT is equal to 0.80 cm3 mol–1 K, a value which is as expected for two 

magnetically non-interacting spin doublets. A Curie law behavior is observed upon 

cooling until ca. 70 K and afterwards χMT decreases sharply at lower temperatures to 

attain a value of 0.17 cm3 mol–1 K at 1.9 K. A maximum of the magnetic susceptibility 

occurs at 3.5 K (see the inset of Figure 23). These features are characteristic of an overall 

weak antiferromagnetic behavior. 
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Fig. 23 Temperature dependence of the χMT product for 4: (o) experimental data; (–) best-fit curves 
through eq. (2) (see text). The inset shows the χM versus T in the vicinity of the maximum. 

In agreement with the chain structure of 4 where the regular alternating bis-terdentate 

1,3-tpbd and doubly bis-monodenate (PhO)2P(O)2 bridges occurs, its magnetic data 

were analyzed through the alternating chain spin exchange model [eq (2)] and the 

development of Hatfield et al.108 

 H = –J (S2i·S2i-1 + αS2i·S2i+1) (2) 

where J and α are the exchange coupling and alternation parameter, respectively. Least-

squares fit minimizing R = Σ[(χM)obs– (χM)calc]2/Σ[(χM)obs]2), led to the following set of 

values : J = –3.90(1) cm–1, αJ = –1.79(2) cm–1, g = 2.09(1) and R = 2.3 × 10–5. The 

calculated curves reproduce the magnetic data very well in the whole temperature range 

investigated. The two intrachain magnetic couplings in 4 are weak and 

antiferromagnetic and their assignment to the two exchange pathways involved is not 

evident at first sight. Their weakness is not surprising bearing in mind the two exchange 

pathways involved: the extended bis-terdentate 1,3-tpbd molecule, which links 

equatorial positions at the Cu(1) and Cu(2) [Cu(1)···Cu(2) = 8.12 Å] and the pair of bis-

monodenate (PhO)2P(O)2 bridges connecting an equatorial position of a copper atom 

with the apical one of the adjacent copper [Cu(1)···Cu(1A) = 4.59 Å and Cu(2)···Cu(2A) = 

4.67 Å]. 

The former one is a σ in-plane exchange pathway as in 6, the Cu(1)–N(1)–C(13)–C(18)–

C(17)–N(4)–Cu(2) fragment exhibiting the anti-anti conformation instead of the syn-syn 

occurring for such a fragment in 6. Most likely, the weaker antiferromagnetic interaction 

[αJ = –1.79(2) cm–1] is mediated by this bridging pathway, whereas the somewhat larger 
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antiferromagnetic coupling [J = –3.90(1) cm–1] would involve the double equatorial-

apical µ1,2-O–P–O skeleton involving a much shorter copper–copper separation.  

The magnetic properties of the complexes 2 and 3 under the form of χMT versus T plots 

[χM is the magnetic susceptibility per four copper(II) ions] are shown in Figure 24. At 

room temperature, χMT for 2 and 3 is ca. 1.60 cm3 mol–1 K, a value which is as expected 

for four magnetically isolated spin doublets [χMT = cm3 mol–1 K with g = 2.0]. Upon 

cooling, a Curie law behavior is observed until ca. 100 K, which is followed by an abrupt 

decrease of χMT to reach values of 0.9 (2) and 0.55 cm3 mol–1 K (3) at 1.9 K. No maximum 

in the magnetic susceptibility is observed for 2 and 3 in the temperature range explored. 

This decrease of χMT in the low temperature domain is due to relatively weak 

intramolecular antiferromagnetic interactions.   

 

Fig. 24 Temperature dependence of the χMT product for 2 and 3: (o,∆) experimental data; (–) best-fit 
curves through eq (3) (see text). The inset shows a detail of the low temperature region. 

In agreement with the tetrahedral arrangement of the four copper(II) ions in 2 and 3, 

their magnetic data were analyzed through the isotropic spin Hamiltonian of eq (3). 

H = –Ja (S1·S2 + S3·S4) –Jb (S1·S4 + S2·S3) –Jc (S1·S3 + S2·S4) – gβH (S1 + S2 + S3 + S4) (3) 

where Ja , Jb and Jc are the magnetic coupling parameters (see Figure 25, right) and g is 

the average Landé factor which is assumed to be identical for the four copper(II) ions. 

Numerical matrix diagonalization techniques using a Fortran program109 (conducting 

extensive mappings with the aim of locating the global minimum of each system among 

a large number of local minima) led to the following set of parameters through least-

squares fitting of the data: Ja = Jb = Jc = –1.11(1) cm–1, g = 2.09(1) and R = 1.6 × 10–6 (2), Ja 

= Jb = Jc = –2.27(1) cm–1, g = 2.09(1) and R = 1.5 × 10–6(3) (R is the agreement factor 
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defined as R = Σ[(χMT)obs–(χMT)calc]2/Σ[(χMT)obs]2). An excellent agreement between the 

experimental data and the calculated curves is obtained in the two cases. 

It deserves to be noted that although we tried different sets of starting values for the Ji 

parameters (even of different nature), the best fit is always achieved with the same 

value for the three magnetic couplings in each complex. This means that the magnetic 

coupling through the µ4-XO4 motif is dominant and then, the interaction through the 

extended 1,3-tpbd involving the pairs Cu(1)/Cu(2) and Cu(3)/Cu(4) pairs would be 

negligible. Looking at the structure of 2 and 3, this can be easily understood because of 

the common Cu–O–X–O–Cu’ [X = As (2) and P (3)] five-atoms-set involved in the 

intramolecular exchange pathways connecting equatorial positions (see the orbital 

picture in Figure 25). The somewhat shorter values of the intramolecular Cu···Cu’ 

separation for 3 with respect to those in 2 (dictated by the shorter P–O bond lengths 

compared to the As–O ones) would account for the slightly larger antiferromagnetic 

coupling in 3.  

 

Fig. 25 (Left) Orbital picture illustrating the exchange pathways through the µ4-XO4 with X = As (2) and P 
(3). (Right) Intramolecular spin coupling pattern in 2 and 3. 

Finally, a brief comment concerning the weak magnetic interactions in these two 

complexes is warranted. To the best of our knowledge, the case of 2 is the first magneto-

structurally characterized example of a µ4-AsO4-bridged copper(II) complex and this 

precludes any comparison. A similarly related complex is the copper(II) complex 

[Cu(bipy)(H2AsO4)](µ1,2-H2AsO4)  where a very weak antiferromagnetic coupling 

between the copper(II) ions (J = –0.58 cm–1) is mediated by a pair of bis-monodentate 

dihydrogenarsenate bridges, the copper–copper separation being 5.287 Å.81 The case of 

complex 3 is also a special one because no correlation between the structural 

parameters and the magnetic coupling exists and the magnetic coupling through the Cu–

O–P–O–Cu pathway covers a wide range of significant values either negative or 

positive.110 In fact, only two other structurally characterized complexes with a tetrakis-
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monodentate-coordination mode of the phosphate group are known but their magnetic 

properties were not investigated.96-97  

2.1.3 Conclusions 

The copper(II) 1,3-tpbd complexes 1–5 exhibit interesting structural properties. Two of 

them (2 and 3) show rare or even unique coordination modes of copper(II) ions with the 

arsenate (2) or phosphate (3) co-ligands. Furthermore, an eight-membered ring 

between two copper(II) ions and two phosphate molecules occurs in complexes 4 and 5. 

The study of the magnetic behavior of 2, 3, 4, and the related compound [Cu2(2,6-

tpcd)(H2O)Cl](ClO4)2 (6) shows that the bis-terdentate 1,3-tpbd, 2,6-tpcd, bis-

monodentate O–P–O and tetrakis-monodentate-XO43− (X = P and As) bridges appear as 

poor mediators of magnetic interactions between the copper(II) atoms in these species. 

Simple magnetic orbital considerations, which are based on the structural knowledge 

and previous theoretical calculations, account for the weak magnetic interactions. 

Larger polynuclear copper(II) 1,3-tpbd complexes containing anionic co-ligands were 

prepared, although the magnetic interactions in these new compounds turned out to be 

weak and antiferromagnetic. Finally, this work demonstrates methods to increase the 

nuclearity and/or dimensionality of the 1,3-tpbd-containing copper(II) complexes, the 

achievement of stronger magnetic couplings being the goal to be achieved varying the 

nature of the co-ligand. 

2.1.4 Experimental Section 

2.1.4.1 Materials 

All chemicals were obtained from commercial sources and used without further 

purification. The 1,3-tpbd ligand was prepared according to a literature procedure.68 

Caution! The syntheses and procedures described below involve compounds that contain 

perchlorate ions, which can detonate explosively and without warning. Although we have 

not encountered any problems with the compounds used in this study, they should be 

handled with extreme caution. 

2.1.4.2 Syntheses of Copper Complexes 1–5 

2.1.4.2.1 [Cu4(1,3-tpbd)2(H2O)4(NO3)4]n(NO3)4n·13nH2O (1) 

1.3-tpbd (329 mg, 0.68 mmol) dissolved in methanol (15 mL) was added to an aqueous 

solution (10 mL) of Cu(NO3)2·3H2O (328 mg; 1.36 mmol). The reaction mixture was 

stirred for 5 min during which time the solution turned to a dark green color. Single 

crystals of 1 were obtained after two days. UV/Vis (MeOH) λmax = 383 nm (ε = 2800 M–1 

cm–1), 684 nm (ε = 600 M–1 cm–1).  
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2.1.4.2.2 [Cu4(1.3-tpbd)2(AsO4)(ClO4)3(H2O)](ClO4)2·2H2O·0.5CH3OH (2) / 

[Cu4(1.3-tpbd)2(PO4)(ClO4)3(H2O)](ClO4)2·2H2O·0.5CH3OH (3) / 

[Cu2(1,3-tpbd){(PhO)2P(O)2}2]2(ClO4)4 (4)  

1.3-tpbd (100.0 mg, 0.21 mmol) dissolved in methanol (15 mL) was added to aqueous 

solutions (5 mL) of Cu(ClO4)2·6H2O (155 mg, 0.42 mmol) and Na2HAsO4 (65.5 mg, 0.21 

mmol) for 2, Cu(ClO4)2·6H2O (155.0 mg, 0.42 mmol) and Na2HPO4 (56.3 mg, 0.21 mmol) 

for 3, and Cu(ClO4)2·6H2O (155.0 mg, 0.42 mmol) and diphenylphosphate (52.5 mg; 0.21 

mmol) for 4. The green reaction solutions were each stirred for 5 min. Crystals suitable 

for X-ray diffraction were formed after two days. Intense blue crystals of 2 (UV/Vis 

(MeOH) λmax = 380 nm (shoulder, ε = 900 M–1cm–1), 713 nm (ε = 500 M–1cm–1)) and of 3 

(UV/Vis (MeOH) λmax = 706 nm (ε = 600 M–1cm–1)), and light blue crystals of 4 (UV/Vis 

(MeCN) λmax = 308 nm (shoulder, ε = 4100 M–1cm–1), 379 nm (ε = 1500 M–1cm–1), 734 nm 

(ε = 500 M–1cm–1)).  

2.1.4.2.3 [Cu2(1,3-tpbd){(PhO)PO3}2(H2O)0.69(CH3CN)0.31]2(BPh4)4·Et2O·CH3CN 

(5).  

Aqueous solutions (5 mL) of Cu(ClO4)2·6H2O (78.4 mg, 0.210 mmol) and the sodium salt 

of phenylphosphate (27.0 mg, 0.105 mmol) were added to a mixture of 1,3-tpbd (50.0 

mg, 0.105 mmol) and NaBPh4 dissolved in methanol. The turquoise precipitate was 

filtered and dissolved in CH3CN. Crystals suitable for X-ray diffraction analyses were 

obtained by slow diffusion of diethyl ether into the solution. (UV/Vis (MeCN) λmax = 380 

nm (ε = 1700 M–1cm–1), 701 nm (ε = 500 M–1cm–1)) 

2.1.4.3 Magnetic Measurements 

Variable-temperature (1.9–300 K) magnetic susceptibility measurements on 

polycrystalline samples of 2, 3, 4 and 6 were collected with a SQUID susceptometer 

under applied dc magnetic fields of 1 T (T ≥ 100 K) and 500 G (T < 100 K). Corrections of 

the diamagnetism for the constituent atoms of 2, 3, 4, and 6 were done by means of the 

Pascal’s constants.111 Corrections for the sample holder as well as for the temperature-

independent paramagnetism [60 × 10–6 cm3 mol–1 K per copper(II) ion] were also 

applied. 

2.1.4.4 X-Ray Crystallographic Studies 

Intensity data of 1–4 were collected with a Siemens SMART CCD 1000 diffractometer by 

the -scan technique collecting a full sphere of data with irradiation times of 10 to 20 s 

per frame and  ranges between 0.3° and 0.45°. The collected reflections were 

corrected for absorption, Lorentz and polarization effects.112 All structures were solved 

by direct methods and refined by least-squares techniques using the SHELX-97 program 

package.113 The hydrogen atoms were positioned geometrically and all non-hydrogen 
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atoms, if not mentioned otherwise, were refined anisotropically. Further data collection 

parameters are summarized in Table 1. 

Intensity data of 5 were collected with a Bruker-Nonius Kappa CCD diffractometer. 

Absorption effects were corrected by semi-empirical methods based on equivalent 

reflections.112 The structure was solved by direct methods; full-matrix least-squares 

refinement was carried out on F2 using SHELXTL NT 6.12.112 All non-hydrogen atoms 

were refined anisotropically. The high residual electron density in 5 is due to the high 

amount of solvent molecules and the poor quality of the crystals. Hydrogen atoms were 

geometrically positioned, their isotropic displacement parameters were tied to those of 

their corresponding carrier atoms by a factor of 1.2 or 1.5. Both of the BPh4– anions 

show disordered phenyl groups. SIMU and SAME restraints were applied in the 

refinement of these anions. The co-ligand at Cu(2) is disordered. The sixth coordination 

site is either occupied by an aqua ligand [O(2), 69(2)%] for which no hydrogen atoms 

have been included in the structural model or by an acetonitrile molecule [N(520)–

C(522), 31(2)%]. A disordered Et2O molecule [O(500)–C(504)] is partially present when 

the aqua ligand is coordinated to Cu(2). SIMU, SADI, SAME and ISOR restraints were 

applied in the treatment of this disordered part of the structure. 

CCDC Nos. 661254 (1), 661255(2), 661256(3), 661257(4) and 658344 (5) contain the 

supplementary crystallographic data for this paper. These data can be obtained free of 

charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge 

Crystallographic Data Centre. 12. Union Road. Cambridge CB2 1EZ. UK; Fax: (internat.) 

+44-1223-336-033; E-mail: deposit@ccdc.cam.ac.uk].  
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2.2 Supporting Information and Unpublished Material 

Reactivity of copper(I) compounds of 1,3-tpbd towards oxygen has only been described 

by Creutz and co-workers in methanol.68 Therefore, a closer look at the behavior in 

different solvents might be interesting as well as the characterization of an isoelectronic 

zinc(II) complex in comparison to the copper(I) species. 

 

2.2.1 Reactivity of 1,3-tpbd Copper(I) Complexes Towards Dioxygen 

Although copper complexes of 1,3-tpbd are issue of several publications68-72, 74, 114, a 

detailed work on the reactivity has not been reported so far. Only Schindler and co-

workers reported oxidation reactions of complexes using 1,3-tpbd as ligand. In methanol 

solution, copper(I) complexes decay to unidentified copper(II) species upon reaction 

mailto:deposit@ccdc.cam.ac.uk
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with oxygen. A ligand hydroxylation is not likely due to Schindler and co-workers could 

only separate 1,3-tpbd from the reaction mixture.68 

Therefore, experiments concerning the reactivity of copper(I) complexes with 1,3-tpbd 

towards oxygen in different solvents or at lower temperatures are interesting. 

Unfortunately, low temperature stopped flow experiments at various temperatures with 

acetone solutions of [Cu2(1,3-tpbd)](SO3CF3)2 showed no hint for intensive charge 

transfer bands of possible reactive oxygen intermediates. 

The use of propionitrile as coordinating solvent led to interesting UV/Vis spectra. 

“Bench top” experiments showed a change of color from yellow to green, when bubbling 

oxygen through a solution of [Cu2(1,3-tpbd)]2+, as one would expect. Unexpectedly, the 

solution turned red after one day at room temperature. Figure 26 shows the UV/Vis 

spectrum of the red species measured after one day reaction time. 

 
Fig. 26 UV/Vis spectra of the copper(I) complex (magenta) and the red species (black) occurring during 

the reaction with dioxygen. 

The expanded part of the spectrum shown in the inset of Figure 26 shows a band at 525 

nm derived from the oxidation reaction. Spectra recorded earlier during the day of 

reaction time already showed a weak band at 525 nm proving the ongoing oxidation 

reaction. Although products could not be identified so far, an oxidation of the ligand is 

probable due to literature examples of similar reactions with bridged dinuclear copper 

complexes. Upon a longer period of time the solution turns brown.  

Only recently, Müller et al. reported about conversion of nitriles to aldehydes with 

cobalt(II) complexes of salmdpt derivatives.115 Additionally, Karlin and co-workers 

reported earlier about an interesting nitrile oxidation reaction using a close relative of 

1,3-tpbd as ligand for a copper(I) complex.116-117 Here, an interesting dicopper 

hydroperoxide coordination compound could be detected. Thus, experiments to detect 

possible reaction products deriving from the nitrile were performed. One attempt of 
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Müller et al. was to use higher nitriles as butyro- or benzonitrile to get more stable 

aldehydes that would have been easier to detect. Using butyronitrile as solvent led to 

similar reactivities as in aceto- or propionitrile resulting in a brown solution. It was 

possible to perform stopped flow experiments at room temperature. The gathered 

UV/Vis spectra are shown in Figure 27. Unfortunately, GC-MS spectra of the reaction 

mixture showed no hint for butyraldehyde anyway. 

 
Fig. 27 Room temperature UV/Vis spectra of the reaction of [Cu2(1,3-tpbd)]2+ with dioxygen in 

butyronitrile. 

Over a period of approximately half an hour there is one dominating band at 552 nm 

rising that is responsible for the red color of the solution. With time the visible color 

more and more changes to brown obvious through the steady rising bands at 501, 542 

and 581 nm respectively. Moreover, there are two shoulders at 623 and 715 nm 

detectable. The reaction did not cease after 10 h but continued for at least 7.5 h with 

rising bands at the same wavelengths leading to a deeply colored solution. Unfortunately 

it was not possible to assign the different bands to a specific electron transition or an 

active species. A comparison with the reactivity in propionitrile shows acceleration in 

butyronitrile and a shift of the initially formed band from 525 nm in propionitrile to 552 

nm in butyronitrile. This shift is most likely explainable by the influence of the different 

anions used. Triflate is capable of coordinating the copper atom or forming hydrogen 

bridges with the oxidized product. Hexafluoroantimonate used in butyronitrile is hardly 

coordinating or forming hydrogen bridges. Thus, a shift may be due to the formation of 

bigger subunits due to the triflate anion. That would give a possible explanation for the 

hindrance of the reaction with oxygen, too.  

The aromatic benzonitrile did not lead to a red intermediate as detected in the other 

nitriles. This is possibly due to the aromatic character of the nitrile or simply it is too 

bulky to coordinate to the metal center and interact thereby in the reaction. Thus, 

benzaldehyde could not be detected in the reaction mixture.  
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As a concluding remark it should be allowed to say, that the work concerning the 

reactivity of copper(I) complexes towards dioxygen using 1,3-tpbd as ligand can only be 

regarded as initiation for further studies. In regard of the special interest in nitrile 

oxidation reactions and the probable active oxygen intermediates, more detailed 

information about the possible ligand oxidation should be gathered.115-117  

2.2.2 Synthesis and Characterization of a Dimeric, Hydroxido Bridged 1,3-tpbd 

Zinc(II) Complex 

In order to avoid problems deriving from the redox chemistry of the copper(I) 

complexes of 1,3-tpbd copper(I) was substituted by the isoelectronic zinc(II) ion. In 

contrast to all the shown copper complexes, zinc complexes with the ligand 1,3-tpbd did 

not readily crystallize from various solvents. They exhibited a very sluggish solution 

behavior. One attempt at least led to the formation of crystals that were suitable to only 

a limited extent for single crystal X-ray crystallography.  

Due to the bad crystal quality the structure refinement only lead to high R values. 

Therefore, crystallographic details (Table 3) as well as bond lengths and angles given in 

Table 4 are poorly reliable. Never the less the ORTEP drawing shown in Figure 28 is 

capable of showing the structure motif of the crystallized zinc(II) species. 

 
Fig. 28 Molecular structure of [Zn4(H2O)2(OH)3(1,3-tpbd)2](BF4)5 ∙ CH3COCH3∙ xH2O. Anions, hydrogen 

atoms and solvent molecules have been omitted for clarity. Thermal ellipsoids set to 50%. 

Interestingly a dimer bridged by the three hydroxido oxygen atoms O1, O2 and O3. Each 

of the four zinc(II) ions are coordinated by three nitrogen atoms of one arm of the 1,3-

tpbd ligand and two oxygen atoms, one of which occupying the apical position in the 

square pyramidal coordination sphere (τ118= 0.25 (Zn1); 0.30 (Zn2); 0.20 (Zn3); 0.29 

(Zn4)). The zinc(II) ions Zn1 and Zn4 are coordinated by a bridging hydroxido and a 

water oxygen atom that acts as “stopper”. Thus, coordination of an additional bridging 

hydroxido group instead of water could lead to the formation of a polymeric structure. 

Unfortunately none of the hydrogen atoms bond to the different oxygen atoms could be 

found during the structure refinement again due to the bad crystal quality. Zn-O bond 
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lengths are all similar and can therefore not be used as reliable criteria to differentiate 

between hydroxido and water ligands. 

Table 3 Crystallographic details for [Zn4(H2O)2(OH)3(1,3-tpbd)2](BF4)5∙CH3COCH3∙xH2O 

Empirical Formula 
[Zn4(H2O)2(OH)3(1,3-tpbd)2] 

(BF4)5∙CH3COCH3∙xH2O 

α [°] 90.0 Reflections collected 25254 

β [°] 100.10(3) Unique reflections 12815 

Mr 485.54 γ [°] 90.0 Rint 0.1528 

Temperature [K] 193(2) V [Å3] 8633(3) Data/restraints/parameters 12815/1/1038 

Radiation (λ [Å]) 0.71073 Z 4 Goodness-of-fit on F2 0.871 

Crystal color and 
shape 

colorless, block ρcalcd [g cm-3] 1.401 Final R indices [I > 2σ(I)] R1 = 0.1077 

Crystal size [mm]  μ [mm-1] 1.194  wR2 = 0.2629 

Crystal system monoclinic F(000) 3676 R indices (all data) R1 = 0.2187 

Space group P21/c Scan range θ [°] 1.87 to 24.30  wR2 = 0.3150 

a [Å] 20.274(4) Index ranges −23≤ h ≤23 
Largest diff. peak/hole 

[eÅ−3] 
1.645/–1.112 

b [Å] 24.366(5)  −24≤ k ≤27   

c [Å] 17.750(4)  −20≤ l ≤15   

Thus, the only remaining hint is given by the number of BF4− anions in the cell. Three 

positive charges need to be neutralized most likely by the coordinated hydroxido groups 

that bridge the two monomeric units. Additionally the coordination of two zinc(II) ions 

should be favored using an oxygen atom bearing a negative charge. 

Water and hydroxido groups derive most likely from the crystal water of the Zn(BF4)2 

salt used in the synthesis. The formation of hydroxide anions can easily be explained 

because zinc containing complexes are well known as weak cationic acids that are 

capable of deprotonizing water.119 

Table 4 Selected Bond Lengths and Angles of [Zn4(H2O)2(OH)3(1,3-tpbd)2](BF4)5∙CH3COCH3∙xH2O 
[Å, °] 

Atoms  Atoms  Atoms  

Zn(1)-N(1) 2.404(12) Zn(2)-O(2) 1.971(8) Zn(4)-O(3) 1.946(8) 

Zn(1)-N(2) 2.026(11) Zn(3)-N(4) 2.439(12 Zn(4)-O(4) 2.079(11) 

Zn(1)-N(3) 2.024(12) Zn(3)-N(5) 2.041(11) N(1)-Zn(1)-N(2) 77.5(5) 

Zn(1)-O(2) 1.936(7) Zn(3)-N(6) 2.013(11) N(1)-Zn(1)-N(3) 78.2(4) 

Zn(1)-O(5) 2.038(9) Zn(3)-O(1) 1.931(9) N(1)-Zn(1)-O(2) 102.4(4) 

Zn(2)-N(7) 2.441(12) Zn(3)-O(3) 1.961(8) N(1)-Zn(1)-O(5) 159.4(4) 

Zn(2)-N(8) 2.017(10) Zn(4)-N(10) 2.373(12) N(2)-Zn(1)-N(3) 144.3(5) 

Zn(2)-N(9) 2.036(11) Zn(4)-N(11) 2.038(12) N(2)-Zn(1)-O(2) 102.0(4) 

Zn(2)-O(1) 1.939(9) Zn(4)-N(12) 2.023(12) N(2)-Zn(1)-O(5) 96.5(4) 

N(3)-Zn(1)-O(2) 108.4(4) N(9)-Zn(2)-O(2) 98.0(4) O(1)-Zn(3)-O(3) 96.3(4) 

N(3)-Zn(1)-O(5) 97.2(4) O(1)-Zn(2)-O(2) 94.4(4) N(10)-Zn(4)-N(11) 78.5(5) 

O(2)-Zn(1)-O(5) 98.2(4) N(4)-Zn(3)-N(5) 76.9(4) N(10)-Zn(4)-N(12) 76.8(5) 

N(7)-Zn(2)-N(8) 76.4(4) N(4)-Zn(3)-N(6) 76.2(5) N(10)-Zn(4)-O(3) 101.8(4) 

N(7)-Zn(2)-N(9) 76.8(4) N(4)-Zn(3)-O(1) 108.1(4) N(10)-Zn(4)-O(4) 165.9(4) 

N(7)-Zn(2)-O(1) 103.4(4) N(4)-Zn(3)-O(3) 155.6(4) N(11)-Zn(4)-N(12) 148.7(6) 

N(7)-Zn(2)-O(2) 162.2(4) N(5)-Zn(3)-N(6) 143.4(6) N(11)-Zn(4)-O(3) 105.9(4) 

N(8)-Zn(2)-N(9) 144.4(5) N(5)-Zn(3)-O(1) 107.6(4) N(11)-Zn(4)-O(4) 97.9(5) 

N(8)-Zn(2)-O(1) 101.6(4) N(5)-Zn(3)-O(3) 96.5(4) N(12)-Zn(4)-O(3) 97.7(4) 

N(8)-Zn(2)-O(2) 100.4(4) N(6)-Zn(3)-O(1) 104.0(4) N(12)-Zn(4)-O(4) 101.4(5) 

N(9)-Zn(2)-O(1) 107.1(4) N(6)-Zn(3)-O(3) 97.9(4) O(3)-Zn(4)-O(4) 92.3(4) 

 

2.2.3 Experimental Section 

Solvents were of p.a. grade and used as commercially available. For the copper(I) 

chemistry solvents of extra dry quality were used and distilled under inert atmosphere 

prior to use. Propionitrile was purified according to a literature procedure.120 The ligand 

1,3-tpbd was synthesized according to a published procedure and recrystallized from 
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acetone prior to use.68 O2 saturated solutions for the stopped-flow measurements were 

prepared by bubbling O2 for 10 min through the extra dry solvent. 

Caution! The syntheses and procedures described below involve compounds that contain 

perchlorate ions, which can detonate explosively and without warning. Although we have 

not encountered any problems with the compounds used in this study, they should be 

handled with extreme caution. 

Room temperature UV/Vis experiments were performed using an Agilent 8453 

spectrophotometer using the UV/Vis Chemstation program (Agilent) for collecting and 

processing of data. Low temperature stopped-flow spectra were recorded on a Hightec 

Scientific SF-61SX2 stopped-flow system. Data were collected and processed with the 

Kinetic Studio (1.12) program by TgK Scientific. 

Single crystal X-ray structure determination in chapter 2.2 was performed using a STOE 

IPDS equipped with a low temperature unit built by Karlsruher Glastechnisches Werk. 

Data was processed using the implemented STOE software and structures were solved 

and refined with the ShelX 97 program package.113 Crystals were covered with 

perfluorpolyether and mounted on a glass fiber. 

2.2.3.1 Synthesis of [Zn4(H2O)2(OH)3(1,3-tpbd)2](BF4)5∙CH3COCH3∙xH2O 

To an acetone solution (2mL) of 1,3-tpbd (50 mg, 1.1×10−4 mol), Zn(BF4)2∙H2O (55 mg, 

2.1×10−4 mol) solved in 2 mL acetone was added dropwise. After several days of slow 

ether diffusion at −30 °C colorless block shaped crystals suitable for single crystal X-ray 

determination formed. 

2.2.3.2  “Benchtop” UV/Vis Experiments 

2.2.3.2.1 Solution of [Cu2(1,3-tpbd)](SO3CF3)2 

To a solution of  1,3-tpbd (50 mg, 1.1×10−4 mol) in propionitrile (5 mL) was added 

[Cu(CH3CN)4]SO3CF3 (176 mg, 2.1×10−4 mol) in propionitrile (5 mL) dropwise under 

inert conditions. The resulting solution was reacted with oxygen, bubbled through at 

−80 °C. The solution was allowed to warm to room temperature. After one day the 

yellow solution turned red. 

2.2.3.2.2 Solution of [Cu2(1,3-tpbd)](SbF6)2 

[Cu(CH3CN)4]SbF6 (12 mg, 3×10−5 mol) was dissolved in Butyronitrile (25 mL) and 1,3-

tpbd (6 mg, 1×10−5 mol) was added to the solution. Oxygen was bubbled through the 

yellow solution for 5 min. After one day the solution had turned brown. 
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2.2.3.2.3 Solution of [Cu2(1,3-tpbd)]2+ and Cl- 

1,3-tpbd (5 mg, 1×10−5 mol) and CuCl (2 mg, 2×10−5 mol) were dissolved in propionitrile 

(1.5 mL). The yellow solution was diluted with propionitrile and oxygen was bubbled 

through. The resulting green solution turned brown-red after one day. 

2.2.3.3 Preparation of Copper(I) Solutions for Low Temperature Stopped-Flow 

experiments 

2.2.3.3.1 Solution of [Cu2(1,3-tpbd)](SbF6)2 

To an acetone solution of 1,3-tpbd (6 mg, 1×10−5 mol) [Cu(CH3CN)4]SO3CF3 (9 mg, 

3×10−5 mol) was added under inert conditions. The resulting yellow solution was diluted 

under inert conditions to a complex concentration of 2×10−4 mol/L. UV/Vis spectra were 

recorded after the mixture with oxygen saturated acetone solution (1:1 ratio) at various 

temperatures. 
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3 Functionalized Unspenp Derivatives 

3.1 Introduction 

In a different approach to synthesize bridging ligands similar to 1,3-tpbd (see chapter 2) 

we obtained the xylyl bridged unspenp derivatives N’-1-{3-[2-bis(2-

pyridylmethyl)aminoethyliminomethyl]phenyl}methyliden-N,N-bis(2-pyridylmethyl)-

1,2-ethanediamine (Imxyl-unspenp), N’-{3-[2-bis(2-pyridylmethyl)aminoethyl 

aminomethyl]benzyl}methyliden-N,N-bis(2-pyridylmethyl)-1,2-ethanediamine (Hxyl-

unspenp) and N’-{3-[2-bis(2-pyridylmethyl)aminoethyl(methyl)aminomethyl] 

benzyl}methyliden-N,N-bis(2-pyridylmethyl)-1,2-ethanediamine (Me2xyl unspenp) 

(Figure 29). Here, each of the bispicolylamine units bears an additional ethylamine 

residue resulting in a tripodale ligand.121-122 The synthesis of the ligands is well 

known,122-124 but until today only one copper(I) complex could be structurally 

characterized.123 

This type of bridged bispicolylamine units can be used successfully for to provide a 

ligand environment that affords space for two metal ions. Thus, studies on the reactivity 

towards dioxygen of the dinuclear copper(I) compounds are interesting with regard to 

the extraordinary properties of the parent mononuclear amine tris-(2-

methylpyridyl)amine.23 Additionally, the zinc(II) complexes and the heterometallic 

species are of special interest, due to the extraordinary superoxide reducing capabilities 

of human Cu/Zn SOD bearing a heterobimetallic active core.12-13 

 
Fig. 29 Xylyl bridged unspenp derivatives related to 1,3-tpbd. 

Derivatisation of unspenp is a versatile instrument to combine the excellent tripodal 

binding site for copper or zinc ions with other functionalities such as extended π-

systems for example. From various examples it is known, that anthracene can be easily 

derivatised with bispic as binding site for zinc. The zinc(II) complexes of these ligands 
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are known to exhibit fluorescent phosphate sensing capabilities.39, 125 Hence, the 

condensation reaction of unspenp with anthracenecarboxaldehyde to form the imine 

bond was performed earlier in order to synthesize and characterize zinc(II) complexes 

and especially study their emission behavior.126 Figure 30 depicts the structures of the 

formed N’-(9-anthracenylmethylene)-N,N-bis(2-pyridylmethyl)-1,2-ethanediamine 

(Imant-unspenp) and the related N’-(9-anthracenylmethyl)-N,N-bis(2-pyridylmethyl)-

1,2-ethanediamine (Hant-unspenp) derived from a simple reduction with borohydride.  

 
Fig. 30 Structures of Imant-unspenp and Hant-unspenp and the parent unspenp ligand. 

The molecular structure of a zinc(II) complex using Imant-unspenp as a ligand could be 

reported (Figure 31). The single crystals derived from a solution of Imant-unspenp, 

stoichiometric amount of zinc(II)chloride and dichloroethane as solvent. An in situ 

formed [ZnCl4]2- molecule serves as anion and eight solvent molecules are located in the 

smallest independent unit. The trigonal-bipyramidal coordination around the zinc(II) 

ion is not affected by the fluorophore group.126 

 
Fig. 31 Structure of [Zn(Imant-unspenp)Cl]2[ZnCl4]∙8C2H4Cl2. Solvent molecules and hydrogen atoms 

omitted for clarity. Thermal ellipsoids set to 50% probability. 

Due to the lability of the imine bond, it remains unclear, which species is present in 

solution. Therefore, emission studies were not performed until today. The emission 
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behavior of Hant-unspenp has neither been studied in detail but simple emission 

spectra showed an enhancement of the emission intensity upon addition of zinc. Further 

addition of hydrogenphosphate anions led to a lowered intensity. A significant shift of 

the emission maxima at 392 nm, 411 nm and 432 nm, generated by the fluorophore 

anthracene residue, could not be observed. The enhanced emission intensity is most 

likely explainable by the inhibition of the PET process (see chapter 1.3) upon 

complexation of zinc(II). The addition of hydrogenphosphate, that most likely leads to a 

conformational change and serves as electron donating group, then again promotes the 

PET process and causes a lowered intensity.126 

Until today no copper complexes of the ligands Hant-unspenp and ant-im-unspenp are 

known. Unfortunately, all attempts to obtain single crystals of a copper(I) or copper(II) 

species remained unsuccessful so far. Recently, photocatalysis using transition metal 

complexes has attracted a great deal of attention due to the offered possibilities with 

regard to reactions under mild conditions (“green chemistry”) or the production of 

hydrogen by watersplitting.127-130 Basic investigation on this field of research is 

therefore of growing importance. The implementation of photosensitizing groups (e.g. 

anthracene as shown in Figure 30) to the ligand unspenp is one attempt to influence the 

reactions of related copper(I) complexes towards dioxygen. This chapter provides first 

results with the copper(I) complexes of the already known ligands Imant-unspenp and 

Hant-unspenp.  

3.2 Results and Discussion 

In order to detect reactive intermediates during the reaction of the copper(I) complexes 

towards dioxygen, low temperature stopped-flow experiments were performed. Studies 

on the reactivity of the copper(I) complex of unspenp towards dioxygen were reported 

earlier by Schatz et al.131 A copper(I) species that had been structurally characterized as 

dimer in the solid, led to the formation of a copper superoxido intermediate followed by 

a peroxido species. The rate constants were strongly influenced by the used solvents 

(acetone, propionitrile). Additional reactions occurred most likely due to the dimeric 

nature of the compound that prevented a full kinetic analysis. In the case of the parent 

ligand unspenp, methylation of the aliphatic amine led to Me2unspenp which enabled a 

full kinetic analysis of the reaction towards dioxygen and to a stabilized peroxido 

species.132-133  

3.2.1 Reactivity of Copper(I) Complexes Using Ant-unspenp Ligands Towards 

Dioxygen 

Following the strategy of Schatz et al.131 methylation of the ligand Hant-unspenp (see 

Figure 30) most likely enables kinetic analysis of the reactivity of the copper(I) complex 

towards dioxygen. Unfortunately, the pure methylated ant-unspenp ligand could not be 

synthesized so far. Therefore, the problems that arise by the lability of the imine bond of 

Imant-unspenp and the presence of protons in Hant-unspenp were inevitable for the 
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UV/Vis measurements. Nevertheless, Figure 32 depicts the obtained low temperature 

stopped-flow spectra of the copper(I) complexes of Hant-unspenp.  
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Fig. 32 Low temperature UV/Vis spectra of the reaction of [Cu(Hant-unspenp)]+ with dioxygen in 

acetone solution. Inset: Timetrace of the assumed superoxido shoulder at 422 nm. 

In addition to the problems arising from the labile nature of the ligands itself, upon 

addition of oxygen always an unidentified precipitate formed even at very low 

concentrations that prevented detailed kinetic studies. Thus, the imine could not be 

measured. 

Below 400 nm the very intensive bands deriving from the anthracene residue are visible 

in the spectra and overlay the band at 422 nm, assumed to be a superoxido charge 

transfer band that is only detectable as a shoulder. The inset of Figure 32 depicts a 

timetrace at 422 nm over a period of 4.5 s. At the given temperature of -90 °C the 

superoxido species is decaying fast and identification is not possible after this period. 

Compared to the spectra of the copper(I) superoxido species using unspenp as a ligand, 

the weaker bands at higher wavelength that are visible in the first few spectra, support 

the assumption of an initially formed superoxido complex with a very short lifetime.131 

In Figure 33, an enlarged section of Figure 32 that concentrates on the bands at 524 nm 

and the broad one around 600 nm is depicted. These bands are assigned to the charge 

transfer bands of a formed peroxido species. The inset of Figure 33 depicts the timetrace 

at 524 nm showing a fast formation, followed by a period of approximately 1.5 s of non-

distinctive behavior and a very slow decay afterwards. Normally, charge transfer bands 

are very intense. Therefore, a very low concentration of peroxido species in solution can 

be assumed. 
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Fig. 33 Section of Fig. 32 Inset: Timetrace at 524 nm of the assumed peroxido band. 

From the results of the studies using unspenp as a ligand it is known that hydrogen 

atoms of the aliphatic amine most likely lead to side reactions. Additionally, possible 

products of an oxidation reaction could not be identified yet. Hence, a statement about 

the reaction pathway is hardly drawable. The first two steps, the initially formed 

superoxido complex followed by a μ-1,2 peroxido species, are reasonable from the 

results of the UV/Vis spectra but the further progress of the reaction remains unclear. 

Figure 34 depicts drawings of the assumed species. 

 

Fig. 34 Assumed structures of the superoxido and peroxido species most likely occurring during the 
reaction of [Cu(Hant-unspenp)]+ with oxygen. 

Abstraction of the hydrogen atom at the aliphatic amine function possibly leads to the 

formation of dihydrogenperoxide that is capable of further oxidation reactions, for 

example the formation of acetone peroxide. This remains highly speculative but could 

explain the formation of a precipitate during the reaction.  
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At −90 °C the decay of the peroxido species is very slow. After 450 s the intensities of the 

assigned bands are only very slightly lowered. At −35 °C still weak peroxido bands are 

visible, that are overlaid during 450 s by a broad starting around 600 nm, typical for 

copper(II) dd transfers. An indefinite decay of the peroxido species is therefore the only 

assumption that is possible from these initial results of the study. 

3.2.2 Reactivity of Copper(I) Complexes of Bridged Unspenp Derivatives Towards 

Dioxygen 

Copper(I) salts react readily with all three ligands (Imxyl-unspenp, Hxyl-unspenp, 

Me2xyl-unspenp, see Figure 29) in various solvents to form yellow complexes under 

inert conditions. The copper(I) complexes of unspenp and closely related amines like 

tmpa, Me2unspenp, Me4apme or Me6tren are known to form end on superoxide and μ-

peroxido oxygen species, that can be identified by the intensive charge transfer bands 

caused by the coordination of oxygen in the region of visible light.22 

In order to examine the reactivity of the copper(I) complexes with the bridged ligands 

and to determine the active oxygen species, low temperature stopped flow experiments 

were performed. Only recently, Garcia-Bosch et al. reported about a μ-peroxido species 

of Imxyl-unspenp and its oxidizing capability towards selected substrates.123 The low 

temperature stopped flow experiments (see Figure 35) with the copper(I) complex of 

Imxyl-unspenp showed the typical bands for this oxygen species and affirmed their 

results. Unlike complexes with the related amines of the tmpa family and even at very 

low temperatures around −90 °C, a formation of a superoxido intermediate could not be 

observed. 

 
Fig. 35 UV/Vis spectra and timetraces of the reaction of [Cu2Imxyl-unspenp]2+ with oxygen in 

propionitrile at T = −90 °C ( t = 4.5 s; c(O2) = saturated solution; c ([Cu2ImXyl-unspenp]ClO4) = 5×10-4 
mol/L). 
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Unfortunately, the complexes were badly soluble after the oxidation reaction. Thus, a 

kinetic analysis of the gained UV/Vis spectra was not possible and activation parameters 

could not be determined. Nevertheless, a comparison of the observed bands during the 

reaction with dioxygen with the ones characteristic for specific oxygen intermediates 

provided information on the possible reaction pathway. As expected, the μ-peroxido 

complex is formed very rapidly even at very low temperatures. This is most likely due to 

the second intramolecular copper(I) atom that leads to a fast monomolecular reaction 

once a superoxido complex is formed. In consequence, neither the formation nor the 

decay of a possible end-on superoxido complex is observable. 

A closer look at the band at 378 nm that most likely derives from ligand-centered imine 

transitions, reveals a rapid decay followed by a period of approximately one second 

where an increasing absorption is observable. After a reaction time of 1.5 to 2 seconds 

the absorption is again decreasing slowly. Unfortunately, no explanation for this 

phenomenon can doubtlessly be provided since there is more than one rational 

possibility. One of which is a rapid decay of the imine followed by a formation of a side-

on bis-μ-peroxido deriving from the initially formed end-on-μ-peroxido complex. These 

two species are known to exist in an equilibrium. Both are decaying slowly to so far 

unknown products. Ligand hydroxylation at the Xylyl-bridge or the cleavage of the 

aliphatic amine bond are the most likely pathways for oxidation reactions. A similar 

hydroxylation is known from an 1,3-tpbd derivative.68 

An underlying, intensive charge transfer band of a small amount of formed superoxido 

complex is also not completely deniable, but compared to the spectra of other 

superoxido species of similar coordination compounds or the ones of the copper(I) 

complex Hxyl-unspenp the superoxido band should be redshifted (compare Figure 36). 

Here, only educated guesses can be made concerning the detailed reaction pathway, due 

to the missing kinetic analysis. The rapid formation of an end-on-μ-peroxido complex 

stable for more than 250 seconds at −90 °C in propionitrile is the only conclusion of the 

stopped flow spectra that can be proved. Until today neither oxidized ligand nor other 

possible oxidation products of the reaction could be isolated and characterized. 

In contrast to these findings the reaction of the copper(I) complex of Hxyl-unspenp as 

ligand with oxygen is comparable to the properties of the related amines of the tmpa 

family. The depicted spectra in Figure 36 reveal charge transfer bands of both end-on 

superoxido and μ-peroxido species as reactive intermediates. A kinetic analysis was 

again impossible due to the bad solubility of the oxidation products leading to a cloudy 

solution, making an observation over a longer time period or in a broad temperature 

range impossible. From a comparison of the timetraces of the complexes bearing only 

one copper(I) atom and that of the copper(I) atom of Hxyl-unspenp it is obvious that 

the reaction rates for the formation and the decay of both superoxido and peroxido 

species are faster for the complex bearing two metal atoms. This is again most likely due 

to the acceleration of the reaction by the change between bi- and monomolecular 

reaction type minimizing the effects of solvent molecules. 
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Fig. 36 UV/Vis spectra and timetraces of the reaction of [Cu2Hxyl-unspenp]2+ with oxygen in 

propionitrile at T = −93 °C ( t = 0.9 s; c(O2) = saturated solution; c ([Cu2Hxyl-unspenp]SbF6) = 5×10-4 
mol/L). 

The decreasing band at 422 most likely derives from an intensive charge transfer 

transition of an end-on superoxido complex already known from the tmpa derivatives.22 

The formation is too fast, to observe even at −93 °C, while the formation of the μ-

peroxido species is detectable at least in the very first spectra of the stopped-flow 

experiment forming strong charge transfer bands at 517 and 602 nm, respectively. Both 

species are very reactive and decay rapidly, over a period of only some seconds. The 

comparison of these spectra with the related data for the related monomolecular species 

leads to the postulation of a possible reaction pathway shown in Figure 37. It follows the 

well known mechanism for the mononuclear complexes.134-135 Due to the excess amount 

of solved oxygen in the saturated propionitrile, a pseudo first order reaction leads to the 

formation of the very reactive superoxido species. The initially formed intermediate 

reacts intramolecular with the second copper(I) atom most likely in a first order 

reaction leading to the formation of a more stable end-on μ-peroxido species. Their slow 

decay leads to so far unknown products. Side reactions, involving the direct decay of the 

superoxido complex are plausible.18 

A concerted reaction of both copper(I) atoms with the oxygen molecule leading directly 

to the end-on μ-peroxido species is not impossible but improbable due to the result 

already published for the comparable monomolecular copper(I) complexes.22, 131 To the 

best of our knowledge, the formation of the end-on superoxido complex is the initial step 

during the reaction of comparable copper(I) complexes with oxygen. Using these 

bridged ligands most likely only accelerates the formation of the μ-peroxido complex, 

making lower temperatures or faster spectroscopy necessary to observe the superoxido 

complex. 
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Fig. 37 Proposed mechanism for the reaction of Hxyl-unspenp with oxygen following the reaction 

pathway published earlier.131 

From the comparison of the different timetraces(see insets of Figures 35 and 36) it is 

obvious that the peroxido adduct of Imxyl-unspenp is more stable than the Hxyl-

unspenp adduct, possibly due to the existence of an equilibrium between end-on and 

side-on bound peroxido species. 

3.2.2.1 Synthesis and Characterization of a Carbonate Bridged Copper(II) Dimer 

The copper(II) complex shown in Figure 38 derived from a solution containing copper(I) 

and hexafluoroantimony ions. The solution was oxidized with dioxygen and allowed to 

stand several days. Unexpectedly a carbonato bridged copper(II) complex formed, that 

could be determined by single crystal X-ray crystallography. Unfortunately the single 

crystals were of minor quality resulting in high R-values. Thus, the structure could not 

be solved properly. Nevertheless, the structure motive was determinable and is obvious 

from Figure 38.  

Although the position of some of the carbon atoms of the ligand was not refinable, the 

carbonato bridges between the copper atoms are clearly recognizable. During the 

synthesis of the complex no carbonate was added. Therefore, the coordinated carbonate 

is most likely the reaction product of an reaction of carbon dioxide from air activated by 

the copper(I) complex and dioxygen or vice versa. Copper and zinc complexes are known 

for stoichiometric transition of carbon dioxide into carbonate.136-137 There are many 

examples for coordinated bridging carbonates, but the conversion of carbon dioxide 

from air into carbonate is rather rare.138 Due to the great interest of utilizing carbon 

dioxide from air as carbon source for chemical processes, knowledge about fixation and 

oxidation of carbon dioxide is essential. Copper complexes that are capable of catalyzing 

such reactions are therefore promising study objects.139 
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Fig. 38 Fragments of the molecular structure of the cation [Cu4(CO3)2(Hxyl-unspenp)2]4+. Hydrogen 

atoms have been omitted for clarity. Thermal ellipsoids set to 50 %. 

Only recently Angamuthu et al. reported the activation of carbon dioxide from air by a 

similar copper(I) complex containing two bridged dipicolyl subunits as ligand.17 Even a 

catalytic cycle recovering the active copper(I) species electrochemically could be 

demonstrated (see chapter 1.2.2). 

Although the presented structure is not more than a first hint for the carbon dioxide 

activating capability of [Cu2(Hxyl-unspenp)](SbF6)2, it should serve as initiator for 

further studies concerning this topic. 

3.3 Conclusions 

To draw a conclusion, it was unfortunately not possible to clarify the reaction pathway 

of the reaction of the copper(I) complexes using anthracenyl ligands towards dioxygen. 

Nevertheless, the formation of a superoxido and a peroxido species could successfully be 

observed in the UV/Vis spectra at very low temperatures.  

There are still many open questions: Why is the equilibrium concentration of the formed 

intermediates that low? How does the peroxido species decompose? Does the complex 

catalyze oxidation reactions? These questions have to be solved in further studies 

initialized during this work. Additionally, studying the influence of light on the reactions 

still remains a challenging but very interesting aim. 

In terms of the xylyl bridged unspenp imine studies on the reactivity towards dioxygen 

resulted in the approval of data published most recently by Garcia-Bosch et al. As 

expected only a μ-peroxido compound could be observed even at low temperatures. In 

contrast the copper(I) complex of the related amine formed most likely an observable 

superoxido species.  

Unexpectedly, the copper(II) complex formed a bis-μ-carbonato dimer most likely 

deriving from carbon dioxide from air. 
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3.4 Experimental Section 

Ligands unspenp, ant-im-unspenp and Hant-unspenp were synthesized according to 

literature procedures.126, 131 The synthesis for Ligands Imxyl-unspenp and Hxyl-unspenp 

has been recently published.123-124 Here a slightly modified procedure published earlier 

by Würtele et al. was applied.122 Solvents were of p.a. grade and used without further 

purification as commercially available. Water-free copper(I) salts with weakly 

coordinating anions were synthesized following a well-known procedure.140 

Caution! The syntheses and procedures described below involve compounds that contain 

perchlorate ions, which can detonate explosively and without warning. Although we have 

not encountered any problems with the compounds used in this study, they should be 

handled with extreme caution. 

Single crystal X-ray structure determination in chapter 3 was performed using a STOE 

IPDS equipped with a low temperature unit built by Karlsruher Glastechnisches Werk. 

Data was processed using the implemented STOE software and structures were solved 

and refined with the ShelX 97 program package.113 Crystals were covered with 

perfluorpolyether and mounted on a glass fiber. 

3.4.1 Low Temperature Stopped Flow Measurements 

For the copper(I) chemistry, solvents of extra dry quality were used and distilled under 

inert atmosphere prior to use. Propionitrile was purified according to a literature 

procedure.120 Low temperature stopped-flow spectra were recorded on a Hi Tech 

Scientific system using kinetic studio program for data processing. Dioxygen saturated 

solutions were prepared by bubbling dioxygen (grade 5.5) through the solvent for 10 

min.  

3.4.1.1 X-ant Unspenp Solutions  

The copper(I) solutions for the low temperature stopped flow experiments were 

prepared by mixing stoichiometric amounts of ligand [Cu(CH3CN)4]BF4 presolved in 

acetone and filled up to 25 mL to yield a 5×10−4 mol/L acetone solution. In the cuvette, 

the complex solution was mixed with dioxygen saturated acetone solution. 

3.4.1.2 [Cu2(Imxyl-unspenp)]2+ Solution 

Imxyl-unspenp (15 mg, 2.5×10−5 mol) and [Cu(CH3CN)4]ClO4 (16 mg, 5.0×10-5 mol) 

were dissolved in absolute propionitrile (25 mL). To record a copper(I) spectrum at low 

temperatures, the solution was mixed with dry and oxygen-free solvent 1:1. For the 

stopped flow experiments to observe reactive intermediates, the complex solution was 

mixed with O2-saturated propionitrile in 1:1 ratio and measured in situ at various 

temperatures. 
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3.4.1.3 [Cu2(Hxyl-unspenp)]2+ Solution 

Hxyl-unspenp (14.7 mg, 2.5×10−5 mol) and [Cu(CH3CN)4]SbF6 (23.1 mg, 5.0×10−5 mol) 

were dissolved in absolute propionitrile (25 mL). To record a copper(I) spectrum at low 

temperatures, the solution was mixed with dry and oxygen-free solvent 1:1. For the 

stopped-flow experiments to observe reactive intermediates, the complex solution was 

mixed with O2-saturated propionitrile in 1:1 ratio and measured in situ at various 

temperatures. 

3.4.2 Synthesis of [Cu4(CO3)2(Hxyl-unspenp)2](SbF6)4 

Under inert atmosphere a solution of [Cu(CH3CN)4]SbF6 (318 mg, 6.86×10−4 mol) in 

acetone (2mL) was added dropwise to an acetone solution (4mL) of  Hxyl-unspenp 

(200 mg, 3.41×10−4 mol). After 15 min O2 was bubbled through the solution and the 

resulting turquoise solution was allowed to stand for one day. After several additional 

days of ether diffusion at room temperature, blue, plate like single crystals suitable for 

X-ray structure determination formed. 
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4 Bispicolylamine Relatives Closely Related to Tmpa 

4.1 Syntheses, Emission Properties and Intramolecular Ligand Exchange of 

Zinc Complexes with Ligands Belonging to the Tmpa Family 

This chapter has been published previously in Dalton Transactions 2011, 40, 5090-5101 

Alexander Beitat,a Simon P. Foxon,a Christoph-Cornelius Brombach,a Heike Hausmann,b Frank W. 

Heinemann,c Frank Hampel,d Uwe Monkowius,e Christa Hirtenlehner,e Günther Knör*e and Siegfried 

Schindler*a 

a Institut für Anorganische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 58, 

35392 Gießen, Germany, E-mail: Siegfried.Schindler@anorg.chemie.uni-giessen.de 

b Institut für Organische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 58, 35392 

Gießen, Germany 

c Department Chemie und Pharmazie, Anorganische Chemie, Universität Erlangen-Nürnberg, 

Egerlandstr. 1, 91058 Erlangen, Germany 

d Department Chemie und Pharmazie, Organische Chemie, Universität Erlangen-Nürnberg, 

Henkestr. 42, 91054 Erlangen, Germany 

e Institut für Anorganische Chemie, Johannes Kepler Universität Linz, Altenbergerstr. 69  A-4040 

Linz, Austria, E-mail: Guenther.Knoer@jku.at 

The zinc complexes [(L1)2Zn(MeOH)2](OTf)2, [(L1)ZnCl2], [(L2)ZnCl2], [(L2)Zn(OTf)(H2O)]OTf 

and [(Me-bispic)ZnCl2] of the ligands N-[(2-Pyridyl)methyl]-2,2´-dipyridylamine (L1), N-[bis(2-

pyridyl)methyl]-2-pyridylamine (L2) and N-methyl-[bis(2-pyridyl)methyl]amine (Me-bispic) 

were synthesised and characterised. The first copper(I) complexes of the ligands L1 and L2 were 

also synthesised and structurally characterised. [(L1)ZnCl2] showed unexpected fluxional 

behaviour in solution and revealed an interesting intramolecular ligand exchange mechanism in 

the coordination sphere of the zinc ion. Furthermore, strong blue emission was observed under 

UV-light excitation. 

4.1.1 Introduction 

Metalloproteins containing zinc in their active sites play an important role in the metabolism of 

eukaryote and prokaryote cells. There are examples in nearly every fundamental class of 

enzymes i.e. oxidoreductases, transferases or hydrolases.2-3, 141 

The function of such enzymes is intimately related to the structural and geometric properties of 

their active sites. In the past, complexes containing derivatives of tris(2-pyridylmethyl)amine 

(tmpa, Figure 39) as ligands were used as model compounds for zinc enzymes.142-150 Detailed 

studies of ligands closely related to tmpa revealed a strong effect of the chelate ring size on the 
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properties of related copper complexes.134, 151 When the "ligand arms" of tmpa were 

systematically shortened, ligands N-[(2-pyridyl)methyl]-2,2´-dipyridylamine (L1), N-[bis(2-

pyridyl)methyl]-2-pyridyl amine (L2) and 2,2‘,2“-tripyridylamine (tpa) were obtained. 

Additionally, N-methyl-[bis(2-pyridyl)methyl]amine (Me-bispic also abbreviated as Me-bpa) 

missing one "arm" and thus a donor atom (compared with tmpa) was prepared. 

N

N
N

N
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N

N
N

N

L2

N

N

N

N
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N

N
N
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N

N

N

tpa
 

Fig. 39 The ligands tmpa, L2, Me-bispic, L1 and tpa 

Herein we report the synthesis, characterisation and the properties of the zinc complexes 

containing ligands L1, L2 and Me-bispic. Furthermore, copper(I) complexes of the ligands L1 

and L2 have been structurally characterised and compared to their analogous zinc complexes.  

4.1.2 Results and Discussion 

4.1.2.1 Ligand Synthesis 

The ligands L1, L2 and tpa were synthesised according to recently reported procedures.151-152 

The ligand N-methyl-[bis(2-pyridyl)methyl]amine (Me-bispic) can be synthesised by various 

published procedures:153-155 (treating an aqueous solution of 2-(chloromethyl)pyridine 

hydrochloride and K2CO3 with 2-(N-methylaminomethyl)pyridine,155 reacting an aqueous 

solution of 2-(chloromethyl)pyridine hydrochloride and NaOH with methylamine 

hydrochloride153 or by the reductive methylation of bis[(2-pyridyl)methyl]amine under 

Eschweiler-Clark conditions.)154 As described previously, we used an alternative method to 

prepare Me-bispic in a direct reductive amination reaction leading to much better yields.156 The 

required product bis[(2-pyridyl)methyl]amine was synthesised in high yield according to a 

procedure described earlier.157  

4.1.2.2 Metal Complexes 

Zinc complexes of tmpa are well-known and their properties and crystal structures have been 

described.158-163 In contrast, only 3 different zinc complexes of tpa have been investigated and 

structurally characterised.152, 164-165 
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Ligands L1, L2 and Me-bispic coordinate readily with zinc salts to form complexes of which 4 

are presented herein. All of the zinc complexes are air stable with the exception of 

[(L2)Zn(OTf)(H2O)]OTf, which is hygroscopic. 

In contrast, copper(I) complexes of L1 and L2 were found to be air sensitive and, although their 

reactivities were investigated previously, it was not possible to structurally characterise them by 

X-ray diffraction analysis at this time.151 

4.1.2.3 Crystal Structure Determinations 

Crystals suitable for structural characterisation were obtained for [(L2)ZnCl2] (1a), 

[(L2)Zn(OTf)(H2O)]OTf (1b), [(L2)3Cu2](BPh4)2 (1c), [(Me-bispic)ZnCl2] (2), [L1H]OTf (3a), 

[(L1)ZnCl2] (3b), [(L1)2Zn(MeOH)2](OTf)2 (3c) and [(L1)2Cu2](OTf)2 x 2 DMF (3d). A summary 

of the relevant crystallographic data and refinement parameters for the zinc complexes 1a, 1b, 2, 

3b, 3c and the protonated ligand 3a can be found in Table 5 and for the copper(I) complexes 1c 

and 3d in Table 6, respectively. Selected bond lengths and angles for all compounds are provided 

in Table 7. 

4.1.2.3.1 [(L2)ZnCl2] (1a) 

Colourless block-shaped crystals of 1a suitable for single-crystal X-ray analysis were obtained 

and Figure 40 shows a thermal ellipsoid plot of the molecular structure.  

Two of the pyridyl rings of L2 coordinate to the zinc atom in 1a. The zinc atom is 

tetracoordinated by the pyridyl nitrogen atoms N(11) and N(21), [Zn(1)–N(11) = 2.082(2) Å, 

Zn(1)–N(21) = 2.051(2) Å] and two chloride ions Cl(1) and Cl(2) [Zn(1)–Cl(1) = 2.214(1) Å, 

Zn(1)–Cl(2) = 2.294(1) Å]. 

 

Fig. 40 Thermal ellipsoid representation (50 % probability ellipsoids) of the molecular structure of [(L2)ZnCl2] 
(1a) 
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The coordination environment around the zinc atom is best described as close to tetrahedral 

with only small deviations from the ideal value of 109°. Only two of the pyridyl rings of L2 are 

coordinated to the zinc atom.  

The two coordinated pyridyl rings are far from being coplanar with one another as is evident by 

a dihedral angle of 69.75° between the two rings. Two nitrogen atoms of L2 remain 

uncoordinated to the zinc(II) atom, the tertiary amine nitrogen N(27) [N(27)···Zn(1) = 2.69 Å], 

and the pyridyl nitrogen N(32) atom [N(32)···Zn(1) = 4.11 Å]. In contrast to 1a, the metal ion in 

the corresponding structurally characterised copper(II) chloride complex of L2 [(L2)CuCl2] was 

found to be penta-coordinate.151 

4.1.2.3.2 [(L2)Zn(OTf)(H2O)]OTf (1b) 

The three ligands were also reacted with a zinc salt containing a weakly coordinating anion - zinc 

triflate. Colourless prism-shaped crystals of 1b were grown at –20 °C from a solution containing 

MeCN/CH2Cl2/Et2O. A thermal ellipsoid plot of the molecular structure of 1b is displayed in 

Figure 41. 

 

Fig. 41 Thermal ellipsoid representation (50 % probability ellipsoids) of the molecular structure of 
[(L2)Zn(OTf)(H2O)]OTf (1b) 

As is depicted in Figure 41, and as was observed for 1a, only two of the pyridyl rings of L2 

coordinate to the zinc atom. The zinc atom is pentacoordinated by the pyridyl nitrogen atoms 

N(26) and N(36), the tertiary amine nitrogen atom N(10), O(21) of one of the triflate anions and 

O(1) of the coordinated water molecule. The coordination environment around the zinc atom is 

best described as distorted square pyramidal (τ = 0.22 as described by the trigonality parameter 

τ:118 τ = 0 denotes perfect square pyramidal; τ = 1 denotes perfect trigonal bipyramidal), with 

N(10), N(26), N(36) and O(1) forming the basal plane [Zn(1)–N(10) = 2.319(2) Å, Zn(1)–N(26) = 

2.033(2) Å, Zn(1)–N(36) = 2.023(2) Å and Zn(1)–O(1) = 2.058(2) Å]. The apical coordination site 
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is occupied by the oxygen atom O(21) of a triflate anion [Zn(1)–O(21) = 2.070(2) Å].  Zn(1) 

deviates from the mean plane of the square pyramid towards the apical O(21) atom by ca. 0.35 Å. 

A second triflate anion, which remains uncoordinated [Zn(1)–O(11) = 2.60 Å] forms an 

intramolecular hydrogen bond with the coordinated water molecule [O(1)···O(12) = 2.702(2) Å,  

O(1)–H(1B)···O(12) = 172(3)°]. The coordinated water molecule also forms an intermolecular 

hydrogen bond with the coordinated triflate anion of a neighbouring molecule of 1c in the unit 

cell [O(1)···O(23)# = 2.755(2) Å, O(1)–H(1A)···O(23)# = 164(2)°]. 

4.1.2.3.3 [(L2)3Cu2](BPh4)2 (1c) 

Single crystals of 1c suitable for X-ray structure determination were grown from an acetone 

solution at –40 °C under an inert atmosphere. The molecular structure of the dimer is depicted in 

Figure 42. 

Three L2 ligand molecules and two copper(I) ions form the dimer. As observed in the triflate 

complex 1b, L2 coordinates  

Table 5 Crystallographic data for zinc compounds 1a, 1b, 2, 3b, 3c and the protonated ligand 3a 

 1a 1b 2 3a 3b 3c 

Molecular formula C17H16Cl2N4Zn C19H18F6N4O7S2Zn C13 H15 Cl2 N3 Zn C17H17F3N4O4S C16H14Cl2N4Zn C36H36F6N8O8S2Zn 

CCDC no. 724313 796270 724312 796272 796273 796274 

Mr 412.61 657.86 349.55 430.41 398.58 952.22 
Temperature [K]  173(2) 100(2) 173 193(2) 100(2) 193(2) 

Wavelength [Ǻ] 0.71073 0.71073 0.71073  0.71073 0.71073 0.71073 

Crystal description colourless block colourless prism colourless block colourless block colourless prism yellow block 
Crystal size [mm] 0.30  0.30  0.30 0.28  0.23  0.17 0.20 x 0.20 x 0.10 0.52 x 0.48 x 0.36 0.29  0.19  0.19 0.38 x 0.24 x 0.12 

Crystal system monoclinic triclinic monoclinic triclinic  monoclinic monoclinic  

Space group P21/c (No. 14) P-1 (No. 2) P21/n (No. 14) P-1 (No. 2) C2/c (No. 15) C2/c (No. 15) 
a [Ǻ] 9.2065(18)           9.4941(1)             8.5048(1) 9.2409(18)            15.2535(4)           23.404(5)            

b [Ǻ] 11.230(2) 10.8919(2)           13.0128(1) 9.5985(19)            7.4124(1)             12.220(2 

c [Ǻ] 17.138(3)             12.8792(2)           13.1424(1)           10.721(2)              29.1536(6) 17.155(3) 
α [˚] 90 100.878(1) 90 75.35(3) 90 90 

β [˚] 101.09(3) 94.965(2) 95.250(1) 83.59(3) 92.344(2) 123.83(3) 

γ [˚]  90 108.341(1) 90  88.29(3) 90 90.0 
V [Ǻ3] 1738.7(6) 1226.14(3) 1448.38(4)  914.2(3) 3293.5(2) 4075.8(14) 

Z 4 2 4 2 8 4 
F(000) 840 664 712 444 1616 1952 

ρcalc. [g cm–3] 1.576 1.782 1.603  1.564 1.608 1.552 

μ [mm–1] 1.725 1.267 2.053 mm-1 0.241 1.819 0.794 

Total reflections 7223 33004 5650 8133 32273 14581 
Unique reflections 3519 7118 3228 3970 5707 4942 

R(int) 0.0773 0.0574 0.0179 0.0715 0.0699 0.1493 

Scan range θ [˚] 2.89 to 26.30 3.42 to 30.00 2.21 to 27.48 3.12 to 28.06 3.34 to 32.00 2.43 to 28.13 
Completeness to θmax. [%] 99.9 99.3 97.5   89.3 99.8 99.1 

Index ranges 11  h  11 13  h  13 -9≤h≤10 12  h  11 22  h  22 30  h  30 

 7  k  13 15  k  15 -16≤k≤15 12  k  12 11  k  11 16  k  16 
 21  l  21 18  l  18 -17≤l≤17 12  l  13 43  l  41 22  l  22 

Data / restraints / parameters 3519 / 0 / 273 7118 / 0 / 406 3228 / 0 / 232 3970 / 0 / 275 5707 / 1 / 254 4942 / 0 / 326 

Goodness-of-fit on F2 [c] 0.873 1.125 1.122 1.108 1.015 0.860 
R1,[a][b] wR2 [I > 2σ(I)][c] 0.0292, 0.0683 0.0323, 0.0856 0.0262, 0.0754 0.0573, 0.1593 0.0359, 0.0705 0.0588, 0.1183 

R1,[a][d] wR2 (all data)[c][d] 0.0459, 0.0789 0.0479, 0.0910 0.0311, 0.0781 0.0631, 0.1656 0.0714, 0.0762 0.1456, 0.1453 

Max./min. el. density [e∙Å–3] +0.331, 0.458 +0.470, 0.558 +0.272, −0.536 +0.471, −0.913 +0.488, 0.427 +0.566, −0.592 
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Fig. 42 Thermal ellipsoid plot (50 % probability ellipsoids) of the molecular structure of [(L2)3Cu2](BPh4)2 (1c). 
Hydrogen atoms and anions are omitted for clarity 

with three nitrogen atoms to the metal atom. Two of them are from the methylpyridyl moieties 

and one being the tertiary amine. The bridging ligand molecule coordinates with one nitrogen of 

the methylpyridyl moieties to each copper(I) atom leading to four-coordinate metal atoms in the 

dimer. The geometry around the copper(I) atoms are best described as distorted tetrahedral. 

4.1.2.3.4 [(Me-bispic)ZnCl2] (2) 

The ligand Me-bispic acts as a tridentate ligand to the zinc atom in 2. A thermal ellipsoid plot of 

the molecular structure of 2 is displayed in Figure 43. 

  

Fig. 43 Thermal ellipsoid representation (50 % probability ellipsoids) of the molecular structure of [(Me-
bispic)ZnCl2] (2) 

The zinc atom is pentacoordinate, being ligated by the tertiary amine N(1) [Zn(1)–N(1) = 

2.215(1) Å] and the two pyridyl nitrogen atoms N(11) and N(21) [ Zn(1)–N(11) = 2.148(2) Å, 

Zn(1)–N(21) = 2.150(2) Å] of the ligand. The coordination sphere around the zinc atom is 

completed by two chloride anions Cl(1) and Cl(2) [Zn(1)–Cl(1) = 2.271(1) Å, Zn(1)–Cl(2) = 

2.278(1) Å]. Examination of the coordination around the zinc atom reveals that it is best 

described as distorted square pyramidal (τ = 0.35). The corresponding copper(II) complex has a 

similar coordination geometry (τ = 0.38) where the bonds of the nitrogen atoms to the metal 
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atom are about 0.14 Å shorter. In this complex the bond length of only one of the coordinated 

chlorides is similar to that in 2, the other bond is significantly longer [2.419(2) Å].156  

Only one further copper(II) complex with Me-bispic as ligand has been structurally 

characterised. Until now efforts to obtain single crystals of the copper(I) complex [(Me- 

bispic)CuCl], have been unsuccessful.156, 163 

Ligands L2 and Me-bispic are derivatives of the parent amine bis[(2-pyridyl)methyl]amine 

(bispic, also abbreviated as dipica or bpa). It is therefore informative to compare the zinc 

complexes of L2, Me-bispic and bispic. Copper complexes of bispic have been described 

previously166-168 and show similar modes of coordination as observed in copper(II) complexes 

with L2.151 The complex [(bispic)ZnCl2] has been structurally characterised by single-crystal X-

ray crystallography.169  

Table 6 Crystallographic data for copper(I) complexes 1c and 3d 

 1c 3d 

Molecular formula C102H94B2Cu2N12O C40H42Cu2F6N10O8S2 

CCDC no. 796271 796275 

Mr 1652.59 1096.04 

Temperature [K]  193(2) 203(2) 
Wavelength [Ǻ] 0.71073 0.71073 

Crystal description yellow block yellow block 

Crystal size [mm] 0.52 × 0.24 × 0.24 0.80 × 0.32 × 0.24 
Crystal system monoclinic monoclinic 

Space group Cc (No. 9) P21/n (No. 14) 

a [Ǻ] 17.762(4)            13.411(3)              
b [Ǻ] 20.211(4)             9.5300(19)            

c [Ǻ] 24.377(5)            17.636(4)              

α [˚] 90 90 
β [˚] 100.35(3) 95.72(3) 

γ [˚] 90 90 

V [Ǻ3] 8609(3) 2242.8(8) 
Z 4 2 

F(000) 3464 1120 

ρcalc. [g cm–3] 1.275 1.623 
μ [mm–1] 0.552 1.130 

Total reflections 27816 19621 

Unique reflections 13806 5123 
R(int) 0.0517 0.0624 

Scan range θ [˚] 2.02 to 25.02 2.81 to 28.09 

Completeness to θmax. [%] 99.3 93.6 
Index ranges 21  h  21 17  h  17 

 22  k  23 11  k  11 

 28  l  28 23  l  23 
Data / restraints / parameters 13806 / 2 / 1074 5123 / 0 / 340 

Goodness-of-fit on F2 [c] 0.924 1.070 

R1,[a][b] wR2 [I > 2σ(I)][c] 0.0461, 0.0941 0.0410, 0.1126 
R1,[a][d] wR2 (all data)[c][d] 0.0795, 0.1057 0.0502, 0.1182 

Max./min. el. density [e.Å–3] +0.459 / −0.237 +0.624 / −0.585 

The zinc atom is penta-coordinate and the coordination around the zinc atom is best described 

as distorted square-based pyramidal having a trigonality index τ of 0.15. The three Zn–N bond 

lengths are identical within error [average Zn–N distance = 2.166(5) Å] as are the Zn–Cl 

distances [average Zn–Cl distance = 2.270(1) Å]. In stark contrast to [(bispic)ZnCl2], the zinc 

atom in 1a remains tetra-coordinate and has close to tetrahedral geometry with the tertiary 

amine nitrogen atom remaining uncoordinated to the zinc atom as described above. There are 
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only a few minor differences in the geometric parameters in complex 2 compared to those in 

[(bispic)ZnCl2]. 

It is interesting to observe how derivatisation of the secondary amine group of the parent bispic 

ligand structure can cause drastic changes in the coordination environment around the zinc 

atom in the respective derivatised ligand complexes. L2 and Me-bispic both contain tertiary 

amine groups.  The tertiary amine nitrogen atom in L2 is less basic than the corresponding 

tertiary amine in Me-bispic. In L2 the lone-pair electron density of the tertiary amine nitrogen 

atom (N1) is reduced through delocalisation onto the pyridine ring, thus making it less available 

for coordination to a metal atom.  

Finally, a zinc complex of L2 (1b) with triflate – a well-known “weakly interacting” counter 

anion – was prepared. However only one ligand molecule L2 coordinates to the zinc atom and 

the zinc atom forms a strong interaction with one triflate anion. 

4.1.2.3.5 [L1H]OTf (3a) 

The structure of the protonated ligand L1 is depicted in Figure 44. Surprisingly, one of the 

pyridyl moieties is protonated and not, as we expected, the aliphatic bridging nitrogen N1. The 

two pyridyl moieties of the ligand are co-planar and the nitrogen atoms N3 and N4 are facing 

each other to allow the proton to be covalently bonded to N4. Thus they form an intramolecular 

hydrogen bond to N3 with a distance of 1.827 Å. Due to this stabilisation the pyridyl nitrogen is 

the favoured position for protonation. 

 

Fig. 44 Thermal ellipsoid representation (50 % probability ellipsoids) of the molecular structure of [L1H]OTf. 
Anion and solvent  molecules are omitted for clarity. (3a)  
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4.1.2.3.6 [(L1)ZnCl2] (3b) 

The molecular structure of 3b is shown in Figure 45. In this figure it can clearly be seen that only 

two of the pyridyl rings of L1 are ligated to the zinc atom. The zinc atom is four-coordinate, being 

coordinated by the pyridyl nitrogen atoms N(26) and N(36), [Zn(1)–N(26) = 2.039(2) Å, Zn(1)–

N(36) = 2.075(2) Å] and two chloride ions Cl(1) and Cl(2) [Zn(1)–Cl(1) = 2.241(1) Å, Zn(1)–Cl(2) 

= 2.240(1) Å]. The coordination environment around the zinc atom is close to tetrahedral as is 

noted by only small variations from the ideal value of 109°. It is clear that the two pyridyl rings 

which are coordinated to the zinc atom are not coplanar as is evident by a dihedral angle of 

26.77° between the two rings. During the crystallographic refinement of the structure of 3b, the 

non coordinating pyridyl ring was found to be disordered over two positions. The positions of 

each orientation were successfully refined with occupancies of 67(2)% and 33(2)%.  Two 

nitrogen atoms of L1 remain uncoordinated, the tertiary amine nitrogen N(10) [N(10)···Zn(1) = 

3.18 Å], and the pyridyl nitrogen N(16) atom [N(16)···Zn(1) = 3.72 Å].  

 

Fig. 45 Thermal ellipsoid representation (50 % probability ellipsoids) of the molecular structure of [(L1)ZnCl2] 
(3b) 

The ligand L1 is structurally closely related to tpa, L1 differing in that a methylene spacer group 

has been inserted into one of the ligand “arms”. The corresponding ZnCl2 complex of tpa 

[Zn(tpa)Cl2] has been structurally characterised by X-ray crystallography.152 There are 

similarities between the two structures, only two of the three pyridyl rings are found 

coordinated to the zinc atom. The coordination around the zinc atom in [Zn(tpa)Cl2] is close to 

tetrahedral, only the angle between the two coordinating pyridyl nitrogen atoms and the zinc 

atom [N(36)–Zn(1)–N(26) = 88.39(14)°] differs drastically from 109°, a consequence of the 

small chelate angle enforced by the 2,2´-dipyridylamine moiety. 

However, in contrast to [Zn(tpa)Cl2], both pyridyl rings of the 2,2´-dipyridylamine moiety do not 

coordinate to the zinc atom in 3b. Instead, the pyridyl ring of the “longer” arm with the 
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methylene spacer coordinates to the zinc atom. This is in striking contrast to what was observed 

for the copper(II) complexes of L1 reported previously.151 In the four structurally characterised 

copper(II) complexes of L1, the copper(II) ion was always found to be coordinated to the 

dipyridylamine moiety of L1 with the “longer” arm of L1 remaining uncoordinated. These 

observations might be important in regard to the highly dynamic solution behaviour of 1 

described below. 

4.1.2.3.7 [(L1)2Zn(MeOH)2](OTf)2 (3c) 

In Figure 46 the molecular structure of 3c is shown. The coordination around the zinc atom is 

best described as octahedral. The zinc ion is coordinated by two L1 and two solvent molecules in 

the axial positions. 

 

Fig. 46 Thermal ellipsoid representation (50 % probability ellipsoids) of the molecular structure of 
[(L1)2Zn(MeOH)2](OTf)2 (3c). Hydrogen atoms and anions omitted for clarity. Equivalent atoms are  generated 

using the symmetry operation −x+1/2, −y+1/2, −z+1 

In contrast to the structure of 3c and all other metal complexes presented herein only the 

pyridyl nitrogens of the “short arms” of the two L1 ligands are coordinated to the zinc atom 

forming the plane of the octahedron. 

The nitrogen atoms N(3) and N(3)* of the “long arm” of the ligands form hydrogen bonds 

(1.59(7) Å) with the hydroxyl hydrogen atoms H(111) and H(111)* of the coordinated methanol 

molecules, resulting in an elongated O-H bond. Therefore the bond length between O(1) and the 

hydrogen atom H(111) that has been found and isotropically refined was not restrained to more 

standard values. The aliphatic nitrogen atoms N(2) remain uncoordinated [N(2)···Zn(1) = 4.342 

Å]. In all other zinc and copper(I) complexes the metal atom is tetra- or penta-coordinate 

differing from the zinc atom in 3c which is hexa-coordinate. Interestingly, the corresponding 

copper(II) complex from methanolic solution, that has been structurally characterised earlier, is 

nearly superimposable upon 3c.151  
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4.1.2.3.8 [(L1)2Cu2](OTf)2∙2DMF (3d) 

An ORTEP plot of the molecular structure of 3d is displayed in Figure 47. The copper(I) complex 

of L1 with triflate as a weakly coordinating anion is dimeric when crystallised from DMF. 

Although to date, it has not been possible to crystallise a monomer of 3d so far, the molecular 

structure of 3d shows that copper(I), being isoelectronic to zinc(II), coordinates to the same 

pyridyl moieties of L1 as the chloride complex 3b. The nitrogen atoms N(4) and N(4)* of the 

dipyridylamine moiety bind to the second copper atom to form a cage-like dimer. The two 

copper(I) ions, unlike the zinc atom in 3b, are three-coordinate with a copper(I)···copper(I) 

distance of 4.11 Å. The copper atom is positioned 0.10 Å out of the plane formed by the three 

coordinated nitrogen atoms. The coordination is best described as distorted trigonal planar. 

Although there should be enough room for oxygen to attack the three coordinate copper(I) 

atoms, 3d in the solid is  

Table 7 Selected bond lengths [Å] and angles [°] for compounds 1a – 3d 

1a 

Zn(1)–N(11) 2.0819(18) Zn(1)–N(21) 2.0513(19) N(11)–Zn(1)–N(21) 110.59(8) N(21)–Zn(1)–Cl(2) 100.00(6) 

Zn(1)–Cl(2) 2.2941(8) Zn(1)–Cl(1) 2.2143(7) N(11)–Zn(1)–Cl(2) 101.07(6) N(21)–Zn(1)–Cl(1) 119.93(6) 

    N(11)–Zn(1)–Cl(1) 114.39(6)   

1b 

Zn(1)–N(36)  2.023(2) Zn(1)–O(1)  2.058(2) O(1)–Zn(1)–O(11) 81.93(5) O(21)–Zn(1)–O(11) 173.26(5) 

Zn(1)–O(21)  2.070(2) Zn(1)–O(11)  2.599(2) O(1)–H(1B)...O(12) 172(3) O(1)–H(1A)...O(23)* 164(2) 

O(1)...O(12) 2.703(2) N(36)–Zn(1)–N(26) 150.73(6) N(36)–Zn(1)–O(1) 97.23(6) N(26)–Zn(1)–O(1) 97.88(6) 
Zn(1)–N(26)  2.033(2) N(36)–Zn(1)–O(21) 97.07(6) N(26)–Zn(1)–O(21) 105.95(6) O(1)–Zn(1)–O(21) 96.44(6) 

Zn(1)–N(10)  2.319(2) N(36)–Zn(1)–N(10) 79.80(6) N(26)–Zn(1)–N(10) 78.71(6) O(1)–Zn(1)–N(10) 163.79(6) 

O(1)...O(23)* 2.755(2) O(21)–Zn(1)–N(10) 99.78(5) N(36)–Zn(1)–O(11) 76.73(5) N(26)–Zn(1)–O(11) 80.76(5) 
*Symmetry operation used to generate equivalent atoms: −x+1, −y+1, −z 

1c 

Cu(1)–N(8)  1.979(4) Cu(2)–N(7) 1.954(4) N(8)–Cu(1)–N(11) 116.68(18) N(4)–Cu(2)–N(7) 141.53(17) 
Cu(1)–N(12) 1.995(4) Cu(2)–N(3) 2.051(4) N(12)–Cu(1)–N(11) 115.88(16) N(4)–Cu(2) –N(3) 110.74(16) 

Cu(1)–N(11) 2.007(4) Cu(2)–N(1) 2.417(5) N(8)–Cu(1)–N(9) 123.22(17) N(7)–Cu(2)–N(3) 107.33(16) 

Cu(1)–N(9) 2.424(5) Cu(1)...Cu(2) 7.364 N(12)–Cu(1)–N(9) 77.74(15) N(4)–Cu(2)–N(1) 78.06(16) 
Cu(2)–N(4) 1.952(4) N(8)-Cu(1)–N(12) 126.25(16) N(11)–Cu(1)–N(9) 78.47(16) N(7)–Cu(2)–N(1) 116.54(16) 

N(3)-Cu(2)–N(1) 76.81(15)       

2 

Zn(1)–N(11)  2.1483(15) Zn(1)–N(1)  2.2151(14) Cl(1)–Zn(1)–Cl(2) 120.62(2) N(21)–Zn(1)–N(1) 76.04(6) 
Zn(1)–Cl(1)  2.2709(5) N(11)–Zn(1)–N(21) 152.01(6) N(11)–Zn(1)–N(1) 76.37(6) N(1)–Zn(1)–Cl(1) 130.80(4) 

Zn(1)–N(21)  2.1497(15) N(11)–Zn(1)–Cl(1) 97.95(5) N(21)–Zn(1)–Cl(1) 96.44(4) N(1)–Zn(1)–Cl(2) 108.58(4) 

Zn(1)–Cl(2)  2.2783(5) N(11)–Zn(1)–Cl(2) 95.16(4) N(21)–Zn(1)–Cl(2) 97.97(4)   

3a 

N(3)…H(44) 1.827(4)       

3b 

Zn(1)–N(36) 2.075(2) Zn(1)–Cl(1) 2.2413(5) N(36)–Zn(1)–Cl(1) 108.70(4) N(26)–Zn(1)–Cl(1) 108.43(5) 
Zn(1)–Cl(2) 2.2399(5) N(36)–Zn(1)–N(26) 112.42(6) N(26)–Zn(1)–Cl(2) 110.37(4) Cl(1)–Zn(1)–Cl(2) 114.65(2) 

Zn(1)–N(26) 2.039(2) N(36)–Zn(1)–Cl(2) 102.24(5)     

3c 

N(1)–Zn(1)  2.130(4) N(3)–H(111) 1.59(7) N(1)–Zn(1)–N(1)*  180.0 N(4)*–Zn(1)–O(1)  91.69(12) 
N(4)–Zn(1)  2.108(3) N(4)*–Zn(1)–N(4)  180.0(2) N(4)*–Zn(1)–O(1)*  88.31(13) N(4)–Zn(1)–O(1)  88.31(12) 

O(1)–Zn(1)  2.158(3) N(4)*–Zn(1)–N(1)  83.68(14) N(4)–Zn(1)–O(1)*  91.69(12) N(1)–Zn(1)–O(1)  90.89(13) 

Zn(1)–N(4)* 2.108(3) N(4)–Zn(1)–N(1)  96.32(14) N(1)–Zn(1)–O(1)*  89.11(13) N(1)*–Zn(1)–O(1)  89.11(13) 
Zn(1)–N(1)*  2.130(4) N(4)*–Zn(1)–N(1)*  96.32(14) N(1)*–Zn(1)–O(1)*  90.89(13) O(1)*–Zn(1)–O(1) 180.0 

Zn(1)–O(1)* 2.158(3) N(4)–Zn(1)–N(1)*  83.68(14)     

*Symmetry operation used to generate equivalent atoms: −x+1/2, −y+1/2, −z+1 

3d 

Cu(1)–N(2)  1.956(2) Cu(1)–N(3)  2.0725(19) N(2)–Cu(1)–N(4)*  140.54(8) N(4)*–Cu(1)–N(3) 100.98(8) 

Cu(1)–N(4)* 1.9834(17) Cu(1)...Cu(1)* 4.114 N(2)–Cu(1)–N(3) 117.56(7)   

*Symmetry operation used to generate equivalent atoms: −x+1, −y+2, −z 
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quite air stable and decomposition proceeds within a few days. Solutions of 3d are much 

more sensitive towards oxygen, but still retain their typical yellow colour for about 15 

minutes. Unfortunately no copper "dioxygen adduct" complexes could be crystallised or 

be detected spectroscopically by UV/Vis measurements.151 

 

Fig. 47 Thermal ellipsoid plot (50 % probability ellipsoids) of the molecular structure of 
[(L1)2Cu2](OTf)2∙2DMF (3d). Hydrogen atoms and counterions omitted for clarity. Equivalent atoms 

are generated using the symmetry operation −x+1, −y+2, −z. 

In compounds 1b and 1c the metal atom is only four- coordinate, but in the absence of 

strong coordinating anions such as chloride, the aliphatic nitrogen of L2 coordinates 

readily to the metal atom because of the lack of electron donation by the anion. In these 

cases the lack of negative charge is supposed to dominate the electronic repulsion 

between the ligands and the smaller chelate bite angles. 

4.1.2.4 Rationale for the Displayed Coordination Preferences of the Metal Atom in 

1–3 

The zinc(II) ion has a closed outer-shell electronic configuration of 3d10. In coordination 

compounds of zinc there is no crystal field stabilisation energy. Therefore, zinc can be 

tetra-, penta-, or hexa-coordinate without a particularly marked preference for 

octahedral coordination. The coordination number around the zinc(II) ion is determined 

by a balance between the bonding interactions of the ligands ligated to the zinc(II) ion 

and the repulsion amongst the ligands coordinated to the zinc(II) ion. The origin of the 

repulsion between the ligands coordinated to the zinc(II) ion in coordination 

compounds can be both steric and electronic.  Tetrahedral tetra-coordinate complexes 

have shorter metal- ligand bond lengths on average than penta-coordinate zinc 

complexes, which have shorter metal-ligand bonds than hexa-coordinate zinc 

complexes. The repulsive interactions between the ligands increase in the same order. 

The isoelectronic copper(I) compounds have similar preferences. In the complexes 3b 

and 3c the metal ions coordinate to the “longer” pyridylmethyl “arm” rather than 

through the 2,2´-dipyridylamine moiety, as the 2,2´-dipyridylamine moiety would 

enforce a smaller chelate bite angle at the metal atom. In stark contrast the zinc complex 
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3c is hexa-coordinate, ligated by two L1 molecules and two methanols in the axial 

positions. The nitrogen atoms of the methyl pyridyl moieties remain uncoordinated to 

the metal atom, but form intramolecular hydrogen bonds with the coordinated methanol 

solvent molecules. Ligation by the “longer arm” of L2 ensures that the zinc(II) ion can 

adopt a close to tetrahedral geometry thus minimising repulsions between the 

coordinated chloride ions and the coordinated pyridyl donors. The zinc atom in 1a is 

also found to be tetra-coordinate rather than adopting a penta-coordinate geometry for 

similar reasons. The reason why the zinc atom in 1a remains tetra-coordinate and the 

zinc atom in 2 is penta-coordinate is that the bonding interaction offered by the more 

basic aliphatic tertiary amine donor of Me-bispic in 2 presumably offsets the gain in 

repulsion energy between the coordinated ligands on going from a tetrahedral to a 

penta-coordinate zinc coordination geometry. 

4.1.2.5 Fluxional Behaviour of the Complexes in Solution 

All zinc complexes except for 3b display sharp signals in their respective room 

temperature 1H NMR spectra.  The resonances in the complexes 1a, 1b and 2 are 

comparable, but shifted, with respect to the uncoordinated ligands L2 and Me-bispic 

(see Experimental Section). No evidence for dynamic processes occurring in solution is 

here apparent. 

The crystal structure of 3b (Figure 45) depicts two of the pyridyl rings of L1 

coordinating to the zinc atom with the third pyridyl ring remaining uncoordinated. What 

is unusual about the solid-state structure of 3b is that L1 does not chelate in a 

symmetrical fashion to the zinc atom through the 2,2´-dipyridylamine moiety. If 3b 

retains the same structure in solution as in the solid state, one would expect to see a 

maximum of 12 different pyridyl proton resonances in the 1H NMR spectrum. Selected 

variable temperature 1H NMR spectra of 3b are presented in Figure 48. For the full set of 

NMR spectra and signal assignment see Supporting Information. However, at room 

temperature the 1H NMR spectrum of 3b displays only seven resonances in the aromatic 

region, three of which are very broad and hard to assign – indicative of some dynamic 

exchange process occurring in solution. In order to confirm this observation, we 

measured the 1H NMR spectrum of 3b in CD2Cl2 within the temperature range 180–300 

K. 

The other resonance observed in the 1H NMR spectra that occurs close to the position of 

the residual CH2Cl2 solvent signal in CD2Cl2 is a singlet at δ = 5.49 ppm [2H, –CH2py] 

which remains sharp down to 253 K.  Upon further lowering of the temperature it 

broadens and finally splits into two signals at 180 K. This is attributed to the immobility 

of the molecule at low temperatures and the hindered rotation around the carbon bonds 

of the methylene bridge. As a result, the two hydrogen atoms become diastereotopic. To 

obtain sharp signals even lower temperatures would have been necessary but could 

unfortunately not be achieved because of the freezing point of the solution. Above 233 K 

the [–CH2py] resonance and the signal due to residual CH2Cl2 are distinguishable from 

one another. 
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Fig. 48 1H NMR spectra of 3b at variable temperatures in CD2Cl2 

At 180 K, 11 of the 12 expected resonances are observed in the aromatic region of the 1H 

NMR spectrum and can, except one overlap of the resonances of two protons at δ = 7.95 

ppm, clearly be distinguished. With two-dimensional COSY, TOCSY and EXSY NMR 

experiments we are able to assign the signals of the different hydrogen atoms (for the 

full set of one- and two-dimensional NMR spectra and signal assignment see Supporting 

Information). At 253 K, the resonances at δ = 8.6, 8.2, 7.5, 7.4 and 6.8 ppm begin to 

broaden. As the temperature is increased these resonances begin to broaden further and 

at 300 K have nearly reached the fast exchange of the pyridyl rings. A further increase of 

the temperature was not possible due to the low boiling point of CD2Cl2.  

The proposed exchange mechanism to account for the observed fluxional behaviour in 

solution is presented in Figure 49.  
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Fig. 49 Exchange mechanism in the coordination sphere of [(L1)ZnCl2] (3b) 

We propose that the “long arm” of L1, i.e. the 2-pyridylmethyl “arm” remains 

coordinated to the zinc atom, and that the 2,2´-dipyridylamine moiety of L1 rotates 
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around the carbon-carbon bond shown in Figure 54. The protons (Ha–Hd) of the pyridyl 

ring of the “long arm” of L1 in complex 3b are labeled in Scheme 1. The assignments are 

based on the splitting patterns and the two-dimensional NMR spectroscopy. 

Assignments of Hc and Hb are additionally based on greater stabilisation of electron 

withdrawal in the para position, compared to the meta position, and previous 

assignments of pyridine hydrogen atoms in similar metal complexes.169-170 

The proposed exchange mechanism accounts for the fact that the Ha–Hd signals always 

remain sharp and the other 8 proton signals broaden at higher temperatures, due to an 

exchange process occurring between the coordinated and uncoordinated pyridyl rings 

(labelled A and B in Figure 49) of the 2,2´-dipyridylamine moiety. The mechanism 

becomes evident from the exchange signals in the 2D-EXSY spectrum depicted in Figure 

50 (for assignment of the labelled exchange peaks see Supporting Information). 

A very similar exchange process was described previously for [Zn(tpa)Cl2].152 However, 

a complete assignment of the NMR signals was not presented. In order to compare the 

exchange mechanisms of tpa- and L1-zinc complexes additional NMR experiments with 

[Zn(tpa)Cl2] and a mixture of L1 and Zn(OTf)2 (3e) were performed. Therefore, the 

resonances for these zinc complexes can be clearly assigned, and it is possible to inspect 

the differences of the exchange in these molecules. Further information on the NMR 

spectroscopic data of [Zn(tpa)Cl2] and 3e are provided in the Supporting Information. 

3e has reached the fast exchange at 300 K. Above 253 K all signals broaden and no sharp 

resonances can be observed. Furthermore, a shift of some resonances occurs. Therefore, 

the mode of coordination of this compound in solution at room temperature cannot be 

clearly defined. 

 

Fig. 50 2D-EXSY spectrum in CD2Cl2 of 3b at 219 K 

Below 205 K the 8 expected resonances of the chloride complex of tpa are clearly 

observable and sharpen until they can be definitely assigned at 186 K. 
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4.1.2.6 Luminescence  

Wang and co-workers reported that zinc complexes of tpa and a derivative in THF 

solution showed strong blue emission when excited with UV-light.152 Because L1 is 

structurally related to tpa we became interested in studying the luminescence 

behaviour of our complexes. Indeed, strong blue luminescence under UV-excitation was 

observed for 3b. To avoid complications due to potential solvent effects on the 

luminescence properties, dichloromethane was chosen to compare the emission spectra 

of the uncoordinated ligand L1, the protonated ligand L1·HCl, and the compounds 3b 

and 3e. Figure 51 displays the overlayed absorption and emission spectra of the four 

compounds. 

 

Fig. 51 Electronic absorption and emission  spectra of the uncoordinated ligand L1, L1·HCl, and the 
compounds 3b and 3e in dichloromethane 

The absorption spectra of the free and the protonated ligand L1 and the corresponding 

zinc complexes are dominated by intraligand π-π* transitions with UV-maxima in the 

250–350 nm region. The emission spectrum of L1 at room temperature in solution 

shows a well-resolved vibronic structure with two main peaks at 349 nm and 364 nm 

(λmax) and a quantum yield of Φ = 0.05, assigned to a fluorescence of π-π* origin from the 

lowest excited singlet state, which is typical for the presence of a 2-aminopyridine 

related chromophore where n-π* transitions are expected to be higher in energy.171 

When L1 is protonated in-situ with HCl gas, a broad, unstructured luminescence band 

with a maximum at 439 nm is observed (Figure 51). This strong bathochromic shift of 

about 6000 cm-1 is tentatively ascribed to the effects of intramolecular hydrogen-bond 

formation, which forces two of the pyridine rings into a coplanar configuration, thus 
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forming a more delocalized blue fluorescent 2,2´-dipyridylamine subunit (Figure 44). 

This interaction is also reflected in the absorption spectral changes which accompany 

the interconversion between L1 and L1·HCl. A quite similar mechanism for tuning the 

excited state properties of luminescent materials by protonation of pyridine nitrogens 

and intramolecular hydrogen bonding has recently been proposed in the literature.172 

The more complex luminescence behaviour of the zinc derivatives 3b and 3e (Figure 45) 

is best described as an intermediate situation between the free ligand L1 and the 

protonated species L1·HCl. On the one-hand, the metal complexation induces a coplanar 

configuration of pyridyl and methylpyridyl subunits with a broad, red-shifted 

luminescence as observed for the protonated ligand. On the other hand, the dynamics of 

the coordination sphere in solution (Figure 49) leads to a significant equilibrium 

contribution of non-coordinated 2-aminopyridine chromophores similar to the situation 

in the L1 system. This behaviour is reflected by the occurrence of a vibronic fine 

structure in the steady-state emission spectra, which overlays the broad unstructured 

luminescence band ascribed to the presence of a metal coordinated dipyridyl-type 

moiety (Figure 51). The emission in the visible spectral region with lifetimes in the 

nanosecond regime (τ = 4.2 ns, Φ = 0.06 for 3b and τ = 4.4 ns, Φ = 0.04 for 3e) is 

therefore assigned to an intraligand fluorescence from the lowest π-π* excited singlet 

state of the coordinatively saturated zinc complexes. A similar blue photoluminescence 

was also observed for zinc cyanido complexes with the ligand 2,2´-dipyridylamine.173  

The different emission maxima of the chlorido compound 3b (372 nm) and the triflate 

derivative 3e (409 nm) clearly indicate that the features of the intraligand fluorescence 

of the L1 metal complexes are quite sensitive to electronic effects induced by variations 

in the zinc coordination sphere. Due to the weakly coordinating triflate ion the net 

positive charge of the zinc atom of 3e is much higher than in 3b. This is reflected in the 

larger bathochromic shift of the emission maximum of 4200 cm-1 relative to the free 

ligand. Coordinating solvents may also modify the luminescence features of these 

compounds. Due to the solid state structure of compound 3c differing drastically from 

that of comparable zinc complexes we additionally performed fluorescence 

measurements using methanol as a solvent. Here 3b showed only a bathochromic shift 

of 3900 cm-1 compared to the uncoordinated ligand L1. 

In THF solution compound 3b shows strong emission at 423 nm when excited with light 

of wavelength 324 nm. Surprisingly we could observe the large bathochromic shift 

reported by Wang et al. for the emission band of the zinc complex of tpa in THF 

compared to the emission of the ligand only at unusual high concentrations.152 

In general, the structural differences of the ligands Me-bispic, tmpa, L2, L1, and tpa are 

supposed to have a great influence on the emission properties of these compounds as 

well as on their zinc complexes. Thus, the emission of comparable zinc complexes of L2, 

tmpa and Me-bispic in methanol solution is much weaker compared to the 

corresponding complexes of tpa and L1 respectively. This may be due to the fact that 

only tpa and L1 provide the possibility of forming a rigid subunit consisting of two 

coplanar pyridyl groups which are connected by only one bridging atom. 
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4.1.3 Conclusions 

In this work the synthesis and characterisation of zinc complexes of a set of nitrogen-

containing ligands, which can all be derived from tmpa or tpa, has been reported. It 

turned out to be quite interesting – that in contrast to our expectations –  the zinc 

complexes with the ligands L1 and L2 showed significant differences in their molecular 

structures in comparison to the according copper(II) complexes investigated 

previously.151 Furthermore, fluxional behaviour of complex 3b in solution could be 

observed by NMR spectroscopic measurements. Similar observations have been made 

for the related tpa complexes studied by Yang et. al.152 We were now able to assign all 

resonances in the NMR spectroscopic experiments of the zinc complexes 3b and 3e as 

well as of [Zn(tpa)Cl2] by one- and two-dimensional NMR spectroscopy at variable 

temperatures. Most interestingly are the luminescence properties of these compounds. 

In dichloromethane the bathochromic shift of the emission band increases with the 

positive charge of the coordinated zinc atom at the conjugated π-system of L1. Thus, a 

dependence of the emission wavelengths and the positive charge of the metal atom in 

the examined compounds could be demonstrated. Additionally, the chloride complex in 

methanol exhibits a large bathochromic shift in the emission of 40 nm compared to the 

uncoordinated ligand and 3e. One could therefore think of an application of zinc 

complexes with weakly coordinating anions as fluorescent chloride sensors in protic 

solvents. Intensive blue fluorescence is also important in regard to the development of 

blue light emitting diodes. 

4.1.4 Experimental Section 

Materials and Methods. Reagents and solvents used were of commercially available 

reagent quality. 

The 1H NMR spectra of 1a, 1b and 3c were measured on a Bruker Avance II 400 

spectrometer equipped with a 5 mm BBO Z-gradient probe. 

All one-dimensional and two-dimensional 1H NMR experiments for compound 2, 3b, 3e 

and [Zn(tpa)Cl2] were performed on a Bruker Avance III 600 spectrometer equipped 

with a 5 mm BBO Z-gradient probe. To obtain the complete 1H chemical shift 

assignments the structure elucidation was based on the application of homonuclear 
1H,1H correlation spectroscopy (COSY, TOCSY (not shown)) and 2D exchange NMR 

(EXSY). The data were collected and processed by TOPSPIN software (Bruker) running 

on a PC with Microsoft WindowsXP. The two-dimensional experiments were performed 

using Bruker standard pulse sequences and parameters. The temperatures for all 

measurements were calibrated with the Bruker methanol sample and were controlled 

by a Bruker BVT 3000 temperature unit. 

Chemical shifts are reported in ppm (  scale) using TMS as internal standard or the 

solvent signal as secondary standard. Multiplicities of NMR signals are designated as s 

(singlet), d (doublet), t (triplet), q (quartet), br (broad), m (multiplet, for unresolved 

lines), etc. 
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IR spectra were recorded as KBr pellets using a Bruker IFS 25. 

The luminescence measurements were carried out in spectrograde solvents at room 

temperature using a Horiba Jobin Yvon Fluorolog-3 spectrofluorometer equipped with 

two double-grating monochromators, a R928P photomultiplier, and an FL-1040 

phosphorimeter. All emission spectra were corrected for wavelength-dependent 

instrument and detector response and verified by collecting the corresponding 

excitation spectra. Emission quantum yields were measured relative to quinine sulfate 

(Φ = 0.55 in 0.5 M H2SO4).174 Lifetime data were obtained by time-correlated single 

photon counting (TCSPC) experiments on a PicoQuant lifetime fluorescence 

spectrophotometer (FluoTime 100) equipped with a TimeHarp 200 PCI-board and a 

PDL 800-B pulsed diode laser driver at 10 MHz repetition rate. A sub-nanosecond pulsed 

LED (PLS-340-10) with an excitation wavelength of 334 nm was used as the light-

source. The instrument response function (IRF) was 30 ps.  

Elemental Analysis was carried out using Carlo Erba EA 1108 instrument. 

FDMS spectra were performed on a Jeol JM 700 mass spectrometer. 

4.1.4.1 X-ray Structure Determination of 1–3 

Single crystals were coated with protective perfluoropolyether oil and mounted on a 

glass fiber. Data for 1a were collected on a Nonius MACH3 diffractometer at 173(2) K 

and for 1b, 2 and 3b on a Nonius Kappa CCD diffractometer at 100(2) K and 173(2), 

respectively. The remaining crystallographic data was collected on a STOE IPDS at 

193(2) K or 203(2) K for 3d respectively (MoK ,  = 0.71073 Å, graphite-

monochromator). An absorption correction was not applied for compounds 1c, 3a, 3c, 

and 3d measured on the STOE IPDS due to poor apperative possibilities. Furthermore 

the rather little effect that can be expected on the crystal structures of the copper and 

zinc salts presented herein did not justify the effort. Unfortunately, all attempts to 

receive better single crystals, that should lead to better R-values for these four 

compounds, failed. In addition apparative deficits are accountable for the poor R-values 

of some of the compounds. 

Except for 3c space groups were determined from systematic absences. All structures 

were solved by direct methods and refined on F2 using full-matrix least-squares 

techniques.112-113 All non-hydrogen atoms were refined with anisotropic thermal 

parameters. 

Crystallographic data for the structures reported in this paper have been deposited with 

the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-

724313 for 1a, CCDC-724312 for 2 and CCDC-796270 – CCDC-796275 for 1b – 3d. 

Copies of the data can be obtained, free of charge from The Cambridge Crystallographic 

Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 
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4.1.4.2 Synthesis of Ligands 

Ligands L1 and L2 were prepared as previously reported.151 Bis(2-pyridylmethyl)amine 

was prepared according to a literature procedure with slight modifications.166 Me-

bispic was prepared according to a new method described recently.156 

4.1.4.3 Preparation of Zinc(II) Complexes 

4.1.4.3.1 General Procedure 

A methanol solution of the respective zinc(II) salt was added to a solution of ligand L1 or 

L2 in methanol (5.0 mL). Precipitation of the respective zinc(II) complex of L1 or L2 

occurred within a few minutes. In all cases the complexation reactions were allowed to 

stir for 1 h before the product was collected.  

4.1.4.3.2 [(L2)ZnCl2] (1a) 

ZnCl2·2H2O (0.062 g, 0.36 mmol) dissolved in methanol (2.0 mL) was added to a solution 

of L2 (0.10 g, 0.36 mmol) in methanol (5.0 mL). The pale yellow solution was stirred at 

room temperature and within 1 min a white precipitate formed. The reaction was 

allowed to continue for 1 h, stopped, and the product collected by filtration, washed with 

a little methanol, dried in vacuo to yield 2a as a white solid (0.090 g, 0.22 mmol, 56%). 

Anal. Calcd for C17H16Cl2N4Zn (412.63): C, 49.48; H, 3.91; N, 13.58%. Found: C, 49.34; H, 

3.68; N, 13.28%. FD MS (CH3CN) m/z = 377 (M  Cl ).  IR (KBr disc / cm 1): 3444 (m, br), 

3100 (m), 3067 (m), 2946 (w), 2909 (w), 1611 (s), 1591 (s), 1573 (m), 1480 (s), 1434 

(s), 1426 (s), 1387 (m), 1335 (m), 1318 (m), 1309 (m), 1286 (m), 1273 (m), 1247 (m), 

1222 (m), 1161 (m), 1154 (m), 1103 (w), 1093 (w), 1065(m), 1057 (m), 1043 (w) 1025 

(m), 984 (w), 960 (w), 941 (w), 895 (w), 866 (w), 841 (w) 830 (w), 799 (m) 778 (s), 740 

(m), 725 (w), 648 (w), 630 (w), 574 (w), 536 (m), 465 (w), 427 (w), 419 (w), 409 (w). 
1H-NMR at 297 K (DMSO-d6, 400 MHz)  ppm: 8.54 (d, 2H) 8.03 (d, 1H) 7.75 (t, 2H) 7.45 

(t, 1H) 7.28 (m, 4H) 6.61 (m, 2H) 4.92 (s, 4H). 

4.1.4.3.3 [(L2)Zn(H2O)(OTf)]OTf (1b) 

Solid Zn(OTf)2 (0.13 g, 0.36 mmol) was added to a solution of L2 (0.10 g, 0.36 mmol) in 

acetonitrile (5.0 mL). The colourless solution was stirred at room temperature. The 

reaction was allowed to continue for 1 h and then stopped. The acetonitrile was 

removed in vacuo. Dichloromethane and the minimal amount of acetonitrile were added 

to re-dissolve the white semi-solid. Diethyl ether was added, and the addition was 

stopped just before precipitation of the complex commenced. The reaction flask was 

then transferred to the freezer compartment of the refrigerator and within the period of 

one week large transparent blocks of 2b formed. (0.090 g, 0.14 mmol, 38%).  

FD MS (CH2Cl2) m/z = 491 [(L2)Zn(OTf)]+. IR (KBr disc / cm 1): 3386 (m, br), 3092 (w), 

3022 (w), 2952 (w), 2319 (w), 2252 (w), 1993 (w), 1909 (w), 1869 (w), 1665 (m), 1612 
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(s), 1592 (s), 1575 (m), 1493 (s), 1477 (s), 1455 (s), 1435 (s), 1411 (m), 1390 (m), 1366 

(m), 1335 (m), 1292 (s), 1231 (s), 1192 (s), 1165 (s), 1109 (m), 1096 (m), 1059 (m), 

1025 (s), 958 (m), 938 (m), 850 (w), 817 (w), 791 (s), 783 (m), 769 (m), 724 (m), 629 

(s), 576 (m), 554 (m), 536 (m), 517 (s), 465 (w), 456 (w), 420 (m). 1H NMR at 296 K 

(CD6CO, 400 MHz)  ppm: 8.87 (d, 2H py-H) 8.27 (d, 1H, py-H) 8.23 (t, 2H, py-H) 7.92 (t, 

1H, py-H) 7.78 (d, 2H, py-H) 7.74 (t, 2H, py-H) 7.53 (d, 1H, py-H) 7.27 (t, 1H, py-H) 5.21 

(s, 4H, CH2).  

4.1.4.3.4 [(Me-bispic)ZnCl2] (2) 

ZnCl2 (0.064 g, 0.47 mmol) in methanol (1 mL) was added dropwise to a stirred solution 

of Me-bispic (0.10 g, 0.47 mmol) in methanol (2 mL). On addition of the metal salt a 

pale-coloured precipitate formed. The precipitate was collected, washed with a little 

diethyl ether and methanol, and dried to yield 2 as a cream coloured solid (0.13 g, 0.37 

mmol, 80%). Analysis for C13H15Cl2N3Zn (349.57): calcd C 44.67, H 4.33, N 12.02, found C 

44.62, H 4.56, N 11.91. IR (KBr disc / cm 1): 3453 (w, br), 3072 (w), 3060 (w), 3027 (w), 

3001 (w), 2964 (w), 2914 (w), 2859 (w), 1602 (s), 1574 (m), 1478 (m), 1449 (m), 1441 

(m), 1412 (w), 1384 (w), 1351 (w), 1361 (w), 1294 (m), 1285 (w), 1265 (w), 1248 (w), 

1224 (w), 1187 (w), 1160 (m), 1131 (w), 1120 (w), 1102 (m), 1051 (m), 1019 (s), 991 

(w), 972 (w), 963 (w), 906 (w), 869 (m), 819 (w), 780 (m), 773 (m), 732 (w), 649 (w), 

641 (m), 515 (w), 480 (w), 451 (w), 420 (w). 1H NMR at 295 K (CDCl3, 600 MHz)  ppm: 

9.21 (d, 2H) 7.87 (dt, 2H) 7.49 (t, 2H) 7.31 (d, 2H) 4.36 (s, 2H) 3.93 (s, 2H) 2.29 (s, 3H).  

Needle shaped crystals suitable for single crystal X-ray diffraction analysis were grown 

by carefully layering a chloroform containing solution of 2 with diethyl ether. 

4.1.4.3.5 [L1H]OTf (3a) 

Single crystals of 3a suitable for single crystal X-ray structure analysis were grown in a 

methanol solution of 0.10 g (0.37 mmol) L1 and 0.69 g (0.19 mmol) Zn(OTf)2 by slow 

ether diffusion at −30 °C. After several days colourless block shaped crystals of 3a and a 

white precipitate formed. 

4.1.4.3.6 [(L1)ZnCl2] (3b) 

ZnCl2·2H2O (0.066 g, 0.38 mmol) dissolved in methanol (2.0 mL) was added to a solution 

of L1 (0.10 g, 0.38 mmol) in methanol (3 mL). The pale yellow solution was stirred at 

room temperature and within 1 min a cream-coloured precipitate formed. The reaction 

was allowed to continue for 1 h, stopped, and the product collected by filtration, washed 

with a little methanol, dried in vacuo to yield 1 as a cream coloured solid (0.12 g, 0.28 

mmol, 72%). Anal. Calcd for C16H14Cl2N4Zn (398.60): C, 48.21; H, 3.54; N, 14.06%.  

Found: C, 48.14; H, 3.38; N, 13.80%.  FDMS (CH3CN) m/z = 363 (M  Cl ).  IR (KBr disc / 

cm 1): 3232 (br), 3230 (w), 3215 (w), 3148 (w), 3073 (w), 3029 (w), 2968 (w), 2937 

(w), 2861 (w), 1606 (m), 1590 (m), 1564 (m), 1475 (s), 1429 (s), 1378 (m), 1320 (m), 
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1288 (m), 1249 (w), 1211 (m), 1158 (m), 1108 (w), 1079 (w), 1058 (w), 1028 (m), 1000 

(w), 980 (w), 877 (w), 832 (w), 800 (w), 772 (m), 649 (w), 610 (w), 589 (w), 527 (w), 

419 (w). 1H NMR at 296 K (CD2Cl2, 600 MHz)  ppm: 8.79 (d, 1H) 8.70-8.32 (broad s) 

7.95 (dt, 1H) 7.80 (d, 1H) 7.51 (t, 1H) 7.43-6.81 (broad m) 5.44 (s, 2H) 

4.1.4.3.7 [(L1)2Zn(MeOH)2](OTf)2 (3c) 

Zn(OTf)2 (0.14 g, 0.38 mmol) in methanol (2.0 mL) was added to a solution of L1 (0.10 g, 

0.38 mmol) in methanol (2.0 mL). Colourless block-shaped crystals were obtained by 

diethyl ether diffusion into the yellow solution at −20 °C. 1H NMR of the crystals at 295 K 

was performed without further drying steps. (CH3OH + D2O, 400 MHz), methylpyridyl 

arm = mpy; pyridyl arm = py, methyl bridge = mb)  ppm: 8.48 (d, 1H mpy-H meta) 8.16 

(s br , 2H py-H meta) 7.96 (t, 3H mpy-, py-H, para) 7.76 (d, 1H mpy-H, ortho) 7.51 (d, 2H 

py-H) 7.38 (t, 1H mpy-H, ortho) 7.26 (s broad, 2H py-H) 5.52 (s, 2H mb-H).  

4.1.4.3.8 Mixture of L1 and Zn(OTf)2 (3e) 

Zn(OTf)2 (0.28 g, 0.76  mmol) was added dropwise to a solution of L1 (0.20 g, 0.76 

mmol) in methanol (4 mL). The pale yellow solution was added dropwise to diethyl 

ether (100 mL). A white precipitate formed, which was left to stand overnight at −30 °C. 

The precipitate was decanted and solvent residues removed in vaccuo to yield 3e (0.04 

g, 0.06 mmol, 8 %). IR (KBr disc / cm 1): 3382 (m, br), 3072 (m, br), 2309 (w), 1601 (s), 

1578 (m), 1471 (s), 1444 (s), 1380 (m), 1346 (m), 1251 (s, br), 1162 (s), 1085 (m), 1030 

(s), 898 (w), 877 (w), 834 (w), 799 (m), 776 (m), 759 (m), 641 (s), 602 (m), 590 (m), 

575 (m), 517 (m), 472 (w), 422 (m). 1H NMR at 295 K: (CD2Cl2, 600 MHz)  ppm: 8.56 (s 

br, 1H) 8.02 (t br, 1H) 7.81 (d, 1H) 7.72 (t br, 3H) 7.45 (s, 1H) 7.10 (s, 2H) 6.96 (s, 2H) 

5.42 (s, 2H).  

4.1.4.4 Preparation of Copper(I) Complexes 

4.1.4.4.1 General Procedure 

The copper(I)complexes were prepared under inert atmosphere in the glove box. Only 

commercially available extra dry solvents were used and diluted under argon prior to 

use. The copper(I) salts were prepared according to a well-known procedure. 

4.1.4.4.2 [(L2)3Cu2](BPh4)2 (1c) 

[Cu(CH3CN)4]PF6 (0.12 g, 0.33 mmol) in acetone (3.0 mL) was added to L2 (0.10 g, 0.36 

mmol) dissolved in acetone (3.0 mL). A solution of Na(BPh4) (0.11 g, 0.33 mmol) in 

acetone (2.0 mL) was added to the yellow solution. Diethyl ether diffused in at −40°C. 

Within a period of 6 weeks yellow crystals suitable for X-ray crystallography formed. 
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4.1.4.4.3  [(L1)2Cu2](OTf)2∙2DMF (3d) 

L1 (0.72 g, 0.19 mmol) was dissolved in DMF (1 mL). The solution was added dropwise 

to L1 (0.050 g, 0.19 mmol) dissolved in DMF (1 mL). After several days at −40 °C yellow 

block shaped crystals formed.  
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4.2 Supporting Information and Unpublished Material for Chapter 

1.1 

4.2.1 NMR Spectroscopy 

4.2.1.1 1H NMR Spectra at Ambient Temperature 

Chemical shifts and multiplicity of the 1H NMR spectra for the compounds 1a, 1b, 2, 3b, 

3c and 3e reported in the experimental section are taken from the spectra at ambient 

temperature depicted in the following Figures. Furthermore, the 1H NMR spectrum of 

the compound [tpaZnCl2] at ambient temperature is shown in order to compare our 

data with data already published by Wang et al.152 

4.2.1.1.1 [L2ZnCl2] (1a) 

 
Fig. 52 Section of the 1H NMR spectrum of 1a at 296 K in DMSO-D6 
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4.2.1.1.2 [L2Zn(OTf)(H2O)]OTf (1b) 

 
Fig. 53 Section of the 1H NMR spectrum of 1b at 296 K in C2D6CO 

4.2.1.1.3 [MebispicZnCl2] (2) 

 

Fig. 54 Section of the 1H NMR spectrum of 2 at 295 K in CDCl3 
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4.2.1.1.4 [L1ZnCl2] (3b) 

 

Fig. 55 Section of the 1H NMR spectrum of 3b at 296 K in CD2Cl2 

4.2.1.1.5 [(L1)2Zn(MeOH)2]OTf2 (3c) 

 

Fig. 56 Section of the 1H NMR spectrum of 3c at 295 K in CH3OH + D2O 
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4.2.1.1.6 Mixture of L1 and Zn(OTf)2 (3e) 

 
Fig. 57 Section of the 1H NMR spectrum of 3e at 296 K in CD2Cl2 

4.2.1.1.7 [tpaZnCl2] 

 
Fig. 58 Section of the 1H NMR spectrum of [tpaZnCl2] at 296 K in CD2Cl2 
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4.2.1.2 Variable Temperature 1H NMR and 2D spectra 

All spectra depicted in the following were measured in CD2Cl2 at 600 MHz using a 

Bruker Avance III spectrometer if not mentioned otherwise. 

4.2.1.2.1 [MebispicZnCl2] (2) 

 

Fig. 59 Section of the 1H NMR spectrum of 2 at 260 K in CDCl3 

Unlike the 1H NMR spectrum of 2 at ambient temperature in Figure 54, the spectrum at 

260 K (Figure 59) shows the resolved AB pattern of the diastereotope methylene 

protons (d, 4.32; d, 3.95). 

4.2.1.2.2 [L1ZnCl2] (3b) 

Due to the unusual fluxional behaviour of 3b in solution that leads to the proposed 

rotation mechanism (Figure 60), the assignment of protons in the NMR spectroscopy 

becomes difficult.  

 

Fig. 60 Proposed rotation mechanism of 3b in solution 
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With low temperature NMR measurements and 2D NMR spectroscopic measurements, 

we are now able not only to clearly assign all protons to the according resonances but 

also to prove the rotation mechanism by the exchange signals in the 2D-EXSY spectrum 

at 219 K. At this temperature, the exchange of protons due to the rotation of the pyridyl 

rings labelled A and B is slow enough to follow by NMR spectroscopy. All expected 

exchange signals are visible in the depicted 2D-EXSY spectrum (Figure 65), assignable 

and labelled with the number of the according proton in Figure 60. 

Starting point of the assignment is the COSY signal of HC4 at  = 7.84 ppm that shows 4J 

coupling to the methylene protons. Combining of COSY and 2D-EXSY signals finally leads 

to the assignment of 1H NMR resonances to the full set of protons presented in the 

following Table 8. Due to an overlap of the signals of HA3 and HC3 at  = 7.95, 11 of the 12 

expected resonances can be observed at 180 K.  

In the 1H NMR spectra at variable temperatures depicted in Figures 61, 62 and 63, 

another interesting phenomenon can be detected. At 253 K, the signal for the methylene 

protons at a chemical shift of 5.36 starts to broaden and finally splits at 180 K. Two 

doublets indicate an AB system. Due to the lowered temperature, the two methylene 

protons become diastereotope.  

 

Fig. 61 ChemDraw representation of 3b with H labelled A1 to C4 

 

Table 8 Proton assignment to 1H signals of 3b at 180 K 

Proton No. multiplicity  / ppm 

HA1 d 8.63 

HA2 t 7.41 

HA3 t 7.95 

HA4 d 7.52 

HB1 d 8.24 

HB2 t 6.84 

HB3 t 7.45 

HB4 d 6.88 

HC1 d 8.66 

HC2 t 7.50 

HC3 t 7.95 

HC4 d 7.86 

methylene H s 5.90; 4.74 
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Fig. 62  Sections of the 1H NMR spectra of 3b from 296 K to 224 K in CD2Cl2 
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Fig. 63 Sections of the 1H NMR spectra of 3b from 220K to 180 K in CD2Cl2 
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Fig. 64 Section of the COSY spectrum of 3b at 219 K in CD2Cl2 

 

Fig. 65 Section of the 2D-EXSY spectrum of 3b at 219 K in CD2Cl2 
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4.2.1.2.3 Mixture of L1 and Zn(OTf)2 (3e) 

Unlike the spectra of 3b, the 1H NMR spectra of 3e in CD2Cl2 show no sign of 

diastereotope protons at low temperatures. The proton resonances in the room 

temperature spectrum are broad and not clearly assignable. Lowering of the 

temperature leads to a shift of signals and additional signals sharpen. At 230 K, the COSY 

(Figure 69) and 2D-EXSY (Figure 70) spectra of 3e point to an exchange mechanism as is 

shown for 3b in Figures 67 and 68. The exchange signals that prove the proposed 

mechanism are labelled with the number of the according proton in Figure 66. Again, all 

exchange signals are visible and an assignment of the full set of protons at 230 K is 

possible. Starting point of the assignment is the proton C4 close to the methylene 

protons. The chemical shifts and multiplicity of the signals are reported in the following 

Table 9. 

Further decrease of temperature to 213 K clearly shows a broad underlying signal at 

7.66 (most likely assignable as coordinated water) that disappears again at 186 K. The 

2D-EXSY spectrum (Figure 71) at 213 K shows additional exchange signals indicating of 

a second dynamic process. Therefore, we unfortunately have not been able to clearly 

state the coordination mode so far. Additional experiments to prove the coordination 

mode of the complex 3e are in progress. 

 

Fig. 66 ChemDraw representation of 3e with H-atoms labelled A1 to C4 

Table 9 Proton assignment to 1H signals of 3e at 213 K 

Proton No. multiplicity  / ppm 

HA1 d 8.04 

HA2 t 7.12 

HA3 t 7.85 

HA4 d 7.31 

HB1 d 7.31 

HB2 t 6.85 

HB3 t 7.79 

HB4 d 7.37 

HC1 d 8.35 

HC2 t 7.22 

HC3 t 7.79 

HC4 d 7.59 

methylene H s 4.49 
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Fig. 67 Sections of the 1H NMR spectra of 3e in CD2Cl2 at variable temperature 
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Fig. 68 Section of the COSY spectrum of 3e at 230 K in CD2Cl2 

 

Fig. 69 Section of the 2D-EXSY spectrum of 3e at 230 K in CD2Cl2 
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Fig. 70 Section of the COSY spectrum of 3e at 213 K in CD2Cl2 

 
Fig. 71 Section of the 2D-EXSY spectrum of 3e at 213 K in CD2Cl2 
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4.2.1.2.4 [tpaZnCl2] 

This complex has already been reported by Wang and co-workers.152 A complete 

interpretation of the NMR spectroscopic data has not been possible so far. However, we 

are now able to clearly assign the full set of protons and prove the proposed exchange 

mechanism by the exchange signals occurring in the depicted 2D-EXSY spectrum at 186 

K (Figure 75). Again, all expected resonances are detectable and assignable. They are 

labelled with the number of the according proton in Figure 72. As herein shown for 3b, 

the 1H NMR spectrum at ambient temperature of [tpaZnCl2] only shows the signals of the 

uncoordinated pyridyl residue indicating the rotation mechanism already published152 

The COSY spectrum depicted in Figure 74 proves the expected 3 ABCD spin systems of 

the different pyridyl rings. 

 

Fig. 72 Representation of [tpaZnCl2]   

Table 10 Proton assignment to 1H signals of [tpaZnCl2] at 186 K 

Proton No. multiplicity  / ppm 

HA1 d 8.60 

HA2 t 7.57 

HA3 t 8.11 

HA4 d 7.85 

HB1 d 8.18 

HB2 t 7.02 

HB3 t 7.65 

HB4 d 6.83 
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Fig. 73 Sections of the 1H NMR spectra of [tpaZnCl2] in CD2Cl2 at variable temperature 
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Fig. 74 Section of the COSY spectrum of [tpaZnCl2] at 296 K in CD2Cl2 

 
Fig. 75 Section of the 2D-EXSY spectrum of [tpaZnCl2] at 186 K in CD2Cl2 
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5 Copper and Zinc Complexes Using Ligands Closely Related 

to L2 

5.1 Ligand Effects on the Formation of Coordination Polymers 

Containing Copper and Zinc Complexes with Derivatives of 

Tris(2-pyridylmethyl)amine (tmpa) as Ligands 

This chapter is ready for submission to the journal Inorganic Chemistry. 
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5.1.1 Introduction 

In our efforts to better understand dioxygen binding and substrate oxidation of copper 

enzymes we have successfully investigated copper complexes with tripodal ligands 

based on derivatives of the parent ligand tris(2-pyridylmethyl)amine (tmpa, Scheme 1). 

Tmpa is a versatile ligand in bioinorganic chemistry that turned out to be very useful in 

copper, iron and zinc chemistry. Copper tmpa complexes have been employed 

previously in order to explore the thermodynamic and kinetic aspects of the reaction of 

copper(I) compounds with dioxygen.22-23, 134-135 Due to the fact that the function of a 

metalloprotein is closely related to the structure of its active site there has been 

considerable interest in the modification of the tmpa ligand system. Chelate ring sizes 

play an important role for the reactivity of copper(I) complexes towards dioxygen. 

Systematic lengthening of the pyridyl arms by the insertion of methylene spacer groups 

finally led to a copper(I) complex with tris[2-(2-pyridyl)ethyl]amine tepa as a ligand 

that was stable towards dioxygen.134 In an effort to possibly obtain a different class of 

oxygen binding copper(I) complexes we furthermore investigated the effect of 

decreasing the chelate ring sizes. Unfortunately it turned out that using the new ligands 

N-2-pyridylmethyl-2,2-dipyridylamine (L1) and N-[bis(2-pyridyl)methyl]-2-pyridyl-

amine (L2) (Figure 76) did not allow the observation of interesting intermediates during 

the reactions of dioxygen with the according copper(I) complexes.151, 175 
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Fig. 76 Derivatives of the parent amine tmpa 

Most likely the reason for the sluggish behavior of these complexes towards dioxygen is 

a consequence of the formation of dimeric complexes as described by us more 

recently.175 However, during the course of this study we observed that coordination 

polymers could be formed when copper(II) salts were reacted with L1. When reacting 

CuCl2 with L1 in acetonitrile a linear polymeric chain of [Cu(L1)Cl2]n formed. However, if 

the reaction was performed in DMF only a trimeric copper complex was obtained. Here 

the DMF molecules act as “stoppers” and block formation of a polymeric complex.151 

Based on these results we considered it quite interesting to extend our experiments to 

ligands related to L1 and to prepare new polymeric copper complexes. Thus we 

synthesized the so far unknown ligands L3, L4 and L5 (Figure 76) and investigated the 

according copper and zinc complexes with these ligands. 

5.1.2 Results and Discussion 

5.1.2.1 Ligands L3, L4 and L5 

Ligand modification was based on the idea that para substituted pyridines are well 

known as building blocks for a variety of coordination polymers.176 L3, L4 and L5 differ 

from ligands L1 and L2 in the position of one of the pyridyl nitrogen atoms. By the 

substitution of one pyridyl nitrogen in 2-position by a nitrogen in 3- or 4-position we 

expected the formation of various coordination polymers when mixed with copper or 

zinc salts. 

While L4 and L5 contain a bispocylamine unit, L3 has a 4-pyridine unit that substitutes 

one of the 2-pyridine units in the bispicolyl residue (see Figure 76). The difference 

between the ligands L4 and L5 is located in the pyridyl arm. L5 bears its nitrogen in 3-

position, while L4 has a pyridyl nitrogen in 4-position. Therefore L4 can be considered 

as 4-(dimethylamino)pyridine (DMAP, see Figure 77) derivative, well known for its 

extraordinary nucleophilicity and catalytic activity.177 Only recently, Schreiner and co-

workers reported about acyltransfer reactions with DMAP derivatives as catalysts.178 



Chapter 5 Copper and zinc complexes using ligands closely related to L2 

 89 

Thus, we expected a significantly different behavior of the complexes of L4 compared to 

that of the other L ligands. 

 
Fig. 77 Structures of DMAP and the ligand L4 

The synthesis led to acceptable yields for all ligands. Single crystals were obtained for 

ligands L4 and L5. Crystallographic details and selected bond lengths are presented in 

the Supporting Information. 

5.1.2.2 Copper(I) Complexes of the Ligands L3, L4 and L5 

Under inert conditions the ligands L3, L4 and L5 coordinate readily with several 

copper(I) salts to form stable complexes. Upon slow ether diffusion into acetone, 

acetonitrile or DMF solutions of the copper(I) complexes, yellow colored solids formed 

and single crystals suitable for X-ray crystallographic structure determination of 

[Cu(L3)(MeCN)]n(CF3SO3)n (1), Cu2(L4)2](CF3SO3)2∙DMF (2), [Cu(L4)]n(ClO4)n∙nDMF (3) 

and [Cu2(L5)2](BPh4)2∙2CH3COCH3 (4) were obtained. Selected bond lengths and angles 

and crystallographic details of 1-4 are given in Table 11 and 12 respectively.  

5.1.2.2.1  [Cu(L3)(MeCN)]n(CF3SO3)n∙MeCN (1) 

The molecular structure of 1 presented in Figure 78 clearly shows that we obtained a 

coordination polymer when L3 was reacted with [Cu(MeCN)4](CF3SO3) in a 

stoichiometric ratio in acetonitrile.  

a)                                                                                            b) 

 

Fig. 78 a) ORTEP representation of the cationic polymeric chain of 1 with thermal ellipsoids at 50% 
probability. Hydrogen atoms, not coordinated solvent molecules and anions omitted for clarity. b) 

view normal to 010. 
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The copper(I) centers of the polymeric chain are surrounded by four nitrogen atoms 

forming a distorted tetrahedron. Each of the metal atoms is coordinated by a pyridyl- 

and a methylpyridyl nitrogen in 2-position (N2 and N3) of one ligand molecule and a 

methylpyridyl nitrogen in 4-position (N4A) of a second ligand molecule. Thus, one 

molecule L3 bridges two copper(I) centers leading to the formation of a polymeric chain. 

The fourth position of the tetrahedron is occupied by the acetonitrile nitrogen (N5). The 

methylpyridyl nitrogen atoms N3 and N4i form much stronger bonds to the copper(I) 

atom than the pyridyl nitrogen N2, indicated by bond lengths of 2.018(2) Å for Cu1∙∙∙N3 

and 2.033(2) Å for Cu1∙∙∙N4i that are significantly shorter than Cu1∙∙∙N2 (2.130(2) Å). 

The missing methyl bridge between the aliphatic nitrogen N1 and the pyridyl moiety 

disables N1 to coordinate due to geometric restraints.  

The one-dimensional polymeric chain forms a zigzag like structure most likely caused by 

the ligand structure mainly influenced by the uncoordinated aliphatic “bridgehead” N1 

and its close to trigonal planar geometry (see Figure 78a). This enables the methyl 

pyridine moiety with N4 in 4-position to coordinate to a second metal center and thus 

form a linear chain. Linearity of the chain is obvious in the view normal to 010 direction 

(see Figure 78b). 
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Table 11 Crystallographic data of 1-5 

 [Cu(L3)(MeCN)]n(CF3

SO3)n∙nMeCN (1) 
[Cu2(L4)2](CF3SO3)2 
∙DMF (2) 

[Cu(L4)]n(ClO4)n 

∙nDMF (3) 

[Cu2(L5)2](BPh4)2 

∙2CH3COCH3 (4) 

[ZnDMF)4(L4)2] 

(ClO4)2 (5) 

[CuCl2L5] (7) 

Empirical formula C22H22CuF3N6O3S  C36H32Cu2F6N8O6S2 C37H39Cl2Cu2N9O9 C88H84B2Cu2N8O2  C46H60Cl2N12O12Zn C34H35Cl4Cu2N8O1.5  

Formula weight 571.06  977.90 951.75 1434.33  1109.33 848.58  

Temperature [K] 200(2)   150(2) 150(2) 193(2)   193(2)  193(2)  

Wavelength [Å] 0.71073   0.71073 0.71073 0.71073   0.71073  0.71073  

Crystal system, space group orthorhombic, Pca2(1)  monoclinic, P 21/c monoclinic, C2 Monoclinic,  P2(1)  Triclinic,  P-1 Monoclinic,  P2(1)/c  

Unit cell dimensions [Å, °] a = 14.3987(10)    a = 11.4322(2)  a = 14.0980(4) a = 10.761(2)    a = 8.3910(17)  a = 9.3533(19)   

 b = 9.5222(6)     b = 8.7293(2) b = 10.6116(3) b = 19.885(4)     b = 11.263(2)  b = 29.156(6)   

 c = 18.1821(12)   c = 19.0448(3) c = 13.2446(4) c = 17.585(4)     c = 13.913(3)  c = 13.143(3)  

 α = 90 α = 90 α = 90  α = 90  α = 80.42(3)  α = 90  

 β = 90  β = 92.385(2)  β= 90.985(3)  β = 101.42(3)  β = 80.20(3)  β = 95.81(3)  

 γ = 90 γ = 90 γ = 90  γ = 90  γ = 89.00(3)  γ = 90  

Volume [Å
3
] 2492.9(3) 

 
 1898.93(6) 1981.13(10) 3688.3(13)  1277.6(4)  3565.8(12)  

Z, Calculated density [Mg/m
3
] 4, 1.522  2, 1.710 2, 1.595 2, 1.292  1, 1.442  4, 1.581  

Absorption coefficient[mm
-1

] 1.019  1.319 1.276 0.632  0.658  1.536  

F(000) 1168  992 976 1504  580 1732 

Crystal size [mm
3
] 0.40 x 0.40 x 0.20  0.40 x 0.38 x 0.06 0.32 x 0.30 x 0.05 0.36 x 0.24 x 0.08  0.76 x 0.64 x 0.24  0.32 x 0.28 x 0.24  

θ range for data collection *°+ 2.14 to 28.29  3.10 to 29.99 2.84 to 30.00 2.05 to 25.04  3.01 to 28.15   2.09 to 24.13  

Limiting indices −19<=h<=19 −15<=h<=16 −19<=h<=18 −12<=h<=12 −11<=h<=11 −10<=h<=10 

 −12<=k<=12 −12<=k<=12 −11<=k<=14 −23<=k<=23 −14<=k<=14 −33<=k<=33 

 −24<=l<=24 −26<=l<=26 −18<=l<=9 −20<=l<=20 −18<=l<=17 −15<=l<=14 

Reflections collected / unique 
28043 / 6102  
[R(int) = 0.0333]  

19562 
[R(int) = 0.0342] 

6024 / 4065  
[R(int) = 0.0249] 

24983 / 12663  
[R(int) = 0.0962]  

11702 / 5693  
[R(int) = 0.0538] 

21054 / 5378  
[R(int) = 0.0476]  

Completeness to θ 28.29     99.7%  29.99     99.7% 30.00    99.8 % 25.04     99.6 %  28.15     90.9 % 24.13     94.6 %  

Absorption correction multi-scan semi-empirical semi-empirical  None  None None  

T min 0.686 (1) 0.6206  0.9390 --- --- --- 

T max 0.822 (1) 0.9251  0.6857 --- --- --- 

Refinement method 
Full-matrix least-squares 
on F

2
  

Full-matrix least-squares on 
F

2
 

Full-matrix least-
squares on F

2
 

Full-matrix least-
squares on F

2
  

Full-matrix least-squares 
on F

2
 

Full-matrix least-squares 
on F

2
  

Data/restraints/parameters  6102 / 1 / 333  5528 / 0 / 271 4065 / 1 / 281 12663 / 1 / 923  5693 / 0 / 403   5378 / 0 / 596  

Goodness-of-fit on F
2
 0.987  0.939 0.912 0.832  1.089 0.941  

Final R indices [I>2sigma(I)] 
R1 = 0.0288,  
wR2 = 0.0679  

R1 = 0.0327,  
wR2 = 0.0672  

R1 = 0.0301,  
wR2 = 0.0561  

R1 = 0.0584,  
wR2 = 0.1195  

R1 = 0.0444,  
wR2 = 0.1298 

R1 = 0.0303,  
wR2 = 0.0799  

R indices (all data) 
R1 = 0.0358,  
wR2 = 0.0699  

R1 = 0.0518,  
wR2 = 0.0707  

R1 = 0.0372,  
wR2 = 0.0572  

R1 = 0.1214,  
wR2 = 0.1395  

R1 = 0.0509,  
wR2 = 0.1367 

R1 = 0.0421,  
wR2 = 0.0834  

Largest diff. peak and hole 0.276 and −0.316 e∙Å
 -3

 0.486 and −0.323 e∙Å
 -3

 0.402 and −0.381 e∙Å
 -3

 0.670 and −0.443 e∙Å
 -3

 0.694 and −1.165 e∙Å
 -3

  0.489 and −0.364 e∙A
-3
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5.1.2.2.2  [Cu2(L4)2](CF3SO3)2∙DMF (2) 

When reacted with copper(I) salts with weakly coordinating anions the ligand L4 forms two 

different species. One of which was identified as the dimeric compound 2 depicted in Figure 

79. The copper atom Cu1 is surrounded by three aromatic nitrogen atoms (N2, N3 and N4i) 

and the aliphatic nitrogen atom N1. With a distance of 2.511(2) Å, N1 does not form a strong 

coordinative bond with Cu1. Therefore, a bond is not marked in Figure 79 and the coordination 

environment around Cu1 is best described as distorted trigonal planar with angles of 

119.43(5) ° (N2-Cu1-N4i), 129.04(6) ° (N2-Cu1-N3) and 111.49(5) ° (N3-Cu1-N4i). The triangle 

around the copper is formed by the aromatic nitrogen atoms with much shorter bond lengths 

compared to Cu1∙∙∙N1 with values of 1.965(2) Å (Cu1∙∙∙N2) and 2.005(2) Å (Cu1∙∙∙N4i).  

 

Fig. 79 ORTEP representation of the molecular structure of 2. Hydrogen atoms, anion and solvent molecules 
omitted for clarity. Thermal ellipsoids with 50 % probability. 

The cavity between the two pyridine rings is best described with the copper/copper distance 

Cu1∙∙∙Cu2 of 6.159(1) Å representing the diagonal, and the distance between the coplanar 

planes spanned by the atoms of these pyridine rings of 3.310(1) Å. The two coplanar π-

systems should enable 2 to intercalate additional transition metals forming sandwich like 

structures. Cu1 is located 0.668(1) Å out of plane spanned by the atoms of the coordinated 

pyridine ring bearing the nitrogen in 4-position. This is most likely caused by the weak 

bonding interaction of the aliphatic N1.  

We also obtained single crystals of the PF6- salt from acetone and DMF solutions. The 

molecular structure is very similar to that of 2 and ORTEP representations, crystallographic 

details and selected bond lengths for the dimers are reported in the Supporting Information.  
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Table 12  Selected bond lengths [Å] and angles [°] of compounds 1-5 and 7. 

1 

Cu(1)-N(2)                     2.130(2) Cu(1)-N(3) 2.018 (2) Cu(1)-N(4i) 2.034(2) Cu(1)-N(5) 2.008(2) 

N(3)-Cu(1)-N(2)              105.5(1)            N(3)-Cu(1)-N(4i) 127.0(1) N(4i)-Cu(1)-N(2) 99.1(1) N(5)-Cu(1)-N(2) 111.2(1) 

N(5)-Cu(1)-N(3)                            104.2(1) N(5)-Cu(1)-N(4i) 109.4(1) Cu(1)-Cu(1ii) 9.522(2)   

symmetry operation used to generate equivalent atoms: i) x,y−1,z b) x,y+1,z                                

 2          

Cu(1)-N(2)                                    1.965(2) Cu(1)-N(3) 1.991(2) Cu(1)-N(4i) 2.005(2)          Cu(1)-N(1) 2.511(2) 

N(2)-Cu(1)-N(4i)                119.43(5) N(3)-Cu(1)-N(2)              129.04(6) N(3)-Cu(1)-N(4i)            111.49(5) N(1)-Cu(1)-N(2) 78.18(5) 

N(1)-Cu(1)-N(3) 78.92(5) N(1)-Cu(1)-N(4i) 115.16(5) Cu(1)-Cu(1i) 6.159(1)   

symmetry operation used to generate equivalent atoms: i) −x, −y+1, −z 

3 

Cu(1)-N(1) 2.502(2) Cu(1)-N(2) 2.019(2) Cu(1)-N(3) 2.000(2) Cu(1)-N(4i) 1.967(2) 

N(2)-Cu(1)-N(1) 76.54(8) N(3)-Cu(1)-N(1) 76.48(10) N(4i)-Cu(1)-N(1) 125.36(8) N(3)-Cu(1)-N(2) 115.92(8) 

N(4i)-Cu(1)-N(2) 119.68(8) N(4i)-Cu(1)-N(3) 123.46(9)     

symmetry operation used to generate equivalent atoms: i) −x+3/2,y+1/2, −z  

4 

Cu(1)-N(1)                      2.486(7) Cu(1)-N(2) 1.927(7) Cu(1)-N(3) 1.964(6) Cu(1)-N(8) 2.014(8) 

Cu(2)-N(4) 1.993(6) Cu(2)-N(5) 2.409(7) Cu(2)-N(6) 1.951(6) Cu(2)-N(7) 1.944(6) 

Cu(1)-Cu(2) 5.483(7) N(1)-Cu(1)-N(2) 78.3(1) N(1)-Cu(1)-N(3) 78.9(1) N(1)-Cu(1)-N(8) 114.1(1) 

N(2)-Cu(1)-N(3) 137.2(3) N(2)-Cu(1)-N(8)              118.4(3) N(3)-Cu(1)-N(8)              104.0(3) N(4)-Cu(2)-N(5)              113.2(2) 

N(6)-Cu(2)-N(5)               80.2(2) N(6)-Cu(2)-N(4)              112.5(3) N(7)-Cu(2)-N(4)              111.0(3) N(7)-Cu(2)-N(5)               80.6(2) 

N(7)-Cu(2)-N(6)              136.4(3)       

5 

O(1)-Zn(1)                     2.154(2) O(2)-Zn(1)                     2.117(2) N(4)-Zn(1)                     2.095(2) O(1)-Zn(1)-O(1i)            180.0 (1) 

N(4i)-Zn(1)-N(4)             180.0(1) N(4)-Zn(1)-O(2)               92.0(1) N(4)-Zn(1)-O(2i)             88.0(1)  N(4)-Zn(1)-O(1)               89.6(1) 

N(4)-Zn(1)-O(1i)             90.4(1) O(2)-Zn(1)-O(1)               91.6(1) O(2)-Zn(1)-O(1i)             88.4(1) O(2i)-Zn(1)-O(2)            180.0(1) 

symmetry operation used to generate equivalent atoms: i) −x+1, −y+1, −z+1 

7 

Cl(1)-Cu(1)                   2.538(1) Cl(2)-Cu(1) 2.250(1) Cl(3)-Cu(2)                2.478(1)  Cl(4)-Cu(2) 2.259(2) 

Cu(1)-N(2)                      1.991(3) Cu(1)-N(3) 1.995(3) Cu(1)-N(1) 2.096(3) Cu(2)-N(6) 2.017(3) 

Cu(2)-N(7) 2.018(3) Cu(2)-N(5) 2.101(3) N(2)-Cu(1)-N(1) 80.9(2) N(3)-Cu(1)-N(1)               81.5(2) 

N(2)-Cu(1)-N(3)                          160.4(2) N(1)-Cu(1)-Cl(1)              92.6(1) N(1)-Cu(1)-Cl(2)             163.2(1) Cl(4)-Cu(2)-Cl(3)            105.6(1) 

N(2)-Cu(1)-Cl(1)              97.0(2) N(2)-Cu(1)-Cl(2)              96.6(2) N(3)-Cu(1)-Cl(1)              92.2(1) N(3)-Cu(1)-Cl(2)              97.8(2) 

Cl(2)-Cu(1)-Cl(1)            104.3(1) N(6)-Cu(2)-N(5)               80.6(2) N(7)-Cu(2)-N(5)               80.7(2) N(6)-Cu(2)-N(7)              160.5(2) 

N(5)-Cu(2)-Cl(3)             100.2(1)  N(5)-Cu(2)-Cl(4)             154.3(1) N(6)-Cu(2)-Cl(3)              96.8(1) N(6)-Cu(2)-Cl(4)              97.1(1) 

N(7)-Cu(2)-Cl(3)              91.9(1) N(7)-Cu(2)-Cl(4)              97.3(1)     

5.1.2.2.3  [Cu(L4)]n(ClO4)n∙nDMF (3) 

From copper complexes with the related ligands L1 and L2 it is known that different anions 

are able to influence the crystal structure.151 Thus, we varied the anion used in the dimer 2 in 

order to synthesize coordination polymers. Using perchlorate as an anion, a polymeric species 

(3) of the copper(I) complex using L4 as a ligand could be successfully obtained. Comparison 

of complexes 2 and 3 reveals that a cage opening of 2 leads to the formation of the 

coordination polymer 3. A part of the polymeric chain shown along the 100 and 010 axes is 

depicted in Figure 80 a) and b), respectively. The view along the 100 axes reveals the zigzag 

shaped one-dimensional structure. As expected it is very similar to that of 1 due to the 

pyridine nitrogen N4 in para position located at the “short arm” of the ligand instead of the 

“long one” in L3. An explanation for the zigzag shape is most likely the bonding influence of the 

aliphatic “bridgehead” nitrogen N1. As described for the dimer in 2 the distance between the 

copper(I) atom Cu1 and N1 is very long (2.486(7) Å) for a copper∙∙∙nitrogen coordination bond 

compared to the other ones in 3 all with values around 2.00 Å. Nevertheless, the bonding 
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character of the Cu1∙∙∙N1 interactions leads to the zigzag shape of the polymer. In contrast to 3 

the “bridgehead” nitrogen atom N1 in compound 1 remains uncoordinated and is too far away 

from the metal atom to influence the polymer shape in a similar fashion. Therefore, the zigzag 

structure motive in 3 is more ideal. 

a) 

 

b) 

 

Fig. 80 Thermal ellipsoid representations of a) a part of the polymeric chain of 3 shown normal to the 100 axes 
and b) normal to the 010 axes. Probability is set to 50 %, anions, hydrogen atoms and solvent molecules are 

omitted for clarity. 

Linearity of the chain is obvious from Figure 80 b) representing a view along the 010 axes of 

the unit cell. Due to the long distances between the π-systems of the pyridine rings bonding 

interactions are not very likely. Ignoring the long bond Cu1∙∙∙N1, the coordination environment 

around Cu1 is best described as trigonal planar with angles of 115.92(8) (N(3)-Cu(1)-N(2)), 

119.68(8) (N(4i)-Cu(1)-N(2)) and 123.46(9) (N(4i)-Cu(1)-N(3)). 

5.1.2.2.4 [Cu2(L5)2](BPh4)2∙2CH3COCH3 (4) 

A representation of the cation dimer of 4 is depicted in Figure 81. Two ligand molecules L5 

coordinate two copper(I) atoms forming a cage like dimer similar to 2. The Cu1∙∙∙N1 distance 
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(2.486(7) Å) is very long compared to the other copper(I)-nitrogen bonds that all have values 

between 1.95 and 2.00 Å. Thus, as described for 2 a coordinative bond between Cu1 and N1 is 

not marked in Figure 81. Ignoring the weak coordination of N1 and N4 the environment 

around the copper atoms is best described as distorted trigonal planar with angles between 

111 and 129 °. 

 

  

Fig. 81 ORTEP representation of the molecular structure of 4 with hydrogen atoms, anions and solvent 
molecules omitted for clarity. Thermal ellipsoids with 50 % probability. 

Due to the pyridyl nitrogen in 3-position the connection between the two copper(I) atoms over 

the bridging pyridyl ring is not linear as demonstrated for 2. Therefore one side of the dimer is 

more open for the approach of a molecule to form possible intercalation compounds. With an 

angle of 22.56 ° the two planes build by the atoms of the two bridging pyridyl rings of 4 are far 

from being coplanar. A stabilizing interaction of their π-systems is therefore hindered. 

5.1.2.2.5 Oxidation Reactions of Copper(I) Complexes 

The copper(I) complexes of the ligands L3, L4, and L5 react slowly with oxygen. When reacted 

with air, solutions of the complexes change their color after hours at room temperature from 

yellow two dark green indicative for the oxidized copper(II) complexes. Unfortunately, it has 

not been possible to identify reactive intermediates during the reaction with oxygen so far. 

After the reaction of 2 with oxygen at room temperature the highest signal in the GC-MS 

spectrum derives from unreacted ligand L4. Only very small signals derive from the oxidation 

products.  

The reaction of dihydrogenperoxide with a solution of 2 leads to a nonspecific oxidation and a 

brown solution. The reaction proceeds too fast to allow detection of “oxygen adduct” 

intermediates. Even at -90 °C the solution changes its color almost immediately from yellow to 

dark brown. In nitriles as solvents a possible side reaction has been well known for decades, 

which forms the related amides.179 But even in acetone or other solvents that should prevent 

an oxidation reaction of the solvent, we were not able to identify an oxidation product of this 

reaction. Upon reaction with meta-chlorperbenzoic acid (mCPBA) below −95 °C a blue 
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intermediate, that is observable in very short terms, forms. During our attempts to verify our 

findings by low temperature stopped-flow techniques only the formation of the oxidation 

product is detectable through the characteristic copper(II) d-d band around 675 nm and a 

shoulder  in the UV region at 360 nm. Two stopped-flow UV/Vis spectra at 10 °C and the time 

traces are shown in Figure 82. Additional low temperature stopped-flow spectra are reported 

in the Supporting Information.  

No intensive charge transfer bands were observed at temperatures around −90 °C. Changing 

the solvent from propionitrile to THF that would have allowed even lower temperatures was 

not practicable due to the low solubility of the oxidation products. Therefore, so far only 

speculations about the nature of the observed blue species are possible. Most likely the blue 

color derives from a typical charge transfer band of a peroxido-species. Nagataki et al. 

proposed a mechanism for the oxidation of a nickel complex with mCPBA where such a 

peroxido-species is the first step in the oxidation reaction.180 Efforts to verify the observation 

by crystallizing the possible peroxido intermediate have not been successful so far. 

 

Fig. 82 Stopped flow spectra at 10 °C of the oxidation reaction of 4 with mCPBA. Timetraces of a shoulder at 360 
nm.  

With rising temperature a consecutive reaction, monitorable with the shoulder at 360 nm in 

the UV/Vis spectrum, is detectable. Compared to a UV/Vis spectrum of a copper(II) complex 

with unmodified ligand L4 with bands at λ = 350 nm and λ = 625 nm, the bands for the 

copper(II) complex formed are both shifted to higher wavelengths. With a difference of 50 nm 

the d-d band shift is the strongest indicator that a different copper(II) species is formed. 

Wavelength shifts that occur during the sequential reactions are not detectable. Nevertheless, 

the considerable difference in the reaction rate obvious from the time traces is a sufficient hint 

for the proposal of a consecutive reaction (see the insets of Figure 82). The shoulder at 360 

nm, obviously characteristic for copper(II) complexes, forms in a fast reaction over a wide 

temperature range and decays at 10 °C over a period of approximately 50 seconds and forms 

again with a much slower rate. Most likely this is indicative for a reaction from one copper(II) 

species to a different copper(II) complex. Warming the solution to room temperature finally 

leads to a green copper(II) complex solution. The GC-MS spectrum of the oxidized solution only 

shows a very small signal that derives from unreacted ligand L4 but nearly quantitative 
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conversion to the same oxidation product identified from the reaction with oxygen shown in 

Figure 83 a or the degradation products, respectively (Figure 83 b). 

 

Fig. 83 a) Proposed oxidation product of the oxidation reaction of the cation of 2 and mCPBA. b) Products 
identified in the GC-MS spectrum of a solution with maximal conversion. 

Only recently, Bröhmer et al. reported about dipicolylamine as protective group, removable 

under mild conditions. They were able to demonstrate that the copper(II) coordination is 

capable of activating the cleavage of the bispicolyl unit from the substrate.181 In our case the 

oxidized bispicolyl unit is cleaved, instead of cleaving the protective group bispicolyl amine 

from an oxidized residue as demonstrated lately by the same authors for numerous 

examples.181 The cleavage of the half aminale into pyridinecarboxaldehyde and the remaining 

amine is most likely also catalyzed by the coordinated copper(II) ion and the associated 

electron loss of the aliphatic nitrogen atom. The oxidized mother ion signal (m/z = 290) could 

be observed in a solution that reacted significantly shorter where maximal conversion of the 

ligand was not reached. Therefore, the proposal that a cleavage occurs in solution and not only 

under GC-MS conditions is most likely the correct description of the reaction. Based on our 

findings we propose a possible reaction mechanism for the oxidation reaction of 2 with mCPBA 

depicted in Figure 84. 

 

Fig. 84 Proposed reaction pathway for the oxidation of 2 with mCPBA as oxidant. 

Unfortunately, a meaningful NMR spectrum of the reaction mixture after the oxidation step 

could not be obtained so far. The only product identified in solution by NMR spectroscopic 

measurements, after removing copper(II) ions by complexation with EDTA, is meta-

chlorbenzoic acid. The reaction of free ligand L4 with mCPBA only leads to the formation of a 
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very small amount of oxidation product according to the GC-MS spectrum. The GC-MS spectra 

are depicted in the Supporting Information. 

After the oxidation of a solution of 4 with either oxygen or mCPBA no specific oxidation 

product is detectable. Although the copper(I) dimer using the ligand L5 in 4 is very similar to 

that of 2 there is no hint for a ligand hydroxylation in this case. A possible explanation for the 

different reactivity towards oxidizing agents is the influence of the strong nucleophilicity of the 

coordinated para-nitrogen atom in L4.182 Furthermore, the signal broadening in the NMR 

spectrum of the copper(I) polymer (see Figure 88) points to a dynamic process in solution, 

most likely the change between polymer and dimer. In our studies, only the copper(I) 

complexes with L4 as a ligand showed hints for such dynamic processes in solution and two 

different molecular structures in the solid phase. Thus, this solution dynamics is possibly a 

second point that increases the reactivity towards oxidizing agents compared with copper(I) 

complexes of L5. 

5.1.2.3 Zinc(II) Complexes of the Ligands L3, L4 and L5 

Due to the interesting properties of the zinc(II) complexes using L1 as ligand (see chapter 

4)175, we became interested in the zinc(II) complexes of the new ligands L3, L4 and L5. Zinc(II) 

salts containing weakly coordinating anions coordinate readily with the pyridyl ligands, but 

are less soluble  than their copper(I) analogues.  

We were able to crystallize a zinc(II) complex containing L4 from DMF (5) and obtained 

colorless crystals suitable for single crystal X-ray structure determination. The 

crystallographic details and selected bond lengths and angles are given in Table 11 and 12, 

respectively. The data for an equivalent complex with a different anion is given in the 

Supporting Information. Until today, we have unfortunately not been able to obtain single 

crystals suitable for X-ray crystallography of the zinc(II) complexes of L3 and L5.   

5.1.2.3.1 [Zn(DMF)4(L4)2](ClO4)2 (5) 

From the zinc(II) complexes of the parent ligand L2 it is known that the bispicolyl binding site 

is the preferred coordination sphere for the metal ion. Due to the nitrogen atom in 4-position 

in the ligand L4 we expected zinc(II) to form polymeric compounds when reacted with the 

ligand. Additionally, L4 has already proved its capability to act as bridging ligand in the 

copper(I) compound 3 presented above. Unexpectedly, in compound 5 zinc(II) does not 

coordinate with the methylpyridyl moieties, but is only coordinated by the pyridyl nitrogen in 

4-position. A thermal ellipsoid representation of the molecular structure of 5 is shown in 

Figure 85. The zinc (II) atom is coordinated by the pyridyl nitrogen atoms N4 and N4i of two 

different ligand molecules in the apical positions of the octahedron. The four positions in basal 

plane of the coordination octahedron are occupied by the oxygen atoms of DMF solvent 

molecules. The nitrogen atoms N1, N2 and N3 and the equivalent atoms of the second ligand 

belonging to the bispicolylamine unit remain completely uncoordinated instead of 

coordinating the next zinc(II) atom. This coordination mode is extremely unusual and highly 

interesting. There are numerous examples for bispicolyl units as effective binding sites for 

zinc(II).16, 183 In contrast, 5 is the first example for an uncoordinated bispicolyl unit in presence 
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of zinc(II) at least to the best of our knowledge. An explanation for this uncommon behavior of 

L4 is the unusual nucleophilicity of the nitrogen atom in 4-position that is possibly accountable 

for electron deficiency in the remaining system. Thus, the electron donating properties of the 

bispicolylamine unit are considered to be lowered.  

 

Fig. 85 ORTEP representation of the molecular structure of 5. Hydrogen atoms and anions omitted for clarity. 
Thermal ellipsoids with 50 % probability. 

Never the less, the remaining donor atoms should be capable of coordinating additional metal 

atoms and thereby forming coordination polymers. In contrast to the copper(I) compounds 2 

and 3, we did not observe an indication for the formation of zinc(II) coordination polymers in 

our studies so far. Attempts to influence the crystal structure by the use of SO3CF3- as a 

different anion only led to the formation of a compound very similar to 5. Single crystal X-ray 

analysis revealed a molecular structure of the cationic complex nearly superimposable to that 

of 5. Selected bond lengths and angles, detailed information on the crystallographic 

measurement and a picture of the molecular structure of the obtained triflate salt are provided 

as Supporting Information. An influence of the used solvent on the formation of this unusual 

structure cannot be denied, but is not considered as a main criterion. This is due to the 

formation of compound 2 from DMF with the isoelectronic copper(I) ion. Here the 

bispicolylamine units clearly are coordinated to the metal ion and are not substituted by the 

solvent. 

In solution, the complexes of 5 exhibit similar coordinative properties. Even an excess amount 

of zinc(II) ions does not lead to a coordination of the bispicolyl nitrogen atoms. This 

description of the solution behavior is based on NMR measurements of stoichiometric 

solutions of 5 as well as solutions containing an excess amount of zinc(II) ions. Compared to 

the NMR spectra of the free ligand L4, a significant shift is only observable of the pyridyl 

protons. If coordinated, the protons of the bispicolyl unit should also be shifted to different 

ppm values. Therefore, the unchanged chemical shifts of the methylpyridyl nitrogen atoms are 
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indicative for a coordination similar to that in the solid phase. The chemical shifts are listed in 

Table 13. 

5.1.2.4 Copper(II) Complexes of the Ligands L3, L4 and L5 

As described for the related ligands L1 and L2, the new ligands L3, L4 and L5 should be able to 

form polymeric compounds.151 Therefore we reacted copper(II) salts with coordinating and 

uncoordinating anions with these ligands. They coordinate in various solvents with all three 

ligands forming green to blue complexes. We were not able to crystallize a copper(II) species 

of the ligand L3 but successfully solved the crystal structures of the chlorido complexes 

[Cu3Cl6(L4)2] (6) (for crystallographic data and selected bond lengths and angles see 

Supporting Information due to high R-values) and [CuCl2L5]∙0.75H2O (7) of L4 and L5. 

Selected bond lengths and angles of 7 are listed in Table 12 respectively. 

5.1.2.4.1 [Cu3Cl6(L4)2]n∙(xH2O)n (6) 

The X-ray crystallographic structure determination of green single crystals of 6 resulted in the 

polymeric structure shown in Figure 86. The subunits consist of complexes containing two 

ligands L4 and three copper(I) atoms. These subunits are bridged by a chloride ion (Cl5) 

coordinating the central copper(II) (Cu2) and one of the terminal copper(II) ions (Cu3). The 

chloride bridge leads to the formation of a helical superlattice shown in Figure 86 (b) that 

additionally reveals a diffusion channel in 010 direction. Due to the poor crystal quality the 

refinement of the structure led to high R-values. Thus, bond lengths and angles are not reliable 

and are only given in the Supporting Information. A high amount of electron density is still 

present in the unit cell, most likely deriving from not definable solvent molecules. Therefore, 

the formula of 6 is given with x water molecules. 

Nevertheless, a helical structure motif, which is more unusual compared to the polymeric 

structures of 1 and 3, can be assigned. Until today zigzag structures are much more common 

then helical ones for one dimensional coordination polymers.49 

 

Fig. 86 ORTEP drawing of (left) part of the polymeric structure of 6 (right) view along the 010 axis of the unit cell 
of 6. Thermal ellipsoids at 50% probability, hydrogen atoms and solvent molecules are omitted for clarity. 
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5.1.2.4.2  [CuCl2L5] ∙ 0.75 H2O (7) 

Figure 87 shows a thermal ellipsoid representation of the molecular structure of 7. Unlike the 

other copper compounds presented, 7 does not crystallize as dimer or polymer. The smallest 

independent unit consists of two molecules of the monomer 7. The Cu1 atom is coordinated by 

the two methyl pyridyl nitrogen atoms and additionally two chloride anions. Due to τ values of 

0.05 (Cu1) and 0.10 (Cu2), the arrangement around the metal atom is best described as 

distorted square pyramidal. With a Cu1∙∙∙N1 distance of 2.095(2) Å, the aliphatic nitrogen atom 

N1 is bound much stronger than in the presented copper(I) complexes herein. Most likely, this 

is accountable for the lower strain in compound 7 through the lack of coordination of 

additional metal atoms. The chloride ions are connected through hydrogen bonded water 

molecules directing the assembly of the molecules in the crystal structure. 

As expected, 7 is very similar to the complexes formed by L2 and copper(II)chloride published 

previously.151 

 

Fig. 87 Thermal ellipsoid representation of the molecular structure of 7. Solvent molecules and hydrogen atoms 
omitted for clarity. Thermal ellipsoids with 50 % probability. 

5.1.2.5 Heterometallic Cu/Zn Complexes 

From a solution containing equimolar amounts of copper(II) salt, a zinc(II) salt crystallized 

from DMF, and the stoichiometric amount of ligand L4, a nearly colorless and a blue species 

formed. The EDX measurement proves that the colorless species mainly contained zinc(II) and 

the blue species copper(II). In both complexes, the metal atom is disordered and partly 

substituted by the other metal. We were able to structurally characterize the colorless species 

as [Zn(L4)2(DMF)4](CF3SO3)2. Crystallographic details, selected bond lengths and angles and 

the EDX spectra of this complex cation of 5 with triflate as anion are provided as Supporting 

Information. When mixing an acetone solution of Zn(ClO4)2 with [Cu(CH3CN)4](ClO4) and a 

stoichiometric amount of the ligand L4, yellow single crystals formed. Due to the different 

coordination modes of copper(I) and zinc(II) in 2 and 5, we expected a coordination polymer 

containing zinc and copper(I) in the ratio 1:2. The Single crystal X-ray structure analysis 

revealed the copper(I) structure of 3 as the only crystallized species. Using triflate as an anion 

instead of perchlorate led to the dimeric copper(I) compound 2. Neither crystals of a zinc 

complex nor a heterometallic coordination polymer could be isolated from the solution. 

This finding is in striking contrast to the NMR spectroscopic data in solution that shows 

different shifts of all signals belonging to the coordinated pyridyl rings in the heterometallic 
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solution. A comparison of the chemical shifts in the aromatic region of the different species is 

presented in Figure 88. The values of the chemical shifts are shown in Table 13 accompanied 

by a full allocation of the signals depicted in Figure 89. The allocation could be determined 

with two-dimensional NMR experiments performed with the free ligand L4 and the complexes 

in solution, respectively. 

 
Fig. 88 NMR spectra of the compounds 2, 3, 5, and the copper zinc mixture in solution. 

Table 13 Chemical shifts [ppm] of the NMR signals depicted in Figure 88 

Solution of HG HA HF HE HD HB HC 

5 8,55 7,99 7,76 7,32 7,30 6,64 4,89 

3
 8,73 7,38 7,53 8,03 7,67 6,39 5,02 

2 8,74 7,35 7,53 8,03 7,66 6,37 5,02 

Cu(ClO4)  

Zn(ClO4)2 + L4 

8,59 7,81 7,37 7,85 7,43 6,63 4,92 

Cu(SO3CF3)  

ZnSO3CF3)2 + L4 

8,61 7,78 7,40 7,87 7,46 6,60 4,94 
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Fig. 89  Allocation of the NMR chemical shifts to the protons the compounds (see also Table 13). 

A differentiation between the possible structures of the dimer 2 and the polymer 3 in solution 

is difficult due to the similar coordination spheres of the compounds. The only difference is a 

signal broadening in the NMR spectrum of the polymer in solution. The comparison of the data 

for solutions of the copper(I) complex 2 and the zinc(II) complex 5 on one hand and the NMR 

spectra of the mixed solution clearly shows that none of the species found in the homometallic 

complex solutions is present in the mixture of both metals. This leads to the conclusion that a 

heterometallic coordination polymer with different coordination spheres of copper(I) and 

zinc(II) is formed in solution. The possible structure of a polymer with weakly coordinating 

anions is presented in Figure 90. 

A simple disorder of the metal ions in the same coordination sphere should lead to two sets of 

signals due to the behavior of the different metals. In the shown spectrum only one set of 

signals is detectable and it therefore supports our proposal concerning the solution behavior. 

 

Fig. 90 Possible structure of the heterometallic polymeric species in solution with L as weakly coordinating 
solvent or anion. 

5.1.3 Conclusions 

We were able to show that the ligands L3 and L4 are capable of forming one-dimensional 

coordination polymers with copper(I) salts with weakly coordinating anions (compounds 1 

and 3). Both compounds exhibit a zigzag shape of the linear chains. The crucial difference of 

these ligands compared with their close relatives tmpa, L1 and L2 is the 4-position of the 

pyridyl nitrogen atom. A variation as obvious in ligand L5 with a nitrogen in 3-position did not 

lead to the formation of a polymer. As expected and already reported for L1 and L2175, the 

copper(I) complexes of L4 and L5, 2 and 4 respectively, form dimers very similar to that of L1. 

Thus, the ligand L4 has two competing copper(I) species where a bond opening in the dimer 2 

and a coordination of an additional copper(I) leads to the formation of the polymer 3. A 

possible explanation is the directing influence of the anion, being the only difference in the 
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preparation of solutions of 2 and 3. All efforts to obtain a dimer with L3 or a polymer with L5 

as ligand have not been successful so far. 

The substitution of copper(I) by the isoelectronic zinc(II) led to the formation of an 

unexpected monomeric complex, where only the nitrogen atoms in 4-position of two ligand 

molecules coordinate the zinc(II) ion. All other nitrogen atoms of the ligand molecules remain 

uncoordinating. The open positions in the octahedron of the complex are occupied by four 

solvent molecules. We were not able to obtain complexes with additional metal atoms 

coordinated at the vacant positions. Neither drastic excess amount of zinc(II) nor the addition 

of copper(II) or copper(I) led to the formation of coordination polymers incorporating the 

structure motive of 5. In compounds 2 and 3 copper(I) is coordinated by the methyl pyridyl 

moieties of L4. Therefore, we would have expected copper(I) as an ideal ion to form 

heterometallic, polymeric compounds with the zinc(II) complex (5). Surprisingly, only the 

homometallic cationic species of 2, 3 and 5 with disorders in their solid state structures could 

be isolated from the mixed metal solutions. Probably, the coordination of zinc(II) by the 

pyridyl nitrogen in 4-position with its unusual nucleophilicity, known from dmap as a close 

relative, in an octahedral complex disables the open position to coordinate additional metal 

centers. 

The extraordinary nucleophilicity of the dmap moiety is additionally a possible explanation for 

the reactivity of the cation of 2 against mCPBA compared to 4 and the copper(I) complex of L3. 

As expected all compounds exhibit a sluggish behavior towards oxygen. Nevertheless, with the 

cation of 2 a significant acceleration of the ligand oxidation compared to free ligand L4 is 

observable. Unfortunately, efforts to catalyze oxidation reactions of substrates proceed not 

very promising most likely due to the catalyzed cleavage of the ligand. 

As a legitimate closing remark for the presented work we should be allowed to say that the 

synthesis of specific coordination polymers by systematic modification of ligands remains a 

challenging task. In many cases the resulting structures differ from the expected ones and the 

discovery of new outstanding attributes of one-dimensional polymers is strongly supported by 

serendipity. Never the less, the presented coordination polymers demonstrate the influence of 

steric and electronic ligand attributes and anions towards the formation of coordination 

polymers and their habitus.  

5.1.4 Experimental Section 

Caution! The syntheses and procedures described below involve compounds that contain 

perchlorate ions, which can detonate explosively and without warning. Although we have not 

encountered any problems with the compounds used in this study, they should be handled with 

extreme caution. 

5.1.4.1 Materials and Methods 

Reagents and solvents were all used as commercially available if not mentioned otherwise.  

All 1H NMR experiments were performed on a Bruker Avance II 400 spectrometer equipped 

with a 5 mm BBO Z-gradient probe. To obtain the complete 1H chemical shift assignments for 

the L4 compounds the structure elucidation was based on the application of homonuclear 
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1H, 1H correlation spectroscopy (COSY). The data were collected and processed by TOPSPIN 

software (Bruker) running on a PC with Microsoft WindowsXP. The two-dimensional 

experiments were performed using Bruker standard pulse sequences and parameters. The 

temperatures for all measurements were calibrated with the Bruker methanol sample and 

were controlled by a Bruker BVT 3000 temperature unit. 

Chemical shifts are reported in ppm (  scale) using TMS as internal standard or the solvent 

signal as secondary standard. Multiplicities of NMR signals are designated as s (singlet), d 

(doublet), t (triplet), q (quartet), br (broad), m (multiplet, for unresolved lines), etc.  

IR spectra were recorded as KBr pellets using a Bruker IFS 25. 

Gas chromatographic spectra were recorded on a Quadrupol-MS HP MSD 5971(EI) equipped 

with a J&W Scientific quartz glass GC column (30m × 0.25 mm, 0.25 μm DB-5 MS). Helium was 

used as carrier gas on a stationary phase consisting of phenyl- and methylsilane (5:95). Data 

were collected with HP 5890 GC program. 

Room temperature UV/Visible experiments were performed using an Agilent 8453 

spectrophotometer using the UV/Visible Chemstation program (Agilent) for collecting and 

processing of data. 

Low temperature stopped-flow spectra were recorded on a Hightec Scientific SF-61SX2 

stopped-flow system. Data were collected and processed with the Kinetic Studio (1.12) 

program by TgK Scientific. 

5.1.4.2 X-ray Structure Determination 

The structure determinations for compounds 4, 5 and 7 were performed at 193 K using a STOE 

IPDS (MoK ,  = 0.71073 Å, graphite-monochromator) diffractometer equipped with a low 

temperature unit of the Karlsruher Glastechnisches Werk. 

All single crystals were coated with perfluorpolyether and mounted on a glass fiber. The 

structures were solved by direct methods and refined on F2 using full-matrix least-squares 

techniques using the ShelX 97 program package.113 Space groups were determined by 

systematic absences. All non-hydrogen atoms were refined anisotropically. 

5.1.4.3 Syntheses of the Ligands L3, L4 and L5 

5.1.4.3.1 General Procedure 

Syntheses of the ligands were performed similar to a recently reported literature procedure 

for the ligand L2 with slight modifications.151 The L3 precursor N,N-[(2-pyridyl)methyl(4-

pyridyl)methylamine] was prepared according to the literature.184 Earlier, Wang et al. 

reported an alternative synthesis of the precursor.185 

5.1.4.3.2 Synthesis of N,N-[(2-pyridyl)methyl(4-pyridyl)methyl]-2-pyridylamine (L3) 

Sodium hydride (60% dispersion in mineral oil; 0.13 g, 3.3 mmol) was dissolved in anhydrous 

DMF (10 mL) in an inert atmosphere. The resulting grey slurry was stirred at room 

temperature until hydrogen evolution had ceased. A solution of N,N-(2-pyridyl)(4-

pyridylmethyl)amine (0.50 g, 2.7 mmol) in anhydrous DMF (10 mL) was then added dropwise. 
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The resulting orange solution was stirred until hydrogen evolution had ceased. To the amine 

carbanion, a solution of 2-picolyl chloride (derived from 2-picolyl chloride hydrochloride 0.50 

g, 3 mmol) in anhydrous diethyl ether (10 mL) was added dropwise at room temperature. The 

solution was stirred for 14 h and afterwards the reaction was quenched by addition of water 

(200 mL) and brine (50 mL). The aqueous solution was extracted with dichloromethane (4 × 

50 mL. The combined organic phases were dried over anhydrous Na2SO4. Removal of the 

solvent in vacuo yielded the crude product as brown oil. After days brown crystals derived 

from the oil and were washed with acetone (0.26 g, 0.9 mmol, 34,9 %) 1H NMR (δ, ppm; CDCl3 , 

400 MHz):  8.54 (d, 1H, Pyr-H) , 8.50 (d, 2H, Pyr-H), 8.18 (d, 1H, Pyr-H),  7.60 (dvt, 1H, Pyr-H), 

7.40 (dvdvd, 1H, Pyr-H), 7.22 (d, 1H, Pyr-H), 7.16 (m, 3H, Pyr-H), 6.63 (dvd, 1H, Pyr-H), 6.44 (d, 

1H, Pyr-H), 4.91 (s, 2H, -CH2-), 4.87 (s, 2H, -CH2-); 13C NMR (δ, ppm; CDCl3 , 400 MHz): 158.2, 

157.9, 149.8, 149.6, 148.0, 137.7, 136.8, 121.2, 122.2, 121.8, 113.1, 105.9, 54.0, 51.1.   

5.1.4.3.3 Synthesis of N,N-(4-pyridyl)(2-pyridylmethyl)amine 

To a solution of 2-pyridinecarboxalehyde (5.35 g, 49.9 mmol) and 4-aminopyridine (4.70 g, 

49.9 mmol) in toluene (100 mL) a catalytic amount p-toluenesulphonic acid was added. The 

solution was heated under reflux for 24 h using a Dean-Stark trap for the continuous removal 

of water. The resulting brown solution was washed with aqueous solution of NaHCO3 (200 

mL). The organic phase was separated and dried over anhydrous Na2SO4. 

After removal of toluene in vacuo, the resulting oil was redissolved in methanol (100 mL). To 

this yellow solution, NaBH4 (3.00 g, 80.0 mmol) was added and the solution was stirred for 18 

h at room temperature. The excess amount of NaBH4 was cautiously quenched by adding 100 

mL water and 100 mL brine at 70 °C. After addition of NaOH (10 M), the solvent was again 

removed in vacuo and the residue was redissolved in water (200 mL).  The aqueous solution 

was extracted with ethyl-acetate (3 × 150 mL) and the combined organic fractions were dried 

over anhydrous MgSO4. Removal of the solvent resulted in a yellow residue which solidified 

after purification by Kugelrohr Apparatus vacuum distillation (6.00 g, 67.0 %, 33.5 mmol). 1H 

NMR (δ, ppm; DMSO-d6, 400 MHz): 4.41 (d, 2H, -CH2-), 6.52 (d, 2H, Pyr-H), 7.15 (t, 1H, NH), 

7.26 (t, 1H, Pry-H), 7.33 (d, 1H, Pyr-H), 7.74 (t, 1H, Pyr-H), 8.53 (d, 1H, Pyr-H). 13C NMR (δ, 

ppm; DMSO-d6, 400 MHz): 47.3, 107.3, 121.0, 122.1, 136.6, 148.9, 149.6, 153.3, 158.4. IR (KBr): 

ν = 3278 (br, m), 3155 (m), 3052 (m), 2933 (w), 2859 (w), 1608 (s), 1571 (m), 1527 (m), 1475 

(m), 1342 (m), 1322 (m), 1218 (m), 1150 (w), 1119 (w), 1081 (w), 1049 (w), 993 (m), 815 

(m), 759 (m), 615 (w), 533 (m) 

5.1.4.3.4 Syntheses of N-[Bis(2-pyridyl)methyl]-4-pyridylamine (L4) 

Sodium hydride (60% dispersion in mineral oil: 0.46 g, 11.5 mmol) was added to anhydrous 

DMF (30 mL) and stirred in an inert atmosphere until hydrogen evolution had ceased. After 

dropwise addition of N,N-(4-Pyridyl)(2-pyridylmethyl)amine (1.41 g, 7.6 mmol) in anhydrous 

DMF (10 mL) the resulting orange solution was stirred for 1 h. An ethereal solution of 2-picolyl 

chloride as a free base was prepared by solving 2-picolyl chloride hydrochloride (1.70 g, 10.3 

mmol) and raising the pH to 7 by adding a sodium hydrogen carbonate solution. The red 

solution was extracted with ether (4 x 40 mL) and dried over anhydrous Na2SO4 and 
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inspissated to 5 mL. The resulting ethereal solution was then added dropwise to the amine 

carbanion and stirred over night at room temperature. The brown solution was cautiously 

quenched by the addition of water (80 mL) and brine (20 mL) and extracted with 

dichloromethane (4 x 50 mL). The combined organic fractions were dried over anhydrous 

Na2SO4. Removal of the solvent yielded the crude product as a brown solid. The solid was 

recrystallized from dichloromethane to yield pale yellow crystals (1.09 g, 51.3 %, 3.9 mmol), 

suitable for single crystal X-ray structure analysis. Crystallographic details of L4 are given in 

the Supporting Information. 1H NMR (δ, ppm; DMSO-d6, 400 MHz): 4.87 (s, 4H, -CH2-), 6.58 (d, 

2H, Pyr-H), 7.29 (m, 4H, Pyr-H), 7.74 (t, 2H, Pyr-H), 8.03 (d, 2H, Pyr-H), 8.55 (d, 2H, Pyr-H). 13C 

NMR (δ, ppm; DMSO-d6, 400 MHz): 55.6, 107.2, 121.1, 122.3, 136.9, 149.4, 152.8, 157.7 IR 

(KBr): ν = 3089 (w), 3071 (w), 3048 (w), 3006 (w), 2961 (w), 2925 (w), 1590 (s), 1570 (s), 

1542 (m), 1518 (s), 1470 (m), 1445 (w), 1434 (s), 1421 (m), 1406 (s), 1357 (m), 1339 (w), 

1274 (w), 1255 (w), 1244 (m), 1228 (s), 1178 (m), 1148 (w) 1105 (w), 1092 (w), 1049 (w), 

986 (s), 977 (m), 967 (m), 949 (m), 799 (s), 781 (w), 747 (s), 723 (w), 660 (w), 617 (m), 550 

(w), 530 (m). 

5.1.4.3.5 Syntheses of N,N-(3-pyridyl)(2-pyridylmethyl)amine 

N,N-(3-pyridyl)(2-pyridylmethyl)amine was prepared analogue to the synthesis of N,N-(4-

pyridyl)(2-pyridylmethyl)amine described above. The procedure yielded the product as brown 

oil (5.25 g, 58.6 %, 29.3 mmol). 1H NMR (δ, ppm; DMSO-D6, 400 MHz): 4.38-4.39 (d, 2 H, -CH2-), 

6.56 (t, 1 H, NH), 6.88 (m, 1 H, Pyr-H3), 7.02 (m, 1 H, Pyr-H7), 7.25 (m, 1 H, Pyr-H2), 7.36 (d, 1 

H, Pyr-H5), 7.75 (m, 2 H, Pyr-H1 and H6), 8.00 (d, 1 H, Pyr-H4), 8.53 (d, 1 H, Pyr-H8). 13C NMR 

(δ, ppm; DMSO-D6, 100 MHz): 47.9, 117.7, 121.2, 122.1, 123.5, 135.5, 136.7, 137.1, 144.4, 

148.9, 159.0. IR (KBr): ν = 3277 (br, m), 3100 (w), 3051 (m), 2928 (w), 1592 (s), 1507 (m), 

1485 (s), 1437 (m), 1419 (m), 1325 (m), 1245 (w), 1188 (w), 1136 (w), 1048 (w), 996 (w), 

797 (m), 758 (m), 709 (m), 627 (w). 

5.1.4.3.6 Syntheses of N-[Bis(2-pyridyl)methyl]-3-pyridylamine (L5) 

N-[Bis(2-pyridyl)methyl]-3-pyridylamine (L5) was synthesized analogue to the preparation of 

L4 described above. The procedure yielded 0.78 g (50.9 %, 2.8 mmol) of the crude product. 

The brown solid was recrystallized from an acetone solution by slow ether diffusion to obtain 

single crystals suitable for X-ray structure analysis. Crystallographic details of L5 are given in 

the Supporting Information. 1H NMR (δ, ppm; DMSO-D6, 400 MHz): 4.86 (d, 2 H, -CH2-), 7.02 (d, 

1 H, Pyr-H3), 7.06 (t, 1 H, Pyr-H2), 7.28 (t, 2 H, Pyr-H7), 7.33 (d, 2 H, Pyr-H5), 7.74 (t, 2 H, Pyr-

H6), 7.80 (d, 1 H, Pyr-H1), 8.02 (s, 1 H, Pyr-H4), 8.56 (d, 2 H, Pyr-H8). 13C NMR (δ, ppm; DMSO-

D6, 100 MHz): 56.4, 118.4, 121.1, 123.2, 123.2, 134.4, 136.7, 137.1, 143.7, 149.3, 158.2. IR 

(KBr): ν = 3443 (br, m), 3049 (m), 3012 (m), 2921 (w), 1594 (s), 1586 (s), 1571 (s), 1561 (m), 

1495 (s), 1471 (s), 1434 (s), 1383 (m), 1363 (m), 1339 (m), 1299 (w), 1282 (m), 1250 (m), 

1240 (m), 1196 (w), 1176 (s), 1150 (w), 1137 (w), 1118(w), 1095 (m), 1064 (w), 1049 (m), 

1007 (w), 992 (m), 979 (w), 964 (w), 944 (w), 908 (w), 884 (w), 794 (s), 764 (m), 753 (s), 725 

(w), 710 (s), 659 (w), 618 (m), 595 (w), 561 (w), 543 (m), 512 (w), 460 (w), 420 (w), 405 (m). 
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5.1.4.4 Synthesis of the Copper(I) Complexes of the Ligands L3, L4 and L5 

The oxygen sensitive copper(I) compounds were prepared under Argon atmosphere in a glove 

box using “extra dry” solvents that were distilled under inert atmosphere prior to use. 

5.1.4.4.1 Synthesis of [Cu(L3)(MeCN)]n(CF3SO3)n (1) 

Stoichiometric amounts of L3 and [Cu(CH3CN)4](CF3SO3) were dissolved in MeCN. By slow 

ether diffusion over several days yellow, block shaped crystals suitable for single crystal X-ray 

structure analysis could be obtained.  

5.1.4.4.2 Synthesis of [Cu2(L4)2](CF3SO3)2∙DMF (2) 

L4 (50.0 mg, 0.18 mmol) dissolved in DMF (1 mL) and Zn(SO3CF3)2 (0.33 g, 0.1 mmol) in DMF 

(1 mL) was added dropwise. The solution was stirred and [Cu(CH3CN)4](SO3CF3) (0.34 g, 0.1 

mmol) in DMF (1 mL) was added. The resulting yellow solution was stirred for 15 min at room 

temperature and after one day of ether diffusion at -30 °C yellow single crystals suitable for X-

ray crystallographic analysis were obtained. 

5.1.4.4.3 Synthesis of [Cu(L4)]n(ClO4)n∙nDMF (3) 

Zn(ClO4)2∙6H2O (0.68 g, 0.18 mmol) was dissolved in DMF (2 mL) and added slowly to a 

solution of L4 (0.10 g, 0.4 mmol) in DMF (2 mL). [Cu(CH3CN)4](ClO4) (0.06 mg, 0.2 mmol) in 

DMF (1 mL) was added after 5 min. Pale yellow crystals suitable for X-ray crystallography 

formed after several days of ether diffusion at room temperature. 

5.1.4.4.4 Synthesis of  [Cu2(L5)2](BPh4)2∙2CH3COCH3 (4)   

0.10 g (0.38 mmol) L5 was dissolved in acetone (2 mL) and a solution of 0.13 g (0.34 mmol) 

[Cu(CH3CN)4]PF6 in acetone(2 mL) was added. To the resulting yellow solution  0.12 g (0.34 

mmol) Na BPh4 in acetone (2 mL) was added. After several days of ether diffusion at -33 °C 

yellow single crystals suitable for X-ray analysis formed. 

5.1.4.5 Synthesis of Zinc(II) Complexes of the Ligands L3, L4 and L5  

5.1.4.5.1 Synthesis of [Zn(DMF)4(L4)2](ClO4)2 (5) 

Zn(ClO4)2 ∙ 6H2O (67.3 mg, 0.18 mmol) in DMF (2mL) and a solution of L4 (50.0 mg, 0.18 

mmol) in DMF (2 mL) were combined and diethyl ether was diffused into the solution at -

33.5 °C. Colorless crystals suitable for single crystal X-ray structure analysis formed after 1d at 

room temperature. The crystals were washed with a small amount of diethyl ether and dried at 

50 mbar and 50 °C for 1 h. (46.2 mg, 55 %, 0.05 mmol) 1H NMR (δ, ppm; DMSO-d6, 400 MHz): 

2.50 (s, 6H, DMF (-NH2)), 2.73 (s, 6H, -CH3), (-NH2)), 4.89 (s, 4H, -CH2-), 6.64 (m, 2H, Pyr-H), 

7.30 (m, 4H, Pyr-H), 7.76 (t, 2H, Pyr-H), 7.95 (s, 2H, DMF (-CHO)), 8.01 (m, 2 H, Pyr-H), 8.55 (d, 

2H, Pyr-H) 
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5.1.4.6 Synthesis of the Copper(II) Complexes of the Ligands L4 and L5 

5.1.4.6.1 Synthesis of [Cu3Cl6(L4)2]n∙(xH2O)n (7) 

A methanol solution (2 mL) containing equimolar amounts of Cu(ClO4)2∙6H2O (0.03 g, 0.09 

mmol) and CuCl2∙2H2O (0.01 g, 0.09 mmol) was added to 0.05 g L4 (0.18 mmol) in acetonitrile 

(2 mL). After 2 days of ether diffusion at −30 °C, green single crystals suitable for X-ray analysis 

formed. 

5.1.4.6.2 Synthesis of [CuCl2(L5)]∙H2O (8) 

To a solution of 0.03 g (18 mmol) CuCl2 ∙ 2 H2O in acetonitrile (1 mL), 0.05 g (0.19 mmol) of the 

ligand L5 in acetonitrile (1 mL) was added. After 15 min at room temperature green, cubic 

crystals suitable for X-ray analysis formed from the resulting green solution. 

5.1.4.7 Preparation  of Heterometallic Solutions Used for NMR Experiments 

5.1.4.7.1 Preparation of L4 + Zn(SO3CF3)2 + Cu(SO3CF3) 

Under inert conditions Zn(SO3CF3)2 (0.07 g, 0.18 mmol) in acetone (1 mL) was slowly added to 

L4 (0.10 g,  0.36 mmol) solved in acetone (1 mL). A white precipitate formed, that was 

redissolved with acetonitrile (2 mL). Upon addition of [Cu(CH3CN)4](SO3CF3) (0.07 g, 0.18 

mmol) in acetone (1 mL) and diethyl ether (5mL) a white precipitate formed (0.12 g). It was 

separated by suction filtration, washed with a small amount of acetone and dried in vacuo.  
1H-NMR (δ, ppm; dmso-d6, 400 MHz): 8,61 (d, 2H, Pyr-H, 3JH,H = 4,7 Hz), 7,87 (dvt, 2H, Pyr-H, 
3JH,H = 7,6 Hz, 4JH,H = 1,5 Hz), 7,78 (s, 2H, Pyr-H), 7,46 (d, 2H, Pyr-H, 3JH,H = 7,9 Hz), 7,40 (t, 2H, 

Pyr-H, 3JH,H = 6,2 Hz), 6,60 (s, 2H, Pyr-H), 4,93 (s, 4H, -CH2-) 

5.1.4.7.2 Preparation of a Mixture of L4 + Zn(ClO4)2 + Cu(ClO4) 

Zn(ClO4)2∙6H2O (0.07 g, 0.18 mmol) was dried in vacuo and solved under inert conditions in 

acetone (1 mL). The solution was slowly added to an acetone solution (1 mL) L4 (0.10 g, 0.36 

mmol). A white precipitate formed, that was redissolved with acetonitrile (2 mL). Upon 

addition of [Cu(CH3CN)4](ClO4) (0.06 g, 0.18 mmol) in acetone (1 mL) and diethyl ether (5mL) 

a white precipitate formed (0.12 g). It was separated by suction filtration, washed with a small 

amount of acetone and dried in vacuo. 
1H-NMR (δ, ppm; dmso-d6, 400 MHz): 8,59 (d, 2H, Pyr-H, 3JH,H = 4,6 Hz), 7,85 (t, 2H, Pry-H, 3JH,H 

= 7,7 Hz), 7,81 (s, 2H, Pyr-H), 7,43 (d, 2H, Pyr-H, 3JH,H = 7,7 Hz), 7,37 (t, 2H, Pyr-H, 3JH,H = 6,0 

Hz), 6,63 (s (b), 2H, Pyr-H), 4,92 (s, 4H, -CH2-) 
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5.2 Supporting Information for Chapter 5.1 

5.2.1 Crystal Structures of the Ligands L4 and L5 

The so far unknown molecular structures of pale yellow (L4) and brown (L5) single crystals 

are depicted in Figures 91 and 92. Crystallographic details are described in Table 14 SI.  

Bond lengths and angles of the new ligands are all in expectable ranges for C-C and C-N bonds, 

respectively.  

 

Fig. 91 Thermal ellipsoid representation of the molecular structure of the ligand L4 with 50% probability. 

 
Fig. 92 Thermal ellipsoid representation of the molecular structure of the ligand L5 with 50% probability.
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Table 14 Crystallographic data of the molecular structures presented in the Supporting Information paragraph. 

 L4  L5  [Cu2(L4)2](PF6)2 

∙2CH3COCH3  
[Cu2(L4)2](PF6)2∙DMF  [Cu3Cl6(L4)2]∙H2O  [Zn(DMF)4(L4)2] 

(CF3SO3)2  

Empirical formula C17H16N4  C17H16N4 C20H22CuF6N4OP  C40H46Cu2F12N10O2P2 C34H32Cl6Cu3N8  C48H60F6N12O10S2Zn 

Formula weight 276.34 2176.34 542.93  1115.89  972.00 1208.57  

Temperature [K] 193(2) 200(2)  193(2)   200(2)  193(2)  193(2)  

Wavelength [Å] 0.71073 
0.71073 0.71073 0.71073 0.71073 0.71073  

Crystal system, space group monoclinic, P2(1)/c Triclinic,  P-1  Triclinic,  P-1  Triclinic,  P-1  Monoclinic,  P2(1)/c Triclinic,  P-1  

Unit cell dimensions [Å, °] a = 18.784(4)  a = 6.209(1)      a = 8.642(2)    a = 8.3995(7) A,     a = 16.055(3)  a = 8.572(2)   

 b = 8.1377(16)  b = 9.924(1)     b = 11.610(2)     b = 11.9873(10) A    b = 14.890(2)  b = 12.183(2)   

 c = 11.694(2)  c = 11.786(1)     c = 12.541(3)     c = 12.5722(11) A    c = 17.374(3)  c = 14.358(3)  

 α = 90 α = 90.134(1)  α = 66.29(3)  α = 70.043(1)  α = 90  α =111. 91(3)  

 β = 123.85(3)  β= 102.27(1)  β = 73.42(3)  β= 72.471(1)  β = 113.08(3)  β = 100.35(3)  

 γ = 90 γ = 97.267(1)  γ = 76.27(3)  γ = 79.479(1)  γ = 90  γ = 90.15(3)  

Volume [Å
3
] 1484.6(5)  703.75   1093.2(4)  1130.09(17)   3820.8(13)  1364.6(5)  

Z, Calculated density 
[Mg/m

3
] 

 
4, 1.236 2, 1.304  2, 1.649  1, 1.640  4, 1.690  1, 1.471  

Absorption coefficient[mm
-1

] 0.076 0.081  1.144  1.110  2.116  0.614  

F(000) 584 292  552  568  1956 628 

Crystal size [mm
3
] 0.40 x 0.32 x 0.24  0.28 x 0.20 x 0.12  0.76 x 0.44 x 0.32  0.45 x 0.35 x 0.20  0.32 x 0.24 x 0.16  1.46 x 0.12 x 0.08  

θ range for data collection [°] 2.82 to 27.97  1.77 to 28.31  2.72 to 28.09   1.78 to 28.31  1.38 to 31.10   2.80 to 28.16  

Limiting indices −24<=h<=24 −8<=h<=8 −11<=h<=11 −11<=h<=11 −23<=h<=23 −10<=h<=10 

 −10<=k<=10 −12<=k<=12 −15<=k<=15 −15<=k<=15 −19<=k<=19 −16<=k<=16 

 −15<=l<=15 −15<=l<=15 −16<=l<=16 −16<=l<=16 −21<=l<=21 −19<=l<=18 

Reflections collected / 
unique 

6491 / 1717  
[R(int) = 0.0333]  

  8408/ 3352  
[R(int) = 0.0272]  

9951 / 4859  
[R(int) = 0.0652]  

  12634 / 5352  
[R(int) = 0.0246]  

46012 / 9449  
[R(int) = 0.2536] 

12483 / 6091  
[R(int) = 0.0485]  

Completeness to θ 28.29     99.7%         28.31     95.6 %  28.09     91.1 %         28.31     95.4 %  31.10     76.9 % 28.16     91.0 %  

Absorption correction None None None  multi-scan None None  

Refinement method 
Full-matrix least-sq. 
on F

2
  

Full-matrix least-sq. on 
F

2
  

Full-matrix least-sq. on 
F

2
  

Full-matrix least-squares on 
F

2
  

Full-matrix least-sq. 
on F

2
 Full-matrix least-sq. on F

2
  

Data/restraints/parameters  1717 / 0 / 129  3352 / 0 / 194  4859 / 0 / 337  5352 / 0 / 316  9449/ 0 / 471 6091 / 0 / 402  

Goodness-of-fit on F
2
 1.005  1.068  1.111  1.044  0.988 0.862  

Final R indices [I>2sigma(I)] 
R1 = 0.0454, wR2 = 
0.1086 

R1 = 0.0426, wR2 = 
0.1134  

R1 = 0.0587, wR2 = 
0.1720  

R1 = 0.0346,  
wR2 = 0.0840  

R1 = 0.0871, wR2 = 
0.2198 R1 = 0.0491, wR2 = 0.1129  

R indices (all data) 
R1 = 0.0853, wR2 = 
0.1227  

R1 = 0.0574, wR2 = 
0.1194  

R1 = 0.0670, wR2 = 
0.1804  

R1 = 0.0442,  
wR2 = 0.0905  

R1 = 0.2638, wR2 = 
0.2771 R1 = 0.0955, wR2 = 0.1298  

Largest diff. peak and hole 
[e∙A

-3
] 0.142 and −0.113  0.203 and −0.221  0.976 and −1.900 0.443 and −0.389  1.670 and −1.594   0.759 and −0.446  
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5.2.2 [Cu2(L4)2](PF6)2∙2CH3COCH3 

In solid form [Cu2(L4)2](PF6)2∙2CH3COCH3 is air stable for several minutes. The use of 

perfluorated polyether prevented oxidation of the single crystals during the time of 

preparation. The molecular structure depicted in Figure 93 shows the dimeric cationic 

copper(I) complex with a Cu(1)∙∙∙Cu(1a) distance of 6.148(2) Å. This distance represents 

the diagonal of the cavity formed between the two pyridyl rings and the two 

dipicolylamine units of the different ligand molecules. The “height” is represented by the 

distance between the coplanar planes spanned by the atoms of the two pyridyl rings of 

3.44(4) Å. 

 
Fig. 93 Thermal ellipsoid representation of the molecular structure of the cation of [Cu2L42]PF6 ∙2 

CH3COCH3 with 50% probability. Solvent molecules are omitted for clarity. 

With bond lengths around 2.00 Å (see Table 15 SI) the aromatic nitrogen atoms N2, N3 

and N4 bind significantly stronger to the metal atom than the aliphatic nitrogen atom 

N1. This is indicated by a distance to Cu(1) of 2.508(3) Å. Therefore, a Cu(1)∙∙∙N(1) bond 

is not marked in Figure 93.  

Table 15 Selected bond lengths [Å] and angles [°] of the molecular structures presented in the 
Supporting Information paragraph. 

[Cu2(L4)2](PF6)2∙2CH3COCH3 

Cu(1)-N(2)                                    2.025(3) Cu(1)-N(3) 1.959(3) Cu(1)-N(4) 1.987(3)          Cu(1)-N(1) 2.508(3) 

N(2)-Cu(1)-N(4)                106.95(12) N(3)-Cu(1)-N(2)              115.69(12

) 

N(3)-Cu(1)-N(4)            137.07(1

2) 

N(1)-Cu(1)-N(2) 117.3(1) 

N(1)-Cu(1)-N(3) 78.3(1) N(1)-Cu(1)-N(4) 78.2(1) Cu(1)-Cu(1a) 6.148(2)   

symmetry operation used to generate equivalent atoms: a) 2-x,1-y,-z 

[Cu2(L4)2](PF6)2∙DMF 

Cu(1)-N(2)                                    1.997(2) Cu(1)-N(3) 1.971(2) Cu(1)-N(4a) 2.009(2)          Cu(1)-N(1) 2.539(2) 

N(2)-Cu(1)-N(4a)                111.4(1) N(3)-Cu(1)-N(2)              130.3(1) N(3)-Cu(1)-N(4a)            118.20(7) N(1)-Cu(1)-N(2) 77.5(1) 

N(1)-Cu(1)-N(3) 77.8(1) N(1)-Cu(1)-N(4a) 118.0(1) Cu(1)-Cu(1a) 6.090(2)   

symmetry operation used to generate equivalent atoms: a) -x+1,-y+1,-z 
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[Cu3Cl6(L4)2]∙H2O 

Cu(1)-N(1)                      2.291(9) Cu(1)-N(2) 1.982(10) Cu(1)-N(3) 2.026(10) Cu(2)-N(4) 2.066(1

0) 

Cu(2)-N(8) 2.045(9) Cu(3)-N(6) 1.874(9) Cu(2)-N(7) 1.864(10) Cu(1)-Cl(1) 2.301(3) 

Cu(1)-Cl(2)                      2.410(4) Cu(2)-Cl(3) 2.393(3) Cu(2)-Cl(4) 2.313(3) Cu(3)-Cl(5) 2.204(3) 

Cu(3)-Cl(6) 2.328(4) N(2)-Cu(1)-N(1) 83.8(3) N(3)-Cu(1)-N(1) 77.0(4) N(2)-Cu(1)-N(3) 160.8(4) 

N(1)-Cu(1)-Cl(1) 117.9(3) N(2)-Cu(1)-Cl(1) 96.8(3) N(3)-Cu(1)-Cl(1) 91.0(3) N(1)-Cu(1)-Cl(2) 94.8(2) 

N(2)-Cu(1)-Cl(2) 86.5(3) N(3)-Cu(1)-Cl(2) 96.4(3) Cl(1)-Cu(1)-Cl(2) 147.3(2) N(8)-Cu(2)-N(4) 174.6(4) 

N(4)-Cu(2)-Cl(3) 99.1(3) N(8)-Cu(2)-Cl(3) 81.8(3) N(4)-Cu(2)-Cl(4) 89.2(3) N(8)-Cu(2)-Cl(4) 92.6(3) 

Cl(4)-Cu(2)-Cl(3) 151.0(2) N(7)-Cu(3)-N(6) 158.4(5) N(6)-Cu(3)-Cl(5) 98.1(3) N(7)-Cu(3)-Cl(5) 89.9(3) 

N(6)-Cu(3)-Cl(6) 87.3(3) N(6)-Cu(3)-Cl(6) 99.1(3) Cl(5)-Cu(3)-Cl(6) 140.9(2) Cu(3)-Cu(2a) 4.553(2) 

Cu(2a)-Cl(5) 2.820(4) Cu(2)-Cl(5)-Cu(2a) 129.5(1)     

symmetry operation to generate equivalent atoms: a) x, 1.5-y, -1/2+z 

[Zn(DMF)4(L4)2](CF3SO3)2 

O(1)-Zn(1)                     2.195(2) O(2)-Zn(1)                     2.099(2) N(2)-Zn(1)                     2.080(3) O(1)-Zn(1)-O(1a)            180.000 (1) 

N(2a)-Zn(1)-N(2)             180.0 N(2)-Zn(1)-O(2)               89.66(9) N(2)-Zn(1)-O(2a)             90.34(9)  N(2)-Zn(1)-O(1)               89.12(9) 

N(2)-Zn(1)-O(1a)             90.88(9) O(2)-Zn(1)-O(1)               89.66(8) O(2)-Zn(1)-O(1a)             90.35(8) O(2a)-Zn(1)-O(2)            180.00(8) 

symmetry operation used to generate equivalent atoms: a) -x+1,-y+1,-z+1 

5.2.3 [Cu2(L4)2](PF6)2∙DMF  

We additionally obtained single crystals of the cage-like dimer [Cu2(L4)2](PF6)2 from a 

DMF solution. An ORTEP representation of the molecular structure of the cation 

[Cu2(L4)2]+ is shown in Figure 94. Each of the two copper(I) atoms is coordinated by 

both ligand molecules. The coordination formed by the three nitrogen atoms N2, N3 and 

N4 around the copper(I) is best described trigonal planar with angles of 115.7(1) ° for 

N3∙∙∙Cu1∙∙∙N2, 107.0(1) ° for N4∙∙∙Cu1∙∙∙N2 and 137.0(1) ° for N4∙∙∙Cu1∙∙∙N3 indicative for 

a strong distortion. Cu1 is located in the plane spanned by the three nitrogen atoms. 

With a distance of 2.539(2) to the copper atom the aliphatic nitrogen atom N1 is not 

regarded as coordinated. 

The coordination of the two methylpyridyl nitrogen atoms N2 and N3 of one ligand 

molecule at the same copper center the bond lengths Cu1∙∙∙N3 (1.959(3) Å) and Cu1∙∙∙N4 

(1.987(3) Å) are shorter than the comparable ones for compound 1 that coordinate two 

different copper(I) centers. The pyridyl nitrogen N4 in 4-position forms a longer 

coordination bond (2.025(3) Å) to Cu1i, the second copper(I) atom of the cage. The two 

pyridyl bridges form a linear connection between the two metal atoms. 

 

Fig. 94 Thermal ellipsoid representation of the molecular structure of the cation of [Cu2(L4)2](PF6)2∙DMF 
with 50% probability. Hydrogen atoms, anions and solvent molecules are omitted for clarity. 



Chapter 5 Copper and zinc complexes using ligands closely related to L2 

 114 

5.2.4 [Cu3Cl6(L4)2]∙H2O (6) 

A thermal ellipsoid representation of the trimeric unit as building block of the 

coordination polymer described in the main article is shown in Figure 95. These units 

are bridged by the chloride ion Cl5 coordinating copper atoms Cu3 and a symmetry-

equivalent of Cu2. 

 

Fig. 95 Thermal ellipsoid representation of the molecular structure of [Cu3Cl6(L4)2]∙H2O with 50% 
probability. Solvent molecules are omitted for clarity. 

The trimeric subunit of compound 6 consists of three copper atoms and two ligand 

molecules. Furthermore, the copper atoms are coordinated by chloride anions. All three 

copper atoms are five coordinate with coordination surroundings best described as 

distorted square pyramidal. Cu1 and Cu3 are coordinated by three nitrogen atoms (N1, 

N2 and N3 for Cu1 and N5, N6 and N7 for Cu3 respectively) of the two bispicolylamine 

units. Additionally, two chloride atoms are coordinated in the basal plane of the 

pyramid. (Cl1 and Cl2 for Cu1 and Cl5 and Cl6 for Cu3 respectively). The third copper 

atom Cu2 is located in the middle of the trimer, serving as linker between the two ligand 

molecules. It is trans-coordinated by two nitrogen atoms of the 4-pyridyl residues N4 

and N8. The basal plane of the square pyramid is formed of two additional chloride 

atoms Cl3 and Cl4. Not obvious from Figure 95, but noticeable in the polymeric structure 

(Figure 86) a third chloride atom (symmetry equivalent of Cl5) is coordinated on top of 

the pyramid. It links to the next trimeric subunit of the superstructure to form the 

helical coordination polymer described in the main article. 

This copper(II) complex is another example for the coordination of both, the 

bispicolylamine unit and the 4-pyridine nitrogen of the ligand L4. This finding is in 

striking contrast to the zinc(II) complexes 5 and [Zn(DMF)4(L4)2](CF3SO3)2) of L4 only 

coordinated by the 4-pyridine nitrogen atoms. 
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5.2.5  [Zn(DMF)4(L4)2](CF3SO3)2 

Figure 96 depicts the structure of the complex cation of [Zn(DMF)4(L4)2](CF3SO3)2. The 

molecular structure of the complex cation is nearly superimposable to that of compound 

5. Only differing in its anion (triflate instead of perchlorate) from compound 5, this is a 

second structure demonstrating that only the 4-pyridyl nitrogen atoms do coordinate to 

the zinc(II) ions. The bispicolylamine nitrogen atoms do not coordinate. Until today, 

there is no pleasant explanation for this behavior. 

 
Fig. 96 Thermal ellipsoid representation of the molecular structure of [Zn(DMF)4L42](CF3SO3)2 with 50% 

probability. Anions are omitted for clarity. 

5.2.6 EDX Measurement  

Colorless crystals were separated of a green solution containing copper(II), zinc(II), and 

CF3SO3- ions and were identified by unit cell determination as [Zn(DMF)4L42](CF3SO3)2. 

In order to determine the metal center, EDX measurements were performed. Its results 

are shown in Figure 97.  

     
Fig. 97 EDX spectrum and electron picture of the measured single crystal. 

The electron picture in Figure 97 shows a trapeze-like single crystal of 

[Zn(DMF)4L42](CF3SO3)2 and the area the EDX measurement was performed in (blue 

frame). Beside signals for carbon, sulfur, fluorine and oxygen, signals characteristic for 

zinc atoms as well as that for copper are observable in the EDX. With an atom 
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percentage of 0.8 % zinc and 0.3 % copper, the compound is mainly consisting of 

complexes containing zinc disordered with copper atoms. Unfortunately, the EDX 

method is not reliable in this low atom percentage area. Therefore, the exact 

zinc/copper ratio cannot be determined for the analyzed compound. Nevertheless, the 

result of the EDX measurement together with the cell determination via single crystal X-

ray analysis of the same crystal are strong hints for [Zn(DMF)4L42](CF3SO3)2 disordered 

with copper ions. Contamination of the crystal surface with dried solution should not 

lead to significant signals in the EDX spectrum. 

Additionally, EDX measurements were performed with blue crystal species deriving 

from the same solution. Its results are shown in Figure 98. 

    

Fig. 98 EDX spectrum and electron picture of the measured blue species. 

As obvious from the electron picture, the blue species was unfortunately polycrystalline. 

Thus, a structure- or cell determination using single crystal X-ray analysis could not be 

performed. The EDX spectrum again shows the expected signals of the ligand and the 

anion and that of both, copper and zinc. A comparison with the spectrum of the 

[Zn(DMF)4L42](CF3SO3)2 single crystal above already shows differences in the relative 

signal intensities of the two metals. With atom percentages of 1.2 % for copper and 0.3 

% for zinc, this is most likely a copper(II) complex compound with disordered zinc. 

Again, the low percentages of the two metal ions prevent an exact analysis. Additional 

attempts to grow single crystals of this blue species were unsuccessful so far. 

5.2.7 Low Temperature Stopped Flow Spectrum of the Oxidation Reaction of 

[Cu2(L4)2](BF4)2 with mCPBA 

At −91 °C the bands at 360 nm and 680 nm indicative for a copper(II) complex (see room 

temperature spectra of the corresponding copper(II) complex (Figure 99)) are rising 

and even over a period of 900 s no second species could be observed. Most likely the 

hydroxylated species coordinates copper and is responsible for the bands (see Figure 

99).  

A blue peroxido complex could even at these low temperatures not be observed. Due to 

the bad solubility of the copper(I) complex in solvents that would allow even lower 
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temperatures, an observation of the more reactive intermediates via low temperature 

stopped-flow techniques was impossible.  

 

Fig. 99 Low temperature stopped flow spectrum and timetrace at -91 °C of the oxidation reaction of 
[Cu2(L4)2](BF4)2 with mCPBA 

5.2.8 UV/Vis Spectra of Copper(II) Complexes 

Stoichiometric mixture of Cu(BF4)2 and L4 at room temperature lead to the formation of 

a green solution. The UV/Vis spectrum depicted in Figure 100 shows a broad band with 

an absorption maximum at 625 nm. It is most likely deriving from metal centered dd 

transitions that are typical for copper(II) complex compounds. 

 
Fig. 100 Room temperature UV/Vis spectrum of a solution containing Cu(BF4)2 and the ligand L4 

using propionitrile as solvent. 

  

Cu(BF4)2 + L4 

room temperature 

propionitrile 
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5.2.9 Experimental Section of the Supporting Information 

5.2.9.1 Synthesis of Ligands L4 and L5 

Purification and syntheses of pale yellow (L4) and brown (L5) single crystals of both 

ligands were carried out as described in the main article.   

5.2.9.2 Synthesis of [Cu2(L4)2](PF6)2∙2CH3COCH3 

Yellow crystals suitable for X-ray structure analysis formed from an acetone solution 

prepared according to the described procedure for 2 (see chapter 5.1.4.4). 

5.2.9.3 Synthesis of [Cu2(L4)2](PF6)2∙DMF  

To a solution of  L4 (0.10 g, 0.38 mmol) in DMF (2 mL) [Cu(CH3CN)4]PF6 (0.13 g, 0.34 

mmol) in DMF (2 mL) was added. After 15 min at room temperature, yellow crystals 

suitable for X-ray structure analysis formed from the resulting yellow solution. 

5.2.9.4 Synthesis of [Zn(DMF)4(L4)2](CF3SO3)2 

To (0.091 g, 0.34 mmol) L4 solved in 1.0 mL acetone a solution of Cu(CF3SO3)2 (0.060 g, 

0.34 mmol) and  Zn(CF3SO3)2 (0.060 g, 0.34 mmol) in 1.5 mL acetone was added 

dropwise. A white precipitate formed, that was resolved by adding 1.0 mL DMF. After 2 

days of ether diffusion at room temperature, blue and colorless crystals formed. The 

colorless species was separated and structurally characterized by single crystal X-ray 

diffractometry. Additionally, EDX measurements with both species were performed. 

5.2.9.5 Low Temperature Stopped Flow Spectrum of the Oxidation Reaction of 

[Cu2(L4)2](BF4)2 with mCPBA  

Low temperature stopped flow measurements were performed as described in the main 

article. The copper(I) solution was prepared under inert atmosphere with stochiometric 

amounts of [Cu(CH3CN)4]BF4 and L4 resulting in a yellow 1 x 10-3 mol/L propionitrile 

solution of [Cu2(L4)2](BF4)2. After mixture with a 2 x 10-2 mol/L mCPBA propionitrile 

solution at −91 °C the spectra depicted in Figure 99 were recorded.  

5.2.9.6 UV/Vis Measurement of Copper(II) Complexes 

Using propionitrile as solvent, a 1 x 10-2 mol/L solution containing stoichiometric 

amounts of Cu(BF4)2 and the ligand L4 was prepared. The spectrum was recorded with 

an agilent 8463 spectrophotometer at room temperature. The solution was diluted with 

additional propionitrile until the absorption adjusted in an acceptable range and the dd-

band was still clearly visible. 
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6 Summary/Zusammenfassung 

6.1 Summary 

Copper and zinc complexes with dipicolylamine as binding motif (Figure 101) attracted 

growing interest with regard to their extraordinary properties. There are examples of 

transition metal complexes using derivatised bispic compounds as ligands in many fields 

of chemical research. Zinc(II) complexes as fluorescence sensors in biological processes, 

copper(I) complexes for the activation of small molecules like carbon dioxide or 

coordination polymers with highly interesting properties, the opportunities included in 

the synthesis and characterization of so far unknown transition metal complexes using 

this ligand class are very promising. Hence studies on selected derivatives of bispic and 

their copper and zinc complexes were initialized and the results that could be achieved 

are presented in this work. 

Extending the bispic binding unit with a fourth nitrogen atom leads to a tripodal ligand 

class well known for their stabilization of reactive oxygen intermediates of copper 

coordination compounds and thus enabling studies on metalloenzymatic oxygenation 

reactions. Unspenp affords the opportunity to combine an extraordinary binding site for 

copper and zinc ions with additional functionalities such as bridging units or extended 

π-systems for instance. Coordination compounds using functionalized derivatives of 

unspenp as ligands are supposed to exhibit extraordinary properties with regard to 

studying and activating reactive oxygen intermediates of their copper(I) complexes. A 

minor part of this work focused on the synthesis and characterization of copper(I) 

complexes and their reactivity towards dioxygen of selected representatives of this 

ligand family. 

The structures of the parent amines bispic and unspenp are depicted in Figure 101. The 

reported results are all based on the derivatisation of these ligands and the synthesis 

and characterization of their copper and zinc coordination compounds.  

 
Fig. 101 Structure of the parent amines bispic and unspenp. 

The interesting properties with regard to magnetism, emission behavior and the 

formation of one-dimensional coordination polymers of selected compounds could be 

reported. Chapter 6 is supposed to provide a condensed insight into the results of this 

work. 
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6.1.1 Unspenp Relatives as Ligands 

Yellow solutions of copper(I) complexes using xylyl-bridged unspenp units as ligands 

were prepared and the reactivity towards dioxygen was studied using low temperature 

stopped-flow techniques. Reactive superoxido- and peroxido species could be 

successfully identified. For the imine the results reported earlier by Garcia-Bosch et al. 

for perchlorate salts could be confirmed.123 Upon reaction with dioxygen at −90 °C in 

propionitrile as solvent the copper(I) complex of Imxyl-unspenp forms a typical, 

metastabile μ-(η1:η1)-peroxido intermediate represented by intensive charge transfer 

bands at 502 and 637 nm respectively. The imine band located at 378 nm shows 

unsteady behavior during the first reaction period, which is not clearly explainable. The 

identified reactive oxygen adduct species of the copper(I) complexes of Imxyl-unspenp 

and Hxyl-unspenp are depicted in Figure 102. 

 
Fig. 102 Reactive intermediates identified during the reaction of dioxygen with solutions of 

[Cu2(Imxyl-unspenp)]2+ and [Cu2(Hxyl-unspenp)]2+, respectively. 

The copper(I) complex of Hxyl-unspenp forms similar UV/Vis bands at 517 and 602 nm 

assignable to the μ-(η1:η1)-peroxido species. In contrast to the imine coordination 

compound a third intensive band at 422 nm is detectable at −93 °C that decays within 

seconds most likely assignable to an end-on superoxido species known from unspenp 

studies. Therefore, the protonated species is assumed to stabilize the superoxido 

species, disfavored by the second intramolecular copper(I) atom with high binding 

affinity. All discussed species are highly reactive, but unfortunately more detailed kinetic 

studies could not be performed so far. 

First hints of reactivity towards carbon dioxide from air were reported. A crystal 

structure with high R-values could be presented, revealing coordinated carbonate 

anions that were most likely formed from air. Due to the high R-values the crystal 

structure is unfortunately not reliable, but the coordinating carbonate anion motif is 

never the less assignable and legitimates further studies in that direction. 

Furthermore, initial results concerning the reactivity of yellow solutions of the copper(I) 

complex of Hant-unspenp towards dioxygen were reported. Highly reactive oxygen 

adduct species could be successfully identified (Figure 103). 

A superoxido species is the initially formed oxygen adduct species upon reaction of the 

copper(I) complex of Hant-unspenp with dioxygen indicated by a UV/Vis band at 422 

nm. 
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Fig. 103 Oxygen adduct species identified during the reaction of acetone solutions of [Cu(Hant-

unspenp)]+ with dioxygen. 

The reaction of this species with a second [Cu(Hant-unspenp)]+ cation leads to the 

formation of the typical μ-(η1:η1)-peroxido adduct observed via UV/Vis bands at 524 nm 

and a broad one around 600 nm. The equilibrium concentrations are very low compared 

to other unspenp relatives, possibly due to the interaction with the large π-system of the 

anthracene residue. 

6.1.2 Bispic Relatives as Ligands 

6.1.2.1 1,3-tpbd Coordination Compounds 

Studies on the reactivity of copper(I) complexes of 1,3-tpbd towards oxygen using 

nitriles as solvent revealed a red (525 nm/propionitrile) intermediate that could 

unfortunately not be characterized so far. The “non-innocent” nature of the ligand itself 

accounts most likely for the sluggish behavior of its copper(I) complexes towards 

dioxygen, preventing more detailed studies. Attempts to structurally characterize a 

zinc(II) complex of 1,3-tpbd with an open coordination position remained unsuccessful. 

These attempts led to an interesting dimeric structure linked by hydroxy or water 

oxygen atoms unfortunately only solvable with high R-values. 

Novel copper(II) complexes using 1,3-tpbd were successfully synthesized and 

structurally characterized in order to tune the magnetic properties. The use of the 

tetradentate ligands AsO43− and PO43− lead to the formation of uncommon tetranuclear 

coordination compounds with a μ4-XO4 (X = P, As) binding motif. Figure 104 depicts the 

tetrakis monodentate binding mode of [Cu4(1,3-tpbd)2(AsO4)(ClO4)3(H2O)]2+. In case of 

arsenate, it is the first reported copper coordination compound of this type and one out 

of three using phosphate. Influencing the structure by introducing bulky organic 

residues, lead to the formation of a polymeric chain, where the copper centers are linked 

via bridging diphenylphosphate units, and a dimeric structure motif using 

monophenylphosphate as an anion. 
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Fig. 104 Structure of the cation [Cu4(1,3-tpbd)2(AsO4)(ClO4)3(H2O)]2+ and orbital considerations of 

one possible pathway for magnetic coupling over the arsenate bridge. 

Using nitrate as an anion, also lead to the formation of a coordination polymer. The 

study of the magnetic properties of selected compounds showed weak 

antiferromagnetic coupling that is explainable through orbital considerations and 

structural knowledge of the possible pathways.  

Nevertheless, the study demonstrates methods to increase the nuclearity and 

dimensionality of the presented compounds by varying the nature of the co-ligand and 

thus creating new possible pathways for magnetic coupling between copper(II) atoms in 

order to achieve stronger effects. 

6.1.2.2 Coordination Compounds Using Ligands Related to tmpa 

The first copper(I) compounds using the ligands L1 and L2 could be successfully 

synthesized and structurally characterized. With weakly coordinating anions, the 

complexes tend to form dimeric compounds containing two copper(I) centers, as is 

demonstrated with the presented single crystal X-ray structures. 

The isolelectronic zinc(II) ion forms monomeric, four or five coordinated species with 

either coordinating anions like chloride or weakly coordinating anions like triflate using 

the ligands L1, L2 and Mebispic. This could be demonstrated again with the presented 

single crystal structures. In methanol, as a protic, coordinating solvent, the only 

octahedral zinc(II) complex using L1 as ligand formed during this study. This is most 

likely due to the stabilization with hydrogen bridges between the two coordinated 

methanol molecules and unbound pyridine nitrogen atoms of the coordinated ligands. 

This structural knowledge supported the explanation of the unusual fluxional behavior 

of the zinc(II) complexes of L1. Detailed emission studies in aprotic solvents successfully 

demonstrated the dependence of the emission and the electronic and structural 

properties of the studied compounds. The protonated ligand exhibits an unusual high 

bathochromic shift of the emission of 6000 cm-1. This is due to the protonation of the 

pyridine nitrogen forming a hydrogen bridge to the second pyridine residue of L1 and 

thus forcing the rings into a coplanar configuration. Figure 105 depicts the structure of 

protonated L1 and the observed emission spectra in dichloromethane as solvent. 

Cu1

Cu4 Cu3

Cu2
Ja

Ja

JbJb

JcJc
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Fig. 105 Structure of protonated ligand L1 and absorbance/emission spectra of L1 compounds 

using dichloromethane as aprotic solvent.  

The studied zinc(II) complexes can be regarded as intermediate situation between the 

free ligand L1 and the protonated species. The solvent has a strong influence on the 

emission behavior among other things due to essential structural changes shown in 

methanol solution. 

Additionally an interesting rotation mechanism is occurring in the coordination sphere 

of the zinc(II) complexes in solution that could be proved by detailed one and two 

dimensional variable temperature NMR studies. All signals could be successfully 

assigned to the protons of the studied compounds. The exchange mechanism is depicted 

in Figure 106. 

 
Fig. 106 Rotation mechanism in the coordination sphere of zinc(II) complexes using L1 as a ligand 

(here [ZnL1Cl2]). 

6.1.2.3 Coordination Polymers Using Derivatives of bispic as Ligands 

The derivatisation of ligand L2 in order to study coordination polymers of copper and 

zinc, lead to the synthesis and characterization of three new ligands: L3, L4 and L5 

(Figure 107). Copper(I) complexes with the ligands exhibit sluggish behavior towards 

dioxygen. Studies with regard to the reactivity towards mCPBA revealed an enhanced 

ligand oxidation reaction upon addition of copper(I) to L4 that could unfortunately not 

be specified unambiguously so far. 

One-dimensional coordination polymers of copper(I) using the ligands L3 and L4 could 

be structurally characterized. The crucial difference between these two ligands and L5 is 
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the pyridyl nitrogen atom in 4-position favoring the formation of coordination polymers. 

It was possible to structurally characterize cage like copper(I) dimers of L4 and L5 also 

obtained with L1 as ligand. These two ligands have the dipicolylamine binding unit in 

common, not present in L3. 

 
Fig. 107 Structures of the new ligands L3, L4 and L5 

The use of zinc did unexpectedly not lead to the formation of coordination compounds 

with L4. All attempts resulted in the formation of an octahedral complex, where one 

zinc(II) ion is solely coordinated by the nitrogen in 4-position of two different ligand 

molecules, and not as one would expect by the excellent bispic binding site. Figure 108 

depicts an ORTEP representation of the structure of the [Zn(L4)2(DMF)2]2+ ion.  

 
Fig. 108 ORTEP representation of the [Zn(L4)2(DMF)2]2+ ion. Hydrogen atoms were omitted for 

clarity. 

The combination of copper and zinc ions and L4 to form heterobimetallic coordination 

polymers, with copper coordinating the bispic binding site and zinc preferring the 

nitrogen atom in 4-position, only lead to the formation of the known homometallic 

species. In contrast, NMR studies in solution point to the formation of a polymeric 

species with all pyridine nitrogen atoms coordinated. 
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6.2 Zusammenfassung 

Kupfer- und Zink-Koordinationsverbindungen mit Bispicolylamin als Bindungsmotiv 

(Abbildung 109) erwecken aufgrund ihrer aussergewöhnlichen und vielfältigen 

Eigenschaften steigendes Interesse. Beispiele für Übergangsmetallkomplexe mit bispic 

Derivaten als Liganden finden sich in vielen Bereichen chemischer Forschung. Zink(II) 

Komplexe als Fluoreszenzsensoren in biologischen Prozessen, Kupfer(I)-Verbindungen 

zur Aktivierung kleiner Moleküle wie Kohlendioxide oder Koordinationspolymere mit 

besonderen Eigenschaften, die Möglichkeiten bislang unbekannter Verbindungen dieser 

Art sind sehr viel versprechend. Studien mit ausgewählten bispic Derivaten und deren 

Kupfer und Zink-Komplexen bilden die Grundlage der vorliegenden Arbeit. 

Eine Erweiterung der bispic Bindungseinheit um einen vierten Stickstoff Donor führt zu 

einer tripodalen Ligandenklasse, die für die Stabilisierung reaktiver Metall-Sauerstoff 

Intermediate bekannt ist. Dies ermöglicht Studien zu Reaktionsmechanismen von 

metallenzymatisch katalysierten Oxidationsreaktionen. Unspenp (siehe Abbildung 109) 

als gut erforschter Ligand dieser Klasse ist leicht zu derivatisieren und eröffnet daher 

die Möglichkeit der Kombination der starken Bindungsaffinität zu Kupfer- und Zink-

Ionen mit zusätzlichen Funktionalitäten wie zum Beispiel verbrückende Einheiten oder 

konjugierte π-Systemen. Koordinationsverbindungen funktionalisierter Derivate des 

Liganden unspenp sollten besondere Eigenschaften bei der Aktivierung von Sauerstoff 

und Stabilisierung dieser reaktiven Sauerstoffspezies haben. Daher wird in einem Teil 

dieser Arbeit die Synthese und Charakterisierung von Kupfer(I)-Komplexen mit 

Vertretern der unspenp-Familie und deren Reaktivität gegenüber Sauerstoff berichtet.  

Die Strukturen der Liganden bispic und unspenp sind in Abbildung 109 dargestellt. Die 

präsentierten Ergebnisse gründen alle auf der Derivatisierung dieser Liganden und der 

Synthese und Charakterisierung ihrer Kupfer- und Zink-Koordinationsverbindungen. 

 
Fig. 109 Strukturformel der Liganden bispic und unspenp. 

In der vorliegenden Arbeit konnten bisher unbekannter Komplexverbindungen 

synthetisiert und interessante Eigenschaften bezogen auf Magnetismus, 

Emissionsverhalten und die Bildung eindimensionaler Koordinationspolymere 

beschrieben werden. Kapitel 6 fasst die voranstehenden Kapitel zusammen, um einen 

Überblick der erzielten Ergebnisse zu bieten. 
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6.2.1 Unspenp verwandte Verbindungen als Liganden 

Gelbe Lösungen von Kupfer(I)-Komplexen mit xylylverbrückten unspenp Einheiten als 

Liganden konnten dargestellt und ihre Reaktivität gegenüber Sauerstoff mittels 

Tieftemperatur “stopped-flow” Techniken untersucht werden. Dabei wurden erfolgreich 

reaktive Superoxido- und Peroxido-Spezies identifiziert. Im Falle des Imin Liganden 

konnten die bereits früher publizierten Ergebnisse von Garcia-Bosch et al. für 

Perchloratsalze bestätigt werden.123 Der Kupfer(I)-Imxyl-unspenp-Komplex bildet bei 

der Reaktion mit Sauerstoff bei −90°C in Propionitril ein typisches, metastabiles μ-

(η1:η1)-Peroxido Intermediat aus. Identifizierbar ist das Intermediat anhand intensiver 

„charge-transfer” Banden bei Wellenlängen von 502 und 637 nm. Die Imin Bande bei 

378 nm zeigt ein unerklärliches, unstetes Verhalten während der ersten 

Reaktionsperiode. Die erfolgreich durch Tieftemperatur „stopped-flow“ Messungen 

identifizierten Sauerstoffintermediate der Kupfer(I) Komplexe von Imxyl-unspenp und 

Hxyl-unspenp sind in Abbildung 110 dargestellt. 

 
Fig. 110 Reaktive Sauerstoffintermediate der Komplexkationen [Cu2(Imxyl-unspenp)]2+ bzw. 

[Cu2(Hxyl-unspenp)]2+. 

Der Kupfer(I)-Hxyl-unspenp Komplex bildet ähnliche UV/Vis Banden bei 517 und 602 

nm aus. Diese sind ebenfalls der μ-(η1:η1)-Peroxido Spezies zuzuordnen. Anders als bei 

der Imin Verbindung ist bei −93°C eine dritte intensive Bande bei 422 nm beobachtbar, 

die innerhalb von Sekunden wieder verschwindet. Sie ist am wahrscheinlichsten einer 

“end-on” Superoxido Spezies, welche bereits aus Studien mit dem Liganden unspenp 

bekannt ist, zuzuordnen. Daher wird vermutet, dass der protonierte Ligand die 

Superoxido Spezies stabilisiert. Der schnelle Abbau ist auf das zweite intramolekulare 

Kupfer(I)-Zentrum zurück zu führen, da dieses eine hohe Bindungsaffinität zum 

Sauerstoff besitzt. Alle hier diskutierten Intermediate sind hoch reaktiv, was 

detailliertere kinetische Untersuchungen bis dato verhindert hat. 

Es konnten erste Hinweise auf eine Reaktivität dieser Komplexe gegenüber 

Kohlendioxid aus der Luft gefunden werden. Eine Kristallstruktur mit hohen 

Fehlerindizes wurde präsentiert, die koordinierte Carbonat-Ionen zeigt, die durch die 

Reaktion mit Kohlendioxid aus der Luft entstanden sein müssen. Aufgrund des großen 

Fehlers ist diese Kristallstruktur leider nicht verlässlich, gibt aber durch die trotzdem 

klar erkennbaren Carbonat-Ionen Anlass zu weitergehenden Studien. 
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Desweiteren konnten erste Ergebnisse zur Reaktivität von gelben Kupfer(I)-Hant-

unspenp Lösungen gezeigt werden. Auch hier wurden hoch reaktive Sauerstoff 

Adduktkomplexe mittels Tieftemperatur “stopped-flow” Messungen identifiziert 

(Abbildung 111). 

Bei der Reaktion mit Sauerstoff wird im ersten Schritt eine Superoxido Spezies geformt, 

die eine UV/Vis Bande bei 422 nm hervorruft.  

 
Fig. 111 Sauerstoff Addukt Spezies bei der Reaktion von [Cu(Hant-unspenp)]+ mit Sauerstoff. 

Die Reaktion des Superoxidokomplexes mit einem zweiten [Cu(Hant-unspenp)]+-Kation 

führt zur Bildung des typischen μ-(η1:η1)-peroxido Addukts, identifizierbar durch eine 

UV/Vis Bande bei 524 nm und eine breite Bande bei 600 nm. Verglichen mit anderen 

unspenp Komplexen sind die Gleichgewichtskonzentrationen sehr gering, was 

möglicherweise auf die Interaktion mit dem großen π-Systems des Anthracenrestes 

zurück zu führen ist. 

6.2.2 Bispic verwandte Verbindungen als Liganden 

6.2.2.1 1,3-tpbd Koordinationsverbindungen 

Studien zur Reaktivität der in Nitrilen gelösten Kupfer(I)-Komplexe des Liganden 1,3-

tpbd gegenüber Sauerstoff zeigten das auftreten eines roten Intermediates (525 

nm/Propionitril). Die wahrscheinliche Beteiligung des Liganden Moleküls an der 

Reaktion hat die Charakterisierung, sowie eine detailliertere Untersuchungen bis dato 

unmöglich gemacht. Versuche einen Zink(II)-1,3-tpbd-Komplex mit nicht oder schwach 

koordinierenden Anionen herzustellen, führten zu einem interessanten dimeren 

Molekül, in welchem die Metallatome über Hydroxidoionen oder Wassermoleküle 

miteinander verknüpft sind. Eine genauere Zuordnung der Brücken wurde durch die 

unzureichende Bestimmung der Struktur, erkennbar an den hohen Fehlerindizes, 

verhindert.  

Um die magnetischen Eigenschaften der Verbindungen zu analysieren, konnten bis 

dahin unbekannte Kupfer(II)-1,3-tpbd-Komplexe synthetisiert und strukturell 

charakterisiert werden. Die Verwendung der tetradentaten Liganden Arsenat (AsO43−) 

und Phosphat (PO43−) führten zur Bildung sehr ungewöhnlicher μ4-XO4 (X = P, As) 
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Bindungsmotive. Abbildung 112 zeigt den tetrakis-monodentaten Bindungsmodus von 

[Cu4(1,3-tpbd)2(AsO4)(ClO4)3(H2O)]2+. Im Fall des Arsenats stellt diese Struktur die erste 

Kupferkoordinationsverbindung dieses Bindungstyps dar. Die Phosphatverbindung ist 

nach bestem Wissen die dritte ihrer Art. Die Beeinflussung der Struktur durch die 

Verwendung sterisch anspruchsvoller organischer Reste führte zur Bildung einer 

Polymerkette, in der die Kupferzentren durch Diphenylphosphat Einheiten verknüpft 

sind. Desweiteren bildete sich bei der Verwendung von Monophenylphosphat ein 

dimeres Strukturmotiv aus. 

 
Fig. 112 Molekülstruktur des Kations [Cu4(1,3-tpbd)2(AsO4)(ClO4)3(H2O)]2+ und 

Orbitalbetrachtungen zu einem möglichen Weg zur magnetischen Kopplung über die Arsenat Brücke 
hinweg. 

Nitrat als Anion führte ebenfalls zur Bildung eines Koordinationspolymeres. Anhand 

theoretischer Orbitalbetrachtungen und der gewonnenen strukturellen Kenntnisse, 

erscheint eine schwach antiferromagnetische Kopplung möglich.  

Auch wenn die erwarteten magnetischen Kopplungen nicht beobachtet werden konnten, 

zeigt die Studie neue Wege zur Verringerung der Nuklerität und Dimensionalität der 

gezeigten Koordinationsverbindungen durch die Variation der co-Liganden auf. Diese 

führen zu möglichen neuen Pfaden um stärkere Effekte zur magnetischen Kopplung 

zweier Kupfer(II)atome zu erzielen. 

6.2.2.2 Koordinationsverbindungen mit Liganden verwandt mit tmpa 

Es konnten die ersten Kupfer(I)-Komplexe der Liganden L1 und L2 erfolgreich 

synthetisiert und strukturell charakterisiert werden. Diese neigen bei der Verwendung 

von schwach koordinierenden Anionen zur Ausbildung von Dimeren mit zwei 

Kupfer(I)atome. Dies konnte mit Hilfe von Einkristallstrukturen der Verbindungen 

demonstriert werden.  

Das isoelektronische Zink(II)-Ion bildet mit den Liganden L1, L2 und Mebispic 

monomere, vier- oder fünffach koordinierte Komplexverbindungen aus. Als Anionen 

wurden sowohl koordinierende Anionen wie Chlorid, sowie schwach koordinierende 

Anionen wie Triflat verwendet. Auch hier konnten Einkristallstrukturen der 

Verbindungen erhalten werden. Der einzige oktaedrische Zink(II)-Komplex dieser 

Cu1

Cu4 Cu3

Cu2
Ja

Ja

JbJb

JcJc
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Studie konnte mit dem Liganden L1 in Methanol als protischem, koordinierendem 

Lösungsmittel dargestellt werden. Die Geometrie ist durch die Stabilisierung des 

Oktaeders durch Wasserstoffbrückenbindungen zwischen koordinierten 

Methanolmolekülen und ungebundenen Pyridin Stickstoffatomen der koordinierten 

Liganden zu erklären. 

Diese gute strukturelle Kenntnis des Moleküls stützt die Erklärung des ungewöhnlichen 

Emissionsverhaltens der Zink(II)-Komplexe des Liganden L1. Detaillierte Studien zum 

Emissionsverhalten in aprotischen Lösungsmitteln konnten erfolgreich die Abhängigkeit 

der Emission von den elektronischen und strukturellen Eigenschaften der untersuchten 

Verbindungen zeigen. Der protonierte Ligand zeigte eine auffallend große bathochrome 

Verschiebung von 6000 cm−1, was auf die Protonierung eines Pyridin-Stickstoffes zurück 

zu führen ist. Dies bedingt die Ausbildung einer Wasserstoffbrückenbindung zum 

zweiten Pyridin Rest, die beide Ringe in eine coplanare Anordnung zwingt. Abbildung 

113 zeigt die Molekülstruktur des protonierten Liganden L1 und die beobachteten 

Emissionsspektren der untersuchten Verbindungen in Dichlormethan.  

 
Fig. 113 Struktur des protonierten Liganden L1 und Absorptions/Emissions Spektren der 

untersuchten L1 Verbindungen.  

Die Zink(II)-Komplexe können hier als Übergangszustände zwischen dem freien 

Liganden L1 und der protonierten Form betrachtet werden. Neben anderen Faktoren 

hat das Lösungsmittel einen starken Einfluß auf das Emissionsverhalten der 

Zinkkomplexe. Ursache dafür sind die gezeigten strukturellen Veränderungen der 

Komplexe in methanolischer Lösung. 

Zusätzlich konnte ein interessanter Rotationsmechanismus in der Koordinationssphäre 

der Zink(II)-Komplexe in Lösung gezeigt werden. Belegt werden konnte dieser 

Mechanismus durch umfangreiche ein- und zweidimensionale NMR-Studien bei 

variabler Temperatur. Alle auftretenden Signale konnten eindeutig den Protonen der 

untersuchten Verbindungen zugeordnet werden. Der Austauschmechanismus ist in 

Abbildung 114 verdeutlicht. 
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Fig. 114 Rotationsmechanismus in der Koordinationssphäre von Zink(II)-Verbindungen mit dem 

Liganden L1 (hier [ZnL1Cl2]). 

6.2.2.3 Koordinationspolymere mit Derivaten des Liganden bispic 

Die Derivatisierung des Liganden L2 zur Untersuchung von Koordinationspolymeren 

mit Kupfer und Zink, führten zur Synthese und Charakterisierung der bis dahin 

unbekannten Liganden L3, L4 und L5 (Abbildung 115). Die untersuchten Kupfer(I)-

Komplexe dieser Liganden zeigen ein undefinierbares Verhalten gegenüber Sauerstoff. 

Studien zur Reaktivität gegenüber mCPBA zeigten eine 

Ligandenhydroxylierungsreaktion, die bei der Zugabe von Kupfer(I)-Ionen zu dem 

reinen Liganden L4 deutlich beschleunigt ablief. Der Reaktionsmechanismus, sowie die 

Produkte konnten noch nicht zweifelsfrei identifiziert werden.  

Mit Kupferkomplexen der Liganden L3 und L4 konnten eindimensionale 

Koordinationspolymere strukturell charakterisiert werden. Der entscheidende 

Unterschied zum Liganden L5 bildet der Pyridyl-Stickstoff in 4-Position, der eine 

Bildung eines Polymeres begünstigt. Es ist gelungen, käfigartige Kupfer(I) Dimere mit 

den Liganden L4 und L5 strukturell zu charakterisieren, die auch schon mit dem 

Liganden L1 nachgewiesen werden konnten. Diese beiden Liganden haben die 

Bispicolylamin-Bindungseinheit gemein, die im Liganden L3 nicht vorhanden ist. 

 
Fig. 115 Strukturen der neuen Liganden L3, L4 und L5 

Die Verwendung von Zink als Zentralatom führte überraschenderweise nicht zur 

Bildung einer Koordinationsverbindung in der der Ligand L4 über die affine bispic- 

Einheit an das Zink koordiniert. Alle Darstellungsversuche resultierten in der Bildung 

eines oktaedrischen Komplexes in dem ein Zinkion lediglich durch die Stickstoffatome in 

4-Position koordiniert ist. Abbildung 116 zeigt eine ORTEP-Darstellung der 

Molekülstruktur des [Zn(L4)2(DMF)2]2+ Ions.  
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Fig. 116 ORTEP Darstellung des [Zn(L4)2(DMF)2]2+ Ions. Wasserstoffatome wurden gelöscht. 

Die Kombination von Kupfer und Zink Ionen und L4 mit der Absicht heterobimetallische 

Koordinationspolymere zu erzeugen in denen Kupfer von der bispic Einheit und Zink 

von den Pyridin-Stickstoffen in 4-Position koordiniert wird führte zur Bildung der 

bekannten homometallischen Spezies. Im Gegensatz dazu weisen NMR Studien in 

Lösung auf polymere Spezies hin in der alle Pyridin-Stickstoffe koordinieren.
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