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IV.  Summary 

 

Pulmonary fibrosis (PF) is an irreversible and largely untreatable human 

disease with the causes often remaining unknown. Phosphodiesterase 4 (PDE4) is 

involved in the processes of inflammation, cell proliferation, differentiation and 

migration that are known to play an important role in tissue fibrosis. The aim of the 

study was, therefore, to determine the expression of PDE4 under conditions of PF and 

to investigate the effects of PDE4 inhibition on functional, histological and 

biochemical parameters in experimental PF. 

Pulmonary fibrosis was induced by cytostatic and profibrotic agent bleomycin 

in C57BL/6N mice. Expression profiles of the different PDE4 isoforms were 

analyzed at mRNA and protein levels in lungs with both experimental and human PF. 

Animals were treated with the selective PDE4 inhibitor cilomilast and/or vehicle and 

treatment effects were examined by means of bronchoalveolar lavage fluid (BALF) 

differential cell count, mRNA analysis for lung tumor necrosis factor (TNF)-α, 

interleukin (IL)-1β, IL6, pulmonary compliance measurement, quantified 

pathological examination of the lungs, collagen assay and survival analysis. 

Analysis of PDE4 expression showed significant upregulation of 

inflammation-related PDE4 isoform in lungs with both human and experimental PF. 

Treatment of mice with cilomilast resulted in significant reduction in total number of 

cells, number of macrophages and lymphocytes, but not neutrophils, in BALF at early 

inflammatory fibrosis stage (days 4 and 7). Lung TNFα, but not IL1β, level was also 

significantly reduced by cilomilast while level of IL6 was significantly elevated. At 

later stage (days 14 and 21) cilomilast-treated mice demonstrated improved lung 

function and lesser fibrosis degree compared to non-treated group. Lung collagen 

content and overall survival were also partially restored by treatment with cilomilast. 

Our results suggest that selective PDE4 inhibition suppresses early 

inflammatory stage and has the potential to attenuate the late stage of pulmonary 

fibrosis in experimental fibrosis and thus may offer a new therapeutic option for 

patients with PF. 
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V.  Zusammenfassung 

 

Die Lungenfibrose ist eine progressive und meistens tödliche Erkrankung, für die 

es noch immer keine effektive Behandlung gibt. Die Phosphodiesterase 4 (PDE4) spielt 

bei verschiedenen zellulären Prozessen wie Entzündung, Proliferation, Differenzierung 

und Migration eine wichtige Rolle. Das Ziel der vorliegenden Arbeit war die 

Untersuchung der Rolle der PDE4 in der experimentellen Fibrose. Dazu erfolgten 

Untersuchungen zur Expression der PDE4 in fibrotischen Lungen und Überprüfung des 

Effektes einer PDE4-Hemmung auf funktionelle, histologische und biochemische 

Parameter in einem experimentellen Modell der Fibrose. 

Dazu wurde eine Lungenfibrose in C57BL/6N Mäusen durch eine einmalige 

Gabe von Bleomycin induziert und die Expression der verschiedene PDE4 Isoformen auf 

mRNA- und Proteinebene bestimmt. Die Versuchstiere wurden weiterhin mit dem 

selektivem PDE4-Hemmstoff Cilomilast oder mit dem Placebo behandelt. Anschließend 

wurden die Behandlungseffekte durch Zellzählung der bronchoalveolären Lavage (BAL), 

Genexpressionsanalyse der Zytokine Tumor-Nekrose-Faktor (TNF) α, Interleukin (IL) 

1β, IL6, pulmonale Compliance-Messung, quantifizierte pathologische 

Lungenuntersuchung, Kollagenanalyse und die Überlebensdauer untersucht. Begleitende 

Untersuchungen zur Expression der PDE4 Isoformen erfolgten am explantierten Gewebe 

von Patienten mit Lungenfibrose. 

Die Genexpressionsanalyse der PDE4 zeigte eine signifikant erhöhte Expression 

der entzündungsbedingten Isoformen in Maus- und Humanlunge mit Lungenfibrose. Die 

Behandlung mit Cilomilast führte zu einer signifikanten Reduktion der totalen 

Zellnummer, der Nummer von Makrophagen und Lymphozyten, nicht aber der 

Neutrophilien, in der BAL in der frühen Krankheitsphase (Tage 4 und 7). Der 

Zytokinspiegel von TNFα wurde signifikant gesenkt, während die Spiegel von IL1β und 

IL6 unverändert blieben. In der späteren Krankheitsphase (Tage 14 und 24) zeigten die 

Cilomilast-behandelten Mäuse eine verbesserte Lungenfunktion und weniger Fibrose, im 

Verglech mit unbehandelte Tieren. 

Zusammenfassend kann man sagen, dass im experimentellen Modell der 

Lungenfibrose eine selektive Hemmung der PDE4 die frühe Entzündungsreaktion 

unterdrückt und möglicherweise die spätere Krankheitsphase abschwächt. Dies könnte 

daher eine neue Behandlungsmöglichkeit zur Therapie der Lungenfibrose darstellen. 
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1.  Introduction 

 

1.1.  Pulmonary fibrosis 

 

Pulmonary fibrosis represents a number of diseases that involve gradual 

replacement of the normal lung architecture by connective tissue and mesenchymal 

cells (scarring). It ultimately affects lung interstitium - the tissue compartment 

between endothelium of capillaries and epithelium of alveoli. Typical symptoms of 

PF include shortness of breath, nonproductive (dry) cough and fatigue [1-3]. 

According to the new classification proposed by American Thoracic Society 

and European Respiratory Society in 2002 (Fig. 1) pulmonary fibrosis embraces a 

category of diseases named idiopathic interstitial pneumonias (IIP), which in turn is a 

part of large group of diffuse parenchymal lung diseases (DPLD), or interstitial lung 

diseases (ILD). The most common form of PF in IIP category is idiopathic pulmonary 

fibrosis (IPF) [4].  

 

 

 

Fig. 1. Current classification of interstitial lung diseases [4]. 
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IPF is a disease of unknown etiology affecting primarily males with 

prevalence of about 20 per 100,000 individuals [5]. At least 5,000,000 people suffer 

from this disease worldwide with more than 200,000 cases in the United States alone 

[1]. In the United States PF mortality rates have been increasing from 1970s to 1990s 

and have dramatically increased since 1990s [6]. IPF affects individuals of any age, 

however typically patients are in their forties and fifties when diagnosed [1] and risk 

rapidly increases with the age [2]. PF, namely pediatric interstitial lung disease 

(PILD) has also been diagnosed in children of less than one year of age [7]. In most 

of the cases, etiology of PF remains unknown and by definition, the most common 

form of PF is idiopathic (unknown cause) pulmonary fibrosis, or IPF [2, 4]. Risk 

factors for developing PF identified so far include chronic aspiration of asbestos, 

wood and metal dusts [8], high doses of ionizing irradiation [9] or drug-related 

toxicity [10]. 

 

 

1.1.1. Characteristics of pulmonary fibrosis 

 

Lung function 

 

PF patients show decline in gas exchange (DLco) and reduction in total lung 

volume (TLC) that is reflected in 6-min walk distance (6MWD) test. Pressure-volume 

graphs (lung compliance) indicate increased air pressure during inflation suggesting 

stiff non-compliant lung [2-3,11-12]. 

 

Bronchoalveolar lavage 

 

Bronchoalveolar lavage fluid (BALF) extracted from PF patents contains 

higher number of total cells. In particular, elevated levels of granulocytes 

(neutrophils) and monocytes (activated macrophages) as well as cytokines and 

growth factors for fibroblasts are observed in the lungs of PF patients. Although less 

common, number of lymphocytes is also known to be increased [2,12-21]. 
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Pathology 

 

PF patients demonstrate abnormal chest radiograph or computer tomography 

pattern with ground-glass opacities indicating dense fibrosis areas [3,22]. Biopsy or 

post mortem tissue examination show presence of chronic inflammation. Each ILD 

has its specific histological appearance, being in case of IPF usual interstitial 

pneumonia (UIP) [4] with thickened interstitium infiltrated by inflammatory cells. 

Fibrosis areas are composed of masses of connective tissue, with the collagen being 

the major component [24], and “fibroblast foci”. The latter represent the dense 

structures with myofibroblasts aligned in parallel and are believed to be the centers of 

ongoing injury (Fig. 2). 

 

   

 
Fig. 2. Histological images of normal (left) and IPF (right) lungs. 
Fibroblast focus is present in the center of IPF lung section, magnification x200. 
 

 

With the time patchy fibrosis is being transformed into massive tissue 

distortion. So-called “honeycombing” is observed at later PF stages and represents 

terminal remodeling with non-functional cystically dilated bronchioles containing 

mucus and inflammatory cells (Fig. 3) [2,22-23] 
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Inflammation in pulmonary fibrosis 

 

Chronic inflammation is a hallmark of PF and the presence of increased 

amounts of inflammatory cells both in alveolar space and lung interstitium is well 

described. Under normal conditions macrophages differentiated from blood 

monocytes represent the major defense cell population in the lung while granulocytes 

(neutrophils) and lymphocytes are generally not present. In contrast, number of all 

inflammatory cells is dramatically increased in BALF of PF patients with boost in the 

number neutrophils and lymphocytes. In general, an increase in total BALF cell 

number is mostly accounted for macrophages, however maximal relative increase is 

accounted for granulocytes and lymphocytes, often reaching 100s-fold. [2,12-13,16-

17] 

 

 

 
Fig. 3. Lung with end-stage pulmonary fibrosis and honeycombing [3]. 

 

 

Macrophages are believed to play crucial role in tissue fibrosis. Once 

activated they, together with lymphocytes, secrete cytokines such as TNFα and IL1β 
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that stimulate proliferation and migration of other cells, such as 

fibroblasts/myofibroblasts, and, therefore, promote tissue remodeling and fibrosis. 

Neutrophils play an important role in tissue remodeling as well. They are the potent 

sources of primary (elastase and myeloperoxydase, MPO) and secondary (collagenase 

and lactoferrin) granule enzymes, as well as high concentrations of oxidants [12,25]. 

Thus, in contrast to macrophages, neutrophils themselves may mediate severe tissue 

remodeling and distortion as it is seen, for instance, in case of COPD [26]. 

Neutrophil elastase (NE) is released by neutrophils together with other 

granule enzymes. It is capable of tissue damaging and remodeling through activation 

of matrix metalloproteases (MMPs). Indeed, PF patients have higher concentrations 

of proteolytic granule enzymes, such as MPO, collagenase, NE, lactoferrin in BALF 

[12], as well as increased NE levels in plasma and lung tissue [14]. Interestingly, 

mice lacking NE are resistant to experimental pulmonary fibrosis [27]. 

TNFα is a cytokine that is largely secreted by macrophages, although other 

sources include alveolar epithelium type II cells (AECII) and fibroblasts [15-16,21]. 

Binding of TNF activates inflammatory response through nuclear factor (NF)-kB 

pathway and proliferation and differentiation through MAPK-pathway [25]. TNF 

directly stimulates lung fibroblasts proliferation and production of major lung 

collagen types, namely 1 and 3 [28-29]. Its protein and mRNA production is elevated 

in the lungs and BALF of IPF patients [15-16,21]. Moreover, inhibition of TNF by its 

soluble receptor was alone sufficient to attenuate PF in mice [30]. 

IL1β is also produced by macrophages [15]. IL1β stimulates expression of 

adhesion factors on endothelial cells, as well as lymphocyte maturation and 

proliferation. It also stimulates proliferation of fibroblasts and their production of 

collagen [28]. Alveolar macrophages (AM) isolated form lungs of IPF, sarcoidosis or 

asbestos-induced lung disease patients secrete higher levels of this protein [15,18]. 

IL6 is released primarily by T-cells and macrophages in response to TLR 

stimulation but can also be secreted by fibroblasts [15,28]. It is presented at 

significantly higher concentrations in the lungs of IPF patients [15,17,19-20]. 

However, the role of IL6 in tissue remodeling and inflammation remains 

controversial: it was shown both to elicit and suppress inflammation [31-32]. 
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Interestingly, the action of the mentioned cytokines also depends on their 

combination. As such, TNF and IL1 individually stimulate fibroblast proliferation. 

However, when combined they cause inhibition of proliferation and inhibition of 

collagen 1 and 3 production. Fibroblasts also start producing IL6 when stimulated by 

IL1 or TNF and the combination of the two stimulates them even further [28]. 

 

 

1.1.2. Molecular aspects of pulmonary fibrosis 

 

Molecular mechanisms of PF remain unclear. However, some consistent 

pathological events at cellular and molecular level have been well described (Fig. 4). 

In general, lung alveolar epithelium is damaged in PF and this particularly 

involves the loss of AECI and hyperplasia of AECII [33]. Fibroblasts might be 

involved in this process since, when isolated from IPF lungs, they were shown to 

induce epithelial apoptosis in vitro [34]. Alveolar damage is accompanied by the 

presence of pro-coagulatory and pro-inflammatory environment in lungs with PF. For 

instance, tissue factor (TF) and plasminogen activator inhibitor (PAI)-1 and -2 are 

strongly expressed by IPF alveolar epithelial cells [35].  

On the other hand, fibroblasts isolated from PF lungs show higher rate of 

proliferation and increased resistance to apoptosis [36]. However, the question of 

increased survival of IPF fibroblasts is still controversial. For instance, some authors 

could observe higher apoptosis rate and decreased proliferation rate in IPF fibroblasts 

[37]. In general, recent hints indicate that RAS/RAF/MEK/ERK pathway (Ras 

inhibitor, Rho and p-38 MAPK) is involved in PF [38-40].  

It was shown in PF that fibroblasts differentiate into myofibroblasts which are 

characterized by intermediate state between fibroblasts and smooth muscle cells 

[21,37,41]. Fibroblasts are believed to be attracted by inflammatory cells and AECII 

through pro-fibrotic mediators, such as TNFα, TGFβ and PDGF, which stimulate 

their migration and differentiation into myofibroblasts [15-16,28-29]. Indeed, 

fibroblasts/myofibroblasts isolated from PF lungs demonstrate increased migration 

capacity [42]. 
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Fig. 4. Dysregulated cell signaling in pulmonary fibrosis [48]. 

 

 

It was long believed that the interstitium is the sole source of myofibroblasts 

in PF. Recent studies, however, showed that AEC might trans-differentiate into 

fibroblasts via the process of epithelial-to-mesenchymal transition (EMT) in vivo 

during the course of PF [43-44]. Other cell types, such as circulating fibrocytes, 

might also serve as a potential source of fibroblasts in PF [45]. 

Extracellular matrix (ECM) homeostasis is known to be dysregulated in PF. 

Namely, expression of macrophage- and fibroblast-related MMP1 and -9 is higher in 

PF [37,46-47]. This imbalance, in turn, is believed to lead to tissue remodeling 

through facilitated mesenchymal cell migration and basal membrane destruction 

[23,48]. Another side of ECM homeostasis distortion in PF involves significantly 

higher lung collagen levels and fibroblasts are believed to be its major source [24,37]. 

However, some reports show that IPF and normal fibroblasts synthesize similar 

amounts of collagens [49].  
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Based on these findings two hypotheses for the development of PF have been 

proposed so far. The classical “inflammatory” hypothesis states that tissue damage in 

general, and fibrosis in particular, results from chronic inflammation that is left 

untreated. Newer so-called “epithelial/mesenchymal” hypothesis states that 

inflammation itself is not necessary for the development of fibrosis. Instead, internal 

dysregulation of growth/survival pathways, involving for instance TGFβ, is alone 

sufficient to cause PF. This hypothesis, however, suggests the presence of some 

unknown “injury” that triggers the abnormal wound healing process. Therefore, full 

understanding of the pathological process is still lacking [23,48,50]. 

 

 

1.1.3. Experimental pulmonary fibrosis 

 

Over the past four decades number of agents and techniques have been 

introduced to generate PF “on demand” in different species (Fig. 5). These 

approaches, however, can only mimic different aspects of the human disease and 

none of them represents the true clinical condition [51]. Bleomycin-induced lung 

fibrosis, introduced in 1970s first in dogs [52] and later in mice [53], represents the 

most common animal model of PF nowadays [51,54].  

 

 

 

 
Fig. 5. Approaches to inducing experimental pulmonary fibrosis [54]. 
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Bleomycin is an antibiotic isolated from a strain of Streptomyces verticillus 

that is used to treat a variety of cancers [55]. The major limitation of bleomycin 

therapy is delayed high lung toxicity resulting in PF in about 10% of patients [10]. It 

is believed that specific toxicity of the drug is accounted for low activity of 

bleomycin hydrolase in the lung and high concentration of oxygen which is directly 

related to cytotoxicity [10,56-57].  

In mice, PF is typically induced by intra- or orotracheal instillation of 

bleomycin solution into the lung. The drug produces massive oxidative damage to the 

tissue followed by acute inflammatory response and, finally, fibrosis. At the 

molecular level, bleomycin intercalates into DNA groove and forms a complex with 

ferrous ions and molecular oxygen. Ferrous ions chelated by bleomycin reduce 

molecular oxygen producing reactive oxygen species (ROS) that cause DNA strand 

brakes [10,56,58]. 

First, or “early”, phase of bleomycin-induced fibrosis involves inflammatory 

response of the lung to oxidative stress and tissue damage. At this stage, lasting as a 

rule from day 0 till day 7 after the instillation, number of all inflammatory cells in 

BALF rises dramatically. Similarly to human PF, this increase involves burst (100s-

fold increase) in the number of neutrophils and lymphocytes in BALF of the animals 

[59-63]. At the early stage lung levels of pro-inflammatory cytokines typical for 

human PF are elevated as well. A such, mice with bleomycin-induced PF express 

higher amounts of IL1β, TNFα, IL6 and somewhat TGFβ with maximum at around 4 

and 7 days being therefore canonical early inflammatory markers [39,60,64]. 

Later fibrosis stage develops after days 7-10 when lung collagen levels, 

reflected in lung hydroxyproline content, start to elevate indicating active tissue 

remodeling [17,59]. MMPs, including MMP9 [39] and other pro-fibrotic markers, 

such TGFβ1, fibronectin, procollagen-1 also become upregulated [62].  

It is believed that experimental PF is fully established in mice at day 21 after 

bleomycin instillation. At this time typical fibrosis characteristics similar to those, 

observed in human lungs are present. Namely, lung compliance is dramatically 

decreased, lung pathology shows significant degree of fibrosis and lung collagen 

levels are elevated. However, Izbicki et al. and the author of the present work suggest 
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that established PF can be observed as early as day 14 after bleomycin instillation 

[65]. 

Bleomycin-induced pulmonary fibrosis, however, is not able to fully 

reproduce the real pathological condition in humans. The limitations, besides its 

inflammatory nature and rapid progression, include the absence of the true fibroblast 

foci and its partial self-resolution [51,65]. It is also interesting that in contrast to 

human PF bleomycin-induced fibrosis is female-prevalent [66]. Overall however, 

BALF cell composition, cytokine profiles, cell behavior and ECM changes during 

fibrosis process well resemble human PF, in particular in the absence of an ideal 

model. 

 

 

1.1.4. Prognosis and treatment 

 

 Pulmonary fibrosis in general and IPF in particular is largely an irreversible 

disease. At least 45,000 individuals die of IPF each year that is more than of breast 

cancer [1]. Mean survival usually ranges between 2 and 4 years [67], although 

individual profiles may vary significantly. The latest study indicates that accelerated 

variant of IPF can progress to death in less than 6 months [69]. Majority of patients 

die of respiratory insufficiency (38.7%). Other causes of death include heart failure 

(14.4%), bronchogenic carcinoma (10.4%), ischemic heart disease (9.5%) and 

infection (6.5%) [68]. It was also reported that PF greatly increases risk of lung 

cancer [70], although this association is still controversial [71]. 

Conventional management of PF is based on the concepts of ongoing 

inflammation on the one hand and fibroblast proliferation/collagen production on the 

other hand. Therefore, it includes anti-inflammatory (corticosteroids, e.g. 

prednisolone) and anti-proliferative (cytotoxic, e.g. azathioprine, cyclophosphamide) 

components [3]. Despite its wide use proof of the effectiveness of this therapy has 

been lacking. Recent study confirmed that colchicine, cyclophosphamide and 

prednisone alone or in combination were not able to affect even the course of 
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moderate IPF [72]. At the same time, such therapy involves serious side effects, 

including osteoporosis and suppression of immune system [73].  

New therapeutic approaches involve more specific interventions, such as 

inhibition of collagen production by pirfenidone [74] and fibroblast 

migration/proliferation by interferon and tyrosine kinase inhibitor imatinib 

(Gleevec™) [63,75]. Restoration of lung level of anti-oxidant glutathione by N-

acetylcysteine was also suggested to be promising to prevent lung tissue damage [76]. 

More sophisticated approaches, such as use of monoclonal antibodies [77], 

administration of anti-sense oligonucleotides [78], transplantation of living AECII 

[79] or stem cells [80-81] were also proposed to have beneficial effect on PF in an 

animal model. 

However, the approaches mentioned above were not able to bring significant 

change in management of PF so far as they are either ineffective or are too far from 

application in clinic [2-3,22]. Therefore, another approach might involve use of 

proven and safe therapeutic compounds. Such translational approach can be 

illustrated by the example of use of the PDE5 inhibitor sildenafil for therapy of 

ventilation/perfusion mismatch in IPF complicated with secondary PAH [82] 

Presently, lung transplantation is the only effective treatment of PF.  This 

disease is the second (26%) leading indication for single lung transplantation after 

COPD/Emphysema. However, even this radical measure is generally not able to 

prolong the patient’s survival for more than 10 years [83]. New therapeutic 

approaches are therefore necessary for improved management of PF. 
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1.2.  Phosphodiesterases 

 

Phosphodiesterases (PDEs) are a superfamily of enzymes that selectively 

catalyze the hydrolysis of the 3’-cyclic phosphate bonds of cAMP and/or cGMP 

(Fig.6). These are also referred to as class I of phosphodiesterases, in contrast to a 

broader class II, which members are specific for phosphodiester bond hydrolysis in 

general [84]. 

 

 

 

Fig. 6. Hydrolysis of cyclic nucleotides by phosphodiesterases [86]. 

 

 

As second messengers, cAMP and cGMP play an important role in amplifying 

and spreading the signal from receptors down to the cell interiors. The intensity and 

duration of their action, however, must be tightly regulated. Therefore, PDEs play the 

major role in controlling the second messengers’ levels in the cell [25]. 

PDEs are the conservative enzymes that are present in very early spices, for 

instance in bacteria, fungi and yeasts. Primitive metazoa, such as Caenorhabditis 

elegans and Drosophila express quite broad spectrum of PDEs [85].  
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There are 21 PDE genes identified so far in human, mouse and rat since 1962 

when cAMP-phosphodiesterase activity was first described. They are grouped into 11 

families based on structural similarity, enzymatic properties and sensitivity to 

endogenous regulators and inhibitors. Some PDEs selectively recognize and 

hydrolyze cAMP (PDEs 4, 7, and 8), some selectively hydrolyze cGMP (PDEs 5, 6, 

and 9), and some can hydrolyze both substrates (PDEs 1, 2, 3, 10, and 11) [84,86-87]. 

Redundant amount of enzymes for hydrolysis of the same substrate represents the 

perfect regulation system since different enzymes are regulated through different 

mechanisms. Thereby it gives the opportunity to different cell components to have 

access to regulation of the second messenger level. As a rule, PDE family consists of 

several genes (eg. PDE4 A, B, C and D) each of which might generate multiple 

products by alternative splicing. Thus, there are at least tens of different products 

within the whole PDE superfamily [87]. 

 

 

1.2.1. PDE4 overview 

 

The PDE4 family (E.C. 3.1.4.17) belongs to the cAMP-specific PDEs and 

being the phosphoric diester hydrolases they catalyze the reaction [88]: 

adenosine 3'-5'-cyclic monophosphate + H2O <=> adenosine 5'-monophosphate 

PDE4 family represents the largest PDE family, consisting of 4 genes 

(PDE4A, PDE4B, PDE4C, and PDE4D) with various alternative mRNA splice 

variants resulting in more than 20 different PDE4 proteins [87,89]. 

 

 

1.2.2. PDE4 protein structure 

 

PDE4s generally consist of conserved catalytic domain and regulatory N- and 

C-termini (Fig. 7). N-terminus is extremely important in terms of regulation and 

contains membrane-anchoring domain, linker regions (LR) and upstream conserved 

regions (UCRs), UCR1 and UCR2. UCR1 contains protein kinase A (PKA) 
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phosphorylation site (serine). UCR1 and UCR2 are also involved in PDE4 

dimerization [90]. C-terminus is also involved in regulation and contains ERK 

phosphorylation site [85]. 

 

 

 

       Fig. 7. Functional structure of PDE4 family proteins [86]. 

 

 

All four genes of PDE4 family are categorized into three N-terminal variant 

groups (“long form,” “short form,” and “super-short form”12) based on the presence 

or absence of N-terminal UCR domains. Long PDE4 isozymes exhibit both UCR1 

and UCR2, whereas short and super-short PDEs lack UCR1 [87]. Short and super-

short PDE4s due to lack of UCR1 are not activated by PKA and are monomeric [90]. 

The catalytic domain of PDE4 consisting of 270 amino acids is composed of 

alpha helices that form a pocket where the substrate or inhibitors bind. Zn2+ and 

Mg2+ are necessary for the catalysis and are present in the catalytic center. Hydrogen 

bonds of multiple helices are thought to orient the purine base, the ribose, and the 

cyclic phosphate in the catalytic-binding pocket. In spite of the wealth of information 

on the structure of the catalytic domain, no structure for any PDE holoenzyme has 

been presented to date. Thus, little is known about the relationship between the 

catalytic and N- and C-termini of the protein [85,91]. 

 

 

1.2.3. PDE4 expression pattern 

 

PDE4 with all its isoforms is ubiquitously expressed and is also represented in 

the lung [92-96], including fibroblasts [97-98] and bronchial epithelium cells [99]. 
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Besides the lung, PDE4 is the main cAMP-hydrolyzing enzyme in monocytes, 

lymphocytes and neutrophils and PDE4B represents the major PDE4 gene expressed 

in the inflammatory cells [95,100-102]. Expression of PDE4, in particular PDE4D, is 

also prominent in the brain tissue [92-94,96]. 

 

 

1.2.4. PDE4 function 

 

PDE4 modulates the amplitude and duration of the β-receptor signal and 

therefore regulates such critical cellular processes as proliferation, differentiation and 

migration. Specifically, it is a component of cAMP signaling pathway starting at G-

protein-coupled receptors (GPCR) linked to Gs proteins (i.e. β-adrenoreceptors). Their 

activation, for instance, by adrenaline, glucagone or prostaglandins, causes activation 

of adenylate cyclase (AC) by Gs α-subunit and production of cAMP. The main 

effector of cAMP is protein kinase A (PKA), which activates the transcription factor 

CREB that together with CREB-binding protein (CBP) launches the transcription of 

target genes whose promoters contain CRE [25]. CREB was found to regulate about 

4000 human genes, mainly responsible for metabolism as well as for cell proliferation 

[103]. 

Cyclic AMP is deeply involved in inflammatory reactions and in general 

serves as a suppressor of inflammatory response, for instance by inhibition of the 

TLR signaling pathway. As such, activation of monocytes by LPS and production of 

TNFα is accompanied by cAMP downregulation [104-105]. 

cAMP is also involved in regulation of cell proliferation and appears to be its 

negative regulator in the lung. It was shown that prostaglandins inhibit lung fibroblast 

migration, proliferation, and collagen synthesis [106-108,139], as well as 

differentiation into myofibroblasts [109-110]. cAMP pathway is also integrated with 

RAS/RAF/MEK/ERK pathway as PKA can directly inhibit c-Raf, although details of 

this interaction are not fully understood [111]. 
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Obviously, cellular cAMP levels must be tightly controlled and regulated. 

Therefore cAMP specific PDEs in general, and PDE4 in particular, play crucial role 

in regulation of cell function. PDE4 is induced after β-adrenergic receptor stimulation 

via negative feedback loop to bring raised cAMP level down, namely by PKA-

mediated phosphorylation of UCR1 domain (Fig. 7) [112-113]. Due to lack of UCR1 

short and super-short forms of PDE4 cannot be activated by PKA [90]. Some of 

PDE4s are membrane-bound and function in macromolecular complexes together 

with PKA in proximity to the receptors therefore controlling cAMP signaling within 

specific cell compartment [85,114]. These interactions are mediated by A kinase–

anchoring proteins (AKAPs) serving as signaling scaffolds [115-116]. Within a 

longer time frame, PKA activation causes phosphorylation of CREB, which turns on 

transcription of PDE4 genes [117]. 

In addition, activity of PDE4 is regulated by ERK as C-termini of PDE4B, C, 

and D contain motifs for ERK phosphorylation (Fig. 7). In contrast to PKA, 

phosphorylation by ERK leads to an inhibition of activity. Therefore, physiologically, 

it is thought that activation of the MAPK pathway will initially lead to local increases 

in cAMP. This increase in turn will activate PDE4 phosphorylation by PKA that will 

cause a return of cAMP to a lower level. Therefore, these two phosphorylation steps 

probably form a timing loop for controlling the duration of the cAMP signal [116]. 

Given that cAMP is essential for developing inflammatory response and that 

PDE4B is the main cAMP hydrolyzing enzyme in immunocompetent cells [95,100-

102] PDE4 plays critical role in inflammatory cell function by removing the normal 

block of cAMP on the inflammatory response. Indeed, PDE4B is required for TNFα 

production by peripheral blood leukocytes and lung macrophages in response to LPS 

challenge [104-105,118] as well as for T cell activation and proliferation [119-120]. 

PDE4B null mice showed dramatic decrease in LPS-stimulated TNF production and 

were resistant to LPS-induced shock [104-105]; PDE4B along with PDE4D are also 

required for neutrophil recruitment and chemotaxis which was decreased in in 

PDE4D-/- and PDE4B-/- mice after LPS inhalation [121] 
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1.2.5. PDE4 inhibitors and clinical applications 

 

Xanthine derivatives such as caffeine and theophylline were the first known 

nonselective inhibitors of PDE activity [122]. Although first selective PDE4 inhibitor 

rolipram (ZK 62711, Schering AG) was proposed in 1970s as an antidepressant 

compound [123] it was later recognized as a potent inhibitor of inflammatory cell 

influx; its analogues such as piclamilast (RP-73401) were developed for asthma and 

COPD treatment. However, use of these substances remained limited due to their 

CNS-mediated emetic effect [119,124-125]. It was demonstrated that emesis results 

from inhibition of PDE4D [105] that is highly present in the brain [92-93] and is 

involved in α2A-adrenoceptor signaling [126] 

Thus, several second-generation PDE4 inhibitors, such as cilomilast (Ariflo®, 

GlaxoSmithKline), roflumilast (Daxas®, Altana) and AWD 12-281 

(elbion/GlaxoSmithKline) have been developed that have reduced emetic side effects 

due to increased selectivity for PDE4B rather that PDE4D isoform.  

Cilomilast (Ariflo® or SB 207499, GlaxoSmithKline) [127] [c-4-cyano-4-(3-

cyclopentyloxy-4-methoxyphenyl)-cis-1-cyclohexanecarboxylic acid], with IC50 of 

95nM, is an oral, second-generation, selective PDE4 inhibitor (Fig. 8). In humans it is 

rapidly absorbed with bioavailability close to 100%. Maximum plasma concentration 

(Cmax) is reached after 1.5 hours and is 0.622 µg/ml for a 7 mg dose; 99.6% of 

cilomilast is highly bound to plasma albumins [128-129]. The drug is metabolized by 

the action of cytochrome P450 2C8 [130]. The elimination half-life (t1/2) ranges 

between 7 and 8 hours and steady state is rapidly achieved with twice-daily 

administration. Pharmacokinetic parameters in males and females are similar. 

Cilomilast is generally well tolerated up to 15 mg twice a day. Most common adverse 

reactions include nausea and headache and are experienced after administration of 

more than 20 mg of the drug. Rare effects involve vomiting, and other 

gastrointestinal adverse events [128]. 
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Fig. 8. Chemical structure of cilomilast [131]. 

 

 

In October 2003 the FDA approved Ariflo® for maintenance of lung function 

in COPD patients poorly responding to salbutamol [131]; other PDE4 inhibitors were 

proposed for treatment of asthma, arthritis, and psoriasis [84,132]. 
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1.3.  PDE4 and fibrosis 

 

The role of PDE4 in tissue fibrosis has not been discussed so far. However, 

evidences exist that β-adrenoreceptor/adenylate cyclase system together with 

cAMP/PDE4 might be involved in this pathological process [133].  

cAMP is a negative regulator of inflammation [104-105,118,120] which was 

postulated to be an important component of PF [2,12-20]. PDE4, in turn, is the main 

cAMP hydrolyzing enzyme in inflammatory cells [95,100-102]. Therefore, elevation 

of cAMP levels through PDE4 inhibition might potentially attenuate inflammatory 

side of PF thereby attenuating overall pro-fibrotic environment as well.  

Indeed, PDE4 inhibitors, such as rolipram, piclamilast or cilomilast, were 

shown to suppress TNFα release upon LPS stimulation both in vitro [101] and in vivo 

[134-135], including TNFα production in the whole blood from patients with COPD 

[137]. They were also are able to suppress T-cell activation, proliferation [119-120] 

and infiltration of inflammatory cells, including neutrophils [136]. Finally, 

piclamilast and rolipram were demonstrated to inhibit the release of pro-fibrotic 

cytokine TGFβ both in BALF and tissue in mouse and rat [135,138]. 

PF is also characterized by abnormal fibroblast behavior expressed in 

increased proliferation, collagen production and differentiation into myofibroblasts 

[24,36-37,41-42], as well as by abnormal MMP function [37,46-47]. In turn, 

elevation of cAMP by PDE4 inhibitors, PGE2 or AC stimulation inhibits lung 

fibroblast migration, proliferation, and collagen synthesis [106-108,139], as well as 

their differentiation into myofibroblasts [109-110]. It is also interesting, that 

fibroblasts from IPF patients have a diminished capacity to generate PGE2 [140]. 

Similarly, cAMP inhibits proliferation of heart fibroblasts [141] and pulmonary artery 

smooth muscle cells (PASMCs) [142]. Furthermore, inhibition of PDE4 by cilomilast 

suppresses release and activation of MMP1, MMP2 and MMP9 from human lung 

fibroblasts [98,143]. Therefore, PDE4 inhibitors might immediately affect tissue 

remodeling. Our group has also previously demonstrated that PDE3/4 inhibitor 

tolafentrine attenuated enhanced migration of PASMCs derived from vessels of 
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pulmonary hypertensive rats in vitro and reversed pulmonary vascular remodeling in 

vivo [144].  

The points mentioned above suggest that PDE4 inhibitors are able to 

modulate both inflammatory response, typical for early fibrosis stage, and tissue 

remodeling, typical for late stage fibrosis. This suggestion is further supported by the 

findings of Videla et al., who demonstrated amelioration of experimental chronic 

colitis and reduction in both TNFα and TGFβ and collagen content in the tissue after 

treatment with PDE4 inhibitor rolipram [138]. 
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2.  Aim of the study 

 

Pulmonary fibrosis is a largely irreversible disease characterized by severe 

tissue remodeling and chronic interstitial inflammation. Experimental pulmonary 

fibrosis allows dissecting inflammatory and remodeling stages of the disease. PDE4 

is an enzyme hydrolyzing second messenger cAMP which, in turn, is involved in 

suppression of both inflammation and cell growth and proliferation. Besides, PDE4 is 

the major cAMP-degrading enzyme in inflammatory cells and is also represented in 

the lung. 

Existing data indicate that PDE4 inhibitors could be successfully used as anti-

inflammatory and, possibly, as anti-remodeling agents. The aim of this study was, 

therefore, to investigate the effects of selective PDE4 inhibition on different stages of 

pulmonary fibrosis in an animal model in vivo and to evaluate the direct involvement 

of PDE4 in the pathological process. Accordingly, the research was mainly focused 

on: 

 

1.  studying the PDE4 expression profiles in human and experimental PF in mice 

2.  employment of experimental murine model for PF 

3.  analyzing the effects of PDE4 inhibition on inflammatory component of 

  experimental PF at the early disease stage  

4.  analyzing the effects of PDE4 inhibition on remodeling component of 

  experimental PF at the late disease stage 

 



Materials and methods 

 

22 

3.  Materials and Methods 

 

3.1.  Materials 

 

3.1.1. Equipment 

 

Animals handling 

Balance 1.0-3000g RP 3000 (August Sauter, Switzerland); polycarbonate cages 

(Tecniplast, Italy) and bottles 250 ml (Tecniplast, Italy). 

 

Surgery 

Scissors, forceps, clamps (Fine Scientific Instruments, Germany); scalpels (Feather, 

Japan); syringes 1, 2, 5, 10, 25 ml (B.Braun, Germany); needles 26-20G (0.45-

0.9mm) BD Microlance™ 3 (BD Drogheda, Ireland); lamp KL 200 (Schott, 

Germany). 

 

Histology 

Tissue processor TP1050, paraffin-embedding system EG1140H, cooling plate for 

paraffin-embedding EG1150C (Leica, Germany); microtome RM2165, mounting 

bath HI1210, mounting heating plate HI1220 (Leica, Germany); glass slides Super 

Frost® Plus 75 x 25 x 1mm (R. Langenbrinck, Germany), cover glass 60 x 24 (0.13-

0.18 mm) (R. Langenbrinck, Germany), oven (Memmert, Germany). 

 

Microscopy 

Microscope Q550IW, objective DMLA, camera DC300F, server CTR MIC (Leica, 

Germany). 

 

Cell count 

Neubauer chamber (depth 0.1 mm, 0.0025 mm2; Optik Labor, Germany); Shandon 

Cytospin-3® centrifuge (Thermo Scientific, UK); Centrifuge Rotanta/TRC (Hettich,  
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Germany). 

 

Lung compliance measurement 

Robertson box (USI Elektronikwerkstatt at Boehringer Ingelheim, Germany). 

 

RNA and protein isolation 

Homogenizer Precellys 24 (Bertin Technologies, France); spectrophotometer 

NanoDrop® ND-1000 (NanoDrop Technologies, USA); microplate reader Infinite 

M200 (Tecan, Austria); thermomixer Compact (Eppendorf, Germany); water bath 

TM 130-6 (Haep Labor Consult, Germany). 

 

Polymerase chain reaction 

qPCR system Stratagene Mx3000P™ (Stratagene, USA); plate centrifuge Rotina 46 

RS (Hettich, Germany). 

 

Western blotting 

Electrophoresis chamber (Biometra, Germany), power supply (Biometra, Germany); 

electrophoresis glasses set Whatman (Biometra, Germany); semi-dry blotting system 

(Biometra, Germany); shaker; autoradiography cassettes (Curix, Germany); dark 

room BioDocAnalyze (Biometra, Germany); film processor Curix 60 (Agfa, 

Germany). 

 

Other equipment 

Micropipettes Reference® 0.5-10, 10-100, 100-1000 µl (Eppendorf, Germany); 

vortex Vortex-Genie® 2 (Scientific Industries, USA); balance 0.01-200g SAC-51 

(ScalTech, USA); balance 0.05-110g Mettler AJ100 (Mettler Toledo, Germany); 

micro centrifuge Biofuge Fresco (Heraeus, Germany); ice maker Icematic F100 

Compact (Castelmac SPA, Italy); fridges for +4 OC (Bosch, Germany), fridge -20 OC 

(Bosch, Germany), ultra-low fridge -80 OC (Sanyo, Japan). 
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3.1.2. Reagents and materials 

 

Animal diet 

Food Global Diet (Harlan Teklad, UK). 

 

Surgery and animal experiments 

Disinfectant Braunoderm® (B.Braun, Germany); Ketavet® (ketaminehydrochloride) 

100mg/ml (Pharmacia, Germany); Rompun (xylacinehydrochloride) 2% (Bayer, 

Germany); isofluran (Baxter, Germany); bleomycin 1.7 U/mg (Sigma, Germany); 

sterile 0.9% sodium chloride isotonic solution (DeltaSelect, Germany); cilomilast 

(Nycomed, Germany); methyl cellulose (Sigma, Germany); oxygen 99.5% pure 

(Linde, Germany); liquid nitrogen (AirLiquid, Germany). 

 

Histology and microscopy 

Roti®-Histofix (4.5% formaldehyde), acid-free (Roth, Germany); Roti®-Histol, for 

histology (Roth, Germany); Xylol (isomere) >98% pure, for histology (Roth, 

Germany); Pertex® (Medite, Germany); Paraplast Plus (paraffin) embedding medium 

(Sigma, Germany); Hematoxilin Haemalaun nach Mayer, acidic (Waldeck, 

Germany); Eosin-Y alcoholic (Thermo Scientific, UK); May Gruenwald (Merck, 

Germany); Giemsa (Sigma, Germany); sodium chloride (Roth, Germany); potassium 

chloride (Merck, Germany); di-sodium hydrogen phosphate di-hydrate (Merck, 

Germany); potassium di-hydrogen phosphate (Merck, Germany). 

 

Molecular biology experiments 

TRIzol® reagent (Invitrogen, USA); ImProm-II™ Reverse Transcription System 

(Promega, USA); Platinum® SYBR® Green qPCR SuperMix-UDG mix (Invitrogen, 

USA); SIRCOL collagen assay (Biocolor Ltd., UK); RIPA lysis buffer (Santa Cruz 

Biotechnology, USA); Complete, Mini, EDTA-free protease inhibitor cocktail 

(Roche, Germany); DC protein assay (Bio-Rad Laboratories, USA); Rainbow™ 

protein molecular weight maker (GE Healthcare, UK); nitrocellulose blotting 

membrane BioTrace™ NT (Pall Corporation, USA); ECL plus detection reagent (GE 
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Healthcare, UK); normal films Cronex 5 (Agfa, Belgium), high-sensitive films 

Amersham Hyperfilm MP (GE Healthcare, UK); acetic acid, min 99% (Sigma, 

Germany); chloroform, min 99% (Sigma, Germany); ethanol 99.9% (Stockheimer 

Chemie, Germany); ethanol 96% (Otto Fischhar, Germany); ethanol 70% (SAV LP, 

Germany); 2-propanol (Fluka, Germany); RNase away (Molecular Bioproducts, 

USA);  

 

antibodies: 

specific primary antibody 
 

cross 
reactivity 
 

host dilution manufacturer 

anti-β-actin mouse, 
human, rat 

mouse 1:5000 Abcam, UK 

anti-PDE4A mouse, 
human, rat 

rabbit 1:1000 Abcam, UK 

anti-PDE4B mouse, 
human, rat 

rabbit 1:1500 Fabgennix, UK 

anti-PDE4C mouse, 
human, rat 

rabbit 1:500 Fabgennix, UK 

anti-PDE4D mouse, 
human, rat 

rabbit 1:1000 Fabgennix, UK 

 
specific secondary antibody 

 
 

   

anti-mouse IgG, HRP-
conjugated 

- rabbit 1:50000 Sigma, Germany 

anti-rabbit IgG, HRP-
conjugated 

- goat 1:50000 Pierce Biotech, USA 

 

oligonucleotides (Metabion, Germany): 

target genes sequences Tm, 
OC 

product size, bp 

mouse PDE4A 5’-TGGTAGAGACGAAGAAAGTGACC-3’ 
(forward) 
5’-CTTGTCACACATGGGGCTAAT-3’  
(reverse) 

59 227 (cDNA) 
955 (genomic DNA) 

human PDE4A 5’-GAGGACAACTGCGACATCTTC-3’  
(forward) 
5’-CGGTCGGAGTAGTTATCTAGCAG-3’ 
(reverse) 

59 191 (cDNA) 
387 (genomic DNA) 

mouse PDE4B 5’-AATTGCTACAAGAGGAACACTGC-3’ 
(forward) 

59 243 (cDNA) 
1139 (genomic DNA) 
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5’-TATCACACATTGGGCTAATCTCC-3’  
(reverse) 

human PDE4B 5’-AGGCGTTCTTCTCCTAGACAACT-3’ 
(forward) 
5’-CCACAGAAGCTGTGTGTTTATCA-3’  
(reverse) 

59 212 (cDNA) 
933 (genomic DNA) 

mouse PDE4C 5’-ACCTCAGTACCAAGCAGAGACTG-3’ 
(forward) 
5’-AGAGTAGTTGTCCAAGAGCAGGA-3’ 
(reverse) 

59 164 (cDNA) 
549 (genomic DNA) 

human PDE4C 5’-GTCCAGACTGACCAGGAGGA-3’  
(forward) 
5’-GGCATGTAGGCTGTTGTGGTAG-3’  
(reverse) 

59 246 (cDNA) 
882 (genomic DNA) 

mouse PDE4D 5’-CACAGCTCCAGCCTAACTAATTC-3’ 
(forward) 
5’-ATGGTGTGCATGATAACAGTCAG-3’ 
(reverse) 

59 170 (cDNA) 
1365 (genomic DNA) 

human PDE4D 5’-ACCGGATAATGGAGGAGTTCTT-3’  
(forward) 
5’-CTCTGGTACCATTCACGATTGTC-3’  
(reverse) 

59 223 (cDNA) 
799 (genomic DNA) 

mouse TNFα 5’-GGCCTCCCTCTCATCAGTTCTAT-3’  
(forward) 
5’- ACGTGGGCTACAGGCTTGTC-3’  
(reverse) 

60 86 (cDNA) 
254 (genomic DNA) 

mouse IL1β 5’-GAGCACCTTCTTTTCCTTCATCT-3’  
(forward) 
5’-GATATTCTGTCCATTGAGGTGGA-3’  
(reverse) 

59 196 (cDNA) 
739 (genomic DNA) 

mouse IL6 5’-TCAATTCCAGAAACCGCTATGAA-3’ 
(forward) 
5’-CACCAGCATCAGTCCCAAGAA-3’  
(reverse) 

61 78 (cDNA) 
243 (genomic DNA) 

mouse β-actin 5’-CTCTAGACTTCGAGCAGGAGATG-3’ 
(forward) 
5’-CACTGTGTTGGCATAGAGGTCTT-3’  
(reverse) 

59 236 (cDNA) 
331 (genomic DNA) 

human β-actin 5’-TTAAGGAGAAGCTGTGCTACGTC-3’ 
(forward) 
5’-ATGGAGTTGAAGGTAGTTTCGTG-3’ 
(reverse) 

59 211 (cDNA) 
306 (genomic DNA) 

 

Other materials 

96-well PCR plates ABgene® (Thermo Scientific, UK); 96-well plates Costar® 

(Coring Inc, USA); sterile PP-Tubes 0.2, 0.5, 1.5, 2.0 ml (SARSTEDT, Germany); 
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sterile PP-Tubes 15, 50 ml Cellstar® (Greiner Bio-One, Germany); pipette tips 20, 

200, 1000 µl epT.I.P.S. standard (Eppendorf, Germany); pipette tips 10, 100, 1000 µl 

DNase/RNase free (Nerbe Plus, Germany); gloves Nitra-Tex® (Ansell, China) and 

Nobaglove® latex (NOBA Verbandmittel Danz, Germany). 

 

 

3.1.3. Software 

 

Animal experiments 

Atembox Messung v1.1 (Boehringer Ingelheim, Germany); Leica QWin3 Standard 

v3.3.1 (Leica Microsystems, Switzerland); Leica QGo Routine Runner v3.2.0 (Leica 

Microsystems, Switzerland). 

 

Molecular biology experiments 

GenBank and BLASTn (National Center for Biotechnology Information, USA); 

Primer3 v.0.4.0 (Rozen S and Skaletsky HJ, SourceForge); UCSC In-Silico PCR (Jim 

Kent, University of California Santa Cruz); MxPro™ QPCR software v.3.00 

(Stratagene, USA); NanoDrop ND-1000 v3.3.0 (Coleman Technologies, USA); 

Magellan v.6.3 (Tecan, Austria); i-Control (Tecan, Austria). 

 

Statistics 

Prism® v5.01 (GraphPad Software, USA); MS® Excel 2000 (Microsoft, USA). 
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3.2.  Methods 

 

 

3.2.1. Animals 

 

Adult male 5-6 weeks-old C57BL/6N mice weighting 19-21 g were obtained 

from Charles River Laboratories (Sulzfeld, Gemany). Animals were housed under 

room temperature and 12/12-hour light/dark cycle with free access to food and water.  

All experiments were performed in accordance with the “National Institutes of 

Health Guidelines on the Use of Laboratory Animals”. Both the University Animal 

Care Committee and the Federal Authorities for Animal Research of the 

Regierungspräsidium Giessen (Giessen, Germany) approved the study protocol. 

 

 

3.2.2. Human material 

 

Human lung tissue was obtained from three donors and four IPF patients that 

underwent lung transplantation in Medical University of Vienna (Vienna, Austria) 

and had a confirmed UIP histological pattern. Pieces of lung tissue were snap-frozen 

immediately upon lung excision and used for mRNA and protein extraction.  

The study protocol for tissue donation was approved by the “Ethik-

Kommission am Fachbereich Humanmedizin der Justus-Liebig-Universitaet Giessen” 

of the University Hospital Giessen (Giessen, Germany) in accordance with national 

law and with the “Good Clinical Practice/International Conference on 

Harmonisation” guidelines. Written, informed consent was obtained from each 

individual patient or the patient's next of kin. 

 

 

 

 



Materials and methods 

 

29 

3.2.3. Bleomycin administration 

 

At day 0 mice were given anesthesia with inhalation of isofluran (Baxter, 

Germany) followed by random orotracheal instillation of bleomycin or sterile saline 

(0.9% NaCl). The animal was fixed in a vertical position under a binocular. During 

instillation nose of a mouse was kept pinched so that during inspiration bleomycin or 

saline solutions were inhaled and distributed throughout the lung. Bleomycin (Sigma, 

Germany) was dissolved in sterile saline to achieve the dose of 2.8 units/kg mouse 

body weight. 

 

 

3.2.4. Treatment groups 

 

Animals were assigned to the following groups 1) “saline”, 2) “bleo+ctrl” and 

3) “bleo+cilo”. „Saline” group received instillation of sterile saline at day 0 and was 

given vehicle alone (2% aqueous methylcellulose solution). Mice in “bleo+ctrl” 

group received instillation of bleomycin at day 0 and were given vehicle alone. Mice 

in “bleo+cilo” group received instillation of bleomycin at day 0 and were treated once 

a day with 50 mg/kg cilomilast (SB207499 or Ariflo, [c-4-cyano-4-(3-

cyclopentyloxy-4-methoxyphenyl)-r-l-cyclohexane carboxylic acid]) (Nycomed, 

Germany), suspended in vehicle. Solutions were given per os via gavage needle, all at 

the same time of a day. Treatment in all groups started at day 0 and lasted till the end 

of experiment, i.e. for 4, 7, 14 or 24 days. 

 

 

3.2.5. Protein isolation 

 

Left lung lobes snap-frozen in liquid nitrogen and stored at -80OC were used 

for protein isolation. Tissues were homogenized in complete RIPA lysis buffer (Santa 

Cruz Biotechnology, USA) with Precellys 24 homogenizer (Bertin Technologies, 



Materials and methods 

 

30 

France) at 6000 rpm for 20 sec for three times with 0.5 ml lysis buffer per 0.05 g 

tissue. Complete 1x lysis buffer contained:  

 

component 
 

final 
concentration 

RIPA buffer * 1x 
protease inhibitor cocktail 1x 
sodium orthovanadate 1% 
PMSF 1% 

 

* 1x RIPA contains: 1x TBS, 1% Nonidet P-40, 0.5% sodium deoxychlorate, 0.1% SDS, 0.004% 

sodium azide.  

 

After homogenization and 15-minutes lysis time samples were centrifuged at 

13000 rpm for 20 min at 4OC and supernatant was transferred into a fresh tube. 

Tissue and protein samples were kept on ice during the whole isolation process. 

Protein concentration was determined with DC protein assay (Bio-Rad 

Laboratories, USA) according to manufacturer’s instructions. Briefly, protein 

solution diluted 1:20-1:40 was mixed with Reagent A’ (alkaline copper tartrate) and 

Reagent B (Folin reagent) in a 96-well microplate. BSA at concentrations of 0.2 – 0.4 

– 0.8 – 1.6 mg/ml was used as a standard for calibration curve. After developing of 

color reaction samples were red at 750 nm with microplate reader Infinite M200 

(Tecan, Austria). Final protein concentration was determined with accompanying 

Magellan™ software. After isolation protein samples were frozen immediately and 

stored at -80OC. 

 

 

3.2.6. Western blotting 

 

Protein samples were mixed with 5x loading buffer and boiled for 10 min at 

100OC. Protein loading solutions had the following composition: 
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component 
 

final 
concentration 

Tris-chloride pH6.8 75 mM 
SDS 2% 
glycerol 15% 
β-mercaptoethanol 2.5% 
bromphenol blue trace 
protein 5 µg/µl 

 

Polyacrylamide gels for sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) were prepared in a following way. First, 10%-resolving 

gel solution was poured between the electrophoresis glasses. Water was layered on 

top of the solution and the solution was left for polymerization for at least 30 min. 

After the polymerization of the resolving gel water was removed and 6%-stacking gel 

solution was poured. A comb was inserted and polymerization lasted at least 30 min.  

SDS-PAGE gels had the following composition: 

 

final concentration component 
stacking gel resolving gel 

acrylamide 6% 10% 
SDS 0.1% 0.1% 
APS 0.05% 0.05% 
TEMED 0.1% 0.1% 
Tris-chloride pH6.8 125 mM - 
Tris-chloride pH8.9 - 375 mM 

 

Protein samples were loaded onto the gel with concentrations of 10-25 µg per 

lane for housekeeping gene and 50-100 µg per lane for target gene. Rainbow™ 

Protein molecular weight maker (GE Healthcare, UK) was loaded in parallel. SDS-

PAGE was run at 90 V to allow the buffer front enter the resolving gel and at 130 

volts until the desired separation degree. Power supply (Biometra, Germany) was 

stabilized by potential difference. Standard vertical electrophoresis chamber 

(Biometra, Germany) was filled with 1x running buffer of the following composition:  
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component 
 

final 
concentration 

Tris 25 mM 
glycin 192 mM 
SDS 0.1% 

 

After electrophoresis proteins were transferred onto a nitrocellulose blotting 

membrane BioTrace™ NT (Pall Corporation, USA). Blotting sandwich was 

assembled in the following sequence: anode – blotting paper (three layers) – blotting 

membrane – resolving gel - blotting paper (three layers) – cathode. All components 

were pre-wetted in 1x blotting buffer: 

 

 

 

Transfer was carried out in semi-dry blotting system (Biometra, Germany) at 

130 mA for 1.5 hours. Power supply (Biometra, Germany) was stabilized by current. 

After the transfer membrane was placed on shaker for 1 hour in blocking solution 

containing 5% powdered milk in TBST buffer. 1x TBST contained: 

 

component 
 

final 
concentration 

Tris 20 mM 
NaCl 150 mM 
EDTA 5 mM 
tween-20 0.1% 

 

Blocking solution was discarded and primary antibodies, diluted up to specific 

values in TBST containing 5% powdered milk, were added to the membrane for 1 

hour. After incubation membranes were washed on shaker in 1x TBST three times for 

10 min. Secondary antibodies conjugated to horseradish peroxidase (HRP) were also 

diluted in 1x TBST containing 5% powdered milk and added to the membranes for 1 

hour.  

component 
 

final 
concentration 

Tris 50 mM 
glycin 40 mM 
methanol 20% 
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After incubation, membranes were again washed in 1x TBST three times for 

10 min. ECL plus detection reagent (GE Healthcare, UK) was then added and signal 

was developed according to manufacturer’s instructions. Briefly solutions A (buffer) 

and B (Acridan) were mixed with the ratio 40:1 and added to continuously shaking 

membrane for 5 min in the dark. The resulting chemiluminescence was detected by 

autoradiography. Normal Cronex 5 (Agfa, Belgium) or high-sensitive Amersham 

Hyperfilm MP (GE Healthcare, UK) films and cassettes (Curix, Germany) were used. 

Exposure time was 1-3 min for housekeeping gene and 2-15 min for target genes. 

Films were developed automatically in Curix 60 film processor (Agfa, Germany).  

Results were analyzed with BioDocAnalyze station (Biometra, Germany). 

Expression was quantified by densitometry with accompanying BioDocAnalyze 2.1 

software by normalizing the values to internal control (β-actin).  

 

 

3.2.7. RNA isolation 

 

For RNA extraction left lung lobes snap-frozen in liquid nitrogen and stored 

at -80OC were used. Tissues were homogenized in 0.5 ml of TRIzol® reagent per 

0.05 g tissue (Invitrogen, USA) with Precellys 24 homogenizer (Bertin Technologies, 

France) at 6000 rpm for 20 sec. RNA was isolated by standard protocol:  

 

steps and reagents (per 0.05 g tissue) 
 
Addition of 0.1 ml of chloroform, shaking vigorously for 10 min at RT 
Centrifugation at 13000 rpm for 30 min at 4OC 
Transfer of aqueous phase into fresh tube 
Addition of 0.25 ml of isopropanol, incubation for 15 min at RT 
Centrifugation at 13000 rpm for 20 min at 4OC 
Discarding of supernatant 
Washing with 70% ethanol 
Centrifugation at 13000 rpm for 20 min at 4OC 
Air-drying 
Dissolving of RNA in 30 µl of RNase-free water 
Incubation at 55OC for 10 min 
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RNA samples were read at wavelengths of 260 and 280 nm with NanoDrop® 

ND-1000 spectrophotometer (NanoDrop Technologies, Inc, USA). Concentration 

was determined by accompanying NanoDrop ND-1000 software based on absorbance 

at 260 nm and extinction coefficient of 40 using Beer-Lambert equation:  

 

A = E * b * c 

 
where A is the absorbance, E is extinction coefficient (liter/mol-cm), b is the path 

length (cm) and c is the analyte concentration (moles/liter). With b=1 cm final 

equation was: 

RNA concentration (ng/µl) = A260 * 40 

 

Purity of RNA (i.e. admixture of phenol and/or protein) was estimated by the 

ratio A260/A280: RNA samples with the ratio of 1.7-2.0 were considered of good 

purity. After isolation RNA was frozen immediately and stored at -80OC. 

 

 

3.2.8. cDNA synthesis 

 

To generate cDNA reverse transcription was carried out with ImProm-II™ 

Reverse Transcription System (Promega, USA). The first step of cDNA synthesis 

involved equalization of input RNA concentration and annealing of oligo(dT)15 

primers. Namely, 5 µl of the reaction mix contained: 

 

component 
 

final 
concentration 

oligo(dT)15 primer 0.5 µg 
RNA 1 µg 

 

Tubes were placed into the thermal cycler with the following program for 

annealing: heating at 70OC for 5 min and cooling at 4OC for 5 min. The second step 
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involved DNA synthesis itself. The following components were added to the mixture 

to make it up to 20 µl volume: 

 

component 
 

final concentration 

ImProm-IITM 5X reaction buffer * 1x 
MgCl2 2.5 mM 
dNTPs 0.5 mM 
recombinant RNasin® ribonuclease inhibitor 20 units 
ImProm-IITM reverse transcriptase 1/20 volume 

 

* ImProm-II™ 5X reaction buffer contains: 250 mM Tris-chloride (pH 8.3), 375 mM KCl, 50 mM 

DTT. 

 

Tubes were placed into the thermal cycler programmed as follows: annealing 

at 25OC for 5 min, extension at 42OC for 60 min and inactivation of reverse 

transcriptase at 70OC for 15. After the synthesis cDNA was frozen immediately and 

stored at -20OC. 

 

 

3.2.9. Real-time polymerase chain reaction 

 

Quantitative real-time PCR analysis (qPCR) was carried out using Platinum® 

SYBR® Green qPCR SuperMix-UDG mix (Invitrogen, USA). cDNA was diluted 

four times and reaction mix with the final volume of 25 µl contained the following 

components: 

 

component 
 

final 
concentration 

Platinum® SYBR® Green qPCR SuperMix-UDG 2X mix * 1x 
ROX dye 500 nM 
MgCl2 4 mM 
primer (forward) 0.2 uM 
primer (reverse) 0.2 uM 
cDNA 0.2 µg 
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* Platinum® SYBR® Green qPCR SuperMix-UDG 2X mix contains: Platinum® Taq DNA 

polymerase, SYBR® Green I dye, Tris-chloride, KCl, 6 mM MgCl2, 400 µM dGTP, 400 µM dATP, 

400 µM dCTP, 800 µM dUTP, uracil DNA glycosylase (UDG) and stabilizers. 

 

Specific primers used were designed to anneal to adjacent exons in order to 

discriminate the cDNA and possible genomic DNA products by dissociation curve 

analysis and agarose gel electrophoresis. Source exon sequences were retrieved from 

NCBI GenBank and primers were designed with Primer3 software with the following 

parameters: length of 20-25 nucleotides, melting temperature of 57-63OC and GC-

content of 40-60%. Obtained primer sequences were compared to all existing DNA 

sequences in GenBank database with BLASTn software tool to exclude non-specific 

annealing. Finally, in-silico (virtual) PCR was performed on genomic DNA and 

mRNA templates using UCSC In-Silico PCR and Sequence Manipulation Suite v2 

tools respectively. Quantitative real-time PCR was carried out in Srtratagene 

Mx3000P™ qPCR system (Stratagene, USA). The instrument was programmed as 

follows: denaturation, 95°C for 10 min; 40 cycles with denaturation at 95°C for 30 s, 

annealing at 59-60°C for 30 s and extension at 72°C for 30 s. Results were analyzed 

with accompanying MxPro™ qPCR software. Relative expression levels were 

calculated as ∆Ct values by normalizing Ct values of target genes to Ct values of β-

actin.  

 

 

3.2.10. Bronchoalveolar lavage fluid (BALF) cell count 

 

After 4 and 7 days after bleomycin instillation mice were sacrificed by 

injecting i.p.a lethal dose of ketamin/xylacinehydrochloride. Lungs were flushed 3 

times with 0.5 ml ice cold PBS-EDTA (1x PBS, 0.2% EDTA) and for each lung these 

solutions were pooled. 1x PBS (pH 7.4) contained: 
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component 
 

final 
concentration 

NaCl 137 mM 
KCl 2.7 mM 
Na2HPO4 10 mM 
KH2PO4 2 mM 

 

After centrifugation, cells were re-suspended in 1 ml of ice-cold saline. Total 

cell count was performed manually using Neubauer chamber (depth 0.1 mm, 0.0025 

mm2; Optik Labor, Germany) and the microscope (Leica, Germany). Briefly, 10 µl of 

BALF solution were applied onto the chamber and cells in each of four areas were 

counted. Total cell number (in cells per milliliter) was calculated with the following 

formula:  

 

 

For differential cell count cells in constant volume of 0.2 ml of PBS were 

transferred to a glass slide with Shandon Cytospin-3® centrifuge (Thermo Scientific, 

UK) at 500 rpm for 5 min after what cells were dried. Slides were stained with May 

Gruenwald/Giemsa using the following protocol: 

 

step 
 

duration, 
min 

May Gruenwald 10 min 
washing with distilled water 1 min 
Giemsa 5 min 
washing with distilled water 5 min 

 

Numbers of macrophages, neutrophils and lymphocytes were determined by 

manual counting on light microscope (Q550IW; Leica, Germany) among 100 of total 

cells. These data were then extrapolated to number of cells per milliliter. 
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3.2.11. Lung compliance measurement 

 

After 14 and 24 days after bleomycin instillation mice were subjected to lung 

compliance measurement using Robertson box (Boehringer Ingelheim, Germany). 

Animals were deeply anesthetized with ketamin/xylacinehydrochloride (Bayer, 

Germany) given i.p. Trachea was canulated, mice were placed in the chamber and 

connected to the instrument. During the experiment temperature of the chamber was 

maintained at 40OC. Instrument was calibrated for volume of 0.3 ml and pressure of 3 

kPa. Inflation volume and inspiration/expiration frequency was set to 0.3 ml and 20 

times/min respectively. Measurement lasted for 5 min and compliance was calculated 

by accompanying Atembox Messung software as a ratio of volume to pressure. 

Values were expressed as ml/kPa. 

 

 

3.2.12. Histological examination 

 

After 14 and 24 days of experiment mice were sacrificed for lung isolation by 

injecting i.p. a lethal dose of ketamin/xylacinehydrochloride. Left bronchus was 

ligated, the left lobe was excised and shock-frozen in liquid nitrogen for subsequent 

RNA isolation and hydroxyproline analysis. Four right lobes were inflated with 4.5% 

formaldehyde solution through the trachea at constant pressure of 10 cm water 

column. Fixation was carried out for 24 hours at room temperature. Then lungs were 

transferred to 1x PBS for next 24 hours at +4OC. Lungs were dissected into separate 

lobes, placed into plastic cassettes and incubated for 24 hours at +4OC in PBS. After 

dehydration in graded alcohol in tissue processor (TP1050; Leica, Germany) lung 

lobes were separately embedded in paraffin (EG1140H; Leica, Germany), sectioned 

at 3 µm thickness on microtome (RM2165; Leica, Germany), mounted on glass slides 

and stained using standard Hematoxilin-Eosin protocol. Briefly, slides were 

incubated at 55OC for 20 min in the oven and then immersed in series into the 

following solutions: 
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step 
 

duration, 
min 

Rotihistol 10 
Rotihistol 10 
Rotihistol 5 
ethanol 99.6% 5 
ethanol 99.6% 5 
ethanol 96% 5 
ethanol 70% 5 
distilled water 2 
Hämalaun nach Mayer, acidic 20 
tap water 5 
ethanol 96% 1 
eosin-Y alcoholic 4 
distilled water rinse 
ethanol 96% 2 
ethanol 96% 2 
ethanol 99.6% 5 
isopropanol 99.8% 5 
Rotihistol 5 
Rotihistol 5 
xylol 5 

 

Slides then were covered with Pertex and cover glass and scanned with the light 

microscope (Q550IW; Leica, Germany) at 100x magnification using Leica QWin3 

Standard and Leica QGo Routine Runner software yielding 50-100 images for each 

lobe (up to 300 per animal). Each of images was reviewed and degree of fibrosis was 

assigned according to Ashcroft’s fibrosis score system [145] with slight 

modifications: normal lung was referred to as score 0 while score 6 represented 

maximal degree of pathological changes. 

 

 

3.2.13. Collagen assay 

 

Levels of acid-soluble collagens in lung tissues were determined by SIRCOL 

collagen assay (Biocolor Ltd., UK) according to manufacturer’s instructions. Briefly, 

left lung lobes were homogenized and collagens were solubilized overnight in 0.5M 

acetic acid. Extracts were incubated with Sirius red dye for 30 min and centrifuged at 
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13000 rpm for 10 min to precipitate collgen-Sirus red complexes. Pellets were then 

dissolved in 0.5M sodium hydroxide and absorbance was determined at 540 nm with 

spectrophotometer Infinite M200 (Tecan, Austria). Soluble bovine skin type I 

collagen in amounts of 0 – 12.5 – 25 – 50 – 100 µg was used as a standard for 

calibration curve. Amount of collagen was calculated by accompanying Magellan 

software and expressed in µg/g of wet tissue. 

 

 

3.2.14. Survival analysis 

 

Survival of mice for each treatment group was expressed as percent of 

animals left of original number at the specific time points of the experiment. For 

creating staircase survival curve with GraphPad Prism® software “1” was referred to 

a death event while “0” was referred to a survival event (“censored”). 

 

 

3.2.15. Data analysis 

 

All data are expressed as means +/-SEM. One-way Analysis of Variance 

(ANOVA) test and Student-Newman-Keuls Post test were used for multiple 

comparisons and Mann-Whitney test was used for pairwise comparisons utilizing 

GraphPad Prism® software. A p-value less than 0.05 was considered statistically 

significant.
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4.  Results 

 

4.1.  Analysis of PDE4 expression in pulmonary fibrosis 

 

To investigate the possible role of PDE4 in pulmonary fibrosis its expression 

was analyzed at mRNA and protein levels both in mice and humans.  

Results of RT-qPCR performed on the lungs of mice with bleomycin-induced 

lung fibrosis showed time-dependent downregulation of all PDE4 genes (Fig. 9). 

Namely, at days 7 and 24 mRNA levels of PDE4A (∆Ct 10.31±0.13 and 10.38±0.16 

at 7d and 24d), PDE4B (∆Ct 7.14±0.17 and 8.00±0.24 at 7d and 24d; p<0.001 for 

bleo 24d vs. saline), PDE4C (∆Ct 14.50±0.38 and 14.70±0.35 at 7d and 24d; p<0.01 

for bleo 7d vs. saline and for bleo 24d vs. saline) and PDE4D (∆Ct 11.14±0.18 and 

11.97±0.26 at 7d and 24d; p<0.001 for bleo 24d vs. saline) genes were decreased 

compared to mice received sterile saline only (∆Ct 9.58±0.18, 6.50±0.16, 13.53±0.30 

and 10.23±0.28 for PDE4A, B, C and D respectively). Baseline expression was the 

highest for PDE4B gene and the lowest for PDE4C gene while equally moderate in 

case of PDE4A and PDE4D genes. PCR primers were designed to detect all isoforms 

within one PDE4 gene. 

Expression of PDE4 analyzed with western blotting (Fig. 10) showed 

differential regulation at the protein level in the lungs with bleomycin-induced lung 

fibrosis. PDE4A isoforms 5, 8 and x were significantly downregulated (0.30±0.20 

and 0.13±0.10 at 7d and 24d; p<0.02 for bleo 7d vs. saline and p<0.02 for bleo 24d 

vs. saline) compared to saline-treated mice (1.56±0.26) while expression of PDE4A1 

isoform did not change. Expression of PDE4B isoform 1 was also decreased 

(0.79±0.12 and 0.52±0.05 at 7d and 24d) compared to controls (0.73±0.11). 

Interestingly, expression of PDE4B isoform 4 was significantly increased and peaked 

at day 7 after bleomycin administration (4.13±0.42 and 2.10±0.19 at 7d and 24d; 

p<0.02 for bleo 7d vs. saline) compared to controls (2.0±0.28). 
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Fig. 9. Expression of PDE4 genes at mRNA level in mouse lungs: healthy mice 
(“saline”) and mice suffering from fibrosis (“bleo”) for 7 or 24 days after bleomycin 
administration. Real-Time RT-PCR data are normalized to β-actin expression and 
presented as ∆Ct values ± SEM. * bleo vs. saline (** p<0.01, *** p<0.001), # bleo 7d 
vs. bleo 24d (# p<0.05). N=4 per group. 
 

 

Expression of PDE4B isoforms 2 and 3 was at undetectable level. Expression of 

PDE4C isoform 2 was elevated (0.12±0.01 and 0.07±0.01 at bleo 7d and 24d; p<0.05 

for bleo 7d vs. saline) compared to controls (0.06±0.01) while isoform 1 was 

undetectable. PDE4D isoforms 1/2 and 3 were downregulated both at 7 (0.18±0.03 

and 0.20±0.02 respectively) and 24 days (0.12±0.02 and 0.16±0.02 respectively) after 

bleomycin administration while isoform 4 was slightly upregulated (0.13±0.03 and 

0.16±0.01 at 7d and 24d) compared to healthy lungs (0.22±0.04, 0.21±0.11 and 

0.10±0.03 for isoforms 1/2, 3 and 4 respectively). Baseline expression was the 

highest for PDE4A (isoforms 5, 8 and x) and PDE4B (isoforms 1 and 4) genes.  
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Fig. 10. Expression of PDE4 genes at protein level in mouse lungs: healthy mice 
(“saline”) and mice suffering from fibrosis (“bleo”) for 7 or 24 days after bleomycin 
administration. Upper part: western blotting autoradiographs, lower part: 
densitometry quantification. Densitometry data are normalized to β-actin expression 
and presented as arbitrary units ± SEM. * bleo vs. saline (*p<0.05, ** p<0.01), # bleo 
7d vs. bleo 24d (# p<0.05, ## p<0.01). N=3 per group. 
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Analysis of PDE4 mRNA levels in the lungs of IPF patients (Fig. 11) showed 

downregulation of PDE4A (∆Ct 7.99±0.16) and PDE4D (∆Ct 8.75±0.19, p<0.05 vs. 

donor) in comparison to healthy donors (∆Ct 7.39±0.10 and 8.12±0.31 respectively). 

Expression of PDE4B and PDE4C genes did not differ between donors (∆Ct 

9.30±0.10 and 9.16±0.26) and IPF patients (∆Ct 9.18±0.19 and 9.21±0.15 

respectively). Baseline expression was higher for PDE4A and PDE4D genes than for 

PDE4B and PDE4C genes. PCR primers for human PDE4s were also designed to 

detect all isoforms within each PDE4 gene. 

 

 

 
Fig. 11. Expression of PDE4 genes at mRNA level in human lungs: healthy donors 
or IPF patients. Real-Time RT-PCR data are normalized to β-actin expression and 
presented as ∆Ct values ± SEM. * IPF vs. donor (* p<0.05). N=4 per group. 

 

 

Western blotting results (Fig. 12) showed upregulation of PDE4A1 isoform in 

lungs of IPF patients (0.59±0.43 vs. 0.13±0.01 in donors) while isoforms 5, 8 and x 

were not detected. Among PDE4B genes only isoform 4 was detected and was 

upregulated in IPF lungs (0.28±0.08 vs. 0.23±0.07 in donors). Both PDE4C isoforms 

1 and 3 were downregulated in case of IPF (0.09±0.03 and 0.09±0.02 respectively vs. 

0.18±0.01 and 0.10±0.04 in donors). PDE4D isoform 4 was also downregulated in the 

lungs of IPF patients (0.87±0.06 vs. 0.98±0.13 in donors) while isoforms 1, 2 and 3 

were not detected. Baseline expression was the highest in case of PDE4D4 isoform. 
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Fig. 12. Expression of PDE4 genes at protein level in human lungs: healthy 
donors or IPF patients. Upper part: western blotting autoradiographs, lower part: 
densitometry quantification. Densitometry data are normalized to β-actin expression 
and presented as arbitrary units ± SEM. N=3 per group. 
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4.2.  Physiological effects of PDE4 inhibition 

 

To evaluate possible side effects of cilomilast itself minimal pharmacological 

observations were carried out in healthy male C57BL/6N mice. Animals were treated 

per os once a day with vehicle (2% aqueous methylcellulose solution) or cilomilast 

suspended in vehicle at the doses of 10, 25, 50 and 100 mg/kg body weight. Body 

weight monitoring showed that doses higher than 50 mg/kg cause loss of body weight 

(Fig. 13). Moreover, such high doses caused increased motility manifesting itself as 

increased running speed, more frequent attempts to escape and resistance to necessary 

manipulations. No other side effects, such as vomiting or diarrhea, were observed. 

Similarly, no mortalities were observed in mice that were receiving any dose of 

cilomilast. 

 

 

 

Fig. 13. Effect of PDE4 inhibition on body weight of healthy mice. Per cent of 
body weight change after 14 days of treatment with different doses of cilomilast. N=3 
per group. 
 



Results 

 

47 

4.3.  Effect of PDE4 inhibition on alveolar inflammatory cells content  

 

To investigate the effect of cilomilast on early inflammatory stage of 

bleomycin-induced fibrosis, BALF was collected from healthy mice treated with 

vehicle and mice that received bleomycin and treated either with cilomilast or vehicle 

only. Total number of cells (3.1±0.4 x10^5 cells/ml in healthy controls) was highly 

increased by bleomycin instillation (11.9±1.8 x10^5 and 11.2±0.8 x10^5 cells/ml at 

4d and 7d respectively) and was significantly (p<0.001 and p<0.05) lowered by 

cilomilast both at 4 and 7 days (5.5±0.5 x10^5 and 7.6±0.2 x10^5 cells/ml 

respectively) (Fig. 14). 

 

 

 

 

Fig. 14. Effect of PDE4 inhibition on BALF total cell number: healthy mice 
(“saline”) and mice suffering from fibrosis and treated either with vehicle 
(“bleo+ctrl”) or cilomilast (“bleo+cilo”) at days 4 and 7 after bleomycin instillation. 
Values are presented as means ± SEM. * bleo+ctrl vs. saline (*** p<0.001), † 
bleo+cilo vs. bleo+ctrl († p<0.05, ††† p<0.001), # bleo+cilo vs. saline (## p<0.01). 
N=6 per group. 
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Fig. 15. Effect of PDE4 inhibition on number of macrophages, lymphocytes and 
neutrophils in BALF: healthy mice (“saline”) and mice suffering from fibrosis and 
treated either with vehicle (“bleo+ctrl”) or cilomilast (“bleo+cilo”) at days 4 and 7 
after bleomycin instillation. Values are presented as means ±SEM. * bleo+ctrl vs. 
saline (*p<0.05, ***p<0.001), † bleo+cilo vs. bleo+ctrl († p<0.05, †† p<0.01, ††† 
p<0.001), # bleo+cilo vs. saline (# p<0.05, ## p<0.01). N=6 per group. 
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To further evaluate the action of cilomilast on different inflammatory cell 

types differential cell count was performed (Fig. 15). As expected, influx of all cell 

types in alveolar space was prominent (macrophages: 6.7±1.0 x10^5 and 5.4±0.4 

x10^5 cells/ml at 4d and 7d vs. 3.0±0.5 x10^5 cells/ml), with the highest increase in 

number of lymphocytes (2.7±0.5 x10^5 and 2.9±0.4 x10^5 cells/ml at 4d and 7d vs. 

0.04±0.02 x10^5 cells/ml) and neutrophils (2.5±0.6 x10^5 and 2.8±0.9 x10^5 cells/ml 

at 4d and 7d vs. 0.0068±0.0062 x10^5 cells/ml). Number of macrophages (2.4±0.3 

x10^5 and 3.6±0.1 x10^5 cells/ml at 4d and 7d) and lymphocytes (0.8±0.1 x10^5 and 

1.3±0.1 x10^5 at 4d and 7d) was significantly decreased by cilomilast (p<0.001 and 

p<0.05 respectively). Number of neutrophils, however, remained unchanged (2.4±0.6 

x10^5 and 2.8±0.2 x10^5 cells/ml at 4d and 7d). 

 

 

4.4.  Effect of PDE4 inhibition on lung inflammatory markers 

 

To evaluate expression of inflammatory markers after cilomilast treatment, 

lung homogenate RT-qPCR was carried out at the same time points as for BALF cell 

count. TNFα and IL1β expression was significantly elevated at 4 and 7 days after 

bleomycin instillation (∆Ct 11.18±0.15 and 11.05±0.14 at 4d and 7d for TNFα; ∆Ct 

9.24±0.41 and 9.44±0.24 at 4d and 7d for IL1β) compared to those in animals that 

received saline (∆Ct 13.74±0.12 and 10.46±0.09 respectively) (Fig. 16, 17). 

Treatment with cilomilast resulted in significantly (p<0.01 at 4d and p<0.001 at 7d) 

lower TNFα level (∆Ct 12.03±0.18 and 12.37±0.10 at 4d and 7d), but not in IL1β 

(∆Ct 8.22±0.79 and 9.07±0.19 at 4d and 7d) mRNA levels compared to mice treated 

with vehicle only. 
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Fig. 16. Effect of PDE4 inhibition on lung TNFα levels: healthy mice (“saline”) 
and mice suffering from fibrosis and treated either with vehicle (“bleo+ctrl”) or 
cilomilast (“bleo+cilo”) at days 4 and 7 after bleomycin administration. Real-Time 
RT-PCR data are normalized to β-actin expression and presented as ∆Ct values 
±SEM. * bleo+ctrl vs. saline (***p<0.001), † bleo+cilo vs. bleo+ctrl (†† p<0.01, ††† 
p<0.001), # bleo+cilo vs. saline (### p<0.001). N=6 per group. 
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Fig. 17. Effect of PDE4 inhibition on lung IL1β levels: healthy mice (“saline”) and 
mice suffering from fibrosis and treated either with vehicle (“bleo+ctrl”) or cilomilast 
(“bleo+cilo”) at days 4 and 7 after bleomycin administration. Real-Time RT-PCR 
data are normalized to β-actin expression and presented as ∆Ct values ±SEM. * 
bleo+ctrl vs. saline (* p<0.05), # bleo+cilo vs. saline (## p<0.01). N=6 per group. 

 

 

Level of IL6 mRNA (Fig. 18) was also significantly elevated by bleomycin 

both at 4 (∆Ct 15.51±0.30) and 7 days (∆Ct 15.38±0.30) compared to one in mice 

received saline (∆Ct 19.17±0.49). Interestingly, in cilomilast-treated animals IL6 

expression was significantly increased (∆Ct 12.98±1.10 and ∆Ct 13.67±0.42 at 4d 

and 7d; p<0.05 and p<0.01 respectively). 
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Fig. 18. Effect of PDE4 inhibition on lung IL6 levels: healthy mice (“saline”) and 
mice suffering from fibrosis and treated either with vehicle (“bleo+ctrl”) or cilomilast 
(“bleo+cilo”) at days 4 and 7 after bleomycin administration. Real-Time RT-PCR 
data are normalized to β-actin expression and presented as ∆Ct values ±SEM. * 
bleo+ctrl vs. saline (** p<0.01, *** p<0.001), † bleo+cilo vs. bleo+ctrl († p<0.05, †† 
p<0.01), # bleo+cilo vs. saline (### p<0.001). N=6 per group. 
 

 

 

4.5.  Effect of PDE4 inhibition on lung function 

 

To examine the effect of cilomilast on late stage fibrosis, lung compliance 

(Fig. 19) was evaluated in animals treated either with cilomilast or vehicle alone, as 

well as in mice received instillation of sterile saline and treated with vehicle. 

Pulmonary compliance was significantly decreased in animals with bleomycin-

induced fibrosis, both at 14 and 24 days (0.09±0.006 and 0.06±0.007 ml/kPa vs. 

0.17±0.01 and 0.17±0.003 ml/kPa) suggesting lower elasticity of the lung. Treatment 
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with cilomilast partially restored impaired lung function (0.11±0.003 and 0.08±0.006 

ml/kPa at 14d and 24d) compared to mice treated with vehicle alone, with 

improvement being significant at 14 days (p<0.05).  

 

 

 

Fig. 19. Effect of PDE4 inhibition on lung compliance: healthy mice (“saline”) and 
mice suffering from fibrosis and treated either with vehicle (“bleo+ctrl”) or cilomilast 
(“bleo+cilo”) at days 14 and 24 after bleomycin administration. Values are presented 
as means ± SEM. * bleo+ctrl vs. saline (*** p<0.001), † bleo+cilo vs. bleo+ctrl († 
p<0.05), # bleo+cilo vs. saline (### p<0.001). N=9 per group. 

 

 

When normalized to body weight (Fig. 20) similar results were obtained: lung 

compliance was significantly decreased by bleomycin (0.0050±0.0003 and 

0.0031±0.0003 (ml/kPa)/g at 14d and 24d) compared to one of healthy mice 

(0.0069±0.0007 and 0.0089±0.0003 (ml/kPa)/g respectively). Treatment with 
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cilomilast resulted in significant increase in lung compliance both at 14d and 24d 

(0.0069±0.0004 and 0.0041±0.0003 (ml/kPa)/g; p<0.01 and p<0.05 respectively). 

 

 

Fig. 20. Effect of PDE4 inhibition on lung compliance (normalized): healthy mice 
(“saline”) and mice suffering from fibrosis and treated either with vehicle 
(“bleo+ctrl”) or cilomilast (“bleo+cilo”) at days 14 and 24 after bleomycin 
administration. Values are presented as means ± SEM. * bleo+ctrl vs. saline (** 
p<0.01, *** p<0.001), † bleo+cilo vs. bleo+ctrl († p<0.05, †† p<0.01), # bleo+cilo 
vs. saline (### p<0.001). N=9 per group. 

 

 

 

4.6.  Effect of PDE4 inhibition on lung pathology 

 

To confirm the mentioned findings and directly investigate pathological 

changes in the lungs quantified fibrosis degree estimation was performed by means of 

microscopy followed by scoring (Fig. 21). High scores obtained from the lungs with 
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bleomycin-induced fibrosis (3.50±0.15 and 3.69±0.15 at 14d and 24d vs. 0.34±0.05) 

evidenced significant distortion of lung architecture. However, generally lower 

fibrosis degree was observed in animals treated with PDE4 inhibitor (3.18±0.14 and 

3.03±0.19 at 14d and 24d) compared to ones treated with vehicle only, reaching 

significance at day 24 (p<0.05).  

 

 

Fig. 21. Effect of PDE4 inhibition on lung pathology scoring: healthy mice 
(“saline”) and mice suffering from fibrosis and treated either with vehicle 
(“bleo+ctrl”) or cilomilast (“bleo+cilo”) at days 14 and 24 after bleomycin 
administration. Values are presented as means ± SEM. * bleo+ctrl vs. saline (*** 
p<0.001), † bleo+cilo vs. bleo+ctrl († p<0.05), # bleo+cilo vs. saline (### p<0.001). 
N=9 per group. 
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Representative images of lung sections (Fig. 22) stained with Hematoxilin-Eosin 

illustrate the mentioned pathological changes quantified by fibrosis scoring.  

 

 

 

 

Fig. 22. Representative images of PDE4 inhibition effect on lung pathology: 
histological pictures of lungs of healthy mice (a, d) and of mice suffering from 
fibrosis and treated either with vehicle (b, e) or cilomilast (c, f) at days 14 (a, b, c) 
and 24 (d, e, f) after bleomycin administration. Hematoxilin-Eosin staining, 
magnification x100. N=9 per group. 
 

 

 

4.7.  Effect of PDE4 inhibition on lung collagen content 

 

Total soluble collagen content in the lungs was estimated by SIRCOL assay 

24 days after bleomycin instillation (Fig. 23), when changes in collagen content are 

the most distinctive. Indeed, the 2-fold increase (1639±98 vs. 740±42 µg/g) was 

observed among the mice received bleomycin. In contrast, animals treated with 

cilomilast tended to demonstrate lower collagen content in the lungs (1490±30 µg/g). 
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Fig. 23. Effect of PDE4 inhibition on lung collagen content: healthy mice 
(“saline”) and mice suffering from fibrosis and treated either with vehicle 
(“bleo+ctrl”) or cilomilast (“bleo+cilo”) at day 24 after bleomycin administration. 
Values are presented as means ± SEM. * bleo+ctrl vs. saline (*** p<0.001), # 
bleo+cilo vs. saline (### p<0.001). N=4 per group. 

 

 

 

4.8.  Effect of PDE4 inhibition on survival 

 

General effect of cilomilast on the course of experimental PF was evaluated 

with the survival curves (Fig. 24). As expected, shorter experiment (14 days) resulted 

in less mortality compared to longer (24 days) one (88.9% and 43.8% survival at 14d 

and 24d vs. 100%). In both cases slightly higher survival rate (100% and 66.7% at 

14d and 24d) was observed in the groups received PDE4 inhibitor. 
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Fig. 24. Effect of PDE4 inhibition on survival: healthy mice (“saline”) and mice 
suffering from fibrosis and treated either with vehicle (“bleo+ctrl”) or cilomilast 
(“bleo+cilo”) followed up for 14 and 24 days after bleomycin instillation. Kaplan-
Meier curves. N=9 per group. 
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5.  Discussion 

 

 

5.1.  Bleomycin-induced pulmonary fibrosis 

 

Pulmonary fibrosis represents a number of interstitial lung diseases (ILD) and 

usual interstitial pneumonia (UIP), indicating chronic interstitial inflammation, is the 

most common histopathological characteristic [4,22]. Similarly, bleomycin-induced 

lung fibrosis possesses classical inflammatory pattern and is the most common model 

for PF [54,62]. 

However, some limitations of the animal model described in the literature 

were observed in the present work as well. For instance, classical fibroblast foci were 

hardly present in remodeled tissues. On the other hand, remodeling during 

experimental PF involved inflammatory cell infiltration to a greater degree than in 

case of human IPF. Susceptibility of mice to bleomycin varied within the groups what 

could be accounted to individual biochemical profiles. Similarly, often described self-

resolution of bleomycin-induced PF was not observed in most of experiments. 

Survival of an animal at 3, 4 or 5 weeks after PF induction was mediated more by 

lesser degree of fibrosis developed in the particular animal rather than by self-

resolution of PF.  

 

 

5.2.  Expression of PDE4 in pulmonary fibrosis 

 

PDE4 plays important role in cellular homeostasis and, in particular, in such 

processes as proliferation and differentiation. Therefore, it was of interest to uncover 

the expression of PDE4 genes and their isoforms in the lungs with both experimental 

and human PF. 

In the lungs of mice all four PDE4 genes A, B, C and D were time-

dependently downregulated at mRNA level during the course of experimental PF. 
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Interestingly, PDE4B was the most abundant in healthy mouse lungs, while PDE4C 

was the least abundant one. PDE4A and PDE4D were expressed at relative moderate 

level. PDE4 genes were differently regulated at the protein level. In this case, 

baseline expression was the highest for PDE4A (isoforms 5, 8 and x) and PDE4B 

(isoforms 1 and 4) genes. The latter, therefore, matches the result of RT-qPCR 

indicating high basal PDE4B expression in mouse lungs. During bleomycin-induced 

PF PDE4A (isoforms 5, 8 and x) and PDE4B (isoform 1) were downregulated, while 

PDE4B isoform 4 was heavily upregulated, with the peak at 7d after PF induction. 

PDE4C2 was upregulated and PDE4D isoform 4 were slightly upregulated while 

PDE4D isoforms 1/2 and 3 were downregulated at the protein level.  

When human donor lungs were analyzed baseline expression was higher for 

PDE4A and PDE4D genes than for PDE4B and PDE4C at mRNA level. In IPF lungs 

PDE4A and PDE4D were downreglated while expression of PDE4B and PDE4C was 

not any different compared to healthy donors. At the protein level baseline expression 

was the highest in case of PDE4D4, therefore matching the results of RT-qPCR. 

Under IPF conditions, PDE4A isoform 1 was slightly upregulated. As in case of 

experimental PF, isoform 4 of PDE4B was upregulated in IPF lungs. Both isoforms 

of PDE4C were downregulated, as well as isoform 4 of PDE4D gene. 

It was surprising to see differential, if not opposite, regulation of PDE4 genes 

in mice and humans under pathological conditions at the protein level. As such, 

PDE4A was downregulated in mouse PF but upregulated in IPF. Limited number of 

reports shows that PDE4A is present in the lung and T-cells but lacks in neutrophils 

[95,102] therefore the mentioned changes could not be mediated by differences in 

neutrophil infiltration status. 

PDE4C gene was upregulated at protein level during experimental fibrosis but 

downregulated in IPF lungs. Although expression of PDE4C variants is not fully 

understood, it is known that PDE4C is present in the lung but absent from circulating 

inflammatory cells [97-98,119]. Therefore, its upregulation in bleomycin-induced PF 

is not associated with ongoing inflammation as one could expect.  

PDE4D was in general downregulated both at mRNA and protein level in 

both mice and humans. Besides lung tissue and T-cells [93,102,114] PDE4D is 
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present in well-differentiated human bronchial epithelium (WD-HBE) cells [99]. 

Extensive remodeling occurring during fibrosis ultimately leads to substitution of 

original tissue by masses of connective tissue. In this view, decreased levels of 

PDE4D mRNA and protein may be accounted for epithelium loss during PF 

development. 

Most notably, PDE4B was upregulated at protein level in lungs of both in 

mice and humans suffering from PF. In particular, protein level was heavily increased 

at day 7 of experimental fibrosis, when inflammatory response to bleomycin is the 

main characteristic. Besides the lung, PDE4B is highly expressed in inflammatory 

cells, including monocytes, lymphocytes and neutrophils, where it is the major 

cAMP-hydrolyzing enzyme [95,100-102]. Finally, it was showed that PDE4B is 

required for recruitment, activation and proliferation of T-cells [119-120] as well as 

for TNFα production and development of inflammatory response by leukocytes and 

macrophages [104-105,118]. Thus, the data shown confirm the observations made by 

other authors. 

 

 

5.3.  Inhibition of PDE4 in vivo 

 

PDE4 is the major class of PDEs expressed in inflammatory cells [95]. 

Chronic interstitial inflammation is the most common pathological characteristic both 

in human and experimental PF. Therefore we suggested application of a selective 

PDE4 inhibitor to mainly affect interstitial inflammation and investigate its other 

possible effects.  

The dose of cilomilast was based on reports with 30 mg/kg successfully used 

in mice. However the dose range was as broad as 1-100 mg/kg for mice [134] and 

0.1-100 mg/kg for rats [136]. Our own minimal pharmacological observations 

showed that the dose of 50 mg/kg was a compromise between therapeutic efficiency 

and drug toxicity. Higher PDE4 inhibitor doses caused loss of body weight and 

increased physical activity in healthy animals. In the latter case, direct CNS effects of 
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cilomilast cannot be excluded as PDE4D gene is expressed in cortex and cerebellum 

where it is involved in α2A-adrenoceptor signaling in neurons [126]. Thus, dose of 50 

mg/kg was primarily used in the present work. Higher dose (100 mg/kg) was also 

used for treatment of experimental PF. However, treatment effects were similar to 

those of 50 mg/kg dose suggesting that further dose increase does not lead to 

increased therapeutic effect. 

 

 

5.4.  Effects of PDE4 inhibition on inflammatory cell influx 

 

Given that PDE4 is the major cAMP hydrolyzing enzyme in inflammatory 

cells, including monocytes, lymphocytes and neutrophils, strong effects of PDE4 

inhibitor on these cells could be expected. Indeed, the total cell number in BALF of 

mice treated with cilomilast was significantly reduced at the early stage of 

bleomycin-induced pulmonary fibrosis. Numbers of macrophages and lymphocytes 

were significantly decreased as well. Interestingly, we could observe that increase in 

total cell number (3.5-4-fold) by bleomycin was accounted mostly for macrophages, 

as they represent the largest defense cell population in alveolus. On the other hand, 

although absolute number of lymphocytes and neutrophils was relatively low, 

increase in number of these cell types was about 30-fold for lymphocytes and about 

400-fold for neutrophils. Similar results are observed both in humans and mice with 

pulmonary fibrosis [13,59]. However it was unexpected to see no significant effect of 

cilomilast on number of neutrophils, which conflicts with other similar studies. For 

instance, Corbel et al. [135] could demonstrate the decrease in neutrophils release by 

selective PDE4 inhibitor PR 73-401 (piclalmilast) in a murine model of LPS-induced 

acute inflammation. Similar effects have been observed by other authors [136]. 

Neutrophils play important role in inflammatory processes and pathological 

tissue remodeling releasing primary (eg. elastase and myeloperoxydase, MPO) and 

secondary (eg. collagenase and lactoferrin) granule enzymes, as well as high 

concentrations of oxidants. Neutrophil elastase (NE), in turn, can induce MMPs 
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activation and, as a result, damage of lung parenchyma. Indeed, it was shown that IPF 

(also known as cryptogenic fibrosing alveolitis, CFA) patients have higher numbers 

of neutrophils and higher concentrations of proteolytic granule enzymes, such as 

MPO, collagenase, NE, lactoferrin in BALF [12], as well as increased NE levels in 

plasma and lung tissue [14]. Inability to influence neutrophils release therefore 

reveals potential limitations of the inhibitor used. It is worth noting, however, that 

different inhibitors were used in different studies. It is well documented that different 

substances possess different effects on cell types and mediators released. In example 

with PDE4 inhibitors, a study [136] shows differential potential of number of PDE4 

inhibitors on neutrophils and TNFα release, indeed showing some limitations of 

cilomilast in particular. 

 

 

5.5.  Effects of PDE4 inhibition on the expression of inflammatory 

markers 

 

It was interesting to see whether general suppression of inflammatory cells 

influx was also reflected in inflammatory cytokines expression throughout the lung at 

the same time points.  Such genes as TNFα, IL1β and IL6 are known to be 

upregulated in the lugs of patients with PF [15-21]. TNFα and IL1β are also the 

canonical early inflammatory markers of experimental PF becoming upregulated in 

the first 4-7 days after bleomycin administration [39,59-60,64]. 

Indeed, expression of TNFα was significantly elevated upon bleomycin lung 

injury. It was significantly decreased in mice treated with cilomilast compared to non-

treated ones both at 4 and 7 days after bleomycin administration. It is well known that 

macrophages, along with type II alveolar epithelial cells, represent the major source 

of TNFα [16]. Therefore, it was expected to see the downregulation of this cytokine 

after significant attenuation of macrophages influx by cilomilast that was 

demonstrated in BALF cell count experiments. Similar results were also showed by 

other authors [134]. 
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Expression of IL1β was also significantly elevated at the early stage of 

experimental PF. However, cilomilast had no significant effect the level of this 

cytokine. Althouth other authors also observed the same result [146], it was a 

surprising finding as  to a large extent IL1β is also produced by macrophages which 

numbers were decreased by cilomilast [16]. It is interesting to note that although 

expression of IL1β is well known to be elevated both in human and experimental PF 

its role in the remodeling process is controversial. As such, IL1β was shown to 

stimulate proliferation of fibroblasts and their production of collagen types 1 and 3 

[28]. However, other reports show the opposite regulation of fibroblasts by this 

cytokine. For instance, IL1β could also decrease expression of α-smooth muscle actin 

in fibroblasts and induce their apoptosis through nitric oxide (NO) [147].  

Similarly to TNFα and IL1β expression of IL6 was also significantly elevated 

at 4 and 7 days after bleomycin administration, which is also observed in the lungs of 

IPF patients [15,17,19-20]. Treatment with cilomilast caused further significant 

increase in IL6 expression. We suggest that increased expression of IL6 in 

experimental and human PF might be accounted to anti-fibrotic action of this factor. 

Indeed, it was shown that exogenous administration of IL6 decreased BALF cell 

recruitment, macrophage-mediated TNFα production and hydroxyproline content in 

experimental pneumonitis in mice [31]. Besides, IL6 can also be induced in 

fibroblasts by co-stimulation with pro-inflammatory cytokines TNFα and IL1β [28]. 

Although other authors showed pro-inflammatory action of IL6 [32], we believe that 

increase in IL6 expression observed after treatment with the PDE4 inhibitor 

accompanies the general suppression of inflammatory cell influx and TNFα content 

in the lung. 

 

 

5.6.  Effects of PDE4 inhibition on late stage fibrosis 

 

With the progression of fibrosis, pathological changes become more obvious 

leading to further inflammatory cells infiltration and accumulation of connective 
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tissue leading to impairment of lung function. At first, this includes inability to 

maintain normal gas exchange as a conclusion of thickened interstitium. At second, 

as fibrosis goes on, worsening of lung mechanical properties occurs due to increasing 

stiffness of the tissue. The latter could be examined by means of pulmonary 

compliance measurement. 

As expected, decreased compliance was observed in bleomycin-challenged 

mice. Similarly a higher degree of fibrosis was documented after histological 

examination of lungs of these animals, confirming compliance measurement results. 

Compliance was lower and score was higher at day 24 compared to day 14, 

illustrating progression of the disease. In addition, typical manifestation of 

bleomycin-induced lung fibrosis, such as its patchy pattern and substantial degree of 

inflammation were documented. 

Animals treated with cilomilast demonstrated significantly higher lung 

compliance at 14 days after bleomycin instillation compared to non-treated ones 

whereas pathological changes occurring by day 24 were possibly more difficult to 

affect. It is important to note that the lung compliance values are not only influenced 

by the lung elasticity but also by the chest resistance. The latter, depends on the size 

of an animal that, in turn, is a function of body weight. Therefore, to minimize the 

possible artifacts compliance values were also normalized to body weight. The results 

not only remained similar but the level of the statistical significance rose as well. 

Degree of pathological changes reflected in fibrosis scores was also less in the 

cilomilast-treated animals in a number of repetitive experiments. However, the 

improvements were not as prominent and did not always reach the level of statistical 

difference suggesting consistent but mild effect of PDE4 inhibition on late stage 

fibrosis.  
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5.7.  Possible mechanisms of anti-fibrotic action of PDE4 inhibitors 

 

Action of PDE4 inhibitor on tissue remodeling might have several aspects. 

First, selective inhibition of PDE4 is able to suppress inflammation effectively raising 

cAMP level and thereby eliminating pro-fibrotic environment in the tissue (Fig. 25, 

left). Indeed, cAMP suppresses TLR signaling pathway and LPS- and TNFα-induced 

inflammatory response [104-105]. Inflammatory cells also express markers, such as 

TNFα, IL1β, TGFβ and PDGF that are known to promote tissue remodeling. As such, 

TNFα levels are elevated in IPF lungs and it is able to directly stimulate the 

proliferation of lung fibroblasts [15,29]. In the present work we could demonstrate 

that PDE4 inhibitor decreased numbers of macrophages and lymphocytes and 

lowered TNFα expression in the lung. Interestingly, inhibition of TNFα by its soluble 

receptor alone can be sufficient to attenuate pulmonary fibrosis in mice [30]. 

On the other hand, there are some evidences that PDE4 inhibitors are able to 

act through inflammation-independent ways (Fig. 25, right). cAMP elevated by PDE4 

inhibitors, PGE2 or AC stimulation inhibits lung fibroblast migration, proliferation, 

and collagen synthesis [106-108,139], as well as differentiation into myofibroblasts 

[109-110]. Similarly, cAMP inhibits proliferation of heart fibroblasts [141] and 

PASMCs [142]. Finally, PDE4 inhibitor directly attenuated fibroblast to 

miofibroblast transition, stimulated by TGFβ in inflammation-free environment 

[110]. Our group has also previously demonstrated that cAMP raised by PDE3/4 

inhibitor tolafentrine inhibited enhanced migration of PASMCs that were derived 

from vessels of rats suffering from pulmonary hypertension [144]. Inhibition of PDE4 

by cilomilast also suppresses release and activation of MMP1, MMP2 and MMP9 

from human lung fibroblasts [98,143]. 

 



Discussion 

 

67 

 

 

Fig. 25. Possible mechanism of anti-fibrotic action of PDE4 inhibitor: 
inflammation and remodeling branches, cross-talk between cAMP/PKA and 
MEK/ERK pathways and the molecules known to be involved. 
 

 

Moreover, it was discovered, that PDE4B, 4C and 4D proteins contain 

conserved motifs for phosphorylation by extracellular signal-regulated kinase (ERK), 

thereby integrating AC/cAMP/PDE4/PKA and RAS/RAF/MEK/ERK pathways [85]. 

Although it was proved that ERK-mediated phosphorylation inhibits PDE4 recent 

data suggest that PKA can directly inhibit c-Raf and, therefore, the whole ERK 

pathway. The details of this interaction are not fully understood, however at least 

three possible mechanisms are suggested [111]. Thus, PDE4 inhibition, leading to 

cAMP elevation, might directly inhibit proliferation and cell growth resulting in 

attenuation of fibrosis and tissue remodeling in general. Hypothetical mechanism of 

anti-remodeling action of a PDE4 inhibitor is represented in the figure (Fig. 25). 
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Fig. 25. Possible mechanism of anti-fibrotic action of PDE4 inhibitor 
(simplified): cilomilast affects fibrosis largely by suppressing inflammation and to 
some extent the remodeling itself. 
 

 

All together these data suggest that the effects observed in present study might 

be accounted to several independent actions of the PDE4 inhibitor, affecting both 

inflammation process and the effector cells in the sites of fibrosis (Fig. 26). This, 

therefore, may open another possible therapeutic option for patients with pulmonary 

fibrosis. 
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