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Abstract: The present study investigates the effects of policies restricting human activities during the
COVID-19 epidemic on the characteristics of Night Land Surface Temperature (NLST) and Night
Urban Heat Islands (NUHI) in five major European cities. In fact, the focus of this study was to
explore the role of anthropogenic factors in the formation and intensity of NUHI. The effect of such
factors was uncontrollable before the COVID-19 outbreak on the global scale and in a real non-
laboratory environment. In this study, two indices, the concentration of Nitrogen dioxide (NO2) and
Nighttime Lights (NL), were used as indicators of the number of anthropogenic activities. The data
were collected before the COVID-19 outbreak and after its prevalence in 2019–2020. A Paired samples
t-test and a Pearson correlation were used to examine the differences or significant relationships
between the variables and indicators studied throughout the two periods. The results of the study
confirmed a direct and significant relationship between NO2 and NL indices and the NUHI and
NLST variables; however, using strict restrictions during the COVID-19 pandemic, the NO2 and NL
indices decreased seriously, leading to significant changes in the characteristics of the NUHI and
NLST in the five cities. This study has some implications for urban planners and politicians, e.g., the
environmental impacts of changing the nature and level of anthropogenic activities can greatly affect
the pattern and intensity of the Urban Heat Islands (UHIs) (as a serious environmental challenge).

Keywords: COVID-19; urban heat island; restriction policies; European cities

1. Introduction

The sixth IPCC report shows that the average global temperature has alarmingly risen
during the last four decades. The global surface temperature in the first two decades of
the 21st century (2001–2020) was 0.99 ◦C higher than 1850–1900. It was 1.09 ◦C higher in
2011–2020 than 1850–1900, with larger increases overland (1.59 ◦C) than over the ocean
(0.88 ◦C) [1]. At the same time, the results of various studies show that compared to
the general trend of global warming, cities, and, most specifically, densely populated
cities or metropolises, have had a faster warming trend [2–4], so that urban areas have
experienced 2–3 ◦C increase in temperature during the 20th century [5,6]. This indicates
that urban spaces are getting warm at a much higher speed under the influence of general
atmospheric warming as well as the phenomenon of UHI. The importance of this issue will
be exacerbated by the fact that by 2050, about 70% of the world’s population is projected to
live in cities [7–11]. The phenomenon of UHI has become a serious threat to urban life in the
last few decades due to the anomalous physical expansion of urban areas [12–14]. In this
regard, the issue of extreme temperature has become one of the deadliest natural disasters
in Europe. From 1980 to 2017, heat waves have caused 68% of the natural-hazard-induced
deaths and 5% of damage to the European economy [15].
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Given the importance and effects of the phenomenon of UHI on the health and
quality of urban life, it has been investigated by several researchers in different fields
following its first introduction by Howard in 1833 [16] and after its use by Oke [17–21]
and Chandler [22]. UHI is the most prominent feature of urban climate, especially in
densely populated cities [5,23]. It actually refers to the urban areas that are warmer than
the rural or natural environment around them [19]. UHIs in urban areas are formed due
to extensive changes in the nature and materials of the land surface and can expand and
intensify. One of the first effects of the spatial expansion of cities is a change in land use
and coverage [24]. Changing the vegetation coverage and barren lands to built-up areas
can cause significant changes in the energy balance and, consequently, the temperature
of the city. Developing cities on natural lands causes the expansion and replacement of
impervious urban surfaces that retain less moisture compared to the natural coverages.
Hence, the significant differences in heat capacity, roughness, and Albedo collectively make
the urban lands warmer than their surrounding rural environments [14,25–29]. The effects
of UHI can be intensified by heat emitted from transportation, heating systems in homes,
service centers, and industrial environments, as well as indoor ventilation systems [19].

Most research conducted so far on the UHI has examined the factors affecting their
formation and their effects on urban health and environmental quality [30–36]. They have
also explored the relationship between the formation and intensity of UHI and the set
of urban physical variables in detail [37–39]. In this regard, physical variables, such as
physical characteristics of the land surface, types of urban land use, urban density, the
spatial pattern of building blocks, as well as the status of mixed land uses, have been
studied [40–46]. In addition, some other researchers have investigated the relationship be-
tween the demographic and economic variables of cities (e.g., population density, economic
characteristics, and traffic congestion) and the formation, expansion, and intensity of UHI.
The following four factors are the main reasons for the creation of a UHI [5]:

1. Increased anthropogenic heat release

• Heat release resulting from energy consumption in urban areas

2. Changes in surface cover

• Reduced surface evapotranspiration capacity due to less green area
• The heat storage effect of construction materials such as concrete and asphalt

3. Urban structure

• Heat stagnation due to densely packed buildings
• Expansion of urban areas

4. Other

• The greenhouse effects of fine-particulate air pollution in the urban atmosphere

The clear point in the previous research is that they are less researched compared
to the physical properties of the land surface, despite the importance of anthropogenic
factors in the development and expansion of the UHI. This may be due to limitations in the
control of anthropogenic factors in determining their contribution and role in the formation
and expansion of UHIs in an objective and large-scale non-laboratory conditions [47]. The
effect of physical factors of land cover on the UHI can be measured with high accuracy
using a variety of objective data on an urban scale. However, controlling and separating
the share of anthropogenic factors in this regard is difficult and impractical in an objective
environment. This gap in the relevant literature has driven us to compile this research
to investigate the impact of anthropogenic factors on LST changes and UHIs during the
lockdown.

The outbreak of the COVID-19 pandemic in late 2019 led to the imposition of unprece-
dented strict measures on human activities in different countries of the world [48]. During
this period, a diverse range of restricting policies, including complete lockdown, distance
working, travel restrictions, and temporary closure of many commercial and industrial
businesses, were applied [49–52]. These mentioned measures have had significant effects
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on environmental variables on a local and global scale [53–55]. For example, the data show
that global greenhouse gas emissions in early April 2020 were decreased by about 17%
compared to the average of 2019 [56]. The results show that the rate of greenhouse gas
emissions during the global lockdown period decreased significantly and unprecedentedly
since World War II [57]. Data also show a 50% decrease in inland transportation and a 35%
decrease in industrial activities during the lockdown [56].

Severe restrictions, especially during the complete lockdown, provided good con-
ditions for researchers to control and measure the effect of anthropogenic factors on the
formation and expansion of UHIs. In fact, during the COVID-19 epidemic, it was pos-
sible to study the contribution of the anthropogenic factor to the formation of the UHI
separately from other physical factors [53,58–60]. Given these conditions and the gap in
the literature on the impact of anthropogenic factors on land surface temperature and the
intensity of UHIs, this study intends to use satellite images and remote sensing models to
determine the impact of lockdown measures during the COVID-19 era on the pattern and
intensity of UHIs and Land Surface Temperature (LST) in some of the most populous cities
in Western Europe.

2. Study Settings

The study area includes five major and important cities in Europe in which significant
restrictive policies have been implemented during the COVID-19 epidemic: London, Berlin,
Frankfurt, Paris, and Madrid (Figure 1). As mentioned earlier, when the World Health
Organization publicly declared COVID-19 as a global epidemic, all countries were required
to implement a variety of health policies. Given that the authorities of the cities studied
in this research have not simultaneously adopted the restricting policies, to increase the
validity of the results, a common time frame among all the samples studied has been
selected, during which all the cities were in a state of complete lockdown. In this study,
the analysis of maps and the average of the studied variables was done from 23 March to
20 April, which exactly coincided with the period of executing the most severe restrictions
in the studied cities. Thus, the years 2019 and 2020 represent the above-mentioned time
period (Figure 2).
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3. Materials and Methods
3.1. Data
3.1.1. Nighttime Urban Heat Island (NUHI) and Nighttime Land Surface
Temperature (NLST)

To investigate the spatial characteristics of the LST in the studied cities and their
non-built up surrounding areas, MOD11A2 version 6 data were used. MOD11A2 version 6
provided the average Land Surface Temperature and Emission (LST & E) during 8 days
(10:30 a.m. and 10:30 p.m.) with 1 km spatial resolution in a 1200 × 1200 km grid. Each
pixel value in the MOD11A2 is a simple average of all the corresponding MOD11A1 LST
pixels collected within that eight-day period [61].

3.1.2. UHI Intensity

Urban impervious surfaces (e.g., roads, buildings, and other man-made structures)
have a higher heat capacity than pervious surfaces (e.g., vegetation and barren lands).
Accordingly, the temperature difference between the urban area and surrounding areas
often increases on calm and cloudless days and in the last hours of the day. More precisely,
the maximum intensity of the UHIs mostly occurs three to five hours after sunset [62–64].
Given that, in this research, to investigate the status of the NUHI in the study samples,
MOD11A2 nighttime images (10:30 p.m.) have been used. Moreover, to calculate the
intensity of the NUHI, first, the land cover layer was prepared using CGLS-LC100 images.
A dynamic land cover map at 100 m resolution (CGLS-LC100) is a new product of the CGLS
that provides a global land cover map at 100 m spatial resolution. It is derived from the
PROBA-V 100 m time series [65].

Using the above-mentioned images, the urban areas were separated from the sur-
rounding area. For this purpose, the Built-Up codes in the CORINE Land Cover (CLC)
images, corresponding to the physical boundaries of the cities, were considered as urban
areas. Then, all areas with natural land covers (pervious surfaces such as barren land,
green space, and agricultural land) and with a distance more than 3 km from the cities
were separated as a non-built up surrounding area. Due to the impact of the cities on their
surroundings, the temperature data related to the first 3 km distance from the city and its
surrounding area were not included in the analysis. The latest CORINE Land Cover (CLC)
data update for 2019 was used to detect the pervious surfaces (Figure 3).
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After determining the urban areas and their surrounding area, the NUHI was calcu-
lated with the following formula:

NUHI = NLST − NLSTr (1)

NLST is the nighttime land surface temperature of the city and NLSTr is the nighttime
land surface temperature of the surrounding area generalized to the urban areas.

After determining the urban area and its surrounding areas, as mentioned earlier,
first, the NLST of each point of the city and its surrounding areas was calculated using
MOD11A1 images. With the Ordinary Kriging method for each urban point (cell), the NLST
value of its nearest point (cell) from the surrounding areas was also estimated (RMSE: 0.43).
Finally, two NLSTs were calculated for each cell within the city area (the NLST of a point
inside the city and the NLST of a point in the surrounding area). Then, the difference
between these two values was calculated according to equation 1 as the NUHI of the urban
area. After calculating the NLST and NLSTr in each city, the NUHI values were calculated.
This method gives a more detailed and accurate understanding of the pattern of the UHIs
compared to the methods that use a gross average number for the city and its non-built up
surrounding area.

3.1.3. Nitrogen Dioxide (NO2)

Nitrogen dioxide (NO2) and nitrogen monoxide (NO) are commonly known as nitro-
gen oxides (NOx = NO + NO2). They are important trace gases in the Earth’s atmosphere,
present in both the troposphere and the stratosphere (notably fossil fuel combustion and
biomass burning) and natural processes (such as microbiological processes in soils, wild-
fires, and lightning). In the present study, the spatial pattern of NO2 concentration has been
used as a variable representing the temporal and spatial pattern of anthropogenic activities
in the two periods before the outbreak of the COVID-19 virus and after the execution of
strict lockdown regulations. These data show the total vertical column of NO2 (ratio of the
slant column intensity of NO2 and the total air mass factor) in mol/m2 with a pixel size of
1113.2 m.

3.1.4. Nighttime Lights

The Earth Observation Group (EOG) is an expert at working with overnight remote
sensing data. The introduction of the JPSS series of satellites with advanced DNB sensors
has provided more possibilities in the field of remote sensing. The Day Night Band (DNB)
on the VIIRS sensor is a panchromatic band that can detect very dim night scenes. EOG
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is used to produce and supply annual Nighttime Light (NL), while recently, it has started
monthly production of these products as well [66]. In this study, the monthly data obtained
from VIIRS Stray Light Corrected Night time Day/Night Band Composites Version 1 have
been used to monitor the NLs in the studied cities. These images show the average DNB
radiance values in Nano Watts/cm2/sr with a pixel size of 463.83 m.

3.2. Analysis Method

It should be initially pointed out that in this study, all the relevant data, information,
and analysis belonged to two main time periods, namely 2019 (before the onset of the
COVID-19 epidemic) and 2020 (after the onset of the COVID-19 epidemic and the appli-
cation of restricting regulations on anthropogenic activities). Furthermore, for selecting a
specific time period to measure and evaluate the effects of the COVID-19, a time period has
been chosen during which the cities studied have experienced a similar situation.

This research consists of three main steps (Figure 4). In the first step, the main data
required for the research were collected through four types of satellite images described
in the previous section. In the second step, the information required for the research was
extracted from the mentioned data, i.e., the NLST and NLSTr data were extracted from
MOD11A2 images, urban and surrounding area data were extracted from CGLS-LC100
images, the total vertical column of NO2 data was extracted from Copernicus Sentinel-5P
images, and the average DNB radiance data were extracted from VIIRS images. In the third
step, a paired-samples t-test and correlation analysis were used to investigate the possible
effects of lockdown periods on the dependent variables. For this purpose, a raster layer
with a resolution of 1000 × 1000 m (as shown in Figure 3) was produced for each of the
main variables of the research separately for 2019 and 2020. The cell values of each new
raster layer were calculated based on the values of the nearest pixel of the image related
to the studied variable. At this stage, each of the research variables, including the NLST,
NUHI, NO2, and NL, had a raster layer with the same resolution in the two time periods.
Accordingly, two raster layers from each of the variables with two different time periods
helped to make accurate statistical comparisons between the variables. A paired-samples
t-test was used to examine significant changes in the characteristics of research variables
before the COVID-19 outbreak (2019) and after the application of restricting policies (2020).
A Pearson correlation test was also used to investigate the relationship between the NUHI
changes and the NLST, NO2, and NL changes.
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4. Result
4.1. Difference in Averages NLST in 2019 and 2020

An examination of the average NLST from 23 March to 20 April in 2019 and 2020
shows that, in general, the centers of the studied cities were warmer than their surrounding
area during both periods. At the same time, the average urban NLST showed a significant
difference between the studied cities. The average NLSTs of Berlin, Frankfurt, and Madrid
in 2020 showed lower values (getting cooler) compared to in 2019, while the NLST averages
of London and Paris showed that these two cities got warmer in 2020 compared to 2019
(Figures 5 and 6, Table 1).
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Table 1. Results of a paired-samples t-test for NLST data belonging to the studied cities for the two
time periods.

Urban

Paired Differences

t df
Sig.

(2-Tailed)Mean Std.
Deviation

Std.
Error Mean

95% Confidence Interval
of the Difference

Lower Upper

Berlin −0.93 0.52 0.02 −0.97 −0.90 −49.167 740 0.000
Frankfurt −0.07 0.42 0.04 −0.14 0.00 −2.104 141 0.037
London 0.56 0.50 0.01 0.54 0.59 48.342 1842 0.000
Madrid −1.67 0.67 0.05 −1.77 −1.57 −34.192 188 0.000

Paris 1.03 0.43 0.01 1.00 1.05 79.849 1127 0.000

The higher temperature of the NLST in Paris and London from 23 March to 20 April
2020, seems to be due to the higher temperature of these regions as compared to the previous
year (2019), being irrelevant to anthropogenic activities and COVID-19 restrictions. To
confirm this, the NLST averages of 23 March to 20 April have been shown for the years
2019 and 2020 in Figure 7. As it can be observed, the NLST difference was positive in Paris
and London, as well as their surrounding areas, which can be a result of changes in global
circulation patterns in 2020 in comparison to 2019.
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4.2. Difference in Average NUHI in 2019 and 2020

The results show that in contrast to the NLST variable, London and Paris cities
experienced a significant decrease in the NUHI in 2020 compared to 2019 (Figure 8).
However, in contrast, this variable significantly increased in Berlin (Figure 9 and Table 2).
As London and Paris cities experienced an increase in the NLST in 2020, these results
were somewhat weird and higher NUHI values were expected for these cities in 2020. In
addition, for Berlin, due to the decrease in the NLST, a proportional decrease in the NUHI
values was expected. As the findings of this study indicated, there has been a strong and
significant relationship between NLST and NUHI values in the studied cities (Figure 10
and Table 3).

To have a more accurate evaluation, the spatial characteristics of the NUHI were
studied based on the changes in the areas of the NUHI zones in the studied cases. For this
purpose, the NUHI were divided into two classes: Zones with a temperature above 2 ◦C and
zones with a temperature below 2 ◦C (Table 4). The results showed that during 2020 and
simultaneous with the implementation of lockdown and policies restricting anthropogenic
activities, in the cities of London, Paris, and Madrid, the area of zones with NUHI above
2 ◦C decreased by 152, 43, and 44 km2, respectively. Therefore, a change in the area of the
NUHI zones has been observed in these cities besides a decrease in the NUHI. In the case
of Berlin, however, this change has been the reverse, i.e., during the lockdown, in addition
to the increase of NUHI in Berlin, the area of zones with NUHI more than 2 ◦C increased
by about 75 km2.
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Figure 8. Average NUHI of the studied cities during CSR, extracted from MOD11A2 data in °C. (a-
1) Average NUHI of Berlin in 2019, (a-2) Average NUHI of Berlin in 2020, (b-1) Average NUHI of 
Frankfurt in 2019, (b-2) Average NUHI of Frankfurt in 2020, (c-1) Average NUHI of London in 2019, 
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Figure 9. NUHI characteristics in the studied cities during 2019 (blue) and 2020 (red). 

Figure 8. Average NUHI of the studied cities during CSR, extracted from MOD11A2 data in ◦C.
(a-1) Average NUHI of Berlin in 2019, (a-2) Average NUHI of Berlin in 2020, (b-1) Average NUHI of
Frankfurt in 2019, (b-2) Average NUHI of Frankfurt in 2020, (c-1) Average NUHI of London in 2019,
(c-2) Average NUHI of London in 2020, (d-1) Average NUHI of Madrid in 2019, (d-2) Average NUHI
of Madrid in 2020, (e-1) Average NUHI of Paris in 2019, (e-2) Average NUHI of Paris in 2020.
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Table 2. Results of a paired-samples t-test for NUHI data belonging to the studied cities for the two
time periods.

Urban

Paired Differences

t df
Sig.

(2-Tailed)Mean Std.
Deviation

Std. Error
Mean

95% Confidence Interval
of the Difference

Lower Upper

Berlin 0.39 0.55 0.02 0.35 0.43 19.226 740 0.000
Frankfurt −0.15 0.46 0.04 −0.23 −0.07 −3.888 141 0.000
London −0.12 0.45 0.01 −0.14 −0.10 −11.123 1842 0.000
Madrid −0.64 0.66 0.05 −0.73 −0.55 −13.450 188 0.000

Paris −0.11 0.45 0.01 −0.14 −0.09 −8.381 1127 0.000
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Figure 10. (a-2019) relationship between NLST and NUHI in the studied cities 2019. (b-2020) rela-
tionship between NLST and NUHI in the studied cities 2020.

Table 3. Correlation between NUHI and NLST in the studied cities during 2019 and 2020.

Urban
NLST

2019 2020

Berlin 0.847 ** 0.816 **
Frankfurt 0.772 ** 0.843 **
London 0.885 ** 0.922 **
Madrid 0.895 ** 0.877 **

Paris 0.973 ** 0.929 **
** Correlation is significant at the 0.01 level.

Table 4. Areas of each NUHI class in the two periods of lockdown and the year before it (km2).

Urban
<2 >2

2019 2020 2019 2020

Berlin 281 206 460 535
Frankfurt 87 87 55 55
London 591 743 1252 1100
Madrid 14 58 175 131

Paris 203 246 925 882

As shown previously, despite the strong and significant relationship between the
NLST and NUHI, different results have been observed regarding the rate of change in
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these two variables between the studied cities. To justify such a finding, anthropogenic
activities in the studied cities were investigated. Since COVID-19 restrictions have had the
greatest impact on anthropogenic activities and urban life (especially nightlife), to track
these changes, the two variables of NO2 concentration and NL were examined, as they
were directly related to urban activities and nightlife in the cities.

The results show that the restrictions applied against COVID-19 significantly affected
the values of NO2 and NL variables (Figures 11–14, as well as Tables 5 and 6). Policies
restricting anthropogenic activities during the COVID-19 outbreak have significantly re-
duced the urban pollution concentration (NO2) and the NLs in the studied cities. However,
it should be noted that the rate of change in these two variables, depending on the serious-
ness and strictness of local authorities in applying the restricting regulations and public
participation in the studied samples have been different. For example, among the studied
cities, the values of NO2 and NL decreased the least in Berlin and the most in London in
2020. This result can justify the reasons for the difference in the rate of the NUHI between
the studied cities in 2020, especially for Berlin (Figures 11–14).
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Figure 11. Average NLs of the studied cities during CSR, extracted from VIIRS in nano Watts/cm2/sr. 
(a-1) Average NLs of Berlin in 2019, (a-2) Average NLs of Berlin in 2020, (b-1) Average NLs of Frank-
furt in 2019, (b-2) Average NLs of Frankfurt in 2020, (c-1) Average NLs of London in 2019, (c-2) 
Average NLs of London in 2020, (d-1) Average NLs of Madrid in 2019, (d-2) Average NLs of Madrid 
in 2020, (e-1) Average NLs of Paris in 2019, (e-2) Average NLs of Paris in 2020. 
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Table 5. Results of the paired samples t-test for NLs data in the studied cities for the two time pe-
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Paired Differences 
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Tailed) Mean 

Std. Devia-
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of the Difference 
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Berlin −0.38 2.72 0.10 −0.58 −0.18 −3.800 734 0.000 
Frankfurt −0.82 6.79 0.58 −1.97 0.33 −1.411 136 0.160 
London −0.78 3.31 0.08 −0.94 −0.63 −10.056 1808 0.000 
Madrid −2.37 5.75 0.42 −3.19 −1.54 −5.645 187 0.000 

Figure 11. Average NLs of the studied cities during CSR, extracted from VIIRS in nano Watts/cm2/sr.
(a-1) Average NLs of Berlin in 2019, (a-2) Average NLs of Berlin in 2020, (b-1) Average NLs of
Frankfurt in 2019, (b-2) Average NLs of Frankfurt in 2020, (c-1) Average NLs of London in 2019, (c-2)
Average NLs of London in 2020, (d-1) Average NLs of Madrid in 2019, (d-2) Average NLs of Madrid
in 2020, (e-1) Average NLs of Paris in 2019, (e-2) Average NLs of Paris in 2020.
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Figure 13. Average NO2 concentration of the studied cities during CSR, extracted from Sentinel 5P
data in mol/m2. (a-1) Average NO2 concentration of Berlin in 2019, (a-2) Average NO2 concentration
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of Berlin in 2020, (b-1) Average NO2 concentration of Frankfurt in 2019, (b-2) Average NO2 concen-
tration of Frankfurt in 2020, (c-1) Average NO2 concentration of London in 2019, (c-2) Average NO2

concentration of London in 2020, (d-1) Average NO2 concentration of Madrid in 2019, (d-2) Average
NO2 concentration of Madrid in 2020, (e-1) Average NO2 concentration of Paris in 2019, (e-2) Average
NO2 concentration of Paris in 2020.
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Table 6. Results of paired-samples t-test for NO2 concentration data in the studied cities for the two
periods.

Urban

Paired Differences

t df
Sig.

(2-Tailed)Mean Std.
Deviation

Std. Error
Mean

95% Confidence Interval
of the Difference

Lower Upper

Berlin −0.000014 0.000005 0.000000 −0.000015 −0.000014 −79.711 740 0.000
Frankfurt −0.000046 0.000006 0.000000 −0.000047 −0.000045 −93.970 141 0.000
London −0.000058 0.000018 0.000000 −0.000059 −0.000057 −140.434 1842 0.000
Madrid −0.000058 0.000007 0.000001 −0.000059 −0.000057 −107.355 188 0.000

Paris −0.000074 0.000014 0.000000 −0.000075 −0.000073 −177.655 1127 0.000

In the following, the relationship between the changes in NO2 concentration and NLs
and the changes in the NUHI was investigated in the two time periods of the study. For
this purpose, first, the possibility of significant changes in the NLs and NO2 concentration
variables in 2019 and 2020 was investigated in the sample cities (Table 7), and then, the
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relationship between the changes in NO2 concentration and NLs and the changes in the
NUHI was investigated using a Pearson correlation test (Table 8).

Table 7. Difference in the averages of NUHI, NLST, NL, and NO2 during COVID-19 lockdown
compared to its previous year.

Urban UHI LST NL NO2

Berlin 0.39 −0.93 −0.38 −0.000014
Frankfurt −0.15 −0.07 −0.82 −0.000046
London −0.12 0.56 −0.78 −0.000058
Madrid −0.64 −1.67 −2.37 −0.000058

Paris −0.11 1.03 −2.32 −0.000074

Table 8. Differences in NUHI, NLST, NL, and NO2 changes during the lockdown compared to its
previous year in European major cities.

Urban NUHI NLST NL NO

Amsterdam 0.48 −0.45 0.14 −0.000031
Barcelona −0.54 −0.83 14.51 −0.000075

Berlin 0.39 −0.93 −0.44 −0.000014
Birmingham −0.02 0.15 1.28 −0.000050

Bruxelles 0.17 0.88 −2.76 −0.000054
Dresden 0.38 −2.51 1.66 −0.000008

Dusseldorf −0.49 −0.54 −0.90 −0.000051
Frankfurt Am Main −0.13 −0.07 −1.80 −0.000046

Koln −0.14 −0.05 −0.66 −0.000058
Lisboa 0.01 −1.13 −15.35 −0.000035

London −0.11 0.57 −0.79 −0.000058
Madrid −0.62 −1.67 −2.64 −0.000058

Manchester 0.27 1.13 −1.42 −0.000032
Paris −0.11 1.03 −2.55 −0.000074

Torino −0.28 1.57 −4.28 −0.000051

In the next step, the relationship between the changes in NUHI and each of NLST, NL,
and NO2 variables was investigated in the studied cities. The results showed that there
is a direct and significant relationship between the NUHI changes and changes in these
variables (Figure 15). To increase the validity of the findings, the number of cities studied
was increased. Therefore, in addition to the previously mentioned five cities, 10 other
European cities (the total number of samples increased to 15, including the previous five
ones) were selected in the same time frame, when strict COVID-19 restrictions were imposed
(Figure 16). Then, the statistical correlation tests were used to investigate the possibility of
a significant relationship between the above-mentioned variables (Tables 8 and 9).

Table 9. Correlation matrix: Correlation between NUHI, NLST, NL, and NO2 changes in each of the
studied cities.

NLST NL NO2

NUHI Pearson Correlation 0.228 −0.215 0.701 **
Sig. (2-tailed) 0.395 0.423 0.002

NLST Pearson Correlation −0.158 −0.335
Sig. (2-tailed) 0.560 0.205

NL Pearson Correlation −0.255
Sig. (2-tailed) 0.340

** Correlation is significant at the 0.01 level (2-tailed).
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crease in the NUHI (Figure 17). As mentioned earlier, the main purpose of this study is to 
investigate the impact of policies restricting anthropogenic activities during the COVID-
19 outbreak on the UHI. Thus, confirming the significant and direct relationship between 
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The results showed that the NUHI changes have a significant direct relationship
with NO2 concentration changes. Accordingly, increasing NO2 concentration leads to an
increase in the NUHI (Figure 17). As mentioned earlier, the main purpose of this study is to
investigate the impact of policies restricting anthropogenic activities during the COVID-19
outbreak on the UHI. Thus, confirming the significant and direct relationship between NO2
concentration (as an important variable indicating anthropogenic activities) and the NUHI
changes can well show the role of anthropogenic factors in this field. This was impossible
before the rigid lockdowns of COVID-19.
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5. Discussion

The findings of this study showed that physical factors alongside anthropogenic
factors, e.g., economic and social activities, can have a profound effect on the formation and
intensification of NUHIs. As mentioned earlier, numerous studies have been conducted on
the impact of physical factors of land cover on land energy balance and urban temperature
changes; however, it was not possible to control and isolate the impact of anthropogenic
factors before applying strict COVID-19 lockdown policies in real non-laboratory conditions.
The results of this study showed that the conditions caused by the COVID-19 epidemic
had a significant effect on the NLST characteristics and the NUHI pattern in the studied
European cities. However, the difference between the average NLST of 2019 and 2020
was not the same between the studied cities. While some cities got cooler, London and
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Paris showed an increase in the average NLST. Therefore, we have not seen a similar
study examining the NLST changes during the COVID-19, but research findings [67] in the
Indo-Gangetic Basin show that Daytime LST decreased during the lockdown. It should
be noted, however, that this decrease was more in rural areas than in urban areas. Since
the gross mean values did not show all the details of LST changes in the cities, in this
study, the pattern of the NUHI was also examined. The findings show that Paris, London,
and Madrid cities experienced a decrease in the NUHI area (above 2 ◦C) during the study
period, while Berlin showed an increase in the NUHI area. This finding is in contrast with
those obtained from the other studied cities. At the same time, the correlation between the
NUHI and NLST in both periods was direct and positive for each of the studied cities. It
should be noted that the values related to the NUHI and NLST variables and other variables
were calculated separately for pixels and entered into the statistical tests. Differences in
the NUHI and NLST values indicate that the studied cities did not respond equally to
the lockdown conditions. In fact, the application of strict lockdowns never experienced
before has been difficult for many people and even for city officials. Consistent with the
results of this study, ref. [68] showed in their study on the effects of COVID-19 lockdown
on UHIs in Pakistan that from 23 March to 30 April, the mean decrease in Surface Urban
Heat Island (SUHI) in large cities was about 20% or 0.4 ◦C. However, in most important
cities of Pakistan, the SUHI decrease was nearly 0.7 ◦C. Regarding the impact of human
behaviors on heat islands, research by [69] was conducted on the impact of COVID-19-
related traffic slowdown on UHI characteristics. This study showed that an 80% reduction
in road traffic can reduce the near land surface temperature by more than 1 ◦C in areas with
heavy traffic. Since this result is only true around traffic corridors, the impact of non-traffic
factors on increasing the LST should be examined in farther areas. In this regard, the
application of transportation restrictions has severely reduced the SUHI effect in large cities
of Pakistan [68]. The significant impact of traffic flow on the UHI phenomenon has also
been confirmed in research [70]. Contrary to the results of this study, research [67,71,72]
shows that the UHI intensity has increased during the lockdown days. In this regard, one of
the factors affecting the increase in UHI intensity during the lockdown is the reduction of air
pollutants. Based on the findings of the mentioned research, the reduction of atmospheric
pollutants has increased the incoming surface radiation and, consequently, has increased
the LST and the UHI intensity in the studied samples [67]. Moreover, the difference in
the amount of air pollutants between the urban and rural areas is an effective factor in
the UHI intensity [71,72]. Due to the fact that the UHI intensity is calculated based on
the temperature difference between the city and its surrounding rural or natural areas,
the restrictions during the lockdown in the process of agricultural activities can also be
studied in this regard. According to the findings of [67,73], the lockdown policies in the
agricultural sector have caused a delay in the harvest time of agricultural products, leading
to the presence of vegetation coverage for a longer period of time, which in turn, has been
a factor in modulating the LST in agricultural areas and increasing SUHI. The important
point of this research is that the lockdown during the COVID-19 delayed the harvest of
agricultural products in rural areas. Therefore, the temperature difference between the
urban and rural areas increased, and this had a direct effect on the intensity of the daytime
SUHI, i.e., the cooling of rural areas (rather than the warming of urban areas) has increased
the intensity of the daytime SUHI.

In this study, the changes in NO2 concentration and NLs were used to investigate
the effects of lockdown on anthropogenic activities. The relevant results showed that
NO2 concentration can be an indicator to show the anthropogenic activities in cities. The
comparison of NO2 concentration in 2019 and 2020 showed that with the decrease of
anthropogenic activities in the cities, the NO2 concentration decreased sharply. This was
also the case with the NLs. The NO2 concentration can well indicate the seriousness and
success of local and central governments in implementing policies to limit the spread of
the COVID-19 epidemic. The results of the present study are consistent with [54] in New
York city and with [68] in major cities in Pakistan, showing that the restrictions on the
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anthropogenic activities during the COVID-19 reduced NO2 emissions by 40% in coal-
based power plants and by 30% in main urban areas. During the COVID-19 pandemic, the
decrease of the anthropogenic activities could reduce air pollutants by about 5–6% and,
in particular, caused a 14% reduction in NO2 and 19% reduction in SO2 [67]. This issue
was also confirmed in [74]. Simultaneous with the lockdown policies in India, a reduction
of more than 45% was reported in atmospheric aerosols in some Indian provinces [75].
Furthermore, compared to the previous year, the release of NO2, SO2, and PM2.5 decreased
in the Yangtze River Delta region in China [76]. A decrease in the concentration levels
of NO2 and PM2.5 was reported in most cities of China [77–80] and other parts of the
world [81–85]. Furthermore a significant decrease was observed in CO, NO2, and PM2.5
levels (49%, 35%, and 21%, respectively) in Almaty and Kazakhstan [81]. Similarly, it was
shown in [60] that during the lockdown period, due to the reduced effects of anthropogenic
activities, the air quality of many European countries improved. For example, ref. [85]
shows that the concentration of NO2 during these days decreased between 20–30% in
France, Spain, Italy, and Germany.

Based on the findings of this study, in terms of NO2 concentration in 2020, it can be said
that among the cities studied, London has been more successful in enforcing the COVID-19
restrictions, while Berlin has been weaker than the other cities under study. In addition,
the main results of the study showed that there is a direct and significant relationship
between the NUHI changes and NO2 concentration changes. This information indicates
the serious impact of anthropogenic activities on the formation of the UHIs. This research
has contributed to the urban climate literature in some ways, e.g., it has used satellite
images to investigate the relationship between the NUHI and the NLST, NO2 concentration,
and NL variables with respect to the impact of the COVID-19 lockdown. The restrictions
on the anthropogenic activities during the COVID-19 period were considered a special
opportunity for the research team to examine the role of the anthropogenic factors in LST
changes and UHIs. In this regard, due to the conditions caused by the COVID-19 pandemic,
inadequate research has focused on the urban climate literature. Another positive aspect of
this research is to study 15 European cities (five main cities and 10 control cities), which has
increased the generalizability of the research and the validity of its findings.

6. Conclusions

The main purpose of this study was to investigate the effects of the COVID-19 restric-
tion measures on the NLST and NUHI changes. For this purpose, by examining the five
main European cities and adding 10 other control European cities (during the research),
the effects of policies restricting the anthropogenic activities during the COVID-19 on the
NLST and NUHI characteristics were investigated. In other words, the focus of this study
was to investigate the role of anthropogenic factors in the NLST and NUHI characteristics.
Notably, before the outbreak of the COVID-19 pandemic, it was basically impossible to
control anthropogenic activities on a global scale. Therefore, the lockdown conditions were
considered a serious opportunity for the research team to test this issue. By comparing the
data belonging to the two time periods before COVID-19 and after the COVID-19 virus
outbreak in 2019–2020, the research results showed that the anthropogenic factors in a set
of daily activities, e.g., communication, as well as industrial, service, and administrative
activities, have had a significant impact on the formation and pattern of the NUHI and
NLST changes. However, the result of LST was not the same between the studied cities.
While some cities showed cooler LST, London and Paris recorded an increase in the average
NLST. On the other hand, the result of NUHI showed that Paris, London, and Madrid
cities experienced a decrease in the NUHI area (above 2 ◦C) during the study period, while
Berlin showed an increase in the NUHI area. Differences in the NUHI and NLST values
indicate that the studied cities did not respond equally to the lockdown conditions. In fact,
the application of strict lockdowns, never experienced before, has been difficult for many
people and even city officials.
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In this study, two indices of NO2 concentration and NL were used to measure the
anthropogenic activities; both of which, especially the index of NO2 concentration, showed
well the results of implementing the restricting policies during the COVID-19 pandemic.
Thus, with the beginning of the implementation of rigid restrictions, the NO2 and NL
concentration indices decreased significantly. Given the confirmed significant relationship
between the NO2 and NL concentration indices and the number of anthropogenic activities,
in the continuation of the research, the relationship between these indices and the NLST
and NUHI characteristics was examined. At this stage, in addition to the five main cities,
including London, Paris, Berlin, Frankfurt, and Madrid, 10 other European cities were
included in the statistical analysis to increase the validity and generalizability of the results.
The results of the correlation test confirmed a direct and significant relationship between
the NO2 and NL concentration indices and the NLST and NUHI characteristics. This result
showed that the anthropogenic factors had a significant and serious impact on the NLST
and NUHI characteristics so that the extent and intensity of the NUHI would be greatly
reduced by limiting the anthropogenic activities or implementing environment-friendly
policies in such activities.

This research had limitations such as, first, the lengthy data collection process from the
European cities, and examining the special regulations of the COVID-19 period took a great
deal of research time. Second, collecting data was in the native language of the countries,
and translating data was time-consuming. Third, due to a lack of financial resources,
developing the research scope and simultaneously studying the impact of physical and
anthropogenic factors together in an integrated model were not possible. Accordingly,
due to the specific circumstances caused by COVID-19 restrictions, future researchers
are suggested to consider the contribution and effect of the anthropogenic and physical
land cover factors on the formation and spatial pattern of the UHIs. The findings of this
study are important for urban planners and policymakers, implying that by managing the
anthropogenic activities, especially in the field of urban transportation and heating systems
of industrial, commercial, and residential units, the intensity and extent of the UHIs can be
effectively controlled (as a serious challenge to sustainable urban development).
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