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1 Introduction

The regular languages and their corresponding automata model, deterministic
and nondeterministic finite automata, are well investigated [6]. It is well known
that this family of languages has many desirable properties. For example, all
commonly studied decidability questions are decidable and the regular languages
are closed under almost all commonly studied operations such as, for example,
the Boolean operation, concatenation, (inverse) homomorphism, and substitu-
tion. From a practical point of view, finite automata are in particular interesting,
since many of the decidability questions are decidable in polynomial time and,
in addition, an effective minimization algorithm is known for deterministic finite
automata.

But with respect to the computational power, this model is quite weak since
it builds the lowermost level of the Chomsky hierarchy. Hence, much efforts have
been made to find models that extend the computational power of regular lan-
guages by adding storage media, but keep as many ‘good’ properties as possible.
Consider, for example, the extension by a stack [4] or by a pushdown store [2],
which leads to the context-free languages. For both models nondeterministic
variants are more powerful than deterministic variants, which is in contrast to
finite automata. Moreover, some positive closure properties are lost. On the other
hand, the decidability of emptiness and finiteness is preserved [4,6,9]. In addi-
tion, equivalence is decidable for deterministic pushdown automata [10], but not
for the nondeterministic variant [6].

Another extension studied is that of a queue. In their general definition queue
automata can accept the class of recursively enumerable languages for which
all non-trivial decidability questions are undecidable. A meaningful restriction
for queue automata is considered in [1] where quasi-real-time computations are
studied. Another restriction is investigated in [7] where the number of turns,
that is, the changes between an enqueuing and a dequeuing phase, is bounded
by some constant. Both restrictions lead to language classes less powerful than
the class of recursively enumerable languages. With the latter restriction it is
possible to decide the emptiness problem [7].

The paper [3] introduces bag automata which are basically finite automata
equipped with a finite number of bags in which the automaton can put symbols
and also multiple versions of symbols. The symbols are stored as multisets and,
therefore, the order in which they are added to the bags is not remembered.
This model is quite powerful, because it is possible to simulate certain counter
machines. If the model is restricted to so-called well-formed bag automata, a
language class in between the (deterministic) one-counter and the (deterministic)
context-free languages is obtained.

In this paper, we consider deterministic set automata (DSA) that extend
deterministic finite automata by adding the storage medium of a set which, in
contrast to bag automata, allows words to be stored and is not a multiset. As
operations on the set it is possible to add elements, to remove elements, and to
test whether some element is in the set. To prepare a set operation the DSA
can write on a one-way write-only tape. For the set operation the contents of
that tape are taken and added to the set, removed from the set, or tested. After
the set operation, the writing tape is reset to the empty tape and a new set



operation may be prepared. A similar model has been introduced by Lange and
Reinhardt in [8]. In contrast to DSA, their model may work nondeterministically,
allows no remove operations, and a test operation implicitly adds the word tested
to the set. The main results in [8] are the decidability of emptiness for the
model considered and the closure of the corresponding language class under
the operations homomorphism, inverse homomorphism, and intersection with
regular languages.

This paper is organized as follows. After the definition of the model and some
examples in Section 2, we compare DSA with pushdown automata, quasi-real-
time queue automata, and queue automata with finite turns with regard to their
computational power. As result we obtain the incomparability with all classes
investigated. This shows that DSA can accept languages which are not accepted
by the other models. In Section 4 we consider closure properties. It turns out that
the language class accepted by DSA is closed under complement and union with
regular languages as well as intersection with regular languages, but is not closed
under general union and general intersection. Finally, we show that emptiness
is decidable for DSA which is a pleasant property from a theoretical as well as
from a practical point of view.

2 Preliminaries

We write X* for the set of all words over the finite alphabet Y. The empty word
is denoted by ), and we set X = X*\ {\}. The reversal of a word w is denoted
by w?, and for the length of w we write |w|. We use C for inclusions and C for
strict inclusions.

A set automaton is a system consisting of a finite state control, a one-way
writing tape where transductions of parts of the input can be temporarily stored,
and a data structure set where words of arbitrary length can be stored. At each
time step, it is possible to either write a transduction of the current input letter
to the end of the writing tape, to insert or remove the word written on the tape
to or from the set, or to test whether the word written on the tape belongs to
the set. Each time a set operation {in, out, or test} is done, the content of the
writing tape is erased and its head is reset to the left end.

Definition 1. A deterministic set automaton, abbreviated as DSA, is a system
M= (S,X,I,<,06,s0, F), where

. S is the finite set of internal states,

. X is the finite set of input symbols,

. I is the finite set of tape symbols,

< ¢ X is the right endmarker,

so € S is the initial state,

. ' C S is the set of accepting states, and

L0 Sx (ZU{N <)) = (S x (I™U{in, out})) U (S x {test} x S) is the
partial transition function, where in is the instruction to add the content of
the tape to the set, out is the instruction to remove the content of the tape
from the set, and test is the instruction to test whether or not the content
of the tape is in the set. If the transition function is defined for some pair
(s,\) with s € S, then it is not defined for any pair (s,a) with a € X' U{<}.

S Cids Lo do =
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A configuration of a DSA M = (S, X, I', <, 6, so, F) is a quadruple (s, v, z,S),
where s € S is the current state, v € {X*<1} U {A} is unread part of the input,
z € I'* is the content of the tape, and S C I'* is the finite set of stored words.
The initial configuration for an input string w is set to (sg,w<, A, (). During
the course of its computation, M runs through a sequence of configurations.

One step from a configuration to its successor configuration is denoted by F. Let
s,8,8"e€ S, xe XU{N <}, ve{XZ*<}U{A}, 2,2 € ™, and S C I'™*. We set

(s,zv,2,S) F (s 0,22',S), if §(s,2) = (¢, 2'),

c(s,20,2,S) F (v, A\, SU{z}), if 6(s,x) = (¢, in),

- (8,20,2,8) F (s',v,A,8\ {2}), if 6(s,2) = (¢, out),

. (s,zv,2,S) F (8,0, \,S), if (s, x) = (s, test,s”) and z € S,
(s,zv,2,S) F (8", v, \,S), if §(s,z) = (s, test,s”) and 2z ¢ S.

Ok W N
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We denote the reflexive and transitive closure of - by F*. It should be noted
that an instruction to remove some z from S does not test whether z € S; it only
ensures that z ¢ S after the operation. The language accepted by the DSA M
is the set L(M) of words for which there exists a computation beginning in the
initial configuration and ending in a configuration in which the whole input is
read and an accepting state is entered. Formally:

L(M)={weX|(so,w<,\,0) F* (sf,\, 2,S) with sy € F,z€ I'*,SC I'" }.
The family of all languages accepted by DSA is denoted by £ (DSA).

Ezample 2. Language L; = {wcw | w € {a,b}* } is accepted by a DSA. The
idea is to read the whole sequence up to the letter ¢ and to copy it to the tape.
When the input head arrives at the ¢, it stores the word w on the tape in its set.
Then it reads the second subword consisting of a’s and b’s and copies it also to
the tape. When the input head arrives at the right endmarker, it tests whether
the content on the tape is in the set. If this is the case, then the input is accepted
and otherwise rejected. a

Ezample 3. Language Lo = {a"b™$oc” | m,n > 1} U {a"b™$1c™ | m,n > 1}
is accepted by a DSA. First, the automaton writes for every a in the input an a
on the tape. When the first b is read, it adds the word on the tape to the set.
Then the automaton writes for every b in the input an b on the tape until the
dollar is in the input. Subsequently, the word on the tape, consisting of b’s, is
added to the set. Depending on whether there has been a $y or a $; in the input
the automaton writes an a or a b for each ¢ in the input on the tape. In the last
step, the automaton checks whether the word on the tape is in the set. If the
test is successful, the input is accepted and otherwise rejected. a

Ezample J. Language Ly = {a™b"c" | n > 1} is accepted by a DSA in such a
way that it writes for every a in the input an a on the tape. When it reads the
first b, it adds the content of the tape to the set. Then, it writes for every b in the
input an a on the tape and when it reads the first ¢, it tests whether the word
on the tape is in the set. If this is not the case, the input is rejected. Otherwise,
for every ¢ in the input an a is written on the tape. If at the end again the word
on the tape is in the set, then the input is accepted and otherwise rejected. O



3 Computational Power of Deterministic Set Automata

In this section, we study the computational power of deterministic set automata.
Hence, we compare the model with the known models of pushdown automata and
queue automata. Since in general queue automata characterize the recursively
enumerable languages, we compare our model with the restricted versions of
quasi-real-time queue automata and queue automata with a finite number of
turns, that is, the number of changes between enqueuing and dequeuing periods
is bounded by a fixed number.

Let us first consider unary languages. It is known that pushdown automata
accept only semilinear unary languages, hence regular languages, whereas even
quasi-real-time queue automata may accept non-semilinear unary languages [1].

Theorem 5. FEvery unary language accepted by a DSA is semilinear.

Proof. Let M = (S,{a},T,<,0,s0,F) be a DSA accepting a unary language
and k£ be the length of a longest word that M can write in one step on the
tape. We may assume that M accepts an infinite language, since finite unary
languages are semilinear. Let w be an input such that |w| > |.S|. When processing
this input, the automaton necessarily has to enter a loop. We consider two cases.

First, we assume that there is no situation occurring in which the automaton
performs an operation {in, out,test} on the set. Then, there will never be a
word in the set and M can be easily transformed into an equivalent deterministic
finite automaton. Second, we assume that M performs an in-, out, or test-
operation after which the content of the tape is deleted. In each computation
step, M can write at most k symbols on the tape. Due to the unary input, M
can distinguish between at most |.S| different situations. Thus, the words written
on the tape and possibly added to the set are at most of length & - |S|. Hence, we
can construct a deterministic finite automaton that simulates M by storing the
content on the tape as well as the finite number of words in the set in its state.
Since the languages accepted by finite automata are semilinear, the theorem
follows. a

With this result we are able to show that the family of languages accepted by
deterministic set automata is incomparable with the family of languages accepted
by quasi-real-time queue automata.

Theorem 6. The family of languages accepted by DSA is incomparable with the
family of languages accepted by quasi-real-time queue automata.

Proof. The non-semilinear unary language {a™ | n is a Fibonacci number } is
accepted by some quasi-real-time queue automaton [1]. Since by Theorem 5,
DSA do not accept non-semilinear unary languages, it remains to show the other
direction. The witness language is language Lo of Example 3 and it is shown in
the Appendix that Lo is not accepted by any quasi-real-time queue automaton.

O

In the next proof as well as in the section for the decidability we need that set
automata are in a special form where each state carries the information whether
the last action on the set was a test-, in-, or out-operation or was a write
operation on the tape. Additionally, it is distinguished between successful and
unsuccessful test-operations.



Definition 7. A DSA M is in action normal form, if the initial state of M
s only visited once at the beginning of the computation and each other state
indicates uniquely which action the automaton M did in the last computation
step. The states are marked with a corresponding subscript test+, test-, in,
or out. Non-marked states are interpreted as states where the last action was a
write operation on the tape.

Lemma 8. Any DSA M = (S, X, T, <,0, s, F) can be converted into an equiv-
alent DSA M' = (8", X, I, <, ¢, s(, F') in action normal form.

Proof. In a first step, we construct a DSA M" = (", X, I, <,0”, s, F") with
a new initial state sj which is visited at most once. Let S” = S U {s{} with
sq & S. If sg € F we define F” = F U {sj}, and set F” = F otherwise. The
transition function §” is defined as follows for s;, 55,5, € S, a € YU {\, <}, and
z € I'" U{in, out}.

1. 8"(sg, ) = (s0, ),
2. §"(si,a) = (sj,2), if 6(s;,a) = (s5,2),
3. 0"(si,a) = (sj,test, sg), if 8(s;,a) = (s;,test, sp).

In the next step, we define a state set consisting of five pairwise disjoint sets
Sins Souts Stest+, Stest-, and Syrite. The idea is that we introduce a new state
for every state connected with a non-writing operation, whereas the states of S”
indicate writing operations. So, let Syrite = S”, Stest = Stest+ U Stest- and
S’ = Sin U Sout U Stest U Syrite- We set s = sy and F' = F”. For the definition
of &', consider s;,s;5,s, € 8", a € ZU{\ <}, and z € I'™".

1. §'(s;,a) = (sj,,1in) and &' (sj,,, A) = (84, A), if 6" (s4,a) = (s, 1in),

2. '(8i,a) = (8, 0ut) and & (s;,.., A) = (85, A), if " (s;,a) = (s;, out),

3. 6/(5i7a) = (Sjtest+7teSt>Sktest—)7 6/(Sjtest+7)\) = (Sjv)‘)7 and al(sktest—a)‘) =
(sks A), if 6" (s4,a) = (sj,test, si),

4. 0'(s;,a) = (s4,2), if 6" (s5,a) = (s5,2).

The DSA M’ is still a deterministic automaton, since newly introduced M-
transitions start only from newly introduced states. Moreover, M’ is in action
normal form and is equivalent to M, since the same transitions as in M are per-
formed and the additional A-transitions do not affect the language accepted. O

Our next goal is to achieve another normal form for DSA which plays a
crucial role in further proofs. Let M = (S, X I', <, 0, so, F)) be a DSA in action
normal form. Thus, S = Sip U Sous U Stest U Surite- We note that the tape is
empty at the beginning of the computation as well as after each operation on the
set. Now we build sets of the form Ly, ,;, with s; € {50} U Sin U Seut U Stest and
5j € Sin U Sout U Stest that describe all words that can be written on the tape
when the computation starts in state s; with empty tape and ends in state s;,
and in between no other state performing an operation on the set is entered.
Formally we define

Lg,s; = {w € I'" | there is u € X" such that (s;,u,\,S) = (si41,u1,w1,S)
F* (Si+(n—1)7un—1awn—1a8) F (Si+7L7un7wnaS) = (Sja Aa)‘7sl)a

a'nd Si4+1ySi+25 -+ Si4n ¢ Sin U Sout U Stest }



All these regular sets L, s, can be built from M.

We say that a DSA M is in infinite action normal form if M is in action
normal form and all sets L, s, are infinite. The next lemma, whose proof may
be found in the Appendix, says that we always may assume that a DSA is in
infinite action normal form.

Lemma 9. Any DSA M can be converted into an equivalent DSA M’ in infinite
action normal form.

The context-free languages and their important subclass of deterministic
context-free languages are one of the best studied families of languages.

Theorem 10. The family of languages accepted by DSA is incomparable with
the (deterministic) context-free languages.

Proof. By Example 2, the non-context-free language L1 = { wew | w € {a,b}* }
is accepted by some DSA. So, it suffices to show that the deterministic context-
free language L = {wecw® | w € {a,b}* } is not accepted by any deterministic
set automaton. The detailed proof may be found in the Appendix. a

Next, we derive the incomparability of the family of languages accepted by
deterministic set automata with the family of languages accepted by queue au-
tomata with finite turns as follows.

Theorem 11. The family of languages accepted by DSA is incomparable with
the family of languages accepted by queue automata with finite turns.

Proof. We consider language Lg of Example 4. Let us assume that L3 is accepted
by some finite-turn deterministic queue automaton. It is shown in [7] that any
k-turn deterministic queue automaton can be converted into an equivalent 2k-
flip deterministic flip-pushdown automaton which is basically a deterministic
pushdown automaton with the additional ability to reverse the current contents
of the pushdown store. Thus, L3 can be accepted by such an automaton with
a finite number of flips. On the other hand, it is shown in [5] that L3 cannot
even be accepted by any nondeterministic flip-pushdown automaton with a finite
number of flips. Hence, L3 is not accepted by any finite-turn deterministic queue
automaton.

Let us now consider the union L = L' U L” with L' = {a"b™c" | m,n > 1}
and L"” = {a"b™c"™™ | m,n > 1}. It is not difficult to construct a queue
automaton with one turn which accepts L. In the following, we show that L
is not accepted by any DSA. Assuming the opposite, there is a DSA M with
state set S that accepts L. Let M be in infinite action normal form. Clearly,
language L is not regular and is not accepted by any finite automaton. Since M
is deterministic and has only a finite number of states, we conclude that M has
to enter a loop while computing the a-sequence of an accepted input which is
long enough. Moreover, after a constant number of computation steps M has to
write something on the tape. Otherwise, M is in the same configuration for two
different sequences a' and @’/ with i # j. Thus, for suitably chosen m > 1, M
would also accept a’b™c¢’ with i + m # j which is a contradiction. At some
time, M has to perform an in-operation, since otherwise M could be simulated



by a finite automaton. If M performs an in-operation before entering the loop
or being in the loop, then the length of the added word is bounded by some
constant. Since M is in infinite action normal form, this case cannot occur.

So, the first possibility to leave the loop is after reading a constant number
of b’s. In this case, let w, be the word added to the set. For an input long
enough, M will again enter a loop while reading b’s which may be left not
before reading a constant number of ¢’s. As before, there is no operation on
the set between adding w, and leaving the loop. The only useful operation at
this moment is another in-operation adding some word wy, to the set. Any out-
or test-operation would empty the tape without storing information about the
number of b’s. It is not hard to construct witnesses for the fact that M cannot
accept L in this case. As before, we conclude that M now enters a loop while
reading the ¢’s, which cannot be left before reaching the endmarker. Moreover,
there is once more no operation on the set between adding wy; and leaving the
loop. Let w, be the content of the working tape at this moment. Altogether we
have that M performs at most three operations on the set, where only the last
one may be different from an in-operation. If the last operation is not a test,
then M can be simulated by a deterministic finite automaton, a contradiction.
So, we may assume that there are either two in-operations adding w, and wy to
the set, or just one in-operation adding some word wg; to the set after leaving
the first or second loop, followed by a test-operation with w. on the tape. Since
there are arbitrarily many c-sequences in words not belonging to L for which
the test will be negative, the test has to be positive for words in L. Consider an
input a’b™c!*™ € L for £, m large enough. If the test reveals w, = w, then input
a’b>mctt™ ¢ L is accepted as well. Similarly, if the test reveals wy, = w,., then
input a?(“+mpmettm ¢ I is accepted. So, the only possibility left is that there
is just one in-operation. Now we consider an input a‘b™ct € L for ¢,m large
enough. If we are not concerned with one of the previous cases, the length of the
word wg,p depends linearly on ¢ and m. Therefore, if the test reveals wq, = we,
then it is negative on input alb™' ¢t e L, for large m/, and the input is rejected.

O

4 Closure Properties

In this section, we investigate the closure properties of DSA with respect to the
Boolean operations. The proof of closure under complementation may be found
in the Appendix.

Lemma 12. The family of languages accepted by DSA is closed under comple-
mentation.

Lemma 13. The family of languages accepted by DSA is not closed under union
and intersection.

Proof. In the proof of Theorem 11, we have shown that the language L = L' U L”
with L' = {a®™c" | m,n > 1} and L” = {a™™c"™™ | m,n > 1} is not
accepted by any DSA. Similar to the construction in Example 3, we can con-
struct DSA accepting L’ as well as L”. Thus, we obtain that £ (DSA) is not
closed under union. Moreover, since .Z(DSA) is closed under complementation
by Lemma 12, it cannot be closed under intersection. O



Lemma 14. The family of languages accepted by DSA is closed under intersec-
tion with regular languages and under union with regular languages.

Proof. A DSA can simulate a given deterministic finite automaton in parallel to
its computation by using the standard cross product construction. Thus, family
Z(DSA) is closed under intersection with regular languages. Since .Z(DSA)
is closed under complementation by Lemma 12, it is closed under union with
regular languages as well. O

5 Decidability of Emptiness

Here we turn to show that emptiness is decidable for deterministic set automata.
This is of interest both from a theoretical and practical point of view. For ex-
ample, it is known that emptiness is decidable for pushdown automata and
stack automata [4], but is undecidable for deterministic quasi-real-time queue
automata [1] and deterministic one-way multi-head finite automata.

Theorem 15. [t is decidable whether or not a given deterministic set automaton
accepts the empty language.

Proof. Given a deterministic set automaton M = (S, X, I', <, 9, sg, F'), the basic
idea is to construct a meta automaton M’ and to explore all possible paths up
to a certain length in its state graph in order to find a path from the initial state
to some accepting state. If such a path does not exist, the accepted language is
empty. The proof is structured in multiple steps.

In a first step, the DSA M is transformed into the meta automaton M’ whose
states are the initial state and the in- out-, and test-states of M. The edges
of M’ are labeled with regular languages. The language of an edge connecting
state s; with s; represents all strings that can be written on the tape when a
computation of M passes directly from s; to s;.

The next step is to elaborate some properties of accepting paths of M and M’.
In particular, it is shown that there exists an accepting path of bounded length
if there is an accepting path at all.

Finally, we show which of the paths of M’ can be expanded to paths of M,
that is, how a path can be evaluated to represent an accepting computation
of M. If there is no such path, then the language accepted by M is empty and
non-empty otherwise.

Construction of the meta automaton. We assume that M is in infinite action
normal form so that S = Sip U Sout U Stest U Surite. For convenience we define
S = Sin U Sout ) Stest~ B

The state set S” of the meta automaton M’ is set to be {so} U S. If there is
a path in M from state s; of S’ to s; of S’ without passing through any other
state of 7 in between, then an edge from s; to s; is included in M’. The edges
are labeled with the languages Ls, s, as constructed in the proof of Lemma 9.
That is, the languages represent all strings that can be written on the tape when
a computation of M passes directly from s; to s;. Since M is in infinite action
normal form, every edge is labeled by an infinite language. It is worth mentioning
that we do not care about the actual input here, but for the argumentation it



is understood that there always is a suitable input. Moreover, we recall that
the set of test-states is the disjoint union of test+ and test- states indicating
whether the preceding test was successful or not.

The set of accepting states of M’ is defined as follows. First, all states from S’
that are accepting in M are accepting in M’ as well. Second, for every edge
connecting state s; with s; in M’, state s; is defined to be accepting in M’ if
some accepting state is passed through in a direct path from s; to s; in M.
Similarly, a state s; of M’ is defined to be accepting, if there is some path
in M starting in s; that never reaches any other state of M’, passes through an
accepting state of M, and reaches a state of M in which the computation of M
ends.

Properties of accepting paths I. By construction of M’, every accepting path
in M corresponds to an accepting path in M’ where the states from Sy ite are
omitted. Conversely, every accepting path in M’ can be expanded to an accepting
path in M again. Since the main idea is to find an accepting path in M’, we are
interested in rules for adding edges of M’ to a path that can be expanded.

For the first rule, we recall that at every time step in a computation of M
there are only finitely many strings in its set S. On the other hand, every edge
connecting two states in M’ is labeled by an infinite language. So, it is always
possible to find some word in the language that is not in the set of M. Therefore,
it is always possible to add an edge that connects to a test--state to an expand-
able path in M’. The set S is not changed by using an edge to a test—-state.

The next rule concerns edges to out-states. Let p be an accepting path in M.
Then there is an accepting path in M so that any out-operation does not remove
anything from the set S. This path is constructed as follows. Assume there is a
sub-path of p connecting directly state s; € S" with the out-state s;. If the string
written on the tape while moving along the sub-path belongs to the current set S,
the sub-path is replaced by another one which writes a string on the tape that
does not belong to S. Since M is in infinite action normal form, such a sub-path
connecting s; and s; directly always exists. This replacement does not change
the rest of the computation along p as long as test+-, out-, and in-states are
concerned. It may, however, change the computation for test--states since now
there is one string more in S. Fortunately, by the first rule all further sub-paths
of p that connect to a test--state can be replaced by another one that writes
a string not belonging to S on the tape. Repeating this process until all out-
operations have the property claimed concludes the construction. So, for finding
an accepting path in M’, from now on we safely may assume that the set S is
not changed by using an edge to an out-state.

We conclude that we have only to consider states from Si, and Siess+ for the
further reasoning.

Properties of accepting paths II. We turn to in- and test+-states. Assume there
is an edge in M’ connecting state s; with the test+-state s;. If this edge belongs
to an accepting path, a string w € Ly, s, is tested positively and, thus, belongs
to the current set S. Since we may assume that out-and test--states do not
change the content of S, the edge can appear arbitrarily often in the accepting
path, always with test string w.
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In general, an edge connecting state s; with the test+-state s; can be added
to an accepting path provided that some word w from the language L, s, be-
longs to the current set S. Again, since we may assume that out-and test--
states do not change the content of S, it is sufficient that the word w has been
inserted into S before. To this end, the intersection of L, s, and some lan-
guage LS;’S; labeling an edge connecting state s; with an in-state s; has to be
non-empty. Furthermore, this edge has to belong to the preceding part of the
accepting path. However, this condition is too weak. Consider the following sce-
nario. If Ls,’,-@’,- =a*Ub" and L, s, = a*, then their intersection is non-empty.
Now let there be another edge connecting state s;’ with the test+-state s and
Ls;’,s'j' = b*. So, for both test+-states the condition is met and everything seems
to be fine. But since either a word of the form a* or of the form b* is inserted,
only one test can be positive. Nevertheless, due to the observation in the pre-
vious paragraph, it is sufficient to know that for any occurrence of a new edge
connecting to a test+-state, there is one specific edge in the preceding part of
the accepting path, that inserts the positively tested word. So, let ¢ denote the
number of edges in M’ that connect to a test+-state. Then it is sufficient that
any edge connecting to an in-state occurs at most ¢ times in an accepting path
to satisfy any following test.

Properties of accepting paths III. Let e denote the number of edges in M’ that
connect to an in-state. If there is an accepting path in M’ at all, there is an
accepting path whose length is at most (¢t + 1) -e- |S|+|S|.

To give evidence for the claim assume there is an accepting path in M’ whose
length exceeds (t+ 1) - e - |S| 4 |S|. We analyze the path from left to right and
keep track in some vector ¢ € ({0,1,...,t} U {t”})¢ how many times each edge
connecting to an in-state occurs. We start with zero vector ¢y and increase a
component by one if the corresponding edge occurs. If the component is ¢ or ¢~
it is set to ¢~.

Since the path is longer than |S| it contains a loop. If there is any loop that
does not change the vector, we know from above that we safely can remove the
loop from the path since the operations in the loop do not affect the remaining
operations. So, we have found a shorter accepting path. If it is still longer than
(t+1)-e-|S|+|S| we repeat the reasoning.

On the other hand, assume that all loops increase at least one component of
the vector. Then, after at most (t+ 1) - e many loops, each of length at most |5/,
the vector cannot change anymore. So, the total length of the path is at most
(t+1)-e-|S|+|S] and the claim follows.

Searching for an accepting path. Basically, we consider the computation tree
built from the state graph of the meta automaton M’ and perform a depth-first
search to explore an accepting path. We start at the root which is associated with
the initial state of M’. Whenever the current state of a path is s and £ > 1 states
can be reached from s, that is, there are edges between s and states sq, ss, ..., sg,
the corresponding node of the tree has the successor nodes s1, sg, ..., s¢. Each
node of the tree is labeled by a set of elements of the form N x §'2 x I'*, where
the last component is a regular language. The root is labeled by the empty set.
Such an element (z, s;, s, R) of a label represents the information that x strings
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from the language R are in the set S, and that these strings have been inserted
while exploring the edge from s; to s;.

When the search extends the current path by visiting a node associated
with state s; reached from a node associated with state s;, several cases are
distinguished. If s; is an out— or test--state the label of s; is copied to s;.

If s; is an in-state the label of s; is copied to s;. If this label contains
already an element of the form (z, s;, s;, R) the first component is increased by
one. Otherwise, the tuple (1, s;,s;, L, s,) is added to the label.

If s; is a test+-state reached from s; for the first time, we have to verify that
the test can be positive. To this end, the intersection Ls,',,sg' N L,,, is built for each
of the m > 0 tuples (@, Sm, by, L) in the label of s;. If all these intersections
are empty, the exploration of the current path is stopped. Otherwise, first the
node associated with s; currently reached in the tree is removed. Second, let
Ii,I5,...,I,, n > 1, be the non-empty intersections. Then n new nodes associ-
ated with s; are inserted as successors of s;. The label of s; is copied to each of
the new nodes. In addition, the label of node k is updated by adding the tuple
(1,si,85,1x), 1 < k < n, and decreasing the first component of (z, sk, 5}, Lx)
by one. If z; = 0, the tuple (z, sk, S}, L) is removed from the label.

If s; is a test+-state reached again from s;, the same word as before can be
used for the successful test. So, only the label of s; is copied to s;.

In this way, the situation discussed at the end of Properties of accepting
paths II is covered.

It remains to be explained how the exploration of a branch of the depth-first
search is stopped in the case of a non-accepting computation path. To this end,
we have the following criteria. The exploration of a path is stopped if there are
no outgoing edges from the current state, all intersections constructed are empty
after entering a test+-state, or the length of the path exceeds (t+1)-e-|S|+]9].
In particular, the second criterion applies if there never can be words in the
set for which the test is positive. Whenever an accepting state is entered, the
exploration of the graph is stopped and we know that L(M) is not empty.

If L(M) is not empty, then there is an accepting path of length at most
(t+1)-e-|S|+|S| which will be found by the procedure above.

If the depth-first search stops since the exploration of all paths is stopped
due to the above criteria, then we know that there are no accepting paths up
to length (t + 1) - e - |S| 4+ |S| which implies that L(M) is empty. If L(M) is
empty, then the exploration of any path will be stopped by the above criteria.
Altogether, we have obtained a procedure which decides whether or not L(M)
is empty. a
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Appendix

Proof (of Theorem 6). In contrast to the assertion assume M is a quasi-real-time
queue automaton accepting Lo with a set of states S. We consider a computation
on input w = a/b¥ v with v € X*. After M has read the sequence a’ there has
to be a word z enqueued so that its length |z| depends on the length of the
given input word a’. Assuming the contrary, there are two different accepted
words w’ = ab$;c’ and w” = a’ b$1¢’ with i # i’ such that after reading a'
and a’, the DSA M is in the same configuration. But this is a contradiction to
the assumption, because in this case M accepts as well the word a’b$;c¢’ with
i # 1’ that is not in the language. It can be argued in the same way that a word
2" has to be enqueued for the b sequence where |2’| depends on the number of b’s
in the given word w. So after reading a?b?" of the input, there has to be 22/ in
the queue where z is the front and 2’ is the tail of the queue. If the next symbol
is a $; then M has to compare the number of ¢’s with the number of b’s in the
word. We may conclude that while reading the remaining ¢’s the queue has to be
dequeued since otherwise Lo could be accepted by some finite automaton and,
hence, would be regular. Let a‘b?$;¢’ with i, j > |S| be an input word such that
the length of the enqueued word z is larger than 25 - |S|. Clearly, M can dequeue
at most |S| symbols from the queue for each input letter. So, M has to be in
an accepting state after reading a’®’$;¢’ and in the front of the queue there is
still a word Z such that z = 2'Z and |Z| > j - |S|. Thus, there is also another
word a'b$1¢7t7" with 4, j > |S| and j/ > 1 such that M is in the same accepting
state. Since j # j + j’, this is a contradiction and establishes our claim. d

Proof (of Lemma 9). We sketch the conversion and start by assuming that M is
in action normal form. First, we construct all regular languages L, s, and test
their finiteness. Next, we determine the length & of a longest word with respect
to all finite languages. To avoid operations corresponding to finite sets L, ., we
have to ensure that no in-, out-, or test-operations are performed for words on
the tape that have a length of at most k. To this end, we construct an equivalent
DSA M’ that is able to store all words up to length k in its state set. In this
way, the set S is simulated by states for such words. Additionally, by using a
buffer in its states, M’ writes nothing on the tape until the word to be written
on the tape is larger than k. In this case M’ writes all symbols in the buffer
in one step on the tape, empties its buffer, and continues the computation. By
construction, M’ is equivalent to M, since all set operations corresponding to
words of length at most k are performed in the state set, and all set operations
corresponding to words of length larger than k are still performed on the tape
and the set. Moreover, M’ still works deterministically and is in infinite action
normal form. ad

Proof (of Theorem 10). We show that L = { wew® | w € {a,b}* } is not accepted
by any deterministic set automaton. In the following, we are often arguing with
two parts of a word in L. So, we call the sequence up to the middle marker ¢ the
first part of the word, and the remaining sequence the second part of the word.
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The proof is by contradiction. Assuming that L is accepted by some DSA M,
we will show as a first step that L is accepted by M in such a way that all possible
set operations performed on the first part of the input are a finite number of
in-operations, and on the second part are a finite number test-operations. In
a second step, based on M an equivalent one-way multi-head finite automaton
accepting L is constructed. This leads to a contradiction.

Let L be accepted by a DSA M = (S, XTI, <,0, 89, F') which is in infinite
action normal form. Thus, S = Sin U Sout U Stest U Surite and we know that all
sets Ls, s; with s; € {s0} U Sin U Sout U Stest and s; € Sig U Sour U Stest are
infinite.

Next, we will show that there are no test-operations in the first part of an
accepted input. Let us first discuss the case when some test in the first part is
negative. We consider the subcomputation (s;, uvcw®, \,S) F* (s;,vcw® \,S)
on input w'uvcw® € L with w = v/uv, 8; € Stest, i € {80} U Sin U Sout U Stest,
and assume that the test has a negative result. Since Ly, s, is infinite, there are
infinitely many input sequences whose transductions belong to Ly, .. Therefore,
there exists some v’ € {a,b}* with u # u”, so that the DSA also accepts the
input w'u”vew’, which is a contradiction. We conclude that every test in the
first part has to be successful. Now assume as before that the DSA is in state s;
after the processing of the input prefix u’. For any input %v there is a word
u'twe(u'aw)® € L. Since there are only finitely many words in S, the test has to
be successful, and Ly, s, is infinite, we can conclude that there are two different
words @ and @ whose transduction on the tape is the same. This implies that M
is in the same configuration after reading v’@ and after reading u/@. Thus, both
words v/ twe(uw'iw) and v/tve(u'aw)® are accepted, a contradiction. Hence, we
may assume that there is never a test-operation in the first part of accepted
inputs.

In a similar way it can be proved that for accepting computations there are
never out-operations in the first or in the second part of the input, and that
there are never in-operations in the second part of the input.

Next, we turn to show that M can perform only a constant number of in-
operations in the first part of accepting computations. Assume contrarily that M
performs k > |S|? input operations in the first part of some input. Then there
are two states s5; € SinUSout U Stest and s; € Sin such that M runs from s; to s;
twice. Consider such a computation on an input w = zcz® with z = vuv'u'v”,
where M is in state s; when it reads the first symbol of u, and is in state s;
when it reads the first symbol of v/, and is again in state s; when it reads the
first symbol of v/, and is again in state s; when it reads the first symbol of v".
Then we can conclude out of the fact that M does not perform any test- or out-
operations while computing the subword v/, that M is in the same configuration
after reading the subwords vuv'v/v” and vu'v'v/v”. Choosing u # u’, which is
always possible since L, ;. is infinite, we obtain a contradiction, because both
words zcz® € L with z = vuv'u/v" and vu'v'u'v" ez ¢ L would be accepted.

Next, we turn to prove that there are only a constant number of tests in the
second part of accepted inputs. First, we show that M never performs a negative
test-operation in the second part of an accepted input. Assuming the contrary,
there is a word wcuvu’ € L such that M is in state s; € Sin U Sout U Stest
with empty tape after reading wcu. Now, M reads v, writes some z on the tape,
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tests z, and enters some state s; € Siest- as result of a negative test. Thus, M
is in configuration (s;,u’,\,S). Since L, s, is infinite and the content of the
set S is finite, there is a another word wcuv'u’ with v # v’ such that M is also
in configuration (s;,u’, A,S) after reading v'. This is a contradiction, since then
weuv'y’ € L would be accepted. So, we can conclude that all test-operations
performed in the second part of accepted inputs are positive. Assume now that
the number of tests is greater than |S|. Then one test-state is entered at least
twice. We may assume that in the computation on an accepted word w = zcz®
with 2% = vuv’ M reaches some state 5 € Stest When it reads the first symbol
of u and again when reading the first symbol of v/. Therefore all words zcvu'v’
with ¢ > 1 are accepted as well, since we know that there are no out-operations
in the second part. Choosing ¢ = 2 leads to a contradiction.

Now we know that M never performs test- or out-operations in the first
part of accepted inputs and never performs in- or out-operations in the second
part of accepted inputs. Furthermore, at most |S|? in-operations in the first part
as well as at most |S| test-operations in the second part are performed. In the
following, we describe how M can be simulated by a one-way multi-head finite
automaton.

Let uv be an input word and let uy,us,...,u, be the subwords of u whose
transductions are added to the set by in-operations, and vy, vs, ..., v, be the
subwords of v whose transductions are tested. We construct a one-way multi-
head finite automaton M’ that leaves |S| many heads at position pg = 1, that
is, at the beginning of the input word, reads the input using some head h, starts
to simulate M omitting the simulation of the tape, and leaves |S| many heads
in the first part of the input at every moment when M empties its tape and
adds some u; to its set, except for the last in-operation. In the following, these
positions are denoted by pi,pa,...,pn—1. Moreover, for 0 < i < [S]| — 1, h;;
denotes the jth head (out of |S| heads) that has been left at position p;. The
states s1,89,...,8,_1 the DSA M is in at these moments are stored in the
state set of M’'. Let us first assume that exactly n = |S|? in-operations are
performed. By counting the number of in-operations in the state set, we know
when the last in-operation has been performed. At that moment, M starts
to write v; on the tape which is eventually tested with the contents of the
set. To simulate this behavior by M’, we use the heads hg 1, k11, - < hsiEo
to start in states sg, s1, S2,...,S,_1 at positions pg, p1,p2,...,Pn_1 to compare
the transductions of the words uy,us,...,u, with the transduction of v; read
by head h. If an agreement is found when some state s; € Siest is entered,
that is, M has added some word to the set which is now positively tested,
then the simulation is continued by comparing the transductions of the words
U1, U2, - . ., Uy With the transduction of vy using the heads hg 2, h1,2, ... h|s]2—1,2-
This behavior is continued until all m tests have been simulated successfully.
Finally, it is checked with head h whether M enters an accepting state. In this
case M’ accepts the input and rejects otherwise. The following two pictures show
the situation of dropping all heads in the first part, and the simulation for the
test of the transduction of v;. The rightmost head is head h.
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Let us now discuss the case when n < |S|? in-operations have been per-
formed. In this case, it not clear which in-operation is the last one that starts
the comparing phase. To manage this case, we drop another |S|? heads at every
position pg, p1,...,Pn—1 and interpret every in-operation as the last operation
which starts the comparing phase. If the next operation is an in-operation, we
start a new comparing phase with a new set of heads. If the next operation is
a test-operation, we continue the comparing phase with a new set of heads.
Altogether, we need at most |S|3 4 |S|* + 1 heads.

In summary, the simulation shows that L is accepted by a one-way multi-
head finite automaton. This is a contradiction, since it is known that L is not
accepted by any one-way multi-head finite automaton. a

Proof (of Lemma 12). The closure under complementation for deterministic fi-
nite automata can be easily proved by interchanging accepting and rejecting
states. We cannot translate this idea directly to DSA, because mainly three
problems may occur. First, the given DSA may not read its input completely by
either entering a configuration in which no next move is defined (1) or by enter-
ing an infinite A-loop (2). Second, the given DSA may perform A-steps leading
from an accepting state to a rejecting state and back (3).

Now, let M be a DSA for which we want to construct a DSA accepting
its complement. To overcome problem (1), we introduce a new non-accepting
state s.o; to which all undefined transitions of M are directed. Additionally,
we define further moves from s,.; which shift the input head to the end of the
input. For problem (3), we note that M can accept at the earliest after reading
the endmarker. Thereafter additional A-steps may be possible. We now want
to achieve that in this case M enters an accepting state as soon as possible
which cannot be left. To this end, a new accepting state s,.. is added for with
the transition function is undefined. Moreover, we double the state set of M
and store in every state the information whether or not the endmarker has
been passed. If we now have a transition entering an accepting state with the
knowledge that the endmarker has been passed, we redirect such a transition to
enter state s,... By these modifications we have obtained an equivalent DSA M’
in which problems (1) and (3) do no longer occur. However, M’ may enter
infinite A-loops. Next, we transform M’ into infinite action normal form and
note that by the construction problems of type (1) and (3) are not occurring.
Let us distinguish two cases: first, we assume that on infinite A-loops only states
from Syrize can be visited. By an inspection of the transition function we can
check in advance which states from Syrite Will end in an infinite A-loop. Then,
any transition ending in such a state will be redirected to s,.;. Second, we assume

17



that we have an infinite A\-loop in which some state s; € Siy U Sout U Stest 18
entered. Let so € Sip U Sout U Stesy be the next, not necessarily different, non-
writing state along the A-loop. Then, we consider the language L, 5, which has
to be infinite due to the infinite action normal form. On the other hand, M’ is
deterministic, no input is read while moving from s; to ss, and the tape is empty
when starting in s; and when having reached ss. Hence, it is only possible to
write one word on the tape while moving from s; to so. This implies that L, s,
is finite. Thus, this case cannot occur.

Now, we have obtained that any computation ends when the whole input
and the endmarker is read either in an accepting or non-accepting state which
cannot be left once entered. Thus, the standard technique for constructing an
automaton that accepts the complement can be used: all accepting states become
non-accepting states and all non-accepting states become accepting states. O
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