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1. INTRODUCTION 

The placenta is the key site of feto-maternal communication regulating embryonic and fetal 

development and maintenance of pregnancy (Wooding et al. 1992). In the bovine placenta 

which is of the synepithelial type, the direct fetal-maternal contact is restricted to specialized 

zones called placentomes, consisting of fetal cotyledons interdigitating with maternal 

caruncles. Caruncular and cotyledonary epithelia are in close contact, thus allowing an 

efficient exchange between the fetal and maternal side (Klisch et al. 1999; Björkman 1969). 

Additionally, placentomes are also specialized for signal transmission between the growing 

fetus and the mother, and the cotyledon is an important source of auto- para- and endocrine 

signals presumably involved in the control of placental growth and differentiation and of 

other pregnancy-related processes in the maternal and fetal compartment. Immediately after 

the onset of placentation the bovine trophoblast starts to produce significant amounts of 

steroids, mainly progesterone and estrone sulfate (E1S) (Hoffmann and Schuler 2002). 

Although progesterone is commonly considered as the key hormone of the maintenance of 

pregnancy (Csapo 1956), specific functions of bovine placental progesterone have not been 

identified yet as throughout gestation in cattle the ovary is the predominant source of 

progesterone, whereas the contribution of the placenta to systemic maternal levels is 

negligible (Melampy et al. 1959; Stabenfeldt et al. 1970; Fairclough et al. 1975). Similarly the 

function of the high amounts of E1S produced in bovine cotyledons is unclear as it does not 

bind to classical nuclear estrogen receptors (Hähnel et al. 1973; Payne et al. 1973; Kuiper et 

al. 1997). Thus, sulfonation of estrogens is commonly considered as an important step in the 

control of estrogenic activity leading to inactivation and accelerated excretion (Brix et al. 

1999). There is evidence from different experimental approaches that in bovine placenta 

estrogens are already sulfonated in cotyledons (Mattioli et al. 1984; Hoffmann et al. 2001), 

and in previous studies using immunohistochemistry (Brown et al. 1987) and in situ-

hybridization (Ushizawa et al. 2007; Hirayama et al. 2008) estrogen sulfotransferase 

(SULT1E1) has been localized in trophoblast giant cells (TGC), where also aromatase is 

expressed (Schuler et al. 2006a). This co-localization of estrogen synthesis and inactivation 

within the same cells makes it difficult to assign a physiological role to bovine placental 

estrogen synthesis. However, during the last two decades increasing evidence came up that 

estrogen sulfates may be important substrates for the intra-tissue production of free estrogens 

via the activity of steroid sulfatase (STS) (sulfatase pathway; Santner et al. 1984; Reed et al. 

2005). In a previous study in bovine placentomes STS was predominantly localized in the 

caruncular epithelium (Greven et al. 2007), where estrogen receptor α is highly expressed 
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(Schuler et al. 2002). Thus, a sulfatase pathway for the intracellular production of free 

estrogens from estrone sulfate may be active in this cell type. 

Virtually no information is available on the intratissue transport of estrone sulfate. In contrast 

to free steroids which may penetrate cellular membranes by passive diffusion (Rosner 2006), 

the transmembrane passage of the much more polar steroid sulfates is commonly considered 

to depend on the function of so far unidentified transporters. Interestingly, the recently 

discovered sodium-dependent organic anion transporter (SOAT; SLC10A6) has been 

previously shown to efficiently mediate the cellular import of steroid sulfates (Geyer et al. 

2004, 2007) and its expression has been detected in bovine placentomes (Greven 2008). 

Moreover, in addition to "standard SOAT", four variants deriving from the deletion of various 

exons and/or insertion of an additional exon have been identified. Based on the results 

obtained on the expression of STS and SOAT in bovine placentomes, a functional coupling of 

these molecules in the cell-specific provision of biologically active estrogens has been 

suggested (Greven 2008). 

As mentioned above, so far no function has been identified unequivocally for placental 

progesterone and estrogens in cattle. Thus, other active products of bovine placental 

steroidogenesis have to be taken into account. Androgens are conventionally considered as 

classical male sex hormones. However, they are also produced and have regulatory functions 

in females as well (Burger 2002; Miller et al. 2004). Significant levels of androgens have 

been shown to be present in the uterine environment during pregnancy in some mammalian 

species, including humans, pigs and rats (Bonney et al. 1984; Stefanczyk-Krzymowska et al. 

1998; Warshaw et al. 1986). In pregnant cows a slight increase of testosterone concentrations 

has been observed in plasma and milk throughout gestation (Gaiani et al. 1984), and local 

tissue concentration in the placentomes may be considerably higher. Thus, androgens might 

act locally within the placenta, and their effects may be controlled by aromatization to 

estrogens and sulfonation. However, no information is available on the expression of the 

androgen receptor (AR) in the bovine placenta. Consequently, putative target cells of 

placental androgens in bovine placentomes are still unknown. 

Thus, the aims of the present studies are 

 to monitor SULT1E1 expression on the protein and mRNA level in bovine placentomes 

throughout gestation and to characterize SULT1E1 expression in bovine trophoblast in 

relation to the process of TGC differentiation 
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 to closer characterize the expression of SOAT variants in placentomes and other bovine 

organs to obtain further information with resepcet to the function of SOAT as a 

physiologically relevant transporter of sulfonated steroids 

 to identify putative target cells of placental androgens in bovine placentomes by their 

expression of AR and to monitor AR expression throughout gestation in bovine 

placentomes on the protein and mRNA level 

 to monitor testosterone tissue concentrations in bovine placentomes throughout gestation  
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2. LITERATURE REVIEW 

2.1 Gross and microscopic structure of the bovine placenta 

Despite many common functional features there are striking differences between the placentae 

among eutherian (placental) mammal species concerning their gross and microscopic 

structure (Carter and Enders 2004; Enders and Carter 2004, 2006; Carter and Mess 2007). 

Ruminants have a cotyledonary placenta consisting of a variable number of placentomes, in 

which maternal and fetal tissues come into intimate contact enabling the exchange of 

nutrients, gases, hormones and waste products. Each of these numerous disc- or mushroom-

shaped placentomes consists of a fetal component, the cotyledon, and a maternal component, 

the caruncle (Leiser and Kaufmann 1994; Pfarrer et al. 2001). 

There is an enormous variation in placentome size and number between various ruminant 

species (Mossman 1987), from 4-6 large ones in deer to 100–150 rather smaller ones in cow 

and some antelopes (Mossman 1987, Wooding and Flint 1994). In cattle mean placentomal 

weight and length increase significantly during gestation, development in the non-pregnant 

horn is significantly different from that of the pregnant horn, with fewer, smaller, lighter 

placentomes (Laven and Peters 2001). 

Histologically the bovine placenta is having six cellular layers that form the materno-fetal 

interface: on the fetal side the vascular endothelium, cotyledonary connective tissue and 

chorionic epithelium (trophoblast) and on the maternal side the caruncular epithelium, 

caruncular connective tissue and vascular endothelium (Ramsey 1982; Wooding 1992). 

The chorionic epithelium basically consists of two types of trophoblast cells, the uninucleated 

trophoblast cells (UTC) and the mostly binucleated trophoblast giant cells (TGC; syn: 

binucleated cells BNC). As the weakly invasive TGC rapidly undergo apoptosis after their 

migration into the caruncular epithelium, there is a continuous replenishment of TGC by a 

high proliferative activity of UTC and their differentiation into TGC including genome 

multiplication. Thus a major proportion of bovine trophoblast cells are at an intermediate 

stage of differentiation between UTC and mature TGC (Wooding 1992; Klisch et al. 1999). 

UTC are mononuclear cuboidal to columnar cells that show typical features of epithelial cells. 

As they are intimately connected to the caruncle by microvilli, the uptake of oxygen and 

nutrients and the release of waste products have been considered as their primary function. 

However, they have also been identified as a source of molecules with endo- or paracrine 

activity such as interferon τ (Bartol et al. 1985; Leaman and Roberts 1992), steroids or 

prostaglandins (Bartol et al. 1985; Wooding 1992; Wooding and Flint 1994; Mann et al. 1999; 

Schuler et al. 2008). 
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Mature bovine TGC have a characteristic structure quite different from the surrounding UTC 

(Lawn et al. 1969; Wooding and Wathes 1980; Wooding 1982; Klisch et al. 1999). It is 

generally accepted that bovine TGC originate from UTC by acytokinetic mitoses (Wimsatt 

1951; Björkman 1968). According to Klisch et al. (1999) bovine TGC commonly arise from 

two consecutive endomitoses followed by an additional S-phase by each of the two tetraploid 

nuclei. Thus, the majority of mature bovine TGC possess two octaploid nucei. During the 

early stages of their development, the immature TGC are randomly scattered and located 

deeply within the trophectodermal layer in an intraepithelial position, such that they make no 

contact with either the basement membrane or the apical microvillar border of the 

trophectoderm (Wooding and Wathes 1980; Wooding 1984). These immature cells appear as 

relatively small round (or spherical) cells whose cytoplasm stain darker than the surrounding 

UTC. The dark staining is due to the presence of numerous cytoplasmic ribosomes in the 

TGC (Wango et al. 1990). TGC constitute 15 to 20 per cent of trophoblast cells at the 

beginning of implantation and throughout pregnancy in ruminants (Wooding and Wathes 

1980; Wooding 1982, 1983). At parturition, the proportion of TGC is significantly reduced to 

values of about 5 percent (Gross et al. 1991; Klisch et al. 2006; Shenavai et al. 2010). 

Ruminant TGC are considered to have two main functions: to form the feto-maternal 

syncytium essential for successful implantation (Wooding and Wathes 1980; Wooding 1984; 

Lee et al. 1986; Wango et al. 1990) and subsequent placentomal growth at early stages of 

placentation and to produce and to deliver hormones such as placental lactogen (PL), 

prolactin related protein-1 (Zieler et al. 1990; Kessler et al. 1991; Anthony et al. 1995), and 

steroid hormones like estrogens (Matamoros et al. 1994, Schuler et al. 2006a) and 

progesterone (Reimers et al. 1985; Wango et al. 1991) throughout gestation. Moreover, 

ruminant TGC produce enormous amounts of pregnancy associated glycoproteins (PAGs), 

which are structurally related to proteinases without having proteolytic activity. Their 

functions are still unclear (Zoli et al. 1991, 1992; Green et al. 2000). 

After implantation has accomplished, different from the sheep in bovine placentomes major 

feto-maternal syncytia are not present any longer. However, throughout gestation bovine TGC 

migrate into the maternal epithelium, where they release their hormonal products into the 

maternal compartment. After degranulation they rapidly undergo apoptosis. Moreover, a 

significant proportion of TGC fuses with single caruncular epithelial cells to form trinuclear 

feto-maternal hybrid cells (Wooding and Wathes 1980, Wooding 1992). The function of these 

processes is still unclear but is considered to serve the transport of large signal molecules 

across the feto-maternal barrier. 
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Maternal caruncular growth and differentiation starts in response to fetal signals from 

preformed sites of the endometrium. Maternal caruncles grow rapidly after the onset of 

placentation until the beginning of the last trimester, when the carunclar growth significantly 

decreases and finally fully stagnates during late gestation. Concomitant with caruncular 

growth and ingrowth of ramifying chorionic villi in the caruncle a corresponding complex 

system of maternal crypts is formed, which are covered by a monolayer of the mostly 

cuboidal caruncular epithelial cells (Prior and Laster 1979; Hradecky et al. 1988; Reynolds et 

al. 1990; Ferrell 1991). Starting gradually around day 250 a progressive reduction of 

caruncular epithelium occurs towards term, when it is significantly flattened or in some places 

even absent due to a substantial decrease in cell numbers (Woicke et al. 1986). 

 

2.2 Bovine placenta as a steroidogenic organ 

In addition to its role in transporting molecules between mother and fetus, the placenta is also 

a major temporary endocrine organ that - depending on the individual species - synthesizes a 

huge variety of hormones and cytokines that have major influences on ovarian, uterine, 

mammary and fetal physiology (Heap 1994). One class of hormones produced in the 

placentae of many but not all mammalian species are the sex steroids. The placentas of 

species exhibiting steroidogenic activity may differ widely in the spectrum of steroids 

produced, their quantities and profiles during gestation and synthetic pathways (Δ4- vs. Δ5 

pathway) (Thomas et al. 1988; Conley and Bird 1997; Schuler et al. 1994, 2008). Moreover, 

due to the lack of the steroidgenic key enzyme 17α-hydroxylase-C17,20-lyase (P450c17, 

CYP17) in the placentae of some species, they may depend on C19-precursors provided by 

the mother and/or the fetus, as it is the case in humans (Diczfalusy 1969, Strauss et al. 1996) 

or in the horse (Allen 2001). The bovine trophoblast expresses all enzymes needed for the 

production of progesterone and estrogens from cholesterol: side-chain cleavage enzyme 

(CYP11A1, P450scc), P450c17, 3β-hydroxysteroid dehydrogenase Δ5/4-isomerase (3β-HSD) 

and aromatase (Schuler et al. 2006a, 2008), and the main products of bovine placental 

steroidogenesis occuring in maternal blood from a quantitative point of view are progesterone 

(Wagner et al. 1974; Hoffmann 1979) and estrone sulfate (Hoffmann et al. 1997). 

 

2.2.1 Production of progesterone by the bovine placenta and its putative functions 

During pregnancy maternal progesterone concentrations in cattle range between about 6 to 12 

ng/ml in the peripheral blood. In the first three months of gestation they average 11.6 ng/ml 

(Schallenberger et al. 1985). In the fourth and fifth month of pregnancy a slight drop to values 
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about 9 ng/ml has been described. 72-24 hours before birth, a sharp drop in progesterone 

levels below 1 ng/ml occurs (Henricks et al. 1971; Hoffmann et al. 1977; Schallenberger et al. 

1985; Eissa and el-Belely 1990). In contrast to many other species like the sheep (Thorburn et 

al. 1977), the horse (Holtan et al. 1979) and humans (Diczfalusy 1969), in which the placenta 

adopts the role as the main source of progestagens during gestation, in pregnant cattle it only 

contributes temporarily and to a minor extent to maternal systemic progesterone levels since 

the corpus luteum is the main source of progesterone throughout gestation (Estergreen et al. 

1967; Day 1977; Chew et al. 1979; Johnson et al. 1981). The capacity of the bovine placenta 

to produce progesterone became obvious when luteolysis was induced with prostaglandin F2α 

or analogues, or after ovariectomy. Whereas ablation of luteal function readily induced 

abortion when performed before about day 150 or after day 240, in the period between a 

considerable proportion of cows maintained pregnancy for a longer time or even until normal 

term suggesting the existence of an additional source of progesterone between days 150-240 

(Estergreen et al. 1967; Day 1977; Johnson et al. 1981). Moreover, the capacity of bovine 

placental tissues to produce progesterone was shown in vitro (Ainsworth and Ryan 1967; 

Wiener 1976; Reimers et al. 1985; Shemesh 1990; Schuler et al. 1994), but arteriovenous 

progesterone concentration differences indicate that the gravid uterus of the cow does not 

contribute to systemic progesterone concentrations during late gestation (Comline et al. 1974; 

Ferrell et al. 1983, Conley and Ford 1987). The fact that after day 240 ablation of luteal 

function in most cases led to immediate abortions again suggests that placental progesterone 

production decreases significantly during late gestation. However, measurements of placental 

progesterone tissue concentrations and of placental 3β-HSD activities show that these 

parameters only decrease at parturition (Tsumagari et al. 1994). These observations suggest 

that the limited capability of the bovine placenta to maintain late pregnancy in the absence of 

luteal progesterone is not due to a decrease in placental progesterone production but rather to 

an increased progesterone metabolization or an increased progesterone threshold level for the 

maintenance of pregnancy. 

In bovine placentomes progesterone is unequivocally produced in the trophoblast (Duello et 

al. 1986; Myers and Reimers 1988). However, the exact cell type(s) responsible for 

progesterone synthesis has/have not been identified yet unequivocally. In in-vitro 

investigations using enriched preparations of UTCs and BNCs, progesterone production was 

clearly higher in the BNC fraction (Reimers et al. 1985). However, "BNC" is not a well-

defined cell type as besides mature TGC it may also include TGC precursors at intermediate 

stages of maturation (Klisch et al. 1999). By in situ-hybridization, the mRNA specific for 3β-
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HSD – the enzyme catalyzing the last step in progesterone synthesis - was localized in 

immature TGC but was virtually absent in UTC and mature TGC (Schuler et al. 2008). 

However, as in differentiating cells the emergence of a functional protein may follow the up-

regulation of the corresponding mRNA with some delay (Ostermeier et al. 2002; Dadoune 

2003; Lambard et al. 2004; Ballantyne et al. 1997; Charlesworth et al. 2000), the major cell 

type producing progesterone in the bovine trophoblast still awaits closer characterization. 

Progestins are key regulators in the establishment and maintenance of pregnancy (Csapo 

1956, Gomes and Erb 1965, Mann and Lamming 1999). However, due to its insignificant 

contribution to maternal progesterone concentration, the function of placental progesterone in 

pregnant cows is unclear. By immunocytochemistry, in bovine placentomes progesterone 

receptors have been localized in the nuclei of caruncular stromal cells and caruncular vascular 

pericytes suggesting that these cells are rather under the control of placental than luteal 

progesterone (Schuler et al. 1999; Boos et al. 2000). Thus progesterone production of the 

trophoblast may serve the provision of high local progesterone concentrations immediately at 

the feto-maternal interface, which might be essential for specific actions of progesterone such 

as the protection of the fetus from the maternal immune system (Hansen 1998; Tibbetts et al. 

1999; Hansen 2007). However, recent work (Shenavai et al. 2010) using a progesterone 

receptor antagonist does not support this hypothesis.  

Interestingly in the bovine trophoblast steroidogenic enzymes are compartmentalized on a 

cellular – or more precisely – on a temporal level. P450scc and P450c17 are only expressed in 

UTC. 3ß-HSD and aromatase are only up-regulated during TGC differentiation, whereas 

P450c17 is rapidly down-regulated at a very early stage of this process (Schuler et al. 2006a, 

2008). These expression patterns suggest that in UTC the steroidogenic cascade stops at 

dehydroepiandrosterone (DHEA). Only after entering the TGC differentiation process, 3β-

HSD expression is up-regulated, and DHEA may be further converted to androstenedione and 

estrogens. According to this concept progesterone may only be produced if there is a 

carryover of the precursor pregnenolone from UTC to differentiating TGC or a leakage of this 

precursor from UTC to TGC. Consequently, in trophoblast cells progesterone may only be a 

by-product of the synthesis of estrogens or another unknown steroid (Schuler et al. 2008). 

 
2.2.2 Production of estrogens by the bovine placenta and their putative functions 

Results from the measurement of estrogen concentrations in bovine fetal fluids indicate that 

placental estrogen synthesis starts soon after the onset of placentation (Eley et al. 1979). Sites 

of estrogen production are the trophoblast cells of fetal cotyledons (Hoffmann et al. 1979; 
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Robertson and King 1979; Evans and Wagner 1981; Larsson et al. 1981; Gross and Williams 

1988; Hoedemaker et al. 1990; Schuler et al. 1994, 2006a). Expression pattern of aromatase in 

bovine placentomes, which is up-regulated in trophoblast cells during TGC differentiation 

indicates that mature TGCs are the predominant source of estrogens in pregnant cows 

(Schuler et al. 2006a). The main estrogen secreted throughout gestation is estrone (E1), 

predominantly in its sulfoconjugated form i.e. estrone sulfate (E1S) (Hoffmann et al. 1997; 

Zhang et al. 1999). A rise of maternal E1S levels becomes detectable around days 100-120 of 

gestation. They increase continuously until late gestation to levels around 10-30 nmol/l, 

remain fairly constant during the last two weeks of gestation, start to decrease on the day prior 

to parturition and return to basal levels within 1-2 days postpartum. However, the peripartal 

decrease may be significantly protracted in cases of retained fetal membranes (Hoffmann et 

al. 1979). E1 levels initially follow a similar pattern, however, on a substantially lower level. 

Different from E1S, in most animals E1 concentrations continue to increase in late gestation 

until parturition. After birth, they return to basal levels in parallel with E1S concentration 

(Hoffmann et. al. 1997). Estradiol-17ß only increases significantly during late gestation. 

However, the primary source of this estrogen in pregnant cows is not fully clear as there is 

evidence of a significant estradiol-17ß production in the bovine udder de novo or by the 

utilization of placental precursors (Janowski et al. 2002). 

Traditionally in pregnant cows estrogens have been considered as regulatory factors involved 

in the preparation of the birth canal for parturition (Smith et al. 1973) and in the control of 

mammogenesis (Schams et al. 2003), lactogenesis (Sawyer et al. 1986) and myometrial 

activity (Burton et al. 1987). However, this list is obviously incomplete as all of the functions 

mentioned are related to late gestation and parturition, whereas estrogen synthesis of the 

bovine trophoblast is already detectable at very early stages of gestation (Eley et al. 1979). 

Based on the expression pattern of estrogen receptors in bovine placentomes established by 

immunocytochemistry, a function as local regulators of placental growth, differentiation and 

functions has been suggested. Estrogen receptor alpha (ERα) was localized in the caruncle in 

a proportion of epithelial and stromal cells and in vascular pericytes. It was not detectable in 

the cotyledon (Boos et al. 2000; Schuler et al. 2002). Thus, a role of placental estrogens in the 

stimulation of the high proliferative activity observed in caruncular epithelium was suggested 

(Björckman 1969; Schuler et al. 2000; Boos et al. 2003). Also consistent with the concept of 

placental estrogens as local regulators, a significant correlation between estrogen tissue 

concentrations and proliferative activity of caruncular stromal cells was found (Schuler 2000). 

ERß expression was widely expressed in caruncles and cotyledons. However, as concluded 
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from the intensity of immunosignals, expression was generally weak with the exception of 

TGC, where ERβ expression was substantially up-regulated during TGC differentiation. The 

expression pattern of ERß in bovine TGC suggests that placental estrogens might be involved 

in the control of TGC differentiation via an auto- or intracrine mechanism (Schuler et al. 

2005). Moreover, the detection of estrogen receptors in the fetal and maternal vascular 

systems point to a role of placental estrogens as regulators of angiogenesis and vascular 

functions. However, at current none of these suggested functions have been definitely proven. 

When Janowski et al. (1996) applied the estrogen receptor blocker tamoxifen to late pregnant 

cows, no effects on calving process could be demonstrated. However, the significance of this 

experiment is unclear as the extent to which the treatment was able to inhibit estrogenic 

effects in the presence of high estrogen concentrations occurring in late pregnant cows 

remains elusive. 

 

2.2.3 Estrogen sulfotransferase expression and estrone sulfate production of the 

bovine trophoblast 

An intriguing feature concerning bovine pregnancy-associated estrogens is the fact that, with 

the exception of the last month of gestation, when free estrogens increase substantially in 

peripheral maternal blood, sulfonated forms by far exceed the free ones (Hoffmann et al. 

1997; Takahashi et al. 1997). Sulfoconjugation of estrogens abolishes receptor binding and 

hence receptor mediated actions (Hähnel et al. 1973). Moreover, it increases water solubility 

and binding of the hormone to albumine, thus limiting the distribution of the molecule in 

tissues. Consequently, sulfonation of estrogens is commonly considered as an important 

mechanism for the inactivation of estrogens also enhancing their excretion (Clarke et al. 

1982). However, estrogen sulfonates may be readily converted to active estrogens by removal 

of the sulfate by the enzyme STS (Santner et al. 1984; Reed et al. 2005). 

 

2.2.3.1 Classification of sulfotransferases 

Sulfotransferases, which catalyze the transfer of a sulfonate group from a 3´-

phosphoadenosine-5´-posphosulfate (PAPS) to an acceptor group of the substrate, are divided 

into two big families: (1) the membrane bound sulfotransferases located in the Golgi 

apparatus catalyzing the sulfonation of peptides, protein, lipids and aminoglycans and (2) the 

cytosolic sulftotransferases (SULTs) involved in the metabolism of a multitude of 

endobiotics, xenobiotics and drugs such as phenols, phenolic and neutral steroids, arylamines, 

primary and secondary alcohols (Chapman et al. 2004). In humans, to date a total of 13 
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cytosolic SULT genes have been identified, which are divided into four families: SULT1, 2, 4 

and 6 (Blanchard et al. 2004; Freimuth et al. 2004). Although individual SULTs have 

substrate preferences, they can be quite promiscuous, so that their main biological function is 

often obscured. Due to substantial substrate overlap at level of subfamilies and even families 

(see table 1), considerable confusion occurred in early naming schemes. Only recently with 

modern biochemical, biophysical, and genetic characterization this issue has been resolved. 

The human sulfotransferase highly specific for estrogens is now named SULT1E1. It is the 

only SULT that exhibits affinity for estrogens in a physiological concentration range. It has a 

significantly higher affinity for estrogen sulfonation than other SULTs and displays a 

particularly high affinity for its natural substrates, estradiol-17ß and estrone, indicating an 

important role of this enzyme in the modulating of estrogen action (Schrag et al. 2004). 
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Table 1: The human cytosolic sulfotransferase family (according to Pasqualini, 2009). 

SULT Common Name Amino Acids 
Substrate 
Preference 

(endogenous) 

Sequence 
Identities with 

SULT1A1 
P-PST/-1 295 phenols  
    
TS-PST  estrogens  
    
H-PST    
    

  SULT1A1 

HAST1/2    
ST1A2 295 phenols 95.6% 
    
HAST4    
    

  SULT1A2 

TS-PST2    
M-PST 295 phenols 92.9% 
    
TL-PST  cathecholamines  
    
HAST3  estrogens  
    

  SULT1A3 

hEST/1    

  SULT1A4   not known 

99.99% 
homology with 
SULT1A3 
 

  SULT1B1 ST1B2 296 thyroid 
hormones 53.4 

HAST5 296 phenols 52.2 
      SULT1C2 
SULT1C1    

  SULT1C4 hSULT1C 302 not known 53.2 

  SULT1E1 hEST/-1 294 estrogens (high 
affinity) 50.1 

DHEA-ST 285 
3ß-
hydroxysteroid 
DHEA 

34.6 

    
  SULT2A1 

HST    

  SULT2B1-v1 hSULT2B1a 350 DHEA, 
pregnenolone 36.3 

  SULT2B1-v2 hSULT2B1b 365 DHEA, 
cholesterol 36.9 

  SULT4A1-v1 hBR-STL 284 not known 34.2 
  SULT4A1-v2     
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2.2.3.2 Properties and functions of SULT1E1 

In general, the catalytic cycle of sulfonation requires the sulfonate acceptor (ROH) and the 

donor 3'- phosphoadenosine 5'-phosphosulfate (PAPS) to bind to a SULT, which results in the 

release of the sulfonate and 3´-phosphoadenosine-5´-phosphate. Although according to the 

common chemical nomenclature the transfer of –SO3
1- - as catalyzed by SULT1E1 is a 

sulfonation. However, compounds structured RO-SO3
1- are traditionally misnamed sulfates 

(Kuss 1994). The human SULT1E1 consists of 294 amino acids, the protein encoded by the 

human liver SULT1E1 cDNA is 81%, 73%, and 72% identical to the amino acid sequences of 

guinea pig adrenocortical, bovine placental and rat liver SULT1E1, respectively (Aksoy et al. 

1994). Bovine SULT1E1 protein consists of 295 amino acids and has a maximum apparent 

molecular weight of 34,600 (Nash et al. 1988). As the majority of SULTs, also SULT1E1 is a 

homodimer in its catalytically active form. The structure and function of SULTs is reviewed 

in detail by Chapman et al. (2004). 

As obvious from observations in knockout models, the crucial physiological role of SULT1E1 

is the local control of the availability of active estrogens. In female SULT1E1 knockout mice 

subfertility due to placental thrombosis, placental degeneration (Tong et al. 2005) and 

impaired ovulation (Gershon et al. 2007) was observed. The main phenotype in male 

SULT1E1 knockout mice was an age-dependent leydig cell hypertrophy/hyperplasia coupled 

with seminiferous tubule damage, which resulted in reduced sperm motility (Qian et al. 2001; 

Coughtrie 2002). 

 

2.2.3.3 Regulation of SULT1E1 expression or estrogen sulfotransferase activities 

Prior to the definite characterization of individual SULTs by molecular biological methods, 

investigations on sulfotransferases were primariliy based on the detection of enzyme 

activities. Thus, due to the overlapping substrate specificities of SULTs in many cases it 

comes not fully clear which of the many SULTs was actually detected. Thus, in the following 

text the term estrogen sulfotransferase (EST) will be used in cases where only the sulfonation 

of estrogens was measured or results are otherwise questionable in relation to the underlying 

enzyme, and the term SULT1E1 will only be used where the enzyme was assessed by specific 

methods. 

Information on the regulation of SULT1E1 is still sparse. In human and porcine endometrium, 

EST was up-regulated by progesterone (Meyers et al. 1983; Falany and Falany 1996). In male 

mice, SULT1E1 expression in testes was shown to be androgen dependent (Song 2007). In fat 

tissue of mice SULT1E1 is expressed in a sexually dimorphic manner and is regulated by 
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testosterone (Khor et al. 2008). In mouse models it has also been shown that activation of the 

orphan nuclear receptor liver X receptor (LXR) up-regulates SULT1E1 expression. 

Endogenous ligands of these receptors are cholesterol-derived oxysterols (Gong et al. 2007). 

 

2.2.3.4 Expression pattern of SULT1E1 or estrogen sulfotransferase in general 

EST activity has been reported in numerous tissues of males and females of various species 

including liver, kidney, brain, adrenal gland, etc. (Hobkirk 1985). However, it is also well 

known that marked differences of EST expression and/or activity exist in tissues depending 

on species, sex, age, development and physiological status (Hobkirk et al. 1983; Hobkirk and 

Glasier 1992; Mancini et al. 1992). The liver has been considered a primary site of steroid 

sulfotransferase activities, but significant activities have also been found in other organs such 

as in the testis of rat and man (Song et al. 1995). In male mice SULT1E1 is discretely 

expressed and regulated in the reproductive tract and plays a physiological role in maintaining 

the functional integrity of the epididymis by regulating luminal estrogen homeostasis (Tong 

and Song 2002). In the genital tract of bulls, SULT1E1 expression was described in the testis 

and epididymis (Frenette et al. 2009). In female mice SULT1E1 was highly expressed in 

placenta and uterus (Alnouti and Klaassen 2006). In humans SULT1E1 is widely expressed in 

adult and fetal organs and tissues including the placenta (Miki et al. 2002). 

 
2.2.3.5 Expression pattern of SULT1E1 or estrogen sulfotransferase in bovine 

placentomes 

Measurements of EST activities in bovine placentomal tissue concordantly yielded 

substantially higher sulfonation of estrogens in the cotyledon compared to the caruncle 

(Mattioli et al. 1984; Möstl et al. 1986; Hoffmann et al. 2001). Hoffmann et al. (2001) 

measured EST activities in caruncular and cotlyedonary homogenates fom midpregnancy 

until parturition, which did not change substantially during the period investigated. On a 

subcellular level EST activities were clearly associated with the cytosol, whereas activities in 

the nuclear, mitochondrial and microsomal fractions were significantly lower. 

Hirayama et al. (2008) tested the hypothesis that prolonged gestation and poor signs of 

parturition in cows carrying somatic clone fetuses may be related to a lack of free estrogens at 

normal gestational length in spite of fetal maturity. Their results suggest that maternal 

concentrations of free estrogens in clone pregnancies did not increase sufficiently in the 

prepartal period to facilitate parturition due to elevated placental SULT1E1 expression levels, 

and they concluded that excessive estrogen sulfoconjugation is the reason for a low ratio of 
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active to inactive estrogens. Thus, the resulting hormonal imbalance may contribute to the 

lack of overt signs of readiness for parturition in cows pregnant with clones.  

In order to understand the function of bovine pregnancy associated estrogens, the site of their 

inactivation, i.e. the sites of SULT1E1 expression on a cellular level, have to be considered. 

Brown et al. (1987) produced a monoclonal antibody against EST purified from bovine 

placentomes and localized the enzyme in the cytoplasm of TGC by immunohistochemistry 

without stating the stage of gestation when the tissue was collected. However, retrospectively 

it is doubtful if this antibody was actually specific for bovine SULT1E1 (see section 5.1). 

By in situ-hybridization, SULT1E1-mRNA was also localized in TGC (Ushizawa et al. 2007; 

Hirayama et al. 2008). By means of real-time RT-PCR a significant increase of SULT1E1-

mRNA levels was demonstrated between days 25-250 of gestation (Ushizawa et al. 2007). 

However, published data do not provide information on the temporospatial expression pattern 

of SULT1E1 in bovine placentomes on a cellular level in the course of bovine gestation and at 

parturition, and SULT1E1 expression in bovine trophoblast cells as a function of TGC 

differentiation has not been addressed. Howsoever, the co-expression of SULT1E1 and 

aromatase (Schuler et al. 2006a) in bovine TGC would imply that in pregnant cows E1S is a 

primary product of TGC. Thus, observations so far available on the localisation of SULT1E1 

in bovine placentomes suggest that sulfonation of estrogens takes place in the same cells 

where they are produced, and which also express the β-isoform of the estrogen receptor 

(Schuler et al. 2005). These observations point to a role of placental estrogens as intracrine 

regulators during TGC differentiation. Alternatively or in addition, sulfated estrogens may be 

substrates for local intratissue activation of sulfated estrogens via the sulfatase pathway. 

 

2.3 Expression of steroid sulfatase in bovine placentomes and sulfatase pathway 

As sulfonation of estrogens abolishes receptor binding and hence receptor mediated actions, 

the predominant production of E1S by the bovine trophoblast on a first view questions the 

role of placental estrogens as paracrine regulators of bovine caruncular growth and 

differentiation via classical nuclear receptors. However, E1S may not only be considered as a 

mere inactivated metabolite destined for excretion. Steroid sulfates bind to albumin and have 

a prolonged half life in blood (up to 9 hours) compared with the much shorter half lifes of free 

steroids (Ruder et al. 1972). Thus, the high circulating E1S concentrations together with its 

prolonged half life have given rise to the view that it may act as a precursor reservoir for the 

local intratissue formation of biologically active estrogens via the action of STS (Santner et 

al. 1984; Reed and Purohit 1993; Purohit et al. 1996). During the past twenty years this 
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"sulfatase pathway" of estrogen formation has gained increasing interest in connection with 

the etiology and therapy of human hormone–dependent breast cancer in postmenopausal 

women, where the intratissue production of free estrogens from E1S is much more efficient 

than that of androgens via the aromatase route (Santner et al. 1984; Reed et al. 2005). 

 

2.3.1 Characteristics of steroid sulfatase (STS) 

StS (EC3.1.6.2, arylsulfatase C) catalyzes the hydrolysis of alkyl (e.g. DHEA sulfate, 

pregnenolone sulfate, cholesterol sulfate) and aryl (e.g. E1S) steroid sulfates (Reed et al. 

2005). It is a member of a group of 12 different mammalian sulfatases. Early investigations 

suggested that arylsulfatase C and StS may be different enzymes. However, biochemical and 

genetic analyses confirmed that there is only one enzyme (Reed et al. 2005). The central role 

of placental STS for the formation of estriol in the human fetoplacental unit (Diczfalusy 

1969), its abundance in the human placenta (Suzuki et al. 1992), and the virtual absence of 

detectable activity in cases of the inherited disorder of placental STS deficiency and recessive 

X-linked ichthyosis (Webster et al. 1978) have led to the enzyme from human placenta being 

extensively investigated (see below). Human placental STS has been purified to homogeneity 

and has been well characterized. Depending on the extent of glycosylation, purified human 

STS has a molecular mass of approximately 65 kDa (Stein et al. 1989). 

The human STS polypeptide is composed of 583 amino acids encoded by a gene located on 

the distal short arm of the X chromosome (Xp22.3). It is composed of 10 exons spanning 

approximately 140 kb of DNA. The gene shares significant homology with all the other 

members of the sulfatase gene family. The sequence and organization of the STS gene 

appears to be particularly similar to that of a cluster of three sulfatase genes also located in the 

Xp22.3 region (Yen et al. 1988; Shapiro et al. 1989). Deficiency of STS activity produces the 

syndrome of X chromosome-linked ichthyosis, which is one of the most common inborn 

errors of metabolism in man (Shapiro et al. 1989).  

The bovine StS is encoded by an 1737 bp open reading frame. The bovine StS protein 

consists of 578 amino acids and has a predicted molecular mass of 64.4 kDa. Like the human 

StS gene, the homologous bovine gene is located on the X chromosome and is comprised of 

10 exons, bovine StS exhibiting 74% and 77% sequence identity to human StS on the mRNA 

and protein levels, respectively (Greven et al. 2007). 
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2.3.2 Expression and function of StS in humans and other species 

StS expression has been demonstrated in a broad range of organs. However, organ and tissue 

distribution may vary considerably between mammalian species. In mouse it has been 

demonstrated in liver, testis, ovary, adrenal glands, brain, endometrium, viscera, kidney and 

bone (Milewich et al. 1984). In human, StS expression in lung, aorta, liver, thyroid, testis, and 

uterus have been reported (Miki et al. 2002). Among numerous organs tested, the highest 

expression was found in skin, liver and lymph nodes, the lowest one in brain tissues (Selcer et 

al. 2007). On a subcellular level, StS expression is associated with cellular membranes, 

predominantly with the endoplasmatic reticulum, golgi cisterna and to a lesser extent with 

plasma membrane and components of the endocytic pathway (Willemsen et al. 1988; Stein et 

al. 1989; Hoffmann et al. 2001). Only little information is available on the regulation of StS 

expression or activity. In MCF7 breast cancer cells, StS activity is up-regulated by TNFα and 

interleukin-6. However, this up-regulation is mediated postranslationally rather than by 

changes in gene transcription (Newman et al. 2000). Moreover, substrate induction of StS by 

exogenous E1S has been described in liver and white blood cells of ovariectomized rats 

(Barth et al. 2000). Accordingly, the increased up-take of substrate by organic anion 

transporters has been suggested as a mechanism of postranslational control of StS activity 

(Reed et al. 2005). STS on its part increases steroidogenic acute regulatory protein (StAR) 

protein expression level and stimulates steroid production (Sugawara and Fujimoto 2004). 

In human placenta StS is highly expressed in the syncytiotrophoblast of chorionic villi and 

plays a pivotal role in the enzymatic cascade leading to the production of pregnancy-

associated oestrogens (Lam et al. 1984). Due to its lack of P450c17 expression (Voutilainen 

and Miller 1986) the human trophoblast depends on C19-precursors to produce oestrogens 

which are provided by the fetal and maternal adrenals in sulfonated form (Diczfalusy 1969). 

In humans, StS deficiency is a relatively common genetic disorder due to inactivating 

mutations of the StS gene which is located on the short arm of the X-chromosome 

(Hernandez-Martin et al. 1999). Apart from extremely low levels of placental oestrogen 

production during the fetal phase, in humans the clinical manifestation of StS deficiency is 

mainly characterised by a generalised desquamation of large, adherent, dark brown scales 

from the epidermis, and is therefore named X-linked ichthyosis (Hernandez-Martin et al. 

1999). The condition originates from the accumulation of cholesterol sulfate in the outer 

epidermis, which prevents normal desquamation of keratinocytes (Elias et al. 2004). 
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2.3.3 Expression of StS in bovine placentomes 

StS expression in bovine placentomes was detected by immunohistochemistry almost 

exclusively in the maternal part of the placentome, where it was localized in caruncular 

epithelial cells (Greven et al. 2007). Accordingly, StS activities were clearly higher in 

caruncular compared to cotyledonary homogenates (Mattioli et al. 1984; Möstl et al. 1986; 

Hoffmann et al. 2001). StS expression in bovine caruncular epithelial cells was clearly related 

to gestational age. In 100-240 day pregnant animals, expression was essentially restricted to 

areas adjacent to the chorionic plate and basal primary and secondary chorionic villi. In late 

pregnant animals expression gradually extended towards the caruncular stalk. After the onset 

of luteolysis and during active labour overall staining intensity had increased substantially and 

signals occurred ubiquitously in the flattened and partially dismantled caruncular epithelium. 

In addition to caruncular epithelial cells StS expression was sporadically observed in 

individual TGC (Greven et al. 2007).  

 

2.3.4 The biological role of StS in bovine placentomes  

The biological role of StS in bovine placentomes is still unclear but must be clearly different 

from its role in the human endocrine feto-placental unit, where StS located in the 

syncytiotrophoblast is a prerequisite for the utilization of sulfoconjugated C19-precursors 

provided by the fetal and maternal adrenals to produce estrogens (Diczfalusy 1969; Kuss 

1994; Salido et al. 1990). Possibly, StS in caruncular epithelial cells may control locally the 

availability of free, active estrogens in bovine caruncles which may serve the restriction of the 

effects of the large amounts of pregnancy associated estrogens to a subset of estrogen 

responsive cells thereby avoiding detrimental systemic side effects in the maternal 

compartment. Accordingly, in caruncular epithelial cells StS (Greven et al. 2007) is co-

expressed with ERα (Schuler et al. 2002). However, as hydrolytic activity of bovine placental 

StS is not limited to sulfoconjugated phenolic steroids (Schuler et al. 2008), alternatively or in 

addition, StS expression in the caruncular epithelium may also serve the utilization of 

sulfoconjugated neutral steroid precursors (e.g. pregnenolone sulfate or cholesterol sulfate) 

supplied with maternal blood, thus providing free steroid substrates for further metabolization 

in the adjacent trophoblast. This hypothesis has not been investigated so far. However, the 

fact that other factors acting at an early stage within the steroidogenic cascade, such as the 

steroid acute regulatory protein (StAR) and P450scc have been found to be expressed in the 

caruncular epithelium (Ben-David and Shemesh 1990; Verduzco et al. 2007) is consistent 

with this concept. 
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Moreover, the detection of high StS expression in bovine organs without quantitatively 

significant steroid hormone production such as the skin or gut suggests that StS may also have 

functions unrelated to the production of hormonally active steroids (Greven et al. 2007). 

 

2.4 Sodium-dependent Organic Anion Transporter (SOAT, SLC10A6) and its 

function as a transporter of sulfonated steroids 

2.4.1 Transport of free and sulfonated steroids in tissues 

Free steroid hormones are commonly believed to penetrate tissues and enter cells solely by 

free diffusion through plasma membranes due to their lipophilic nature (free hormone 

hypothesis). However, the existence of cellular up-take mechanisms for carrier-bound steroids 

have been suggested similar to the clearence of cholesterol, which involves the recognition of 

carrier proteins by endocytic receptors on the surface of target cells, followed by 

internalization and cellular delivery of the sterols (Willnow and Nykjaer 2010). Until recently, 

virtually no information was available on the intra-tissue transport of steroid sulfates. As they 

are considerably more hydrophilic than free steroids, so far unidentified specific transport 

mechanisms have been postulated to be necessary for their penetration across cellular 

membranes. Transport systems for organic solutes comprise passive transporters, which 

permit passive movement of molecules across the plasma membrane down its concentration 

gradient, and active transporters, which use different energy coupling mechanisms (Hediger 

1994). 

Recently the cellular up-take of E1S into estrogen responsive cancer cells has found 

increasing interest in connection with the intratumoral production of active estrogens via the 

sulfatase pathway (Santner et al. 1984; Utsunomiya et al. 2004; Sasano et al. 2009), and a still 

increasing number of transporters including the sodium-dependent organic anion transporter 

(SOAT, SLC10A6), the organic anion transporter 6A1 (OATP6A1; syn.: organic anion-

transporting polypeptide 1 (Oatp1) Eckhardt et al. 1999, Kanai et al. 1996), the organic anion 

transporting polypeptides B (OATP-B) (St-Pierre et al. 2002), organic anion transporter 4 

(OAT-4) (Ugele et al. 2003), organic anion transporting polypeptide D (OATP-D) and 

organic anion transporting polypeptide E (OATP-E) (Nozawa et al. 2004) has now been 

identified to accept steroid sulfates as substrates exhibiting a wide range of affinities. 

 

2.4.2 Structure and functions of the SOAT 

The sodium dependent organic anion transporter (SOAT, SLC10A6) belongs to solute carrier 

family 10 (SLC10). The SLC10 family of sodium/bile salt cotransporters contains over 50 



 REVIEW OF LITERATURE 20 

 

members in animal, plant and bacterial species. The first member of this transporter family, 

the Na+/taurocholate cotransporting polypeptide (NTCP; SLC10A1) was identified in 1990 

by expression cloning from rat liver (Hagenbuch et al. 1990). After few years its intestinal 

counterpart was cloned from hamster intestinal cDNA library and was named the apical 

sodium-dependent bile acid transporter (ASBT; SLC10A2). Human NTCP and rat/mouse 

Ntcps consist of 349 and 362 amino acids, respectively, and show an overall sequence identity 

of >70%. In contrast to ASBT, substrate specificity of NTCP is not limited strictly to bile 

acids. NTCP also transports steroid sulfates such as estrone-3-sulfate (E1S) and DHEAS. 

They mediate sodium-coupled uptake of taurocholate and other bile acids with a 

Na+:taurocholate stoichiometry of 2:1 (Hagenbuch and Meier 1994; Weinman 1997). 

The apical sodium-dependent bile acid transporter (Asbt; Slc10a2) was initially isolated from 

hamster cDNA library by expression cloning (Wong et al. 1994). Later, human ASBT, as well 

as the rat Asbt, rabbit Asbt, and mouse Asbt were cloned from the ileum (Wong et al. 1995; 

Shneider et al. 1995; Kramer et al. 1999; Saeki et al. 1999). These proteins consist of 348 

amino acids and show an overall amino acid identity of >80%. Although sequence identity to 

the hepatic NTCP is relatively low, at 35%, all NTCP/Ntcp and ASBT/Asbt carriers transport 

conjugated bile acids with high affinity in a sodium-dependent manner (Wong et al. 1994, 

1995; Craddock et al. 1998). In contrast to the basolateral localization of Ntcp, Asbt is highly 

expressed in the apical brush border membrane of enterocytes of the terminal ileum (Shneider 

et al. 1995). ASBT transports all major species of bile acids. However, it favors trihydroxy- 

over dihydroxy-bile salts and conjugated over unconjugated species.  

Four more members of the SLC10 family have been identified i.e. SLC10A3, SLC10A4, 

SLC10A5, and SLC10A6 (SOAT) (Geyer et al. 2004; Hagenbuch and Dawson 2004). Within 

the SLC10 family, ASBT and SOAT are the most homologous members, with high sequence 

similarity (70%) and almost identical gene structures and thus have obviously emerged from a 

common ancestor gene (Geyer et al. 2006). 

SOAT was first cloned from rat adrenal (Geyer et al. 2004) and has then been described in 

man (Geyer et al. 2006) and cow (Greven 2008). It is expressed in a broad spectrum of organs 

including brain, heart, kidney, lung, muscle, spleen, testis, adrenal gland, placenta, small 

intestine, and colon, with the testis exhibiting by far the highest expression in any species so 

far investigated. The SOAT protein consists of 370 amino acids in the rat (Geyer et al. 2004) 

and 377 in man (Geyer et al. 2006) and cattle (Greven 2008). It shows 42% and 31% overall 

amino acid sequence identity to the ileal sodium-dependent bile acid transporter (Isbt) and the 

Na(+)/taurocholate cotransporting polypeptide (Ntcp), respectively. SOAT is predicted to 
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have nine (rat) or seven (man) transmembrane domains, with an N-terminus outside the cell 

and an intracellular C-terminus. In functional studies using transfected Xenopus laevis 

oocytes or HEK293 cells, the bile acids such as taurocholic acid, cholic acid and 

chenodeoxycholic acid were not substrates of SOAT, but a sodium-dependent import was 

demonstrated for E1S (Km = 31 µM, Vmax = 5557 fmol/oocyte/30 min) and DHEA-S (Km = 

30 µM, Vmax = 5682 fmol/oocyte/30 min). Thus, SOAT has been suggested as a 

physiologically relevant transporter of steroid sulfates (Geyer et al. 2004). 

 

2.4.3 The bovine SOAT and its expression in placentomes during bovine gestation 

SOAT-mRNA cloned from bovine placentomes showed an identical intron-extron-structure 

compared to the human SOAT. It is also composed of six exons and consists of 377 amino 

acids. The homology on the protein level was 78%. Contrary to the SOAT in other species 

examined so far, in the cow four variants occurred on the mRNA level in addition to the 

standard SOAT (variant 1) (Greven 2008). The variants are formed by the deletion of 

complete exons and/or the insertion of an additional exon 1´. In variant 2 exon 4 is deleted, 

which causes a frame shift and results in a premature stop codon, the corresponding protein of 

this variant is predicted to contain only 240 amino acids. In variant 3 exons 2-4 are deleted 

without a change in the reading frame. The predicted protein is missing 128 amino acids in 

comparison to variant 1 while the amino acid-sequence at the N- and C-terminus is 

maintained. Variants 4 and 5 are characterized by the insertion of the additional exon 1´. An 

additional deletion of exon 4 occurs in variant 4. However, the predicted proteins for exons 4 

and 5 are identical as exon 1´ includes several stop codons. A schematic presentation of the 

mRNAs encoding individual bovine SOAT isoforms is included in Fig. 3 in section 3.6. 

When measuring SOAT-mRNA in bovine caruncles and cotyledons between day 100 and 

parturition using a real-time RT-PCR system covering all identified variants, significantly 

higher levels were found in the maternal than in the fetal part of the placentomes. Whereas in 

the cotyledons they remained on a constant low level in the period under investigation, there 

was a substantial increase in mean SOAT-mRNA levels in the caruncles around the time of 

the prepartal luteolysis and at parturition (Greven 2008). Due to a high variability between 

individual animals, this prepartal increase was not statistically significant. The detection of 

significant SOAT-mRNA levels in a pure caruncular epithelial cell line suggested that the 

caruncular epithelium is the predominant site of SOAT expression in bovine placentomes. 

When measuring SOAT-mRNA concentrations in various bovine organs, the highest 

expression was found in testis, which was about 20fold higher compared to the expression in 
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placentomes, followed by skin and the adrenal gland. A lower but significant expression was 

also found in the liver, rumen, small intestine, lymph node, mammary gland and ovary. By 

transport studies using HEK 293 cells transiently transfected with bovine standard SOAT a 

significant sodium-dependent cellular import of DHEAS, pregnenolone sulfate (P5S) and E1S 

was demonstrated. The functions of bovine SOAT variants 2-5 and their specific expression 

patterns have not been studied so far (Greven 2008). Possibly they have a different substrate 

affinity and/or spectrum, may be functionally inactive or may exhibit an inverted direction of 

transport, as it has been described for a variant of the closely related apical sodium-dependent 

bile acid transporter (ASBT) similar to SOAT-variant 3 (Lazaridis et al. 2000). The results 

obtained for the bovine SOAT suggest that in cattle it is a physiological relevant steroid 

sulfate transporter, which could play an important role in the transport of pregnancy 

associated sulfonated steroids. The co-localization of SOAT and STS and their similar 

expression pattern in the bovine caruncle indicate that they are subject to similar regulatory 

mechanisms and that they may cooperate functionally. 

 

2.5 Androgens and their roles in female reproduction 

According to the general biochemical nomenclature, androgens are C19-steroids, which 

applies to the two most important endogenous androgens, testosterone and 5α-

dihydrotestosterone (DHT). However, steroids with a differing number of C-atoms may 

exhibit significant androgenic activity, and a significant proportion of C19-steroids do not 

bind to the AR. Thus, from a functional point of view, androgens are synthetic or natural 

compounds able to bind and activate the AR (MacIndoe et al. 1981; Freeman et al. 2001; Gao 

and Dalton 2007). 

Androgens are commonly considered as male reproductive hormones important in the 

induction of male sex differentiation during the fetal and neonatal phase (Levine 1971; 

Diamond et al. 1973) and in the control of male reproductive functions after the onset of 

puberty such as initiation and maintenance of spermatogenesis (Collins et al. 2003), function 

of epididymis (Pierrepoint and Davies 1984) and of accessory sex glands, maintenance of 

other secondary male characteristics and male behavior (Barkley and  Goldman 1977). 

Moreover, they are also important metabolic hormones (Mode et al. 1984). During fetal 

development in males, androgens exert long-term effects which are either organizational on 

specific organs during a critical phase of morphogenesis (e.g. sexual differentiation of 

external genitalia), or programming neural functions or enzyme activities expressed later in 

life. At all stages of development, which extends from fetal and neonatal stages to pubertal 
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accomplishment, androgens also have activational effects that are immediate, multiple, 

reversible and dose dependent (Maguelone 1983). 

As precursors for estrogen synthesis or by-products, they are also synthesized in significant 

amounts in female steroidogenic organs. However, due to rapid metabolism, in systemic 

circulation of females they are usually measured only in minimal amounts (Yin et al. 2003). 

Disturbed functions of steroidogenic organs in females may lead to hyperandrogenism 

causing hirsutism, acne, alopecia, and oligo-amenorrhea (Karrer-Voegeli et al. 2009; Yildiz 

2006) and virilisation (Holt et al. 2005; Luef et al. 2002). Moreover, androgens have been 

shown to induce follicle atresia (Hillier and Tetsuka 1997). Adverse effect of high androgen 

levels on the endometrium in women may result in infertility (Tuckerman et al. 2000). Poor 

reproductive performance observed in women with polycytic ovarian syndrome (PCOS) may 

be due, in part, to the concomitant increase in both serum androgens and elevations in 

endometrial AR (Apparao et al. 2002). Thus any disturbance in ovarian androgen metabolism 

will profoundly affect the reproductive state of females and may provoke different kinds of 

reproductive abnormalities in women (McKenna and Cunningham 1995; Carmina et al. 

1997). 

On the other hand, there is increasing evidence that androgens have important regulatory 

functions in females under physiological conditions. Evidence for a role of androgens in 

female reproductive physiology of various species arises from the detection of AR in various 

organs involved in female reproduction such as hypothalamus, pituitary, uterus and the ovary 

(Pope and Cardenas 2006; Rice et al. 2007; Slomczynska et al. 2007), and from 

pharmacological studies of androgen action on follicle development suggesting inhibitory and 

stimulatory effects on follicular development depending on the developmental stage (Vendola 

et al. 1999; Evans et al. 1997). Accordingly, recent studies in female AR knockout mice 

reported decreased fertility with significantly reduced pups per litter and corpora lutea, and 

premature ovarian failure, thus establishing the importance of androgens in the female 

reproduction (Yeh et al. 2002; Matsumoto et al. 2003; Hu et al. 2004; Sen and Hammes 2010; 

Walters et al. 2009; Zhou 2010). AR actions have a function in the physiological growth and 

development of the uterus and disruption of genomic AR signaling leads to abnormal uterine 

development. AR -/- uteri were morphologically different from wildtype uteri and had a 

significant reduction in diameter, total uterine area, endometrial area, and myometrial area 

(Walters et al. 2009). 

Reciprocal ovarian transplantation experiments to differentiate between extra- and 

intraovarian effects in female AR knockout mice point to neuroendocrine and local 
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intraovarian AR mediated actions. However, the mechanisms of androgens in female 

reproductive physiology are still widely unclear due to difficulties to differentiate 

unequivocally between direct effects of androgens or indirect effects mediated via ER after 

conversion of androgens to estrogens or to other metabolites with estrogenic activities such as 

the DHT-derived 5α-androstane-3ß,17ß-diol. Moreover, as steroid receptors these may act as 

transcription factors in the absence of their steroid ligand, AR functions unrelated to 

androgens must also be considered (Rommerts 1990; Huang et al. 2002; Bonaccorsi et al. 

2006; Zhu and Kyprianou 2008). 

 

2.5.1 Production of androgens during pregnancy in cattle and other mammalian 

species and putative roles of androgens during pregnancy  

In addition to estrogen and progesterone, depending on the species considerable levels of 

androgens may also be present in the uterine environment during pregnancy, a seemingly 

common phenomenon among mammals of which the blastocyst and/or placenta exhibits 

significant steroidogenic activity, including humans (Bonney et al. 1984), pigs (Fischer et al. 

1985; Stefanczyk-Krzymowska et al. 1998) and rats (Legrand et al. 1984; Pelletier 2002). 

However, in these cases placental androgens are primarily considered as precursors for 

placental estrogen synthesis, and possible discrete functions exerted by placental bioactive 

androgens have been rarely addressed (see discussion in section 5.3). Similarly, it is unclear if 

increased androgen levels measured in maternal blood of various species (see below) have 

discrete functions or if they have just escaped from aromatization in placental tissues. 

However, a special situation has been found in the pregnant rat, where androgens produced in 

the placenta serve as precursors for ovarian estrogen synthesis (Jackson and Albrecht 1985). 

During pregnancy levels of testosterone or other C-19 steroids in maternal blood may rise in a 

species-specific manner (Bamman et al. 1980; Gaiani et al. 1984; Silberzahn et al. 1984; 

Carlsen et al. 2006). In pregnant women, the total serum testosterone concentration increases 

progressively throughout pregnancy. The increase in testosterone concentration in normal 

human pregnancies was detectable as early as 15 days after the LH surge. However, during 

this early time of pregnancy testosterone was obviously primarily of luteal origin (Castracane 

et al. 1998). In pregnant women the maternal serum testosterone concentrations were three to 

four times higher than umbilical cord serum concentrations; maternal values were 100 to 140 

ng/dL and cord values average 33.5 ng/dL during second half of pregnancy (Tulchinsky and 

Ryan 1980). 
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In pregnant cows, the plasma concentration of testosterone ranged between 20 and 50 pg/ml 

until about day 90 of pregnancy and was higher (220 pg/ml) around day 270 (Gaiani et al. 

1984). Möstl et al. (1987) measured testosterone concentrations of 0.40±0.20 ng/ml during the 

last week of pregnancy in cows. After parturition the concentration of the androgens declined 

rapidly. According to Hoffmann et al. (1976) testosterone values in pregnant cows between 

days 247 and 273 were 0.08 - 0.55 ng/ml. 

 

2.5.2 Expression of androgen receptors in female reproductive organs of mammalian 

species and putative functions 

Information on AR expression in healthy female reproductive organs in different species is 

available for various tissues but predominantly for the ovary and uterus (Horie et al. 1992a,b). 

In human and macaque endometrium under normal cylic conditions, AR mRNA and protein 

are only expressed in stroma but not in the glands or vascular endothelium. Endometrial AR 

have been shown to be up-regulated by estrogens and down-regulated by progesterone 

(Mertens et al. 1996; Slayden et al. 2001; Slayden and Brenner 2004). Sauerwein et al. (1998) 

measured mRNA-levels in uterine tissue samples from normal cycling bitches and from 

bitches suffering from pyometra. AR-mRNA level was 3.5 fold lower in the uteri from bitches 

suffering from pyometra compared to uteri from healthy bitches during metestrus. However, 

they could not demonstrate a significant effect of the stage of ovarian cycle on uterine AR-

mRNA levels in healthy bitches. A basal expression of AR in canine uterus throughout the 

estrus cycle has also been described by Vermeirsch et al. (2002) using immunohistochemistry. 

AR immunostaining was also demonstrated in the uterus of female fetuses on day 90 as well 

as in the uterus of 1-day-old piglets (Slomczynska et al. 2007). AR mRNA was detected in the 

porcine endometrium during pregnancy up to day 18 post coitum, but no transcripts were 

observed during 32, 50, 71 and 90 days, while AR protein was detectable in glandular 

epithelium and stromal cells as through day 90 of pregnancy. AR was also detected in the 

myometrium on all investigated days of pregnancy. However, on day 90, the immunostaining 

was present only in a limited number of cells (Slomczynska et al. 2007). AR in the pig 

endometrium has been suggested to be important for maternal receptivity for implantation 

(Kowalski et al. 2004). Vesanen et al. (1992) concluded from their ligand binding studies that 

AR is expressed in various regions of the bovine uterus and in the cervix and suggested that 

androgens may participate the endocrine regulation of bovine uterine and cervical functions. 

Ovarian AR function is required for normal female reproduction, particularly for 

folliculogenesis (Shiina et al. 2006). Locally produced androgens in the ovary act via 
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granulosa cell (GC) ARs to modulate follicular responsiveness to gonadotrophins and thereby 

contribute to the paracrine regulation of ovarian function (Hillier et al. 1997). AR expression 

in GC has been described in various species like bovine (Hampton et al. 2004), human (Horie 

et al. 1992a,b; Chadha et al. 1994), monkey (Hild-Petito et al. 1991), rat (Schreiber and Ross 

1976; Tetsuka et al. 1995), pig (Duda and Slomczynska 2007). GC-specific androgen receptor 

knockout (ARKO) mice had premature ovarian failure and were subfertile, with longer 

estrous cycles and fewer ovulated oocytes (Sen and Hammes 2010). Evidence for the 

expression of AR also in the bovine ovary comes from ligand binding studies (Vesanen et al. 

1992). 

Information on AR expression in placenta is limited in humans and is virtually absent in other 

mammalian species. First evidence for AR expression in human placenta came from early 

ligand binding studies, where a specific binding of natural or synthetic androgens to placental 

protein was found (Barile et al. 1979; Stanley et al. 1980; Hirota et al. 1981; McCormick et al. 

1981, Younes et al. 1982). However, as the detection of a “receptor” by ligand binding assay 

is based on the observation of high affinity and low capacity binding, the definite nature of 

the detected binding protein remains eventually unclear. Accordingly, Macaulay et al. (1988) 

concluded from the results obtained with their ligand binding studies that the androgen 

binding site contained in the human placenta is different from the classical AR. However, 

later studies by means of immunocytochemistry and RT-PCR confirmed the expression of AR 

in the human placenta, and AR was immunolocalized in the nuclei of syncytiotrophoblasts 

and vascular endothelial cells (Horie et al. 1992a; Hsu et al. 2009; Uzelac et al. 2010). From 

their studies on dysregulation of testosterone production and AR expression in the human 

placenta with gestational diabetes mellitus Uzelac et al. (2010) concluded that impaired 

androgen signaling in the placenta may profoundly interfere with its development and 

function. 

 

2.5.3 Structural and functional organization of the androgen receptor 

The AR gene is a single-copy gene which in various mammalian species has been localized 

on the long arm of the X chromosome. Like other members of the nuclear receptor 

superfamily, AR has four major functional regions (Fig. 1): the N-terminal transactivation 

domain (TAD), a central DNA-binding domain (DBD), a C-terminal ligand-binding domain 

(LBD), and a hinge region connecting the DBD and LBD (Mangelsdorf et al. 1995). Two 

autonomous transactivation functions, a constitutively active activation function (AF-1) 

originating in the N-terminal and a ligand-dependent activation function (AF-2) arising in the 
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LBD, are responsible for the transcriptional activity of this nuclear receptor (Gronemeyer and 

Laudet 1995; Bevan et al. 1999; Powell et al. 2004). 

 

 
Figure 1: Functional organization of the AR and composition of the corresponding mRNA. 

Transactivation: n-terminal transcription activating domain; DBD: central DNA 

binding domain; Hinge: linker between DBD and the c-terminal ligand binding 

domain (LBD). 

 

The DBD, which is highly conserved among nuclear receptors, is encoded by exons 2 and 3. 

The DBD includes 8 cysteine residues that form two zinc fingers (Evans 1988). The DBD of 

AR exhibits a high degree of amino acid sequence identity to the corresponding domains of 

other steroid receptors such as the glucocorticoid receptor (GR), the progesterone receptor 

(PR), and mineralocorticoid receptor (MR). Consequently, the four receptors recognize very 

similar, if not identical, hormone response elements (HREs). The two zinc fingers in the 

DBDs of nuclear receptors differ both structurally and functionally (Härd et al. 1990; 

Schwabe et al. 1990; Luisi et al. 1991). The first zinc finger contains the so-called P-box (Gly, 

Ser, and Val) that dictates the sequence specificity of binding to HRE (Berg 1989; Freedman 

1992; Freedman and Luisi 1993). A five amino acid-residue long D-box of the GR super 

family is located in the N-terminal side of the second zinc finger. The D-box is important in 

specifying the half-site spacing requisite at the HRE (Dahlman-Wright et al. 1991). In 

addition, the D-box provides the entire dimerization interface for DBD-DBD interaction. 

The function of the AR hinge region, defined by residues 628-669 in man, is not yet well 

understood. A sequence located between residues 628 and 657 within the hinge region 

contains a short stretch of basic amino acids that resemble the nuclear targeting signal of GR 

and has been described to form part of a bipartite nuclear localization signal (NLS) (Zhou et 

al. 1994). Wang et al. (2001) reported that AF-2 of AR LBD is inhibited by the cognate hinge 
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region. A mutant AR with a deletion of residues 628-646 in the hinge region exhibited 

transactivation activity that was more than double that of the wild-type AR. 

The primary mechanism of action for ARs is to direct regulation of gene transcription 

(Heinlein and Chang 2004). The binding of an androgen to the AR results in a conformational 

change in the receptor which in turn causes dissociation of heat shock proteins, transport from 

the cytosol into the cell nucleus and dimerization (Tyagi et al. 2000; Marcelli et al. 2006). The 

AR dimer binds to a specific sequence of DNA known as a hormone response element. AR 

interact with other proteins in the nucleus to form a transcription complex resulting in up- or 

down-regulation of specific gene transcription (Smith and Toft 1993; Cleutjens et al. 1997; 

Pratt and Toft 2003). Up-regulation or activation of transcription results in increased synthesis 

of messenger RNA which in turn is transcribed by ribosomes to produce specific proteins. For 

example, androgens via AR up-regulate insulin-like growth factor-I receptor (IGF-IR) 

expression and sensitize prostate cancer cells to the biological effects of IGF-I (Pandini et al. 

2005). Thus, changes in levels of specific proteins in cells is one way that ARs control cell 

behavior. 

As AR is a transcription factor, its oncogenic functions – as mentioned above - are likely 

mediated through specific target genes. Prostate specific antigen (PSA), the best studied AR 

target gene, is thought to contribute to prostate cancer progression through its protease 

activity (Borgono and Diamandis 2004) and its ability to induce epithelial-mesenchymal 

transition and cell migration (Whitbread et al. 2006). 

The transcriptional activity of AR is affected by coregulators that influence a number of 

functional properties of AR, including ligand selectivity and DNA binding capacity (Heinlein 

and Chang 2002). AR coregulators participate in DNA modification of target genes, either 

directly through modification of histones or indirectly by the recruitment of chromatin-

modifying complexes, as well as functioning in the recruitment of the basal transcriptional 

machinery (Heinlein and Chang 2002). Aberrant AR coregulator activity due to mutation or 

altered expression levels may be a contributing factor in the progression of diseases related to 

AR activity, such as prostate cancer (Heinlein and Chang 2002). 

 

2.5.4 Ligand independent actions of androgen receptor, membrane bound androgen 

receptors and nongenomic effects of androgens 

More recently, classical nuclear ARs have been shown to have alternative modes of action. As 

has been also found for other steroid hormone receptors such as estrogen receptors, they can 

have actions that are independent of their interactions with DNA (Heinlein and Chang 2002). 
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ARs may interact with certain signal transduction proteins in the cytoplasm. Androgen 

binding to cytoplasmic ARs can cause rapid changes in cell function independent of changes 

in gene transcription, such as changes in ion transport. Moreover, regulation of signal 

transduction pathways by cytoplasmic ARs can indirectly lead to changes in gene 

transcription, for example, by leading to phosphorylation of other transcription factors. One 

function of AR that is independent of direct binding to its target DNA sequence is facilitated 

by recruitment via other DNA binding proteins. Finally, AR could be activated in an 

androgen-independent way by growth factor or cytokine signalling pathways, like those 

initiated by epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1), keratinocyte 

growth factor and IL-6, which would elicit AR-mediated transcriptional activation (Culig et 

al. 1994; Reinikainen et al. 1996; Hobisch et al. 1998). 

In addition to the intracellular (nuclear) androgen receptor (iAR) mediating genomic androgen 

signals resulting in receptor dimerization, nuclear translocation and subsequent activation of 

androgen-specific target genes (Heinlein and Chang 2004), effects of androgens have been 

described which are initiated at the cytoplasma membrane triggering non-genomic signals 

which may become manifest within minutes of androgen binding. It is now widely accepted 

that rapid responses to steroid hormones are mediated by at least two types of receptors: (I) a 

pool of classical steroid receptors associated with the plasma membrane and (II) specific G-

protein coupled receptors (GPCR) unrelated to classic nuclear receptors or a receptor in close 

association with a GPCR. For estrogens and progesterone specific GPCR have been 

identified. Data from biochemical characterization of membrane androgen receptors suggest 

also the existence of a G-protein coupled membrane androgen receptor. However, the 

underlying protein has not been cloned yet (for reviews see Rahman and Christian 2007; 

Foradori et al. 2008, Papadopoulou et al. 2009). 
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3. MATERIALS AND METHODS 

3.1 Tissue collection and sample preparation 

3.1.1. Formalin fixed, paraffin embedded tissue for immunohistochemistry 

Placentomes from healthy cows at various stages of pregnancy were collected at a local 

slaughterhouse. Gestational ages were estimated according to fetal crown-rump length 

(Rexroad et al. 1974). Additionally, placentomes were taken from three pregnant cows during 

elective caesarean section on day 272. From each of these animals 3-5 placentomes were 

removed from the midregion of the uterine horn that had contained the fetus. For comparative 

studies, tissue samples of various bovine organs were also collected at the slaughtherhouse 

and processed as described for the placentomal tissue. 

Tissue samples of about 1 cm x 1 cm x 0.5 cm size were fixed overnight in 10% phosphate 

buffered formalin and subsequently dehydrated in a graded ethanol series. Finally they were 

embedded in paraffin. Formalin-fixed, paraffin embedded placentomal tissue samples 

prepared in the same manner from cows during the prepartal decline of progesterone (n=3) 

and at normal term (n=3) were available from previous studies (Schuler et al. 2005). All 

experiments involving living animals were performed in accordance with the relevant 

guidelines for the care and use of animals and with approval by the responsible animal 

welfare authority, the Regierungspräsidium Giessen. 

 

3.1.2. Collection of tissue for protein and RNA isolation 

Placentomes and samples from various other bovine organs and tissues were collected at a 

local slaughterhouse as described above. From placentomes, cotyledonary and caruncular 

tissue was prepared by careful manual separation in a glass dish placed on ice. Small pieces of 

tissues of about 2 cm x 2 cm x 1 cm size were prepared from organs/tissues, wrapped in 

aluminum foil, snap-frozen on dry ice and stored at -80ºC till further use. Snap-frozen 

placentomal tissue samples from cows during the prepartal decline of progesterone (n=3) and 

at normal term (n=3) were available from previous studies (Schuler et al. 2005). In these cases 

complete placentomes were removed during cesarean section, placed in phosphate buffered 

saline (PBS), taken to the laboratory within 10 min after collection, frozen in liquid nitrogen 

and stored at -80°C until analysis.  
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3.2. Immunohistochemistry 

3.2.1 Immunohistochemical detection of androgen receptor 

3.2.1.1 Staining procedure 

An indirect immunoperoxidase staining method using a polyclonal purified rabbit antiserum 

raised against a peptide mapping at the N-terminus of human AR (N-20, sc-816, Santa Cruz 

Biotechnology, Heidelberg, Germany) was applied. 

About 5 µm tissue sections were mounted on SuperFrost-Plus slides (Menzel Glaeser, MAGV 

Laborbedarf, Rabenau-Londorf, Germany), deparaffinized by two 4 min changes of xylene, 

rehydrated in graded ethanol and washed under running tap water (5 min). For antigen 

retrieval the rehydrated sections were preincubated in 10 mM citrate buffer for 5 min prior to 

three times 5 min microwave irradiation in pre-heated citrate buffer in an oven run at 560 W. 

After a 20 min cooling period the slides were washed under running tap water for 5 min 

followed by a treatment with 0.3% hydrogen peroxide in methanol for 30 min to quench 

endogenous peroxidase activity, then they were washed with immunocytochemistry (ICC) 

buffer for 5 min. Unspecific binding sites were blocked by covering with goat serum (Vector 

Laboratories, Burlingame, USA) diluted at a concentration of 1:67 in ICC buffer). After 

draining the blocking reagent, the primary antibody diluted at 1:500 in ICC buffer was 

applied and the slides were incubated for 20 h in a refrigerator at 4°C. They were then washed 

with ICC buffer, covered with the secondary biotinylated anti-rabbit antibody (from 

Vectastain Elite ABC Kit, PK 6101, Vector Laboratories, Burlingame, USA) diluted at a 

concentration of 1:200 in ICC buffer and incubated for 30 min at room temperature. 

Following draining of excess antibody, the sections were washed twice for 5 min with ICC 

buffer, then covered with streptavidin-peroxidase complex (Vector Laboratories, Burlingame, 

USA) and incubated for 30 min. After washing with ICC buffer (2 changes 5 min each), the 

sections were incubated with substrate solution (NovaRed substrate kit, Vector Laboratories, 

Burlingame, USA) for 8 minutes. The slides were washed under running tap water for 5 min, 

counterstained with hematoxylin and dehydrated in graded (70%, 96% and 100%) ethanol for 

2 minutes each, 3 minutes in xylol and finally the sections were mounted in Histokit 

(Assisstent, Osterode, Germany). Negative controls were set up with serum of a non-

immunized rabbit at an equal protein concentration as the primary antibody. As a positive 

control tissue bovine caput epididymis was used, as a high AR expression has been reported 

in this organ in other mammalian species (Tekpetey et al. 1989; Goyal et al. 1997; Zhu et. al 

2000; Bilinska et al. 2004; Parlevliet et al. 2006). All the slides were stained during a single 

run to avoid effects of inter-incubation variability. 
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3.2.1.2 Quantification of immunostaining for androgen receptor using an 

immunoreactive score (IRS) 

For the following cell types of the placentome a quantitative evaluation of immunostaining 

for AR was performed applying an immunoreactive score (IRS) (Remmele and Stegner 

1987): invasive, mature, immature trophoblast giant cells (inTGC, maTGC, imTGC), UTC, 

stromal cells of chorionic villi (SCV), caruncular epithelial cells (CE) and caruncular stromal 

cells (CS). 

UTC are small cells of the trophoblast variable in shape and form which with their basal part 

reside on the basal membrane of the chorionic epithelium and with their apical pole form a 

brush border interdigitating with caruncular eithelial cells. 

Immature TGC are round or spherical, mostly binucleated cells in the trophoblast of 

intermediate size between UTC and TGC and are at an intermediate position between the 

basal membrane of the chorionic epithelium and the feto-maternal borderline. Their 

cytoplasm stains darker than that of surrounding mononucleate trophoblast cells, which 

facilitates their identification in case only one nucleus is situated in the section plane. 

However, as the differentiation of imTGC and UTC is frequently unconfident, these cell types 

were assessed as one fraction. 

Mature TGC are characterized by their size, two large nuclei and copious granules in their 

cytoplasm. They are in contact with the caruncular epithelium, but unlike the UTC, they do 

not form a microvilli brush with the maternal epithelial cells. 

Invasive TGC are situated in the caruncular epithelium and are in contact with its basal 

membrane. Moreover, they may fuse with individual caruncular epithelial cells and form 

three-nuclear feto-maternal hybrid cells. As they are short-lived, they may exhibit various 

stages of degeneration. 

Staining intensity was classified as negative, weak, moderate or intense. One section from 

each animal was visually scanned and for each cell type percentaged distributions of the 

above mentioned staining categories were established. Subsequently for each staining 

category, the determined percentage was multiplied by the respective weighting factor, which 

was 0, 1, 5, and 10 for negative, weak, moderate and intense staining, respectively. Finally, 

the IRS was calculated as the sum of these four products divided by 100. Consequently, the 

IRS may range from 0 (all cells of a certain type negative) to 10 (all cells of a certain type 

intensely positive). The arithmetic means and standard deviations were calculated from these 

IRS values for each cell type of animals preassigned into the individual observational groups. 
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3.2.2 Immunohistochemical detection of SULT1E1 

3.2.2.1 Staining procedure 

For the localization of SULT1E1 on a cellular level and characterization of its expression in 

bovine placentomes as a function of TGC differentiation and gestational age, two 

immunohistochemical methods were established basically following the procedure described 

for AR in 3.2.1.1. The following primary antisera were used: 

1) A polyclonal antiserum produced in a rabbit against recombinant bovine SULT1E1 (αbov-

SULT1E1). This antiserum was a gift from Dr. Robert Sullivan, Centre de Recherche en 

Biologie de la Reproduction and Département d’Obstétrique-Gynécologie, Faculté de 

Médecine, Université Laval, Canada. Its production, purification by affinity chromatography 

and validation is described in a detailed manner by Frenette et al. (2009). It was applied at a 

dilution of 1:6000 in ICC buffer. 

2) A commercial polyclonal antiserum produced in mice against human SULT1E1 (SAB 

1400268, Sigma-Aldrich Chemicals GmbH, Deisenhofen, Germany; in this thesis named 

αhum-SULT1E1) which was applied at a concentration of 1:1000 in ICC buffer. 

As secondary antibodies, 1) a biotinylated anti-rabbit antibody (from Vectastain Elite ABC 

Kit, PK 6101, Vector Laboratories, Burlingame, USA) at a dilution of 1:3000 in ICC buffer 

and 2) a biotinylated anti-mouse antibody (BA2000, Vector Laboratories, Burlingame, USA) 

at a dilution of 1:1000 in ICC buffer were used, respectively. 

 

3.2.2.2 Evaluation of immunostaining for SULT1E1 using an immunoreactive score 

(IRS) 

After immunohistochemistry using the two different primary antisera, immunostaining for 

SULT1E1 in UTC was evaluated semi-quantitatively basically as described in 3.2.1.2, 

respectively. However, in order to test for an influence of the localization, evaluation was 

performed separately in the chorionic plate and at defined localization of the chorionic villous 

tree (Fig. 2): 

Primary (stem) villi: major villi with a pronounced stromal core running perpendicularly 

from the chorionic plate. 

Secondary villi: originating directly from primary villi; characterized by narrower but 

significant stromal cores and, where the immediate origin from a 

primary villus was not visible, by an orientation more or less 

perpendicular to primary villi 
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Tertiary villi: exhibiting only minimal stromal parts surrounding central capillaries. 

For each of the villous types, staining was evaluated separately in the basal (close to the 

chorionic plate) and apical half (adjacent to the caruncular stalk) of the interdigitation zone. 

One section per animal was evaluated. For each of the seven predefined localizations, mean 

staining intensity in UTC was classified as negative, week, moderate or intense on basis of 

pre-assigned photographic standards. Calculation of the IRS values was performed as 

described in 3.2.1.2. 

 

 

 

 

 

 

 

 

 

Figure 2: Schematic diagram of a bovine chorionic villus indicating the sites of semi-

quantitative evaluation of SULT1E1-specific immunostaining in uninucleated 

trophoblast cells. The dotted line indicates the arbitrary division of the 

interdigitation area in a basal and an apical zone of equal height. 

 

3.3. Preparation of total RNA from tissues 

Coarse pieces of deep-frozen (-80°C) tissues wrapped in aluminum foil were broken up using 

a clean hammer. The tissue fragements were quickly placed in a pre-chilled mortar and 

powdered by a pestel under liquid nitrogen. 100 mg of tissue powder were immersed in 1 ml 

Trizol solution (Invitrogen, Karlsruhe, Germany) and further homogenized by three 60-120 

seconds bursts on ice using an ultra turrax T25 (IKA-Werke GmbH & Co KG, Staufen Br., 

Germany). 200 µl chilled (-20°C) chloroform was added to the homogenized tissue, after 

short gentle shaking (up and down) it was kept on ice for 5 minutes followed by 

centrifugation at 20160 x g at 4°C for 15 minutes. After centrifugation, the uppermost of the 

resulting three liquid phases was taken into a fresh 2 ml round Eppendorf tube (Sarstedt, AG 

& Co., Nümbrecht, Germany) and 200 µl chloroform were added. After centrifugation at 

20160 x g at 4°C for 15 minutes, the supernatant was taken into a fresh 2 ml Eppendorf tube 

and lower portion was discarded. 400 µl chilled (-20°C) isopropanol was added to the 
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supernatant and incubated for 1 hour at -20°C. This was followed by centrifugation at 20160 x 

g for 10 minutes at 4°C. The supernatant was discarded and the pellet was redissolved in 500 

µl chilled (-20°C) 70% ethanol. After incubation for 10 minutes on ice followed by 

centrifugation at 20160 x g at 4°C for 10 minutes the ethanolic phase was discarded. This 

washing step was repeated. After complete draining of the alcohol, the pellet was allowed to 

dry at 37°C. After complete drying the pellet was solubilized in 50 µl diethylpyrocarbonate 

(DEPC) treated water kept in a water bath at 70°C for 10 minutes, followed by vortexing for 

complete solubilization. 50 U of RNAse inhibitor (Fermentas, Sankt Leon-Rot, Germany) was 

added and the total concentration of RNA was measured in a BioPhotometer (Eppendorf AG, 

Hamburg, Germany) at 260 nm in disposable cuvettes (UVette®, Eppendorf AG Hamburg, 

Germany) containing 2 µl of RNA stock solution and 98 µl double distilled water (ddH2O) 

using 100 µl ddH2O as a blank. Working solution aliquots adjusted to an RNA concentration 

of 100 ng/µl were prepared from stock solution by dilution with ddH2O and stored at -20°C 

until use. The remaining RNA stock solution was stored at -80°C till further use. 

 

3.4 DNase treatment 

To eliminate genomic DNA, the RNA working solution (see previous section) was treated 

with DNase (Roche Diagnostics GmbH, Mannheim, Germany) following the manufacturer’s 

instructions and RNase inhibitor (Fermentas, Sankt Leon-Rot, Germany) was added prior to 

reverse transcription. All reagents were kept on ice during pipetting. Firstly a DNase mix was 

prepared as stated in table 2. 

 

Table 2: Reagents and their volumes (per sample) required for the preparation of a DNase 

mix used for the elimination of genomic DNA from RNA preparations. 

Component Volume Concentration of stock 
solution 

Incubation buffer 2 µl  
DNase 1, RNase free 1 µl 10 U/µl 
RNase Inhibitor 0,25 µl 40 U/µl 
total 3.25µl  

 

3.25 µl of DNase mix and 6.25 µl of the RNA working solution (100 ng RNA/µl) were mixed 

in a 0.5 ml plastic reaction tube and incubated in a thermocycler (T1 Thermocycler 49, 

Biometra GmbH, Göttingen, Germany) as listed in table 3. 
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Table 3: Incubation protocol for DNase-treatment of RNA-preparations (elimination of 

genomic DNA) 

Temperature Duration 
37°C 10 minutes 
75°C 5 minutes 
4°C till removal 

Due to its instability, DNase treated RNA working solution had to be transcribed immediately 

into cDNA. 

 

3.5 Reverse transcription 

For reverse transcription (RT), the GeneAmp RNA PCR Kit (Perkin Elmer, Foster City, CA, 

USA) was used. The first strand cDNA was synthesized by using 1.5 µl (containing 74 ng/µl 

of RNA) of DNase treated RNA preparation and 8.5 µl of the RT-mastermix (Table 4) 

prepared according to the instructions of the kit supplier. This was pipetted in multiples 

according to the number of mRNA samples. 

 

Table 4: Reagents and their volumes (per sample) required for the preparation of the RT-

mastermix. Reagents and buffer were taken from the GeneAmp RNA PCR Kit 

(Perkin Elmer, Foster City, CA, USA). 

Component Volume Concentration of 
stock solution 

MgCl2 2 µl 25 mM 
PCR-buffer 1 µl 10x 
Deoxyribonucleotidetriphosphate 
(DNTP) mix 

4 µl 10 mM 

Random hexamers 0.5 µl 50 µM 
RNase inhibitor 0.5 µl 20 U/µl 
Reverse transcriptase 0.5 µl 50 U/µl 

 

A one step reverse transcription was carried out in 0.5 ml plastic reaction tubes (Biozym 

Diagnostik GmbH, Hessisch Oldendorf, Germany) running an automated program in a T1 

Thermocycler 49 (Whatman Biometra Göttingen, Germany) as stated in table 5. 

 

Table 5: Incubation protocol for reverse transcription 

Temperature Duration 
21°C 8 minutes 
42°C 15 minutes 
99°C 5 minutes 
5°C 5 minutes 
4°C till removal 
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3.6 Conventional reverse transcription (RT)-polymerase chain reaction (PCR) 

Experiments using conventional RT-PCR were carried out for the following purposes: 

1) to qualitatively confirm the expression of a target mRNA in a certain tissue 

2) to check for proper operation of primer pairs designed for use in real-time RT-PCR and to 

confirm their specificity for the respective target mRNA. 

Primer pairs were designed using Oligo Explorer (Version 1.1) and Oligo Analyzer (Version 

1.1) software (Teemu Kuulasmaa, University of Kuopio, Finnland; freeware from the 

internet) and purchased from Eurogentec (Köln, Germany). Sequences of primer pairs are 

listed in table 6. For primers subsequently used in real-time RT-PCR see tables 10, 12 in 

sections 3.7 and 3.8, respectively. The positions of primers used for the detection of 

individual SOAT variants in the resepective mRNA sequence are schematically presented in 

Fig. 3. 

Table 6: Sequences of primers (for = forward; rev = reverse) used in conventional RT-PCR, 

expected length of amplicons (base pairs, bp), annealing temperature (TA) and 

sequence information used for primer design (accession number or reference). 

Gene Primer 
Amplicon 

length 
(bp) 

 
TA 

Accession 
No. 

 

AR for.: 5′-CAGATGGCAGTCATTCAG-3′ 
rev.: 5′-CTTGGTGAGCTGGTAGAAG-3′ 386 56oC XM_00125

3942 

SOAT V-1 for. 5′-TGGATCTCAGCATCAGTATG-3′ 
rev.: 5′- TCATCAGCACCATACCAG 3-3′ 281 56oC EF186076 

SOAT V-2 for.: 5′-TGGATCTCAGCATCAGTATG-3′ 
rev.: 5′- AATTGTCCTGCACCTTAAG-3′ 230 56oC EF495204 

SOAT V-3 for..: 5′- ATGGATCTCAGGTGCAGGAC-3´ 
rev.: 5′- GACGGCCCAGGACTTAGAG -3′ 322 62oC EF495205 

SOAT V-4 for.: 5′- ATGGATCTCAGCAAAGAAAG -3′ 
rev.: 5′- AATTGTCCTGCACCTTAAG 3′ 428 55oC EF495206 

SOAT V-5 for.: 5′-CTGGTGGAGAACTGAAGAGG-3′ 
rev.: 5′-CTTTCATCAGCACCATACCA-3′ 333 56oC Greven 

(2008) 

SULT1E1 for.: 5’-GAGGCAAGACCAGATGAC-3’ 
rev.: 5’-ACAGGCAGGTGAGACTTC-3’ 229 60oC BC102939 

GAPDH for.: 5′-CGATACTCACTCTTCTACCTTCGA-3′ 
rev.: 5′-TCGTACCAGGAAATGAGTTGAC-3’ 82 60oC U85042) 
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Figure 3: Position of the primers used for the detection of individual SOAT variants in the 

respective mRNA sequence. 

 

3.6.1 Polymerase chain reaction 

After reverse transcription, the obtained cDNA (in 10 µl) was added to 40 µl PCR mix 

described in table 7 and was amplified in a Personal Cycler (Biometra Göttingen, Germany) 

with the incubation conditions as described in table 8. Negative controls were set up using a 

sham cDNA preparation, in which RNA working solution was replaced by ddH2O during the 

initial step of reverse transcription. 

In order to validate the PCR methods for the detection of mRNA specific for individual 

SOAT variants and to prepare respective DNA standards, PCRs were performed using 

pGMET-T easy vectors (Promega GmbH, Mannheim, Germany) containing SOAT variant-

specific inserts as templates. These vectors were kindly provided by Prof. Dr. Joachim Geyer, 

Institute of Pharmacology and Toxicology, Veterinary Faculty, Justus Liebig University 

Giessen. The method basically followed the above mentioned protocol. However, as 4 µl 

dNTP-Mix had to be added, the volume of autoclaved double distilled water in the PCR mix 

was reduced to 28.75 µl. 
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Table 7: Reagents and their volumes (per sample) required for the preparation of the PCR 

mix. 

Component Volume Concentration of stock 
solution 

MgCl2 2 µl 25 mM 
PCR-buffer 4 µl 10x 
Forward primer 0.5 µl 20 pmol/µl 
Reverse primer 0.5 µl 20 pmol/µl 
Amplitaq® Gold polymerase 0.25 µl 5 U/µl 
Autoclaved double distilled water 32.75 µl  
Total  40 µl  

 

Table 8: Incubation protocol for conventional PCR reactions 

Step Temperature Duration 
Initial denaturing 94°C 1 minute 
Denaturing 94°C 10 minutes 

Primer annealing 
Depending on the indi-
vidual primer pair (see 

table 6) 
2 minutes 

Elongation 72°C 90 seconds 

39 
times 

Final elongation 72°C 6 minutes 
Till removal 4°C  

 

3.6.2 Analysis of the PCR-amplicons by agarose gel electrophoresis 

The amplicons were separated and visualized on a 2% ethidium bromide stained agarose gel 

under UV transillumination. 1.82 g of agarose powder (Bioline GmbH, Luckenwalde, 

Germany) was added to 91 ml of Tris-Borate-EDTA (TBE) buffer. The mixture was then 

heated in a microwave at 560 W to completely dissolve the agarose powder and allowed to 

cool to about 60-65°C. After cooling, 1.9 µl of 1% ethidium bromide (Roth GmbH & Co., 

Karlsruhe, Germany) solved in ddH2O was added and the agarose solution was mixed 

carefully and poured into a horizontally set gel container (Biozym Diagnostik GmbH, 

Hessisch Oldendorf, Germany) and allowed to solidify for about 45 minutes at room 

temperature. 

The gel was immersed in a midi horizontal chamber (multiSUB/Biozym Diagnostik GmbH, 

Hessisch Oldendorf, Germany) containing TBE buffer and connected with a power supply 

(LKB Bromma, USA). 1.5 µl of 100 bp marker (100 ng/µl) (MBI Fermentas, Sankt Leon-Rot, 

Germany) and 1.5 µl loading dye (6x Loading Dye Solution; MBI Fermentas, Sankt Leon-

Rot, Germany) was added to 7 µl DEPC-water and mixed thoroughly with a pipette tip. 15 µl 

of each PCR product and 1.5 µl loading dye were mixed with a pipette, respectively. 

Subsequently the 15 µl of sample mix and 10 µl marker mix (7 µl ddH2O +1.5 µl loading dye 
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+ 1.5 µl DNA marker) were loaded into the wells of the agarose gel and allowed to run for 

35-45 minutes under a voltage of 125 V and a current of 300 mA for the amplicons to 

separate. The amplicons were then visualized under UV transillumination using a UV-

Transluminator fitted with a camera (Biostep GmbH, Jahnsdorf, Germany) linked to a PC 

equipped with software Phoretix Grabber 3.01 (Biostep GmbH, Jahnsdorf, Germany) and 

photographs were taken. 

 

3.6.3 Sequencing of PCR products 

In order to confirm the validity of the PCR methods for the detection and quantification of 

bovine SOAT variants, PCR products were separated on 1% agarose gel as described in 

section 3.6.2. The whole DNA band of was cut from the agarose gel and was further reduced 

to minimum possible size without affecting DNA band with a clean, sharp scalpel and then 

transferred into pre-weighed 1.5 ml colorless Eppendorf tube (Sarstedt, AG & Co., 

Nümbrecht, Germany). QIAEX II Gel Extraction Kit (Qiagen GmbH, Hilden, Germany) was 

used for DNA extraction. From this kit, 300 µl of reagent buffer QX1 were added into a tube 

with 100 mg of sliced gel containing the DNA band. Then 30 µl of QIAEX II solution were 

added and the tube was vortexed for 30 seconds. After that, it was placed into a water bath 

(50°C) and the agarose was allowed to solubilize for adsorption of DNA to the QIAEX II 

particles for 10 min. During this period the tube was vortexed after every 2 minutes to ensure 

that the QIAEX II solution was in suspension. The sample was then centrifuged for 30 

seconds and the supernatant was carefully removed with a pipette and discarded. The 

resulting pellet was washed with 500 µl of buffer QX1 solution to remove the remaining 

traces of agarose contaminants. It was then washed twice with 500 µl of buffer PE. After 

washing, the pellet was air dried for 30 minutes and then 20 µl of ddH2O were added and the 

pellet resuspended by vortexing. Thereafter the samples were incubated for 5 minutes at room 

temperature. After centrifugation for 30 seconds at 10000 x g, the supernatant (purified DNA) 

was carefully taken into a new clean Eppendorf tube. Total concentration of DNA was 

measured in a BioPhotometer (Eppendorf AG Hamburg, Germany) in a disposable cuvettes 

(UVette®, Eppendorf AG Hamburg, Germany) containing 2 µl of purified DNA from PCR 

product and 98 µl ddH2O using 100 µl ddH2O as a blank. 60 ng of purified PCR product and 

5 pmol (in 7 µl) of each primer pair were sent to a commercial laboratory (Scientific Research 

and Development GmbH, Bad Homburg, Germany) for sequencing. Data received from this 

laboratory were analyzed using the software BioEdit Sequence Alignment Editor (Tom 

Hall, freeware from the internet). 
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3.7 Real-time RT-PCR for the relative quantification of mRNA specific for SOAT 

variants and SULT1E1 (SYBR green® method) 

Relative levels of mRNA specific for SOAT variants 1, 2, 3, 5 and for SULT1E1 were 

determined in bovine placentomes and various organs by real-time RT-PCR (SYBR green 

method) using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as reference gene. 

SYBR green is a simple and economical method to detect and quantify PCR products in real-

time reactions. It binds to double-stranded DNA and emits light upon excitation. Thus, as a 

PCR product accumulates, fluorescence increases and becomes detectable by the fluorometer 

integrated in the PCR cycler. Since the dye binds to any double-stranded DNA, there is no 

need to design a target gene specific probe. However, since the dye does not distinguish 

between specific and non-specific products accumulating during PCR, follow up assays such 

as analysis/sequencing of the amplicon or melting curve analysis are needed to validate 

results. 

Primer pairs (see table 10) were designed using Oligo Explorer (Version 1.1) and Oligo 

Analyzer (Version 1.1) software (Teemu Kuulasmaa, University of Kuopio, Finnland; 

freeware from the internet) and purchased from Eurogentec Köln, Germany. Preparation of 

total RNA, reverse transcription and DNAse treatment was performed as described in sections 

3.3, 3.4 and 3.5. PCR amplification was performed using 96-well optical plates (BioRad 

Laboratories Inc., Hercules, CA, and Abgene Thermo Scientific UK). Each sample was 

analyzed in triplicate. Annealing temperatures (ranging between 50-65°C) for each primer 

pair for SOAT variants and SULT1E1 were optimized by temperature gradient assay using 

the preset program of the BioRad CFX 96 C1000 thermocyler (BioRad Laboratories Inc. 

Hercules CA, USA). After that, the concentration of cDNA used for real time PCR reaction 

was optimized for each primer pair using serial dilutions of template (cDNA). Finally the 

concentration of cDNA corresponding to 1/4th for SOAT variants and ½ for SULT1E1 of 

stock cDNA was identified as optimal. 5 µl of diluted cDNA stock solution were added to 

20 µl of real-time PCR-mastermix (table 10) to yield a 25 µl PCR reaction mixture. From the 

25 µl PCR reaction mixture, 23 µl was pippeted in 96 well plate and was covered with a 

optical sealing sheet (BioRad Laboratories Inc., Hercules, CA, USA). The plate was then 

transferred into a BioRad CFX 96 C1000 thermocyler (BioRad Laboratories Inc., Hercules, 

CA, USA). The amplification conditions were the same for the target and the reference gene 

i.e. denaturation for 10 min at 95°C followed by 40-45 cycles at 95°C for 15 s and 60°C for 

60 s. After the completion of the amplification a melting curve was generated by increasing 

the temperature from 50°C to 95ºC in small increments of 0.5ºC for 5 second intervals to test 
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for the occurrence of non-specific products and primer dimers using BioRad CFX 96 C1000 

thermocyler (BioRad Laboratories Inc., Hercules, CA, USA). Further evidence for the 

specificity of the products was obtained from conventional RT-PCR and subsequent analysis 

of the amplicons using agarose gel electrophoresis. For confirmation of the validity of SOAT 

variants specific methods, the PCR products were sent to a commercial laboratory (Scientific 

Research and Development GmbH, Bad Homburg, Germany) for sequencing as described in 

section 3.6.3. In order to validate the real-time RT-PCR methods, the efficiency was 

measured using a standard curve generated by serial dilutions of the cDNA according to the 

standard protocol provided by the supplier of thermocycler (BioRad Laboratories Inc., 

Hercules, CA, USA). The slope of the standard curve was used to determine the exponential 

amplification and the efficiency of the PCR reaction, which was calculated by the following 

equations (Rasmussen 2001): 

Exponential Amplification = 10(-1/slope)  

Efficiency = [10(-1/slope)] – 1  

The efficiencies of the qRT-PCR amplifications were between 90% and 100% for all of the 

genes tested (table 9) as requested for acceptable qRT-PCR methods. 

 

Table 9: Efficiencies of the qRT-PCR amplifications for the target genes measured by 

SYBR green method.  

Target Slope Amplification Efficiency % 
SOAT- V1 -3.43 1.96 96 
SOAT- V2 -3.58 1.90 90 
SOAT- V3 -3.41 1.96 96 
SOAT -V5 -3.16 1.97 97 
SULT1E1 -3.60 1.90 90 
GAPDH -3.25 2.03 100 

 
Relative gene expression values were calculated using the comparative CT method (ΔΔCT 

method) and reported as n-fold differences in comparison to the sample with the lowest 

amount of the respective target gene transcripts (calibrator) after normalizing the samples 

referring to the reference gene (GAPDH). 
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Table 10: Sequences of primers (for = forward; rev = reverse) used in real-time RT-PCR 

(SYBR green® method), expected length of amplicons (base pairs, bp) and 

sequence information used for primer design (accession number or reference). 

Gene Primer 
Amplicon 

length 
(bp) 

Accession 
No. 

 

SOAT V-1 for.: 5’-TGGATCTCAGCATCAGTATG-3’ 
rev.: 5’-AGGAGTCCACCAGCAATG-3’ 243 EF186076 

SOAT V-2 for.: 5’-TGGATCTCAGCATCAGTATG-3’ 
rev.: 5’-AATTGTCCTGCACCTTAAG-3’ 230 EF495204 

SOAT V-3 for.: 5’-TGGATCTCAGGTGCAGGAC-3’ 
rev.: 5’-CTTGACAACTGGGCTTCTCG-3’ 230 EF495205 

SOAT V-5 for.: 5’-CTGGTGGAGAACTGAAGAGG-3’ 
rev.: 5’-CTTTCATCAGCACCATACCA-3’ 333 Greven 

(2008) 

SULT1E1 for.: 5’-GAGGCAAGACCAGATGAC-3’ 
rev.: 5’-ACAGGCAGGTGAGACTTC-3’ 229 BC102939 

GAPDH for.: 5′-GCGATACTCACTCTTCTACCTTCGA-3′ 
rev.: 5′-TCGTACCAGGAAATGAG TTGAC-3 82 U85042 

 

Table 11: Reagents and their volumes (per sample) required for the preparation of the 

mastermix for real-time PCR (CYBR green® method). Reagents were from 

Abgene Thermo Scientific, UK and primers were purchased from Eurogentec, B-

4102 Seraing, Belgium. 

Component Volume (for one 
well) 

Stock Solution 

ABsolute™ Blue QPCR 
SYBR ® 12.5 µl 2 x 

Forward Primer 1.5 µl SOAT        3.75 µM  
SULT1E1  1.25 µM 

Reverse Primer 1.5 µl SOAT        3.75 µM  
SULT1E1  1.25 µM 

Autoclaved double 
distilled water 4.5 µl - 

 

3.8 Real-time RT-PCR for relative quantification of androgen receptor expression 

(TaqMan® method) 

The TaqMan method utilizes the 5'-nuclease activity of the DNA polymerase used for PCR to 

hydrolyze oligonucleotides hybridized to the target amplicon. TaqMan probes are 

oligonucleotides that have a fluorescent reporter dye attached to the 5' end and a quencher 

moeity coupled to the 3' end. They are designed to hybridize to an internal region of a PCR 

product. In the unhybridized state, the proximity of the fluorescent and the quenching 

molecules prevents the detection of fluorescent signal from the probe. During PCR, when the 



 MATERIALS AND METHODS 44 

 

polymerase replicates a template on which a TaqMan probe is bound, the 5'-nuclease activity 

of the polymerase cleaves the probe, and the fluorescence resonance energy transfer between 

the fluorescent and quenching dyes, which prevented fluorescent signal from the reporter dye 

no longer occurs. Thus, fluorescence increases in each cycle, proportional to the amount of 

probe cleavage. In addition to the primer sequences, the target gene specificity of the probe 

sequence further increases the specificity of this method. 

Preparation of total RNA, DNAse treatment and reverse transcription were performed as 

described in sections 3.3, 3.4 and 3.5. Primer and probes (see table 12) were designed using 

the Primer Express software (version 2.0, Applied Biosystems, USA) and purchased from 

Eurogentec, B-4102 Seraing, Belgium). Probes were labeled at the 5’-end with the reporter 

dye 6-carboxyfluorescin (FAM) and at the 3’-end with the quencher dye 6-

carboxytetramethyl-rhodamine (TAMRA). PCR amplification was performed on an 

automated fluorometer (ABI PRISM_7000 Sequence Detection System, Applied Biosystems, 

D-64293 Darmstadt, Germany) using 96-well optical plates. Each sample was analyzed in 

duplicates. For PCR 5 µl cDNA corresponding to 111 ng total RNA described in table 4 was 

used in a 25 µl PCR reaction mixture containing TaqMan-qPCR mastermix (Eurogentec, B-

4102 Seraing, Belgium), 1.5 µl of each primer and 1 µl probe (see table 13). Amplification 

conditions were the same for AR and GAPDH which was used as reference gene: 

denaturation for 10 min at 95 °C followed by 45 cycles at 95 °C for 15 s and 60°C for 60 s. 

The results were calculated using the comparative CT method (ΔΔCT method) according to the 

instructions of the manufacturer of the ABI PRISM_7000 Sequence Detector and were 

reported as n-fold differences in comparison to the sample with the lowest amount of the 

respective target gene transcripts (calibrator) after normalizing the samples referring to the 

reference gene GAPDH. Determination of efficency of the PCR amplification for AR was 

performed as described in section 3.7 and yielded 93%. 

 

 

 

 

 

 

 

 



 MATERIALS AND METHODS 45 

 

Table 12: Sequences of primers (for = forward; rev = reverse) and probes used in real-time 

RT-PCR for the measurement of relative expression levels of AR-mRNA 

(TaqMan® method), expected length of amplicons (base pairs, bp) and sequence 

information used for primer design (accession number). GAPDH was used as 

reference gene. 

Gene Primer/Probe 
Amplicon 

length 
(bp) 

Accession 
No. 

 

Androgen 
receptor 

for.: 5’-CACCTCTCCCAAGAATTTGG-3’ 
rev.: 5’-TGCCTTCATGCACAGGAAT-3’ 
probe: 5’-TGGCTCCAAATCACCCCCCAGG-3’ 

65 XM_0012
53942 

GAPDH 
for.: 5′-GCGATACTCACTCTTCTACCTTCG A-3′ 
rev.: 5′-TCGTACCAGGAAATGAGC TTGAC-3′ 
probe: 5′-CTGGCATTGCCCTCAACGACCACTT-3′ 

82 U85042 

 

Table 13: Reagents (from TaqMan-qPCR mastermix, Eurogentec, B-4102 Seraing, 

Belgium) and their volumes (per sample) required for the preparation of the 

mastermix for real-time PCR (TaqMan® method). 

Component Volume (for one well) Concentration of stock 
Solution 

qPCR Master Mix 12.5 µl 2x 
Forward Primer 1.5 µl 5 µM 
Reverse Primer 1.5 µl 5 µM 
Probe 1.0 µl 5 µM 
cDNA 5.0 µl  
Autoclaved double 
distilled water 3.5 µl - 

 

3.9 Western blot analysis 

3.9.1 Western blot analysis of bovine placentomal tissue for the expression of 

SULT1E1 

Coarse pieces of deep-frozen (-80°C) cotyledonary tissue and from bovine adult and fetal 

liver were powdered as described above for RNA extraction in section 3.3. 200 mg of tissue 

powder were then immersed in 1.5 ml PBS containing PMSF (Protease Inhibitor Cocktail 

Tablet, Roche Diagnostics, Germany) at the concentration of one tablet in 10 ml PBS and 

vortexed for 2 minutes. The resulting homogenates were centrifuged at 20160 x g for 50 

minutes, and the supernatants were taken and stored at -20°C till further use. 

Concentration of protein was measured by BioPhotometer (Eppendorf AG, Hamburg, 

Germany). A 10% polyacrylamid separating gel was prepared by mixing 2.5 ml 30% 

acrylamide solution (Roth GmbH & Co., Karlsruhe, Germany), 2.8 ml separating gel buffer, 
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2.05 ml ddH2O, 75 µl 10% SDS solution, 60 µl 10% ammonium persulfate (APS) (Roth 

GmbH & Co., Karlsruhe, Germany) and 6 µl TEMED (Roth GmbH & Co., Karlsruhe, 

Germany). The resulting solution was poured in a pre-assembled dual gel caster (Hoefer Inc. 

USA) and then 1 ml isopraponol was added onto the surface. The solution was allowed to 

solidify for 45 minutes, then the isopropanol layer on the surface was discarded and the gel 

surface was washed with ddH2O. The remaining water was completely dried by help of filter 

paper. Polyacrylamid collecting gel was prepared by mixing 417 µl 30% acrylamide solution 

(Roth GmbH & Co., Karlsruhe, Germany), 313 µl collecting gel buffer, 1.73 ml ddH2O, 25 µl 

10% SDS solution, 13 µl 10% APS (Roth GmbH & Co., Karlsruhe, Germany) and 3 µl 

TEMED (Roth GmbH & Co., Karlsruhe, Germany). This solution was poured onto the 

separating gel and allowed to solidify for 40 minutes. 

For polyacrylamide gel electrophoresis, 5 µg protein from placental tissue or 20 µg from fetal 

or adult liver were mixed with 3x loading dye, boiled for 3 minutes and then immediately 

placed on ice till loading on to gel. The protein was then loaded on the 10% SDS 

polyacrylamide gel situated in a dual gel caster fitted in a buffer chamber (Hoefer, Inc. USA) 

which was filled with cold (4oC) SDS electrode buffer. At first electrophoresis was run at 

300 V and 15 mA for about 15 minutes until the protein migrated into the separating gel and 

was then continued at 300 V and 25 mA for about 1 hour. During electrophoresis, the buffer 

in the chamber was kept cold constantly by running cold water through the cooling jacket of 

the chamber. After electrophoresis, the gel and polyvinylidene fluoride membrane (Millipore 

Corporation, USA) were fitted in a gel holder cassette (BioRad Laboratories, Italy) which was 

then placed in a trans blot tank (BioRad Laboratories, Italy). The transblot tank was filled 

with chilled transfer buffer, and electroblotting was performed at 100 V and 300 mA for 1 

hour. During blotting the tank was constantly kept cold by the accessory cooling unit. After 

the blotting procedure the polyvinylidene fluoride membrane was removed from the gel 

holder cassette and incubated in blocking buffer (5% skim milk in PBS with 1 ml 2% 

thimerosal solution) overnight at 4°C to block non-specific sites. On the next day, the 

membrane was briefly washed with PBST buffer (0.25% Tween-20 in PBS) and then 

incubated for 2 hours in primary antibody solution. Primary antibodies used for this 

experiment were same as used for immunohistochemistry i.e. a polyclonal antiserum 

produced in mice raised against human SULT1E1 (αhum-SULT1E1) (SAB 1400268, Sigma-

Aldrich Chemicals GmbH, Deisenhofen, Germany) at a protein concentration of 2.6 µg/ml 

and a polyclonal antiserum produced in a rabbit against bovine recombinant SULT1E1 

(Frenette et al. 2009), at a protein concentration of 2.5 µg/ml, respectively, in blocking buffer. 
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The membranes were washed in PBST buffer (3 changes 7 min. each), and then incubated for 

50 minutes with their respective secondary antibody i.e. biotinylated anti-mouse antibody 

(BA2000, Vector Laboratories, Burlingame, USA) at a dilution of 1:1000 in blocking buffer 

and biotinylated anti-rabbit antibody (from Vectastain Elite ABC Kit, PK 6101, Vector 

Laboratories, Burlingame, USA) at a dilution of 1:3000 in blocking buffer. Thereafter, the 

membranes were again washed in PBST buffer (3 changes 7 min. each) and then covered with 

streptavidin-peroxidase complex (Vector Laboratories, Burlingame, USA) for 30 minutes. 

After washing with PBST buffer (3 changes 7 min. each), the membranes were developed in 

substrate solution (NovaRed substrate kit, Vector Laboratories, Burlingame, USA) for 50 to 

90 seconds. Finally the membrane was washed extensively in ddH2O and air dried before 

images were captured by a digital camera (DSC-W30, Sony Corporation, Japan). 

 

3.9.2 Western blot analysis of bovine placentomal tissue for the expression of 

androgen receptor 

Coarse pieces of deep-frozen (-80°C) placentomal and epididymal tissue were briefly placed 

in liquid nitrogen, quickly enveloped in sterile aluminum foil and then reduced to small pieces 

by strokes with a clean hammer. The resulting tissue particles were then powdered under 

liquid nitrogen with a pestle in a mortar pre-chilled to -80°C. 200 mg of tissue powder were 

immersed in cold 1 ml PBS containing Proteinase Inhibitor Cocktail Tablet (Roche 

Diagnostics, Germany) (one tablet in 10 ml PBS) and homogenized by using an ultra turrax 

T25 (IKA-Werke GmbH & Co KG, Staufen i. Br., Germany) at highest speed bursts three 

times for 30 seconds on ice. Then 50 mg SDS powder was added and the samples were 

shortly vortexed and subsequently boiled in a waterbath for 10 minutes. Finally they were 

centrifuged at 1260 x g for 10 minutes at 4°C. The supernatants were taken in fresh 2 ml 

round Eppendorf tubes (Sarstedt, AG & Co., Nümbrecht, Germany) and the total 

concentrations of protein were measured using a BioPhotometer (Eppendorf AG, Hamburg, 

Germany) in disposable cuvettes (UVette®, Eppendorf AG, Hamburg, Germany) containing 

2 µl of protein preparation and 98 µl ddH2O using 100 µl ddH2O as a blank. 

Procedures of polyacrylamide gel electrophoresis, blotting, and immunoreaction were as 

described for SULT1E1 in section 3.9.1 with some minor modifications. For AR, 100 µg 

protein from placental and epididymal tissue were loaded onto the polyacrylamid gel. The 

primary antibody was the same as used in immunocytochemistry, a polyclonal antibody 

against human AR (rabbit polyclonal, N-20, sc816; Santa Cruz Biotechnology, Heidelberg, 

Germany) which was applied at dilution of 1:200 in blocking buffer. Incubation time for the 
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primary antibody was 2 hours, after washing the membrane was then incubated for 50 

minutes with the secondary biotinylated anti-rabbit antibody (from Vectastain Elite ABC Kit, 

PK 6101, Vector Laboratories, Burlingame, USA) at a dilution of 1:1000 in blocking buffer. 

Development of polyvinylidene fluoride membrane in substrate solution (NovaRed substrate 

kit, Vector Laboratories, Burlingame, USA) was for 7 minutes. 

 

3.10 Measurement of testosterone concentrations in placental tissue 

Coarse pieces of deep-frozen (-80°C) placentomal tissue were wrapped in aluminum foil and 

broken up using a clean hammer. The tissue fragements were quickly placed in a pre-chilled 

mortar and powdered with a pestel under liquid nitrogen. From each sample 200 mg of tissue 

powder were transferred quickly into 15 ml extraction vials (Wheaton Scientific, USA) and 

thoroughly mixed with 3 ml toluene. The extraction vials were then placed into a rotation 

mixer and rotated overhead for 15 min. After a short centrifugation for a better separation 

between the organic and aqueous phase, the samples were placed into an ethanol/dry ice bath. 

After freezing of the aqueous phase the upper organic phase was decanted into test tubes 

(Combotest Disposable, Sarstedt, AG & Co., Nümbrecht, Germany). Again 3 ml toluene was 

added to the remaining aqueous phase and the extraction step was repeated. The pooled 

extracts in the test tubes were evaporated to dryness in a vortex evaporator (Haake Buchler 

GmbH, Karlsruhe, Germany) at 40°C. The extracts were redisolved in BSA buffer and 

introduced into radioimmunological measurement using a well-established inhouse method as 

previously described (Hedberg et al. 2007). Intra-assay and interassay coefficients of variation 

were 7.8% and 9.0%, respectively. The lower limit of detection was at 0.35 nmol/l (equivalent 

to 0.1 ng/ml). 

 

3.11 Statistical evaluations 

Data from gestational profiles (real-time RT-PCR, qualitative evaluation of immunostaining 

using IRS) were tested for an influence of the observational group by one-factorial analysis of 

variance, in case of significant error probability (p<0.05) followed by pairwise comparisons 

of observational groups using Tukey-Kramer test (statistical software GraphPad InStat 3.06, 

GraphPad Software Inc., San Diego, USA). Data from real-time RT-PCR were transformed 

logarithmically prior to statistical evaluation due to their obvious right-skewed distribution, 

and results are presented as geometric mean (g) x dispersion factor±1, whereas data from 

qualitative evaluation of immunostaining using IRS are shown as arithmetic mean () ± 

standard deviation (SD). 
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3.12 Solutions and buffers 

3.12.1 Immunohistochemistry 

10 mM citrate buffer 

Stock solution A: 
C6H8O7 x H2O 21.0 g 
Aqua dest. ad 1000 ml 

 
Stock solution B: 
C6H5O7Na3 x 2H2O  29.41 g 
Aqua dest. ad 1000 ml 
 
Working solution: 
Stock solution A 9 ml 
Stock solution B 41 ml 
Aqua dest. 450 ml 

Methanolic H2O2 solution 0.3% 
Methanol 200 ml 
30% H2O2 2 ml 

Ethanol (96%) 

Ethanol reinst (100%) 96 ml 
Aqua bidest. 4 ml 

Ethanol (70%) 
Ethanol reinst (100%) 70 ml 
Aqua bidest 30 ml 

0.5 M EDTA  

EDTA 37.22 g 
Aqua bidest ad 200 ml 

ICC buffer pH 7.4: 
Na2HPO4 1.2 g 
KH2PO4 0.2 g 
KCl 0.2 g 
NaCl 8.0 g 
Aqua dest ad 1000 ml 

3 ml Triton X-100 was added after adjusting pH (between 7.2-7.4) 
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3.12.2 Gel electrophoresis 

TBE buffer (10x) 

Tris ultrapure 108 g 
Boric Acid 55 g 
0.5 M EDTA (pH 8.0) 40 ml 
Aqua bidest ad 1000ml 
 

TBE buffer (1x) 

TBE (10x) Buffer  100ml 
Aqua bidest  ad 1000ml 
 

3.12.3 Western blot 

Collecting gel buffer pH 6.8 

Tris Ultrapure 7.88 g 
Aqua bidest. ad 100 ml 

Adjustment of pH was performed using concentrated HCl or NaOH solution 
 

Blocking buffer 
Dry milk powder  5 g 
1x PBS buffer ad 100 ml 

10x electrode buffer 

Glycine 144 g 
Tris-base 30 g 
SDS 10 g 
Aqua bidest ad 1 liter 

10x PBS stock solution 
NaCl  80.0 g 
Na2HPO4 x 2H2O 11.5 g 
KCl 2.0 g 
KH2PO4 2.0 g 
Aqua bidest. ad 1 liter 

1x PBS  
10x PBS stock solution 100 ml 
Aqua bidest. ad 1 liter  

PBST-buffer 

PBS-buffer 1000 ml 
Tween 20 2.5 ml 
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10% aqueous SDS solution 
SDS 10 g 
Aqua bidest. ad 100 ml 

 

3x Sample buffer/loading dye 
Collecting gel buffer 1.75 ml 
Glycerol 1.50 ml 
10% SDS 50 ml 
ß-mercaptoethanol 0.50 ml 
Bromphenol blue 1.25 ml 
 

Separating gel buffer pH 8.8 

Tris 23.64 g 
Aqua bidest. ad 100 ml 

Adjustment of pH was performed using concentrated HCl or NaOH solution 
 

3.12.4 Measurement of testosterone 

Charcoal suspension 
Charcoal (Norit A) 2.5 g 
Dextran 60 0.25 g 
Suspended in 500 ml aqua dest. 
 

Phosphate buffer (pH 7.2) 
KH2PO4 2.686 g 
Na2HPO4 8.356 g 
NaN3 0.325 g 
Aqua dest. ad 1000 ml  
 

Phosphate buffer with 0.1% BSA 
BSA 1 g 
Phosphate buffer ad 1000 ml 
 

3.12.5 Kits and reagents 

ABC-Kit, Standard Kit: Vector Laboratories, Burlingame, USA 

Agarose Multi-purpose: BIO-41025, Bioline GmbH, D-14943 Luckenwalde, Germany 

ABsolute™ Blue QPCR SYBR ®: Art. Nr. AB-4219/B, Thermo Fisher Scientific Abgene 

House, Blenheim Road, Epsom KT19 9AP, United Kingdom 

Ammonium Peroxidosulphate: Carl Roth GmbH & Co., Karlsruhe, Germany 

BA2000; horse anti-mouse IgG biotinylated antibody: Vector Laboratories, Burlingame, USA 
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Boric acid, Pufferan® (H3BO3): Art. Nr.: 6943.2, Carl Roth GmbH & Co., Karlsruhe, 

Germany 

Calcium Chloride: Merck KGaA, Darmstadt, Germany 

Chloroform: Roth GmbH & Co., Karlsruhe, Germany  

Dextran 60: Serva, Heidelberg, Germany 

DNA-Ladder Gene Ruler 100bp, Catalogue Nr. SM0241 and SM0321: MBI Fermentas 

GmbH, 68789 St. Leon-Rot, Germany  

Dnase 1 Rnase free 10U/µl: Roche Diagnostics GmbH, Mannheim, Germany 

EDTA: Sigma-Aldrich Chemicals GmbH, Deisenhofen, Germany 

Ethanol 99.6%: Roth GmbH & Co., Karlsruhe, Germany 

Ethidiumbromide solution 1%: Roth GmbH & Co., Karlsruhe, Germany 

Formaldehyde powder: Merck KGaA, Darmstadt, Germany 

Gene Amp RNA Core Kit®: Perkin Elmer, Foster City, CA, USA /Applied Biosystems 

GmbH, Weiterstadt, Germany 

Glycerol: Roth GmbH & Co., Karlsruhe, Germany 

Histokit: Assistent, Osterode, Germany 

Hydrochloric acid: Sigma-Aldrich Chemicals GmbH, Deisenhofen, Germany 

Hydrogen peroxide 30 %, Art. Nr. 64271:, Merck KGaA, Darmstadt 

Hematoxilin: Merck KGaA, Darmstadt, Germany 

Isopropanol: Roth GmbH & Co., Karlsruhe, Germany 

Methanol: Merck KGaA, Darmstadt, Germany 

NovaRed substrate Kit: Vector Laboratories, Burlingame, USA  

Potassium Chloride: Merck KGaA, Darmstadt, Germany 

Primary antibody AR sc-816: Santa Cruz Biotechnology, Heidelberg, Germany 

ProteoExtract Transmembrane Protein Extraction Kit: Novagen, Merck KGaA, Darmstadt, 

Germany 

Protease Inhibitor Cocktail Tablet: Roche Diagnostics GmbH, Roche Applied Science, 68305 

Mannheim, Germany 

Rotiphorese® Gel 30: Carl Roth GmbH & Co., Karlsruhe, Germany 

Rotiphorese® 10x SDS PAGE: Carl Roth GmbH & Co., Karlsruhe, Germany 

RNase Inhibitor 40U/µl: MBI Fermentas GmbH, 68789 Sankt Leon-Rot, Germany 

RT-PCR Core Kits: Applied Biosystems GmbH, Karlsruhe, Germany 

Secondary antibody biotinylated anti-mouse BA 2000: Vector Laboratories, Burlingame, 

USA 
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Secondary antibody biotinylated anti-rabbit ABC Kit: Vector Laboratories, Burlingame, USA 

Goat Serum from ABC Kit: Vector Laboratories, Burlingame, USA 

Skim Milk Powder: J. M. Gabler Saliter GmbH & Co., Obergünzburg, Germany 

Sodium Chloride: Merck KGaA, Darmstadt, Germany 

Sodium Hydroxide: Merck KGaA, Darmstadt, Germany 

Sodium hydrogenphosphate: Merck KGaA, Darmstadt, Germany 

Sodium Dodecyl Sulfate, Article No. L-5750: Sigma Chemical Company, St. Louis, MO 

63178, USA 

Taqman® qPCR Mastermix: Eurogentec Seraing, Belgium 

Thiomersal: Sigma-Aldrich Chemicals GmbH, Deisenhofen, Germany 

Toulene: Merck KgaA, Darmstadt, Germany 

Tween 20 (Polyoxyethylenesorbitan Monolaurate, Product No. P-1379): Sigma-Aldrich 

Chemicals GmbH, Deisenhofen, Germany  

Tris: Roth GmbH & Co., Karlsruhe, Germany 

Triton X-100: SERVA electrophorsis Heidelberg, Germany 

Trizol® Reagent: Invitrogen Karlsruhe, Germany  

Xylol: Merck KGaA, Darmstadt, Germany 

 

3.12.6 Materials and equipment 

ABI PRISM_7000 Sequence Detection System: Applied Biosystems, D-64293 Darmstadt, 

Germany 

Agarose Gel Electrophoresis System (multiSub) Art. Nr. 615162: Biozym Scientific GmbH, 

D-31833 Oldendorf, Germany 

Blotting Gel Paper 7 cm x 10 cm P7796: Sigma-Aldrich Chemicals GmbH, Deisenhofen, 

Germany  

Biorad CFX 96 C1000 Thermal Cycler: Biorad Laboratories, Inc. 2000 Alfred Nobel Drive, 

Hercules, CA 94547, USA. 

Centrifuge Compoact Bench Type Micro 22R: Andreas Hettich GmbH & Co. KG, D-78532 

Tuttlingen, Germany 

Centrifuge 0-6000 U/min: Heraeus Christ GmbH, Hanau, Germany 

Dual gel caster, for 10 cm x 8 cm or 10 cm x 10.5 cm plates, SE245: Hoefer Inc., 84 October 

Hill Road Holliston, USA 

Electrophoresis Power Supply, EPS 301: Amersham Biosciences, GE Healthcare Europe 

GmbH, Freiburg, Germany 
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Electrophoresis, Power Supply 2301 Microdrive Sr. No. 2188: LBK Bromma, USA  

Eppendorf tubes 1.5 ml, 2 ml round color/colorless: Sarstedt, AG&Co., D-51582 Nümbrecht, 

Germany 

Eppendorf Biophotometer: Eppendorf AG, Hamburg, Germany 

Filter tips: 10 µl, 100 µl, 1000 µl: Nerbe plus GmbH, 21423 Winsen/Luhe, Germany 

Filter tips: 10 µl, Gel 20 (20 µl): Greiner Bio-One GmbH, Frickenhausen, Germany 

Gel Electrophoresis Unit Mighty Small II SE250/SE260: Hoefer Inc., 84 October Hill Road, 

Holliston, USA 

Glass plates 10 cm x 10.5 cm: Hoefer Inc., 84 October Hill Road, Holliston, USA 

Glass tubes 15 ml: Wheaton Scientific, New Jersy, USA 

Glass tubes for Combotest, No./REF.86.1509: Sarstedt Aktiengesellschaft & Co., D-51558 

Nümbrecht, Germany 

Hand gloves UniGloves®: purchased from MAGV Laborbedarf & Laborgeräte, Rabenau-

Londorf, Germany 

Immobilon Transport Membrane, pore size 0.45 µm, Cat. No. IPHV0010: Millipore 

Corporation, Bedford, USA 

Microscope Leitz DMRB with Digital Camera Leica DC300 and Leica IM-Software: Leica 

Microsystems GmbH, 35578 Wetzlar, Germany 

Microtome RM2125RT: Leica Biosystem GmbH, Nussloch, Germany 

Microtome blade Leica DB 80L: Leica Microsystems GmbH, Nussloch, Germany 

Mini Trans Blot Tank with Gel Cassettes Model No. 37/S Serial Number 7300: BioRad 

Laboratories, Italy 

Munktell Paper Sheet 200 x 500 mm 80 g/m2: Munktell & Filtrak GmbH, Niederschlag D-

09471 Bärenstein, Germany 

Pap-pen, Code S2002: Dako Deutschland GmbH, D-22769 Hamburg, Germany 

pH-Meter Inolab Level 1, WTW: Wissenschaftlich-Technische Werkstätten GmbH, 

Weilheim, Germany 

Pipettes: 10 µl, 20 µl, 100 µl, 1000 µl: Eppendorf AG, Hamburg, Germany 

QIAEX II Gel Extraction Kit, Catalog no. 20021: Qiagen GmbH, D-40724 Hilden, Germany 

Reactions tubes, Art. Nr. 711098: Biozym Scientific GmbH, D-31833 Hess. Oldendorf, 

Germany 

Reactions tubes: Biozym Scientific GmbH, D-31833 Oldendorf, Germany 

SuperFrost® Slides, 24 mm x 40 mm, 24 mm x 50 mm and 24 mm x 60 mm: Menzel-Gläser, 

purchased from MAGV Laborbedarf, Rabenau-Londorf, Germany 
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T1 Thermocycler 49: Whatman Biometra, Göttingen, Germany 

Ultra turrax T10 basic: IKA-Werke GmbH & Co KG, Staufen Br., Germany 

UV-Spectrometer, BioPhotometer: Eppendorf AG, Hamburg, Germany 

UV-Dispoasable Uvette® 220-1600 nm: Eppendorf AG, Hamburg, Germany 

UV-Transluminator: Biostep, 09387 Jahnsdorf, Germany 

Water bath Typ WB-24; V220; W 550; Fabrik-Nr. 8810, max. 90°C: Medax Nagel, KG Kiel, 

Germany 

UV-Transilluminator with Photoshop software Phoretix Grabber 3.01: Biostep, 09387 

Jahnsdorf, Germany 

Vortexer: Heidolph REAX control, purchased from MAGV Laborbedarf, Rabenau-Londorf, 

Germany 

Vortex evaporator: Haake Buchler GmbH, Karlsruhe, Germany 

Warm chamber: Type: 3 26, 220 Volt, 380 Watt, 50/60 Hz, 40050-IP20, Memmert, 

Schwabach, Germany 
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4. RESULTS 

4.1 Expression of SULT1E1 

4.1.1 SULT1E1 protein expression in bovine placentomes 

4.1.1.1 Confirmation of specificity of the primary antibodies applied by western blot 

analysis 

To confirm the specificity of the two antisera used for the detection of SULT1E1 in bovine 

placentomes, i.e. a polyclonal murine antiserum against human SULT1E1 (αhum-SULT1E1) 

and a polyclonal antiserum against recombinant bovine SULT1E1 (αbov-SULT1E1), western 

blot experiments were performed using a protein extract prepared from cotyledonary tissue of 

a parturient cow. For comparison, protein preparations obtained from two bovine fetal livers 

at different stages of gestation and from an adult bovine liver were included into the 

experiment. The two antisera applied yielded virtually identical results (Fig. 4 A and B). In 

cotyledonary tissue and fetal livers, a prominent band of the expected molecular size 

(approximately 33 kDa) was found. This band was only weak in adult liver, where the 

prominent band was at 72 kDa, which is consistent with SULT1E1 dimers. SULT1E1 

expression was clearly higher in the cotyledon compared to fetal and adult liver. 

 

 
 
Figure 4: Western blot analysis of homogenates prepared from a cotyledon of a parturient 

cow and from fetal and adult livers for the expression of SULT1E1. As primary 

antibody, (A) a polyclonal murine antiserum against human SULT1E1 and (B) a 

polyclonal rabbit antiserum against recombinant bovine SULT1E1 were used. The 
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amounts of protein loaded per lane were 5 µg for the cotyledon and 20 µg for the 

livers. The expected molecular weight of monomeric SULT1E1 is about 33 kDa. 

Lane 1: molecular weight marker (kDa) 

Lane 2: fetal liver (day 185 of gestation) 

Lane 3: fetal liver (day 210 of gestation) 

Lane 4: adult liver 

Lane 5: cotyledon of a parturient cow 

 
When testing cotyledonary samples from cows at various stages of gestation and parturition in 

western blot experiments, again virtually identical results were obtained with the two primary 

antibodies used (Fig. 5). With both antibodies, a prominent band consistent with monomeric 

SULT1E1 (approx. 33 kDa) was detected in each of the samples investigated. This band was 

only weak in samples obtained from the first trimester but its intensity was significantly 

higher in cotyledonary protein preparations representing mid- until late gestation and 

parturition. With αhum-SULT1E1, only the band at 33 kDa was detected (Fig. 5A). Using 

αbov-bovine SULT1E1, besides the prominent band at about 33 kDa a weaker band of about 

the double size of SULT1E1 occurred in samples from midgestation until parturition (Fig. 

5B). 
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Figure 5: Western blot analysis of homogenates prepared from bovine cotyledons between 

day 60 of gestation and parturition using (A) a polyclonal murine antiserum 

against human SULT1E1 and (B) a polyclonal rabbit antiserum against 

recombinant bovine SULT1E1. Amount of protein loaded was 5 µg per lane. The 

expected molecular weight of monomeric SULT1E1 is about 33 kDa. 

 

4.1.1.2 Expression pattern of SULT1E1 protein in bovine placentomes during gestation 

on a cellular level 

By immunohistochemistry when using the two different primary antibodies in bovine 

placentomes virtually identical staining patterns were obtained (Fig. 6). Independent from the 

stage of gestation, significant immunostaining was only found in the trophoblast, where it was 

localized in the cytoplasm of UTC but was completely absent in mature TGC. In immature 

TGC a loss of signal intensity was observed at early stages of differentiation (Fig. 6/A3-A6; 
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B3 and B6). When using αbov-SULT1E1, in some of the sections of early pregnant animals 

(day 80, day 120) and of prepartal animals a cytoplasmic signal was also seen in the 

caruncular epithelium (Fig. 6/B4). However, in these cases signal intensity in caruncular 

epithelial cells was substantially lower compared to the UTC. With αhum-SULT1E1 no 

staining was observed in caruncular epithelial cells (Fig. 6/A4). No staining was observed in 

negative controls (Fig. 7), in which the respective primary antiserum was replaced by 

nonspecific immunoglobulin of the same species. 

With αbov-SULT1E1 (Fig. 6/B1-7), distinct signals were found in UTC of the chorionic plate 

irrespective of gestational age (Fig. 6/B1). In trophoblast of chorionic villi, a gradient of 

staining intensity in UTC was observed with generally higher IRS in the trophoblast covering 

stem villi and basal secondary villi compared to the trophoblast of more apical parts of the 

chorionic villous tree (Fig. 8B). However, on some sections from animals at early or 

midgestation, intense staining was also observed at the tips of chorionic villi immediately 

adjacent to the caruncular stalk (Fig. 6/B2). At late gestation and at parturition, the gradient of 

staining intensity was less pronounced as in the distal part of the villous tree a more 

homogenous stronger immunostaining was observed comparable to the one in the chorionic 

plate and major stem villi (Fig. 6/B5 and B7; Fig. 8B). However, as for the chorionic plate 

and the basal parts of the chorionic villi, also for the their apical parts statistical evaluation for 

an influence of the observational group on IRS values applying one-factorial ANOVAs did 

not yield significant error probabilities. This was obviously due to the high variability of 

staining intensity between animals of the individual observational groups in relation to the 

small group sizes. With αhum-SULT1E1, a qualitatively identical staining pattern was 

observed (Fig. 6A/1-7; Fig. 8A). However, the tendency for an overall increase of SULT1E1 

expression at the end of gestation as found with αbov-SULT1E1 was not obvious when using 

the primary antiserum against the human enzyme. 
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Figure 6: Localization of SULT1E1 in bovine placentomes between day 80 of gestation and 

parturition using (A) a polyclonal murine antiserum against human SULT1E1 and 

(B) a polyclonal rabbit antiserum against recombinant bovine SULT1E1. 

Micrographs in the same row are deriving from the same tissue block, 

respectively. A1, B1: Placentome from an 80 days pregnant cow. Intense 

cytoplasmic immunostaining is present in uninucleated trophoblast cells (UTC) 

covering the chorionic plate (CP) and the basal parts of chorionic stem villi (StV). 

A2, B2: Placentome from an 80 days pregnant cow. Pronounced immunostaining 

in UTC covering the tips of chorionic villi adjacent to the caruncular stalk (CS). 

A3, B3: Placentome from a 120 days pregnant cow. Strong immunostaining in 

UTC. Immunostaining in differentiating, immature trophoblast giant cells (TGC) - 

which is of weak intensity - is sporadically seen (arrows). A4, B4: Placentome 

from a 120 days pregnant cow. In addition to distinct signals in UTC, weaker 

immunostaining is also visible in caruncular epithelial cells (arrows). However, 

this was only observed with the antiserum against bovine SULT1E1 (Fig. B4) but 

not with the antiserum against human SULT1E1 (Fig. A4). A5, B5, A6, B6: 

Placentome from a 272 days pregnant cow: irrespective of the localization within 

the villous tree, intense cytoplasmic staining is visible in UTC. No 

immunostaining is seen in TGC at various stages of differentiation (arrows). A7, 

B7: Placentome from a parturient cow: intense cytoplasmic immunostaining is 

present in UTC, whereas TGC, of which the number is significantly reduced at 

term, are still negative. Magnification: A1, A2, A5, A7: x100; A3 A4, A6, B3, 

B4, B6: x400. 

 



 RESULTS 62 

 

 
Figure 7: Negative control sections prepared from placentomes of 120 and 220 days 

pregnant and parturient cows. Micrographs in the same row are deriving from the 

same tissue block, respectively. The specific primary antibodies against human 

and bovine SULT1E1 were replaced (A) by serum of a non-immunized mouse 

and (B) by serum of a non-immunized rabbit, respectively. No staining is found in 

any section. Magnification: x100. 
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Figure 8: Results from semi-quantitative evaluation of immunostaining for SULT1E1 in 

uninucleated trophoblast cells of the chorionic plate and of defined localizations 

of the chorionic villous tree throughout gestation and at parturition presented as  

and SD calculated from immunoreactive scores. Cows were assigned into four 

observational groups i.e. first trimester (day 60 to 90; n=3), second trimester (day 

120 to 160; n=3), third trimester (day 190 to 272; n=6) and normal term (n=3). 

Immunostaining for SULT1E1 was performed using two different antibodies, (A) 

a polyclonal murine antiserum against human SULT1E1 and (B) a polyclonal 

rabbit antiserum against recombinant bovine SULT1E1. In a low number of cases, 

individual localizations were missing in the sections evaluated. In some cases, not 

all localizations under investigation were present in specimen from individual 
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animals. In these cases, the number of observations is indicated in squared 

brackets. 
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4.1.2 Relative levels of SULT1E1-mRNA in bovine placentomes during gestation 

In order to measure relative SULT1E1-mRNA expression levels in the fetal part of bovine 

placentomes during the course of gestation and at parturition, a real-time RT-PCR method 

was established. To test for functionality of the primers designed for real-time RT-PCR, a 

conventional RT-PCR was performed using cotyledonary RNA preparations from cows at 

various stages of gestation and from parturient cows. In each sample, only one band of the 

expected size (229 bp) was detected (Fig. 9). 

When measuring SULT1E1-mRNA levels by real-time RT-PCR in bovine placentomes 

during the course of gestation and at parturition (Fig. 10), low relative gene expression levels 

were found during first (2.79 x 1.34±1) and second trimester (2.41 x 2.33±1). However, they 

were significantly higher during late gestation (7.31 x 1.39±1) and at normal term (9.61 x 

1.17±1). One-factorial ANOVA for an influence of the observational group yielded an error 

probability of p=0.0043. 

 

 

 
 

Figure 9: Analysis of RT-PCR products on agarose gel (2%) stained with ethidium bromide 

and visualized under UV illumination for the presence of SULT1E1 expression in 

the fetal part (cotyledons) of bovine placentomes obtained from cows at various 

stages of gestation and at normal term. The calculated size of amplicons is 229 bp. 

GAPDH was used as procedural and loading control. The expected size of 

amplicons is 82 bp. For negative control, RT-PCR was performed in the absence 

of RNA during reverse transcription. 
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Figure 10: Relative expression of SULT1E1-mRNA in the fetal part of placentomes 

(cotyledons) from cows assigned into four observational groups i.e. first trimester 

(day 60 to 80; n=3), second trimester (day 120 to 160; n=3) third trimester (day 

190 to 272; n= 6) and at normal term (n=3). Expression levels were measured by 

real-time RT-PCR (SYBR green method) and normalized to GAPDH used as 

reference gene. One-factorial ANOVA yielded a significant influence of the 

observational group (p=0.0043). The results are presented as geometric mean x 

dispersion factor±1. Bars with different superscripts are significantly different with 

p < 0.05 (pair-wise comparison of observational groups using Tukey-Kramer test). 

 

4.1.3 Relative levels of SULT1E1-mRNA in various bovine organs 

In a comparative study, various bovine organs were screened quantitatively by conventional 

RT-PCR for their expression of SULT1E1-mRNA. A band consistent with SULT1E1-mRNA 

was detected in most of the organs under investigation (Fig. 11). Only for aorta, ovarian 

stroma and udder no amplicon was obtained. The intensity of the band after agarose gel 

electrophoresis was high for placentome, fetal liver and adrenal gland. It was moderate in 

brain, testis, corpus luteum, epidiymis, kidney, skin, muscle, adult liver and weak in 

lymphatic tissue, spleen, ovarian stroma and colon. 
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Consistently, with real-time RT-PCR (Fig. 12) highest expression level was found in a 

placentome from a late pregnant cow, (2851 relative units, R.U.) followed by two fetal livers 

(748 and 816 R.U.). Among various organs collected from adult cattle, highest SULT1E1-

mRNA-expression was found in the adrenal (144 R.U.), followed by skin (91 R.U.) and 

epididymis (27 R.U.). In contrast to the high SULT1E1 expression in fetal liver, in liver of 

adult cattle it was only minimal (21 R.U.). 

 
Figure 11: Analysis of RT-PCR products on agarose gel (2%) stained with ethidium bromide 

and visualized under UV illumination for the presence of SULT1E1 expression in 

various bovine organs. The calculated size of amplicons is 229 bp. GAPDH was 

used as a procedural and loading control; the expected size of amplicons is 82 bp. 

For negative control, RT-PCR was performed in the absence of RNA during 

reverse transcription. 
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Figure 12: Relative SULT1E1-mRNA levels as measured by quantitative real-time RT-PCR 

(SYBR green method) in various bovine tissues. Expression levels were 

normalized to GAPDH used as reference gene. The results are presented as 

arithmetic mean plus standard deviation calculated from measurements as 

triplicates. 

 

4.2 Expression of SOAT variants in placentomes and other bovine organs 

4.2.1 Expression of mRNA specific for SOAT variants in bovine placentomes by 

conventional RT-PCR using variant specific primer pairs 

Gestational profiles were established on the mRNA level by conventional RT-PCR for each 

SOAT variant using variant specific primers. As shown in Fig. 13, expression of variants 1,2 

and 5 was found in all animals irrespective of gestational age. Variants 3 and 4 were detected 

in most of the placentomes but were missing in individual animals at various stages of 

gestation.  
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Figure 13: Analysis of RT-PCR products on agarose gel (2%) stained with ethidium bromide 

and visualized under UV illumination for the presence of SOAT variant 

expression in bovine placentomes from day 60 to day 272 of gestation using 

SOAT variant specific primer pairs. At term samples from the maternal part of the 

placentomes (caruncles) were analyzed. The calculated size of amplicons of 

SOAT variant 1-5 are 281, 230, 320, 428 and 333 bp respectively. GAPDH was 
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used as procedural and loading control (82 bp). For negative control, RT-PCR was 

performed in the absence of RNA during reverse transcription. 

 

4.2.2 Relative levels of mRNA specific for SOAT variants 1, 2, 3 and 5 in bovine 

placentomes as measured by real-time RT-PCR 

Quantitative gestational profiles in bovine placentomes were established for mRNA encoding 

SOAT variants 1, 2, 3 and 5 using real-time RT-PCR (SYBR green method), whereas for the 

measurement of SOAT variant 4 mRNA-levels no reproducible method could be established. 

Expression of SOAT variants 1, 2, 3 and 5 was fairly constant during gestation, whereas 

expression levels measured at term in the maternal part of the placentomes were considerably 

higher (Fig. 14). 
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Figure 14: Relative expression levels of mRNA encoding different SOAT variants in bovine 

placentomes obtained from cows at various stages of gestation (first trimester: day 

60-90, n=3; second trimester day: 110-160, n=3; third trimester day 210-272, 

n=6). At normal term (n=3), samples from the maternal part of the placentomes 

(caruncle) were analyzed. Expression levels were measured by real-time RT-PCR 

(SYBR green method) using SOAT variant specific primers and normalized to 

GAPDH used as reference gene. The results are presented as geometric mean x 

dispersion factor±1. 

 

4.2.3 Expression of mRNA specific for SOAT variants in bovine organs by 

conventional RT-PCR using variant specific primer pairs 

When screening various bovine organs for their expression of SOAT variants by conventional 

RT-PCR using variant specific primer pairs, for variants 1, 2, 3 and 5 specific bands of 

generally high intensity were obtained in all samples investigated (Fig. 15). For variant 4, 

amplicons were only obtained for 6 of 19 organs investigated, which were placentome, brain, 

ovarian stroma, kidney, heart and skin.  
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Figure 15: Analysis of RT-PCR products on agarose gel (2%) stained with ethidium bromide 

and visualized under UV illumination for the presence of SOAT variant 

expression in various bovine organs using SOAT variant specific primer pairs. 

The calculated size of amplicons of SOAT variants 1-5 are 281, 230, 320, 428 and 

333 bp, respectively. GAPDH was used as procedural and loading control 

(calculated size of amplicon: 82 bp). For negative control, RT-PCR was 

performed in the absence of RNA during reverse transcription.  
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4.2.4 Relative levels of mRNA specific for SOAT variants 1, 2, 3 and 5 in various 

bovine organs as measured by real-time RT-PCR 

When measuring relative levels of mRNA specific for SOAT variants 1, 2, 3 and 5 in various 

organs by real-time RT-PCR, the spectrum of detectable SOAT variants and their expression 

levels varied considerable between the individual organs under investigation (Fig. 16). 

However, for variants 1 (1253 relative units, R.U.), 2 (8185 R.U.) and 5 (4575 R.U.) 

expression in testis exceeded by far expression levels found in other organs. Other organs 

found to significantly express SOAT variant 1 were the skin (734 R.U.), the udder (282 R.U.) 

and the colon (256 R.U.), whereas expression in the placentome (5 R.U.) was comparably 

low. Besides in the testis, variant 2 was only expressed significantly in the skin (1409 R.U.). 

Organs with significant expression of variant 3 were the testis (158 R.U.), the ovarian stroma 

(113 R.U.) and the udder (4.9. R.U.). Expression of variant 5 was only measurable in a 

limited number of organs, which besides the testis were the udder (178 R.U.), the corpus 

luteum (23 R.U.) and the placenta (10 R.U.). 
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Figure 16: Relative expression levels of mRNA specific for different SOAT variants in 

bovine reproductive (A) and other (B) organs. Expression levels were measured 

by real-time RT-PCR (SYBR green method) using SOAT variant specific primers 

and normalized to GAPDH used as reference gene. The results are presented as 

arithmetic mean plus standard deviation calculated from measurements as 

triplicates. 

 

4.3 Expression of androgen receptor in bovine placentomes and testosterone tissue 

concentrations 

4.3.1 Expression of androgen receptor specific mRNA in bovine placentomes 

Placentomes from 12 cows between day 50-272 of pregnancy, from three cows during the 

prepartal decline in progesterone and from three parturient cows were analyzed by 

conventional RT-PCR for the expression of AR specific mRNA (Fig. 17). In each sample, one 

band of the expected size (387 bp) was detected. 
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Figure 17: Qualitative detection of mRNA specific for AR in placentomes from cows at 

various stages of gestation and at parturition. In prepartal cows, placentomes were 

collected during the prepartal decline in progesterone. Expected size of the 

amplicons is 387 bp. GAPDH was used as procedural and loading control, the 

expected size of amplicons is 82 bp. For negative control, RT-PCR was performed 

in the absence of RNA during reverse transcription. 

 

When measuring relative levels of androgen receptor-specific mRNA in bovine placentomes 

between day 100 and term by real-time RT-PCR (taqman method), mean relative gene 

expression values were fairly constant between 2.82-3.12 from day 100 to day 272 and rose 

slightly to 3.64 in prepartal cows and to 4.17 in parturient animals. However, in a one-

factorial ANOVA no influence of observational group on relative gene expression was found 

(Fig. 18). In placentomes from cows during the second trimester, a high variability of the AR 

expression levels was observed. 
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Figure 18: Relative levels of AR-specific mRNA in bovine placentomes between day 100 

and term as measured by real-time RT-PCR (taqman method). Each observational 

group consisted of three animals. In prepartal cows, placentomes were collected 

during the prepartal decline in progesterone. 

 

4.3.2 Expression of androgen receptor protein in bovine placentomes 

4.3.2.1 Confirmation of the specificity of the antibody applied for the detection of 

androgen receptor in bovine placentomes 

In western blot using a primary polyclonal antibody against human AR and a tissue 

homogenate prepared from a bovine placentome obtained from a cow at day 272 of gestation, 

one specific band corresponding to a molecular weight of approximately 110 kDa was found, 

which is consistent with the molecular size of AR (Fig. 19). A band of identical size was 

detected when a homogenate prepared from the epididymal caput of a postpubertal bull used 

as a positive control tissue was analyzed. The band resulting from the epididymal tissue 

exhibited a clearly higher intensity compared to the placentome. 
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Figure 19: Western blot analysis of whole protein fractions (50 µg) prepared from a 

placentome of a cow at 272 days of gestation and bovine epididymal head using a 

polyclonal antibody against human androgen receptor. 

 

With immunohistochemistry, in epididymal caput from a postpubertal bull (Fig. 20/A) used as 

a positive control tissue a highly specific staining pattern was obtained with distinct to 

intense, predominantly nuclear staining in all cells of the ductal epithelium. Moderate to 

intense nuclear staining was found in the majority of the peritubular smooth muscle cells and 

in a proportion of the intertubular connective tissue cells. In negative control sections of 

placentomes (Fig. 20/B), where the primary antiserum was replaced by serum from a non-

immunized rabbit, only occasionally weak non-specific staining occurred in the lumen of 

blood vessels and was obviously associated with plasma components. 
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Figure 20: Immunohistochemical detection of androgen receptor in bovine tissues: results of 

control experiments. A) Immunostaining in the epididymal head of a postpubertal 

bull. Intense, predominantly nuclear immunostaining is visible in all columnar 

epithelial cells of the epididymal duct. Additionally, moderate to distinct nuclear 

immunostaining is also present in peritubular smooth muscle cells and in the 

intertubular connective tissue. Magnification x400 B) Placentome of a 220 days 

pregnant cow: negative control experiment, in which the specific primary 

antiserum was replaced by the serum of a non-immunized rabbit. No staining is 

visible in this section. Magnification: x100. 

 

4.3.2.2 Expression pattern of androgen receptor in bovine placentomes on a cellular 

level 

In bovine placentomes specific signals for AR were detected in trophoblast cells, 

cotyledonary stromal cells, caruncular epithelial cells and caruncular stromal cells (Fig. 21). 

Staining in stromal cells was exclusively nuclear, whereas in epithelial cell types occasionally 

a weak cytoplasmic signal was observed in addition to a prominent nuclear staining. 

Irrespective of gestational age distinct to intense staining was found throughout gestation in 

virtually all invasive TGC situated in the caruncular epithelium. Correspondingly, when IRS 

values (Fig. 22) for invasive TGC were evaluated by one-factorial ANOVA, no significant 

influence of the observational group was found (p=0.6615). Significant immunostaining was 

also found throughout gestation in a proportion of TGC situated in the chorionic epithelium 

considered mature as deduced from morphological characteristics. However, IRS values for 

this cell type were significantly higher at late gestation and parturition compared to early and 

midgestation (p=0.0036). Immunostaining in other cell types evaluated was also clearly 

related to the stage of gestation with generally low IRS values between first trimester until 

late gestation (day 272), when a marked increase both in the proportion of positive cells and 

staining intensity occurred. In placentomes from cows at day 272 of gestation, cows during 

the prepartal decline of progesterone and from parturient animals, AR was almost 

ubiquitously expressed. P-values for an influence of the observational group were 0.0026 for 

immature TGC/UTC, <0.001 for caruncular stromal cells and 0.001 for caruncular epithelial 

cells and stromal cells of chorionic villi, respectively. 
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Figure 21: Immunostaining for androgen receptor in bovine placentomes. A) Distinct 

immunostaining in the two fetal nuclei of a feto-maternal hybrid cell (arrow) 

situated in the caruncular epithelium (day 80; magnification x400). B) Intense 

nuclear staining in mature (arrowheads) and invasive trophoblast giant cells 

A B 

C D 
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(arrows) (day 220; magnification: x200). C) Placentome of a 272 days pregnant 

cow. Androgen receptor specific immunostaining is present in the majority of 

cells (magnification: x100). D) Placentome of a cow during the prepartal decline 

of progesterone. Distinct to intense nuclear staining is found in virtually all cells 

(magnification: x200). 
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Figure 22: Quantitative evaluation of immunostaining for androgen receptor in different cell 

types of bovine placentomes using an immunoreactive score (IRS). Each 

observational group consisted of three animals and IRS values are presented as 

+SD. In prepartal animals tissue was collected during prepartal luteolysis. 

 inTGC, maTGC, imTGC = invasive, mature, immature trophoblast giant cells; 

UTC = uninucleated trophoblast giant cells; SCV = stromal cells of chorionic 

villi; CE = caruncular epithelial cells; CS = caruncular stromal cells. 

 

4.3.3 Testosterone concentrations in bovine placentomal tissue 

Testosterone concentrations measured in placentomal homogenates prepared from 12 cows 

between days 60-272 of gestation were all above the sensitivity of the radioimmunoassay 

applied (>35 pg/tube) and varied between 0.15-1.74 ng/g wet tissue (Fig. 23). Concentrations 

measured in placentomes of three 272 days pregnant cows were significantly higher than in 

placentomes of nine cows between days 60-220 (p < 0.001; T-test). In a correlation analysis, a 

significant positive correlation was found between testosterone tissue concentration and 



 RESULTS 81 

 

gestational age (p = 0.002; r = 0.788). The linear regression line calculated was y = 0.0050x – 

0.3484. 
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Figure 23: Testosterone concentrations measured in placentomal tissue homogenates of 12 

pregnant cows between days 60 and 272 of gestation. In a correlation analysis, a 

significant positive correlation was found between gestational age and 

testosterone tissue concentration (p = 0.002; r = 0.788). 
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5. DISCUSSION 

5.1 SULT1E1 

By means of immunohistochemistry in bovine placentomes detection of SULT1E1 was 

virtually restricted to UTC, which clearly conflicts with results from previous studies by 

immunohistochemistry (Brown et al. 1987) and in situ hybridization (Ushizawa et al. 2007; 

Hirayama et al. 2008) suggesting the localization of SULT1E1 in TGC. However, there are 

several lines of evidence which, taken together, convincingly corroborate the validity of our 

immunohistochemical method. Firstly, antiserum αbov-SULT1E1 was produced against 

recombinant, highly purified bovine SULT1E1. Thus, significant cross-contamination of the 

antigen used for immunization with other proteins, especially of bovine origin is extremely 

unlikely. Moreover, to further reduce possible cross-reactivity, the antiserum was purified by 

affinity chromatography using recombinant bovine SULT1E1 linked to CNBr-activated 

sepharose (Frenette et al. 2009). In western blot, a specific band was recognized with a 

molecular size of approx. 33 KDa, which is consistent with monomeric SULT1E1. In 

placental samples with high SULT1E1 expression and in samples from adult liver a band of a 

molecular weight of approx. 70 kDa occurred which is consistent with SULT1E1 dimers 

(Adams 1991). In placentomes results from western blot and immunohistochemistry 

correlated well with data from real-time RT-PCR suggesting an increase of SULT1E1 

expression at the end of gestation. Strong evidence for the validity of our 

immunohistochemical and western blot methods also comes from parallel experiments using 

an antiserum against human SULT1E1, which yielded virtually identical results. Even if the 

signals found with αbov-SULT1E1 and αhum-SULT1E1 in UTC were considerably related to 

cross-reaction with other members of the structurally closely related SULT family, any 

significant SULT1E1 expression in TGC should have been detected in addition, which was 

absolutely not the case. The reasons for the divergent results between this study and previous 

studies by other researchers are unclear and can only be suspected. The monoclonal antibody 

33-11 used by Brown et al. (1987) was produced against “estrogen sulfotransferase” purified 

from bovine placenta. Different from the antisera used in our study, in western blot it reacted 

with several bands of various sizes. In a later paper of this group (Adams 1991) it was 

admitted that the molecule initially purified as “estrogen sulfotransferase” obviously was 

mainly transferrin, and no other paper could be found in which this antibody was used. Thus, 

there are reasonable doubts that monoclonal antibody 33-11 was really specific for SULT1E1. 

The fact that in bovine placentomes SULT1E1-mRNA was localized in TGC by in situ-

hybridization in two studies (Ushizawa et al. 2007, Hirayama et al. 2008) can not be easily 
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invalidated. Basically it is possible that in bovine trophoblast a protein and its corresponding 

mRNA may be located in different cell types due to the permanent rapid differentiation of 

UTC into TGC, as in different cell types like spermatogenic cells (Ostermeier et al. 2002; 

Dadoune 2003; Lambard et al. 2004) and oocyte (Ballantyne et al. 1997; Charlesworth et al. 

2000) a considerable lag of time has been shown between transcription of the mRNA and 

translation of the protein. However, in case of a significant delay between the expression on 

the mRNA and the protein level of a certain gene during TGC differentiation, the mRNA 

should be detectable at an earlier stage of differentiation than the protein and not vice versa. 

As the two previous studies using ISH (Ushizawa et al. 2007; Hirayama et al. 2008) were 

performed by collaborating groups and the probe applied is only specified in one of the papers 

(Hirayama et al. 2008), it remains unclear if the same method was used in both studies. In the 

probe used by Hirayama et al. (2008), sequences with significant homologies to bovine 

SULT1B1 and SULT1C1 were found. Cross-reactivity with other structurally closely related 

members of the SULT family (Chapman et al. 2004; Pasqualini 2009) must also be 

considered on the protein level. However, even if the signals found with αbov-SULT1E1 and 

αhum-SULT1E1 in UTC were related to cross-reaction with other members of the SULT 

family, any significant SULT1E1 expression in TGC should have been detected in addition, 

which was not the case. Finally, although ISH is generally considered highly specific, in 

previous studies in bovine placental tissue performed in our laboratory, in a significant 

number of cases considerable staining in TGC occurred after the use of sense probes applied 

in negative control experiments. As bovine TGC exhibit intense protein synthesis (Wooding 

1992; Hoffman and Wooding 1993; Igwebuike 2006), these signals are presumably due to 

non-specific interaction of probes with the high amount of mRNA present in this cell type. 

Until today the function of the high amounts of E1S produced in the bovine trophoblast is 

unclear (Schuler et al. 2008). The previously suggested localization of SULT1E1 in TGC 

(Brown et al. 1987; Ushizawa et al. 2007; Hirayama et al. 2008), which up-regulate aromatase 

(Schuler et al. 2006a) and estrogen receptor β (Schuler et al. 2005) during their 

differentiation, would strongly point to a predominant role of bovine pregnancy associated 

estrogens as intracrine regulators in trophoblast cells, as synthesis, receptor binding and 

inactivation of estrogens would occur in the same cell. A localization of SULT1E1 in UTC, as 

strongly suggested by our immunohistochemical results, is also consistent with a role of 

bovine pregnancy associated estrogens as intracrine regulators in TGC during differentiation. 

However, as inactivation of free estrogens produced in TGC would predominantly take place 

in UTC, there might also be some estrogenic signaling from TGC to UTC, which could serve 
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the cellular balance between UTC and TGC in the trophoblast. The ratio UTC/TGC is fairly 

constant throughout gestation at approximately 4:1 (Wooding 1983) with the exception of the 

immediate pre- and intrapartal phase (Woicke et al. 1986; Gross et al. 1991; Shenavai et al. 

2010), when the number of TGC decreases significantly. Moreover, E1S may not only be 

regarded as an inactivated metabolite but may form a pool of precursors for the local 

production of estrogens in target cells exhibiting STS expression (sulfatase pathway; Santen 

et al. 1986), which could serve the limitation of the effects of placental estrogen to a 

pregnancy specific subset of estrogen responsive cells. Interestingly, in bovine placentomes 

the caruncular epithelium, which is in direct contact with the trophoblast, has been shown to 

express STS (Greven et al. 2007) and estrogen receptors (Boos et al. 2000; Schuler et al. 

2002). 

For SULT1E1 in UTC, a gradient of immunostaining was observed along the villous tree at 

early and midgestation with higher staining intensities at the chorionic plate and basal parts of 

stem villi compared to the more distal parts. At late gestation, an extension of high staining 

intensities also to distal parts of the chorionic villous tree occurred. Thus, SULT1E1 belongs 

to a considerable number of genes for which this type of expression pattern has been found in 

the chorionic villus tree (CYP17, CYP19: Schuler et al. 2006a, COX2: Schuler et al. 2006b,) 

or in its maternal counter part, the caruncular crypt system (STS: Greven et al. 2007, 

glucocorticoid receptor: Boos et al. 2000). Correspondingly a significant increase of 

SULT1E1-mRNA levels was found in late gestation, which is consistent with earlier results 

by Ushizawa et al. (2007). 

The only noteworthy difference in the immunohistochemical staining patterns between αbov-

SULT1E1 and αhum-SULT1E1 was the moderate cytosolic staining in caruncular epithelial 

cells occasionally observed with the antiserum against the bovine enzyme in addition to the 

predominant signal in UTC obtained with both antisera. The reason for this difference is 

unclear but may be related to different sensitivities of the two immunohistochmical methods. 

As caruncular epithelial cells strongly express estrogen receptor α (Boos et al. 2000; Schuler 

et al. 2002) and STS (Greven et al. 2007), SULT1E1 expression in this cell type could serve 

the limitation of estrogenic effects by free estrogens either leaking from the cotyledon or 

locally produced via the sulfatase pathway. Free estrogens escaping from sulfonation in the 

trophoblast to the fetal circulation are obviously intercepted by the relatively high SULT1E1 

expression in the fetal liver. The high SULT1E1-mRNA levels measured in fetal liver in this 

study are consistent with high estrogen sulfotransferase activities in cytosol prepared from 

fetal liver in the presence of PAPS (Schuler, unpublished data). The results from the screening 
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of various organs for SULT1E1-mRNA from adult cattle showed that expression even in 

steroidogenic organs and liver was minimal in comparison to placenta and fetal liver. This 

result is consistent with the basal E1S levels measured in non-pregnant cows and in bulls 

(Schuler, unpublished data). 

In conclusion, this study using two different primary antisera provides convincing evidence 

that, different from the results of previous studies localizing SULT1E1 in TGC, in bovine 

trophoblast this enzyme is predominantly expressed in UTC. This entails a revision of the 

concept on the availability of free and sulfonated estrogens on a cellular level in bovine 

placentomes. 

 

5.2 SOAT 

Different from other mammalian species investigated so far, in which only the SOAT 

standard form (variant 1) was detected, during cloning of bovine SOAT from placentomes 

four additional isoforms (variants 2-5) were identified on the mRNA level arising from the 

deletion of one or several exons and/or the insertion of an additional exon 1´ (Greven 2008). 

Whereas for SOAT variant 1 a sodium-dependent uptake of steroid-3-sulfates has been 

demonstrated in vitro (Greven 2008), the biological role of variants 2-5 was still unknown. It 

has been speculated that they may be non-functional or that they may have other functions 

unrelated to transport processes. For variant 3 the hypothesis was put forward that it may 

mediate the cellular export instead of import of substrates, as it has been described for a 

homologous variant of the structurally closely related apical sodium-dependent bile acid 

transporter (Lazaridis et al. 2000). Thus, the original aim of this part of the study was to 

thoroughly characterize the expression of SOAT variants on the protein and mRNA level, 

respectively. However, after comprehensive control experiments none of the several 

antibodies produced against human SOAT obtained from commercial sources or from 

collaborators yielded reliable results with bovine tissues in western blot and 

immunohistochemistry. Moreover, attempts to test for an integration into the cytoplasmic 

membrane of the individual SOAT variants transiently expressed in HEK cells using surface 

biotinylation did not yield reproducible results. Thus, only data from investigations on the 

mRNA level can be presented here. 

Investigations by conventional RT-PCR using variant specific primers showed that in bovine 

placentomes 1,2 and 5 SOAT variants were widely expressed throughout gestation. However, 

variants 3 and 4 were missing in placentomes from some animals at various stages of 

gestation. Data from real-time RT-PCR methods, which could be established for variants 1, 2, 
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3 and 5, revealed a trend for higher expression levels at the end of gestation and at parturition, 

which is consistent with data from the previous study by Greven (2008), in which a similar 

increase of expression levels was measured using a real-time RT-PCR method not 

discriminating between individual isoforms. 

Comparative investigations on the spectrum of SOAT isoforms in various bovine organs 

using variant-specific methods in conventional RT-PCR showed that - with the exception of 

variant 4 - all variants were detected in all samples under investigation. Thus standard SOAT 

and isoforms 2, 3 and 5 possess a remarkably broad distribution in bovine tissues suggesting a 

considerable physiological role of SOAT isoform formation in cattle. Although for each organ 

or tissue only one sample was included in these experiments, the results from real-time RT-

PCR point to remarkable quantitative organ-specific differences in the expression of SOAT 

isoforms. Despite the comprehensive information on the expression of SOAT isoforms in 

bovine tissues obtained in this study, their physiological roles still remain unclear. SOAT 

variant 1, which came into the fore of our studies on bovine placental steroidogenesis because 

of its capacity to efficiently mediate the import of E1S in vitro (Greven 2008), has now been 

shown to be widely expressed in many tissues which are not considered as important source 

or potential target of sulfonated estrogens (sulfatase pathway). As for isoforms 2, 3 and 5, 

expression of SOAT variant 1 was highest in the testis. In the literature no data were found on 

blood levels of E1S in bulls but punctual experience from our endocrine laboratory showed 

that in plasma or serum of male cattle E1S concentrations are below or at the limit of 

detection of the assay used (0.1 ng/ml), thus questioning a role of SOAT variant 1 as a 

physiologically relevant transporter of E1S in male cattle. As it also efficiently mediates the 

cellular import of pregnenolone sulfate and DHEA sulfate (Greven 2008), one might 

speculate that SOAT variant 1 may be involved in the up-take of sulfonated steroid hormone 

precursors into Leydig cells. However, expression in other bovine steroidogenic organs which 

are highly active based on their steroid output per tissue weight such as the corpus luteum and 

adrenal is only low. Moreover, using laser capture microdissection, SOAT variant 1 

expression in bovine testis was clearly higher in the tubular compartment compared to the 

Leydig cells (Pershotam, unpublished data), which also challenges the concept of SOAT 

variant 1 as a physiologically relevant transporter of steroid sulfates in the bovine testis. The 

roles of isoforms 2-5 remain even less clear, as in experiments using transiently transfected 

cells a transport function could only be demonstrated for isoform 1 but not for isoforms 2-5 

(Geyer, personal communication). 
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5.3 Androgen receptor expression and testosterone tissue concentrations in bovine 

placentomes 

Physiological roles of androgens in the fetal and maternal part of bovine placentomes on the 

first view are unexpected. However, the expression of AR in human placenta has been 

suggested already in early studies using ligand binding assays (Barile et al. 1979; Stanley et 

al. 1980; Hirota et al. 1981; McCormick et al. 1981, Younes et al. 1982), and was later 

confirmed by immunohistochemistry in human decidua and trophoblast (Horie et al. 1992a; 

Uzelac et al. 2010). In bovine placentomes, expression of AR was unequivocally 

demonstrated on the mRNA-level by conventional RT-PCR and by the Taqman-based 

quantitative real-time RT-PCR method, where in addition to specific primers further 

specificity is coming from the gene specific probe. Convincing evidence for the capacity of 

the antibody used in immunohistochemistry, which was produced against the N-terminus of 

human AR, to specifically detect AR in bovine tissues comes from western blot experiments. 

In placentomal tissue only one specific band at about 110 kDa occurred, which is consistent 

with the molecular weight of AR (Claessens et al. 2001, Uzelac et al. 2010). A clearly more 

intensive band of exactly the same size occurred with bovine epididymis, a tissue known to 

highly express AR (Foxley et al. 2001). Further evidence for the validity of the 

immunohistochemical method established to detect AR in bovine tissues comes from 

immunohistochemical control experiments. In negative controls, in which the primary 

antibody was replaced by irrelevant isotypic immunoglobulin, unspecific staining of weak 

intensity only occurred sporadically and was associated with plasma components present in 

the lumina of blood vessels. In a bovine epididymal head used as a positive control tissue, a 

staining pattern consistent with findings from other domestic animal species like sheep 

(Tekpetey et al. 1989), goat (Goyal et al. 1997), rat (Zhu et. al 2000) and horse (Bilinska et al. 

2004; Parlevliet et al. 2006) was obtained. 

Throughout gestation, distinct to intense staining was found in nuclei of invasive TGC 

situated in the caruncular epithelium and in the two “fetal” nuclei of feto-maternal hybrid 

cells formed by the fusion of an invasive TGC with a caruncular epithelial cell (Wooding and 

Beckers 1987). Moreover distinct nuclear staining was also found in TGC at advanced stages 

of differentiation before migration into the maternal epithelium. This staining pattern suggests 

that AR expression is up-regulated during TGC differentiation. The sequential up- and down-

regulation of steroidogenic enzymes in bovine trophoblast cells during TGC differentiation 

(Schuler et al. 2008) and the fact that in bovine placentomes the Δ4-pathway is inefficient 

(Schuler et al. 1994) implies that a significant synthesis of testosterone or 5α-
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dihydrotestosterone is only possible after the entry of UTC into the TGC differentiation, when 

down-regulation of CYP17 and up-regulation of 3β-hydroxysteroid dehydrogenase occurs. 

Thus, in bovine trophoblast cells androgens and AR may be elements of an intracrine 

mechanism involved in the control of TGC differentiation, and AR may be up-regulated by 

increasing androgen levels in differentiating trophoblast cells. A dependency of AR 

expression on the presence of androgens has been previously demonstrated in various cell 

types of the male genital tract (Zhu et al. 2000). On the other hand, up-regulation of AR in the 

aromatase (Schuler et al. 2006a) and ERß (Schuler et al. 2005) expressing TGC may also be 

stimulated by estrogens. The up-regulation of AR by estrogens has been demonstrated in 

endometrial stroma cells of macaques (Slayden and Brenner 2004). 

Immunostaining for ARs in bovine placentomes is virtually restricted to trophoblast cells 

during most of the time of gestation but is almost ubiquitously detected in the immediate 

prepartal period and at parturition. However, this substantial overall expansion in AR 

expression is hardly detectable on the mRNA level. This ostensible contradiction may be 

explained by the fact that TGC are by far the predominant source of AR expression in the 

placentome, in which AR expression is constantly high throughout gestation and of which the 

number significantly decreases immediately prior to parturition (Gross et al. 1991; Shenavai 

et al. 2010). The almost ubiquitous up-regulation of AR in bovine placentomes may be related 

to the prepartal up-regulation of CYP17 in UTC (Schuler et al. 2006a), which may results in 

the increased availability of C19 precursors for the production of active androgens or 

estrogens in TGC or their precursors. Thus, active androgens or estrogens may “leak” in 

significant amounts to other cells of the placentome to stimulate AR up-regulation. Although 

androgen concentrations measured in placentomal tissue are low in comparison to levels 

usually occurring in intact males, they are clearly above the detection limit of the assay 

applied and must be considered sufficient to activate AR, especially when taking into account 

intracrine or paracrine actions. Consistently, in human villous explants the AR dependent up-

gulation of the AR target gene FGF2 by 5α-dihydrotestosterone has been demonstrated, 

suggesting that placental AR are functional and that androgens may be important local factors 

in the control of placental growth and differentiation (Uzelac et al. 2010). Thus, the 

production of biologically inactive estrogens by the activities of aromatase in TGC (Schuler et 

al. 2006a) and SULT1E1 in UTC may be a mechanism to finely tune the availability of active 

androgens in the placentomes. 

Since the discovery of steroid receptors, the concept of their roles has significantly changed 

from monospecific ligand activated receptors to components of the general transcription 
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machinery, which - among various other functions – also possess a steroid activated 

transcriptional activity. Thus, other functions besides effects from the classic interaction of 

AR with androgens must also be considered, e.g. the cross-talk of various signal cascades 

initiated by growth factors which may target AR (Zhu and Kyprianou 2008). Accordingly, the 

expression of various relevant growth factors such as fibroblast growth factors (Pfarrer et al. 

2006a), vasoendothelial growth factor (Pfarrer et al. 2006b) or transforming growth factor β 

(Ravelich et al. 2006) has been demonstrated in bovine placentomes, and the up-regulation of 

AR induced by placental steroids may be a prerequisite to enable their full spectrum of 

effects. 

In conclusion, the detection of significant AR expression and of testosterone tissue levels 

considered as sufficient for AR activation in bovine placentomes suggest that besides 

progesterone and estrogens also androgens may be active products of placental 

steroidogenesis in a cattle. Moreover, this concept suggests a new function for the 

predominant production of inactive estrogen sulfates in bovine placentomes which might 

serve the control of androgen activities. 
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6. SUMMARY 

As a temporary endocrine organ, the placenta is capable of synthesizing and secreting a broad 

range of hormones and other bioactive molecules. Like in many other mammalian species, 

also in cattle the placenta exhibits a considerable steroidogenic activity with estrone sulfate 

(E1S) and progesterone being the main products from a quantitative point of view. However, 

the biological role of placental steroidogenesis in cattle is widely unclear as the placenta 

contributes only negligibly and temporarily to peripheral maternal progesterone blood levels, 

and the main estrogenic product – E1S – does not interact with classical nuclear estrogen 

receptors. Based on the observation that receptors for progesterone and estrogens are 

expressed in bovine placentomes the concept of placental steroids as local regulators of 

placental growth, differentiation and functions has been put forward. However, data from 

functional studies to corroborate this concept are not yet available, and apart from the 

functions of bovine placental steroids, there are still many open questions concerning 

synthesis and transport especially of sulfonated estrogens in cattle. Thus, this study focuses on 

three aspects of bovine placental steroidogenesis: 1) the expression of the estrogen-specific 

sulfotransferase (SULT1E1) to identify the sites of estrogen sulfonation in the pregnant cow 

2) to further characterize the expression of the sodium-dependent organic anion transporter 

(SOAT; syn.: SLC10A6) which is considered as a putatively relevant transporter of estrogen 

sulfates 3) to test for the possibility that steroids other than progesterone and estrogens – e.g. 

androgens - are functionally important products of bovine placental steroidogenesis. 

In order to localize SULT1E1 in bovine placentomes on a cellular level and to assess its 

expression quantitatively throughout gestation, immunocytochemical and real-time RT-PCR 

methods were established, respectively. In immunocytochemisty (ICC) two different primary 

antibodies were applied: a rabbit antiserum against bovine recombinant SULT1E1 

(generously provided by Dr. R. Sullivan, Centre de Recherche en Biologie de la Reproduction 

and Département d'Obstétrique-Gynécologie, Faculté de Médecine, Université Laval, Quebec, 

Canada) and a commercial murine antiserum against the human enzyme. Specificity of these 

antibodies was confirmed in western blot. They yielded virtually identical results in ICC. 

Different from previous data published in the literature based on ICC and in situ 

hybridization, where SULT1E1 in bovine placentomes was localized in trophoblast giant cells 

(TGC), strong specific cytoplasmic staining was only found in uninucleated trophoblast cells 

(UTC) and SULT1E1 was rapidly down-regulated when trophoblast cells showed 

characteristics of TGC differentiation. Throughout gestation, distinct immunostaining for 

SULT1E1 was found in UTC of the chorionic plate. A gradient of staining intensity was 
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observed along the chorionic villous tree with a decrease of mean staining intensities between 

the basal parts of stem villi and the tertiary villi. With real-time RT-PCR, in the course of 

pregnancy a significant increase of SULT1E1-mRNA expression was found in the last 

trimester and at parturition (p=0.0043), which confirms earlier studies by other investigators. 

Consistent with the increase of SULT1E1-mRNA in real-time RT-PCR in 

immunohistochemistry an increase of overall staining intensity was detected during late 

gestation and at parturition with the antiserum against bovine SULT1E1 but this was not 

obvious with the antiserum against the human enzyme. Moreover, with the antiserum against 

the bovine enzyme a weak cytoplasmic signal was obtained in the caruncular epithelium in a 

part of placental samples in addition to the distinct signals in UTC. When screening bovine 

organs for SULT1E1-mRNA expression by real-time RT-PCR, highest levels were found in 

the placenta (2851 relative units, RU; day 272), followed by fetal liver (day 185: 748 RU; day 

210: 816 RU). In adult bovine organs, SULT1E1 expression was clearly lower with highest 

levels in adrenal (144 RU) and skin (91 RU) and was only minimal in the remaining organs 

investigated including liver (21 RU). 

The results give strong evidence that different from results of earlier studies the main sites of 

SULT1E1 expression in bovine placentomes are the UTC and not the TGC. They suggest that 

SULT1E1 may protect UTC from the high levels of free estrogens produced by TGC and it 

may be involved in the control of TGC differentiation. 

The aim of the second part of this study was to further characterize the expression of the five 

isoforms identified so far of the SOAT in the bovine placentome and other organs. The SOAT 

standard form (variant 1) cloned from bovine placentome has been recently shown in vitro to 

efficiently mediate the cellular import of E1S and thus may be a physiologically relevant 

transporter for the large amount of E1S produced in the trophoblast during bovine gestation. 

Virtually no information was available so far on the expression pattern and functions of the 

remaining four isoforms. Variant-specific conventional RT-PCR methods could be 

established for all of the five variants. With these methods, placental tissue samples from 

different stages of gestation were screened for SOAT isoform expression. For comparison, a 

broad spectrum of other tissues and organs was also included into the study. Specific 

amplicons were obtained in all (variants 1, 2, 5) or most (variant 3) of the tissue samples. For 

variant 4, bands were only weak or absent in a considerable proportion of placental or adult 

tissue samples. Real-time RT-PCR methods (SYBR green) could be established for variants 1, 

2, 3 and 5. Expression of all these variants did not change significantly in bovine placentomes 

during early and midgestation but was more than 10 fold higher in the maternal part of 
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placentomes from cows at normal term suggesting that their expression is up-regulated in the 

prepartal period. When screening various bovine organs quantitatively for expression of 

mRNA specific for SOAT isoforms, for variants 1, 2 and 5 expression in testis (1253 RU, 

8195 RU, 4575 RU, resp.) exceeded by far expression measured in other organs or tissues. 

Other significant sites of SOAT-variant 1 expression are skin (734 RU), udder (282 RU) and 

colon (255). Besides in the testis, variant 2 was significantly expressed in the skin (1410). 

Highest expression for variant 3 was also found in the testes (158 RU), which – however- was 

only slightly higher than in the ovarian stroma (113 RU). The spectrum of measurable SOAT 

isoforms varied considerable between tissues and organs with testis, placenta and corpus 

luteum being the only organs where all four isoforms assessed were expressed in measurable 

levels. Expression levels in placentome for variants 1 (5.3 RU), 2 (31.8 RU), 3 (2.5 RU) and 5 

(9.6) were all above the limit of detection but only minimal compared to the testis. These 

observations question the hypothesis of SOAT variants as important transporters of the high 

amounts of sulfonated estrogens in bovine placentomes. Moreover, the results suggest that in 

cattle standard SOAT (variant 1) and its other isoforms play an important role especially in 

the testis, an organ, which – however – in the bovine species does not produce considerable 

amounts of sulfated estrogens. 

In addition to estrogens and progesterone, of which no biological role has been definitely 

identified yet in bovine placenta, in the bovine trophoblast androgens may also be produced 

and may have effects in bovine placentomes. In order to identify putative target cells of 

placental androgens, an immunohistochemical method was established to detect androgen 

receptor (AR) in bovine tissues using an antiserum raised against the N-terminus of human 

AR. Specificity of the primary antibody applied for bovine AR was confirmed by western blot 

and by control experiments using bovine epididymis as a positive control tissue. Throughout 

gestation, distinct nuclear signals were found in invasive TGC. As assessed by quantitative 

evaluation using an immunoreactive score, in TGC situated in the trophoblast, immature 

TGC, UTC, stromal cells of the chorionic villi, caruncular epithelial and stromal cells AR 

expression was low at early and midgestation but significantly increased during late gestation 

(p<0.01, resp.). Expression of AR was qualitatively confirmed on the mRNA-level by 

conventional RT-PCR. With real-time RT-PCR (taqman method) only a trend for an 

increased AR expression in the prepartal phase and at parturition was observed, which – 

however – was not statistically significant. Radioimmunological measurement of testosterone 

concentrations in bovine placental tissue yielded concentrations that must be considered 

sufficient to activate local ARs, and showed a significant increase (p<0.01) of mean 
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testosterone concentrations from values slightly above background level (0.1 ng/g tissue) 

between days 50-100 to mean concentrations of 0.9 ng/g tissue during late gestation. The 

results suggest that androgens may be active products of bovine placental steroidogenesis and 

that they may be involved in the control of TGC differentiation. However, as steroid receptors 

are in part constitutionally active, it cannot be ruled out the ARs detected in bovine 

placentomes may have functions independent from the binding of steroidal ligands. 

In conclusion, results obtained in these studies provide new information on different aspects 

of bovine placental steroids and give starting points for new concepts on their functions. 
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7. ZUSAMMENFASSUNG 

Die Plazenta stellt ein temporäres endokrines Organ dar, welches ein breites Spektrum 

verschiedener Hormone und bioaktiver Mediatoren produziert. Wie bei vielen Säugerspezies 

produziert sie auch beim Rind erhebliche Mengen an Steroiden, wobei aus quantitativer Sicht 

Progesteron und Estronsulfat die Hauptprodukte darstellen. Progesteron plazentaren 

Ursprungs trägt jedoch nur minimal und temporär zu den maternalen Blutspiegeln bei. 

Weiterhin interagiert das Hauptprodukt der plazentaren Östrogensynthese – Estronsulfat –

nicht mit klassischen Östrogenrezeptoren. Daher ist die Bedeutung der plazentaren 

Steroidsynthese beim Rind immer noch unklar. Der Nachweis von Östrogen- bzw. 

Progesteronrezeptoren in den Plazentomen führte zur Hypothese, dass plazentare Steroide 

beim Rind nicht als Hormone im klassischen Sinn, sondern als lokale Regulatoren von 

Wachstum, Differenzierung und Funktionen der Plazenta selbst fungieren könnten. Eine 

Bestätigung dieses Konzepts durch entsprechende funktionelle Studien steht jedoch bisher 

noch aus, und neben der Frage nach der biologischen Bedeutung sind immer noch zahlreiche 

Fragen hinsichtlich Synthese und Transport der plazentaren Steroide, insbesondere der in 

großen Mengen gebildeten sulfatierten Östrogenen offen. Daher befassen sich diese 

Untersuchungen mit den folgenden drei Aspekten der plazentaren Steroidsynthese beim Rind: 

1) Identifizierung des Syntheseortes der plazentaren sulfatierten Östrogene durch die 

Charakterisierung der Expression der östrogenspezifischen Sulfotransferase SULT1E1 auf 

zellulärer Ebene 2) die nähere Charakterisierung der Expression des Sodium-dependent 

Organic Anion Transporters (SOAT, syn.: SLC10A6) im Hinblick auf dessen Funktion als 

physiologisch relevanter Transsporter von sulfatierten Östrogenen 3) der möglichen 

Bedeutung von Androgenen als biologisch aktive Produkte der plazentaren Steroidsynthese. 

Zur Lokalisierung der SULT1E1 in den Rinderplazentomen auf zellulärer Ebene und zur 

quantitativen Erfassung der SULT1E1-Expression im Verlauf der Gravidität wurden zwei 

immunhistologische bzw. eine Real-time RT-PCR-Methode etabliert. Für den 

immunhistologischen SULT1E1-Nachweis wurden zwei Primärantikörper eingesetzt: ein 

polyklonales Antiserum aus Kaninchen gegen rekombinante bovine SULT1E1 

(freundlicherweise zur Verfügung gestellt von Dr. R. Sullivan, Centre de Recherche en 

Biologie de la Reproduction and Département d'Obstétrique-Gynécologie, Faculté de 

Médecine, Université Laval, Quebec, Kanada, sowie ein kommerzielles Antiserum aus der 

Maus gegen das entsprechende menschliche Enzym. Die Spezifität der beiden 

Primärantikörper für die bovine SULT1E1 wurde im Western Blot bestätigt. In der 

Immunhistologie ergaben sie weitgehend übereinstimmende Resultate. Im Gegensatz zu 
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Resultaten früherer Untersuchungen unter Anwendung der Immunhistologie sowie der In situ-

Hybridisierung, in denen die SULT1E1 in den Trophoblastriesenzellen (trophoblast giant 

cells, TGC) lokalisiert wurden, fanden sich in den eigenen Untersuchungen starke 

zytoplasmatische Signale ausschließlich in den einkernigen Trophoblastzellen (uninucleated 

trophoblast cells, UTC). Sobald UTC morphologisch erkennbar in die TGC-Differenzierung 

eintraten, wurde die SULT1E1-Expression rasch herunterreguliert. Unabhängig vom 

Trächtigkeitsstadium war in den Plazentomen eine starke SULT1E1-Expression in den UTC 

der Chorionplatte nachweisbar. In den UTC der Chorionzotten fand sich ein Gradient der 

SULT1E1-Expression mit Abnahme der Signalintensität von den basalen Anteilen der 

Stammzotten zu den Spitzen der Tertiärzotten. Mittels der Real-time RT-PCR konnte über 

den Verlauf der Gravidität ein Anstieg der SULT1E1-mRNA-Expression in der späten 

Gravidität sowie unter der Geburt festgestellt werden (p=0.0043), was im Einklang mit 

früheren Untersuchungen anderer Autoren steht. In Übereinstimmung mit dem in der Real-

time RT-PCR festgestellten Anstieg der SULT1E1-mRNA-Expression in der Spätgravidität 

und unter der Geburt wurde in der Immunhistologie unter Verwendung des Primärantikörpers 

gegen die bovine SULT1E1 im entsprechenden Zeitraum ein Anstieg des Farbsignals 

festgestellt. Dieser war jedoch bei Verwendung des Primärantikörpers gegen die menschliche 

SULT1E1 nicht feststellbar. Weiterhin fand sich mit dem Primärantikörper gegen die bovine 

SULT1E1 in einem Teil der Proben neben dem prominenten Signal in den UTC ein deutlich 

schwächeres zytoplasmatisches Signal im Karunkelepithel. Bei einem Vergleich der 

SULT1E1-mRNA-Expression in Proben verschiedener Organe – gemessen mittels Real-time 

RT-PCR - zeigte sich, dass beim Rind die Plazenta (Tag 272) die weitaus höchste Expression 

aufweist (2851 relative Einheiten, RU), gefolgt von der fetalen Leber (Tag 185: 748 RU; Tag 

210: 816 RU). In Organen adulter Rinder war die SULT1E1-Expression weitaus niedriger mit 

höchsten Messwerten in der Nebenniere (144 RU), gefolgt von der Haut (91 RU). In den 

restlichen untersuchten Organen adulter Rinder, inclusive der Leber (21 RU), war sie 

vergleichsweise minimal. 

Die Ergebnisse zeigen überzeugend, dass die bisher publizierte Lokalisation der SULT1E1 in 

den TGC offensichtlich nicht zutrifft, sondern dass sie in den Plazentomen des Rindes 

vorwiegend in den UTC exprimiert wird, wodurch diese Zellen vermutlich vor den in den 

TGC produzierten Östrogenen geschützt werden. Möglicherweise ist die SULT1E1 daher in 

die Kontrolle der Trophoblastriesenzelldifferenzierung involviert. 

Ziel des zweiten Teils dieser Untersuchung war die weitergehende Charakterisierung der 

Expression der fünf bisher identifizierten Isoformen des SOAT in den Plazentomen und 
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vergleichsweise in anderen Organen des Rindes. Für die aus Rinderplazentomen klonierte 

SOAT-Standardform (Variante 1) konnte kürzlich in vitro gezeigt werden, dass sie effektiv 

den zellulären Import von Estronsulfat vermittelt, weshalb sie als physiologisch relevanter 

Transporter des während der Gravidität des Rindes in großen Mengen produzierten 

Estronsulfats infrage kommt. Über das Expressionsmuster der restlichen vier Varianten sowie 

über deren Funktionalität lagen bisher keinerlei Informationen vor. Für alle fünf Varianten 

des Rinder SOATs wurden spezifische konventionelle RT-PCR-Methoden etabliert. Unter 

Anwendung dieser Verfahren wurden Plazentomproben aus unterschiedlichen 

Trächtigkeitsstadien untersucht. Zu Vergleichszwecken wurden parallel Untersuchungen an 

einem breiten Spektrum von Rinderorganen bzw -geweben durchgeführt. Für die SOAT-

Isoformen 1, 2 und 5 waren spezifische PCR-Produkte in allen untersuchten Proben 

nachweisbar. Auch die Expression der Variante 3 war in den meisten Proben nachweisbar. 

Banden für Variante 4 waren dagegen meist schwach oder nicht nachweisbar. Die Etablierung 

isoformspezifischer Real-time RT-PCR-Methoden war für die Varianten 1, 2, 3 und 5 

erfolgreich. Mit ihnen konnte gezeigt werden, dass die Expression dieser Varianten in den 

Rinderplazentomen in der frühen und mittleren Gravidität weitgehend konstant ist, während 

unter der Geburt die im maternalen Teil der Plazentome gemessene Expression im Mittel um 

mehr als den Faktor 10 höher war. Bei vergleichenden Messungen der SOAT-Varianten-

Expression in verschiedenen Rindergeweben und –organen wurde für die Varianten 1, 2 und 5 

die weitaus höchsten Werte im Hoden gemessen (1253 RU, 8195 RU bzw. 4575 RU). 

Variante 1 wurde daneben deutlich in der Haut (734 RU), dem Euter (282 RU) und im Colon 

(233 RU) exprimiert. Außer im Hoden war Variante 2 in der Haut (1410 RU) deutlich 

nachweisbar. Für Variante 3 wurde die höchste Expression ebenfalls im Hoden (158 RU) 

nachgewiesen, wo sie allerdings nur unwesentlich höher war als im Ovarstroma (113 RU). 

Das Spektrum messbarer SOAT-Isoformen-mRNA wies zwischen den untersuchten Organen 

und Geweben erhebliche Unterschiede auf. Messenger-RNA für alle vier mittels Real-time 

RT-PCR erfassten Isoformen konnte lediglich in Hoden, Plazenta und Corpus luteum 

gemessen werden. In den Plazentomen war die relative Genexpression aller erfasster 

Varianten zwar über der Nachweisgrenze (Variante 1: 5,3 RU, Variante 2: 31,8 RU, Variante 

2: 2,5 RU, Variante 5: 9.6 RU), aber nur minimal im Vergleich zur Expression im Hoden. Die 

im Vergleich zu anderen Organen überaus schwache Expression der SOAT-Varianten in der 

Plazenta stellt die postulierte Bedeutung des SOAT als physiologisch relevanter Transporter 

für die großen Mengen trächtigkeitsspezifischer sulfatierter Östrogene beim Rind infrage. 

Weiterhin lassen die Ergebnisse zur SOAT-Expression erkennen, dass dieser insbesondere im 
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Hoden eine besondere Rolle spielt, einem Organ, welches beim Rind jedoch keine 

nennenswerten Mengen an sulfatierten Östrogenen produziert. 

Bisherige Vorstellungen zur Bedeutung der plazentaren Steroidsynthese beim Rind basieren 

auf der Annahme, dass Progesteron und/oder Östrogene deren biologisch aktive Produkte 

darstellen. Es besteht jedoch die Möglichkeit, dass auch andere Steroide wie z.B. Androgene, 

die ebenfalls im Trophoblast produziert werden, in den Plazentomen regulatorische 

Funktionen erfüllen. Zur Identifizierung möglicher Zielzellen plazentarer Androgene wurde 

ein immunhistochemisches Verfahren zur Darstellung von Androgenrezeptoren in 

Rindergeweben unter Verwendung eines Primärantikörpers gegen den N-Terminus des 

menschlichen Androgenrezeptors etabliert. Die Spezifität des Primärantikörpers für den 

Androgenrezeptor des Rindes wurde im Western Blot und in immunhistologischen 

Kontrollexperimenten bestätigt, in denen Nebenhoden eines Bullen als Positivkontrolle 

verwendet wurde. In den Plazentomen fanden sich während der gesamten Gravidität deutliche 

nukleäre Signale in invasiven TGC. Wie die quantitative Auswertung der Immunfärbung 

mittels eines immunreaktiven Scores ergab, war die Androgenrezeptorexpression in den 

reifen, noch im Trophoblasten gelegenen TGC sowie in unreifen TGC, UTC, den 

Stromazellen der Chorionzotten, dem Karunkelepithel und den Karunkelstromazellen in der 

frühen und mittleren Gravidität nur schwach, stieg aber in der Spätphase der Gravidität 

signifikant an (p jeweils < 0.01). Die Expression von Androgenrezeptoren in den Plazentomen 

wurde qualitativ mittels konventioneller RT-PCR bestätigt. Bei der Messung der 

Androgenrezeptor-mRNA-Expression mittels Real-time RT-PCR ergab sich ein tendenzieller 

Anstieg der relativen Genexpression, der jedoch nicht statistisch signifikant war. Bei der 

radioimmunologischen Messung der Testosteronkonzentration im Plazentomgewebe ergab 

sich ein Anstieg der Messwerte (p<0.01) von Konzentrationen geringfügig über der 

Nachweisgrenze des Messverfahrens (0.1 ng/g Gewebe) zwischen den Tagen 50-100 bis auf 

Konzentrationen um 0.9 ng/g Gewebe während der späten Gravidität. Diese Konzentrationen 

müssen als ausreichend angesehen werden, lokal im Gewebe vorhandene Androgenrezeptoren 

zu aktivieren. Diese Ergebnisse deuten darauf hin, dass beim Rind Androgene biologisch 

aktive Produkte der plazentaren Steroidsynthese darstellen und eine Rolle in der Steuerung 

der TGC-Differenzierung spielen könnten. Andererseits könnte der Androgenrezeptor auch 

androgenunabhängige Funktionen erfüllen, da die Aktivität von Steroidrezeptoren teilweise 

ligandunabhängig ist. 
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Die in dieser Arbeit insgesamt erhaltenen Resultate ergaben neue Informationen zu 

verschiedenen Aspekten der Steroidsynthese in der Rinderplazenta und erbrachten 

Ansatzpunkte für neue Hypothesen hinsichtlich deren funktioneller Bedeutung. 
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