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1 Introduction 

 

1.1 Pulmonary arterial hypertension 

 

1.1.1   Characteristics of pulmonary arterial hyper tension 

Pulmonary arterial hypertension (PAH) is a rare (1-2 cases per million) and progressive 

disease characterized by increased pulmonary vascular resistance leading to diminished 

right heart function and finally a failure of an afterload-intolerant right ventricle [1]. By 

expert consensus, PAH is regarded as a mean pulmonary artery pressure (mPAP) 

greater than 25 mmHg (in healthy adults it does not exceed 12-16 mmHg) at rest or 30 

mmHg (in healthy subjects the cardiac output increases, not the mPAP) during exercise 

in the setting of normal cardiac output and a normal pulmonary capillary wedge pressure 

[2-5]. Epidemiological studies show that most commonly, young and middle-aged women 

are afflicted with this fatal disease, which has a mean survival of two to three years after 

onset of first symptoms in untreated cases [2, 5-7]. The early symptoms of PAH are 

unspecific, mostly starting with exertional dyspnea due to an inability to increase 

pulmonary blood flow with exercise. In the progression of the disease, the right 

ventricular heart function is severely impaired resulting in exertional chest pain, syncope, 

and edema formation [3, 7-9].  

The nomenclature and classification of pulmonary hypertension (PH) has been revised 

several times, the latest on the World Symposium 2003 [10]. The current classification 

distinguishes PH by pathogenesis, etiology and response to treatment [11]. 

 
 

1.1.2   Histopathological changes  

The different forms of pulmonary hypertension exhibit structural changes that affect both 

the pulmonary vasculature and the right ventricle. This characteristic process of changes 

in pulmonary vascular structure, also referred to as vascular remodeling, includes all 

layers of the vessel wall, leading to significant changes in the structure, amount, 

phenotype and function of the cells located in the vessel wall, such as cellular 

hypertrophy, hyperplasia, and increased extracellular matrix deposition (ECM) (Figure 

1.1) [2, 12]. During the development of the disease, the pulmonary arteries of PAH 

patients exhibit narrowing of the vessel lumen, which is caused by intimal proliferation 

and transdifferentiation of endothelial cells, media thickening (through the hypertrophy 
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and hyperplasia of smooth muscle cells (SMC)) and remodeling of the adventitia, 

combined with fibroblast proliferation and deposition of ECM components, such as 

collagen and elastin, leading to a reduction in arterial dispensability [13-15]. Another 

characteristic hallmark of PAH is the formation of a so-called neointima, defined as a 

layer composed of ECM and myofibroblasts between the endothelium and the internal 

elastic lamina [14]. The process of remodeling also encompasses the distal extension of 

smooth muscle cells, leading to a muscularization of the peripheral, normally 

nonmuscular, pulmonary arteries due to the proliferation and differentiation of fibroblasts 

and pericytes [2, 15]. 

          

          

                                                                          

                  

                                                                                                                    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Histopathological changes in PAH 
Pulmonary arterioles in a normal subject (left) and in patients with PAH (right) with significantly 
hypertrophic tunica media  
 

 

A fascinating focal vascular structure, the plexiform lesion is another hallmark of PAH 

(Figure 1.2). In the literature, the prevalence of this lesion varies from 20% to 90%, 

depending on the form of pulmonary hypertension (PH), the sample size, and the rigor of 

the examination [2, 3, 16]. However, the cellular composition and pathogenesis of 

plexiform lesions is until now not fully understood. Ultrastuctural and three-dimensional 

analysis reveal that these lesions occur distal to obliterative intimal lesions and contain 

vascular channels comprising endothelial cells as well as smooth muscle cells, 
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supporting the hypothesis of monoclonal cell proliferation and local angiogenesis, leading 

to an occlusion of small pulmonary arteries [3, 15, 17]. Plexiform lesions may also 

represent an angiogenetic response to local ischemia and hypoxia, or might be also 

caused by a transdifferentiation of endothelial cells into SMC [3, 15, 18, 19].  

 

 

 

              

 

 

 

 

 

 

 

Figure 1.2 Histopathological changes in PAH 
Plexiform lesion (left) and concentric lesion (right)  
 

 

 

1.1.3   Pathogenesis and therapy of pulmonary hyper tension  

Despite our growing understanding of the pathobiology of PH, and the identification of 

various mediators and candidate genes playing a role in the progression of the disease 

the basic underlying mechanism and the linking of the different pathobiological 

observations is still poorly understood and thus under intense investigation. In the 

following some of the most important factors involved in the pathogenesis of pulmonary 

hypertension are briefly presented: 

 

 

1.1.3.1    Prostacyclin/prostaglandin I2 

Prostaglandin I2 (PGI2), a member of the prostacyclin family, is produced by endothelial 

cells and known as one of the most potent vasodilatators. In patients with PH an 

impaired balance between the local production of PGI2 and a reduced expression of 

PGI2 synthase has been described, leading to a significantly reduced expression of this 

potent vasodilatator in the case of PH [7, 13, 20]. PGI2 and its analogues have further 

been shown to inhibit smooth muscle cell proliferation and platelet aggregation [21]. The 

above mentioned effects of PGI2 are mediated by stimulation of adenylate cyclase and 

thus cAMP (cyclic andenosine monophosphate) production (Figure 1.3) [22]. Due to its 
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beneficial effects on the pulmonary circulation, endothelial function and pulmonary 

vascular remodeling prostacyclin analogues like epoprostenol and iloprost belong to the 

basic therapies of pulmonary hypertension being administered either intravenously or by 

intermittent inhalation [2].  

 

 

Figure 1.3 Regulation of pulmonary vascular tone an d structure by cAMP  

 

 

1.1.3.2    Endothelins 

A second important group of molecules influencing the local vascular tone and regulating 

the balance between vasoconstrictors and vasodilatators are the endothelins (ET-1, -2 

and -3) which are synthesized from large precursor molecules by endothelin-converting 

enzymes (ECE-1 and ECE-2) [13]. Endothelial and epithelial cells are thought to be the 

main source of ET-1, which is described of being one of the most potent vasoconstrictors 

and mitogens [23-25]. Endothelins exert their biological functions by binging to the two 

G-protein coupled receptors, ETA and ETB, which display marked regional differences in 

their distribution patterns (Figure 1.4) [26]. The ETA subtype is mainly expressed in the 

proximal pulmonary arteries mediating local vasoconstriction and proliferation, whereas 
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ETB receptors are thought to have a dual, partly antagonistic function, depending on 

their cellular localization [26, 27]. The ETB receptors expressed on vascular SMC in the 

distal resistance vessels are described to elevate pulmonary vascular resistance upon 

ET-1 binding, while ETB receptors located on the endothelium are thought to modulate 

the clearance to ET-1, inhibit ECE expression, and permit vasodilatation through NO and 

prostacyclin release [13, 28].  

Several studies have demonstrated increased ET-1 levels in both lungs and plasma of 

patients with PH, suggesting that ET-1 might play a pivotal role in vascular remodeling 

and elevated pulmonary resistance observed in these patients [20, 29, 30]. The 

successful clinical use of combined ETA/ETB antagonists like bosentan as a novel 

therapeutic approach in PH treatment underlines the pathobiological relevance of the 

endothelin system in pulmonary hypertension. 

 

 

 

Figure 1.4 Schematic overview of the different endo thelins, endothelin receptors and 

their biological effects  

 

 

1.1.3.3    Nitric oxide 

Nitric oxide (NO) is a potent vasodilatator of both pulmonary and systemic vessels which 

exerts a plethora of different functions like antiplatelet activity, inhibition of vascular 

growth and migration [11]. The NO is synthesized in the endothelium from the amino acid 
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L-arginine by the action of NO synthetase (NOS) which can be classified into three 

different isoforms (endothelial (eNOS), inducible and neuronal), all expressed in the lung 

[13]. So far, there are conflicting data about the adverse or protective role of NO in the 

development of PH. Several authors describe a decreased eNOS immunostaining in 

lungs from PAH patients, whereas Mason and colleagues observe high expression levels 

of eNOS in plexiform lesions in PH [31-33].  

In spite of the still ongoing discussion about the role of NO and NOS in the pathogenesis 

of PAH, short-term beneficial effects of inhaled NO on oxygen consumption and 

pulmonary hemodynamics have been reported [34]. Nevertheless there is still a limited 

experience with long-term therapy of inhaled NO requiring further clinical exploration [2]. 

Apart from therapeutic administration, acute responsiveness to NO during cardiac 

catheterization seems to predict the subset of patients who might be responsive to oral 

Ca²+-channel blockers. 

 

 

1.1.3.4    K+ Channels 

Nine families of voltage-gated potassium (Kv) (Kv1 to 9) channels, each with many 

members (for example, Kv1.1 through Kv1.6) have been identified so far, and several 

might be involved in mediating hypoxic pulmonary hypertension [2]. Hypoxia inhibits Kv 

channels in the pulmonary artery smooth muscle cells (paSMC), opening voltage-gated 

calcium channels, raising cytosolic Ca2+ and thus initiating constriction (Figure 1.5) [2, 

13]. Whereas acute hypoxia inhibits Kv function, chronic hypoxia reduces the expression 

of these channels in SMC [35]. Several studies demonstrated a down-regulation of Kv1.5 

and Kv2.1 channels in paSMC in patients with PAH, and in rats with chronic hypoxia-

induced PH [35, 36]. This downregulation is associated with inhibition of K+ current, 

membrane depolarization, elevation of cytosolic Ca2+ and thus, vasoconstriction [35]. 

This theory is supported by the finding that the Kv2.1 channel activity is inhibited by the 

appetite-suppressing drug dexfenfluramine, use of which has been associated with the 

development of pulmonary arterial hypertension [37, 38].  

Modulation of Kv channel function may have therapeutic potential. Several oral 

treatments such as the metabolic modulator dichloroacetate and sildenafil might be able 

to increase expression and function of Kv2.1 and thus be useful in the treatment of 

pulmonary hypertension [39]. 
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Figure 1.5 Role of Kv channels  in the regulation o f pulmonary vascular tone (adapted 

from [13]) 

 

 

1.1.3.5    Serotonin (5-hydroxytryptamine) 

Investigations on 5-hydroxytryptamine (5-HT) in the control of the pulmonary circulation 

have clearly demonstrated a strong vasoconstrictive, mediated via 5-HT1B receptors, and 

mitogenic effect. By activation of NADPH oxidase, the formation of reactive oxygen 

species (ROS) and the stimulation of mitogen-activated protein (MAP) kinases, 5-HT is 

involved in SMC hyperplasia and hypertrophy [13].  

The initial rationale to investigate a possible association between 5-HT and PH was 

raised by the observation in the 1960s that persons taking anorectic agents like aminorex 

and defenfluramine have a significantly higher risk of developing pulmonary hypertension 

than did control subjects [2, 40]. These appetite suppressants are known to increase 

local and circulating 5-HT levels and also act as serotonin transporter substrates, 

interfering in intracellular signaling [2].  

Apart from the above-mentioned association with anorectic drugs, other observations 

support a potential role for 5-HT in the pathogenesis of PH: Compared with control 

subjects, patients with PAH have decreased platelet 5-HT and increased plasma 5-HT 

concentrations [41, 42]. Furthermore, paSMC from patients with pulmonary hypertension 

grow faster than those from healthy persons when stimulated with 5-HT [43].  
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1.1.3.6    Natriuretic peptides 

The family of natriuretic peptides consists of three major members, atrial or A-type (ANP), 

brain or B-type (BNP) and C-type (CNP), interacting with three receptor isotypes (NPR-A, 

NPR-B and NPR-C) [44]. Several studies have indicated that both ANP and BNP act as 

vasodilators in the pulmonary circulation, whereas CNP has only weak vasodilatory 

effects [13]. Both ANP and BNP exert this effect through binding to the receptor subtype 

NPR-A, which is guanylate cyclase-linked and thus increases the concentration of the 

potent vasodilator cGMP [45]. The effects of cGMP are abolished by phosphodisterases 

(PDE) which convert cGMP to 5-GMP [46]. 

The development of potent and selective PDE inhibitors, such as sildenafil, has 

revolutionized the therapeutic concepts for pulmonary hypertension. Several reports 

clearly indicate that sildenafil reduces pulmonary artery pressure in humans and is for 

this reason a basic component of modern PH therapy [13]. 

 

1.1.3.7    BMPR2 and Alk/endoglin mutations 

At least 6 % of all cases of PH have a known family background of the disease. 

Genome-wide screens and linkage studies in families with multiple affected members 

suffering from pulmonary hypertension provided evidence for a linkage of PAH with 

markers on chromosome 2q31-32 [2, 47-49]. Fine-mapping and detailed linkage analysis 

of this interval led to the identification of mutations in the BMPR2 (bone morphogenic 

protein receptor 2) gene [47]. These mutations are mainly described to act as loss-of-

function mutations (frame shift, nonsense mutation or splice-site variants), exaggerating 

the susceptibility of vascular smooth muscle cells to proliferate.  Detailed genetic 

analysis demonstrated that heterozygous mutants have been found in approximately 

60% of patients with a family history and 26% of sporadic cases of PH [49, 50].  
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1.2 Interleukin 13 and its receptors 

 

1.2.1   T helper cell type 1 and 2 immune response 

 

As illustrated in figure 1.7 native CD4+ T helper cells (Th0) can, depending on the 

environment of the cell, differentiate into at least two different subsets of Th cells (Th1 

and Th2) which are classified on the basis of the cytokines produced [51]. The key to 

polarization into a Th1 phenotype is the exposure of Th0 cells to interleukin (IL) -12. 

Activated Th1 cells then induce a cell-mediated immune response mediated mainly by 

the secretion of interferon-γ (IFN- γ) [52, 53]. This pro-inflammatory chemokine 

stimulates phagocytosis, the up-regulation of MHC class I and II molecules on a variety 

of cells, thereby stimulating antigen presentation on macrophages and also initiates the 

oxidative burst - all together powerful weapons against intracellular pathogens [54, 55]. 

The induction of a Th2 cell differentiation occurs in the presence of IL-4. These 

differentiated Th2 cells produce a variety of anti-inflammatory cytokines, including IL-4, 

IL-6, IL-10 and IL-13 [53, 56]. With the help of these mediators, a humoral immune 

response, directed against extracellular pathogens, is promoted. Furthermore, a Th2- 

dominated immune response activates B cell proliferation, antibody production, and a 

class-switching from IgG to IgE, implicating allergic and atopic reactions, as well as 

airway inflammation as observed in asthma and reactive airway disease [56, 57]. 

In addition to their stimulatory effects, Th1 and Th2 cells cross-regulate each other. 

Secretion of INF- γ by Th1 cells directly suppresses IL-4 secretion and thus inhibits the 

development of Th2 cells, whereas IL-4 and IL-10 block the ability of Th0 cells to polarize 

into Th1 cells [57]. 

 

 

1.2.2    Interleukin-13  

The cytokine Interleukin-13 (IL-13) is regarded as one of the key mediators of the T-

helper cell type 2 immune response, as mentioned above. This cytokine was first cloned 

in the mouse in 1989 by differential hybridization of cDNA libraries of activated Th1 and 

Th2 cells, whereas its human homologue was cloned in 1993 [58]. It is a 132 amino-acid 

non-glycosylated protein with a molecular mass of 12 kD [58]. The human IL-13 gene 

has been mapped on chromosome 5q31 in close proximity to the IL-4 gene which is 

positioned in the same orientation, suggesting a common ancestral origin [58, 59]. IL-4 

and IL-13 polypeptides share approximately only 25% amino acid homology, but the 

major α-helical regions that are responsible for their activity are highly homologous [60].  
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High levels of IL-13 are produced by Th2 cells after activation. Interestingly, significant 

levels of IL-13 can be detected early after T-cell activation and ongoing IL-13 production 

can still be observed 72 hours after T-cell activation whereas IL-4 levels disappear 

already after 12 hours [60]. For this reason, IL-13 appears as an abundant cytokine 

produced early and for prolonged time by activated T-cells. In contrast to IL-4, IL-13 is 

furthermore produced by CD45RA+ T-cells and dendritic cells (DC), whose regulatory 

function on these cells remains to be investigated [61]. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.6 The polarization and differentiation of Th0  cells into Th1 and Th2 responses 
Solid lines indicate stimulatory pathways, and dotted lines indicate inhibitory pathways.  
 

 

 

1.2.2.1    Biological activities of IL-13 

The IL-13 shares many, but not all biologic activities with IL-4. As classical key members 

of the Th2 system, both play an important role in the coordination of the humoral immune 

response. But unlike IL-4, which is know as a dominant mediator of Th2 cell 

differentiation, proliferation, and activity, IL-13 appears to have only minimal effects on T-

cell function, and thus Th2 cell differentiation [62].  The reason for this phenomenon is a 

lack of IL-13Rα1 surface expression, required for IL-13 signaling, on human T cells 

which is consistent with the notion that activated T cells failed to bind detectable levels of 

radiolabeled IL-13 [58, 62]. Although IL-13 failed to have direct effects on T cells it 

amplifies a Th2 response by stimulating the release of macrophage-derived chemokines 

(MDC) binding on CCR4 and CCR3 receptors expressed on Th2 cells [63]. In addition, 

IL-13 supports Th2 polarization by downregulation of IL-12 in monocytes, which is known 

to direct Th1 development [58]. 
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In spite of its inability to exert biological effects directly on T cells, many studies indicate 

that IL-13 mainly contributes to the induction of the humoral immune response through 

its direct activities on B cells. Binding of IL-13 to IL-13R complexes on B cells, together 

with CD40L-CD40 contact-mediated signals, stimulate B cell proliferation and survival 

[64]. Furthermore, IL-13 enhances the production of IgM, IgG, IgA and is essentially 

required for Ig class switching to IgG4 and IgE. This IL-13-induced IgE synthesis is 

initiated by germline ε transcription – a fact that outlines the importance of IL-13 as an 

inducer of allergic and atopic responses [65, 66]. 

The IL-13 cytokine has dual effects on the monocyte/macrophage system: IL-13 prolongs 

monocyte survival in vitro and enhances the expression of a variety of adhesion 

molecules on human monocytes, such as CD 11b/c, CD18 and CD29, probably 

promoting increased extravasation, mobility and trafficking of these cells (Figure 1.7) [58, 

67]. Alternatively, IL-13 also enhances the antigen presentation capabilities of monocytes 

by increasing the expression of class II MHC antigens, CD80 and C86 – ligands for 

CD28 on T cells resulting in an elevated capacity to stimulate allergen-specific T cells 

[67]. 

In addition to these immunomodulatory properties IL-13 can be considered as an 

important anti-inflammatory cytokine as it can dampen a Th1-cell driven immune 

response by inhibiting the transcription of IL-12 which is necessary for Th1-cell 

differentiation [64]. The anti-inflammatory activities of IL-13 are further exemplified by its 

capacity to effectively down-regulate the production of pro-inflammatory cytokines (IL-1α, 

IL-6 and TNF-α) and chemokines (IL-8, MIP-1β and MCP-3) [68]. These data are 

supported by in vivo experiments in which mice with LPS-induced lethal endotoxemia 

could be rescued by application of IL-13 [58].  

In addition to its ability to induce IgE synthesis and thus contribution to allergic-

inflammatory processes, IL-13 induces VCAM-1 expression on endothelial cells resulting 

in the adhesion and subsequent extravasation of eosinophils, monocytes, and T cells to 

sites of allergic inflammation [58].  
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Figure 1.7 Schematic representation of some major a ctivities of IL-13 on allergic and 
inflammatory processes 
Stimulation of allergen specific Th2 cells by allergen-derived peptides presented by antigen-
presenting cells in the context of class II MHC molecules results in production of IL-13, which 
induces IL-13 signaling. Together with CD40L-CD40 contact-mediated signals, B-cells are 
induced to proliferate and to switch into IgE-producing cells. Binding of IL-13 to IL-13R on 
activated macrophages induces an anti-inflammatory state of these cells, resulting in the 
downregulation of proinflammatory cytokine, chemokines, NO, superoxide, and PGE-2 production. 
In addition, IL-13 inhibits production of RANTES (Regulated on Activation, Normal T Expressed 
and Secreted), which is a potent eosinophil attractant, on the other hand, IL-3 induces VCAM-1 
(vascular cell adhesion molecule 1) expression on endothelial cells, which promotes adhesion and 
extravasation of eosinophils, monocytes and T-cells to sites of allergic inflammation (adapted from 
[58]) 
 

1.2.3   IL-13 receptor complexes 

The overlapping biological functions of IL-4 and IL-13 and studies using antibodies 

directed against IL-4Rα chain (IL-4R) inhibiting the biological activities of both cytokines 

indicate that the IL-4R and IL-13R complexes share the IL-4Rα chain as an essential 

component for signal transduction (Figure 1.8) [64]. The classical IL-4R complex consists 

of the 140 kD IL-4Rα chain which binds IL-4 with a relatively high affinity, and the 70 kD 

common γ-chain (γc), the later also being shared by the receptors for IL-2, IL-7, IL-9 and 

IL-15. The IL-13 exerts its biological functions through binding to the IL-13R complex 

which bears, as mentioned above, the IL-4Rα chain as an essential component [58, 63, 

64, 69]. It is combined with the so-called IL-13Rα1, a 427 amino acid protein binding 

specifically IL-13 with a low affinity (approximately 4 nM kD). The IL-13Rα1 is expressed 

on naïve and memory B cells, monocytes and non-hematopoietic tissues, especially 
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heart, liver and skeletal muscle. Besides this receptor, a second IL-13-binding protein, 

designated IL-13Rα2, has been identified. The IL-13Rα2 is a 380 amino acid protein, 

which binds IL-13 with high affinity (Kd 50 pM) in the absence of the IL-4Rα chain [58]. 

The human IL-13Rα1 and IL-13Rα2 chains share 27% homology – the respective genes 

encoding these receptors are both located on the X chromosome [58, 63]. While IL-

13Rα2 alone binds IL-13 with high affinity and lacks a significant intracellular component 

it, appeared for a long time to act as a non-signaling decoy receptor [70]. 

As both IL-4R and IL-13R complexes share the signal transducing IL-4Rα chain, binding 

of IL-4 or IL-13 to the respective complex results in comparable signaling pathways. 

Upon ligand binding, Jak1 and Tyk2 kinases are activated and induce tyrosine 

phosphorylation of the IL-4Rα chain that allows recruitment of STAT6, a transcription 

factor that exists in a latent non-phosphorylated form in the cytoplasm [71, 72]. The Jak1 

phosphorylates tyrosine residue 641 of STAT6, leading to a homodimerization, nuclear 

translocation of STAT6 and finally the activation of IL-13- and IL-4-responsive genes in 

various cell types expressing IL-13R and IL-4R complexes [71, 73].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8 Schematic overview of IL-4 and IL-13 rec eptor complexes 
The IL-4 interacts with the IL-14Rα binding protein in combination with either common γ-chain (γc) 
(type 1 complex) or IL-13Rα1 (type 2 complex). IL-13 can only functionally signal by binding to IL-
4 type 2 receptor complex. The IL-13Rα2 is thought to act as a non-signaling decoy receptor.  
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1.2.4   Pathobiological relevance of IL-13 and its receptors 

Interleukin-13 acts as a key molecule on several immunological and biological processes. 

The list of important effector functions of IL-13 continues to grow – including the 

resistance to most gastrointestinal nematodes, the mediation of allergic asthma, 

eosinophilic inflammation and airway hyperresponsiveness or the regulation ECM 

deposition. The functions, diseases and regulations of the IL-13 system or its receptors 

are briefly introduced, below. 

 

1.2.4.1    Resistance to gastrointestinal nematodes  and helminth expulsion 

Helminth infections are in many parts of the world endemic, and nematode diseases 

account for more than 60 million cases per year [74]. Helminth parasites induce a strong 

Th2 immune response which is of major importance for the expulsion and eradication of 

the worms. Especially in Nippostrongylus brasiliensis infections, IL-13 clearly plays a 

superior role to IL-4 concerning host immunity and resistance [64]. Evidence for this 

observation arose from infection studies using IL-4Rα-deficient, STAT6- and IL-13-

deficient mouse strains [64, 75-77]. In contrast to IL-4-deficient mice or wild-type controls 

which could expel the worms early after infection, these mutant mice were unable to do 

so [64]. Furthermore, studies conducted with soluble IL-13 antagonists or IL-13-deficient 

mice confirmed the unique and non-redundant role of IL-13 in worm eradication [64, 78, 

79]. As illustrated in Figure 1.9, the Th2 induced worm expulsion is achieved by induction 

of gut muscle hypercontractibility and increased mucus/intestinal fluid secretion by goblet 

cells, facilitating the expulsion of parasites by a “weep and sweep” mechanism.  

 
Figure 1.9 Proposed helminth model 
Role of Th2 cells, effector cells and cytokine network in helminth-induced tissue injury and worm 
expulsion. Th0=naïve T helper cell, E=eosinophil, G=goblet cell (adapted from [64]) 
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1.2.4.2    Allergic asthma and airway hyperresponsi veness  

Allergic asthma is a wild-spread disorder characterized by allergic inflammation 

associated with elevated IgE levels, inducing mast cell activation/degranulation, 

eosinophilia, airway remodeling and reversible airway obstruction (Figure 1.10) [64]. 

Many studies have indicated an association between the pathology of asthma and a Th2-

dominated phenotype [64]. The role of IL-4 in particular has been thoroughly investigated, 

indicating a clear involvement in the pathogenesis of the disease. Allergic patients exhibit 

elevated mRNA and protein levels, compared to controls [80, 81]. In vivo blockage of IL-

4 or its receptors in ovalbumin (OVA)-challenged mice causes reduced airway 

hyperresponsiveness, inflammation and IgE production, demonstrating an important role 

for IL-4 [82-84].  

Interleuin-13 can be also regarded as a key factor in the asthmatic phenotype. Elevated 

serum levels of IL-13 are significantly associated with allergic asthma [85].  In a genetic 

approach, endogenous IL-13 was neutralized by a soluble IL-13Rα2 Fc fusion protein in 

OVA-challenged wild-type mice, resulting in an attenuated asthma phenotype in these 

mice [86]. Moreover, administration of recombinant IL-13 was sufficient to induce an 

asthmatic phenotype in non-immunized wild-type mice, indicating significant involvement 

of Th2 cytokines, namely IL-4 and IL-13, in the pathology of asthmatic diseases, 

suggesting promising targets for anti-asthma therapy [64, 87]. 

 

 

 
Figure 1.10 Proposed allergic asthma model 
Role of Th2 cells, effector cells and cytokine network in the pathogenicity of asthma. Th0=naïve T 
helper cell, E=eosinophil, G=goblet cell, M=mast cell (adapted from [64, 87]) 
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1.2.4.3    Tissue remodeling and fibrosis 

Fibroproliferative disorders including interstitial lung disease or liver cirrhosis are one of 

the major causes of morbidity and mortality worldwide, also playing a critical role in the 

pathogenesis of several different chronic diseases [88]. A great deal of research provides 

proof that fibrogenesis is intimately linked with Th2 cytokine production. Each of the main 

Th2 cytokines, IL-4 and IL-13, has a distinct role in the regulation of tissue remodeling 

and fibrosis (Figure 1.11) [89].  

 

 

 

 

 

 

 

 

                              

 

 

 

 

 

Figure 1.11 Opposing roles for Th1 and Th2 cytokine s in fibrosis 
The Th1 cell cytokine IFN-γ directly suppresses collagen synthesis by fibroblasts by regulation of 
the balance of matrix metalloproteinase (MMP) and tissue inhibitor of matrix metalloproteinase 
(TIMP) expression. IFN-γ and/or IL-12 might also indirectly inhibit fibrosis by reducing pro-fibrotic 
cytokine expression by Th2 cells. The main Th2 cytokines enhance collagen deposition by various 
mechanisms (adapted from [89]). 
 

 

 

One of the most common experimental models used to study fibrosis is schistosomiasis 

in mice, which leads to egg-induced liver fibrosis [89]. In this model, the administration of 

neutralizing antibodies specific for IL-4 was associated with a consistent reduction of 

hepatic collagen deposition [90]. In line with these findings, inhibitors of IL-4 were able to 

reduce the development of dermal fibrosis. Apart from IL-4, IL-13 was also identified as a 

dominant mediator of tissue remodeling [91, 92]. The IL-13 can stimulate collagen 

deposition by fibroblasts in vitro, and in vivo blocking studies revealed a unique and non-

redundant role for IL-13 in murine schistosomiasis [93, 94]. Overexpression of IL-13 in 

the lungs of transgenic mice induced significant subepithelial airway fibrosis, whereas 
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administration of neutralizing IL-13-specific antibodies markedly reduced collagen 

deposition in murine lungs challenged with bleomycin [95, 96].  

As indicated in figure 1.12, IL-13 promotes collagen deposition, and thus fibrosis, by 

three distinct but possibly overlapping mechanisms. The IL-13, produced by activated 

CD4 cells could stimulate the production of latent transforming growth factor-β (TGF-β) 

by macrophages, which then functions as a stimulus for fibroblast activation (Figure 1.12 

A) [97, 98]. As fibroblasts express IL-13 receptors, IL-13 might also directly activate the 

collagen-producing machinery in fibroblasts (Figure 1.12 B) [94, 99, 100]. The IL-13 can 

alternatively promote the up-regulation of arginase activity, and thus increase the 

concentrations of L-ornithine, L-proline and polyamine which have the ability to induce 

collagen production and cell proliferation (Figure 1.12 C) [101]. 

 

 

 

Figure 1.12 IL-13 promotes collagen production by t hree mechanisms 
A) Activated CD4+ Th2 cells produce IL-13 which stimulates the production of latent TGF-β by 
macrophages. After latency-associated protein (LAP) is cleaved, TGF-β is converted to its active 
form and is free to bind and activate TGF-β receptors (TGF-βRs) expressed on fibroblasts and 
thus initiate collagen production. B) As also fibroblasts by itself express IL-13R isotypes, IL-13 
might also directly activate the collagen-producing machinery in fibroblasts. C) IL-13 is also able 
to up-regulate arginase activity in macrophages/fibroblasts, leading to increased L-ornithine, L-
proline and polyamine concentrations promoting fibroblast proliferation and collagen deposition. 
(adapted from [89]) 
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1.3    Aims of the Study 

 

Interleukin-13 has recently been implicated in the pathogenesis of tissue remodeling and 

fibrosis due to its potent effects on ECM deposition and cell proliferation. We therefore 

hypothesize that IL-13 can regulate the growth of paSMC and that this regulation is 

altered in IPAH. To test this hypothesis we intend to analyze IL-13R expression in IPAH 

patients and two animal models of pulmonary hypertension. To assess the biological 

effects of IL-13 on paSMC, the key cells in the pathogenesis of PAH, we aimed to 

investigate cell proliferation, cell cycle analysis and signaling pathways, in response to 

IL-13 stimulation.  
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2    Materials and Methods 
 
2.1 Materials 
 
2.1.1 Equipment 
 
Cell Culture Incubator; Cytoperm2     Heraeus, Germany 
Chroma SPIN-1000 DEPC-H2O Columns   Biosciences, Clontech, USA 
Developing machine; X Omat 2000     Kodak; USA 
Electrophoresis chambers      Bio-Rad, USA 
Fluorescence microscope; LEICA AS MDW   Leica, Germany 
Freezer -20 °C      Bosch, Germany 
Freezer -40 °C      Kryotec, Germany 
Freezer -80 °C      Heraeus, Germany 
Fridge +4 °C       Bosch, Germany 
Mini spin centrifuge       Eppendorf, Germany 
Multifuge centrifuge, 3 s-R      Heraeus, Germany 
Light microscope; LEICA DMIL     Leica, Germany 
PCR thermocycler       MJ Research, USA 
Pipetboy        Eppendorf, Germany 
Pipetmans: P10, P20, P100, P200, P1000    Gilson, France 
Power Supply; Power PAC 300     Bio-Rad, USA 
PVDF membranes      GE Osmotics, USA 
Western blot chambers: Mini Trans-Blot   Bio-Rad, USA 

Mini-Protean 3 Cell   Bio-Rad, USA 
Vortex machine       Eppendorf, Germany 
Film cassette       Sigma-Aldrich, Germany 
Filter Tip FT: 10, 20, 100, 200, 1000    Greiner Bio-One, Germany 
Filter units 0.22 µm syringe-driven     Millipore, USA 
Glass bottles: 250, 500, 1000 ml     Fisher, Germany 
Gel bloting paper 70 × 100 mm     Bioscience, Germany 
Olympus BX51 microscope     Olympus, Japan 
Petri dish with vents       Greiner Bio-One, Germany 
Pipette tip: 200, 1000 µl,      Sarstedt, Germany 
Pipette tip 10 µl       Gilson, USA 
Radiographic film X-Omat LS     Sigma-Aldrich, Germany 
Serological pipette: 5, 10, 25, 50 ml    Falcon, USA 
Test tubes: 15, 50 ml       Greiner Bio-One, Germany 
Tissue culture chamber slides     BD Falcon, USA 
Tissue culture dish 100 mm      Greiner Bio-One, Germany 
Tissue culture flask 250 ml      Greiner Bio-One, Germany 
Tissue culture plates: 6, 24, 48 well    Greiner Bio-One, Germany 
Trans blot transfer medium (0.2 µm)    Bio-Rad, USA 
 
 
2.1.2 Chemicals and reagents 
 
Acetic acid        Merck, Germany 
Acrylamide solution, Rotiphorese Gel 30   Roth, Germany 
Agarose        Invitrogen, UK 
Ammonium persulfate (APS)     Promega, Germany 
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Ammonium sulfate       Sigma-Aldrich, Germany  
Ampicillin sodium       Sigma-Aldrich, Germany 
Annexin apoptosis detection kit    BD Bioscience, USA 
Basic nucleofactor kit      Amaxa, Germany 
Bradford reagent      Bio-Rad, USA 
Bromophenol blue       Sigma-Aldrich, Germany 
Calcium chloride       Sigma-Aldrich, Germany 
Complete (Inhibitor cocktail)     Roche, Germany 
D-(+)-Glucose       Sigma-Aldrich, Germany 
D-MEM medium       Gibco BRL, Germany 
RPMI 1640 medium       Gibco BRL, Germany 
Difco yeast nitrogen base without amino acids   Biosciences, Clontech, USA 
Dimethyl sulfoxide (DMSO)      Sigma-Aldrich, Germany 
ECL plus       Amersham, Sweden 
Endothelin-1 ELISA      R&D Systems, USA 
Ethidium bromide      Roth, Germany 
Ethylendinitrilo-N, N, N´, N´, -tetra-acetic acid (EDTA)  Promega, USA 
Dublecco’ s phosphate buffered saline 10 × (PBS) Laboratories, Austria 
Ethanol absolute       Riedel-de Haen, Germany 
Foetal bovine serum (FBS)      Gibco BRL, Germany 
Gel extraction kit      Qiagen, Germany  
Glass beads        Sigma-Aldrich, Germany 
β-glycerophosphate      Sigma-Aldrich, Germany 
Glycine       Roth, Germany 
Glycerol        Merck, Germany 
2-(-4-2-hydroxyethyl)-piperazinyl-1-ethansulfonate  
(HEPES)       Sigma-Aldrich, Germany 
Histostain-SP Kit      Zymed, USA 
Hoechst 33342      Molecular probes, USA 
[³H]-thymidine       GE Healthcare, UK 
IL-4, recombinant      R&D Systems, USA 
IL-13, recombinant      R&D Systems, USA 
IL-13 ELISA       R&D Systems, USA 
Igepal CA-630       Sigma-Aldrich, Germany 
Lipofectamine       Invitrogen, UK 
Lithium acetate       Sigma-Aldrich, Germany 
Luria–bertani medium      Invitrogen, UK 
MiniElute Gel Extraction Kit      Qiagen, Germany 
Magnesium chloride       Sigma-Aldrich, Germany 
Magnesium sulfate       Sigma-Aldrich, Germany 
β-mercaptoethanol       Sigma-Aldrich, Germany 
Methanol        Fluka, Germany 
pcDNA3.1       Invitrogen, USA 
pGEM-T Easy Vector System Kit    Promega, Germany 
Phosphate-buffered saline (PBS)    PAA, USA 
Platinum Taq DNA polymerase    Invitrogen, Germany 
Polyethylene glycol 6000      Merck, Germany 
Potassium acetate       Sigma-Aldrich, Germany 
Potassium chloride       Merck, Germany 
Potassium phosphate      Sigma-Aldrich, Germany 
Precision Plus ProteinTM Standards     Bio-Rad, USA 
2-Propanol        Merck, Germany 
Pure Yield Plasmid Midiprep System   Promega, Germany 
Restriction endonucleases     Promega, Germany 
RNase inhibitor      Promega, Germany 
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RNeasy midi Kit      Qiagen, Germany 
Rnase H־ reverse transcriptase    Promega, Germany 
Select agar        Invitrogen, UK 
Sodium acetate       Sigma-Aldrich, Germany 
Sodium chloride       Merck, Germany 
Sodium dodecyl sulfate (SDS)     Promega, USA 
Sodium phosphate       Sigma-Aldrich, Germany 
Sodium sulfate       Merck, Germany 
Taq DNA polymerase      Invitrogen, Germany 
T4 DNA ligase       Promega, Germany 
TEMED       Invitrogen, Germany 
Tween 20        Sigma-Aldrich, Germany 
Tris         Roth, Germany 
Triton X-100        Promega, USA 
Trypsin/EDTA       Gibco BRL, Germany 
QIAprep spin miniprep kit     Qiagen, Germany 
Xylene        Merck, Germany 
 
 
 
2.1.3     Antibodies 
 
STAT-Sampler Kit      Cell Signaling, USA 
HRP-conjugated secondary antibodies   Pierce, USA 
Anti-IL-13 antibody      R&D Systems, USA 
Anti-IL-13Rα1 antibody     R&D Systems, USA 
Anti-IL-13Rα2 antibody     R&D Systems, USA 
Anti-IL-4R antibody      Santa Cruz, USA 
Anti-SMA antibody      Santa Cruz, USA 
FITC-conjugated IgG      Zymed, USA 
Anti-Alexa Fluor 647      Molecular Probes, USA 
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2.2    Methods 
 
2.2.1   Polymerase chain reaction 
 
The Polymerase chain reaction (PCR) is a molecular biological technique for enzymatic 

amplification of specific regions of the DNA strand. To perform a PCR, several basic 

components are required:  

 

• DNA template (containing the DNA fragment to be amplified) 

• A pair of primers (flanking the beginning and end of the region to be amplified) 

• DNA polymerase (catalyses the in vitro DNA amplification) 

• Deoxynucleotidetriphosphates, which are incorporated into the new DNA strand 

by the polymerase 

• Reaction buffer and magnesium to generate an optimal environment for DNA 

polymerase 

 

This reaction mix is transferred to a thermal cycler, which performs the PCR process, 

consisting of a series of 20 to 40 repeating cycles. In principal, each PCR cycle consists 

of three steps: 

 

• Denaturation (by heating double-stranded DNA to 95 °C two separated single 

strands are generated) 

• Annealing (primers attach to the respective single DNA strands) 

• Elongation (at a temperature of 72 °C the DNA poly merase amplifies the specific 

primer-flanked DNA region by adding complementary nucleotides)  

 

After each PCR cycle, one new copy of the primer-flanked DNA fragment is generated; 

by repeating this process 30 to 40 times, one can achieve a 106-107 fold amplification. At 

the end, the PCR product can be separated due to its size by agarose gel 

electrophoresis and visualized by the use of intercalating dyes like ethidium bromide.  

 

2.2.1.1   Quantitative reverse-transcriptase PCR 

This PCR method allows the simultaneous amplification and quantification of a specific 

DNA fragment. In principal, it follows the basic pattern of a conventional PCR (2.2.1) but 

this technique quantifies the amount of amplified PCR-products after each cycle (“real-

time”). In addition to the basic components, the reaction mix of a qRT-PCR contains a 

fluorescent dye (for example, SYBR Green) that intercalates with double-stranded DNA. 
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During the PCR reaction the DNA-binding dye now intercalates with the newly 

synthesized double-stranded DNA, resulting in an increase in fluorescence intensity 

which is measured at the end of each cycle thus allowing to quantify the initial DNA 

concentration by using a housekeeping gene, whose expression levels remain constant 

in most cells or tissues, or external standard samples with known concentration.  

Briefly, 2 µl cDNA were places into 23 µl reaction volume containing SYBR Green PCR 

mix and sequence-specific oligonucleotide primers. All real-time reactions were carried 

on a ABI 7700 Sequence Detection System, and analysis were performed with the 

accompanying software. 

 

2.2.1.2   Reverse-transcription PCR (RT-PCR) 

Reverse transcription polymerase chain reaction (RT-PCR) is an enzymatic reaction 

carried out by reverse transcriptase (RT), which synthesizes complementary DNA (cDNA) 

using mRNA as a template. In order to perform such a RT-PCR, 50-500 ng of total RNA 

was added to 1 µl of oligo-(dT)15 (100 µg/ml) primers in a appropriate reaction tube and 

heated at 70 °C for 5 min. After cooling on ice, th e following RT reaction reagents were 

added:  

 

Components:    Volume:  Final concentration: 

5 × RT buffer (MgCl2 free)  4 µl   1 × 

25 mM MgCl2    4.8 µl   6 mM  

10 mM dNTP mix   1 µl   0.5 mM 

RNAsin inhibitor (1 U/µl)  1 µl   1.0 U 

Reverse transcriptase (1 U/µl) 1 µl   1.0 U 

RNAse free water   to 20 µl  not applicable 

 
To complete the RT amplification, this reaction mix was incubated at 25 °C for 5 min, 

followed by incubation at 42 °C for 1 h. 

 

 

2.2.2 RNA Isolation 

In order to isolate RNA from lung tissue and cultured cells, we performed RNA isolation 

with the RNeasy mini kit (QIAGEN, Germany) according to the manufacturer’s 

instructions. 
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2.2.3 Cloning of PCR products 

 

2.2.3.1 PCR product purification 

To design a pair of primers for subcloning a DNA fragment into a vector, the DNA 

template was analyzed for the appropriate restriction sites using the program DNA Star 

(DNAStar, Madison, USA). The DNA fragment was amplified using PCR, analyzed and 

separated by agarose gel electrophoresis, excised and gel-purified using a commercially-

available gel extraction kit according to the manufacturer’s instructions.  

 

 

2.2.3.2 Ligation of PCR products into pGEM-T Easy v ector 

Both the purified PCR product and the pGEM-T Easy vector were ligated using the 

following ligation mix:  

 

Components:     Volume: 

2 × rapid ligation buffer   5 µl 

pGEM-T Easy vector (50 ng)   1 µl 

Purified PCR product    dependent on DNA concentration 

T4 DNA ligase    1 µl 

Autoclaved, deionized water   to 10 µl 

 
This reaction mix was incubated overnight at 4 °C.  
 

 

2.2.3.3 Transformation and propagation of plasmids 

After ligation, the plasmids were transformed into competent E. coli DH5α for further 

amplification. For this purpose, 1 µg plasmid DNA was added to 50 µl of competent 

bacteria and the samples were incubated on ice for 30 min. After the incubation, cells 

were heat-shocked for 1 min in a 42 °C water bath. Eight hundred µl of LB medium (1% 

bacto tryptone, 0.5% bacto yeast extract, 1% NaCl, adjusted to pH 7.0 and sterilized for 

20 min at 120°C, 15 psi) was added and bacteria wer e shaken for 1 h at 37 °C, 250 rpm. 

After centrifugation (room temperature, 5 min, 3000 x g) 800 µl of the supernatant was 

discarded, the bacterial pellet was resuspended in the medium left and then plated on LB 

plates (LB medium plus 1.5% agar) containing appropriate antibiotics. The plates were 

then incubated at 37 °C overnight. The following da y, individual bacterial colonies were 

picked from the plate, inoculated into LB medium containing the appropriate antibiotics 
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and shaken overnight at 37 °C, 250 rpm. Afterwards,  plasmids were isolated using a 

Qiagen plasmid isolation kit. 

 

 

2.2.3.4 Subcloning in expression vectors 

To subclone a PCR fragment cloned into pGEM-T Easy into a mammalian expression 

vector, both empty expression vector and the pGEM-T Easy plasmid containing the PCR 

product of interest were digested with the same restriction enzymes for 1-3 h at 37 °C, 

separated by agarose gel electrophorsis and gel-purified. The purified PCR product and 

the purified vector were then ligated at a ratio 3:1, adding T4 DNA ligase and incubating 

at 30 min at room temperature. The following steps are performed as described in the 

previous chapter (2.2.3.3). All constructs used were verified by sequencing.  

 

 

2.2.4 Western blot 

 

2.2.4.1 Cell lysis and protein extraction 

In order to isolate proteins from cells grown on cell culture plates, confluent monolayers 

of cells were washed twice with ice-cold phosphate buffered saline (PBS), lysis buffer 

was applied directly onto the cell culture plate, and cells were detached by scraping, 

were transferred to a microcentrifuge tube, and were incubated for 30 min on ice, for 

complete lysis. After centrifugation for 15 min, the supernatant was mixed with 2 x SDS 

buffer, boiled, and proteins were resolved by SDS-PAGE. 

 

Lysis buffer: 

20 mM Tris-HCl, pH 7.5 

150 mM NaCl 

1 mM EDTA 

1mM EGTA 

1% Triton X-100 

2.5 mM sodium pyrophosphate 

1 mM β-glycerophosphate 

1 mM sodium vanadate 

Proteases inhibitor cocktail 
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2 × SDS buffer: 

125 mM Tris-HCl, pH 6.8 

20% (v/v) glycerol 

4% (w/v) SDS 

10% (v/v) β-mercaptoethanol 

0.025% (w/v) bromophenol blue 

     

2.2.4.2 SDS polyacrylamide gel electrophoresis  

The denaturating SDS polyacrylamide gel electrophoresis (SDS-PAGE) was used to 

separate proteins electrophoretically according to their molecular weight. Separation gels 

with 5-12.5 % of acrylamid, covered with a 6 % stacking gel, were used. Before loading 

samples were denaturated with 2 x SDS buffer for 5 min at 95 ºC. The electrophoresis 

was performed using the SDS-PAGE running buffer and constant voltage of 120 V. 

 

Stacking gel: 

5% acrylamide/bisacrylamide 

125 mM Tris-HCl, pH 6.8 

0.1% (w/v) SDS 

0.1% (w/v) APS 

0.1% (v/v) TEMED 

 

Separating gel: 

8-12% acrylamide/bisacrylamide 

375 mM Tris-HCl, pH 8.8 

0.1% (w/v) SDS 

0.1% (w/v) APS 

0.1% (v/v) TEMED 

 

SDS-PAGE running buffer: 

25 mM Tris-HCl, pH 8.3 

250 mM glycine 

0.1% (w/v) SDS 

 

2.2.4.3 Protein blotting and detection 

Proteins were denatured in SDS sample buffer containing 5% β-mercaptoethanol, 

resolved by SDS-PAGE and transferred to 0.25 µm pure nitrocellulose membranes. The 
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protein transfer was performed for 60 min with constant voltage of 100 V. After transfer, 

membranes were blocked with blocking buffer for 1 h at room temperature. 

Immunoblotting was performed with the appropriate primary antibodies diluted in 

blocking buffer at 4 ºC overnight. After washing 3 x TBST for 10 min membranes were 

incubated with a horseradish peroxidase (HRP)-coupled secondary antibody for 1 h at 

room temperature. After washing (5x), proteins were detected by incubating the 

membrane with the enhanced chemiluminescent immunoblotting system for 5 min at 

room temperature. Protein bands were visualized by applying a X-ray film for 10 s – 15 

min depending on the strength of the signal. 

 

Transfer buffer, pH 7.4: 

24 mM Tris base  

193 mM glycine  

10% (v/v) methanol 

 

Blocking buffer:  

5% (w/v) non-fat dry milk in PBS, containing 0.01% (v/v) Tween 20 

 

TBST buffer: 

20 mM Tris, pH7.4 

15 mM NaCl 

0.05% (v/v) Tween 20 

 

 

 

2.2.5 Proliferation assay 

To assess the effects of IL-13 on SMC proliferation, a [³H]-thymidine incorporation assay 

was performed, which monitors DNA synthesis. For this, cells were seeded into 48-well 

plates. Cells were pulsed with 0.6 µCi of [³H]-thymidine for 4-8 h and washed ice-cold 

PBS. Subsequently, samples were solubilized in 0.5 M NaOH and incubated overnight at 

4 °C. The following day the content of each well wa s then transferred into scintillation 

fluid and incorporated radioactivity counted in a scintillation counter. 
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2.2.6 Apoptosis assay 

Cells were cultured in six-well culture dishes and treated as indicated. Following 

trypsinization, cells were centrifuged (1200 x g, 7 min), resuspended in cell culture 

medium, and incubated with Hoechst 33342 nuclear dye according to the manufacturer’s 

instructions. Necrotic cells were excluded by propidium iodide (PI) staining. The cell 

suspension was transferred to a glass slide and individual cells were analyzed by 

fluorescence microscopy by counting. 

 

 

2.2.7 Flow cytometric cell cycle analysis  

For the analysis of cell cycle distribution, control and IL-13-treated cells were harvested 

by trypsinization, fixed overnight with 75% methanol at -20 °C, washed in PBS, and 

incubated with 100 µg/ml RNase and stained with 10 µg/ml PI for 1 h  at 37 °C. Samples 

were analyzed for DNA content using a high-speed cell sorter. Gates based on forward 

and side scatter were set to eliminate cellular debris and cell clusters. Data were 

computer-analyzed with commercially-available software (Multicycle; Phoenix Flow 

Systems, San Diego, CA). 

 

 

2.2.8 Flow cytometry 

Cells were harvested by trypsinization and fixed by incubation with 1% paraformaldehyde 

for 15 min at 4 °C, washed once in PBS before resus pending in 1% BSA in PBS. 

Staining of the IL-13Rα2 was performed for 1 h at 4 °C with anti-human IL- 13Rα2 

antibody (dilution: 1:20), washed and then incubated with rabbit anti-goat-Alexa Fluor 

647 secondary antibody (dilution: 1:500) for 30 min. Positively-stained cells were gated 

using a secondary antibody control samples incubated in the absence of the anti-IL-

13Rα2 antibody. Data were collected using a FACSCanto flow cytometer and analyzed 

by the WinMDI 2.8 software package (Scripps Institut, La Jolla, CA). A minimum of 

10000 cells was analyzed per sample. Gates based on forward and side scatter were set 

to eliminate cellular debris and cell clusters. 

 

 

2.2.9 Immunofluorescence 

Pulmonary artery smooth muscle cells were seeded onto eight-well chamber slides at 10 

x 10³ per well and treated as indicated. Cells were then washed with cold PBS and fixed 
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with ice-cold methanol for 10 min at -20 °C. After washing twice with PBS slides were 

incubated in blocking buffer (5% (v/v) FCS in 1 x PBS) for 1 h at room temperature, 

followed by an overnight incubation with the primary antibodies at 4 °C, as depicted. 

After washing, incubation with FITC-labeled secondary antibodies, cells were washed 5x 

with PBS, the plastic border of the slide was removed and slides were covered with 

mounting medium and a cover slide. Nuclei were visualized by 4,6-diamidino-2-

phenylindole (DAPI) staining and individual cells analyzed by deconvolution fluorescence 

microscopy using the Leica AS-MDW. 

 

 

2.2.10 Immunohistochemistry 

To localize and assess the expression of particular proteins in human lung sections, 

immunohistochemical analysis was performed using a standardized avidin/biotin 

detection system (Histostain-SP Kit). At first, formalin-fixed paraffin-embedded tissue 

sections (3 µm thickness) were incubated overnight at 48 °C and deparaffinized in xylene. 

After rehydration using a stepwise decreasing gradient of ethanol concentrations (100 % 

to 70 %), and quenching of endogenous peroxidase activity with 1% (v/v) H2O2, slides 

were blocked with serum blocking solution for 1 h at room temperature and incubated 

with the relevant primary antibody at the desired concentration overnight at 4 °C. The 

following day, slides were incubated with biotinylated secondary antibody for 10 min at 

room temperature and subsequently 100 µl of a substrate chromogen mixture was added 

to each section. Slides were developed for 5 min with diaminobenzidine (DAB) and 

counterstained with Mayers hematoxylin. Finally, sections were coverslipped in glycerol 

and evaluated using an Olympus BX51 microscope.  

 

 

2.2.11 Laser-captured microdissection 

The technique of laser-captured microdissection (LCM) was used to isolate pulmonary 

arteries from lung sections. For this purpose, cryo-sections from lung tissue were 

mounted on uncoated glass slides. After hemalaun staining, the sections were immersed 

in 70% and 96% ethanol and stored in 100 % ethanol until use. Pulmonary arteries were 

selected and microdissected under optical control using the Laser Microbeam System 

(P.A.L.M, Germany). Afterwards, vessels were isolated using a sterile 30 G needle. 

Needles with adherent material were transferred into a reaction tube containing RNA 

lysis buffer.  
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2.2.12     Agarose gel electrophoresis 

DNA fragments of vectors were separated on 1% or 1.5% agarose gels according to their 

size. For preparation of the gels and the running buffer 1x TAE buffer was used. Agarose 

was mixed with TAE buffer and melted in a microwave. Before pouring the gel 10 µg/ml 

of ethidium bromide was added to visualize the DNA. 

Before loading the sample on the gel 6 times concentrated loading buffer was added. 

Gels were run at 100 Volt for 20 minutes. The isolation of DNA fragments from the gel 

was done with the help of the Qiagen gel extraction kit according to the manual. 

 

1 × TAE buffer: 

40 mM Tris-acetate, pH 8.0 

1 mM EDTA; pH 8.0 

 

6 × loading buffer: 

0.025% (w/v) bromophenol blue 

40% (w/v) sucrose 

 

 

 

2.2.13    Cell culture of pulmonary artery smooth m uscle cells   

 

2.2.13.1    Isolation of pulmonary artery smooth mu scle cells 

Primary smooth muscle cells (SMC) were isolated from human pulmonary arteries from 

healthy transplant donors by carefully preparing <1 mm³ pieces without adventitial tissue 

as assessed by microscopic control. The pieces of tissue were placed into cell culture 

dishes filled with 500 µl of smooth muscle cell growth medium supplemented with growth 

factors and cultured at 37 °C, 95% air-5% CO 2. Pulmonary artery smooth muscle cells 

(paSMC) were characterized by typical morphological appearance in phase-contrast 

microscopy and indirect immunofluorescent antibody staining for smooth muscle-specific 

isoform of α-actin. Experiments were performed with cells in passage 3-8. 

 

2.2.13.2 Cell culture of pulmonary artery smooth mu scle cells 

Pulmonary artery smooth muscle cells were cultured in cell culture plates in smooth 

muscle cell growth medium supplemented with 5 % fetal bovine serum (FBS), epidermal 

growth factor (0.5 µg/l), basic fibroblast growth factor (2 µg/l) and insulin (5 mg/l) and 

maintained under 5 % CO2 at 37 °C in a humidified atmosphere. To split the cells, 
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confluent cell culture plates were washed once with PBS and incubated with trypsin-

EDTA solution for 5-10 min. The detached cells were then diluted with cell culture 

medium containing FBS in ratios from 1:5 to 1:10 and transferred into a new cell culture 

plate [102]. Pulmonary artery smooth muscle cells exhibited typical spindle-shaped 

morphology throughout culture, and stained positive for smooth muscle-specific α-actin. 

For all experiments reported, only passages four to eight were used. Quiescence, when 

indicated, was achieved by serum withdrawal for 24 h [102]. 

 

 

PBS (phosphate-buffered saline): 

0.08% (m/v) NaCl 

0.02% (m/v) KCl 

0.115% (m/v) Na2HPO4 · 2H2O 

0.02% (m/v) KH2PO4 · 2H2O 

pH 7.4 adjusted with NaOH; sterilized for 20 min at 121 °C, 15 psi 

 

Trypsin-EDTA solution: 

0.25% (m/v) trypsin 

1.23 g/l EDTA 

 

 

2.2.13.3 Cell culture under hypoxic conditions 

To study the effect hypoxia in paSMC, cells were seeded onto culture dishes and 

supplemented with cell culture medium during time of adherence (20-24 h) as described 

above. To simulate hypoxic conditions cells were placed into a chamber equibrilated with 

a water-saturated gas mixture of 1% O2, 5% CO2, and 94% N2 at 37°C for a 24 h period. 

Control cells were cultured in water-saturated room air supplemented with 5% CO2 at 

37°C. 

 

 

2.2.14      Enzyme linked immunosorbant assay 

In order to determine both IL-13 and endothelin-1 protein concentrations in serum and 

cell culture supernatants, an enzyme linked immunosorbant assay (ELISA) systems from 

R&D systems was used according to the manufacturer’s instructions.  
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2.2.15      Transfection of pulmonary artery smooth  muscle cells 

Transient transfection of plasmids is a technique to transfer DNA into eukaryotic cells. 

This method is transient, as the transfected DNA is not integrated into the host genome.  

For transfection of paSMC the Nucleofactor technology from Amaxa Biosystems has 

been used. This assay is based on the principle of a unique combination of electrical 

parameters and cell-type specific solutions that transport DNA directly into the nucleus. 

Under optimal conditions a transfection efficiency in primary smooth muscle cells of 60% 

– 90% can be achieved. In addition, paSMC transfected with this method are viable and 

continue to retain the paSMC phenotype. The transfection was performed according to 

the protocol from the Basic Nucleofector Kit (Amaxa Biosystems, Gaithersburg, MD, 

USA). 

 

2.2.16       Microarray experiments 

Microarray experiments were performed in collaboration with Dr. Jochen Wilhelm (Institut 

for Pathology). In brief, paSMC were isolated and cultured for 24 h. Cells were stimulated 

with IL-13 (10 ng/ml) for 2 and 6 h. 

The RNA was purified using the RNeasy Mini Kit (Qiagen, Hilden, Germany) following 

the kit instructions. The RNA quality was assessed by capillary electrophoresis using the 

Bioanalyzer 2100 (Agilent Technologies, Palo Alto, CA). Purified total RNA was amplified 

and Cy-labeled using the dual-color LIRAK kit (Agilent) following the kit instructions. Per 

reaction, 1 µg of total RNA was used. The samples were labeled with either Cy3 or Cy5 

to match a balanced dye-swap design. The Cy3- and Cy5-labeled aRNA were hybridized 

overnight to a 44K 60mer oligonucleotide spotted microarray slides (Human Whole 

Genome 44K; Agilent Technologies). Hybridization and subsequent washing and drying 

of the slides was performed following the Agilent hybridization protocol. 

The dried slides were scanned using the GenePix 4100A scanner (Axon Instruments, 

Downingtown, PA). Image analysis was performed with GenePix Pro 5.0 software, and 

calculated values for all spots were saved as GenePix results files. Stored data were 

evaluated using the R software (R Foundation for statistical computing, 2007) and the 

limma package from BioConductor [103]. The spots were weighted for subsequent 

analyses according to the spot intensity, homogeneity, and saturation. The spot 

intensities were corrected for the local background using the method of Edwards [104] 

with an offset of 64 to stabilize the variance of low-intensity spots. The M/A data were 

LOESS normalized [105] before averaging. Genes were ranked for differential 

expression using a moderated t-statistic [106]. Pathway analyses were performed using 

Pathway-Express from the Onto-Tools [107]. 
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2.2.17       Animal models of pulmonary hypertensio n 

 
2.2.17.1      The monocrotaline rat model of pulmon ary hypertension 

Monocrotaline (MCT) is a pyrrolizidine alkaloid, which after single administration in rats, 

causes pathologic alterations in the lung and heart comparable to what is observed in 

human PAH. After administration, MCT is first activated by the liver to the electrophile 

monocrotaline pyrole (MCTP), which has characteristics of a bifunctional cross-linking 

agent, and has a half-life of~3 s in aqueous environments at neutral pH. 

Stabilization of MCTP by red blood cells facilitates its subsequent transport to the lung, 

where it induces endothelial injury by covalent reactions with cytosolic and cytoskeletal 

proteins. 

To induce pulmonary arterial hypertension adult male Sprague-Dawley rats received a 

single intraperitoneal injection of MCT (60 mg/kg). Monocrotaline was dissolved in 0.5 N 

HCl, and the pH was adjusted to 7.4 with 0.5 N NaOH. Control rats received an equal 

volume of isotonic saline. Hemodynamic measurements and lung extraction were 

performed as described [108, 109]. All experiments performed in this thesis dealing with 

the MCT-treated animals were performed in collaboration with the group of Prof. 

Schermuly (University of Giessen Lung Center). 

 

 

2.2.17.2      The hypoxia-induced pulmonary hyperte nsion model 

During early period of hypoxic exposure, pulmonary vascular resistance is increased due 

to hypoxic vasoconstriction, whereas chronic hypoxic treatment elevates vascular 

resistance by causing structural changes in pulmonary vasculature.   

For the experiments male Balb/c mice were exposed to normobaric hypoxia (FiO2 = 0.1) 

in a ventilated chamber. Mice exposed to normobaric normoxia were kept in similar 

chambers at a FiO2 of 0.21. After seven and 21 days, animals were intraperitoneally 

anesthetized, a mid-sternal thoracotomy was performed, and the lungs were flushed 

through catheter in the pulmonary artery with an equilibrated Krebs Henseleit buffer (125 

mM/l NaCl, 4.3 mM/l KCl, 1.1 mM/l KH2PO4, 2.4 mM/L CaCl2, 1.3 mM/l MgCl2, and 13.32 

mM/l glucose) at a pressure of 20 cm H2O at room temperature [110, 111]. During 

perfusion of the lungs the buffer was allowed to drain freely from the catheter in the left 

ventricle. Once the effluent was clear of bubbles, 800 µl prewarmed TissueTek was 

installed into the airways. After ligation of the trachea, the lungs were excised and 

immediately frozen in liquid nitrogen [111]. Preparation of the hypoxic animals was 
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continuously performed in the hypoxic environment. All experiments performed in this 

thesis dealing with the hypoxia-treated animals were performed in collaboration with the 

group of Prof. Weissmann (University of Giessen Lung Center). 
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3    Results 
 

3.1   Interleukin-13 receptor gene expression 

In our initial experiments the gene expression IL-13 receptor isotypes IL-4Rα, IL-13Rα1 

and IL-13Rα2 was analyzed by profiling a human multiple tissue panel. As shown in 

Figure 3.1, IL-4Rα and Il-13Rα1 genes were consistently expressed in all tissues 

investigated, while mRNA levels of IL-13Rα2 varied significantly amongst tissues. The L-

13Rα2 mRNA levels were highest in the lung, liver, brain, kidney, and thymus. 
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Figure 3.1 Gene expression of IL-13R isotypes in mu ltiple tissues  
Expression analysis of IL-4Rα, IL-13Rα1 and IL-13Rα2 was performed by RT-PCR of a multiple 
tissue RNA panel (in average 3 different donors pooled). Heat shock cognate (HSC)-70 served as 
a housekeeping gene. 
 

As all IL-13 receptor isotypes were highly expressed in lung tissues, the relative 

expression levels of the IL-13 receptor isotypes were analyzed in whole lung 

homogenates, as well as in isolated paSMC. We observed that IL-13Rα2 was highly 

enriched in paSMC (as indicated by a ∆Ct value of 4.39+/-0.4 in paSMC, compared with 

-4.72+/-1.2 in lung homogenates) as depicted in Figure 3.2. In contrast, the relative 

expression of IL-4Rα and IL-13Rα1 mRNA was similar in these samples. The enrichment 

of IL-13Rα2 mRNA in paSMC was confirmed at the protein level by immunostaining of 

human lungs, demonstrating an intense staining of IL-13Rα2 in vascular smooth muscle 

cell (Figure 3.3.).         
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Figure 3.2 Expression patterns of IL-13R isotypes i n the lung 
Quantitative RT-PCR analysis of IL-13R receptor isotypes comparing mRNA isolated from lung 
homogenates (n=4, white bars) and primary isolated of paSMC (n=4, black bars). PBGD was 
used as an internal control. Values represent mean +/- SEM; *, p<0.05 
 
 

 
 
 
 
3.2   IL-13 receptor expression in IPAH 
 
The high expression of IL-13Rα2 in paSMC in vivo and in vitro prompted us to 

investigate whether this receptor system may play a role in vascular remodeling of the 

pulmonary arteries, a key feature of pulmonary hypertension. To elucidate a potential 

association between IL-13R isotypes and PAH, we thus analyzed IL-13R gene 

expression by RT-PCR, comparing mRNA samples derived from six control donors and 

six lungs from patients with idiopathic pulmonary arterial hypertension (IPAH). Using 

semi-quantitative RT-PCR, we were able to observe a significant up-regulation of IL-

13Rα2 mRNA expression in lungs of IPAH patients compared with donors (Figure 3.4). 

In contrast, the mRNA expression of IL-4Rα, IL-13Rα1 and the housekeeping gene 

porphobilinogen deaminase (PBGD) which was employed as a loading control, remained 

unchanged (Figure 3.4).  

Figure 3. 3 Localization of IL -13Rα2 in the lung  
A representative picture of IL-13Rα2 protein localization 
in the normal human lung analysed by 
immunohistochemistry 
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Figure 3.4 Analysis of IL-13 receptor isotype expre ssion in IPAH 
Semiquantitative RT-PCR was performed using RNA from fresh frozen lung tissues derived from 
healthy controls (n=6, donor lungs) or IPAH patients (n=6). PBGD served as a loading control. 
 

 

The above described up-regulation of IL-13Rα2 in samples derived from patients with 

IPAH could also be confirmed by quantitative RT-PCR (Figure 3.5). 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Quantitative analysis of IL-13R expressi on in IPAH 
Quantitative RT-PCR of IL-13 receptor expression was performed using RNA from fresh frozen 
lung tissues derived from healthy controls (n=6) or IPAH patients (n=6). PBGD was used as an 
internal control. Values represent mean +/- SEM; *, p<0.01. 
 

 

To assess whether this increased expression of IL-13Rα2 indeed occurred in paSMC in 

vivo, we performed laser-captured microdissection (LCM) analysis of small pulmonary 

arteries from donor and IPAH lungs (Figure 3.6). Quantitative RT-PCR of microdissected 

pulmonary arteries demonstrated an up-regulation of IL-13Rα2 mRNA (∆Ct of -1.69+/-0.3 

and -0.12+/-0.9 for donor and IPAH, respectively) (Figure 3.7). 
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3.3   IL-13 receptor localization in IPAH patients 

We next sought to analyze the localization of IL-13 receptor isotypes, as well as IL-13, 

using immunohistochemistry of sections derived from donor and IPAH lungs. As depicted 

in Figure 3.8, IL-4Rα showed weak staining in the border between media and adventitia 

in pulmonary arteries, while IL-13Rα1 was primarily localized in bronchial epithelium, 

interstitial fibroblasts, and vascular smooth muscle cells. No differences in IL-4Rα and IL-

13Rα1 localization were noted comparing donor with IPAH lungs.  

IL-13Rα2 was predominantly localized in vascular smooth muscle cells (VSMC), and to a 

lesser extent, in the bronchial epithelium in donor lungs. In IPAH lungs, IL-13Rα2 

staining in pulmonary vessels was more intense, but remained primarily localized to 

Figure 3.6  In vivo expression of IL -13Rα2 
analysed by LCM 
Laser-captured microdissection (LCM) of pulmonary 
arteries derived from healthy controls and IPAH 
patients (n=4 for each) was performed and pre- and 
post-dissection photos depicted in the upper and lower 
row, respectively. 

Figure 3.7  Quantitative analysis of IL -13Rα2 in microdissected arteries  
Quantitative RT-PCR analysis of IL-13Rα2 gene expression was performed with mRNA 
from LCM-retrieved pulmonary arteries derived from donor or IPAH patients, as indicated 
(n=3). Values represent mean +/- SD; *, p<0.05. 
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VSMC. Interleukin-13 ligand was clearly localized in pulmonary arteries and displayed a 

stronger staining in VSMC of donors compared with IPAH lungs.  

As depicted in Figure 3.9, intense expression of both IL-13Rα2 and its ligand IL-13 was 

also observed in concentric and plexiform lesions of IPAH sections, the histological 

hallmarks of IPAH. 
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Figure 3.8 Immunohistochemical localization of IL-1 3 receptors 
Paraffin-embedded specimens from healthy donors (left columns) and IPAH patients (right 
columns) were stained for IL-4Rα, IL-13Rα1, IL-13Rα2, IL-13, and smooth muscle actin (SMA). All 
immunostaining photographs are representative for at least five different donors and IPAH 
patients. 
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3.4 IL-13 receptor expression in experimental pulmo nary   

         hypertension 

To gain further insight into the disease relevance of the IL-13 system and whether similar 

changes of IL-13 receptor expression occurred during pathogenesis of PAH, we 

investigated two animal models of PH, the mouse model of hypoxia-induced PH, and the 

rat model of monocrotaline-induced PH. 

For RT-PCR analysis of IL-13R isotype expression, mRNA was extracted from lung 

homogenates obtained from mice subjected to chronic hypoxia for 1 or 3 weeks, 

respectively (Table 3.1). 

 

 

 

 

 

 

 

Table 3.1      Hypoxic parameters from mice subject ed to chronic hypoxia 

 

In line with the observations from the humans, we could detect a significant up-regulation 

of IL-13Rα2 mRNA gene expression in lungs from mice exposed to one and three weeks 

of hypoxia compared to control animals, whereas, as expected, IL-4Rα and IL-13Rα1 

levels remained unchanged (Figure 3.10). These findings could be confirmed by 

quantitative RT-PCR (Figure 3.11). 

 Normoxia 
Hypoxia  

(7 days) 

Hypoxia  

(21 days) 

Hematocrit (%) 43 ± 0 53.6 ± 0.6 56.6 ± 1.2 

RV/LV+IVS 0.34 ± 0.02 0.45 ± 0.01 0.44 ± 0.02 

Figure 3.9  IL-13Rα2 and IL -13 expression  
in IPAH lesions 
Section of lungs from IPAH patients 
demonstrating plexiform and concentric lesions 
on the left and right column, respectively were 
stained for IL-13Rα2, IL-13, and SMA, as 
depicted. 
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Figure 3.10 IL-13R expression in hypoxia-induced pu lmonary hypertension 
Mice were exposed to normobaric hypoxia (10% O2) for one or three weeks, lung RNA isolated 
and semi-quantitative RT-PCR performed for IL-13 receptor isotypes, as indicated 
 

 

 

 

 

 

 

 

 

 

 
Figure 3.11 Quantitative analysis of IL-13R express ion in hypoxia-induced pulmonary 
hypertension 
Quantitative RT-PCR analysis was performed using the RNA samples described in Figure 3.10. 
Results are depicted as relative mRNA levels after one week (white bars) or three weeks (black 
bars) of hypoxia compared with normoxia. Values represent the mean +/- SD; *, p<0.05. 

 

Next we switched to the above mentioned second animal model of experimental 

pulmonary hypertension, namely the rat model of monocrotaline-induced PH. As 

expected, we were also able to detect an up-regulation of IL-13Rα2 gene expression in 

this model in lungs of MCT-treated rats compared to control animals, 2 weeks after MCT 

injection (Figure 3.12). 
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Figure 3.12 IL-13R expression in monocrotaline-indu ced pulmonary hypertension 
Lungs were harvested two or four weeks after MCT administration, inducing pulmonary 
hypertension. Lung RNA was isolated from lung homogenates and semi-quantitative RT-PCR was 
performed for IL-13 receptor isotypes, as indicated.  
 

Finally, the effects of hypoxia on IL-13Rα2 surface expression was assessed in cell 

culture conditions. For this purpose, freshly isolated human paSMC were subjected to 

hypoxia (1% of oxygen) for 24 h. Cell-surface expression of IL-13Rα2 was significantly 

increased in paSMC exposed to hypoxia, as assessed by flow cytometry, indicating 

functional contribution of IL-13Rα2 to disease pathogenesis. (Figure 3.13) 
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Figure 3.13 IL-13R α2 expression in paSMC exposed to hypoxia 
Human primary pulmonary artery smooth muscle cells were subjected to hypoxia (1% O2) for 24 
hours and IL-13Rα2 surface expression was analysed by flow cytometry (n=3). Values represent 
the mean +/- SEM; *, p<0.05. 
 

 

3.5   Effect of IL-13 on paSMC growth and apoptosis  

As IL-13Rα2 is predominantly expressed in paSMC, we next sought to elucidate its 

function by first investigating the biological effect of IL-13 treatment of primary cultures of 

freshly isolated paSMC. As depicted in Figure 3.14, IL-13 causes a significant, dose-

dependent decrease in the proliferation of paSMC, as assessed by direct counting of cell 
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numbers (37+/-3.4 x 10³ versus 52+/-2.1 x 10³ cells of IL-13-treated and control cells, 

respectively). 
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Figure 3.14 Effect of IL-13 on paSMC proliferation I 
Primary paSMC were treated with the indicated concentrations of IL-13 and cell counting was 
performed after 48 h. Values represent the mean +/- SEM; *, p<0.001 versus untreated controls. 
 

 

To confirm and quantify this effect, a [³H]-thymidine incorporation assay was performed, 

further demonstrating a significant anti-proliferative effect of IL-13, which was elicited at 

concentrations as low as 1 ng/ml. The maximal anti-proliferative effect of IL-13 was 

observed at concentration of 10 ng/ml, a dose which was thus used for further 

experiments (Figure 3.15).  
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Figure 3.15 Effect of IL-13 on paSMC proliferation II 
Primary paSMC were treated with the indicated concentrations of IL-13 and thymidine 
incorporation was performed after 48 hours. dpm, disintegrations per minute. Values represent 
the mean +/- SEM; *, p<0.001 versus untreated controls. 
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Interestingly, Interleukin-4 (IL-4), a ligand that can also bind to IL-13 receptor isotypes, 

also elicited a strong anti-proliferative effect on paSMC which was further augmented by 

co-stimulation with IL-13 (Figure 3.16). 
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Figure 3.16 Effect of IL-4 on paSMC proliferation 
Cells were treated with IL-4 and/or IL-13 at various concentration of IL-13 and thymidine 
incorporation was performed after 48 h. Values represent the mean +/- SEM. dpm, disintegrations 
per minute; *, p<0.001 
 

To exclude that the observed anti-proliferative effect of IL-13 on paSMC was due to 

apoptosis, a Hoechst 33342 apoptosis assay was performed indicating that this growth-

inhibitory effect was not due to induction of apoptosis, since IL-13 treatment did not 

induce apoptosis of paSMC, compared with untreated cells (3.0+-0.6% versus 2.3+-1.1% 

apoptotic cells, respectively). In contrast, staurosporine, which was used as a positive 

control, caused a significant increase in the percentage of apoptotic cells (Figure 3.17)  
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Figure 3.17 Effect of IL-13 on apoptosis in paSMC 
Primary paSMC were incubated for 24 h with IL-13 at the indicated concentrations and stained 
with Hoechst 33342 to detect apoptotic cells. Staurosporine-treated cells served as a positive 
control for apoptosis. Values represent the mean +/- SEM; *, p<0.001 
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To further elucidate the mechanism of the growth-inhibitory effect induced by IL-13, we 

next analyzed cell cycle distribution using flow cytometric analysis (Figure 3.18). 

Synchronized paSMC exhibited an expected cell cycle arrest in the G0/G1 phase (90%, 

5.6%, and 4.4% for G0/G1 , S, and G2/M phase, respectively). Serum stimulation 

increased the S and G2/M population to 13.8% and 30.3%, respectively. As depicted in 

Figure 3.18, the S phase entry was completely blocked by IL-13 treatment at 10 ng/ml, 

while the population of cells in G2/M phase decreased by 50%. This indicated that IL-13 

induced a G0/G1 phase arrest in paSMC, results that were also obtained with IL-13 at 50 

ng/ml and IL-4 (data not shown). 
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Figure 3.18 Effect of IL-13 on paSMC cell cycle pro gression 
Synchronized paSMC were treated as indicated and harvested after 24 h, fixed, stained, and 
analyzed for DNA content by flow cytometry. The distribution and percentage of cells in Go/G1 
phase (grey), S phase (pink) and G2/M phase (blue) are indicated, and all plots are representative 
for at least 3 independent experiments. 
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3.6   IL-13 serum levels in IPAH 

In the following, we sought to investigate whether IPAH is correlated with altered serum 

levels of IL-13. For this purpose, sera of 10 IPAH patients and 10 sex- and age-matched 

healthy subjects were measured by ELISA and compared. In both groups we could not 

detect significant serum levels IL-13 and thus no difference between IPAH and controls. 

 

3.7   IL-13-induced signaling in paSMC 

To elucidate IL-13 signaling in paSMC, IL-13-treated cells were analyzed for the 

activation of STAT molecules at various time-points by western blot. As depicted in 

Figure 3.19, IL-13 induced phosphorylation of STAT6 as early as 15 minutes after 

stimulation. This effect was IL-13 specific, as interferon (IFN)-γ did not elicit STAT6 

phosphorylation in paSMC. The STAT3 phosphorylation at Ser727, but not at Tyr705, 

was also induced by IL-13 after 30 min. In contrast, IL-13 did not induce STAT1, 2, 4, or 

5 phosphorylation, and did not affect total STAT1, 3, or 6 protein levels in paSMC.  

To confirm these results, immunofluorescence analysis, stimulating paSMC with IL-13 at 

a concentration of 10 ng/ml for 30 min, was performed. As expected, this assay 

demonstrated phosphorylation and nuclear translocation of both STAT3 and STAT6 in 

response to IL-13 (Figure 3.20). 
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Figure 3.19 Effect of IL-13 on STAT phosphorylation  in paSMC 
Cells were treated with IL-13 (10 ng/ml) for indicated times, lysed, and protein extracts prepared. 
Phosphorylated and total STAT proteins were detected by SDS-PAGE, followed by western blot 
analysis.  
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Figure 3.20 Effect of IL-13 on STAT phosphorylation  and translocation in paSMC 
Cells were seeded onto chamber slides and treated with IL-13 (10 ng/ml) for 30 min. 
Immunofluorescence analysis was performed using primary antibodies directed against phospho-
STAT3, total STAT3, phospho-STAT6, total STAT6, as indicated. 
 
 
 

3.8   Effect of IL-13R α2 overexpression on paSMC 

To investigate whether ectopic overexpression of IL-13Rα2 would mimic the effects 

observed with paSMC from patients or animal models of PAH, where we were able to 

demonstrate an up-regulation of IL-13Rα2, full-length IL-13Rα2 cDNA was cloned into 

the expression plasmid pcDNA3.1 and transfected into primary paSMC by 

electroporation. The efficiency of transfection by electroporation was analyzed with the 

help of a transfected GFP plasmid and subsequent flow cytometric analysis. After 

establishment of optimal transfection conditions we were able to achieve transfection 

efficiencies of up to 85% (Figure 3.21). 

 



Results 59 

EV GFP

C
o

u
n

ts

Fluorescence intensity

EV GFP

C
o

u
n

ts

Fluorescence intensity  

 

Figure 3.21 Analysis of transfection efficiency on GFP-transfected paSMC 
Pulmonary artery smooth muscle cells were transfected with empty vector and GFP constructs by 
electroporation and GFP expression analyzed by flow cytometry 
 

As depicted in Figure 3.22, [³H]-thymidine incorporation demonstrated that the growth-

inhibitory effect of IL-13 on cells transfected with an empty vector (EV) was significantly 

attenuated in cells transfected with IL-13Rα2 cDNA. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22 Effect of IL-13R α2 overexpression on paSMC proliferation 
Cells were transfected with IL-13Rα2 expression plasmid or empty control vector (EV), and 
stimulated with IL-13 (10 ng/ml) for 24 h. Cell proliferation was analyzed by thymidine 
incorporation. Values represent the mean +/- SEM; *, p<0.05 
 

 

 

Furthermore, overexpression of IL-13Rα2 led to a less rapid and intense phosphorylation 

of STAT3 and STAT6 upon IL-13 stimulation compared with paSMC transfected with 

empty vector (Figure 3.23). 
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Figure 3.23 Effect of IL-13R α2 overexpression on paSMC signaling 
Empty vector (EV)- and IL-13Rα2-transfected paSMC were treated with 10 ng/ml of IL-13, and 
phosphorylated and total STAT proteins were detected by Western Blot analysis. 
 

 

3.9   Analysis of IL-13 induced genes by DNA microa rray 

In order to elucidate possible transcriptional mechanisms of how IL-13 might exert its 

growth-inhibitory effect on paSMC and thus to analyze IL-13 regulated genes in these 

cells we decided to perform DNA microarray experiments. For this purpose, paSMC were 

stimulated with IL-13 (10 ng/ml) for 2 and 6 h, mRNA was subsequently extracted and a 

microarray analysis performed. 

In total, 164 genes were regulated after 2 h (106 genes were up-, and 58 genes were 

down-regulated), 415 genes after 6 h (206 genes were up-, und 209 genes were down-

regulated) of IL-13 stimulation (Figure 3.24).  

 

 

 

Figure 3.24 Genes regulated after IL-13 stimulation  
Number of genes regulated after 2 h (red circle) and 6 h (blue circle) of IL-13 stimulation. Left box: 
Number of up- and down-regulated genes. Middle box: Only up-regulated genes. Right box: Only 
down-regulated genes. 
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Figure 3.25 Heat Map analysis of IL-13 regulated ge nes 
Visualization of the microarray results by heat map analysis. Rows represent the 50 most 
regulated genes, columns the respective experiments. Red: downregulation, yellow: intermediate 
regulation, white: up-regulation. A dendrogram is depicted on the left. 
 

To further investigate IL-13 regulated genes and visualize the generated data heatmap 

analysis was performed (Figure 3.25). This method is a graphical way of displaying 

expression levels of genes (50) across a number of experiments (n=3, a-c). Furthermore, 

the expression data is analyzed by hierarchical clustering (dendrogram at the right). 
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3.9.1   IL-13 regulated genes after 2 h of stimulat ion 

Table 3.2 lists the 10 most regulated genes 2 h after IL-13 stimulation (the entire list of all 

genes regulated can be found in the Appendix): 

 

Up-regulation: 

 Accession Gene coeff. A mean
NM_002982 chemokine (C-C motif) ligand 2 (CCL2) 3.844 10.529
NM_006072 chemokine (C-C motif) ligand 26 (CCL26) 2.643 8.523
NM_002986 chemokine (C-C motif) ligand 11 (CCL11) 1.914 8.503
NM_013324 cytokine inducible SH2-containing protein (CISH) 1.844 7.550
NM_006273 chemokine (C-C motif) ligand 7 (CCL7) 1.624 8.248
NM_005329 hyaluronan synthase 3 (HAS3) 1.491 7.681
NM_001621 aryl hydrocarbon receptor (AHR) 1.467 9.383
NM_001511 chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity alpha (CXCL1) 1.420 9.950
NM_000958 prostaglandin E receptor 4 (subtype EP4) (PTGER4) 1.403 8.106
NM_000600 interleukin 6 (interferon beta 2) (IL6) 1.374 9.071  

Down-regulation: 

NM_183372 hypothetical protein LOC200030 -0.502 10.058
NM_030932 diaphanous homolog 3 (Drosophila) (DIAPH3) -0.527 7.788
NM_139173 CG10806-like (LOC150159) -0.535 7.804
NM_002729 hematopoietically expressed homeobox (HHEX) -0.604 7.685
NM_153437 outer dense fiber of sperm tails 2 (ODF2) -0.620 9.268
CR620977 cDNA clone CS0CAP004YK15 of Thymus of Homo sapiens (human) -0.634 8.531
NM_145161 mitogen-activated protein kinase kinase 5 (MAP2K5) -0.649 8.217
THC2095910 truncated DNA architectural factor HMGA2 (Homo sapiens) -0.813 7.764
NM_001955 endothelin 1 (EDN1) -0.854 7.764
NM_019070 DEAD (Asp-Glu-Ala-Asp) box polypeptide 49 (DDX49) -0.883 8.544  
 

Table 3.2 Most regulated genes 2 h after IL-13 stim ulation 

 

 

3.9.2   IL-13 regulated genes after 6 h of stimulat ion 

Table 3.3 lists the 10 most regulated genes 6 h after IL-13 stimulation (the entire list of all 

genes regulated can be found in the Appendix): 

 

Up-regulation: 

Accession Description coeff A. mean
NM_002982 chemokine (C-C motif) ligand 2 (CCL2) 4.044 10.529
NM_006072 chemokine (C-C motif) ligand 26 (CCL26) 3.399 8.523
NM_005329 hyaluronan synthase 3 (HAS3) transcript variant 1 2.353 7.681
NM_006273 chemokine (C-C motif) ligand 7 (CCL7) 1.918 8.248
NM_017651 Abelson helper integration site (AHI1) 1.761 8.315
NM_000600 interleukin 6 (interferon beta 2) (IL6) 1.746 9.071
NM_002986 chemokine (C-C motif) ligand 11 (CCL11) 1.639 8.503
AK056836 cDNA FLJ32274 fis 1.636 7.890
NM_022837 hypothetical protein FLJ22833 1.596 9.767
NM_013324 cytokine inducible SH2-containing protein (CISH) transcript variant 1 1.561 7.550  
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Down-regulation: 

NM_153437 outer dense fiber of sperm tails 2 (ODF2) variant 2 -1.156 9.268
NM_139173 CG10806-like (LOC150159) -1.201 7.804
AK095678 cDNA FLJ38359 fis -1.235 11.474
NM_001901 connective tissue growth factor (CTGF) -1.238 12.069
NM_020457 THAP domain containing 11 (THAP11) -1.245 8.692
NM_001955 endothelin 1 (EDN1) -1.247 7.764
NM_032264 hypothetical protein AE2 (AE2) -1.247 9.513
BC061638 cDNA clone IMAGE:5547707 -1.315 8.751
NM_181690 v-akt murine thymoma viral oncogene homolog 3 (AKT3) -1.390 8.415
AK092668 cDNA FLJ35349 fis -1.475 7.994  
 

Table 3.3 Most regulated genes 6 h after IL-13 stim ulation 

 

 

3.9.3   Classification of genes according to biolog ical processes 

In the following, we grouped IL-13 regulated genes according to their biological 

processes. At first, regulated genes were divided due to their molecular function. Both 

after 2 h and 6 h of IL-13 stimulation, most induced genes were involved in DNA-

dependent regulation of transcription, followed by genes responsible for signal 

transduction and inflammatory responses (Figure 3.26). 

 

  

 

Figure 3.26 Cluster analysis of IL-13 regulated bio logical processes 
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Regarding cluster analysis of IL-13 regulated genes involved in signaling pathways, most 

genes are connected to cytokine-cytokine receptor interaction, followed by genes 

involved in JAK-STAT signaling and MAPK signaling pathways (Figure 3.27). 

 

 

 

Figure 3.27 Cluster analysis of IL-13 regulated sig naling pathways 

 

 
3.10 IL-13 induces down-regulation of endothlin-1 

For further analysis we chose endothlin-1, a potent vasoconstrictor, which was 

interestingly significantly down-regulated after both, 2 and 6 h of IL-13 stimulation. First 

we assessed endothelin-1 mRNA expression after IL-13 stimulation at several time 

points. We could observe an almost complete down-regulation of endothelin-1 

expression even 24 h after stimulation (Figure 3.28). No mRNA of endothelin-2 and 

endothelin-3 was detected in paSMC after IL-13 stimulation (data not shown). 
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Figure 3.28 IL-13 induced down-regulation of endoth elin-1 mRNA expression 
paSMC were stimulated with IL-13 for the indicated time points. Endothelin-1 expression was 
subsequently analyzed by quantitative RT-PCR. 
 

 

To confirm these data at the protein level, endothelin-1 concentrations were measured in 

the cell culture supernatant of paSMC stimulated with IL-13. As expected, endothelin-1 

levels significantly decreased 6 h after stimulation, an effect which could be observed 

even after 48 h. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.29 IL-13 induced down-regulation of endoth elin-1 protein levels 
The paSMC were stimulated with IL-13 for the indicated time points, cell culture supernatant was 
collected and subjected to ELISA to determine endothelin-1 concentration. Values represent the 
mean +/- SEM; *, p<0.05.  
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4    Discussion 
 

 

Increased proliferation of paSMC is an essential feature of the vascular remodeling 

process in PAH. Several mediators which control paSMC growth have been described 

that also exhibited alterations in expression and/or function in PAH, such bone 

morphogenetic proteins, transforming growth factors, serotonin, angiopoietins, vascular 

endothelial growth factor, or platelet-derived growth factor (as described in the 

introduction section) [43, 112-117]. 

In the current study, we report the unexpected and novel finding that IL-13, along with its 

receptor isotypes IL-4Rα, IL-13Rα1, and IL-13Rα2 present an entirely novel and potent 

regulatory system for paSMC proliferation. 

The novel findings reported in this study can be summarized as follows: 

 

a) The IL-13Rα2 isotype is highly expressed in paSMC 

b) IL-13Rα2, but not IL-13Rα1 or IL-4Rα expression is significantly increased in lung 

homogenates and paSMC of IPAH patients, as well as in two animal models of 

pulmonary hypertension 

c) IL-13 concentrations in sera from PAH patients were not different compared with 

age-matched controls 

d) IL-13 acts as a potent anti-proliferative, but not pro-apoptotic, factor for paSMC 

e) IL-13 stimulates the phosphorylation and nuclear translocation of STAT3 and 

STAT6 

f) Ectopic overexpression of IL-13Rα2 in primary paSMC attenuates the anti-

proliferative effect exerted by IL-13, and diminishes IL-13-induced STAT3 and 

STAT6 phosphorylation 

g) IL-13 induces the downregulation of endothelin-1 expression, both at the mRNA 

and protein level 

 

These results suggest that the expansion of and enhanced ECM deposition by paSMC in 

PAH result from an inherent abnormality of the paSMC itself. While baseline IL-13 

concentrations in the vascular wall may be responsible for maintaining paSMC 

quiescence, increased expression of the IL-13Rα2 isoform will lead to a loss of the anti-

proliferative effect normally exerted by IL-13, even in the absence of changes in serum 

IL-13 levels. Indeed, IL-13 concentrations in sera from PAH patients were not different 

compared with age-matched controls, indicating that the cell’s response is primarily 

dictated by the IL-13 receptor expression profile in the presence of unchanged ligand 
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levels. As IL-13Rα2 is significantly up-regulated in PAH it might play a pivotal role in 

triggering and regulating vascular smooth muscle cell proliferation or remodeling. In the 

following, the influence and association of IL-13Rα2 on several disease processes, 

especially tissue fibrosis, will be discusses in detail. 

 

4.1    IL-13Rα2 

As already described in the Introduction, IL-13Rα2 belongs to the IL-13R family and is 

able to bind IL-13 with a 100-fold higher affinity than IL-13Rα1 [70, 118, 119]. Several 

studies show that IL-13Rα2 is expressed in various tissues – the corresponding 

transcripts have been identified in spleen, liver, lung, thymus and kidney, an observation 

which we could reproduce in this study [120-123]. In addition, the existence of a soluble 

IL-13Rα2 in the urine and serum of mice has been described [121, 124]. 

Large pools of IL-13Rα2 are also present intracellularly in cultured monocytes, 

respiratory epithelial cells, primary respiratory epithelium, and primary human monocytes 

[125, 126]. This intracellular pool can be rapidly mobilized to the cell surface upon 

treatment with IFN-γ [127]. As IL-13Rα2 binds IL-13 rapidly and with a very high affinity it 

plays thus a dominant role in the regulation of IL-13 levels and biological effects [118, 

121]. The IL-13Rα2 itself is highly regulated in vivo and in vitro. Several studies 

demonstrated that IL-4, IL-10 and IFN-γ are potent regulators of the expression and 

production of IL-13Rα2 [119, 127, 128]. Furthermore, its ligand, IL-13, is also able to 

effectively increase IL-13Rα2 expression of mRNA and protein level as shown in various 

cell types [119, 128-131]. 

The generation of IL-13Rα2 -/- knockout mice in 2003 has initiated a plethora of 

important experiments investigating the biological and functional relevance of IL-13Rα2 

[132]. These animals are viable, fertile, and display no overt abnormalities in appearance, 

weight, or behavior. Furthermore, histology, serum chemistry, and hematology do not 

reveal any obvious pathological changes [132]. Interestingly, the absence of IL-13Rα2 in 

these animals correlates with a complete loss of serum IL-13, whereas the levels of IL-13 

in tissue are significantly increased, suggesting that in wild-type animals serum IL-13Rα2 

may bind and neutralize serum IL-13 temporarily and thus extend IL-13 half-life [128, 

132]. 

Moreover, IL13Rα2-deficient mice displayed enhanced serum IgE, IgG2, and IgA level, 

confirming and supporting studies showing increased levels of the above mentioned 

immunoglobulins after IL-13 administration [132]. IL-13Rα2 -/- mice exhibit in addition 

increased levels of macrophage progenitors and decreased tissue macrophage NO and 

IL-12 production [128]. The decreased responsiveness of immune cells to LPS 
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(lipopolysaccharide) in IL-13Rα2 -/- animals, as shown by decreased expression of IL-12, 

underlines to protective role of IL-13 in the scenario of LPS-induced shock [132].  

 

4.2   IL-13Rα2: Decoy or signaling receptor? 

According to literature, IL-13Rα2 was for a very long time believed to act exclusively as a 

non-signaling decoy receptor after IL-13 binding. Several facts and observations 

supported this dogma: 

- IL-13Rα2 has, compared to the other IL-13Rα isotypes, an extremely 

short cytoplasmatic tail, only consisting of 17 amino acids in the human 

subject [132, 133] 

- Sequence analysis of this short cytoplasmatic tail indicated the absence of 

Box-1 or Box-2 signaling motifs [72, 127] 

- The cytoplasmatic region of murine IL-13Rα2 does not posses any further 

signaling motif or Janus kinase/signal transducer and activator of 

transcription (STAT) binding sequence [121, 132] 

- High IL-13 binding affinity [70] 

 

Surprisingly, Fichtner-Feigl and colleagues recently published a study showing possible 

signaling properties of IL-13Rα2 upon IL-13 stimulation [134]. In this study, the authors 

investigated the underlying mechanism for IL-13 induced TGF-β secretion in 

macrophages in the context of tissue fibrosis and autoimmune diseases [134]. They 

found out that IL-13 activates the TGFB1 promoter and thus promotes the expression of 

TGF-β. Interestingly, IL-13Rα2 seems to be essential for this TGFB1 promoter activation: 

MonoMac6 (MM6) cells, originally not expressing IL-13Rα2, could be only induced to 

activate TGFB1 promoter after transfection with a plasmid encoding IL-13Rα2, indicating 

that IL-13Rα2 acts in fact as signaling receptor necessary for such a TGFB1 promoter 

activation [134]. Further analysis revealed that full-length IL-13Rα2 molecule is essential 

for this activation, as IL-13Rα2 lacking an intracellular signaling component is not able to 

influence TGFB1 promoter activation [134]. In the following the authors were able to 

show that TGFB1 activation by IL-13Rα2 occurs in a STAT6 independent way, whereas 

AP-1 seems to play an essential role: IL-13-stimulated MM6 cells expressing IL-13Rα2 

showed markedly increased binding of AP-1 family members c-jun and Fra-2 in EMSA 

supershift analyses, indicating that AP-1 is at least one of the transcription factors 

involved in IL-13Rα2 signaling leading to activation of the TGFB1 promoter [134]. 

The above mentioned study is so far the first and only one describing signaling 

properties of IL-13Rα2, an intriguing fact that must be confirmed in future studies. Also 
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the underlying mechanism determining whether IL-13Rα2 acts as a decoy or signaling 

receptor, respectively, remains to be further elucidated. 

 

 

4.3   Role of IL-13R α2 in fibrotic disease 

As mentioned previously, IL-13 has emerged as a central mediator of tissue remodeling 

processes including idiopathic pulmonary fibrosis, ulcerative colitis, as well as liver 

cirrhosis [135-138]. A commonly used model to explore type-2 cytokine-dependent 

inflammation and fibrosis is the murine model of schistosomiasis [130]. In 

schistosomiasis, a chronic inflammatory disease of the liver and gut, Th2 cytokines are 

required for granuloma formation and development of hepatic fibrosis [130]. In this 

disease, eggs laid by adult parasites are trapped in host tissues, a process inducing and 

promoting granuloma formation, collagen deposition, and ultimately, extensive tissue 

remodeling and fibrosis [89, 130].  

 

4.3.1   Pulmonary granuloma formation 

In the pulmonary model of granuloma formation, live eggs are purified from the livers of 

Schistosoma mansoni-infected mice and then injected intravenously into naïve animals 

[130]. As a consequence, eggs lodge in the lungs and induce an inflammatory response, 

leading finally to pulmonary fibrosis. Several studies investigated the underlying 

mechanism promoting this fibrotic response: Short after intravenous egg injection a rapid 

induction of both IL-4 and IL-13 is observed in the lungs [128, 139]. Once this Th2 

response is established, there is evidence that IL-4 is not required to maintained the 

polarized cytokine profile, whereas a modest IL-13 response is sufficient and essential to 

maintain a significant granulomatous response [130, 139].  

To investigate a possible influence of IL-13Rα2, mice were treated with soluble IL-

13Rα2-Fc fusion protein (sIL-13Rα2-Fc) which blocks IL-13 activity. Administration of 

sIL-13Rα2-Fc into Schistosoma mansoni-infected mice reduced the size of the 

granulomatous lesions by more than 50%, demonstrating a non-redundant role for IL-13 

in pulmonary granuloma formation [139].  

 

4.3.2   Liver fibrosis in schistosomiasis 

A second widespread animal model of fibrotic disease is the murine model of 

schistosomiasis-induced liver fibrosis. Here, eggs are predominantly laid in the portal 

venous system and subsequently trapped in the liver [130, 140]. As mentioned above, 

these parasite eggs cause a vigorous Th2-linked inflammatory response in the liver 
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cumulating in a destructive accumulation of collagen and extracellular matrix deposition, 

and thus the development of liver fibrosis [130, 140]. 

Also in this model, IL-13 was identified as the dominant mediator of tissue remodeling 

and fibrosis. Mice treated with the inhibitor sIL-13Rα2-Fc showed a significant decline in 

liver fibrosis compared to untreated animals [93, 141]. To underline the central role of IL-

13, several studies could demonstrate that after infection with Schistosoma mansoni, 

serum and liver tissue level of IL-13 were clearly elevated, egg-specific Th2 lymphocytes 

produced even almost 100-fold more IL-13 than IL-4. In line with these findings it is not 

surprising that IL-13 -/- mice failed to develop the severe fibrotic liver tissue pathology 

observed in this disease [141]. 

Apart from evident pathologic effect of IL-13, and to a lesser extent IL-4, recent studies 

focused on the pattern of IL-4/IL-13 receptor expression as a possibly equally important 

regulatory mechanism. In a first step, mRNA expression of IL-13R isotypes was 

quantified at various time points following infection with S. mansoni [142]. Although the 

γc and IL-13Rα1 mRNA showed very little evidence of regulation in the cause of infection, 

IL-4Rα and IL-13Rα2 were highly regulated in the liver, displaying an opposite pattern of 

expression [141]. In the initial stage of disease IL-4Rα mRNA expression was high and in 

the following by week 9, mRNA levels decreased markedly and remained low throughout 

infection [128, 141, 142]. In contrast, IL-13Rα2 was almost undetectable prior to infection 

but was significantly up-regulated after egg-deposition [128, 130]. Also concerning the 

histopathological localization of IL-4R and IL-13Rα2 a discrepancy was detected, as IL-

4Rα was found at higher levels within the granuloma, whereas the expression of IL-

13Rα2 was primarily restricted to the periphery of the granuloma [128, 130]. These 

findings might lead to the hypothesis that IL-13Rα2 is highly produced and expressed 

during polarized Th2 responses. Studies conducted with IL-13 deficient mice showed a 

essential role for the ligand IL-13 on IL-13Rα2 expression as decoy receptor levels were 

markedly reduced in these knockout animals, a fact that could be rapidly restored after 

exogenous administration of  recombinant IL-13 ligand [76, 128, 141]. In this scenario, 

IL-13Rα2 seems to act as a negative feedback inhibitor of IL-13, induced by the Th2 

immune response itself. In addition, other experiments with several cytokine-deficient 

mice suggested that also IL-10, IL-12 and IFN-γ might mobilize IL-13Rα2 from 

intracellular stores to the cell surface and thus can be regarded as important 

endogenous inducers of IL-13Rα2 activity and function. [131, 143] 

To elucidate the functional impact of IL-13Rα2 in the pathogenesis of remodeling 

diseases, besides the above mentioned up-regulation during development of fibrosis, the 

generation of knockout mice with a targeted deletion of IL-13Rα2 brought tremendous 

insight into disease pathology. In the absence of IL-13Rα2 (IL-13Rα2 -/- mice) hepatic 
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fibrosis was significantly increased compared to wild-type mice [76, 142]. When in these 

knockout animals the decoy receptor activity was reconstituted by administration of     

sIL-13Rα2-Fc, the fibrotic response was largely prevented, reducing fibrosis in IL-13Rα2-

deficient mice by >70%, formally displaying an exacerbated pattern of fibrosis [128, 130, 

142]. Also the impaired immune modulation could be completely restored. 

 

Also the histological pattern of hepatic fibrosis in infected IL-13Rα2 -/- mice was 

intriguing. In these mice collagen deposition seemed to extent beyond the areas 

surrounding the granulomas, as observed in wild-type animals, spreading throughout the 

entire liver parenchyma itself [128, 130]. These data suggest that the protective role of 

IL-13Rα2 might extent to areas not directly affected by parasite eggs. The IL-13Rα2 -/- 

animals thus failed to suppress their inflammatory response in the chronic phase of 

infection, displayed by a marked exacerbation in granulomatous inflammation at later 

time points [128, 130]. 

Another striking finding in these IL-13Rα2-deficient mice was the fact that Th2-cytokine 

expression, especially that of IL-13, was markedly reduced in the liver and serum of 

these animals [128, 130]. Fibrosis expands in IL-13Rα2 knockout animals, despite the 

significant decline in IL-13 tissue and serum concentration, suggesting that even reduced 

levels of IL-13 are sufficient to generate fibrosis when IL-13Rα2 expression is absent 

[128, 130]. These results emphasize the functional importance of IL-13Rα2 in regulation 

of Th2 immune response as they suggest a strong enhancement of IL-13 bioactivity in 

the absence of the decoy receptor [130]. Furthermore, the IL-13 receptor system, 

especially IL-13Rα2, might have a much greater influence on the development of tissue 

fibrosis than the relative level of IL-13. 

 

4.3.3   Current model of the involvement of the Th1 /2 response  

           and IL-13Rα2 in tissue remodeling 

Recent studies indicate that several cell types, namely CD4+CD25+ regulatory T-cells 

(TReg), macrophages and dendritic cells cooperate via secretion of IL-10 to generate Th2 

cell responses [89, 144]. While promoting the development of polarized Th2 immune 

responses IL-10 furthermore inhibits the production of IFN-γ by Th1 cells [89, 145] 

(Figure 4.1). In this Th2 dominated setting, IL-13 not only induces ECM and collagen 

deposition by fibroblasts but also promotes expression of its decoy receptor IL-13Rα2 to 

regulate and attenuate the fibrotic response [119, 128, 129, 142]. For this reason, both 

IL-10 and IL-13Rα2 might cooperate to control tissue fibrosis during polarized Th2 

responses [89] (Figure 4.1). 
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Another possibility is a highly polarize Th1 response. In this setting, the secretion of   

IFN-γ induces a downregulation of collagen production and additionally relative low 

levels of IL-13 [144]. Consequently, tissue fibrosis is minimal and decoy-receptor 

expression remains low. 

In severe and uncontrollable cases of tissue fibrosis, as for example in idiopathic 

pulmonary fibrosis, the scenario of a mixed Th1/Th2 response might occur. In this case, 

moderate amounts of IFN-γ are able to reduce the production of the decoy receptor IL-

13Rα2, whereas the simultaneously induced Th2 response augments the concentration 

of IL-13. Although the relative levels of IL-13 might even not change, for example in the 

serum of the patients, the concentration of “free” IL-13, which is able to bind signaling 

receptors, increases substantially as the regulatory functions of the decoy receptor are 

decreased [146-149]. This scenario could explain the unusual tendency of mixed 

immune responses to trigger severe tissue pathology. 

 

                                                                                 

 

 

Figure 4.1  Invo lvement 
of Th1/Th2 response and 
IL-13Rα2 in  tissue 
fibrosis (adapted from  
[89]) 
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4.4   The role of IL-13 and IL-13R α2 in IPAH 

As the role of IL-13 and IL-13Rα2 has been to a large extent investigated in the 

pathogenesis of tissue remodeling diseases as pulmonary fibrosis, our study for the first 

time focuses on the role of this cytokine and its receptors on vascular remodeling as 

shown in PAH. Unexpectedly, we observed an anti-proliferative effect of IL-13 on paSMC 

while pro-proliferative effects of IL-13 have been described in lung (myo-) fibroblasts and 

airway epithelial cells. The IL-13 elicited a potent anti-proliferative effect on paSMC 

which was associated with the activation of STAT3 and STAT6. Phosphorylation of 

STAT6 is the classical signal transduction pathway activated by IL-13 but in addition to 

STAT6, STAT3 was also activated by IL-13 in paSMC, indicating a paSMC-specific 

signal transduction pathway and may thus be amenable to selective pharmacological 

modulation.  

At present, little is known about the expression and localization of IL-13 receptors in the 

healthy lung. Immunohistochemical analysis of lung biopsies from patients with IPF 

revealed a predominantly interstitial staining for all three receptor subunits [150]. These 

authors also observed significant expression of the IL-13Rα1 isoform in the blood 

vessels, whereas strong staining for IL-13Rα2 was detectable in the lung epithelium of 

IPF patients [150]. In our study we observed a strong vascular staining of the IL-13Rα2 

isoform. In addition, laser-captured microdissection with subsequent quantitative         

RT-PCR analysis confirmed, as a quantitative approach, enriched expression of IL-

13Rα2 on paSMC compared with lung homogenates, and enhanced expression of IL-

13Rα2 in small pulmonary arteries from lungs from patients with IPAH, compared with 

controls. These results were obtained investigating samples from IPAH patients, as well 

as from two animal models of PAH, the mouse model of chronic hypoxia-induced 

pulmonary hypertension and the rat model of monocrotaline-induced pulmonary 

hypertension, indicating that selective up-regulation of IL-13Rα2 is a consistent and 

conserved feature of PAH that may be closely related to pathogenesis.  

Microarray analysis revealed a firm and consistent regulation of a plethora of genes after 

IL-13 stimulation of paSMC. We finally focused on endothelin-1 which expression was 

massively down-regulated by IL-13. We could confirm these results on both, mRNA and 

protein levels. As already published endothelin-1 plays a pivotal role in the pathogenesis 

of PAH as it might exert pro-proliferative and vasconstrictive effects on paSMC and 

vessels. The observed anti-proliferative effect of IL-13 on paSMC could be thus 

explained by the down-regulation of the pro-proliferative endothelin-1. 

Bearing these observations in mind one could propose the following involvement of IL-13 

and IL-13α2 in the pathogenesis of IPAH disease: In healthy subjects, baseline IL-13 

concentrations in the vascular wall may be responsible for maintaining paSMC in a 
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quiescent, non-proliferating state. In the condition of PAH, increased expression of       

IL-13Rα2 in paSMC leads to an attenuation of the direct anti-proliferative effect of locally 

secreted IL-13. This shifts the paSMC from a quiescent cell to a pro-proliferative and 

ECM-secreting cell type, triggering and/or activating pulmonary arterial hypertrophy 

(Figure 4.2). This study thus highlights the importance of the IL-13 system in PAH, a 

cytokine that may well be amenable to therapeutic intervention in human disease. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Involvement of IL-13R α2 in the pathogenesis of PAH 

 

 

4.5   Outlook and future directions 

In order to further elucidate the influence of IL-13Rα2 on the pathogenesis of PAH the 

use of specific knockout animals, as investigated in fibrotic disorders, is of major 

importance. To mimic PH, IL-13Rα2 -/- and/or IL-13 -/- mice could be subjected to 

hypoxia and effects like right-ventricular hypertrophy and survival can be studied. 

According to our data, we hypothesize that IL-13Rα2 -/- animals show less signs of 

pulmonary hypertension compared to controls as there are augmented levels of “free”, 

anti-proliferative IL-13 which can interact with the respective signaling receptors.  
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Furthermore, IL-13 signaling through the IL-13Rα2 isoform has been described to be 

directly involved in TGF-β1 production and tissue fibrosis via AP-1 transcription factors. 

In this respect, it would be intriguing to further investigate, whether paSMC would exhibit 

distinct signaling activities via AP-1 similar to these observations.   

By analyzing IL-13 regulated genes in paSMC via microarray a plethora of potential 

candidates involved in IL-13-induced growth inhibition was generated. In this study we 

only focused on endothelin-1, but especially the most up-regulated genes, belonging to 

the CCL-family, require further investigation.  
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5    Summary 

 

Idiopathic pulmonary arterial hypertension (IPAH) is characterized by medial hypertrophy 

and pulmonary artery smooth muscle cell (paSMC) proliferation in pulmonary arteries. 

Interleukin (IL)-13 is a potent regulator of tissue fibrosis and remodeling, and its effects 

are dependent on the cell-type specific expression of the IL-13 receptor isotypes IL-4Rα, 

IL-13Rα1, and IL-13Rα2. This study analyzed the expression of the IL-13 receptors in 

IPAH in vivo and paSMC ex vivo, and the effects of IL-13 stimulation on paSMC 

proliferation and apoptosis.  

Using quantitative RT-PCR and immunohistochemistry, we detected an increased 

expression of IL-13Rα2, but not IL-4Rα, or IL-13Rα1, in lungs of IPAH patients compared 

with controls (transplant donors). Similar results were obtained in lungs of mice subjected 

to chronic hypoxia-induced pulmonary hypertension or rats exposed to monocrotaline. 

Immunohistochemistry and laser-captured microdissection analysis further demonstrated 

a strong localization of IL-13Rα2 to paSMC. Functional analysis using freshly isolated 

paSMC revealed that IL-13 induced a dose-dependent growth inhibition, without inducing 

apoptotic effects. This anti-proliferative effect of IL-13 was due to G0/G1 cell cycle arrest 

and phosphorylation of STAT3 and STAT6 in paSMC. Finally, ectopic overexpression of 

IL-13Rα2 in primary paSMC attenuated the anti-proliferative effect exerted by IL-13, and 

diminished IL-13-induced STAT3 and 6 phosphorylation. Our studies thus demonstrate 

that IL-13 is a potent anti-proliferative regulator of paSMC. Up-regulation of the decoy 

receptor IL-13Rα2 on paSMC in IPAH leads to a loss of this anti-proliferative effect and 

therefore enhanced paSMC proliferation during the pathogenesis of the disease. 

Furthermore, microarray analysis revealed that IL-13 induced a massive downregulation 

of the pro-proliferative endothelin-1 in paSMC, a finding that was also confirmed on 

protein level. Thus, the described anti-proliferative effect of IL-13 on paSMC might be 

mediated by a downregulation of endothelin-1. 
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6    Zusammenfassung 

 
Idiopathische pulmonale Hypertonie (IPAH) ist charakterisiert durch eine 

Mediahypertrophie und Proliferation der pulmonalen glatten Gefäßmuskelzellen (paSMC). 

Interleukin-13 (IL-13) ist ein potenter Regulator von Gewebefibrose mit entsprechenden 

Umbauprozessen (remodeling) und seine biologischen Effekte sind abhängig vom 

zelltypspezifischen Expressionsmusters der IL-13 Rezeptor Isotypen IL-4Rα, IL-13Rα1 

und IL-13Rα2. In der vorliegenden Studie untersuchten wir die Expression der IL-13 

Rezeptoren in Proben von Lungen, entnommen von IPAH Patienten, in vivo und paSMC 

ex vivo und ferner die Effekte der IL-13 Stimulation auf die Proliferation und Apoptose 

von paSMC. 

Mittels quantitativer RT-PCR und Immunohistochemie konnten wir eine verstärkte 

Expression von IL-13Rα2, nicht aber von IL-4Rα und IL-13Rα1, in Lungen von IPAH-

Patienten im Vergleich zu Kontrollpatienten detektieren. Ähnliche Resultate konnten in 

Lungen von Mäusen mit durch chronischer Hypoxie ausgelöster pulmonaler Hypertonie 

und dem Monokrotalin-Rattenmodell beobachtet werden. Untersuchungen mittels 

Immunhistochemie und Laser-gestützter Mikrodissektion zeigten weiterhin eine starke 

Lokalisation von IL-13Rα2 in paSMC. Funktionelle Analysen an frisch isolieren paSMC 

zeigten, dass IL-13 eine dosis-abhängige Inhibition des Zellwachstums ohne 

apoptotische Effekte induziert. Dieser anti-proliferative Effekt von IL-13 beruhte auf 

einem Stopp des Zellzyklus in der G0/G1-Phase und einer Phosphorylierung von STAT3 

und STAT6 in paSMC. Überexpression von IL-13Rα2 führte zu einer signifikanten 

Abnahme der IL-13 induzierten Wachshemmung und verringerte die zuvor beobachtete 

Phosphorylierung von STAT3 und STAT6. Weiterführende Microarray-Untersuchungen 

zeigten u.a., dass IL-13 zu einer stark reduzierten Genexpression des pro-proliferativen 

Endothelin-1 in paSMC führt.  

Unsere Studie zeigt, dass IL-13 ein potenter anti-proliferativer Regulator des paSMC-

Wachstums ist, was durch eine IL-13-induzierte Minderexpression von Endothelin-1 

erklärt werden kann. Verstärkte Expression von IL-13Rα2 auf paSMC von IPAH 

Patienten führt zu einem Verlust dieses anti-proliferativen Effekts und deshalb einer 

gesteigerten Proliferation der paSMC im Verlauf der Erkrankung.  
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8   Appendix 
 
 
 
8.1   Primer sequences, amplicon length and PCR con ditions: 

 
8.1.1    Human: 

 
Primer sequence (FP: forward primer, RP: reverse primer), amplicon length (product) 

and annealing temperature (AT): 

 
Gene name Primer sequence 5’ - 3’ FP/RP Product (bp) AT (°C) 
 
Interleukin-4 
Receptor  
(IL-4R) 
 
Interleukin-13 
α1 Receptor 
(IL-13Rα1) 
 
Interleukin-13 
α2 Receptor 
(IL-13Rα2) 
 
Porphobilinogen 
deaminase 
(PBGD) 
 
Heat shock 
cognate 70 
(HSC-70) 
 
Endothelin-1 
(ET-1) 
 
Endothelin-2 
(ET-2) 
 
Endothelin-3 
(ET-3) 

 
TCA TGG ATG ACG TGG TCA GT 
GTG TCG GAG ACA TTG GTG TG 
 
 
GTC CCT GGT GTT CTT CCT GA 
AGT GTG GAA TTG CGC TTC TT 
 
 
GTT CAA AGT TCC TGG GCA GA 
CCT ATG CCA GGT TTC CAA GA 
 
 
CCC ACG CGA ATC ACT CTC AT 
TGT CTG GTA ACG GCA ATG CG 
 
 
TTA CCC GTC CCC GAT TTG AAG AA 
TGT GTC TGC TTG GTA GGA ATG GT 
 
 
GCT CGT CCC TGA TGG ATA AA 
CTG TTG CCT TTG TGG GAA GT 
 
TGT TCC AGA CTG GCA AGA CA 
TTC CTC CAC CTG GAA TGT GT 
 
ATT CAA GGA CGG CAG AAA AA 
ATG AGC TTT GGA TGG TGG AG 
 

 
148 
 
 
 
137 
 
 
 
131 
 
 
 
117 
 
 
 
384 
 
 
 
143 
 
 
142 
 
 
102 
 
 

 
58 
 
 
 
59 
 
 
 
59 
 
 
 
59 
 
 
 
58 
 
 
 
59 
 
 
59 
 
 
59 
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8.1.2    Mouse: 
 
Primer sequence (FP: forward primer, RP: reverse primer), amplicon length (product) 

and annealing temperature (AT): 
 
 
Gene name Primer sequence 5’ - 3’ FP/RP Product (bp) AT (°C) 
 
Interleukin-4 
Receptor  
(IL-4R) 
 
Interleukin-13 
α1 Receptor 
(IL-13Rα1) 
 
Interleukin-13 
α2 Receptor 
(IL-13Rα2) 
 
Porphobilinogen 
deaminase 
(PBGD) 
 

 
TGT GCC ACA TGG AAA TGA AT 
CAT TGG TGT GGA GTG TGA GG 
 
 
TTC CAG TCT TTG TCG CAG TG 
TCC AGT GCA GGG TAT CAT CA 
 
 
AGC GAA TGG AGT GAA GAG GA 
GCT CAA TGT GGG TTC AGG TT 
 
 
GGT ACA AGG CTT TCA GCA TCG 
ATG TCC GGT AAC GGC GGC 

 
129 
 
 
 
144 
 
 
 
150 
 
 
 
135 

 
58 
 
 
 
59 
 
 
 
59 
 
 
 
59 

 
 
 
8.1.3    Rat: 
 
Primer sequence (FP: forward primer, RP: reverse primer), amplicon length (product) 

and annealing temperature (AT): 
 
 
Gene name Primer sequence 5’ - 3’ FP/RP Product (bp) AT (°C) 
 
Interleukin-4 
Receptor  
(IL-4R) 
 
Interleukin-13 
α1 Receptor 
(IL-13Rα1) 
 
Interleukin-13 
α2 Receptor 
(IL-13Rα2) 
 
Porphobilinogen 
deaminase 
(PBGD) 
 

 
CCA GAC CCT GAG AGA GCA AC 
ATG TCC AGC CTG CTT CTG TT 
 
 
GCC GAA TTC CAC CTT CTA CA 
CAG GAT CAG GAA TTG GAG GA 
 
 
GGA ATG CTG GGA AGG TTA CA 
CAG TGT GGG TTC AGG GTC TT 
 
 
AGG ATG GGC AAC TGT TGG AC 
AAC TGT GGG TCA TCC TCT GG 

 
147 
 
 
 
128 
 
 
 
130 
 
 
 
130 

 
59 
 
 
 
59 
 
 
 
59 
 
 
 
59 
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8.1.4    Cloning primer for human IL-13R α2 (5’ – 3’) : 
 
Apa I – IL-13Rα2:  GGG CCC ATG GCT TTC GTT TGC TT 
 
Hind III – IL-13Rα2:  AAG CTT TCA TGT ATC ACA GAA AA 
 
 
 
8.1.5    PCR-conditions for qRT-PCR 
 
 

 
 
Annotation:  The annealing temperature (red line in segment 2) is variable, same as the 

following extension time. Segment 3 was performed for melting curve analysis 
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8.2     Microarray data 
 
 
8.2.1    Genes regulated after 2 h of IL-13 stimula tion 
 
 
 
 Accession Gene coeff. A mean
NM_002982 chemokine (C-C motif) ligand 2 (CCL2) 3.844 10.529
NM_006072 chemokine (C-C motif) ligand 26 (CCL26) 2.643 8.523
NM_002986 chemokine (C-C motif) ligand 11 (CCL11) 1.914 8.503
NM_013324 cytokine inducible SH2-containing protein (CISH) 1.844 7.550
NM_006273 chemokine (C-C motif) ligand 7 (CCL7) 1.624 8.248
NM_005329 hyaluronan synthase 3 (HAS3) 1.491 7.681
NM_001621 aryl hydrocarbon receptor (AHR) 1.467 9.383
NM_001511 chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity alpha (CXCL1) 1.420 9.950
NM_000958 prostaglandin E receptor 4 (subtype EP4) (PTGER4) 1.403 8.106
NM_000600 interleukin 6 (interferon beta 2) (IL6) 1.374 9.071
NM_022837 hypothetical protein FLJ22833 (FLJ22833) 1.261 9.767
NM_002089 chemokine (C-X-C motif) ligand 2 (CXCL2) 1.170 9.601
NM_005686 SRY (sex determining region Y)-box 13 (SOX13) 1.046 7.572
NM_005375 v-myb myeloblastosis viral oncogene homolog (avian) (MYB) 1.033 7.690
NM_017651 Abelson helper integration site (AHI1) 1.027 8.315
NM_173475 hypothetical protein MGC48972 (MGC48972) 0.985 7.929
NM_012193 frizzled homolog 4 (Drosophila) (FZD4) 0.982 8.881
NM_007115 tumor necrosis factor alpha-induced protein 6 (TNFAIP6) 0.970 8.409
NM_000958 prostaglandin E receptor 4 (subtype EP4) (PTGER4) 0.912 7.810
NM_014583 LIM and cysteine-rich domains 1 (LMCD1) 0.880 8.159
NM_003670 basic helix-loop-helix domain containing 0.858 9.366
NM_005257 GATA binding protein 6 (GATA6) 0.853 9.312
NM_052901 solute carrier family 25 (mitochondrial carrier phosphate carrier) member 25 (SLC25A25) 0.853 8.315
NM_003211 thymine-DNA glycosylase (TDG) 0.803 8.406
NM_033211 hypothetical gene supported by AF038182 0.780 8.967
NM_000861 histamine receptor H1 (HRH1) 0.763 8.085
AK056836 cDNA FLJ32274 fis 0.737 7.890
NM_002521 natriuretic peptide precursor B (NPPB) 0.706 8.206
NM_004414 Down syndrome critical region gene 1 (DSCR1) 0.676 9.485
NM_002448 msh homeo box homolog 1 (Drosophila) (MSX1) 0.641 7.112
NM_021205 ras homolog gene family member U (RHOU) 0.607 7.020
NM_005944 CD200 antigen (CD200) 0.602 9.467
NM_017651 Abelson helper integration site (AHI1) 0.599 7.941
NM_173490 hypothetical protein LOC134285 0.583 8.771
NM_005982 sine oculis homeobox homolog 1 (Drosophila) (SIX1) 0.574 7.846
AK024263 cDNA FLJ14201 fis 0.568 9.210
NM_006622 polo-like kinase 2 (Drosophila) (PLK2) 0.556 7.882
NM_014795 zinc finger homeobox 1b (ZFHX1B) 0.550 8.114
NM_001717 basonuclin 1 (BNC1) 0.549 7.906
AB040883 mRNA for KIAA1450 protein 0.510 7.605
NM_014992 dishevelled associated activator of morphogenesis 1 (DAAM1) 0.507 7.691
NM_000104 cytochrome P450 family 1, subfamily B 0.479 7.957
NM_003739 aldo-keto reductase family 1" member C3 (3-alpha hydroxysteroid dehydrogenase type II) 0.475 9.832
NM_002089 chemokine (C-X-C motif) ligand 2 (CXCL2) 0.474 10.604
NM_000861 histamine receptor H1 (HRH1) 0.460 7.412
NM_032823 chromosome 9 open reading frame 3 (C9orf3) 0.454 8.431
NM_018664 Jun dimerization protein p21SNFT (SNFT) 0.446 7.139
NM_170677 Meis1 myeloid ecotropic viral integration site 1 homolog 2 (mouse) (MEIS2) 0.440 7.673
NM_003821 receptor-interacting serine-threonine kinase 2 (RIPK2) 0.440 8.975
AK022059 cDNA FLJ11997 fis 0.437 8.254
NM_017761 proline-rich nuclear receptor coactivator 2 (PNRC2) 0.421 9.037
NM_002546 tumor necrosis factor receptor superfamily member 11b (osteoprotegerin) (TNFRSF11B) 0.406 10.203
NM_004932 cadherin 6 K-cadherin (fetal kidney) (CDH6) 0.393 9.105
NM_001957 endothelin receptor type A (EDNRA) 0.391 8.627
NM_002546 tumor necrosis factor receptor superfamily member 11b (osteoprotegerin) (TNFRSF11B) 0.390 10.119
NM_178836 similar to CG12314 gene product (LOC201164) 0.380 7.030
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NM_004235 Kruppel-like factor 4 (gut) (KLF4) 0.365 6.815
NM_013352 squamous cell carcinoma antigen recognized by T cells 2 (SART2) 0.359 8.316
NM_032270 factor for adipocyte differentiation 158 (FAD158) 0.328 7.751
NM_005114 heparan sulfate (glucosamine) 3-O-sulfotransferase 1 (HS3ST1) 0.318 6.935
NM_003059 solute carrier family 22 (organic cation transporter) 0.303 7.654
NM_005180 polycomb group ring finger 4 (PCGF4) 0.268 8.464
AF415176 CSGEF (SGEF) mRNA alternatively spliced. [AF415176] 0.248 7.257
NM_020424 hypothetical protein A-211C6.1 (LOC57149) 0.246 7.576
NM_020841 oxysterol binding protein-like 8 (OSBPL8) 0.244 8.365
NM_002061 glutamate-cysteine ligase modifier subunit (GCLM) 0.234 8.920
NM_014016 SAC1 suppressor of actin mutations 1-like (yeast) (SACM1L) 0.225 7.912
NM_001270 chromodomain helicase DNA binding protein 1 (CHD1) 0.219 7.608
NM_018103 leucine rich repeat containing 5 (LRRC5) 0.190 8.455
AK026882 cDNA: FLJ23229 fis -0.203 8.027
NM_173500 tau tubulin kinase 2 (TTBK2) -0.219 6.808
NM_173841 interleukin 1 receptor antagonist (IL1RN) -0.226 7.447
NM_032043 BRCA1 interacting protein C-terminal helicase 1 (BRIP1) -0.239 7.030
AF086790 aconitase precursor (ACON) mRNA, nuclear gene encoding mitochondrial protein -0.266 7.553
NM_017556 filamin-binding LIM protein-1 (FBLP-1) -0.301 7.258
NM_019105 tenascin XB (TNXB) -0.314 9.528
AF161351 HSPC088 mRNA -0.316 10.674
NM_005119 thyroid hormone receptor associated protein 3 (THRAP3) -0.333 7.589
NM_016453 NCK interacting protein with SH3 domain (NCKIPSD) -0.343 7.236
NM_005598 nescient helix loop helix 1 (NHLH1) -0.349 7.213
NM_152776 hypothetical protein MGC40579 (MGC40579) -0.363 7.789
NM_018444 protein phosphatase 2C magnesium-depenent catalytic subunit (PPM2C) -0.377 8.013
NM_032863 Fraser syndrome 1 (FRAS1) -0.388 7.417
NM_173622 hypothetical protein FLJ36674 (FLJ36674) -0.390 7.793
AK091537 cDNA FLJ34218 fis -0.450 7.573
NM_005653 transcription factor CP2 (TFCP2) -0.464 7.810
XM_496406 similar to KIAA1693 protein (LOC401967) -0.501 10.154
NM_183372 hypothetical protein LOC200030 -0.502 10.058
NM_030932 diaphanous homolog 3 (Drosophila) (DIAPH3) -0.527 7.788
NM_139173 CG10806-like (LOC150159) -0.535 7.804
NM_002729 hematopoietically expressed homeobox (HHEX) -0.604 7.685
NM_153437 outer dense fiber of sperm tails 2 (ODF2) -0.620 9.268
CR620977 cDNA clone CS0CAP004YK15 of Thymus of Homo sapiens (human) -0.634 8.531
NM_145161 mitogen-activated protein kinase kinase 5 (MAP2K5) -0.649 8.217
THC2095910 truncated DNA architectural factor HMGA2 (Homo sapiens) -0.813 7.764
NM_001955 endothelin 1 (EDN1) -0.854 7.764
NM_019070 DEAD (Asp-Glu-Ala-Asp) box polypeptide 49 (DDX49) -0.883 8.544
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8.2.2    Genes regulated after 6 h of IL-13 stimula tion 
 
 
 
Accession Description coeff. A mean
NM_002982 chemokine (C-C motif) ligand 2 (CCL2) 4.044 10.529
NM_006072 chemokine (C-C motif) ligand 26 (CCL26) 3.399 8.523
NM_005329 hyaluronan synthase 3 (HAS3) transcript variant 1 2.353 7.681
NM_006273 chemokine (C-C motif) ligand 7 (CCL7) 1.918 8.248
NM_017651 Abelson helper integration site (AHI1) 1.761 8.315
NM_000600 interleukin 6 (interferon beta 2) (IL6) 1.746 9.071
NM_002986 chemokine (C-C motif) ligand 11 (CCL11) 1.639 8.503
AK056836 cDNA FLJ32274 fis 1.636 7.890
NM_022837 hypothetical protein FLJ22833 1.596 9.767
NM_013324 cytokine inducible SH2-containing protein (CISH) transcript variant 1 1.561 7.550
NM_002521 natriuretic peptide precursor B (NPPB) 1.494 8.206
NM_018664 Jun dimerization protein p21SNFT (SNFT) 1.440 7.139
NM_014583 LIM and cysteine-rich domains 1 (LMCD1) 1.412 8.159
NM_175839 spermine oxidase (SMOX) 1.367 9.877
NM_007115 tumor necrosis factor alpha-induced protein 6 (TNFAIP6) 1.266 8.409
AL049227 mRNA cDNA DKFZp564N1116 1.265 9.667
NM_005375 v-myb myeloblastosis viral oncogene homolog (avian) (MYB) 1.245 7.690
NM_012193 Homo sapiens frizzled homolog 4 (Drosophila) (FZD4) 1.206 8.881
NM_001511 chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity alpha) (CXCL1) 1.203 9.950
NM_000958 prostaglandin E receptor 4 (subtype EP4) (PTGER4) 1.181 7.810
NM_001621 aryl hydrocarbon receptor (AHR) 1.168 9.383
NM_000958 prostaglandin E receptor 4 (subtype EP4) (PTGER4) 1.158 8.106
NM_017651 Abelson helper integration site (AHI1) 1.123 7.941
NM_005384 nuclear factor interleukin 3 regulated (NFIL3) 1.101 7.668
NM_005686 SRY (sex determining region Y)-box 13 (SOX13) 1.096 7.572
NM_173475 hypothetical protein MGC4897 1.089 7.929
NM_021205 ras homolog gene family member U (RHOU) 1.020 7.020
NM_052901 solute carrier family 25 (mitochondrial carrier phosphate carrier) member 25 1.006 8.315
NM_032603 lysyl oxidase-like 3 (LOXL3) 0.997 8.660
NM_004932 cadherin 6 type 2 K-cadherin (fetal kidney) (CDH6) 0.953 9.105
NM_002448 msh homeo box homolog 1 (Drosophila) (MSX1) 0.949 7.112
NM_013437 low density lipoprotein-related protein 12 (LRP12) 0.945 8.730
BC045778 clone IMAGE:4791553 0.935 8.173
NM_018469 uncharacterized hypothalamus protein HT008 (HT008) 0.925 8.615
NM_003504 CDC45 cell division cycle 45-like (S. cerevisiae) (CDC45L) 0.920 8.003
NM_030674 solute carrier family 38 member 1 (SLC38A1) 0.912 9.303
NM_001444 fatty acid binding protein 5 (psoriasis-associated) (FABP5) 0.893 10.124
NM_005257 GATA binding protein 6 (GATA6) 0.891 9.312
NM_173490 hypothetical protein LOC134285 0.887 8.771
NM_005944 CD200 antigen (CD200) transcript variant 1 0.853 9.467
NM_000861 histamine receptor H1 (HRH1) 0.843 8.085
NM_003211 thymine-DNA glycosylase (TDG) 0.825 8.371
NM_001444 fatty acid binding protein 5 (psoriasis-associated) (FABP5) 0.801 10.674
NM_006169 nicotinamide N-methyltransferase (NNMT) 0.801 10.950
NM_003211 thymine-DNA glycosylase (TDG) 0.798 8.406
NM_002201 interferon stimulated gene 20kDa (ISG20) 0.793 7.982
NM_000104 cytochrome P450 family 1 subfamily B polypeptide 1 (CYP1B1) 0.777 7.957
NM_000165 gap junction protein alpha 1 43kDa (connexin 43) (GJA1) 0.759 10.998
NM_002089 chemokine (C-X-C motif) ligand 2 (CXCL2) 0.747 9.601
NM_019593 hypothetical protein KIAA1434 (KIAA1434) 0.739 8.639
NM_012449 six transmembrane epithelial antigen of the prostate (STEAP) 0.737 8.798
NM_014795 zinc finger homeobox 1b (ZFHX1B) 0.726 8.114
NM_001078 vascular cell adhesion molecule 1 (VCAM1) 0.725 7.296
NM_170677 Meis1 myeloid ecotropic viral integration site 1 homolog 2 (mouse) (MEIS2) variant a 0.724 7.673
NM_003243 transforming growth factor beta receptor III (betaglycan 300kDa) (TGFBR3) 0.710 7.208
NM_002402 mesoderm specific transcript homolog (mouse) (MEST) transcript variant 1 0.708 8.327
NM_005738 ADP-ribosylation factor-like 4A (ARL4A) transcript variant 1 0.705 7.555
AK024263 cDNA FLJ14201 fis 0.684 9.210
NM_002089 chemokine (C-X-C motif) ligand 2 (CXCL2) 0.677 10.604
NM_001353 aldo-keto reductase family 1 member C1 (AKR1C1) 0.661 10.241
NM_001206 basic transcription element binding protein 1 (BTEB1) 0.647 7.936
NM_147156 transmembrane protein 23 (TMEM23) 0.647 8.128
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NM_002160 tenascin C (hexabrachion) (TNC) 0.619 10.754
NM_005114 heparan sulfate (glucosamine) 3-O-sulfotransferase 1 (HS3ST1) 0.615 6.935
NM_001717 basonuclin 1 (BNC1) 0.611 7.906
NM_013281 fibronectin leucine rich transmembrane protein 3 (FLRT3) transcript variant 1 0.606 7.149
NM_013448 bromodomain adjacent to zinc finger domain 1A (BAZ1A) 0.605 7.720
NM_012302 latrophilin 2 (LPHN2) 0.598 8.827
NM_183013 cAMP responsive element modulator (CREM) transcript variant 19 0.593 7.892
NM_014339 interleukin 17 receptor (IL17R) 0.583 7.729
NM_002546 tumor necrosis factor receptor superfamily member 11b (TNFRSF11B) 0.580 10.133
NM_014992 dishevelled associated activator of morphogenesis 1 (DAAM1) 0.574 7.691
NM_032823 chromosome 9 open reading frame 3 (C9orf3) 0.564 8.431
NM_183013 cAMP responsive element modulator (CREM) transcript variant 19 0.552 7.714
NM_153332 3' exoribonuclease (3'HEXO) 0.532 7.906
NM_021102 serine protease inhibitor Kunitz type 2 (SPINT2) 0.514 7.213
NM_002546 tumor necrosis factor receptor superfamily member 11b (TNFRSF11B) 0.513 10.203
NM_003739 aldo-keto reductase family 1 member C3 (AKR1C3) 0.511 9.832
NM_015928 androgen-induced proliferation inhibitor (APRIN) 0.505 7.220
AB040883 mRNA for KIAA1450 protein 0.504 7.605
NM_001218 carbonic anhydrase XII (CA12) transcript variant 1 0.495 9.435
NM_017850 hypothetical protein FLJ20508 0.488 7.655
NM_019886 carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 7 (CHST7) 0.473 8.338
NM_016210 chromosome 3 open reading frame 18 (C3orf18) 0.471 7.200
NM_022733 hypothetical protein AL133206 0.466 8.093
NM_000861 histamine receptor H1 (HRH1) 0.464 7.412
NM_006070 TRK-fused gene (TFG) 0.460 10.320
NM_006868 RAB31 member RAS oncogene family (RAB31) 0.459 8.456
NM_178836 similar to CG12314 gene product (LOC201164) 0.456 7.030
NM_020841 oxysterol binding protein-like 8 (OSBPL8) transcript variant 1 0.456 8.365
NM_002546 tumor necrosis factor receptor superfamily member 11b (TNFRSF11B) 0.452 10.124
AK024229 cDNA FLJ14167 fis 0.449 6.698
NM_017761 proline-rich nuclear receptor coactivator 2 (PNRC2) 0.445 9.037
BC022398 clone IMAGE:4689481 0.444 6.810
NM_003059 olute carrier family 22 (organic cation transporter) member 4 (SLC22A4) 0.428 7.654
AF415176 CSGEF (SGEF) mRNA 0.428 7.257
THC2049923 Sulfated surface glycoprotein 185 precursor (SSG 185) 0.426 6.933
NM_032270 factor for adipocyte differentiation 158 (FAD158) 0.418 7.751
NM_002546 tumor necrosis factor receptor superfamily member 11b (TNFRSF11B) 0.417 10.119
NM_003312 thiosulfate sulfurtransferase (TST) nuclear gene encoding mitochondrial protein 0.416 9.341
NM_203301 F-box protein 33 (FBXO33) 0.415 7.881
NM_152464 chromosome 17 open reading frame 32 (C17orf32) 0.398 7.072
NM_020424 hypothetical protein A-211C6.1 (LOC57149) 0.394 7.576
NM_014016 SAC1 suppressor of actin mutations 1-like (yeast) (SACM1L) 0.375 7.912
NM_033407 dedicator of cytokinesis 7 (DOCK7) 0.364 8.780
NM_012175 F-box protein 3 (FBXO3 transcript variant 1) 0.363 8.075
U83115 non-lens beta gamma-crystallin like protein (AIM1) mRNA 0.361 7.013
NM_015226 KIAA0350 protein (KIAA0350) 0.357 7.050
NM_013352 squamous cell carcinoma antigen recognized by T cells 2 (SART2) 0.353 8.316
NM_002816 proteasome (prosome macropain) 26S subunit non-ATPase 12 (PSMD12) 0.350 8.834
NM_000826 glutamate receptor ionotropic AMPA 2 (GRIA2) 0.348 6.682
NM_003104 sorbitol dehydrogenase (SORD) 0.345 7.413
NM_032457 BH-protocadherin (brain-heart) (PCDH7) transcript variant c 0.337 6.622
NM_178562 hypothetical protein MGC50844 (MGC50844) 0.333 6.571
NM_005180 polycomb group ring finger 4 (PCGF4) 0.320 8.464
NM_015385 sorbin and SH3 domain containing 1 (SORBS1) 0.317 6.903
AK022059 cDNA FLJ11997 fis 0.314 8.254
NM_013257 serum/glucocorticoid regulated kinase-like (SGKL) transcript variant 1 0.312 6.972
NM_016018 PHD finger protein 20-like 1 (PHF20L1) transcript variant 1 0.306 7.946
NM_002061 glutamate-cysteine ligase modifier subunit (GCLM) 0.304 8.920
AF086558 full length insert cDNA clone ZE15C06 0.288 6.679
NM_003477 pyruvate dehydrogenase complex component X (PDHX) 0.280 7.852
AK095841 cDNA FLJ38522 fis 0.230 7.068
NM_018103 leucine rich repeat containing 5 (LRRC5) 0.221 8.455
NM_001270 chromodomain helicase DNA binding protein 1 (CHD1) 0.215 7.608
AK026882 cDNA: FLJ23229 fis -0.234 8.027
NM_019105 tenascin XB (TNXB) transcript variant XB -0.236 9.528
NM_032043 BRCA1 interacting protein C-terminal helicase 1 (BRIP1) -0.236 7.030
NM_000537 renin (REN) -0.272 6.725
M27126 lymphocyte antigen (DRw8) mRNA -0.285 7.646
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AF161351 HSPC088 mRNA -0.291 10.674
NM_144699 ATPase Na+/K+ transporting alpha 4 polypeptide (ATP1A4) -0.292 7.600
NM_012099 CD3-epsilon-associated protein antisense to ERCC-1 (ASE-1) -0.296 6.966
NM_018344 solute carrier family 29 (nucleoside transporters) -0.302 6.659
BC008580 clone IMAGE:4179986 -0.323 7.481
AF174606 F-box protein Fbw3 (FBW3) mRNA -0.324 7.774
NM_030932 diaphanous homolog 3 (Drosophila) (DIAPH3) -0.357 7.788
NM_024316 leukocyte receptor cluster (LRC) member 1 (LENG1) -0.361 7.720
NM_199040 nudix (nucleoside diphosphate linked moiety X)-type motif 4 (NUDT4) variant 2 -0.366 8.912
AF140675 zinc metalloprotease ADAMTS7 (ADAMTS7) mRNA -0.386 6.832
AY007211 folylpolyglutamate synthetase (FPGS) mRNA -0.394 6.924
AJ007211 cell division cycle 2-like 1 (PITSLRE proteins) (CDC2L1) -0.408 7.284
NM_031299 cell division cycle associated 3 (CDCA3) -0.411 8.434
NM_000226 keratin 9 (epidermolytic palmoplantar keratoderma) (KRT9) -0.415 7.653
NM_017556 filamin-binding LIM protein-1 (FBLP-1) -0.422 7.258
AK095727 cDNA FLJ38408 fis -0.424 8.702
NM_007034 DnaJ (Hsp40) homolog subfamily B member 4 (DNAJB4) -0.430 8.515
THC2096438 Probable G protein-coupled receptor GPR20 -0.433 6.987
AK056556 cDNA FLJ31994 fis -0.439 7.262
AK074570 cDNA FLJ90089 fis -0.450 8.719
NM_018382 hypothetical protein FLJ11292 (FLJ11292) -0.464 9.854
AY358725 clone DNA105680 ENLS2543 (UNQ2543) mRNA -0.480 7.235
NM_015898 zinc finger and BTB domain containing 7 (ZBTB7) -0.493 11.351
NM_152236 growth arrest-specific 2 like 1 (GAS2L1) -0.493 7.054
NM_014972 KIAA1049 protein (KIAA1049) -0.494 8.043
XM_372864 similar to Soggy-1 protein precursor (SGY-1) (UNQ735/PRO1429) -0.503 7.980
T12588 Chromosome 9 exon II Homo sapiens cDNA clone P94_53 5' and 3 -0.530 7.676
NM_145244 DNA-damage-inducible transcript 4-like (DDIT4L) -0.537 7.177
NM_005598 nescient helix loop helix 1 (NHLH1) -0.541 7.213
BC081532 chromosome X open reading frame 17 mRNA -0.563 8.362
NM_005879 TRAF interacting protein (TRIP) -0.577 8.306
NM_024893 chromosome 20 open reading frame 39 (C20orf39) -0.583 7.561
NM_020414 DEAD (Asp-Glu-Ala-Asp) box polypeptide 24 (DDX24) -0.601 8.801
NM_014938 Mlx interactor (MONDOA) -0.607 8.256
BC031698 clone IMAGE:5167446 -0.611 9.431
NM_001010914 protein immuno-reactive with anti-PTH polyclonal antibodies -0.631 9.035
NM_001606 ATP-binding cassette sub-family A (ABC1) member 2 (ABCA2) -0.638 9.467
NM_033257 DiGeorge syndrome critical region gene 6-like (DGCR6L) -0.652 9.910
NM_002729 hematopoietically expressed homeobox (HHEX) -0.660 7.685
NM_001682 ATPase Ca++ transporting plasma membrane 1 (ATP2B1) -0.670 7.651
NM_173841 interleukin 1 receptor antagonist (IL1RN) transcript variant 2 -0.670 7.447
NM_024512 leucine rich repeat containing 2 (LRRC2) -0.677 8.898
NM_019070 DEAD (Asp-Glu-Ala-Asp) box polypeptide 49 (DDX49) -0.684 8.544
NM_004815 PTPL1-associated RhoGAP 1 (PARG1) -0.691 8.376
NM_032935 metallothionein IV (MT4) -0.731 9.521
NM_032016 STARD3 N-terminal like (STARD3NL) -0.733 9.881
ENST0032925 Urea transporter erythrocyte -0.749 8.284
M94173 N-type calcium channel alpha-1 subunit mRNA -0.773 12.700
AK002019 cDNA FLJ11157 fis -0.784 8.213
AK056991 cDNA FLJ32429 fis -0.796 7.877
NM_018003 uveal autoantigen with coiled-coil domains and ankyrin repeats -0.810 9.527
NM_005723 transmembrane 4 superfamily member 9 (TM4SF9) -0.830 8.026
NM_018444 phosphatase 2C magnesium-dependent catalytic subunit (PPM2C) -0.835 8.013
AK091537 cDNA FLJ34218 fis -0.846 7.573
NM_005653 transcription factor CP2 (TFCP2) -0.847 7.810
NM_024896 KIAA1815 (KIAA1815) -0.861 8.614
NM_152776 hypothetical protein MGC40579 (MGC40579) -0.864 7.789
NM_032564 diacylglycerol O-acyltransferase homolog 2 (mouse) (DGAT2) -0.868 9.296
NM_002203 integrin alpha 2 (CD49B alpha 2 subunit of VLA-2 receptor) (ITGA2) -0.875 9.871
NM_001010914 protein immuno-reactive with anti-PTH polyclonal antibodies -0.877 8.853
NM_032863 Fraser syndrome 1 (FRAS1) -0.877 7.417
NM_145019 hypothetical protein FLJ30707 -0.879 10.493
NM_005119 thyroid hormone receptor associated protein 3 (THRAP3) -0.906 7.589
NM_145161 mitogen-activated protein kinase kinase 5 (MAP2K5) transcript variant C -0.912 8.217
NM_198943 CXYorf1-related protein (MGC52000) -0.918 9.328
NM_144573 nexilin (F actin binding protein) (NEXN) -0.925 8.501
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XM_496406 similar to KIAA1693 protein (LOC401967) -0.926 10.154
NM_007036 endothelial cell-specific molecule 1 (ESM1) -0.934 9.655
NM_183372 hypothetical protein LOC200030 -0.934 10.058
NM_001554 cysteine-rich angiogenic inducer 61 (CYR61) -0.939 11.368
NM_003544 histone 1 H4b (HIST1H4B) -0.940 7.901
CR620977 full-length cDNA clone CS0CAP004YK15 of Thymus of Homo sapiens -0.943 8.531
NM_005933 myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog Drosophila) -0.973 7.462
BC071729 HSPC063 protein -0.982 8.034
NM_178229 IQ motif containing GTPase activating protein 3 (IQGAP3) -1.017 9.793
NM_173622 hypothetical protein FLJ36674 (FLJ36674) -1.036 7.793
AF001540 clone alpha1 mRNA sequence -1.060 8.118
NM_138373 myeloid-associated differentiation marker (MYADM) -1.066 9.617
NM_183372 hypothetical protein LOC200030 -1.137 9.647
AK095459 cDNA FLJ38140 fis -1.146 9.825
NM_000361 thrombomodulin (THBD) -1.150 9.243
NM_153437 outer dense fiber of sperm tails 2 (ODF2) variant 2 -1.156 9.268
NM_139173 CG10806-like (LOC150159) -1.201 7.804
AK095678 cDNA FLJ38359 fis -1.235 11.474
NM_001901 connective tissue growth factor (CTGF) -1.238 12.069
NM_020457 THAP domain containing 11 (THAP11) -1.245 8.692
NM_001955 endothelin 1 (EDN1) -1.247 7.764
NM_032264 hypothetical protein AE2 (AE2) -1.247 9.513
BC061638 cDNA clone IMAGE:5547707 -1.315 8.751
NM_181690 v-akt murine thymoma viral oncogene homolog 3 (AKT3) -1.390 8.415
AK092668 cDNA FLJ35349 fis -1.475 7.994

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Der Lebenslauf wurde aus der elektronischen 
Version der Arbeit entfernt. 
 
 
 
 

The curriculum vitae was removed from the 
electronic version of the paper. 



Curriculum vitae 96 

Publications: 
 

1. Hecker M , Zakrzewicz A, Kwapiszewska G, Marsh LM, Sedding D, Klepetko W, 
Seeger W, Weissmann N, Schermuly RT, Eickelberg O. The Interleukin 13 
receptor system: A novel pathomechanism involved in pulmonary arterial 
hypertension. submitted 

 
2. Jayachandran A, Königshoff M, Yu H, Rupniewska E, Hecker M , Klepetko W, 

Seeger W, Eickelberg O. SNAI transcription factors are key mediators of 
epithelial-to-mesenchymal transition in lung fibrosis. submitted  

 
3. Mayer K, Kiessling A, Ott J, Schäfer MB, Hecker M , Schulz R, Günther A, Wang 

J, Roth J, Seeger W, Kang JX. Fat-1 mice are protected from acute lung injury. in 
revision  

 
4. Bi MH, Ott J, Fischer T, Hecker M , Dietrich H, Schäfer MB, Markat P, Wang EB, 

Seeger W, Mayer K. Induction of lymphocyte apoptosis in a murine model of 
acute lung injury – modulation by lipid emulsions. in revision  

 
5. Schäfer MB, Pose A, Ott J, Hecker M , Behnk A, Schulz R, Weissmann N, 

Günther A, Seeger W, Mayer K. Peroxisome proliferator-activated receptor-a 
reduces inflammation and vascular leakage in a murine model of acute lung injury. 
Eur Respir J - in press  

 
6. Hecker A, Kaufmann A, Hecker M , Padberg W, Grau V. Expression of 

Interleukin-21, Interleukin-21 receptor and related type-1 cytokines by 
intravascular graft leukocytes during renal allograft rejection. Immunobiology - 
in press 

 
7. Hecker M , Walmrath HD, Seeger W, Mayer K. Clinical aspects of acute lung 

insufficiency (ALI/TRALI). Transfusion Med Hemother 35:80-88, 2008 
 

8. Zakrzewicz A, Hecker M , Marsh LM, Kwapiszewska G, Nejman B, Long L, 
Seeger W, Schermuly RT, Morrell NW, Morty RE, Eickelberg O. Receptor for 
activated C-kinase 1, a novel interaction partner of type II bone morphogenetic 
protein receptor, regulates smooth muscle cell proliferation in pulmonary arterial 
hypertension. Circulation 115:2957-68, 2007 

 
9. Zakrzewicz A, Kouri FM, Nejman B, Kwapiszewska G, Hecker M , Sandu R, Dony 

E, Seeger W, Schermuly RT, Eickelberg O, Morty RE. The TGF-β/Smad2,3 
signalling axis is impaired in experimental pulmonary hypertension. Eur Respir J 
29:1094-104, 2007 

 
10. Morty RE, Nejman B, Kwapiszewska G, Hecker M , Zakrzewicz A, FM Kouri, 

Peters DM, Dumitrascu R, Seeger W, Knaus P, Schermuly RT, Eickelberg O.  
Dysregulated bone morphogenetic protein signaling in monocrotaline-induced 
pulmonary arterial hypertension. Arterioscler Thromb Vasc Biol 27:1072-8, 
2007 

 
11. Seay U, Sedding D, Krick S, Hecker M , Seeger W, Eickelberg O. Transforming 

growth factor-β-dependent growth inhibition in primary vascular smooth muscle 
cells is p38-dependent. J Pharmacol Exp Ther 315:1005-12, 2005 

 
 
 



Curriculum vitae 97 

12. Eickelberg O and Hecker M . TGF-β signalling: The known and the unknown. 
Zellbiologie aktuell 30:20-23, 2004 

 
13. Hecker M , Qiu D, Marquardt K, Bein G, Hackstein H. Continuous CMV 

seroconversion in a large group of healthy blood donors. Vox Sang 86:41-44, 
2004 

 
14. Hecker M , Bohnert A, Koenig IR, Bein G, Hackstein H. Novel genetic variation of 

human interleukin-21 receptor is associated with elevated IgE levels in females. 
Genes Immun 4:228-233, 2003 

 
15. Hackstein H*, Hecker M* , Kruse S, Bohnert A, Ober C, Deichmann K, Bein G. A 

novel polymorphism in the 5’ promotor region of human interleukin-4 receptor α-
chain gene is associated with decreased soluble interleukin-4 protein levels. 
Immunogenetics 53:264-269, 2001   * co-first authors 

 
 
Oral presentations 
 
102nd International Conference of the American Thoracic Society (2007). Title: Functional 
Relevance of the Interleukin 13 Receptor System in Idiopathic Pulmonary Arterial 
Hypertension 
 
European Respiratory Society Annual Congress (2006). Title:  Functional Relevance of 
the Interleukin 13 Receptor System in Idiopathic Pulmonary Arterial Hypertension 
 
33td   Annual Meeting of the German Society of Immunology (2002). Title: Novel genetic 
variation of human interleukin-21 receptor is associated with elevated IgE levels in 
females  
 
15th European Histocompartibility Conference in Granada/Spain (2001). Title: A novel 
polymorphism in the 5’ promotor region of human interleukin-4 receptor α-chain gene is 
associated with decreased soluble interleukin-4 protein levels 
 
32nd Annual Meeting of the German Society of Immunology (2001). Title: A novel 
polymorphism in the 5’ promotor region of human interleukin-4 receptor α-chain gene is 
associated with decreased soluble interleukin-4 protein levels 
 
 
 
Abstracts and Posters: 
 
101st International Conference of the American Thoracic Society (2006) Title: Increased 
expression and functional relevance of the Interleukin 13 system in Idiopathic Pulmonary  
Fibrosis (IPF) 
 
112th Annual Meeting of the German Society of Internal Medicine (2006). Title: Increased 
expression and functional relevance of the Interleukin 13 system in Idiopathic Pulmonary  
Fibrosis (IPF) 
 
European Respiratory Society Annual Congress (2005). Title: Increased expression and 
functional relevance of the Interleukin 13 system in Idiopathic Pulmonary Fibrosis (IPF) 
 
European Respiratory Society Annual Congress (2004). Title: Live cell imaging of Smad2  
and Smad3 signal transduction in response to TGF-β. 



Acknowledgements 98 

10   Acknowledgements 
 
 
 
I would like to gratefully acknowledge my supervisor, Dr. Oliver Eickelberg, for great 

guidance and support during the experimental work in the lab, inspiring and fruitful 

discussions and excellent training in molecular biology in the Graduate Program 

“Molecular Biology and Medicine of the Lung” and numerous journal clubs. 

 

I would like to thank Prof. Werner Seeger, Director of the Department of Internal 

Medicine II and Chairman of the University of Giessen Lung Center (UGLC), for 

providing an encouraging and motivating atmosphere, fruitful discussions and excellent 

conditions for scientific work.  

 

Many thanks I would like to express to Anka Zakrzewicz for an excellent and funny time 

in the lab, a perfect teaching of the Polish language and a nice friendship since many 

years:  Dziekuje bardzo za wszystko, krolik !!! 

 

Next, I wish to acknowledge Grazyna Kwapiszewska, Leigh Marsh, and Jochen Wilhelm 

for great help and support, the groups of Prof. Weissmann, Prof. Schermuly and Prof. 

Grau for excellent collaboration. Thanks a lot to Dr. Rory Morty for the inspiring 

discussions and the great help with the correction of this thesis and the publication. 

Furthermore, I really would like to say “thank you” to Ulrike Seay for excellent technical 

assistance and support. Many thanks to my good friends from the lab/MBML (Aparna, 

Anka, Bozena, Darek, Ewa, Grazyna, Katja, Kamila, Leigh, Maciej) for sharing good and 

bad moments, great company during the past years, the fun we had and the tons of 

coffee we were enjoying together. 

 

Above all, deepest thanks to my parents, my brothers and sisters, for their great and 

constant support in every respect which helped and encouraged me a lot in the last 

years!!! 

 

 




