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Abstract
The paper introduces new sufficient conditions of strict positive definiteness for ker-
nels on d-dimensional spheres which are not radially symmetric but possess specific
coefficient structures. The results use the series expansion of the kernel in spherical
harmonics. The kernels either have a convolutional form or are axially symmetric with
respect to one axis. The given results on convolutional kernels generalise the result
derived by Chen et al. (Proc Am Math Soc 131:2733–2740, 2003) for radial kernels.
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1 Introduction

Spherical approximation is a topic of immense interest and the use of positive definite
spherical basis functions has recently been discussed in a tremendous number of
publications [8, 14, 16, 23].Most of the known results are for isotropic positive definite
kernels,which are kernels that only depend on the geodesic distance of their arguments.
Isotropic kernels are the generalisation of the radial basis functionmethod to the sphere
and therefore referred to in approximation theory as spherical radial basis functions
(see [16] and references therein). They are also of importance in statistics where they
occur as correlation functions of homogeneous random fields on spheres [18, 19].

Communicated by Yuan Xu.

B Janin Jäger
janin.jaeger@math.uni-giessen.de

1 Lehrstuhl Numerische Mathematik, Justus-Liebig University, Heinrich-Buff Ring 44, 35392 Giessen,
Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00041-022-09913-x&domain=pdf
http://orcid.org/0000-0002-3313-4561
http://orcid.org/0000-0002-2209-7240


40 Page 2 of 25 Journal of Fourier Analysis and Applications (2022) 28 :40

In Euclidean space the study of general (non radial) kernel methods has gained
importance, see for example [13]. Our paper aims to provide a starting point for such
general kernel methods on spheres by stating a general series representation of kernels
on the sphere and first establishing connections between geometric properties of the
kernel (like isotropy or axial symmetry) and the series representation. Then positive
definiteness and strict positive definiteness of such kernels are studied.

We summarise the existing results on kernel methods, these mainly focus on the 2-
sphere. Recently, the use of (non-isotropic) kernels on the 2-sphere was suggested and
applied for the approximation of global data in [5, 11, 12, 24], the latter three papers
using non isotropic kernels on the sphere or the sphere cross-time. Conditions that
ensure strict positive definiteness of axially-symmetric kernels on the 2-sphere were
proven in [6]. These results are in this paper generalised to d-dimensional spheres and
additional necessary conditions are proven.

The second type of non-radial kernels we study are convolutional kernels which
have for example been described in [7, 25], where the second reference includes
conditions for strict positive definiteness similar to the ones we will present but only
for the case of the two-sphere.

The new resultswe present refer to higher-dimensional spheres, too, these have to be
studied separately since the basis functions used for the description of the kernels have
a more complicated structure in higher dimensions. Also we simplify the technique
of the proof for the convolutional kernels by not using a fixed basis of the spherical
harmonics.

The results for convolutional kernels are closely connected to the ones known for
isotropic kernels and easier to verify than the abstract results for axially symmetric
kernels.However, the convolutional kernels contain a subclass of the axially symmetric
kernels which allows the use of the more applicable results for the construction of
axially symmetric kernels.

Wewill briefly summarise the neededdefinitions in thefirst section and then, starting
from a general form of the kernel, state conditions which ensure certain properties of
the kernel, like axial symmetry, convolutional form and invariance under parity. In
the third section, we give sufficient conditions for axially symmetric kernels to be
positive definite and strictly positive definite and add some necessary conditions. In
the fourth part of this paper we generalise the result of Chen et al. [8] on radial kernels
to convolutional kernels deriving sufficient conditions on strict positive definiteness
and finally study the special case of the circle in the last section.

1.1 Problem Description and Background

We focus on interpolation problems on the d-sphere

S
d−1 =

{
ξ ∈ R

d
∣∣∣∣ ξ21 + ξ22 + · · · + ξ2d = 1

}
, d ≥ 2,

where a finite set of distinct data sites Ξ ⊂ S
d−1 and values f (ξ) ∈ C, ξ ∈ Ξ , of a

possibly elsewhere unknown function f on the sphere are given.
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The approximant is formed as a linear combination of kernels

K : Sd−1 × S
d−1 → C.

Taking the form
s f (ζ ) =

∑
ξ∈Ξ

cξ K (ζ, ξ) , ζ ∈ S
d−1, (1)

the problem of finding such an approximant s f satisfying

s f (ξ) = f (ξ) , ∀ξ ∈ Ξ, (2)

is uniquely solvable under certain conditions on K . We assume all the kernels to be
Hermitian, meaning they satisfy K (ξ, ζ ) = K (ζ, ξ), so that the positive definiteness
of the kernel will ensure the solvability of the interpolation problem for arbitrary data
sets.

Definition 1 A Hermitian kernel K : Ω × Ω → C is called positive definite on Ω if
the matrix KΞ = {K (ξ, ζ )}ξ,ζ∈Ξ is positive semi-definite on C|Ξ | for arbitrary finite
sets of distinct points Ξ ⊂ Ω .

The kernel is strictly positive definite if KΞ is a positive definite matrix on C
|Ξ |

for arbitrary finite sets of distinct points Ξ .

We assume that K is square-integrable and can be represented as a series

K (ξ, ζ ) =
∞∑

j, j ′=0

N j,d∑
k=1

N j ′,d∑
k′=1

a j, j ′,k,k′Y k
j (ξ) Y k′

j ′ (ζ ), ∀ξ, ζ ∈ S
d−1, (3)

where the Y k
j form an orthonormal basis of the eigenfunctions of the Laplace–

Beltrami operator on the sphere and the corresponding eigenvalues increase with j .
The a j, j ′,k,k′ are complex numbers and square-summable as a consequence of the
square-integrability of K . The eigenfunctions are the solutions of the eigenfunction
problem

λ f + 	 f = 0,

where 	 is the Laplace–Beltrami operator on the sphere. For example on the 2-sphere
such a basis can take the form

Y k
j (ξ) = 1√

2π

√
2 j + 1

2

( j − k)!
( j + k)! P

k
j (cos (θ)) eikϕ, (4)

where (θ, ϕ) ∈ [0, 2π) × [0, π) are the polar coordinates representing ξ , and Pk
j are

the associated Legendre polynomials (see for example 8.1.2, [1]).
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The eigenfunctions corresponding to the eigenvalues λ j = j ( j + d − 1) are spher-
ical harmonics and the number of eigenfunctions corresponding to the eigenvalue λ j

is denoted by N j,d . The numbers are given by N0,d = 1,

N j,d = (2 j + d − 2) ( j + d − 3)!
j ! (d − 2)! .

Wewill denote the space of all spherical harmonics corresponding to the eigenvalue
λ j by Hj := span{Y k

j | k = 1, . . . , N j,d} Additionally we will use the following
estimate which holds for any orthonormal basis and is a direct consequence of the
Poisson summation formula ([3], Equation (2.35))

|Y k
j (ξ) | ≤

√
N j,d

σd−1
, ∀ξ ∈ S

d−1, (5)

where σd−1 is the surface area of Sd−1.
It is well known and used in the characterisation above that every function in

L2
(
S
d−1

)
can be represented as a spherical harmonic expansion of the form

g (ξ) =
∞∑
j=0

N j,d∑
k=1

ĝ j,kY
k
j (ξ) , with ĝ j,k =

∫
Sd−1

g (ζ ) Y k
j (ζ ) dσ (ζ ) , (6)

where dσ is the surface areameasure onSd−1. For this expansion the Parseval equation
for spherical harmonics holds ([3], (2.143)):

‖g‖2L2(Sd−1)
=

∞∑
j=0

N j,d∑
k=1

|ĝ j,k |2.

2 Kernels with Special Coefficient Structure

We now fix a basis for our space of spherical harmonics such that the kernels which
are still Hermitian and square-integrable are represented as in (3). We demonstrate
in this section how geometric properties of the kernel and the coefficient structure of
the series representation are connected. Thereby imposing certain conditions on the
structure of the coefficients allows us to focus on kernels with specific properties in
the next sections.

The case studied most often is assuming that the kernel is isotropic [26], which
means it only depends on the distance of its two arguments and not on their position
on the sphere. The coefficients of an isotropic positive definite kernel given in the form
(3) satisfy

a j, j ′,k,k′ = c jδ j ′, jδk,k′ ≥ 0
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as stated by Schoenberg [26]. A characterisation of the strictly positive definite kernels
of this form was presented by Chen et al. in [8].

Recently, a sufficient condition for axially symmetric kernels on the two-sphere to
be strictly positive definite was presented in [6]. The axially symmetric kernels on S2

do depend on the difference in longitude of the two inputs ξ, ζ and their individual
values of latitude. The coefficients of these kernels satisfy

a j, j ′,k,k′ = ck
(
j, j ′

)
δk,k′ ,

where the basis of the spherical harmonics on the 2-sphere is chosen as (4). The
condition was first stated in [17].

For the study of properties of the kernel we need the kernel of the form (3) to be
uniquely recoverable from its Fourier expansion on S

d−1 × S
d−1 we also require the

series to be absolutely summable. Therefore we start by establishing that the latter
implies the former.

Lemma 1 Let K be a kernel of the form (3). If

∞∑
j, j ′=0

N j,d ,N j ′,d∑
k,k′=1

|a j, j ′,k,k′ |
√

N j,d N j ′,d
σ 2
d−1

< ∞, (7)

then, for each combination of j, j ′ ∈ N0, 1 ≤ k ≤ N j,d , 1 ≤ k′ ≤ N j ′,d , the
coefficients a j, j ′,k,k′ can be uniquely determined by

a j, j ′,k,k′ =
∫
Sd−1

∫
Sd−1

K (ξ, ζ ) Y k
j (ξ)Y

k′
j ′ (ζ ) dσ (ξ) dσ (ζ ) . (8)

Proof The result follows by inserting the kernel representation (3) into (8) and then
using the estimate (5) to exchange the order of summation and integration since it
implies absolute summability. 
�
We note that any kernel defined using coefficients satisfying property (7) will be
continuous, as the upper bound is absolutely summable and all basis function are
continuous. We will from now on refer to series kernels given in the form (3) which
satisfy (7) simply as kernels with property (7).

First we note

Lemma 2 Let K be a kernel with property (7). It is Hermitian if and only if

a j, j ′,k,k′ = a j ′, j,k′,k (9)

for all possible choices j, j ′ ∈ N and 1 ≤ k ≤ N j,d , 1 ≤ k′ ≤ N j ′,d .

Proof Assuming K is Hermitian implies that

a j ′, j,k′,k =
∫
Sd−1

∫
Sd−1

K (ξ, ζ ) Y
k′
j ′ (ξ)Y k

j (ζ ) dσ (ξ) dσ (ζ ) = a j, j ′,k,k′
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according to (8). The other direction follows from representation (3). 
�
Besides axially symmetric kernels we are interested in kernels which are referred to as
convolutional kernels. For a fixed basis of spherical harmonics these are expressed as
kernelswith an eigenvalue block structure butwe give a non basis dependent definition.

Lemma 3 A Hermitian kernel K ∈ L2
(
S
d−1 × S

d−1
)
of the form (3) satisfies

∫
Sd−1

K (ξ, ζ ) Y (ξ)dσ(ξ) ∈ Hj , ∀ Y ∈ Hj ,

if and only if

a j, j ′,k,k′ = δ j, j ′d j
(
k, k′) .

Proof It is sufficient to prove the implication for the basis Y k
j , k = 1, . . . , N j,d ,

because of the linearity of the integral. For these

∫
Sd−1

K (ξ, ζ ) Y k
j (ξ)dσ(ξ) =

∞∑
j ′=0

N j ′,d∑
k′=1

a j, j ′,k,k′Y k′
j ′ (ζ ) ,

which is an element of Hj if and only if a j, j ′,k,k′ = δ j, j ′d j
(
k, k′). 
�

Kernels of this form, we call them convolutional kernels, are invariant under parity,
meaning K (ξ, ζ ) = K (−ξ,−ζ ), and the special structure allows to determine easily
if an interpolant derived using such a kernel is included in certain Sobolev spaces, as
for example studied in [22].

The kernels have been mostly discussed without the selection of a fixed basis of
the spherical harmonics of a certain order. In this case one can choose the basis of Hj ,
denoted by Ỹ k

j (ξ) in a way that

K (ξ, ζ ) =
∞∑
j=0

N j,d∑
k=1

d j,k Ỹ
k
j (ξ) Ỹ k

j (ζ ), ∀ξ, ζ ∈ S
d−1. (10)

Under the above conditions and for f ∈ L2
(
S
d−1

)
the convolution operator with

kernel K is

T f (ξ) =
∫
Sd−1

K (ξ, ζ ) f (ζ ) dσ (ζ ) ,

and the Fourier coefficients of T f as in (6), when computed with respect to the basis

Ỹ k
j , satisfy

̂̃T f j,k = d j,k
ˆ̃f j,k . We nevertheless include the slightly more complex

block structure, since we believe it to be helpful when we want to construct new
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kernels using our results. For example we may be using the fixed basis of the spherical
harmonics on the 2-sphere as mentioned.

For completeness we include the conditions on the coefficients which ensure invari-
ance under parity.One can easily verify that all restrictions of shift-invariant,Hermitian
kernels in Rd to the surface of the sphere are invariant under parity.

Lemma 4 (Parity-invariance) A kernel with property (7) satisfies,

K (ξ, ζ ) = K (−ξ,−ζ ) , ∀ξ, ζ ∈ S
d−1,

if and only if
a j, j ′,k,k′ = 0, ∀ j + j ′ �= 0 mod 2. (11)

Proof The result follows immediately using the property of homogenity of the spher-
ical harmonics:

K (−ξ,−ζ ) =
∞∑
j=0

N j,d∑
k=1

∞∑
j ′=0

N j,d∑
k′=1

a j, j ′,k,k′ (−1) j+ j ′ Y k′
j ′ (ζ ) Y k

j (ξ) , ∀ξ, ζ ∈ S
d−1.

This is equal to K (ξ, ζ ) if and only if all coefficients are equal, meaning a j, j ′,k′k′ = 0,
for all pairs of j, j ′ with odd sum. 
�

The previous conditions are independent of the choice of orthogonal basis Y k
j .

For axial symmetry we will have to fix a certain basis. For the existing results for
d = 3 this was (4) where axial symmetry with respect to ϕ led to the coefficients
satisfying a j, j ′,k,k′ = δk,k′c j, j ′ . On general spheres with d ≥ 3 we will focus on
axial symmetry with respect to just one of the d − 1 axes and we assume that the
sphere has been rotated such that this is the axis which is represented by the first
coordinate in the polar coordinate representation of ξ ∈ S

d−1, which we denote by
(θ1, . . . , θd−1)

T ∈ [0, 2π) × [0, π)d−2. The spherical harmonics of degree �d−1 can
explicitly be given by

Y�1,...,�d−1 (ξ) = 1√
2π

ei�1θ1
d−1∏
j=2

j P̃
� j−1
� j

(
θ j

)
, (12)

where �1, . . . , �d−1 are integers satisfying

�d−1 ≥ · · · ≥ |�1|
and

j P̃
�
L(θ) = j c

�
L (sin (θ))−(2− j)/2 P−(�+( j−2)/2)

L+( j−2)/2 (cos (θ)) ,

where Pμ
ν are the associated Legendre functions and

j c
�
L :=

(
2L + j − 1

2

(L + � + j − 2)!
(L − �)!

)1/2

.
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The formula is taken from [15], Equation (2.5). To be able to handle the formula
better we define the last part of the spherical harmonics as � := (�2, . . . , �d−2, �d−1),
θ ′ := (θ2, . . . , θd−1) and

p�1,�

(
θ ′) = 1√

2π

d−1∏
j=2

j P̃
� j−1
� j

(
θ j

)
.

Further we set

Λ|�1| :=
{
(�2, . . . , �d−2, �d−1) ∈ N

d−2
∣∣ |�1| ≤ �2 ≤ · · · ≤ �d−2 ≤ �d−1

}

and will use Y�1,� (ξ), with � = (�2, . . . , �d−1) ∈ Λ|�1| as the abbreviation for
Y�1,�2,...,�d−1 (ξ), for a�1,...,�d−1,�

′
1,...,�

′
d−1

respectively. As in the definition of the spher-

ical harmonics, we need to use the points on S
d−1 and their polar coordinates

simultaneously, therefore we note that ξ has the polar coordinate representation
(θ1, . . . , θd−1) and ζ is given in polar coordinates as (ν1, . . . , νd−1). We will consis-
tently use this notation in the paper. Assuming a kernel has property (7) for absolute
summability then it can be represented as:

K (ξ, ζ ) = 1

2π

∞∑
�1,�

′
1=−∞

∑
�∈Λ|�1 |

∑
�′∈Λ|�′1 |

a�1,�,�
′
1,�

′ei(�1θ1−�′
1ν1) p�1,�

(
θ ′) (ξ) p�′

1,�
′ (ν′),

(13)

by reordering of the summands.

Theorem 1 (Axial symmetry with respect to one axis) A kernel with property (7),
given in the form

K (ξ, ζ ) =
∞∑

�1,�
′
1=−∞

∑
�∈Λ|�1|

∑
�′∈Λ|�′1|

a�1,�,�
′
1,�

′ Y�1,� (ξ) Y�′
1,�

′ (ζ ) , ξ, ζ ∈ S
d−1,

is axially symmetric with respect to the θ1 axis if and only if

a�1,�,�
′
1,�

′ = δ�1,�
′
1
c�1(�, �

′). (14)

Proof The rotation in the θ1-axis by the angle α will be denoted as Rα . Then using
(13):

K (Rαξ, Rαζ ) =
∞∑

�1,�
′
1=−∞

∑
�∈Λ|�1|

∑
�′∈Λ|�′1|

a�1,�,�
′
1,�

′
1

2π
ei�1(θ1+α)−i�′

1(ν1+α)

×p�′
1,�

(
θ ′) (ξ) p�′

1,�
′ (ν′)

=
∞∑

�1,�
′
1=−∞

e−iα(�1−�′
1) ×

∑
�∈Λ|�1|

∑
�′∈Λ|�′1|

a�1,�,�
′
1,�

′Y�1,� (ξ) Y�′
1,�

(ζ ) .

(15)
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We see that the above condition is sufficient for axial symmetry. It is also necessary
since according to Lemma 1 equality is only possible if the coefficients are all equal
and this can only hold for all α > 0 if a�1,�,�

′
1,�

′ = δ�1,�
′
1
c�1(�, �

′). 
�
As expected, the axially symmetric kernels can be written as a function depending on
the values θ ′,ν′ and the longitudinal difference θ1 − ν1. In [11] additionally the prop-
erties of being longitudinal independent and longitudinal-reversible are introduced.

Definition 2 – An axially symmetric kernel is called longitudinal reversible if there
exists a map K̃ : [0, 2π) × [0, π)d−2 × [0, π)d−2 → C with

K (ξ, ζ ) = K̃
(|θ1 − ν1|, θ ′, ν′) .

– An axially symmetric kernel is called longitudinal-independent if there exists a
map K̃ : [0, π)d−2 × [0, π)d−2 → C with

K (ξ, ζ ) = K̃
(
θ ′, ν′) .

For the next lemma and further use in the next section we introduce another simplified
notation. First we define for an axially symmetric Hermitian kernel

c�1 : Λ|�1| × Λ|�1| → C, (16)

where the values of the map are as in (14). We deduce from Theorem 1 that every
Hermitian, continuous and axially symmetric kernel which satisfies (7) can therefore
be written as

K (ξ, ζ ) =
∞∑

�1=−∞

∑
�,�′∈Λ|�1|

c�1

(
�, �′) Y�1,� (ξ) Y�1,�′ (ζ ). (17)

Additionally, we find that these spherical harmonics can be represented as

Y�1,� (ξ) =
{
ei�1θ1 p�1,�

(
θ ′) , �1 ≥ 0,

(−1)�1ei�1θ1 p−�1,�

(
θ ′) , �1 < 0,

(18)

where θ ′ = (θ2, . . . , θd−1), p�1,� is real valued, and the representation follows from
(12).

We briefly state sufficient conditions of the expansion coefficients for longitudinal
reversibility and independence.

Lemma 5 1. An axially symmetric kernel satisfying (7) is longitudinal reversible if
and only if

c�1

(
�, �′) = c−�1

(
�, �′) , ∀�1 ∈ Z, �, �′ ∈ Λ|�1|.
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2. An axially symmetric kernel satisfying (7) is longitudinal independent if and only
if c�1

(
�, �′) = 0 for all �1 �= 0.

3. An axially symmetric kernel satisfying (7) with the above expansion is real valued
if and only if

c�1

(
�, �′) = c−�1 (�, �′), ∀�1 ∈ Z, �, �′ ∈ Λ|�1|. (19)

Proof 1. Using the above representation of the spherical harmonics for ξ and ζ , we
find

K (ξ, ζ ) =
∞∑

�1=−∞

∑
�,�′∈Λ|�1|

c�1

(
�, �′) ei�1θ1−i�1ν1 p�1,�

(
θ ′) p�1,�′

(
ν′) .

If we denote by ξ ′ the point on S
d−1 with polar coordinates (ν1, θ2, . . . , θd−1) and

by ζ ′ the point with polar coordinates (θ1, ν2, . . . , νd−1) then a kernel is longitudinal
reversible if K (ξ, ζ ) = K (ξ ′, ζ ′) for all ξ, ζ ∈ S

d−1. It follows as above

K
(
ξ ′, ζ ′) =

∞∑
�1=−∞

∑
�,�′∈Λ|�1|

c�1

(
�, �′) ei(−�1)(θ1−ν1) p�1,�

(
θ ′) p�1,�′

(
ν′)

=
∞∑

�1=−∞

∑
�,�′∈Λ|�1|

c−�1

(
�, �′) ei�1θ1−i�1ν1(−1)2�1 p�1,�

(
θ ′) p�1,�′

(
ν′)

=
∞∑

�1=−∞

∑
�,�′∈Λ|�1|

c−�1

(
�, �′) Y�1,� (ξ) Y�1,�′ (ζ ).

The result is a consequence of the uniqueness of the series representation.
2. The sufficiency of the second part follows directly from the representation. Since

K (ξ, ζ ) =
∞∑

�1=1

∑
�,�′∈Λ|�1|

(
ei�1(θ1−ν1)c�1

(
�, �′) + (−1)2�1e−i�1(θ1−ν1)c−�1

(
�, �′))

× p�1,�

(
θ ′) p�1,�′

(
ν′) +

∑
�,�′∈Λ0

c0
(
�, �′) p0,� (

θ ′) p0,�′
(
ν′)

shows that if all c�1 are constant zero for �1 �= 0 the kernel is independent of the values
θ1, ν1. For the necessity we use that

K (ξ, ζ ) =
∞∑

�1=−∞
ei�1(θ1−ϕ1)

∑
�,�′∈Λ|�1|

c�1

(
�, �′) p�1,�

(
θ ′) p�1,�′

(
ϕ′)

is constant as a function of (θ1 − ϕ1) ∈ (−2π, 2π) if and only if the second sum is
zero for all �1 �= 0 and θ ′, ϕ′.
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3. We use the same representation above for the kernels K (ξ, ζ ) as well as for its
complex conjugate:

K (ξ, ζ ) =
∞∑

�1=−∞
e−i�1(θ1−ν1)

∑
�,�′∈Λ|�1|

c�1 (�, �′)p�1,�

(
θ ′) p�1,�′

(
ν′)

=
∞∑

�1=−∞
ei(−�1)(θ1−ν1)

∑
�,�′∈Λ|�1|

c�1 (�, �′)(−1)2�1 p−�1,�

(
θ ′) p−�1,�′

(
ν′)

and deduce that because of the uniqueness of the expansion coefficients, the two are
equal if and only if c�1 (�, �′) = c−�1

(
�, �′) for all �1 ∈ Z and �, �′ ∈ Λ|�1|. 
�

We note that in distinction to the results for invariance under parity and convolutional
form the given results on axially-symmetric kernels are basis dependent. For example
using a real basis of the spherical harmonics would change condition (19) to the coeffi-
cient having to be real. We finally summarise the connections between the introduced
properties, which follows directly from the definitions.

Lemma 6 We assume the kernels in this proposition to be Hermitian and to satisfy (7).

1. In the case d = 2 all axially symmetric kernels have convolutional form.
2. An axially symmetric kernel given in the form Eq. (17) has a convolutional form

if and only if

c�1(�2, . . . , �d−1, �
′
2, . . . , �

′
d−1) = 0

for all �d−1 �= �′
d−1 ∈ N0.

3 (Strict) Positive Definiteness of Axially Symmetric Kernels

In [6] strictly positive definite axially symmetric kernels on the2-spherewere described
and sufficient conditions for strict positive definiteness stated. We add sufficient con-
ditions for d-dimensional spheres and prove some additional necessary conditions. In
this section we focus on kernels on spheres with d ≥ 3, the special case of the circle
is discussed in Section 5.

From now on we will use property (7) also for axially symmetric and convolutional
kernels. In this case the coefficients a j, j ′,k,k′ in (7) are derived using (16) and (14) for
axially symmetric kernels and (9) in the convolutional case.

Theorem 2 Let K be a Hermitian, axially symmetric kernel with property (7) given
in the form (17), with d ≥ 3. The kernel is positive definite if and only if the mapping
c�1 : Λ|�1| × Λ|�1| → C is positive definite for all �1 ∈ Z.

Proof For the first direction we rewrite the quadratic form

∑
ξ,ζ∈Ξ

λξλζ K (ξ, ζ ) =
∞∑

�1=−∞

∑
�,�′∈Λ|�1|

c�1

(
�, �′) ∑

ξ∈Ξ

λξY�1,� (ξ)
∑
ζ∈Ξ

λζY�1,�′ (ζ ).
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Now we define � = (�2, . . . , �d−2), y
�1,�,�d−1
Ξ := ∑

ξ∈Ξ λξY�1,�,�d−1 (ξ) ∈ C to find

∑
ξ,ζ∈Ξ

λξλζ K (ξ, ζ ) =
∞∑

�1=−∞
lim
k→∞

k∑
�d−1,�

′
d−1=|�1|

∑
�∈Λ�1,�d−1

∑
�′∈Λ�1,�′d−1

y
�1,�,�d−1
Ξ c�1

((
�, �d−1

)
,
(
�′, �′

d−1
))

y
�1,�

′,�′
d−1

Ξ ,

where

Λ�1,�d−1 :=
{
(�2, . . . , �d−2) ∈ N

d−3
0

∣∣ |�1| ≤ �2 ≤ · · · ≤ �d−2 ≤ �d−1

}

and the absolute summability ensures equality after reordering. The positive definite-
ness of the mapping c�1 implies that

k∑
�d−1,�

′
d−1=|�1|

∑
�∈Λ�1,�d−1

∑
�′∈Λ�1,�′d−1

d�,�d−1c�1

((
�, �d−1

)
,
(
�′, �′

d−1
))
d�′,�′

d−1 ≥ 0,

for all �1 ∈ Z, k ≥ |�1| and arbitrary values d�,�d−1 ∈ C. Thereby the limit in the
penultimate equation is non-negative for all �1 and thereby the infinite sum is as well.

The necessity of the positive definiteness of the c�1 is proven by contradiction. If
we assume there exists an �1 ∈ Z, a finite set Λ ⊂ Λ�1 and coefficients d� ∈ C for
� ∈ Λ satisfying ∑

�,�′∈Λ

d�c�1(�, �
′)d�′ < 0

then we can define f (ξ) = ∑
�∈Λ d�Y�1,�(ξ) ∈ C(Sd−1) and deduce

∫
Sd−1

∫
Sd−1

f (ξ)K (ξ, ζ ) f (ζ ) dξ dζ < 0.

This contradicts the positive definiteness of K since the equivalence of positive defi-
niteness and integral positive definiteness has been established for general Riemannian
manifolds in Theorem 2.1 in [9]. 
�

We do not need the property of positive definiteness for arbitrary values of the index
set in the proof of the result. Therefore we can loosen the assumption by introducing
a matrix-like notation for the mapping. We first introduce a new index α where α ∈ N

and there is a one-to one mapping from N to the pairs

(
�α, �d−1,α

) ∈ Λ|�1|

satisfying �d−1,α′ ≤ �d−1,α if α′ < α. For the proof, the actual order of the mapping
is insignificant. We additionally define for each α the eigenvalue corresponding to
Y�1,�α,�d−1,α by λα which only depends on the value of �d−1,α . Further we introduce
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the notation Nα := N�d−1,α,d for the number of spherical harmonics corresponding to
the eigenvalue λα .

Then we define for each k ∈ N:

Ak
�1

= (
c�1

(
�α, �d−1,α, �α′ , �d−1,α′

))k
α,α′=1 . (20)

We note that in the case of d = 3 the matrix structure of the mappings c�1 is evident
since Λ|�1| = { j ∈ N0 | j ≥ |�1|}.
Proposition 1 Let K be a Hermitian, axially symmetric kernel of the form (17), d ≥ 3,
with property (7) and Ak

�1
as above. The kernel is positive definite if and only if the

matrix Ak
�1

is positive semi-definite for all �1 ∈ Z and all k ∈ N.

The proof is similar to the proof of Theorem 2 and therefore omitted.
For the investigation of strict positive definiteness of axially symmetric kernels we

present two approaches. For the first we continue to use the matrix representation
introduced in the last proposition and for the second we will be using the mappings
c�1 and sets of indices �1 ∈ Z which also allow to deduce strict positive definiteness.

Lemma 7 For K as in the above proposition. The kernel is strictly positive definite
if and only if for each �1 ∈ N there exist a sequence with positive entries d�1

j > 0,
j ∈ N, such that the matrix

Ãk
�1

= D1/2
k Ak

�1
D1/2
k , with Dk =

(
δi, j d

�1
j

)k
i, j=1

satisfies

λmin

(
Ãk

�1

)
> ε�1,

where ε�1 > 0 is independent of k.

Proof From the proof of the last lemma we deduce:∑
ξ,ζ∈Ξ

λξλζ K (ξ, ζ ) =
∞∑

�1=−∞
lim
k→∞

(
y�1,k

)T
Ak

�1
y�1,k

where y�1,k =
(
y
�1,�α,�d−1,α
Ξ

)k
α=1

.

Now we employ the definition of Ãk
�1

in order to find
∑

ξ,ζ∈Ξ

λξλζ K (ξ, ζ ) =
∞∑

�1=−∞
lim
k→∞

(
y�1,k

)T
D−1/2
k Ãk

�1
D−1/2
k y�1,k

≥
∞∑

�1=−∞
lim
k→∞‖D−1/2

k y�1,k‖22λmin

(
Ãk

�1

)

>

∞∑
�1=−∞

lim
k→∞ε�1

(∥∥∥D−1/2
k y�1,k

∥∥∥
2

)2
,
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where in the second line we use that Ãk
�1

is positive definite because its smallest
eigenvalue is strictly positive.

Thereby

∑
ξ∈Ξ

∑
ζ∈Ξ

λξλζ K (ξ, ζ ) >

∞∑
�1=−∞

ε�1 lim
k→∞

∥∥∥(
D−1/2
k y�1,k

)∥∥∥2
2

≥
∞∑

�1=−∞
ε�1

∞∑
α=1

((
d�1
α

)−1/2 ∣∣∣y�1,�α,�d−1,α
Ξ

∣∣∣2
)

,

where the last sum can only be zero if y
�1,�α,�d−1,α
Ξ is a zero sequence for all �1.

This implies that the λξ in the definition of the quadratic form need all be zero as a
consequence of the linear independence of the spherical harmonics. 
�
We give a simple example of kernels for which strict positive definiteness can be
proven using the above result. Let the kernel take the form:

K (ξ, ζ ) =
∞∑

�1=−∞

∑
�∈Λ|�1|

c�1 (�, �) Y�1,� (ξ)Y�1,� (ζ ),

where c�1 (�, �) > 0 and satisfies condition (7). Then Ak
�1

is a diagonal matrix with

positive entries. Setting Dk = (δi, j c�1(i, i))
∞
i, j=1 results in Ãk

�1
= I and thereby

the resulting kernel will be strictly positive definite. The described kernels are not
isotropic but have convolutional form and therefore we will be able to give a more
general condition in the next section.

Theorem 3 Let K be a Hermitian, axially symmetric kernel of the form (17) satisfying
(7) for absolute summability and d > 2. The kernel is strictly positive definite if

Ã�1 =
(
ã�1
α,α′

)∞
α,α′=1

=
(√

Nαc�1

(
�α, �d−1,α, �α′ , �d−1,α′

)√
Nα′

)∞
α,α′=1

is positive definite on �∞(N) for all �1 ∈ N and satisfies the uniform strict diagonal
dominance property:

∑
α′ �=α

|ã�1
α,α′ | < σ�1 |ã�1

α,α|, ∀α ∈ N,

where each 0 < σ�1 < 1 is independent of α.

Proof Wedenote by Ã�1 = G�1G
∗
�1
the infinite Cholesky decompositionmatrix which

exists since Ã�1 is positive definite and bounded on �∞(N) as a consequence of (7).
Inserting the Cholesky-decomposition into the quadratic form

∑
ξ∈Ξ

∑
ζ∈Ξ

λξλζ K (ξ, ζ ) =
∞∑

�1=−∞

∥∥∥G�1

(
ỹ�1

)∥∥∥2
2
, (21)
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where ỹ�1 =
(

1√
Nα

y
�1,�α,�d−1,α
Ξ

)∞
α=1

is a bounded sequence as a result of the estimate

of the spherical harmonics in (5). We first deduce that if there exists an element of the

space of bounded sequences �∞(N) for whichG∗
�1
x = 0, thenG�1

(
G∗

�1
x
)

= Ã�1x =
0,wherewe can exchange the order ofmultiplication because of the triangular structure
of G�1 and because G∗

�1
x is elementwise finite for all bounded x . This is a result of∥∥∥G∗

�1
x
∥∥∥2 = xT Ã�1x < ∞ which follows from (7).

Thereby it is sufficient to show that there exists no eigenvector in the space of
bounded sequences for which Ã�1x = 0. We prove this by contradiction, adapting the
conditions of [27] Theorem 1b.

From the positive definiteness of the sub-matrices of Ã�1 we can deduce that ã�1
α,α

is non-zero for all α ∈ N. Thereby

∞∑
α′=0

ã�1
α,α′xα′ = 0, ∀α ∈ N0,

⇔
∑
α′ �=α

ã�1
α,α′xα′ = −ãα,α′xα, ∀α ∈ N0.

Since x has �∞-norm one, there exists a value α ∈ N0, for which |xα| > σ�1 and

∑
α′ �=α

|ã�1
α,α′ | ≥

∑
α′ �=α

|ã�1
α,α′xα′ | ≥ |ãα,α|σ�1 .

This contradicts the assumption and the only possible choice for which (21) is equal
to zero is ỹ�1 = 0 for all �1 ∈ Z. From the definition of this sequence we know that
this is only possible if λξ = 0 for all ξ ∈ Ξ as in the proof of the last lemma. 
�
Examples for kernels for which this result is applicable are all kernels where a certain
ordering of the coefficients leads to A�1 having the form of a general band matrix.

We wish to find more general sufficient conditions that are easy to evaluate. They
will be stronger than simply demanding that c�1 be strictly positive definite, which
would only allow a finite subset of the indices Λ�1 to be used in a quadratic form.

Therefore we define the set F as the set of all indices �1 ∈ Z for which

there exists j ∈ Λ|�1|, d j �= 0 ⇒
∑

j, j ′∈Λ|�1|

d j c�1

(
j, j ′

)
d j ′

does not converge to zero.

Lemma 8 A Hermitian axially symmetric kernel K of the form (17) , satisfying (7),
with positive definite maps c�1 : Λ|�1| × Λ|�1| → C is strictly positive definite if

∑
ξ∈Ξ

λξY�1,� (ξ) = 0 ∀�1 ∈ F , � ∈ Λ|�1| ⇒ λξ = 0 ∀ξ ∈ Ξ.
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Proof We prove the result by contradiction and assume that K is positive definite but
not strictly positive definite. If K is not strictly positive definite there exists a nonempty
set of distinct points Ξ and coefficients λξ not all zero with

∑
ξ,ζ∈Ξ

λξλζ K (ξ, ζ ) = 0.

This is equivalent according to the computation in the proof of Theorem 2 to

∞∑
�1=−∞

∑
�,�′∈Λ|�1|

c�1

(
�, �′) Y�1,�,ΞY�1,�′,Ξ = 0, (22)

where Y�1,�,Ξ = ∑
ξ∈Ξ λξY�1,� (ξ).

Since we know that all the sums are non-negative because the maps c�1 are all
positive definite, the overall sum can only be zero if all summands are. For the indices
�1 ∈ F this implies Y�1,�,Ξ = 0, because the convergence of the sum is ensured by
property (7). But according to the condition of the lemma this implies λξ = 0 for all
ξ ∈ Ξ , in contradiction to the assumption of the proof. 
�

With the goal of understanding which sets F lead to strictly positive definite kernels
we first state a simple sufficient condition. The following proposition is an immediate
consequence of the last lemma together with the linear independence of the spherical
harmonics.

Proposition 2 A kernel as in in the last lemma is strictly positive definite if F = Z.

For the special case d = 3, this result was proven in [6] as Theorem 2, where the
assumptions on the maps can be simplified because of the specific structure of S2. As
a next step we study necessary conditions:

Lemma 9 Let K be a Hermitian, axially symmetric kernel of the form (17), satisfying
(7). For the kernel to be strictly positive definite it is necessary that the mapping

c�1 : Λ|�1| × Λ|�1| → C

is not identically zero for infinitely many �1 ∈ Z.

Proof The result is proven by contradiction. Assume there are only finitely many
values of �1 for which c�1 is not the zero mapping. Let us denote the set of these �1
by J . Then we can construct a set of points Ξ and coefficients λξ ∈ R such that

∑
ξ∈Ξ

λξY�1,� (ξ) = 0, ∀�1 ∈ J , � ∈ Λ|�1|. (23)
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These are infinitely many conditions since Λ|�1| includes infinitely many elements
but if we choose all points in Ξ of the form

(
θ1,k, θ2, . . . , θd−1

)
for k = 0, . . . , |J |,

the above equations can be transformed into

1√
2π

d−1∏
j=2

j P̃
� j−1
� j

(
θ j

) |J |∑
k=0

λke
i�1θ1,k = 0, ∀�1 ∈ J , � ∈ Λ|�1|, (24)

which is satisfied if
|J |∑
k=0

λke
i�1θ1,k = 0, ∀�1 ∈ J . (25)

These are only |J | conditions which can be satisfied for our choice of θ1,k at |J | + 1
distinct points. 
�

The next result is especially interesting because for spherical radial basis functions
we were used to be able to leave out finitely many indices of similar sets without
loosing strict positive definiteness. This is not the case for axially symmetric kernels,
where �1 = 0 is of special importance.

Lemma 10 Let K be a Hermitian, axially symmetric kernel of the form (17) satisfying
(7). For the kernel to be strictly positive definite, it is necessary that the mapping

c0 : Λ|�1| × Λ|�1| → C

is not identically zero.

Proof We show that for any point on the surface of the sphere ξ which has polar
coordinates (θ1, 0, θ3, . . . , θd−1), the spherical basis functions Y�1,� (ξ) only take non-
zero values if �1 = 0. Inserting the point into the definition of the spherical harmonics
from (12)

Y�1,� (ξ) = 1√
2π

ei�1θ1
d−1∏
j=2

j P̃
� j−1
� j

(
θ j

)

= 1√
2π

ei�1θ1
(
2�2 + 1

2

(�2 + �1)!
(�2 − �1)!

)1/2

P−�1
�2

(1)
d−1∏
j=3

j P̃
� j−1
� j

(
θ j

)
.

Since the last part of the product is finite, the value is non-zero only if P−�1
�2

(1) is
non-zero and this is only the case for �1 = 0. 
�

Two ways to construct axially symmetric kernels on the two-sphere for which the
described conditions can be applied are described in [2] where the definition is via
sequences and [11] via integration of isotopic kernels over arches.
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4 (Strict) Positive Definiteness of Convolutional Kernels or Kernels
with Eigenvalue Block Structure

We now assume that K is continuous Hermitian and has the form

K (ξ, ζ ) =
∞∑
j=0

N j,d∑
k=1

N j,d∑
k′=1

d j
(
k, k′) Y k

j (ξ) Y k′
j (ζ ), ∀ξ, ζ ∈ S

d−1, (26)

for a fixed set of orthogonal basis functions, where Y k
j is an eigenfunction correspond-

ing to the eigenvalue λ j of Sect. 1.1. We note that under this assumption there exists
another orthonormal basis of the eigenfunctions corresponding to each eigenvalue
such that, if we express K with respect to this sequence (which is also the Hilbert-
Schmidt basis of the kernel), it takes the form (10). Further we emphasize that in this
section we use continuity as a criterion instead of property (7), because it is the weaker
assumption on the kernel.

These kernels were studied under the name convolutional kernels for example in
[21, 22]. The fixed basis case on the 2-sphere was also studied in [7] and we now
generalise the results.

It is proven in [10] that a continuous and Hermitian kernel K of the form (10)
is positive definite if and only if the d j,k are real and non-negative for all j ∈ Z+,
k ∈ {

1, . . . , N j,d
}
, (their Theorem 2.1).

We can now transfer the result known for radial kernels which was first proven in
[8], to this kernel class. Since positive definiteness is independent of the choice of the
expansion basis, the proofs will be carried out using kernels of the form (10) and we
later briefly note the implications for fixed basis.

Lemma 11 If a continuous and Hermitian kernel K of the form (10) is strictly positive
definite, all d j,k are non-negative and the sequences

(
d j,k

)N j,d
k=1 are not identically zero

for infinitely many even and infinitely many odd values of j ∈ Z+.

Proof We assume K is continuous, Hermitian and strictly positive definite. Since
strict positive definiteness implies positive definiteness, the d j,k are all non-negative
according to [10, Theorem 2]. The rest of the proof is divided into four cases. Let us
denote the set of indices for which

(
d j,k

)N j,d
k=1 are not all zero with

J :=
{
j ∈ Z+

∣∣ (d j,1, . . . , d j,N j,d

)T �= 0N j,d
}

.

For all four cases we assume that K is strictly positive definite of the form (10) and
prove that assuming either

1. J ⊂ 2N or
2. J ⊂ 2N + 1 or
3. 1 ≤ |J ∩ 2N| < ∞ or
4. 1 ≤ |J ∩ (2N + 1) | < ∞,

leads to a contradiction.
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1. Let us now assume
(
d j,k

)N j,d
k=1 are not all zero only for even values of j . We can

represent the quadratic form as

∑
ξ,ζ∈Ξ

λξλζ K (ξ, ζ ) =
∞∑
j=0

N j,d∑
k=1

d j,k

∑
ξ∈Ξ

λξ Ỹ
k
j (ξ)

∑
ζ∈Ξ

λζ Ỹ k
j (ζ )

=
∞∑
j=0

N j,d∑
k=1

y j,k
Ξ d j,k y

j,k
Ξ , with y j,k

Ξ =
∑
ξ∈Ξ

λξ Ỹ
k
j (ξ) ∈ C.

Choosing a non-empty set of data sites Ξ ′ which satisfies

ξ ∈ Ξ ′ ⇒ −ξ ∈ Ξ ′,

where −ξ is the antipodal point of ξ , and setting λξ = −λ−ξ , we find that y
j,k
Ξ ′ =

0 for all even j since Ỹ k
j (−ξ) = (−1) j Ỹ k

j (ξ) follows from the Ỹ k
j all being

homogeneous polynomials of order j . This implies
∑

ξ,ζ∈Ξ ′ λξλζ K (ξ, ζ ) = 0
and therefore K would not be strictly positive definite.

2. The same argument applies when we assume
(
d j,k

)N j,d
k=1 are not all zero only for

odd values of j . The same set Ξ ′ can be chosen but now λξ = λ−ξ yields the
contradiction to the assumption of strict positive definiteness.

3. Now we assume that
(
d j,k

)N j,d
k=1 are not all zero for any number of odd values of

j and only finitely many even values of j . Set ĵ to the maximal even index for
which

(
d j,k

)N j,d
k=1 is not zero. We aim to construct a set Ξ with elements only in

the lower hemisphere of Sd−1 and λ ∈ C
|Ξ | �= 0, s.t.

∑
ξ∈Ξ λξ Ỹ k

j (ξ) = 0 for all
even j ≤ ĵ . These are

M :=
ĵ /2∑
m=1

N2m,d < ∞

linear equations. We can therefore choose any set of distinct points in the lower
hemisphere with more than M elements to find a non-trivial solution. Defining the
set Ξ ′ = Ξ ∪ (−Ξ) and setting λξ = λ−ξ shows that

∑
ξ,ζ∈Ξ ′

λξλζ K (ξ, ζ ) = 0

for a non-trivial vector λ and therefore K is not strictly positive definite.
4. The same arguments can be used to show that

(
d j,k

)N j,d
k=1 needs to be non-zero for

infinitely many odd values of j .


�
For the fixed basis form this implies that for a strictly positive definite kernel of

the form (26) it is necessary that the matrices Dj := (
d j

(
k, k′))N j,d

k,k′=1 are all positive
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definite and infinitely many with odd j and infinitely many with even j are not the
zero matrix.

With the aim of finding sufficient conditions that are easy to evaluate we define the
set F as the set of all indices j ∈ Z+ for which Dj is a positive definite matrix, or if
the appropriate basis is used, all d j,k > 0 for all k = 1, . . . , N j,d .

Lemma 12 A continuous and Hermitian kernel K of the form (26) which is positive
definite is strictly positive definite if

∑
ξ∈Ξ

λξY
k
j (ξ) = 0, ∀ k = 1, . . . , N j,d , j ∈ F ⇒ λξ = 0,∀ξ ∈ Ξ.

The proof follows in the same line of argument as Lemma 8.
With Lemma 12, we have shown that strict positive definiteness of these kernels

can be proven using the same results which were used for zonal kernels by Chen
et al. in [8] and the alternative proof for more general manifolds stated by Barbosa
and Menegatto in [4]. The next lemma and Theorem 4, generalise the results to the
convolutional case and complex kernels.

Lemma 13 For a given set F the following two properties are equivalent:

1.
∑

ξ∈Ξ λξY k
j (ξ) = 0, ∀ k = 1, . . . , N j,d , j ∈ F implies λξ = 0, ∀ξ ∈ Ξ.

2.
∑

ξ∈Ξ λξ Pd
j

(
ξ T ζ

) = 0, ∀ j ∈ F , ∀ζ ∈ S
d−1 implies λξ = 0, ∀ξ ∈ Ξ .

Here Pd
j are the Legendre polynomials of degree j in d dimensions.

Proof Using the addition formula of the spherical harmonics we find

N j,d

σd−1
Pd
j

(
ξ T ζ

)
=

N j,d∑
k=1

Y k
j (ξ) Y k

j (ζ ) .

Therefore

N j,d

σd−1

∑
ξ∈Ξ

λξ P
d
j

(
ξ T ζ

)
=

N j,d∑
k=1

⎛
⎝∑

ξ∈Ξ

λξY
k
j (ξ)

⎞
⎠ Y k

j (ζ ), ∀ζ ∈ S
d−1.

Since the spherical harmonics are linearly independent, the last expression is zero if
and only if

∑
ξ∈Ξ

λξY
k
j (ξ) = 0

for all k = 1, . . . , N j,d , and all j ∈ F . 
�
Theorem 4 Let K be a continuous positive definite kernel of the form (26), d > 2, and
F the corresponding index set for which the D j are positive definite matrices. Then it
is sufficient for K to be strictly positive definite that F includes infinitely many even
and infinitely many odd values of j ∈ Z+.
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Proof Combining Lemmas 12 and 13we know that for K to be strictly positive definite
it is sufficient to prove that for arbitrary sets of distinct data sites Ξ ⊂ S

d−1 the
functions Pd

j

(
ξ T ζ

)
satisfy Lemma 13 (2). Therefore we show that for any such set

Ξ

∑
ξ∈Ξ

λξ P
d
j

(
ξ T ζ

)
= 0, ∀ j ∈ F , ζ ∈ S

d−1,

implies λξ = 0 for all ξ ∈ Ξ . We do this by choosing for each ξ ∈ Ξ a corresponding
ζ = ζξ ∈ S

d−1 and show that for this choice λξ = 0 if the above holds. Assume we
have fixed ξ ∈ Ξ , we need to distinguish two cases.

Case 1 ξ T ζ �= −1 for all ζ ∈ Ξ.

In this case we choose ζξ = ξ and the system above takes the form

λξ P
d
j (1) +

∑
ζ∈Ξ\{ξ}

λζ P
d
j

(
ζ T ξ

)
= 0, ∀ j ∈ F .

Note that ξ T ζ ∈ (−1, 1). Since there are infinitely many indices in F we can choose
a sequence from F with jn ∈ F and lim

n→∞ jn = ∞. Introducing the limit in the above

equation and using the asymptotic estimate for Legendre polynomials in [3] (2.117)
we get

λξ + lim
n→∞

∑
ζ∈Ξ\{ξ} λζ Pd

j

(
ξ T ζ

)
Pd
j (1)

= 0.

This implies λξ = 0 because the sum is finite and the latter part converges to zero.
Case 2 There is one ζ ∈ Ξ with ξ T ζ = −1.
Then ζ is the antipodal point of ξ and therefore in Cartesian coordinates ξ = −ζ .

Then the above equation becomes

λξ P
d
j (1) + (−1) j λ−ξ P

d
j (1) +

∑
ζ∈Ξ\{ξ,−ξ}

λζ P
d
j

(
ζ T ξ

)
= 0, ∀ j ∈ F .

The third part vanishes if we introduce the limit as in the previous case but for odd and
even series of jn separately. The remainder yields for even j and odd j , respectively,

λξ + λ−ξ = 0 = λξ − λ−ξ

which implies λξ = 0 = λ−ξ . 
�

5 The Special Case of Kernels on the Circle

The case d = 2 is of special interest for us since the results of Theorem 4 do not
apply to this case and since according to Lemma 6 (1) all axially symmetric kernels
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on the circle have convolutional form. For d = 2 we note that a basis of the spherical
harmonics is

Y j (ξ) = 1√
2π

ei jθ , j ∈ Z,

where θ is associated with the point on the circle ξ = (cos (θ) , sin (θ))T ∈ S
1.

The Legendre polynomials take the form of Chebyshev polynomials and the addition
formula reads

Y j (ξ)Y j (ζ ) + Y− j (ξ)Y− j (ζ ) = 2

π
cos ( j(θ − ν)) ,

where θ is corresponding to ξ as above and ζ = (cos (ν) , sin (ν))T . Using the circular
harmonics every continuous kernel on S

1 × S
1 has an expansion of the form

K (ξ, ζ ) =
∑
j, j ′∈Z

a j, j ′e
i jθe−i j ′ν .

For a Hermitian convolutional kernel only the coefficients corresponding to the
same order of trigonometric polynomial are going to be non-zero. This yields

K (ξ, ζ ) =
∑
j∈Z+

(
d j, j e

i j(θ−ν) + d− j,− j e
−i j(θ−ν) + d− j, j e

−i j(θ+ν) + d− j, j e
i j(θ+ν)

)

+ d0,0,

where we can define the matrices of the last section as Dj =
⎛
⎝ d j, j d j,− j

d j,− j d− j,− j

⎞
⎠.

Theorem 5 Let K be a continuous positive definite kernel of the form (26), d = 2,
and F be the corresponding index set for which the D j are positive definite matrices.
Then it is sufficient for K to be strictly positive definite that the set {n ∈ Z | |n| ∈ F}
intersects every full arithmetic progression in Z+.
Proof For this special case Lemma 13 (2) reads

∑
ξ∈Ξ

λξ cos
(
j arccos(ξ T ζ )

)
= 0, ∀ j ∈ F , ∀ξ ∈ S

1,

implies λξ = 0 for all ξ ∈ Ξ . This is the case if all functions of the form∑
j∈F a j cos

(
j arccos(ξ T ζ )

)
with a j > 0 are positive definite and thereby we can

deduce our result directly from Corollary 2.3 and Theorem 2.15 of [20]. 
�
Theorem 6 Let K be a continuous positive definite kernel of the form (26), d = 2 and
J the corresponding index set for which the D j are non-zero. Then it is necessary for
K to be strictly positive definite that J intersects every full arithmetic progression in
Z+.
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Proof The proof again uses contradiction and the construction of sets which show that
Lemma 13 (2) does not hold if J does not intersect every full arithmetic progression.
As in the previous cases this construction is the same which was used in the proof for
isotropic kernels and we therefore refer to the proof of [4] Theorem 5.2, where details
of the construction are given. 
�
Webrieflymention implications for kernel is axially symmetric kernels on S1. Accord-
ing to Theorem 1, a kernel is axially symmetric if

a j, j ′ = δ j, j ′c j .

Thereby a Hermitian axially symmetric kernel takes the form

K (ξ, ζ ) =
∑
j∈Z+

(
c j e

i j(θ−ν) + c− j e
−i j(θ−ν)

)
+ c0.

Then Theorems 5 and 6 directly apply to the axially symmetric kernels, where F is
the set of j ∈ Z for which both c j , c− j > 0 and J is the set of indices j for which c j
or c− j are non-zero.

6 Discussion

The discussion in Section 2 allows to construct kernels with different geometric prop-
erties. Even though these kernels could only be constructed approximately as truncated
series we believe that they can nevertheless be used in applications as discussed in [2]
for axially symmetric kernels. We also believe that taking into account a wider range
of geometric properties of the kernel will allow the improvement of approximation
results for many areas of application. Unfortunately any truncation would remove
strict positive definiteness. This problem can be addressed in applications for example
by choosing the truncation index high enough so that the remaining error is close to
machine precision.

The more specific results in Section 3 show that stating necessary and sufficient
conditions for axially symmetric strictly positive definite kernels is possible in a similar
way to the results known for radial kernels and that in fact one can utilize the results
known for isotropic kernels to prove the more general case, as done in Section 4.
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