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1 Introduction

Systems of interconnected parallel acting automata have extensively been in-
vestigated from a language theoretic point of view.

The specification of such a system includes the type and specification of the
single automata (these are in almost all cases finite or pushdown automata), the
interconnection scheme (which sometimes implies a dimension of the system),
a local and/or global transition function and the input and output modes.
Various types have been studied for a long time (e.g., [1, 2, 4, 5, 7, 8, 14, 20,
21, 23, 24, 25, 27]).

One kind of system is of particular interest: the cellular automata. In this well-
investigated model homogeneously connected deterministic or nondeterministic
finite automata work synchronously at discrete time steps.

Here we are investigating linear arrays with very simple interconnection schemes.
Each node is connected to its both immediate neighbors or to its right immedi-
ate neighbor only. Correspondingly they are called two-way or one-way cellular
automata (CA or OCA) resp. nondeterministic two-way or nondeterministic
one-way cellular automata (NCA or NOCA). Although deterministic and non-
deterministic finite automata have the same computing capability, nondetermi-
nism can strengthen the power of the deterministic parallel devices.

Nondeterministic arrays have been investigated e.g. in [24], where it was proved
that NCAs can exactly accept the context-sensitive languages, in [8], where the
equivalence of NCAs and NOCAs without time restrictions has been shown,
and in [16], where it was shown in terms of homogeneous trellis automata that
the real-time NOCA languages contain the e-free context-free languages as well
as a NP-complete language and form an AFL closed under intersection.

Here we are interested in a refinement of the amount of nondeterminism in order
to identify the power and limitations of known cellular automata. The limit-
ation of the number of allowed nondeterministic transitions is done according
to a mapping g : N — Ng depending on the length of the input. By regard-
ing the nondeterminism as a restrictable resource of the arrays the spectrum
is drawn from the pure deterministic (g(n) = 0) to the full nondeterministic
(g(n) =t(n)) devices.

In Section 2 we introduce such gG-CAs and gG-OCAs (g guess (O)CAs) and
define the notions in terms of formal language processing. Even for constant
mappings g the resulting arrays are powerful devices whose language recognition
capabilities are neither affected by reducing the time complexity from linear-
to real-time nor by restricting the information flow to one-way. Section 3 is
devoted to the possibility to reduce the number of nondeterministic transitions.
In Section 4 a speed-up result is shown that is stronger than all known results.
Comparisons between various devices especially to deterministic ones are made
in section 5. In Section 6 a characterization of an important subclass in terms of
deterministic language families and e-free homomorphisms are given. Thus, the
nondeterminism can be replaced by the homomorphism and vice versa. Finally,



in section 7 the strong closure properties of the real-time G-(O)CA languages
are shown. They form an AFL closed under intersection and reversal.

2 Basic notions

We denote the rational numbers by Q, the integers by Z, the positive integers
{1,2,...} by N, the set N U {0} by Ny and the powerset of a set S by 2. The
empty word is denoted by e and the reversal of a word w by w’. For the length
of w we write |w|. The set of mappings from M to N is denoted by NM.

A nondeterministic two-way resp. one-way cellular automaton is a linear array
of nondeterministic finite automata, sometimes called cells, each of them is
connected to its both nearest neighbors resp. to its nearest neighbor to the
right. For our convenience we identify the cells by positive integers. The state
transition depends on the actual state of each cell and the actual state(s) of
its neighbor(s). The transition function is applied to all cells synchronously at
discrete time steps. More formally:

Definition 1 A nondeterministic (two-way) cellular automaton (NCA) is a
system (S, 0nq, #, A, F'), where

a) S is the finite, nonempty set of states,

b) #¢ S is the boundary state,

c) A C S is the nonempty set of input symbols,

d) F C S is the nonempty set of accepting states,

e) Ona : (SU {#})3 — (29\ 0) is the (nondeterministic) local transition

function.

Let M = (S,0p4,#, A, F) be an NCA. A configuration of M at some time ¢ > 0
is a description of its global state, which is actually a mapping ¢; : [1,...,n] = S
for n € N. The configuration at time 0 is defined by the initial sequence of states.
For a given input word w = wq +--wy, € AT we set co (i) == w;, 1 <7 < n.
During its course of computation an NCA steps nondeterministically through
a sequence of configurations, whereby successor configurations are chosen ac-
cording to the global transition A, :

Let n € N be an arbitrary positive integer and c resp. ¢’ be two configurations
defined by s1,...,8, € S resp. si,...,s,, € S.

de And(c) — 5,1 € 5nd(#a51732)a512 € 5nd(31782a53)7 s 7S'In € 5nd(3n—153n7#)

Thus, A, is induced by d,4. For ¢ € Ng the i-fold composition of A,,4 is defined
as follows:

ALale) = {c}

AN = | Anald)
deA (o)



mi(81 -+ 8p) 1= 8; selects the ith component of s1---s,. If the state set is a
Cartesian product of some smaller sets S = Sy X S X --- X S, we will use the
notion register for the single parts of a state. The concatenation of a specific
register of all cells forms a track.

# S1 S92 S3 S4 S5 #

Figure 1: A (two-way) cellular automaton.

If the flow of information is restricted to one-way, the resulting device is a
nondeterministic one-way cellular automaton (NOCA). ILe. the next state of
each cell depends on the state of the cell itself and the state of its immediate
neighbor to the right.

S1 S92 S3 S4 S5 #

Figure 2: A one-way cellular automaton.

An NCA (NOCA) is deterministic if 6,4(81,52,53) (0na(s1,82)) is a singleton
for all states si, 59,83 € S U {#}. Deterministic cellular arrays are denoted by
CA resp. OCA.

Definition 2 Let M = (S, 04, #, A, F) be an NCA or an NOCA.
a) A word w € A" is accepted by M if there exists a time step t,, € N such
that there exists a configuration c;, € A (co.,) where ¢y, (1) € F.
b) L(M) = {w € AT | w is accepted by M} is the formal language accepted
by M.
c) Let t : N — N, t(n) > n, be a mapping. If all w € L(M) are accepted
within t,, < t(|w|) time steps, then L is said to be of time complexity t.

The family of all languages which can be accepted by an NCA (NOCA) with
time complexity ¢ is denoted by Z;(NCA) (Z(NOCA)). If t equals the iden-
tity function id(n) := n, acceptance is said to be in real-time and we write
Z+(NCA) (Z+(NOCA)). In the sequel we will use a corresponding notion for
other types of acceptors. The linear-time languages Z;(NCA) (Z;(NOCA))
are defined according to

Zy(NCA) = ) Za(NCA)
kEQ,k>1

There is a natural way to restrict the nondeterminism of the arrays. One can
limit the number of allowed nondeterministic state transitions of the cells. For
this reason a deterministic local transition §q : (SU {#})3 — S is provided and
the global transition induced by d4 is denoted by A,.

Let g : N — Ngo be a mapping that gives the number of allowed nondetermi-
nistic transitions dependent on the length of the input. The resulting system



(S, 0nd, 04, S0, #, A, F) is a ¢gG-CA (gG-OCA) if starting with the initial config-
uration cg,, (for some w € A™) the possible configurations at some time ¢ are
given by the global transition as follows:

{CO,w} ift=20
Analcow) if t < g(|wl)

U A‘t;g(‘wb (') otherwise

c EAi(dlwl) (co,w)

Observe, that all nondeterministic transitions have to be applied before the
deterministic ones and that for some s1, 92,53 € S U {#} the nondeterministic
part may contain the deterministic one: 4(s1, $2,83) € Ona(s1, 82, 83).

Up to now we have g not required to be computable. Of course, for almost
all applications we will have to do so but some of our general results can be
developed without such requirement. Since in the sequel the (certainly comput-
able) constant mappings g are playing an important role the following example
might motivate their use.

Let L C {a}™ be an arbitrary not necessarily recursively enumerable language
that does not contain the word a. By

1 ifan¢L
g(”)'_{n ifam e L

a gG-OCA can accept L in real-time simply by verifying whether or not more
than one nondeterministic transitions have been performed.

3 Guess reduction

The next two results show that k£ + 1 guesses per cell are not better than k
guesses. On the other hand, they yield the possibility to reduce the number of
nondeterministic transitions by a constant as long as one remains.

Theorem 3 Let g : N — Ny, g(n) > 1, be a mapping and k € Ny be a constant
number. Then

Zi((g +k)G-CA) C Z(9G-CA)
holds for all time complexities t : N — N, t(n) > g(n) + k.

Proof. It suffices to prove the assertion for ¥ = 1. For a given (¢ + 1)G-CA
M = (S,0p4,04,#, A, F) we define a gG-CA M' = (5,6, ,,0,,#, A, F) as fol-

lows.



Let Sy := S U {#}.

Sl = SU (S X SS#XS#XS#)
V s1, 89,83 € S, f1, f2, f3 € S5 SexSs .

dq(s1,82,83) := d4(s1, 82, 53) (1)
8 ((s1, f1), (82, f2), (s3, f3)) = fa (51,82,33) (2)
Sna(s1,52,83) == {(s,f) | s € bnals1,52,53)

A f € §5#X5XSt guch that
V 51,589,853 € Sg :
f(51,82,53) € 0a(51,82,83)}  (3)
810 ((51, f1)5 (52, f2), (53, £3)) = {(5, f2) | 5 € Onals1,59,53)} (4)

We are going to show L(M) = L(M') and that the time complexities are
identical.

In its first (nondeterministic) step M’ simulates the first step of M and, addi-
tionally, another nondeterministic step of M for all possible triples of states of
M (rule(3)). The second result is stored in an additional register. It is a finite
table which contains one row for every (s, s2,83) € S3. Thus, M can compute
the first component of the states of M’, too.

The deterministic transition of M’ applied to states from Sy corresponds to the
deterministic transition of M (rule (1)). Again, it follows that M can compute
the same states. The deterministic transition of M’ applied to states from
Sy x §9#x5ex St ig an application of the second component of the state of the cell
itself to the actual first components of the cell itself and of its both neighbors
(rule (2)). This corresponds to a nondeterministic transition of M. Since
deterministic transitions of M’ always result in states from S an application
of rule (2) can only happen at time g(n) + 1. But at that time M performs
its last nondeterministic transition and, hence, can simulate M’. It follows
L(M") C L(M).

On the other hand, the first g(n) nondeterministic transitions of M are sim-
ulated by M’ in the first components of the states (rules (3),(4)). At time
g(n) + 1 the first deterministic transition of M’ is the application of the non-
deterministically chosen second component to the actual first components (rule
(2)) such that a nondeterministic transition (of M) is deterministically simu-
lated (by M'). From time g(n)+ 2 to t(n) automaton M’ simulates M directly
(rule (1)). It follows L(M) C L(M'). 0

The next theorem does not follow for structural reasons since in general the
single cells are not able to recognize the time step g(n). So we have to ensure
that despite of the additional nondeterministic transitions no additional inputs
are accepted.



Theorem 4 Let g : N — Ny, g(n) > 1, be a mapping and k € Ny be a constant
number. Then

Z(9G-CA) C Z((9 + k)G-CA)
holds for all time complexities t : N — N, t(n) > g(n) + k.

Proof. It suffices to prove the assertion for k = 1.

For a given gG-CA M = (S, 6,4,04, #, A, F) we define a (g + 1)G-CA M' =
(S',0,,4,0,#, A, F') as follows.

S =85uUS?
F' ::FU{(51,82) ESQ|52€F}

vsla52a53734785a56 € S# :

na(s1,s2,83) := {(s1,5h) | s} € dna(s1,s2,53)

A sy = 5d(31,32,33)} (1)

Ina((51,52), (53, 84), (85, 86)) = {(s1,55) | 81 € Gna(s1,83,55)
A st = 64(s1, 33,35)} (2)
(5{1((31,32),(33,34),(35,36)) = 8q(82, 4, 56) (3)
O3(s1,52,83) = d4(s1,52,53) (4)

We have to show L(M) = L(M’) and that M and M’ are of the same time
complexity.

If 6! ; is applied to pairs from S 2 its result is independent on the second compon-
ents (rule (2)). The first component of the result corresponds to an application
of §,,4 whereas the second component of the result corresponds to an application
of 4. Thus, M can compute the first components of the first g(n) configura-
tions of M, respectively. The last nondeterministic transition of M’ at time
g(n)+1 is computed by M with respect to the second components only, because
the (g(n) + 1)-th transition of M is a deterministic one. But since the next
transition of M’ at time g(n) + 2 uses the second components only (rule (3)),
M computes the corresponding configuration correctly. From time g(n) + 2 to
t(n) the transitions 4 and d/, are identical. By the definition of F' the case
g(n) +1 = t(n) is handled. Tt follows L(M') C L(M).

For the converse, it follows directly from the definition of M’ that M’ simulates
M whereby additionally to the nondeterministic transitions in the first registers
a deterministic transition in the second registers is simulated (rules (1),(2)).
Since the first deterministic transition of M’ uses the second components only
(rule (3)), the last simulation of d,4 is not regarded. It follows L(M) C L(M").

O



The following corollary summarizes the last two theorems.

Corollary 5 Let g : N — Ng, g(n) > 1, be a mapping and k € Ny be a constant
number. Then

Zi(9G-CA) = Zi((9 + k)G-CA)
holds for all time complexities t : N — N, t(n) > g(n) + k.

By the techniques shown above the following corollary concerning one-way ar-
rays is easily derived.

Corollary 6 Letg: N — Ny, g(n) > 1, be a mapping and k € Ny be a constant
number. Then

Z1(9G-OCA) = Z((g9 + k)G-OCA)
holds for all time complexities t : N — N, t(n) > g(n) + k.

In general, we cannot reduce the number of nondeterministic transitions to
0 even if g is a constant mapping. In Theorem 14 it will be shown that
Z+(OCA) = Z,1(0G-OCA) is a proper subfamily of .%;(1G-OCA). There-
fore, the condition g(n) > 1 is necessary.

4 Speed-up

It is known that several types of cellular automata can be sped-up by a con-
stant amount of time as long as the remaining time complexity does not fall
below real-time. A proof in terms of trellis automata can be found in [5]. In
[17, 18] the speed-up results are shown for deterministic and nondeterministic
cellular and iterative automata. The proofs are based on sequential machine
characterizations of the parallel devices. Both techniques can be adapted to

G-(O)CAs in a straightforward manner. Exemplarily, a corresponding result
has been shown for 1G-OCAs in [3].

Lemma 7 Let g : N — Ny be a mapping and k € Ny be a constant number.
Then

Zi+k(9G-CA) = Z£i(9G-CA)  and  Z,1(9G-OCA) = Z(9G-OCA)
hold for all time complexities t : N — N, t(n) > n.

It is sometimes convenient to have such results for constructions: For example,
after the k-th nondeterministic step a deterministic ¢(n)-time (O)CA can be
simulated and subsequently the resulting (¢(n) + k)-time £G-(O)CA can be
sped-up to a t(n)-time kG-(O)CA again. Observe that in case of real-time it
is not possible to speed-up the deterministic (O)CA by k time steps before its
simulation.

Deterministic CAs and OCAs can be sped-up from (n+t(n))-time to (n+ @)-
time [1, 17, 18]. Thus, linear-time is close by real-time. The question whether



every linear-time CA can be sped-up to real-time is an open problem. Related
to that question is a closure property of the family .%;(CA): The real-time
CA languages are closed under reversal iff the linear-time and real-time CA
languages are identical [15].

Both problems are solved for OCAs. The family .Z,,(OCA) is closed under
reversal [5] and the real-time OCA languages are a proper subfamily of the
linear-time OCA languages (£;1(OCA) C Z(14)..a(OCA) = £;(OCA)) [5, 26].

Now we are going to show a stronger result for G-(O)CAs from which follows
that real-time is as powerful as linear-time. Since we need just one nondeter-
ministic transition and one-way information flow only, the strong speed-up is
shown for 1G-OCAs (i.e. the weakest device in question) at first. Subsequently,
the result follows for G-(O)CAs as corollary.

In order to prove the theorem we introduce a technique that is later on refer-
enced as packing-and-checking. The basic idea is to guess the input in a packed
form on the left of the array. The verification of the guess can be done by a
deterministic OCA in real-time what is shown by the next two lemmas.

Let B be an arbitrary alphabet that does neither contain the blank symbol e
nor the border symbol #. Following the idea each cell of the OCA has k registers
for the packed part of the input and one register for its original input. The next
two mappings extract the packed resp. the original input from a cell.

hip: (BUfe})* x B = (Bu{e})*

Wiy e ey Wy We41 7 W1 - W
and

hk,g : (BU{e})k X B — B

Wiyeeey Why W1 > We41

The following lemma, allows to verify whether (after a guess) the concatenation
of the first k registers of all cells yields to a word beginning with n symbols
from B and ending with (k — 1) - n blank symbols e. Le., whether the packed
input has the correct length and is contained in the leftmost [7] cells.

Lemma 8 Let k > 1 be a constant number. Then
Ly, = {w =wy Wy | Wy,...,wy, € (B U {e})’C X B A hy1(w) € B"e(k_l)'"}
is a real-time OCA language.

Proof. A corresponding OCA has to perform two checking tasks (cf. Figure
3). The first is to verify that hy;(w) is of the form B*e™. Therefore, the
cell which contains the last symbol of the packed input generates a signal ® in
the corresponding register. The signal passes through the registers and cells in
descending order and must not meet a symbol e. Otherwise an error signal is
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Figure 3: Example to the proof of Lemma 8 (k = 3).

generated that prohibits the leftmost cell to accept. Additionally, error signals

are generated if a register of a cell contains the blank symbol followed by a

nonblank symbol.
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The second task is to verify that the length of the packed input meets the length
of the array. It is simply performed by initiating a left moving signal in the
rightmost cell at the first time step. The lengths are identical iff it arrives at
the left border exactly when the signal ® of the first task arrives in the first
register of the leftmost cell. O

To verify the guess it remains to show that the packed input is identical to the
original input on the (k + 1)-th track:

Lemma 9 Let k > 1 be a constant number. Then
L= f{w=wy---wp | wy,...,w, € (BU{e})¥xB A hy1(w) = hgo(w)ek~D"}
is a real-time OCA language.

Proof. Since %, (OCA) is closed under intersection [19] we may assume that
the input belongs to the language Ly ; of Lemma 8.

The [ %] cells containing the packed input are able to identify themselves by the
contents of their first k registers. For what follows every cell has another k re-
gisters which work like a first-in-first-out (FIFO) queue (cf. Figure 4). The next
input symbol to the queue is the content of the (k + 1)-th register, respectively.

The rightmost n — [%] cells shift the content of the (k+1)-th track successively
leftward. Thus, they are implementing the input stream to the FIFO queue.
At the end of the input stream — marked by a e — each of the leftmost [7] cells
compares its FIFO content to its packed input. If the comparisons of all cells are
successful the input is accepted by a signal + in the (k + 1)-th registers. Since
the + is generated one time step after the arrival of the end-of-input-stream
marker e the OCA works in n + 1 time, but can be sped-up by one time step
to real-time. O

Now we are prepared to prove the strong speed-up result for 1G-OCAs:
Theorem 10 Let k € N be a constant number. Then

Zit(1G-OCA) = Z(1G-OCA)
holds for all time complexities t : N — N, t(n) > n.

Proof.
From the definition we obtain the inclusion .%;(1G-OCA) C %.+(1G-OCA). It
remains to show %;.+(1G-OCA) C Z(1G-OCA).

Let L be a language belonging to .%%.+(1G-OCA) and let M be a 1G-OCA that
accepts L with time complexity k-t. We construct a 2G-OCA M’ that simulates
M in time t(n) + 1. The underlying technique is packing-and-checking.

The idea is as follows: On an input of length n each cell i with 1 < i < [%]
of M’ guesses the initial states of the cells k(i — 1) + 1, k(i — 1) + 2,...,ki in
its first k registers and remembers its original input in its (k + 1)-th register
(here we may assume that all cells ¢ > n initially contain an e). Based on

11
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+ + + + + [ [ .

Figure 4: Example to the proof of Lemma 9 (k = 3).
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this compressed representation M’ can simulate k¥ time steps of M per time
step which yields the required speed-up. For this reason M’ needs a second
nondeterministic transition and another #(n) time steps.

In parallel M’ has to check whether the guesses of the initial states were correct,
which can be done by the simulation of the acceptor of Lemma 9. For the
verification n time steps are needed. By Corollary 6 and Lemma 7 there exists
a 1G-OCA accepting L(M) with time complexity ¢(n). O

Although the simulation on the compressed representation may be faster than
real-time a speed-up below real-time is, of course, not possible due to the time
needed for packing-and-checking. The necessary conditions for the strong speed-
up are the possibility to simulate the original device with k-fold speed on a
compressed representation of the input, the possibility to speed-up the resulting
device by a constant amount of time, and the possibility to reduce the number
of nondeterministic transitions by a constant. Due to Corollaries 5 and 6 and
Lemma 7 these conditions are met by gG-OCAs and ¢G-CAs as well.

Corollary 11 Let g : N — N, g(n) > 1, be a mapping and k € N be a
constant number. Then

Z4(gG-OCA) = Z(gG-OCA) and %.4(9G-CA) = Z(gG-CA)
hold for all time complexities t : N — N, t(n) > n.

In [8] Z(NOCA) = Z(NCA) has been shown. The proof is based on a set of sig-
nals along which verifications of previous guesses are done. The last verification
needs another id time steps such that the simulation of an NCA by an NOCA
is at the cost of additional id time steps. Thus, %1 ;4(NOCA) = Z(NCA) is
proved. As an application of our strong speed-up result we can strengthen the
simulation avoiding the increase of the time complexity.

Theorem 12
Z,(NOCA) = Z,(NCA)

holds for all time complexities t : N — N, t(n) > n.

Proof.

From [8] Z1ia(NOCA) = Z(NCA) is known. In order to apply Corollary 11
let g :==t+1id and k = 2. By %,1,4(NOCA) = £ 14((t +id)G-OCA) it follows
Z+ia(NOCA) = Z1a (NOCA). Since id < t we obtain Ziria (NOCA) C
#2.1 (NOCA) = Z,(NOCA). 2

a

Throughout the present paper real-time and linear-time acceptors are of par-
ticular interest. Therefore, we emphasize their specific relations.

Corollary 13 Let g : N — Ng, g(n) > 1, be a mapping. Then
Z1(9G-OCA) = Z;(9G-OCA) and Z4(9G-CA) = Z(9G-CA).
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5 Ranging in the hierarchy of deterministic (O)CA
languages

The present section is devoted to compare the computing power of the
kG-(O)CAs to the well investigated deterministic devices. We proceed by ran-
ging in them into the following hierarchy of deterministic (O)CA language fam-
ilies.

It is known that the real-time OCA languages are properly included in the
linear-time OCA languages, which in turn are identical to the reversal of the
real-time CA languages (Z+(OCA) C £;(OCA) = ZE(CA)) [5, 17, 26]. In
[4, 14] the inclusion £} (CA) C Z(OCA) has been shown. Together with the in-
clusions for structural reasons we obtain .%.;(OCA) C .Z;(OCA) = ZZ(CA) C
Z1(CA) € Z(0CA) € Z(CA).

Most of the following results are obtained for 1G-(O)CAs but hold for
kG-(O)CAs, too. On the other hand, due to the homomorphic characteriz-
ation (Section 6) and the enormous increase of computing power by adding just
one nondeterministic transition the 1G-(O)CAs are an important subclass of
the gG-(O)CAs.

At first we show that the computing power of real-time OCAs is, in fact, strictly
increased by adding one nondeterministic step to that device.

Theorem 14 .%,,(OCA) C %(1G-OCA)

Proof. Obviously, we have an inclusion between the families since the nonde-
terministic part of the state transition can be designed to be deterministic.

Let L be the language {a? | p is a prime number}. In [9] it is shown that
L belongs to .%,+(CA). Since L is a unary language from the hierarchy L €
Z1(OCA) follows. For structural reasons we obtain L € £;(1G-OCA). By
Theorem 10 a corresponding linear-time 1G-OCA can be sped-up to real-time,
hence, L belongs to .%+(1G-OCA).

On the other hand, L does not belong to .%;(OCA) since it is not a regular
language [23]. Thus, the inclusion is a proper one. |

The previous result can be strengthened furthermore. Admittedly, we loose the
strictness of the inclusion. The question of the strictness is strongly related
to the famous open problem whether or not the real-time CA languages are a
proper subfamily of the CA languages.

Theorem 15 Z;(CA) C .%+(1G-OCA)

Proof. Let L € 4;(CA). Since % (CA) is closed under reversal [24] there
exists a linear-time CA that accepts L. This CA, in turn, can be sped-up by a
multiplicative and additive constant [18]. We obtain a CA M = (S, 64, #, A, F)
that accepts L® with time complexity 2n — 1.
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Now in a first step a deterministic OCA M’ = (5',0),#, A', F) is constructed
such that M’ accepts the language {e”lw® | w € L(M)} with time complexity
2n — 2. Here we assume e ¢ S and w.l.o.g. n > 1.

S = (SU{e}) U (SU{e})?
A= Au{e}
V$1,32 € SU{e} :

Sy (s1,#) := (s1,e)
dg(s1,82) = (s1,52)

V (51, 89), (s3,84) € (SU{e})”:

04(84,82,81) if (s1 #e ANsa#eAsy#e)
da(#,82,81) if(si#eNsa#eNsy=e)
5’ , ) , = d\*; 92,91 1 2 4
d((sl s2), (53 34)) 04(84,82,#) if (s1 =eAsa#eAsyF#e)
e otherwise

The basic idea is that during an intermediate step the cells of M’ are collecting
the information needed to simulate one step of the CA (cf. Figure 5). Due to
the one-way information flow a cell ¢ thereby can collect information from the
cells i+ 1 and 4+ 2 and, thus, simulate one step of the CA cell 1+ 1. Therefore,
the relevant part of the configuration shifts in space to the left.

Since .%,+(OCA) is closed under reversal Lemma 9 holds for L,ﬁz, too, and L/?,z
is a real-time OCA language.

The cells of a 1G-OCA M" that accepts the language {w® | w € L(M)} are
constructed such that they can store two input symbols. Under input w’t the
1G-OCA M" guesses in its first step the configuration e ®lw® whereby two
adjacent symbols are stored in one cell, respectively. The verification of the
guess corresponds to the acceptance of the language L}ZQ for k = 2.

In parallel to the verification M" simulates the OCA M’ with double speed on
the compressed input. Therefore, M" accepts with time complexity 1+ 2"2—_2 =
n. Since L(M") = {w® | w € LM)} = (L(M))" = (L®)" = L the theorem
follows. -

The next result fits the family .Z;(1G-OCA) (and due to Theorem 23 the
family %+(1G-CA) as well) into the known hierarchy of deterministic language
families. Moreover, it shows that the increase of computing power gained in
adding one nondeterministic transition to real-time OCAs cannot be achieved
in general (i.e. for arrays without time limits). Conversely, we can avoid the
nondeterministic transitions without reducing the computing power.

Theorem 16 .Z(1G-OCA) = Z(0CA)

Proof. In [14] the equivalence of OCAs and a restricted online single-tape
Turing machine has been shown. Such a sweeping machine (SM) works as
follows: The semi-infinite working tape is bounded to the right. Initially all cells
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CA OCA

Figure 5: Example to the proof of Theorem 15.

except the rightmost one are empty. The rightmost cell contains an endmarker
#. The SM starts scanning the # and performs successively right to left sweeps
over the nonempty part of the working tape. At the beginning of its i-th sweep,
1 <4 < n, it reads the i-th input symbol and moves its read-write head from #
to the left. Subsequently, it continues moving leftward rewriting the nonempty
cells passed through (but does not erase them). The sweep ends on the first
empty cell which may be rewritten. Now the read-write head resets to the
rightmost cell and the SM starts the next sweep. After reading the whole input
an end-of-input symbol is assumed to be the permanent input. When reading
the end-of-input symbol for the first time the SM rewrites the empty cell at the
end of its sweep by # and subsequent sweeps are bounded by the left and right
# endmarkers, thus, not expanding the working tape.
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It is easily seen and shown in [4] that under input w; - --wy, w; € A, such a
sweeping machine can partition its working tape during the first n + 1 sweeps
as depicted in Figure 6 (here we may assume that each cell of the working tape
has two registers, thus, speaking loosely of a tape of length 2n). The cells of
the left partition are divided into three tracks. On the first one the input is
stored. The second and third track is empty. The cells of the right partition
are containing zeroes.

w1 w2 te Wn—1| Wnp

Figure 6: Partitions of the SM in the proof of Theorem 16.

Let M = (S,6n4,04,#,A,F) be an arbitrary 1G-OCA. A SM that accepts
L(M) works as follows:

On the right partition a |S|-ary counter is realized where the least significant
digit is at the right. Obviously, the SM can increment the counter during one
sweep. The generation of a carry-over at the most significant digit synchronizes
the computation on the left partition (it occurs after |S|™ sweeps, respectively).

Suppose now on one of the tracks of the left partition the configuration ¢; at
some time ¢ > 1 of M is stored. Then the SM can compute the successor
configuration c¢;;1 during one sweep. It suffices to remember the content c;(j)
of a cell j, 1 < j < n, while moving one cell to the left. On the new cell the SM
finds the state ¢;(j — 1) and now is able to simulate the local transformation
64(ci(j —1),¢i(4)) in order to obtain ;1 (j — 1).

During the whole computation the SM keeps the original input on the first track
of the left partition unchanged.

On the second track again a |S|-ary counter is realized that produces success-
ively all configurations of M after its guess (at time 1) (here we identify the
state set S by the ordered set {0,...,|S|—1}). Since the original input is avail-
able on the first track the SM can verify whether a counter value corresponds
to a valid configuration at time 1 (i.e., whether the state given by the digit of
a cell j — 1 belongs to d,q(co(j —1),c0(4)) = na(wj_1,w;)).

The counter on the second track is incremented if and only if the synchronizing

counter on the right partition overflows, thus, each |S|" sweeps. In parallel
during such sweeps the second track is copied onto the third one.

During the following |S|™ — 1 sweeps the content of the third track is updated
according to the local transformation d; of M. Hence, the configurations
c2,---,C|gn are generated successively. Since M has at most |S|" different
configurations of length n, the simulation started with the configuration c; is
completely performed.

On the other hand, all possible configurations c¢; are generated at the second
track such that the SM simulates all possible computations of M on input
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wi -+ -wyp. The SM accepts the input if one of the simulations is accepting,
it rejects if the counter on the left partition overflows before one accepting
computation has been simulated.

It follows Z(1G-OCA) C Z(OCA) and for structural reasons Z(OCA) C
Z(1G-OCA) what proves the theorem. O

The following Corollary gives an upper bound for the family .%;;(1G-OCA).
Corollary 17 .%;(1G-OCA) C Z(OCA)

Now we have Z;(CA) C %£+(1G-OCA) C Z(OCA). As will be shown by
Theorem 23 the real-time computing power of 1G-OCAs is not increased when
two-way information flow is provided.

A summary of the relations between several language families is depicted in
Figure 7.

6 Homomorphic characterization

In [22] Myhill has proved that the regular languages are exactly the closure
of the finite languages under union, concatenation and iteration. Such results
open the possibility to characterize certain language families by, in some sense,
simpler ones and some kind of operations. Besides they shed some light on the
structure of the family itself they may be used as powerful reduction tool in
order to simplify some proofs or constructions.

In the present section we are going to characterize the real-time 1G-(O)CA
languages by the closure of .%;((O)CA)s under e-free homomorphism. Thus
replacing the nondeterminism by e-free homomorphisms and vice versa. An ap-
plication of the homomorphic characterization yields the result .%;(1G-CA) =
Z+(1G-OCA) from which follows that for such devices one-way information
flow is sufficient.

In order to prove the characterization for real-time 1G-OCAs we need the clos-
ure of .%;(OCA) under a weak kind of homomorphism.

Definition 18 Let h : A* — B* be an e-free homomorphism. h is structure
preserving iff for every two a,a’ € A with a # a' and h(a) = by---b,, and
h(a') =b ---bl, the sets {b1,...,by} and {b},...,bl} are disjoint.

Lemma 19 .%,;(OCA) is closed under structure preserving homomorphism.

Proof. Let A= {ai,...,an} be an alphabet, L C A* be a language belonging
to Z+(OCA) and h : A* — B* be a structure preserving homomorphism:

h(al) = b1,1 e bl,nla . ,h(am) = bm,l e bm,nma

where b; ; € B. Observe that the b; ; are not necessarily different.
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A deterministic generalized sequential machine (gsm) [13] is defined as follows:
The input alphabet is B, the output alphabet is A and the set of states is
S={sij|1<i<mand2<j<mn;}U{so,s.} where sy is starting and final
state. The gsm does its computation according to the local transformation
0:SxB—8x A"

For all 1 <i <m and s;; € S\ {s0, se}:

(si2,€) ifj=1andn; >1
(5(80,bi’j) =< (sg,a;) ifj=landn;=1
(se,e)  otherwise
(Skyt1,€) ifk=iandl=jandn; >1
5(3k,labi,j) = < (s0,a;) ifk=iandl =7 and n; =1
(Se,€) otherwise

5(36, bi,j) = (Se, 5)

The gsm reads an input word w' from B* and emits an output word w from A*.
If additionally the gsm stops in a final state we write formally gsm(w') = w.
For a given language L;, C B* it defines the language gsm(L;,) = {w € A* |
Jw' € Ly : gsm(w') = w}.

Since .Z;+(OCA) is closed under inverse deterministic gsm mappings with final
states [16] the language gsm™ (L) = {w’ € B* | Jw € L : gsm(w') = w}
belongs to .%,+(OCA), too. Now it suffices to show h(L) = gsm (L).

For an arbitrary w = a; ---a, € L we have h(w) =b1,1 -+ b1, -+ bp1-bpn,-
Since h is structure preserving the b; 1 are all different, thus, if started in state
so the computation path of gsm under input h(a;), 1 < i < m, is (s, bj,1) 2 s
if n; = 1. The output is written on top of the arrow. If n; > 1 we obtain
(SOabi,l) i) (Si’Q,bZ',Q) i) (Si’g,bz',3) i) i) (Si,niabi,ni) 3 S0- In both cases
gsm maps h(a;) — a;. Since starting and final states are identical we have
gsm(h(w)) = w and therefore h(w) € gsm '(L).

Now let w' be a word in gsm™!(L). There must exist a word w = a;---a, € L
such that gsm(w') = w. We consider an arbitrary symbol in w, say a;. The pos-
sible transition steps of gsm that emit a; are (s;z;,bin;) 2 gy and (80,b4,1) 2
sg- Note that these steps result in the state s respectively. Since n; is uniquely
defined by h we have for n; = 1 the transition (s, b; 1) 2 so and since h is
structure preserving (i.e., b; is uniquely determined) gsm~'(a;) = b;;. For
n; > 1 the transition (s;,;,bin;) 2 sy must take place to emit the symbol
a;. The only way to enter state s;,, is from state s;,,—1 with input b;,,_1
whereby the empty word is emitted. We can trace back the computation un-
til we reach state sy again. The only way to enter s is by transition steps
that emit nonempty symbols. Therefore, gsm_l(ai) = b;1-:bjp,. Since
starting and final states are identical we obtain the unique word gsm™!(w)
which must be w': w' = gsm Y(w) = by biy - bp1-- “bpn,. It follows
w' = by bipg--bp1--- bp,np = h(al) .- h(ap) = h(w) € h(L) a
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Now we can use the previous lemma to prove the characterization.

Theorem 20
a) Let L be a language belonging to .£,;(OCA) and h be an e-free homo-
morphism. Then h(L) belongs to £,;(1G-OCA).
b) Let L be a language belonging to .%,:(1G-OCA). Then there exist an e-
free homomorphism h and a language L' € £,,(OCA) such that h(L') = L
holds.

Proof.
a) Let L € %+(OCA) be a language over the alphabet A = {a;,...,a;,} and
an e-free homomorphism A : A* — B* be defined according to

h(a1) =bi,1- brngs- -, ham) = bm,1+ Py

where b;; € B.

We introduce an alphabet B := {bi1,...,b1n;,021,---,0mn, | of different
symbols and a structure preserving homomorphism h' : A* — B*:

h'(al) = 51,1 e Bl,nla - ,h'(am) = Bm,l e Bm,’ﬂm'

Since .%+(OCA) is closed under structure preserving homomorphism h'(L) is
a real-time OCA language. Define an e-free length preserving homomorphism
h" : B* — B*: h"(b1,1) =b11,..-, A" (bmn,.) = P -

Obviously, we have h(L) = h"(h'(L)).

A 1G-OCA M’ accepting h(L) in n+ 1 time steps works as follows. Since A" is
length preserving, in the first time step every cell can guess the inverse image of
its initial state under A”. During the next n time steps M’ simulates a real-time
OCA M accepting h/(L). As shown in Lemma 7 we can speed-up M’ by one
time step.

Trivially, for each w € h(L) there exists a w' € L such that h(w') = w. Define
w” := h/(w'") then w" is a preimage of w under h” and, thus, M’ accepts w.

On the other hand, if M’ accepts an input w then there must exist a w’ such
that h"(w') = w and w' € h/(L) hold. Therefore, there exists a w"” € L such
that h'(w") = w'. Tt follows A" (h'(w")) = w and, hence, w € h(L).

b) Let M = (S,0p4,04,#%, A, F) be a real-time 1G-OCA with global trans-
formations A4 and Ay, configurations ¢; and L = L(M). Define a language
L' C (A x S)* as follows:

L':= {(al,sl)---(an,sn) |w=ai--a, €L
ATl € Apaleow) s e1(l) = s1,...,¢1(n) = sy
A (A5 e)) (1) € F

L' is a real-time OCA language: The cells of a corresponding OCA M’ are
verifying the condition s; € d,4(a;,ai41), 1 <i < n—1, and s, € dpq(an, #)
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during their first time step. If the verification fails an error signal is sent to
the left preventing the OCA from accepting. Otherwise cell ¢ enters state s;.
For these cases the configurations of M (under input a; - - a,) and M’ (under
input (a1,s1) -+ (an, s,)) at time 1 are identical.

During the next n — 1 time steps M’ simulates the deterministic behavior of
M from time 2 to n. Therefore, M’ accepts if M accepts the input a; - - a,, by
running through the configuration s; - - - s,, at time step 1. Thus, ifa;---a, € L.
It follows L' € %, (OCA).

An e-free homomorphism h : (4 x S)* — A*, h((a,s)) := a, maps a pair from
A x S to its first component. It follows for all w = (a1,s1)--- (an,s,) € L' :
h(w) =ajy---a, € L and, hence, h(L') = L. 0

Now we apply the characterization and its proof.

Lemma 21 Let L be a language belonging to .%,;(1G-CA). Then there exist
an e-free homomorphism h and a language L' € £,,(CA) such that h(L') = L
holds.

Proof. The proof is only a slight modification of part b) of the proof of
Theorem 20. It can easily be adapted. O

Lemma 22 Let L be a language belonging to .£,4(CA) and h be an e-free
homomorphism. Then h(L) belongs to Z,1(1G-OCA).

Proof. Theorem 20 and Theorem 27 show that .Z:(1G-OCA) is closed
under e-free homomorphism. The Lemma follows immediately from the fact
Z1(CA) C Z,4(1G-OCA) shown by Theorem 15. O

Theorem 23 %,:(1G-CA) = £4(1G-OCA)

Proof. £,(1G-OCA) C .%(1G-CA) follows for structural reasons.

For the converse suppose contrarily there exists a L € .%+(1G-CA) that does
not belong to .%+(1G-OCA). From Lemma 21 we obtain that there must be a
language L' € %+(CA) and an e-free homomorphism h such that h(L') = L.
By Lemma 22 it follows h(L') € .Z,,(1G-OCA), a contradiction. 0

Figure 7 summarizes the relations between the language families.

7 Closure properties

In the following we are studying the closure properties of nondeterministic cel-
lular automata. Figure 7 separates the language families into five groups where
four of them are corresponding to well-known classes.

The first group is formed by the families . Z(NCA) = Z(NOCA) that are
identical to the context-sensitive languages (NSPACE(n)). From the group

21



#(NCA) =  2(NOCA) = 2

Ul & ) Ul

L (NCA) = Z(NOCA)  Z(kG-CA) = Z(CA) = Lige
[ [ Ul Ul U

Zi(NCA) = Z4(NOCA) ZL(kG-OCA) = Z(OCA) > %
Ul ) & Ul

Zu(kG-CA) = Zit(kG-OCA) 2 Zit(CA) U
[ [ Ul

Zri(kG-CA) = Zr+(kG-OCA) Zi(CA) D Zge
[ [ [

Z,(1G-CA) =  %,(1G-OCA) ZR(OCA) U
Il [ U

Zi(1G-CA) =  Z4(1G-0CA) > % (0CA) > &4

Figure 7: Relations between language families.

Zit(NCA) = Z1(NOCA) = £4(NCA) = Z(NOCA) the family .%(NOCA)

has been well investigated in terms of homogeneous trellis automata [16]. The

closure properties of the group .Z(kG-CA) = Z(CA) are corresponding to the

closure properties of the deterministic context-sensitive languages (DSPACE(n)),
whereas the group .Z(kG-OCA) = Z(OCA) has been studied in terms of itera-

tive arrays [4, 14].

Now we are exploring the strong closure properties of the remaining
group Z(kG-CA) = Z(kG-OCA) = Z.4(kG-CA) = Z£4(kG-OCA) =
Z1(1G-CA) = £ (1G-0CA) = £, (1G-CA) = Z1(1G-OCA) on the hand
of the simplest structured 1G-OCAs.

Lemma 24 Z,,(1G-OCA) is closed under union and intersection.

Proof. Using the same two channel technique of [8] and [24] the assertion
is easily seen. Each cell consists of two registers in which acceptors for both
languages are simulated in parallel. O

Theorem 25 .%,;(1G-OCA) is closed under concatenation and iteration.

Proof. Let Li,Ly € %+(1G-OCA) and M1, M3y be acceptors for L; and
Ly. We construct a 2G-OCA M’ that accepts the concatenation LiLs in n+ 1
time steps. To accept an input wyws, wy € L1, we € Lo, M' guesses in its first
time step the cell in which the first symbol of wo occurs. In the remaining time
steps 2 to n + 1 M’ simulates M in the left part on w; and M in the right
part of the array on wy. Due to Theorem 3 we can construct a 1G-OCA that
accepts Lj Lo in time n + 1 which according to lemma 7 can be sped-up to work
in real-time. The closure under concatenation follows.
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The closure under iteration follows analogously. During the first time step a
corresponding acceptor guesses the cells which contain the first symbols of each
subword. Subsequently acceptors for the basic language are simulated on each
subword in parallel. A leftmoving signal that is started at the right border
collects the results of the simulations. O

It is known that .%.4(OCA) is closed under reversal [5] which is a long-standing
open problem for .Z,;(CA).

Theorem 26 .%,;(1G-OCA) is closed under reversal.

Proof. Let A be an arbitrary alphabet. In [8] it has been shown that the
language
Lp={we A" |w=uw"}

belongs to .Z,:(OCA).
Let M be a 1G-OCA that accepts a language L C A* in real-time.

An Z;(1G-OCA) M’ that accepts L® in n + 1 time steps works as follows.
On input w = wy - - - wy, every cell 1 < i < n of M’ guesses the symbol wy,_;11
and stores it in an additional register. If the guesses are correct then M’ has
the symbols w,wyp—1 -+ - wowy = w® on its additional track. Furthermore, the
cell in the center of the array is nondeterministically marked (if n is even the
two cells in the center). Altogether, after the first time step M’ performs three
tasks in parallel.

One is to simulate M on w? because w € L¥ iff w® € L = L(M).

The second task is to verify that the cell(s) in the center is (are) marked. It is
realized by a signal which moves with speed % from the marked cell(s) to the
left. Since accepting is in real-time it can only be done at the time step the
signal arrives at the left border. In this case the center was marked.

The last task is to check that the guessed word w’ was correct. Since the input
as well as its (guessed) reversal is stored on different tracks and the center
is marked M’ can simulate two real-time OCAs for the language Ly where
the input is the left half of one track and the right half of the other track,
respectively. O

Now some closure properties concerning homomorphisms are shown.
Theorem 27 .£,,(1G-OCA) is closed under e-free homomorphism.

Proof. Suppose contrarily there is a language L' € .£,+(1G-OCA) and an e-free
homomorphism A’ such that L" := h'(L') ¢ £4(1G-OCA). From Theorem 20
follows that there exist a language L € .%,;(OCA) and an e-free homomorphism
h such that h(L) = L'. Therefore we have L"” = h/(h(L)). Since h' o h is an -
free homomorphism too, Theorem 20 is contradicted. The closure under e-free
homomorphism follows. o
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Corollary 28 .%,;(1G-OCA) is closed under injective length-multiplying ho-
momorphism.

We can relate an unsolved closure property to the power of deterministic two-
way CAs. In [15] it has been shown that the family .%,,(CA) is closed under
reversal iff the linear-time and real-time CA languages are identical.

Lemma 29 If the family .%,,(CA) is closed under e-free homomorphism then

Proof. Assume .%+(CA) is closed under e-free homomorphism. Due to the
inclusion .%+(OCA) C %+(CA) and the Theorems 20 and 27 one obtains
Z+(1G-OCA) C Z+(CA). The lemma follows from .%;(CA) C £;(CA) C
Z+(1G-OCA). O

Theorem 30 .%,;(1G-OCA) is closed under inverse homomorphism.

Proof. Let L € .Z,.(1G-OCA) be a language over some alphabet A and
h : B* — A* be a homomorphism. From Theorem 20 we obtain a real-time
OCA language L' over some alphabet A’ and a length preserving homomorphism
h': A" — A with B/(L) = L.

Let ho : {(z,2") € B x A" | h(z) = W' (2')}* — A™ be the homomorphism with
ho((z,2')) = '. Further let hy : (B x A’)* — B* be an e-free homomorphism
with hq ((z,2')) :== z. Then hy (hy* (L)) = h~1(W'(L')) = h~*(L) holds.

Since .%,4(OCA) is closed under inverse homomorphism [23], h; ' (L') belongs
to %+(OCA). Now Theorem 20 implies h~!(L) € .%+(1G-OCA) what proves

the closure under inverse homomorphism. O

Theorem 31 .Z,,(1G-OCA) is not closed under arbitrary homomorphism.

Proof. The Dyck languages and the regular languages are real-time OCA lan-
guages [8] and therefore real-time 1G-OCA languages. Chomsky [6] has shown
that every context-free language is the homomorphic image of the intersection
of a regular language and a Dyck language.

In contrast to the assertion we assume .Z;;(1G-OCA) is closed under homo-
morphism. Since it contains the regular as well as the Dyck languages it con-
tains the context-free languages.

Ginsburg, Greibach and Harrison [12] have shown that every recursively enu-
merable language is the homomorphic image of the intersection of two context-
free languages. Due to our assumption all recursively enumerable languages
have to be contained in .Z+(1G-OCA) from which a contradiction follows. O
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Since homomorphisms are specific substitutions it follows:
Corollary 32 .%:(1G-OCA) is not closed under arbitrary substitutions.

The theory of abstract families of languages (AFL) has been founded in [10].
Since the closure properties of AFLs are not independent of each other we now
derive two more properties from known results about AFLs.

Corollary 33 .£,.(1G-OCA) is an AFL (i.e. is closed under intersection with
regular sets, inverse homomorphism, e-free homomorphism, union, concatena-
tion and iteration).

Lemma 34 £, (1G-OCA) is closed under e-free gsm mappings and inverse
gsm mappings.

Proof. In [10] it has been shown that every AFL is closed under e-free gsm
and inverse gsm mappings. O

Lemma 35 .Z,,(1G-OCA) is closed under e-free substitution.

Proof. In [11] it has been shown that an AFL that is closed under intersection
is also closed under e-free substitution. Thus the assertion follows from Lemma
24 and Corollary 33. O

We have shown the inclusion .Z+(1G-OCA) C Z(CA) and that .Z,(1G-OCA)
is closed under reversal. Up to now it is not known whether the family is closed
under complement or set difference. A negative answer would imply that there
exists a CA language which is not a real-time CA language.
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