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1

1 Introduction – Spintronics

The topic of this thesis is centered in the research and technology field of spintronics1 [143,
138, 118]. In conventional electronics, only the charge of electrons is used, whereas their spin is
disregarded. In contrast, in magnetism the spin is utilized via the magnetization e.g. to store
information; however, here only stationary (equilibrium) electrons are relevant [50]. Spintronics
(spin-transport electronics), on the other hand, specifically employs the spin of transport (non-
equilibrium) electrons to gather, transport, and manipulate information. This additional degree
of freedom offers potential for new or improved functionalities, ranging from simple magnetic
field sensors to spin-based logic devices and even quantum computing. While the former are
widely used in applications, the more advanced concepts are an active field of basic and applied
research. In this section we give a brief overview of spintronics to outline the context of the
present topic and its relevance for other areas of the field; for more details we refer to the
literature [50, 10, 9, 131, 125, 65].

Designing a spintronic device naturally requires some effect coupling to the electron spin.
This may be e.g. exchange coupling in an (anti-)ferromagnet, an external magnetic field, or spin-
orbit interaction. This effect fixes a spin quantization direction and leads to different equilibrium
and transport properties for spin-up and spin-down electrons2. It is often useful to describe these
systems in terms of two separate spin channels conducting in parallel (two-current model), which
have different properties and are weakly coupled by spin mixing (spin-flip scattering) [47]. This
can lead to unequal currents in both channels, i.e. a net spin(-polarized) current, which is a central
quantity in spintronics. It may also lead to different non-equilibrium occupations for both spins
called a spin accumulation. The length scale on which a spin polarization or accumulation can
persist is called spin-diffusion length and gives an upper limit for many spintronic effects. Some
devices, however, are based on quantum-mechanical effects and thus restricted to the shorter
mean free path.

Early studies investigated spin-dependent resistance in bulk ferromagnetic materials, i.e. dif-
ferent resistances in both spin channels [47]. In contrast, magnetoresistive effects describe a
dependence of the total resistance of a device on an external magnetic field or the magnetic con-
figuration. Anisotropic magnetoresistance caused by spin-orbit coupling in a single ferromagnetic
layer has been discovered long before the spin itself [129] and is used for magnetic field sensors.
The development of methods to create thin layers (e.g. molecular beam epitaxy) enabled to in-
vestigate magnetoresistive effects in multilayer systems [47], which show a much larger effect (i.e.
relative change in the resistance). This led to the discovery of giant magnetoresistance (GMR)
[47]. In the simplest case, a GMR structure consists of two ferromagnetic layers separated by a
non-magnetic metal layer. Resistances measured along the layers as well as perpendicular both
show a dependence on the relative orientation of the two magnetizations. Usually, the resistance
is largest when both magnetizations are anti-parallel to each other. The GMR effect can be
understood from spin-dependent resistance in the ferromagnets and at the interfaces [47].

Even larger (tunnel) magnetoresistance (TMR) [60] can be obtained in magnetic tunnel junc-
tions (MTJ) [154], where the ferromagnetic layers are separated by a thin insulating layer and
electrons need to tunnel through this barrier. This effect is discussed in detail in the next section
(1.1). Because of their large TMR effect and relatively simple manufacturing, MTJs are currently
used as read heads for hard disk drives [147].

In both types of junctions (GMR and TMR), the current through the non-magnetic layer
can be spin-polarized and thus transfer angular momentum. If the magnetizations in both leads
are non-collinear, this leads to a torque on the magnetizations in the ferromagnetic layers called
spin-transfer torque (STT) [110, 59]. This goes beyond the two-current model, as considering
the full vector of the non-equilibrium magnetization is essential (‘spin coherence’ [7]). The STT
may switch the orientation of the magnetization in one of the layers (free layer). This can be
used in magnetic random-access memory (MRAM) [104, 27, 65], where a bit is encoded in the

1We do not distinguish spintronics and magnetoelectronics; the magnetoresistive effects are sometimes sorted
in the latter class [138, 50].

2Electrons which have their spin aligned parallel to the quantization direction are called majority or spin-up
(↑) and those with anti-parallel alignment are called minority or spin-down (↓).
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orientation of the free layer and read out by a magnetoresistance effect. MRAM is predicted to
combine non-volatility, high storage density, speed, and energy efficiency, and might serve as a
‘universal’ memory [65]. Here, STT provides an alternative to switching with local magnetic fields
[21, 72] with a preferable scaling behavior [65]. Another application of STT is the generation
of microwave-frequency currents by exciting a steady precession of the magnetization in the free
layer [77]. Beyond these broadly investigated applications STT, may also provide a key element
in other advanced magnetic nanodevices [89].

Over the recent years, spintronics has developed into a broad and diverse research field
with many directions and subfields. One goal of spintronics is to develop spin-based active
components, in particular logic devices, which may supplement or even supersede current CMOS
(complementary metal-oxide-semiconductor) electronics. This would add non-volatile memory
functionality (with basically unlimited switching endurance [67]) to the logic device. Further,
spintronic devices are predicted to outperform charge-based technology with respect to switching
speed, scaling behavior, and energy consumption/heat creation [143, 67]. An early proposal of
a spin field-effect transistor [32] is based on two ferromagnets connected by a semiconducting
channel. The ferromagnets act as spin polarizer and analyzer, while inside the semiconductor
the spin polarization is rotated by spin-orbit interaction (e.g. Rashba effect), which in turn is
controlled by a gate voltage. This allows to manipulate the net current through the junction.
Following this proposal, many devices based on various mechanisms have been proposed and
are being investigated [138, 43, 11]. Many of these devices require integrating spintronics with
semiconductor materials, preferably silicon [67]. Semiconductors offer many advantages [67], in
particular a high degree of control over the electronic properties via structuring, doping/alloying,
gate voltages, etc., and interaction with light; further, they often have a much longer spin-
diffusion length than metals [7]. Important issues are the injection/extraction of spin-polarized
currents into/from semiconductor materials [117] (ideally with a high spin filtering) and their
detection, which are often solved by tunnel contacts [111, 67]. Alternatively, spin currents can
be created (detected) by the (inverse) spin Hall effect [69] or other spin-orbit effects [6]. Further,
illuminating a semiconductor with circularly polarized light induces a spin polarization [67] and
vice versa, as utilized in spin light-emitting diodes [67] and lasers [118].

Another long-term goal of spintronics is to employ the full quantum-mechanical spin state as
a qubit to perform quantum computations [8, 10]; a quantum computer would be able to solve
certain problems much faster than a conventional one.

Spintronics is strongly interrelated with material science; many different classes of materials
are being studied with regard to their benefits in spintronic applications, including half-metals
(e.g. some Heusler alloys) [46], (diluted) (anti-)ferromagnetic semiconductors [91, 37], antiferro-
magnetic materials [92], topological insulators [107], and organic molecular materials [112, 16]
(in particular graphene [107]).

A research field closely linked to spintronics is magnonics, which studies (elementary) excita-
tions of the magnetic system (spin waves or magnons) and utilizes them to carry or even process
information [85, 81, 89]. They can propagate without moving charge carriers e.g. in ferromag-
netic insulators and can be controlled e.g. by magnetic metamaterials [80] (magnonic crystals).
The STT may provide an interface between magnonics and spintronics [89].

The field of spin caloritronics studies the interplay of spin and heat currents [30, 12]. It
yields a large number of novel effects, many of which can be discovered by considering the spin-
dependent or magnetic-configuration-dependent version of a thermoelectric effect or by replacing
the driving bias voltage in a spintronic effect by a temperature gradient. For example, in a
magnetic device the Seebeck effect, i.e. the generation of a voltage or current by a temperature
gradient, may be different for both spin channels, which yields the spin-dependent Seebeck effect
[30]; this is also a spin caloritronic analogue of spin-dependent resistance and induces a spin
accumulation or spin-polarized current. In a MTJ, one can also consider a dependence of the
Seebeck effect on the alignment of the magnetizations, which is termed tunnel magneto-Seebeck
effect [30, 139, A7] and an analogue of the TMR. Further, spin-polarized currents induced by
a temperature gradient in a MTJ can create thermal spin-transfer torque [54, A8]. Similar
generalizations can be found for other thermoelectric effects [12]. Recently, effects induced by
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applying bias voltage and temperature gradient simultaneously were investigated, e.g. the bias-
enhanced tunnel magneto-Seebeck effect [A1]. Other spin caloritronic effects are based on spin-
orbit coupling or collective excitations [12].

1.1 Coherent magnetic tunnel junctions

In this work, we focus on coherent MTJs, which indicates that the transport through the tunnel
barrier is coherent (or ballistic). The characteristic feature is a crystalline barrier with epitaxial
interfaces. As a result of this high structural quality, the state (or symmetry) and in particular

the Bloch ~k‖-vector of tunneling electrons is conserved. In contrast, in a diffusive MTJ, e.g.
with an amorphous AlOx barrier or low quality interfaces, electrons are (incoherently) scattered
during the tunneling. In this case, the transport can be understood in terms of the Jullière
model [68]. This model describes the conductance in terms of an (effective) density of states
for each ferromagnetic lead and the TMR arises from the spin polarization of these densities.
Thus, a high spin polarization (at the Fermi-energy) of the ferromagnetic material, ideally a half-
metal, is required to obtain a high TMR. In a coherent MTJ, transport is mainly determined by
quantum-mechanical boundary conditions at the interfaces, i.e. the matching between states in
the ferromagnetic leads and evanescent states in the barrier, and decay rates of the latter. Since
these decay rates can be very different, the contribution of various states in the ferromagnets
depends on which evanescent states they couple to [95]; this effect is called symmetry selection
by the barrier. Furthermore, the contribution of a state in one ferromagnetic lead depends on the
available ‘matching’ states in the other, in particular for anti-parallel alignment. This mechanism
was first investigated for the Fe/MgO system [25, 94], i.e. iron leads separated by a magnesium
oxide barrier. In this case there is a single band of evanescent states (the ‘∆1-like’ states) in the
MgO barrier, which has the smallest decay rate and dominates the transport. For these states
iron is half-metallic, i.e. there are ∆1-like states at the Fermi-energy for the majority spin but
not for the minority spin. Consequently, the large (by comparison) ∆1-like contributions are
blocked for anti-parallel alignment, since tunneling majority ∆1-like states have no ‘matching’
minority states in the other lead. Thus, calculations predicted a very large TMR effect [25, 94].
Fortunately, this system can be grown with high crystalline quality and experiments soon found
large TMR effects [105, 149], which by far outperformed those of GMR and diffusive TMR
junctions [60]. Importantly, these large effects can be obtained even in junctions prepared by
sputtering technique [105], which facilitates production on an industrial scale. The dominating
majority ∆1-like contributions also lead to highly spin-polarized currents for parallel and non-
collinear alignment (spin selection). This is beneficial for an efficient creation of STT and for
spin injection and makes this system a building block in many spintronic device designs.

In most experiments Fe1−xCox alloys with various concentrations are used for the ferromag-
netic leads3 rather than pure iron, which is assumed in most calculations. The impact of disor-
dered Fe1−xCox leads on the transport in these MTJs has not yet been investigated theoretically.
It seems obvious that the presence of disorder should interfere with symmetry selection and other
effects. Further, alloying changes the states available for transport at the Fermi-energy via band
filling. Thus, in this work we investigate the impact of these leads using a realistic description
of disordered alloys. We aim to disentangle the various effects of alloying and understand their
impact on TMR and STT.

1.2 Outline

From the introduction above it is clear that a quantum-mechanical treatment of transport is
necessary to obtain a meaningful description of coherent MTJs. In this work, we additionally
aim for an ab initio treatment, which basically allows for an unbiased view of the relevant
physical effects. The methods which we employ for this description are explained in section 2,

3Interestingly, the usage of FeCo as lead material is often motivated [148, 19] by an earlier theoretical study,
which approximated the alloy by an ordered structure and predicted an increase of the TMR with the Co
concentration[152]. However, from the perspective of the present work and recent experiments, these results
seem inaccurate.
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in particular the non-equilibrium Green’s function method, which is used to calculate transport
properties. We also introduce the treatment of symmetry via irreducible representations of the
space group (section 2.5). This is an essential tool in explaining the effect of symmetry selection
in the barrier. Disorder breaks the spatial symmetry in alloys, which makes their theoretical
description considerably more difficult than for ideal crystals. In this work, we treat disordered
alloys via a self-consistent effective-medium approach: the coherent potential approximation
(CPA), which is introduced in section 3. This method requires some additional considerations
in order to calculate transport properties (vertex corrections), these are derived in section 3.3.
Calculating physical properties (e.g. densities) within the CPA often requires restricted averages,
which describe atoms embedded in the effective medium (sections 3.4 and 3.5). In particular,
these allow to calculate the (non-)equilibrium Bloch spectral density (section 3.6), which provides
detailed information on electronic states and effects of disorder. Using these methods we give a
thorough description of the electronic structure of Fe1−xCox alloys in section 4.1, which forms
the basis for understanding the impact of alloying and disorder on transport processes. In section
4.2 we discuss the TMR effect for the well established Fe/MgO system. In particular, we explain
the effect of symmetry filtering in the barrier (4.2.1) and other effects like interface-resonance
states (4.2.2). The calculations are compared to experimental results in section 4.2.3 and we
discuss open questions and possible explanations for observed discrepancies. In section 4.2.4
we briefly discuss the transport in the Fe/MgO system in a wide energy range to substantiate
the understanding of the impact of various effects on the TMR. Based on this understanding,
we then extend the discussion to MTJs with disordered Fe1−xCox alloy leads (section 4.3). We
investigate the impact of disorder and band filling and their interplay with other effects. This
interplay and the resulting TMR are discussed for zero bias (section 4.4) and in a wide range of
bias voltages (section 4.5). These results for FeCo alloy leads are compared with experimental
results in section 4.4.1. In section 5 we introduce STT in MTJs. The theoretical methods for
its ab initio description are briefly discussed. Subsequently, a model is explained in section 5.2,
which allows to determine the torque using only current channels for both collinear alignments.
This allows to understand most effects which govern the STT from the explanations already
established in the sections on TMR. The STT is discussed for varying bias voltage (section 5.3)
and Co concentration (section 5.4). We conclude the section on STT with a general discussion
and comparison with available experimental results (section 5.5).
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2 Theory – Quantum transport

2.1 Introduction

In this work, we use an atomistic description of electronic transport in nanoscale devices based on
quantum-mechanical ab initio calculations. This is in contrast e.g. to a semi-classical description
via the Boltzmann transport equation [55] or using a tight-binding model [102]. This challenging
task requires a series of approximations. The first step is to separate the motion of electrons
and atomic nuclei via the Born-Oppenheimer approximation. Subsequently, the atomic positions
are regarded as fixed; an influence of phonons or other elementary excitations on the electronic
system is not considered in this work and we assume zero temperature.

The electron-electron interaction is treated within density functional theory (DFT) [78]. This
allows a description of properties of the interacting system by functionals of its ground-state den-
sity (Hohenberg-Kohn theorems [66]). The latter in turn is determined by minimizing the total
energy [86]. Via the Kohn-Sham ansatz DFT is used to map the interacting many-electron system
to an effective non-interacting system described by a single-particle Schrödinger-like equation.
This Kohn-Sham equation describes the interaction via a static effective potential [79], which
includes the classical Coulomb repulsion and an exchange-correlation potential. It is calculated
from the electronic density; this leads to a self-consistent system of equations [A3]. Through-
out this work we use the local-spin-density approximation (LSDA) [79, 136, 137] for exchange-
correlation functional and potential. Once the DFT self-consistent calculation is converged, we
use the Kohn-Sham system as an approximation of the quasiparticle structure of the interacting
system. In particular, the Kohn-Sham energies are shown as band structure, etc. and the states
are used for subsequent transport calculations. For a discussion of this interpretation we refer to
the literature [93, 34].

For transport calculations we use a non-equilibrium Green’s function approach [31]. This
provides access to currents and the density of conducting electrons in a system under finite bias
or more generally under non-equilibrium conditions. This method is introduced in detail in the
following sections.

All ab initio results shown in this work are obtained using a Green’s function based Korringa-
Kohn-Rostoker multiple-scattering method (KKR) [150], which was introduced in [A3]. For a
description of this method and a more detailed discussion on DFT we refer to [A3] and the
literature [150, 97] (KKR) and [106, 93] (DFT). To clarify the notation the key equations of the
KKR method are sumarized in appendix A.2.

2.2 Non-equilibrium Green’s functions

In this section we introduce various Green’s functions (GF) [102, 42, 31] that are used in many-

body theory. They are defined in terms of field operators a†~r and a~r, which create and annihilate
a particle at site ~r. The definitions are summarized in table 1. The expectation value 〈·〉 is taken
at the initial time of the Heisenberg picture and may include a statistical ensemble average.
The various GFs are connected by numerous relations, some are listed in table 1. All given
GFs can be used for ground-state, equilibrium, and non-equilibrium systems; however, Gn/p

attain particular importance in non-equilibrium situations and are refereed to as non-equilibrium
Green’s functions (NEGF).

Given a complete orthonormal single-particle basis
{
|α 〉
}

, the field operators can be written
as [102]

a~r =
∑
α

〈~r|α〉 aα =
∑
α

φα(~r) aα ⇔ aα =
∑
~r

〈α|~r〉 a~r =
∑
~r

φα(~r)∗ a~r. (2.2)

Thus, we can obtain other representations of the GFs by replacing the field operators by creation
and annihilation operators for a different basis. Different representations are related by the
unitary transformation following from eq. (2.2). The above GFs are single-particle (or two
point) GFs; they can be generalized by replacing the field operators by other operators including
products of field operators [102].
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Definitions

Gr −i θ(t2 − t1)
〈[
a~r2(t2), a†~r1(t1)

]
+

〉
retarded GF

Ga i θ(t1 − t2)
〈[
a~r2(t2), a†~r1(t1)

]
+

〉
advanced GF

Gn = −iG<
〈
a†~r1(t1) a~r2(t2)

〉
electron GF

Gp = iG>
〈
a~r2(t2) a†~r1(t1)

〉
hole GF

A
〈[
a~r2(t2), a†~r1(t1)

]
+

〉
gDOS

Relations

A = i
(
Gr −Ga

)
= Gn +Gp (2.1a)

Gr = −i θ(t2 − t1)A Ga = i θ(t1 − t2)A (2.1b)

Gr(~r2, t2, ~r1, t1) =
(
Ga(~r1, t1, ~r2, t2)

)∗
(2.1c)

Gn(~r2, t2, ~r1, t1) =
(
Gn(~r1, t1, ~r2, t2)

)∗
Gp(~r2, t2, ~r1, t1) =

(
Gp(~r1, t1, ~r2, t2)

)∗
(2.1d)

A(~r2, t2, ~r1, t1) =
(
A(~r1, t1, ~r2, t2)

)∗
(2.1e)

Table 1: Time-dependent real-space single-particle fermionic Green’s functions (GF)
Gξ(~r2, t2, ~r1, t1) and generalized density of states (gDOS) A: definitions and relations.

The field operators a~r(t), a
†
~r(t) are in the Heisenberg picture; we use a notation similar to [102]

and add GFs (Gn/p) from [31], the more common definitions G</> are also shown [55].

For time-independent systems (including steady-state), the GFs depend only on the time
difference t2 − t1 and we can investigate their Fourier transform, i.e. energy-dependent GFs. In
this case, it follows from eq. (2.1b) that [102]

Gr(E;~r2, ~r1) = Gz(E + i 0+;~r2, ~r1) and Ga(E;~r2, ~r1) = Gz(E − i 0+;~r2, ~r1) (2.3a)

where Gz(z;~r2, ~r1) =

∫
dE′

2π

A(E′;~r2, ~r1)

z − E′
. (2.3b)

This means that Gr/a are the side limits of Gz, which is their common analytic continuation. Gz

in turn can be determined from the generalized density of states (gDOS, or spectral function) A
and has singularities (poles, branch cuts, etc.) on the real axis where A is non-zero [42]. The
gDOS A again can be obtained from Gr/a via eq. (2.1a).

If we assume that the system is in thermal equilibrium and can be described by a grand
canonical ensemble, the expectation value is given by〈

(·)
〉

= Tr
[
ρ (·)

]
where ρ = e−β (H−µN)/Tr

[
e−β (H−µN)

]
(2.4)

(ρ density matrix, H Hamiltonian, N particle number operator, µ chemical potential, and β =
1/kB T inverse temperature). For this case, Gn/p can likewise be expressed in terms of A as
[42, 102]

Gn(E;~r2, ~r1) = f(E)A(E;~r2, ~r1) and Gp(E;~r2, ~r1) = (1− f(E))A(E;~r2, ~r1), (2.5)

where f(E) =
(
eβ (E−µ)+1

)−1
is the Fermi distribution function. This result is called fluctuation-

dissipation theorem [55] and can be obtained by writing the GFs in terms of exact energy and
particle-number eigenstates [102]. Note that for T → 0 (β → ∞) the Fermi function turns into
a unit step function f(E) = θ(µ− E).

In the case of independent (i.e. non-interacting) particles, the (Hermitian) Hamiltonian can
in principle be diagonalized by a basis of single-particle states [42]

H |n〉 = εn |n〉 i.e. H =
∑
n

εn a
†
n an. (2.6)
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Gξ(E;n) Gξ(E)

Gz 1/
(
z − εn

) (
z −H

)−1

Gn/2π ρn δ(E − εn) f(E) δ(E −H)

Gp/2π
(
1− ρn

)
δ(E − εn)

(
1− f(E)

)
δ(E −H)

A/2π δ(E − εn) δ(E −H)

Table 2: Energy-dependent GFs for a system of independent particles (Gn/p for thermal equilib-
rium only) in the basis of energy eigenstates Gξ(E;n) (second column) and as basis-independent
operators Gξ(E) (last column). Gr/a can be obtained from Gz via eq. (2.3a). ρn is the occu-
pation of eigenstate n given by ρn =

〈
a†n an

〉
, which for the case of thermal equilibrium yields

ρn = f(εn). The operators are related to real-space GFs through Gξ(E;~r2, ~r1) = 〈~r2|Gξ(E) |~r1〉.

The Heisenberg equation of motion for annihilation (and creation) operators for these states can
be solved

i
d

dt
an(t) =

[
an(t), H

]
− = εn an(t) ⇒ an(t) = e−i εn tan. (2.7)

In this basis the GFs are diagonal and can be calculated analytically. They are summarized in
table 2. It is convenient to introduce basis-independent operators, which are also listed in table
2 and used synonymous to the GFs. In this form GFs are used throughout most of this work.

The retarded (or advanced) GF has a remarkably simple structure, i.e. the inverse of an
operator; it can be calculated without diagonalizing the Hamiltonian. Further, it can be obtained
from the retarded GF of a simpler system using the Dyson equation (section 2.3). Its analytic
properties can be used to reduce the computational effort for energy-integrated quantities by
using contour integration [150]. For these and other reasons it is often employed in numerical
calculations, in particular in the KKR method.

Many physical properties can be obtained from single-particle GFs. Particularly important
is the density, which can be obtained from the diagonal elements

nn(E,~r) =
1

2π
Gn(E;~r, ~r)

(
= − i

2π
G<(E;~r, ~r)

)
occupied states (2.8a)

n(E,~r) =
1

2π
A(E;~r, ~r) = − 1

π
ImGr(E;~r, ~r) all states. (2.8b)

From this, the real-space density can be obtained by integration over energy and the usual
density of states by integrating over a unit cell. Similarly, the density in other representations is
obtained from respective GFs. In general, the expectation value of any single-particle observable
(and some many-particle observables) can be calculated from single-particle GFs [42].

The various GFs defined and discussed above can be easily extended to include the spin degree
of freedom. To this end, we add a spin index σ = ↑, ↓ to the ladder operators in the definitions
in table 1, which results in four combinations for each GF. The relations for the GFs in table 1
remain valid, where interchanging the two space and time coordinates also interchanges the spin
indexes. In general, the four spin combinations for a GF are coupled and it is useful to introduce
a combined GF, which is a matrix in spin space

G =

(
G↑↑ G↑↓
G↓↑ G↓↓

)
. (2.9)

For a spin-dependent single-particle Hamiltonian we separate the spin-independent (H0) and the

spin-dependent (~∆) part (SI units)

H = H0 1− ~∆ ~m, where 1 = ( 1 0
0 1 ) and (2.10a)

~m = − γS ~S = − gS µB
~

~~σ
2
≈ −µB ~σ is the spin magnetization (2.10b)
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(γS : electron spin gyromagnetic ratio, ~S: electron spin (operator), gS ≈ 2: electron spin g-factor,
µB : Bohr magneton, ~σ: Pauli matrices).
The above statements for independent particles remain valid for combined spin-dependent GFs,

in particular Gz =
(
z − H

)−1
, where the inversion includes the spin space. Of course, spin-

dependent properties can be calculated from the GF, in particular the spin magnetization

~m(E,~r) = −µB
1

2π
Tr
S

[
Gn(E;~r, ~r)~σ

]
, (2.11)

where the trace is only over spin space; for the electron density a trace in spin space is added in
eq. (2.8). Orbital magnetization is not considered in this work. If the spin-dependent part of the
Hamiltonian is (globally) aligned with the z-axis, i.e. ∆x = ∆y = 0, the four spin components
of the GFs are decoupled; the diagonal components G↑↑ and G↓↓ can be obtained independently
while G↑↓ = G↓↑ = 0.

For convenience, the exchange field (or Weiss field) ~∆ as defined in eq. (2.10) has units of
a magnetic field and couples to the spin magnetization. However, in this work it is created
by the spin-dependent exchange-correlation potential V xc in LSDA [136]. The most important

contribution to ~∆ is the Fock (or exchange) term, which effectively reduces Coulomb repulsion

for electrons with parallel spin via the Pauli principle [102, 15]; ~∆ also includes higher-order
correlations which couple to the spin. These quantum-mechanical many-particle effects are the
cause for (anti-)ferromagnetism and much larger than typical magnetic fields, which are not
considered in this work.

In equilibrium the magnetization is locally aligned with the exchange field [15, 28]. However,
the orientation of both generally depends on the position. In many cases it is appropriate to
assign a single orientation to each atom (rigid-spin approximation) [5] and assume that the
magnetization is collinear within a surrounding volume (e.g. ASA sphere). For ferromagnets or
other collinear configurations we choose the global polarization direction along the z-axis and
the spins are decoupled in the non-relativistic calculations. For a bulk ferromagnet the majority
spin is along +~ez and the magnetization is given by ~m = −µB

(
n↑ − n↓

)
~ez, where nσ is the

density for spin σ. By rewriting the spin-dependent exchange-correlation potential

V xc =

(
V ↑xc 0
0 V ↓xc

)
=
V ↓xc + V ↑xc

2
1− V ↓xc − V ↑xc

2
σz

we identify the resulting exchange field

~∆ = − 1

2µB

(
V ↓xc − V ↑xc

)
~ez. (2.12)

In the following sections we omit spin indexes; the derivations are valid for the combined spin-
dependent GFs as well as individually for the diagonal components if the spins are decoupled.

2.3 Dyson and Keldysh equation

In this section we derive equations relating GFs for different systems. We consider the case of
a steady-state system of independent particles. We assume that the difference between the two
systems is described by an (in general) non-Hermitian and energy-dependent operator (e.g. a
self-energy), i.e. H1 = H0 + Σ. For the retarded GF we use the operator form given in table 2
and obtain the Dyson equation

Gr1 =
(
E + i 0+ −H0 − Σr

)−1
=
(
(Gr0)−1 − Σr

)−1
= Gr0 +Gr0 Σr Gr1, (2.13)

which can be recast in various ways [42, 150, A3]. An analogous equation applies to advanced
GFs, where Σa = (Σr)† must hold to conserve analytic properties of the GFs. Eq. (2.13) includes
the case when Σ is Hermitian, e.g. a potential difference Σr = Σa = ∆V . By combining eqs.
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device

lead

Figure 2.1: Illustration of the separation of the Hamiltonian into a detached lead, the rest of the
device, and their mutual coupling.

(2.1a) and (2.13) we obtain an equation relating the gDOS in both systems

A1 = i
(
Gr1 −Ga1

)
= A0 +A0 ΣaGa1 +Gr0 ΓGa1 +Gr0 Σr A1 (2.14a)

=
(
1 +Gr1 Σr

)
A0

(
1 + ΣaGa1

)
+Gr1 ΓGa1 (2.14b)

with A0 = i
(
Gr0 −Ga0

)
and Γ = i

(
Σr − Σa

)
,

where the second line is obtained from the first using eq. (2.13). This is the Keldysh equation;
it can be derived under more general conditions for interacting particles in time-dependent non-
equilibrium systems [75, 55]. Again using eqs. (2.1a) and (2.13) we rewrite the first term in
eq. (2.14b) (

1 +Gr1 Σr
)
A0

(
1 + ΣaGa1

)
= Gr1 (Gr0)−1A0 (Ga0)−1Ga1 = 0;

thus, we find that this term vanishes4 and we obtain the steady-state Keldysh equation [31]

A1 = Gr1 ΓGa1 , (2.14c)

which is applied in this work. If the decomposition Γ = Σin + Σout into in-scattering and out-
scattering contributions [31] is known (see section 2.4), the Keldysh equation (2.14c) can be
decomposed into separate equations for the electron and hole GF5 (compare eq. (2.1a))

Gn1 = Gr1 ΣinGa1 and Gp1 = Gr1 ΣoutGa1 . (2.14d)

Keeping track of the occupation of states is a major task of the NEGF method.

2.4 Quantum transport

In this section we describe how transport in microscopic and mesoscopic systems can be described
quantum-mechanically using GFs [31]. We are interested in a device that contains a (central)
region, where coherent transport is important and thus a quantum-mechanical description is
necessary. The tunnel junctions investigated in this work are a prominent example of such
systems. We assume that leads contacting this region can be treated as ideal conductors. To
investigate the effect of a particular lead l on the device, the Hamiltonian of the system is split
into a detached lead, the rest of the device, and their coupling as illustrated in figure 2.1. We
assume a steady-state system of independent particles and investigate energy-dependent GFs.
To calculate the retarded GF we need to solve the system of coupled equations(

E + i 0+ −Hll −Hlc

−Hcl E + i 0+ − H̃cc

)(
Grll Grlc
Grcl G̃rcc

)
=

(
1 0
0 1

)
. (2.15)

From this we obtain [31]

G̃rcc =
(
E − H̃cc − Σrl

)−1
with Σrl = Hcl g

r
l Hlc and grl =

(
E + i 0+ −Hll

)−1
, (2.16)

4The first term in the (full) Keldysh equation (2.14b) can contribute in time-dependent systems, where it is
related to the initial state [88, 76, 33].

5In standard notation Σin = −iΣ< and Σout = +iΣ>.
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where grl is the GF of the isolated lead. Σrl is called self-energy of the lead and describes the
impact of the coupling to the lead on the device. This procedure can be applied to multiple
leads; assuming that they are not directly coupled (Hll′ ≈ 0) this leads to

Grcc =
(
E −Hcc − Σr

)−1
with Σr =

∑
l

Σrl =
∑
l

Hcl g
r
l Hlc, (2.17)

where Hcc is the Hamiltonian of the central region with all leads detached and Grcc is the GF in
this region including the coupling to all leads. An analogous equation can be obtained for the
advanced GF. Next, we calculate the gDOS Acc in the central region using the Keldysh equation
(2.14c); we obtain

Acc = Grcc ΓGacc =
∑
l

Grcc ΓlG
a
cc =

∑
l

A(l)
cc where (2.18a)

Γl = i
(
Σrl − Σal

)
= Hcl alHlc with al = i

(
grl − gal

)
. (2.18b)

Thus, the gDOS in the central region can be decomposed into contributions connected to each
lead. We assume that each lead is (and remains) in thermal equilibrium described by a distri-

bution function fl =
(
eβl (E−µl) + 1

)−1
. Hence, using eq. (2.5) the gDOS al of lead l and its

contribution to the central region can be decomposed into occupied and unoccupied states

A(l)
cc = Gn (l)

cc +Gp (l)
cc where Gn (l)

cc = Grcc Σinl Gacc and Gp (l)
cc = Grcc Σoutl Gacc (2.19a)

with Σinl = fl Γl and Σoutl =
(
1− fl

)
Γl. (2.19b)

Occupied states in a lead act as a source of electrons in the central region while unoccupied states
are a drain of electrons (or equally a source of holes). The leads can have different temperatures
and chemical potentials; this induces a temperature gradient and a voltage drop across the central
region, which is consequently in a state of non-equilibrium. The total density of electrons (or
holes) in the central region is the sum of contributions from all leads.

The above results are sufficient to describe coherent transport through the central region. In
addition, it is possible to include scattering inside the central region. This is an advantage of the
NEGF formalism. In general, this scattering can be described by an additional self-energy Σϕ,
which is added to the effect of the leads [31]. More precisely, we have Σr = Σrϕ +

∑
l Σ

r
l for the

retarded self-energy entering in the retarded GF (eq. (2.17)) and the electron and hole GFs are

Gncc = Grcc
(
Σinϕ +

∑
l

Σinl
)
Gacc Gpcc = Grcc

(
Σoutϕ +

∑
l

Σoutl

)
Gacc. (2.20)

The specific form of the scattering self-energy depends on the particular type and description
of scattering; the derivation often requires the use of many-particle NEGFs and diagrammatic
perturbation theory [55, 34]. In this work, we investigate the case of disorder scattering, which
can be handled in an independent-particle picture. It is treated with the coherent potential
approximation (CPA), which describes substitutionally disordered materials by a self-consistent
effective medium and is introduced in section 3.

A particularly interesting and important transport property is the current through the device.
It can be shown [31, 96] that the current from lead l into the central region is given by (in SI
units)

Il,tot =

∫
dE Il(E) with

Il =
e

h
Tr
[
Σinl Gpcc − Σoutl Gncc

]
. (2.21)

Using eqs. (2.20) and (2.19b) this can be decomposed into coherent and incoherent contributions
Il = Icohl + Iincl

Icohl =
e

h

∑
l′

(
fl − fl′

)
Tr
[
ΓlG

r
cc Γl′ G

a
cc

]
=
e

h

∑
l′

(
fl − fl′

)
T̄ cohl←l′ , (2.22)

Iincl =
e

h
Tr
[
Σinl Grcc Σoutϕ Gacc − Σoutl Grcc Σinϕ Gacc

]
. (2.23)
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The coherent part has the form of a Landauer formula [31], where the trace gives the transmission
T̄ (summed over all modes) between leads l and l′. The incoherent part depends on the form
of scattering. We discuss it for the case of disorder scattering described by the CPA. In order
to proceed, we anticipate some results from section 3. In the case of the CPA, the retarded
GF including scattering is the effective medium GF Ḡr (eq. (3.3)). For expressions involving a
product of two retarded or advanced GFs one obtains an additional term called vertex correction
(VC, section 3.3, eq. (3.14)); e.g. for the density contributed by lead l this yields

A(l)
cc = Ḡrcc Γl Ḡ

a
cc + Ḡrcc Ωl Ḡ

a
cc. (2.24)

Here, the VC Ωl describe electrons or holes originating from lead l that have been scattered by
the disorder. We show that the VC depend linearly on the source (in this case Γl). Thus, for
each source Σinl (Σoutl ) we obtain a VC term Ωinl (Ωoutl ) that contributes independently to the
scattering self-energy Σinϕ (Σoutϕ ). Because of the linearity we have

Ωinl = fl Ωl and Ωoutl =
(
1− fl

)
Ωl, (2.25)

and we obtain an expression for the incoherent contribution to the current from lead l that is
similar to the coherent one

Iincl =
e

h

∑
l′

(
fl − fl′

)
Tr
[
Γl Ḡ

r
cc Ωl′ Ḡ

a
cc

]
=
e

h

∑
l′

(
fl − fl′

)
T̄ incl←l′ . (2.26)

In the absence of magnetic fields, the transmission between two leads must be reciprocal [31]
(T̄l′←l = T̄l←l′). Still, eq. (2.26) is asymmetric with respect to the leads. It can be shown
[134] that including the VC ensures energy and particle-number conservation. This means

T̄ incl′←l(E) = T̄ incl←l′(E) for each energy E. However, this is not true for each ~k‖-point; disor-

der results in an elastic scattering between different ~k‖-points. In this sense, eq. (2.26), when

calculated for individual ~k‖-points, describes the transmission in terms of ~k‖-states in lead l while

any information on the ~k‖-state in lead l′ is lost due to scattering. Phrased differently, the true

transmission through a disordered region depends on incoming and outgoing ~k‖-vectors; however,
we obtain an effective transmission which has been integrated over one of the two. The coherent
part of the transmission is still reciprocal for each ~k‖-point.

The above equations for quantum transport were stated in a (single-particle) operator no-
tation. The implementation in the KKR method requires some additional considerations [A4].
This is briefly discussed in appendix A.2.

2.5 Space groups

The characteristic feature of crystalline material is its high degree of spatial symmetry, which has
a decisive impact on most of its properties. The spatial symmetry is described by a space group
GS =

{
{α|~t }

}
[20, 38, 51], where each element consists of a rotation α and a translation ~t. The

subgroup of pure translations GT =
{
{1|~T }

}
is a Bravais lattice and describes the periodicity of

the crystal. The crystal can be visualized as a set of atoms, the basis, being repeated according
to GT . Consequently, the position of each atom can be written as ~Ri = ~Ti + ~Si.

According to Wigner’s theorem [20], in quantum mechanics a symmetry of the system is
described by a unitary (or anti-unitary) operator which commutes with the Hamiltonian. We
can use symmetries to classify eigenstates according to their transformation properties under the
symmetries and decouple the eigenvalue equation. In the case of the Bravais lattice GT this leads
to Bloch’s theorem [102]

{1|~T }φn~k (~r) = φn~k (~r − ~T ) = e−i
~k ~Tφn~k (~r) (2.27a)

⇔ φn~k (~r) = ei
~k ~r un~k (~r) with un~k (~r + ~T ) = un~k (~r). (2.27b)
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Bloch’s theorem states that eigenstates of the system are Bloch waves, which are also eigenstates
of the Bravais lattice. They are characterized by a Bloch vector ~k, which is restricted to the
first Brillouin zone. For each ~k-point there are still infinitely many eigenstates. Mostly, these
are distinguished by different energy eigenvalues. However, for certain ~k-vectors we can have
degeneracies, which can be understood by taking into account the full space group GS . One can
show [20] that if φn~k is a Bloch wave then {α|~t }φn~k is also a Bloch wave with Bloch vector α~k.

We need to distinguish two cases: whether the two wave vectors are equivalent α~k ≡ ~k (i.e. they

differ only by a reciprocal lattice vector α~k = ~k + ~K) or not α~k 6≡ ~k.

If they are not equivalent, this means that we can obtain the eigenstates at α~k from those at
~k. This is used to reduce the computational effort, since the full Brillouin zone can be recovered
from its irreducible part.
Otherwise, if the two Bloch vectors are equivalent α~k ≡ ~k, then {α|~t } is a symmetry of the

point ~k; we call the group formed by these symmetries G~k. We can use G~k to classify the states

at ~k further [20]. Assume we know a basis formed by all degenerate states at ~k, then applying
a symmetry from G~k to one of them must yield a linear combination of these states. Thus, the
elements of G~k can be represented as matrices in the basis of degenerate states. We could aim
to find a new basis which makes these matrices as simple as possible. This amounts to finding
irreducible representations (IRR) of G~k [20, 38]. IRRs are matrices of small dimension which
specify the transformation properties of corresponding states. They can be used to classify
eigenstates for ~k-points with non-trivial symmetry. Since IRRs are determined only up to a
unitary transformation, they are identified by their trace, called character. The character for the
identity element is equal to the dimension, which also determines the degeneracy.

In general, IRRs depend on the space group and the ~k-point (line, plane) of symmetry; they
are tabulated in the literature [20]. For a symmorphic space group IRRs can be obtained via

Di({α|~T }) = e−i
~k ~T D̃i(α) [20], where D̃i is an IRR of the point group obtained from G~k by

dropping the translations. Only few point groups can occur and their IRRs are also tabulated
[20, 38]. In general, we may not know a basis of eigenstates; however, for any basis we can find
linear combinations which transform according to the IRRs; these can only contribute to the
corresponding eigenstates. Because of the Bloch theorem eq. (2.27) we only need to consider
basis functions inside the primitive cell. If no atoms in the basis are equivalent (i.e. related by
a symmetry), basis functions at different atomic site are independent. In the case of the KKR
method, this means that we need symmetry-adapted linear combinations of spherical harmonics,
called lattice harmonics [3] (or surface harmonics [20]). Since the basis functions are orthonormal,
this amounts to a unitary rotation in the angular momentum indices. If two (or more) sites in
the basis are equivalent, the basis functions comprise all equivalent sites (see e.g. [2] for hcp).

As an example, we investigate the symmetry group of a (flat) square, i.e. the point group
C4v. It contains eight symmetry elements: a four-fold rotation axis and four mirror planes. The
group has five IRRs listed in table 3 including their characters; only ∆5 is degenerate. Table
3 also states some low-degree basis functions in terms of Cartesian coordinates. One can easily
verify that the non-degenerate IRRs transform according to the character table, while for ∆5 one
first needs to determine the transformation matrices from the basis function. The point group
C4v is of great importance in later sections. We also need the lattice harmonics for this group,
which are given in appendix A.3.

The representation theory of finite groups (which includes point and space groups) provides
a great amount of information on the IRRs. For example, it is possible to predict the splitting of
bands when going from higher to lower symmetry ~k-points or to obtain selection rules for inter-
actions with external perturbations. In this work, we mainly use IRRs to separate contributions
from different eigenstates at high-symmetry ~k-points.
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C4v 1 C2 2C4 2σv 2σd

∆1 1 1 1 1 1 1, (z)

∆′1 1 1 1 -1 -1 −
∆2 1 1 -1 1 -1 x2 − y2

∆′2 1 1 -1 -1 1 x y

∆5 2 -2 0 0 0 {x, y}

∆1 ∆2 ∆′2 ∆5

Table 3: Symmetry group of a square C4v (or 4mm).
(Top, Left) Illustration of the eight symmetries: three rotations, four mirror planes and the
identity.
(Top, Right) Character table for the five irreducible representations including basis functions
[38]; {x, y} is a point on the unit circle. In three dimensions z transforms as ∆1.
(Bottom) Polar plot of the given basis functions (blue is positive, red negative).
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3 Theory – Coherent potential approximation

3.1 Introduction

The description of crystalline solids is greatly facilitated by the high degree of spatial symmetry,
i.e. the space group (section 2.5). In particular, one can apply Bloch’s theorem (eq. (2.27)) to de-
scribe the eigenstates via band-structure theory. This also splits a spatially infinite Hamiltonian
(single electron or elementary excitation) into separate Hamiltonians for each ~k-point, which can
be solved in the primitive cell. Conversely, the description of disordered solids is difficult because
of the absence of spatial symmetry. The precise atomic arrangement in a disordered solid (e.g.
an alloy or amorphous material) is unknown (and uncontrollable). Thus, quantitative theoretical
predictions are only feasible for results which are insensitive to these details. The same holds
for experimental results as well as intended functionalities in applications. This usually means
that the disordered region needs to be sufficiently large such that the quantity of interest rep-
resents some kind of average. This observation immediately suggests a possible approach for a
description, i.e. to simulate a sufficiently large part (supercell), which is repeated periodically
and possibly averaged over several arrangements. In principle, this approach can be used with
basically every band-structure method and for any kind of spatial disorder. In practice, compu-
tational costs restrict the supercell size and thereby also the describable disorder (e.g. possible
alloy/doping concentrations) and the attainable accuracy [A3].

In this work, we focus on the special case of substitutional disorder [150, 102], i.e. the solid has
a crystal structure but sites are occupied randomly (the material may have additional ordered
sublattices). This includes substitutional alloys (substitutional solid solutions) but can also
be used e.g. to describe thermal disorder [24, 40]. For this case, specific methods have been
developed which utilize the underlying crystal structure. They place an effective medium on
all alloy sites which restores the crystal symmetry. In the virtual crystal approximation (VCA)
[102] the effective medium represents a simple average of the components. It may be defined to
have e.g. an averaged potential or atomic number (see e.g. appendix A.4). In some cases, when
the components are similar, the VCA yields a reasonable description; however, it neglects effects
of disorder, which are important for transport. A more accurate description can be obtained
using GFs (section 2.2). We may assume that properties of interest can be calculated from
configuration-averaged GFs, i.e. where the ensemble average has been taken over all possible
occupations of alloy sites. One may also consider restricted averages, where the occupation is
fixed for one or several sites. The (fully) averaged GF 〈G〉 has the space group symmetry of the
underlying crystal structure. Thus, we can define an effective medium by [102, 135]〈

G(z)
〉

=
(
z −Heff (z)

)−1
, (3.1)

where Heff (z) has the full spatial symmetry but may contain complicated energy-dependent,
non-Hermitian, and non-local contributions. Thus, the disordered Hamiltonian is mapped to
an effective, symmetric Hamiltonian, which contains the effects of disorder as a self-energy. Of
course, the latter cannot be calculated exactly. A popular class of self-consistent, approximate
methods is the coherent potential approximation (CPA) [150, A3]. A considerable simplification
is obtained by using the single-site approximation (SSA) [135], which we state as follows: The
properties of the effective medium or an atom at one site may not depend on the specific occu-
pation on any other (alloy) site; this means that this site only ‘sees’ the effective medium on all
alloy sites. The SSA implies that the investigation of site-diagonal (i.e. ~r1 and ~r2 in the same
atomic domain/ASA sphere) properties can be reduced to considering a single atom embedded
in the effective medium. Conversely, the effective medium can be defined self-consistently by
demanding that averaging over such an impurity should retrieve the effective medium. This
concept is readily translated to the language of multiple-scattering methods (next section). A
disadvantage of the SSA is that effects of a specific local environment (e.g. short-range order,
component-specific charge transfers, etc.) are neglected. Further, it cannot be applied to meth-
ods where the coupling between two sites depends on their occupation (e.g. tight binding). To
overcome these shortcomings, several generalizations of the single-site CPA are considered in the
literature (see discussion and references in [A3]).



16 3 THEORY – COHERENT POTENTIAL APPROXIMATION

3.2 Single-site KKR-CPA

In this section we show how the single-site CPA can be implemented in the KKR multiple-
scattering method [A4, A3, 150]. The derivation in this section follows refs. [135, 24]. We use
the R-H formulation of the KKR method6 [150], which leads to a multiple-scattering equation
for the structural GF g (see appendix A.2). In the KKR-CPA the effective medium is described
by t-matrices t̄n, which are placed on the alloy sites. They are chosen so as to restore the
symmetry of the underlying crystal structure. Of course, the usual atomic t-matrices are placed
on non-alloy sites, thus the full t-matrix is

t̄ =
{
δnm

{
t̄n if n is an alloy site

tn if n is a non-alloy site

}
. (3.2)

The effective medium t̄ is site-diagonal and thus independent of ~k after Fourier transform. This
is a consequence of the SSA [102]. The t-matrix describes the scattering properties of the
effective medium (relation between incoming and outgoing partial waves); internal properties
like scattering solutions inside the ASA sphere or a ‘potential’ are not accessible within the
KKR-CPA method (see also section 3.4). Since t̄ has the crystal symmetry, the effective medium
structural GF

ḡ =
(
g−1

0 − t̄
)−1

(3.3)

can be calculated with the usual methods for periodic systems, i.e. the (Bloch-)Fourier transform.
For layer systems with semi-infinite leads this is applied in-plane while the perpendicular direction
is treated by the decimation technique [150]; in this case (and also in the corresponding supercell)
a separate effective medium t̄n is considered for each layer.

In order to derive the self-consistent condition we investigate an arbitrary but fixed config-
uration of the alloy; this is described by a t-matrix where the atomic t-matrix of one of the
components is placed on each alloy site. Note that because of the SSA we only need to consider
one potential and t-matrix for each component of the alloy (which otherwise would depend on
the environment). It will prove beneficial to use the effective medium as a reference system.
Thus, the GF for this system is calculated from

g =
(
ḡ−1 −∆t

)−1
with ∆t = t− t̄. (3.4)

Using the tools of multiple scattering [150, 42] we rewrite g in terms of the T-matrix as

g = ḡ + ḡ T ḡ where (3.5a)

T = ∆t+ ∆t ḡ T (3.5b)

=
{
xn
(
δnm +

∑
i6=n

ḡni T im
)}
. (3.5c)

In the last step T was expressed in terms of the excess scattering matrix x. Assuming that in the
fixed configuration the alloy site i is occupied by atom type α (i.e. tii = tiα) the latter is given by

xi = xiα =
(
(∆tiα)−1 − ḡii

)−1
with ∆tiα = tiα − t̄i. (3.6)

For non-alloy sites xi is zero. Next, we calculate the alloy average 〈g〉 over all configurations.
Since ḡ does not depend on the configuration we need to calculate 〈T 〉. Using the expansion of
T in terms of x we find

〈Tnm〉 =
〈
xn
(
δnm +

∑
i6=n

ḡni T im
)〉
≈ 〈xn〉

(
δnm +

∑
i6=n

ḡni 〈T im〉
)
. (3.7)

In the second step alloy averages for different elements of T were decoupled neglecting correlations
between different sites. This single-site decoupling [135] is an important consequence of the SSA

6In [A3] we used the Z-J version, where the multiple-scattering equation is given in terms of the scattering
path operator τ ; one can show that both versions lead to identical descriptions for the CPA.
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(and often used synonymously). Since the goal is to describe the alloy average by the effective
medium, we require

〈g〉 = ḡ which means 〈T 〉 = 0. (3.8)

Using the single-site decoupling eq. (3.7) this is fulfilled if 〈xi〉 = 0 for all sites. Hence, we obtain
the single-site CPA condition (ciα is the concentration of alloy component α at site i)

x̄i = 〈xi〉 =
∑
α

ciα x
i
α = 0 for all alloy sites i, (3.9)

which demands that replacing the effective medium at a single alloy site with one of the compo-
nents on average should not produce additional scattering. This condition can be rewritten in
terms of the component-resolved GFs giα or the impurity matrices Di

α as∑
α

ciα g
i
α = ḡii or

∑
α

ciαD
i
α =

∑
α

ciα D̃
i
α = 1 (3.10a)

where giα = Di
α ḡ

ii = ḡii D̃i
α =

(
(ḡii)−1 −∆tiα

)−1
(3.10b)

with Di
α =

(
1− ḡii ∆tiα

)−1
= 1 + ḡii xiα (3.10c)

and D̃i
α =

(
1−∆tiα ḡ

ii
)−1

= 1 + xiα ḡ
ii.

This allows an alternative interpretation, namely that the effective medium GF is the average
of the component GFs. The impurity matrix Di

α (or D̃i
α) introduced here basically projects the

site-diagonal effective medium GF ḡii onto the component GF giα; this is discussed in detail in
section 3.4. Of course, the CPA conditions are equivalent for alloy sites which are related by the
underlying crystal structure. For non-equivalent alloy sites in the primitive cell the conditions
are coupled via ḡ and need to be fulfilled simultaneously. When the effective medium has been
obtained and the CPA condition is satisfied, we can calculate physical properties of the alloy,
e.g. the density; this often requires component-resolved GFs (section 3.4). For a discussion of
the DFT treatment in combination with the CPA see [A3].

Eqs. (3.9) or (3.10) contain the effective medium t̄ in a non-linear way (in particular via
ḡ) and cannot be solved directly. We use an iterative method explained in the following. The
iteration is started from the average t-matrix approximation

t̄i (0) =
∑
α

ciα t
i
α. (3.11)

In each iteration the effective medium GF ḡ(j) is calculated from t̄(j) via eq. (3.3). Then, we

calculate x̄i (j) =
∑
α c

i
α x

i (j)
α , where the x

i (j)
α are obtained using eq. (3.6). If the CPA condition

eq. (3.9) is not fulfilled in the iteration, i.e. x̄i (j) 6= 0 for some site i, we obtain t̄ for the next
iteration from the following idea [101, 49]. The excess scattering created by the new effective
medium relative to the old one should be equal to x̄i (j), i.e. the residual excess scattering is
integrated in the new effective medium

x̄i (j) =
((
t̄i (j+1) − t̄i (j)

)−1 − ḡii (j)
)−1

;

from this we obtain the new effective medium t-matrix

t̄i (j+1) = t̄i (j) +
(
(x̄i (j))−1 + ḡii (j)

)−1
. (3.12)

It has been shown [101] that this iterative scheme always converges. In rare cases, however,
numerical errors can lead to instabilities, which can be averted by symmetrization of t̄, i.e. by
ensuring that t̄ possesses all space-group symmetries.
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3.3 Vertex corrections

In this section we investigate the alloy average of a two-particle expression (i.e. an expression
involving a product of two single-electron GFs) of the form 〈G(z1)AG(z2)〉 for some operator
A [A4]. Expressions of this form arise e.g. in linear-response theory (Kubo formula) [102] or
the NEGF formalism, in particular the Keldysh equation (2.14c). The derivation follows ref.
[134], see also [26, 74, 73]. In the derivation we assume that operator A is independent of the
alloy configuration. In the intended applications this is in fact the case: If we use an ordered
material for the lead (and the coupling region) the operator Γl describing the coupling to the
lead (eq. (2.18b)) is configuration independent. Conversely, this means we can only consider
disorder inside the middle region. In cases when the operator acts inside the alloy (often in
linear-response theory), it usually depends on the occupation; a derivation for this case is given
in [24].

The two GFs may have different (complex) energy arguments; an energy dependence of
operator A does not play a role in this derivation. Because of the application to NEGFs we label
g<

A(z1, z2) = g(z1)Ag(z2), where operator A is now in the KKR basis. The energy arguments
are suppressed in intermediate steps; they can be recovered by noting that operators left of A
(or later ΩA) in a product carry z1, while those right of A carry z2. The goal is to calculate the
alloy average 〈g<

A〉. We start by inserting the GF in the form of eq. (3.5)

ḡ<

A = 〈g<

A〉 = 〈g A g〉 =
〈
(ḡ + ḡ T ḡ)A (ḡ + ḡ T ḡ)

〉
= ḡ
(
〈A〉+ 〈T ḡ A〉+ 〈A ḡ T 〉+ 〈T ḡ A ḡ T 〉

)
ḡ, (3.13)

where we used that ḡ is independent of the configuration. This expression simplifies notably if
we assume that A does not depend on the alloy configuration. We further use that the effective
medium fulfills the CPA condition (i.e. eq. (3.8): 〈T 〉 = 0). Thus, we obtain

ḡ<

A = 〈g A g〉 = ḡ A ḡ + ḡΩA ḡ with ΩA = 〈T ḡ A ḡ T 〉, (3.14)

where the vertex corrections ΩA were defined [134]. To simplify the vertex corrections we express
T in terms of x-matrices (eq. (3.5c))

ΩnmA =
∑
n′,m′

〈
Tnn

′[
ḡ A ḡ

]
n′m′

Tm
′m
〉

=
∑
n′,m′

〈
xn
(
δnn′ +

∑
i 6=n

ḡni T in
′
)[
ḡ A ḡ

]
n′m′

(
δm′m +

∑
j 6=m

Tm
′j ḡjm

)
xm
〉

≈
∑
n′,m′

〈
xn
〈(

δnn′ +
∑
i 6=n

ḡni T in
′
)[
ḡ A ḡ

]
n′m′

(
δm′m +

∑
j 6=m

Tm
′j ḡjm

)〉
xm

〉
, (3.15)

where in the last step we used the single-site decoupling [134]. For n 6= m the two x-matrices in
the outer average are independent and thus the average vanishes because of the CPA condition.
Consequently, we find that the vertex corrections are site-diagonal ΩnmA = δnm ΩnA. The inner
average can be simplified considering only the n = m term and again using the CPA condition∑

n′,m′

〈(
δnn′ +

∑
i 6=n

ḡni T in
′
)[
ḡ A ḡ

]
n′m′

(
δm′n +

∑
j 6=n

Tm
′j ḡjn

)〉
=
[
ḡ A ḡ

]
nn

+
∑
n′,i6=n

ḡni
〈
T in

′〉[
ḡ A ḡ

]
n′n

+
∑

m′,j 6=n

[
ḡ A ḡ

]
nm′

〈
Tm

′j
〉
ḡjn

+
∑
n′,i6=n
m′,j 6=n

ḡni
〈
T in

′[
ḡ A ḡ

]
n′m′

Tm
′j
〉

︸ ︷︷ ︸
Ωij

A

ḡjn

=
[
ḡ A ḡ

]
nn

+
∑
i 6=n
j 6=n

ḡni δij ΩiA ḡ
jn =

[
ḡ A ḡ

]
nn

+
∑
i6=n

ḡni ΩiA ḡ
in,
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where in the last two steps we recognized the definition of ΩA and used that it is diagonal.
With this, we obtain a closed set of equations for the vertex corrections (reintroducing energy
arguments)

ΩnA =

〈
xn(z1)

([
ḡ(z1)A ḡ(z2)

]
nn

+
∑
i 6=n

ḡni(z1) ΩiA ḡ
in(z2)

)
xn(z2)

〉
(3.16a)

=
∑
α

cnα x
n
α(z1)

([
ḡ(z1)A ḡ(z2)

]
nn

+
∑
i6=n

ḡni(z1) ΩiA ḡ
in(z2)

)
xnα(z2) (3.16b)

=
∑
α

cnα x
n
α(z1)

(
ḡ<,nn
A (z1, z2)− ḡnn(z1) ΩnA ḡ

nn(z2)
)
xnα(z2) (3.16c)

with ḡ<

A(z1, z2) = ḡ(z1)A ḡ(z2) + ḡ(z1) ΩA ḡ(z2), (3.16d)

where in the first step the alloy average was carried out and in the last step the sum over i was
completed. It is important to note that the equation above gives a linear relation between the
vertex corrections and the operator A. In our case this allows to separate the contributions from
different leads and to calculate them independently of the occupation. For a discussion on how
the equation is implemented in practice see ref. [A4].

3.4 Restricted averages – Single-particle Green’s function

In order to calculate (site-diagonal) physical quantities like the density, we need the GF for
an atom of one component placed on a single alloy site while the alloy average is taken over
all other sites, i.e. the component-resolved GF. This is calculated by taking the corresponding
restricted alloy average [150, 45]. This is necessary, since the effective medium does not provide
scattering solutions (i.e. wave functions) and since we are often interested in properties of the
individual components. For non-site-diagonal quantities like the Bloch spectral density we also
need restricted averages, where two sites are fixed.

To derive the averaged GF for the restricted case 〈g〉i=α, where site i is fixed to type α,
we repeat the steps in section 3.2 leading to eq. (3.7), including the single-site decoupling, and
obtain

〈g〉i=α = ḡ + ḡ 〈T 〉i=α ḡ with 〈Tnm〉i=α ≈ 〈xn〉i=α
(
δnm +

∑
j 6=n

ḡnj 〈T jm〉i=α
)
. (3.17)

In principle, we could introduce a new effective medium for the restricted case. However, this
would not be very useful, since the fixed site i breaks the desired periodicity. Further, this would
not be consistent with the SSA, since the effective medium on sites near to i would be influenced
by the coupling to the fixed site via ḡ. To be consistent with the SSA the effective medium on
one site must not depend on the specific occupation of any other (alloy) site, including site i.
Therefore, we require that the effective medium for the restricted case on any alloy site except i
is identical to the (converged) effective medium for the full average. Effectively, this means that
we need to calculate the GF for the case that the effective medium t-matrix for a single site i
in the crystal has been replaced by the t-matrix of atom type α. This can be obtained via the
Dyson equation starting from the full effective medium

〈g〉i=α =
(
ḡ−1 −∆t(1)

)−1
with ∆t(1) =

{
δnmi (tiα − t̄i)

}
=
{
δnmi ∆tiα

}
, (3.18)

where t̄ (ḡ) is the converged effective medium (GF) with respect to the full average. Since ∆t(1)

is non-zero only for site i, so are x(1) and T (1)

T (1) = 〈T 〉i=α = x(1) =
{
δnmi x

i
α

}
, (3.19)

with xiα given in eq. (3.6). Using this we calculate the restrictedly averaged GF

〈g〉i=α = ḡ + ḡ T (1) ḡ =
{
ḡnm + ḡni xiα ḡ

im
}

; (3.20)
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for n = i or m = i this simplifies to

〈gim〉i=α = Di
α ḡ

im and 〈gni〉i=α = ḡni D̃i
α, (3.21)

where Di
α and D̃i

α are given in eq. (3.10c), and for n = m = i we obtain 〈gii〉i=α = giα given in
eq. (3.10b) [45]. Usually, only giα is required. With this, we find the KKR-CPA expressions for
the site-diagonal component-resolved and averaged real-space GF

Giα(z;~ri, ~r
′
i) = 〈Gi(z;~ri, ~r′i)〉i=α = Riα(z;~ri) g

i
α(z)Riα(z;~r′i)

× +Gisc,α(z;~ri, ~r
′
i) (3.22a)

Ḡi(z;~ri, ~r
′
i) = 〈Gi(z;~ri, ~r′i)〉 =

∑
α

ciαG
i
α(z;~ri, ~r

′
i) (3.22b)

As already shown in section 3.2 the site-diagonal component-resolved structural GFs are con-
sistent with the effective medium GF (see eq. (3.10)). More generally,

∑
α c

i
α 〈g〉i=α = ḡ also

follows directly from eq. (3.20) using eq. (3.9).
The approach for the two-site restricted average is similar. We fix site i to type α and site j

to type β. From the discussion above this means we have

〈g〉i=α
j=β

=
(
ḡ−1 −∆t(2)

)−1
with ∆t(2) =

{
δnmi ∆tiα + δnmj ∆tjβ

}
. (3.23)

Since the corresponding x(2) =
{
δnmi x

i
α + δnmj x

j
β

}
has only two non-zero elements, we find

four non-vanishing elements for T (2) coupled by a set of four equations (using eq. (3.5c))

T ii = xiα + xiα ḡ
ij T ji T ij = xiα ḡ

ij T jj T ji = xjβ ḡ
ji T ii T jj = xjβ + xjβ ḡ

ji T ij ,

which has the solution

T ii =
((
xiα
)−1 − ḡij xjβ ḡ

ji
)−1

T ij =
((
xiα ḡ

ij xjβ
)−1 − ḡji

)−1

T ji =
((
xjβ ḡ

ji xiα
)−1 − ḡij

)−1

T jj =
((
xjβ
)−1 − ḡji xiα ḡij

)−1

.

(3.24)

With this the two-site restrictedly averaged GF is given by

〈gnm〉i=α
j=β

= ḡnm + ḡni T ii ḡim + ḡni T ij ḡjm + ḡnj T ji ḡim + ḡnj T jj ḡjm, (3.25)

which for n = i or m = j simplifies to

〈gim〉i=α
j=β

= Di
α S
(
ḡim + ḡij xjβ ḡ

jm
)

(3.26a)

〈gnj〉i=α
j=β

=
(
ḡnj + ḡni xiα ḡ

ij
)
S̃ D̃j

β . (3.26b)

Here,

S =
(
1− ḡij xjβ ḡ

ji xiα
)−1

and S̃ =
(
1− xjβ ḡ

ji xiα ḡ
ij
)−1

= (ḡij)−1 S ḡij (3.26c)

is the common denominator of the non-zero elements of T (2) (eq. (3.24)). It describes repeated
scattering between the two fixed sites and, to be consistent with the SSA, this must be neglected
[45] (i.e. we set S = S̃ = 1). Thus, we obtain the non-site-diagonal elements

gijαβ = 〈gij〉i=α
j=β

= Di
α ḡ

ij D̃j
β (3.27)

for the component-resolved structural GF, and

Gijαβ(z;~ri, ~r
′
j) = 〈Gij(z;~ri, ~r′j)〉i=α

j=β
= Riα(z;~ri) g

ij
αβ(z)Rjβ(z;~r′j)

× (3.28a)

Ḡij(z;~ri, ~r
′
j) = 〈Gij(z;~ri, ~r′j)〉 =

∑
α,β

ciα c
j
β G

ij
αβ(z;~ri, ~r

′
j) (3.28b)
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for the component-resolved and averaged real-space GF [45]. An important identity which the
two-site restricted average must fulfill is∑

β

cjβ g
ij
αβ = 〈gij〉i=α and

∑
α

ciα g
ij
αβ = 〈gij〉j=β , (3.29)

i.e. the consistency with the single-site restricted average eq. (3.21). This follows directly from
the CPA condition (eq. (3.10)), but only if we set S = 1. Note that, since the two fixed sites
must be distinct, the expressions are not valid for i = j.

3.5 Restricted averages – Two-particle Green’s function

In this section we calculate the (single-site) restricted average for a two-particle expression. This
is required to obtain component-resolved NEGFs. We proceed similar to section 3.3 keeping
track of additional terms arising from the restricted average. The approach has similarities to
the one in ref. [24]. We use results obtained in section 3.4; in particular, we describe the restricted
average by replacing the effective medium t-matrix on one site i with the atomic t-matrix for type
α. We also utilize the result for the T -matrix relative to the effective medium eq. (3.19). After
replacing the full averages with restricted ones, we evaluate the general expression eq. (3.13)
(suppressing energy arguments and the operator (·)A index)

〈g<〉i=α = 〈g A g〉i=α
= ḡ

(
A+ 〈T 〉i=α ḡ A+A ḡ 〈T 〉i=α + 〈T ḡ A ḡ T 〉i=α

)
ḡ

= ḡ
(
A+ x(1) ḡ A+A ḡ x(1) + Ωi=α

)
ḡ (3.30)

with Ωi=α = 〈T ḡ A ḡ T 〉i=α.

For site i this simplifies to (using eq. (3.10c))

g<,i
α = 〈g<,ii〉i=α = [ḡ A ḡ]ii + ḡii xiα [ḡ A ḡ]ii + [ḡ A ḡ]ii x

i
α ḡ

ii + [ḡΩi=α ḡ]ii

= Di
α [ḡ A ḡ]ii D̃

i
α − ḡii xiα [ḡ A ḡ]ii x

i
α ḡ

ii + [ḡΩi=α ḡ]ii. (3.31)

Next, we need to evaluate Ωnmi=α =
[
〈T ḡ A ḡ T 〉i=α

]
nm

; it is convenient to consider the possible
cases for the site indices n,m separately.

• Ωnmi=α for n 6= i and m 6= i
In this case we could perform an expansion similar to the one in section 3.3. This would
lead to additional terms resulting from the special case for site i. However, taking these
into account would not be consistent with the SSA. Therefore, following the arguments in
section 3.4, we require that vertex corrections for site indices not including i are identical
to the vertex corrections obtained for the full average, i.e.

Ωnmi=α = Ωnm = δnm Ωn for n 6= i and m 6= i. (3.32a)

• Ωimi=α for m 6= i (i.e. n = i)
We expand the left T -matrix and obtain

Ωimi=α =
∑
n′

xiα

〈(
δin′ +

∑
j 6=i

ḡij T jn
′)

[ḡ A ḡ T ]n′m

〉
i=α

= xiα

([
ḡ A ḡ 〈T 〉i=α

]
im

+
∑
j 6=i

ḡij
[
〈T ḡ A ḡ T 〉i=α

]
jm

)
.

The first term vanishes since 〈T 〉i=α ∝ {δnmi} and m 6= i. In the second term we recognize
the vertex corrections and note that both indices are unequal to i. Thus, using eq. (3.32a)
we find

Ωimi=α =
∑
j 6=i

xiα ḡ
ij Ωjmi=α =

∑
j 6=i

xiα ḡ
ij δjm Ωm

= xiα ḡ
im Ωm for m 6= i. (3.32b)
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• Ωnii=α for n 6= i (i.e. m = i)
We expand the right T -matrix and proceed analogously to the previous case to obtain

Ωnii=α = Ωn ḡni xiα for n 6= i. (3.32c)

• Ωiii=α (i.e. n = m = i)
In this case we need to expand both T -matrices

Ωiii=α =
∑
n′m′

xiα

〈(
δin′ +

∑
j 6=i

ḡij T jn
′)

[ḡ A ḡ]n′m′
(
δm′i +

∑
j′ 6=i

Tm
′j′ ḡj

′i
)〉

i=α
xiα

= xiα

(
[ḡ A ḡ]ii +

∑
j 6=i

ḡij
[
〈T 〉i=α ḡ A ḡ

]
ji

+
∑
j′ 6=i

[
ḡ A ḡ 〈T 〉i=α

]
ij′
ḡj
′i

+
∑
j 6=i
j′ 6=i

ḡij
[
〈T ḡ A ḡ T 〉i=α

]
jj′
ḡj
′i
)
xiα.

Again, the second and third term vanish and the last one is the vertex corrections for the
full average. Thus, we obtain

Ωiii=α = xiα

(
[ḡ A ḡ]ii +

∑
j 6=i
j′ 6=i

ḡij Ωjj
′

i=α ḡ
j′i
)
xiα

= xiα

(
[ḡ A ḡ]ii +

∑
j 6=i

ḡij Ωj ḡji
)
xiα. (3.32d)

For the restrictedly averaged two-particle GF g<,i
α we need to evaluate [ḡΩi=α ḡ]ii, where we

distinguish the above cases

[ḡΩi=α ḡ]ii =
∑
n 6=i
m 6=i

ḡin Ωnmi=α ḡ
mi +

∑
n6=i

ḡin Ωnii=α ḡ
ii +

∑
m6=i

ḡii Ωimi=α ḡ
mi + ḡii Ωiii=α ḡ

ii

=
∑
n 6=i

ḡin Ωn ḡni +
∑
n 6=i

ḡin Ωn ḡni xiα ḡ
ii +

∑
m6=i

ḡii xiα ḡ
im Ωm ḡmi

+ ḡii xiα

(
[ḡ A ḡ]ii +

∑
n 6=i

ḡin Ωn ḡni
)
xiα ḡ

ii

=
∑
n 6=i

(
1 + ḡii xiα

)
ḡin Ωn ḡni

(
1 + xiα ḡ

ii
)

+ ḡii xiα [ḡ A ḡ]ii x
i
α ḡ

ii

=
∑
n 6=i

Di
α ḡ

in Ωn ḡniD̃i
α + ḡii xiα [ḡ A ḡ]ii x

i
α ḡ

ii

= Di
α [ḡΩ ḡ]ii D̃

i
α −Di

α ḡ
ii Ωi ḡii D̃i

α + ḡii xiα [ḡ A ḡ]ii x
i
α ḡ

ii.

Entering this in eq. (3.31) we finally obtain for the restricted average of the two-particle expression

g<,i
α (z1, z2) =

〈[
g(z1)Ag(z2)

]
ii

〉
i=α

= Di
α(z1)

([
ḡ(z1)A ḡ(z2)

]
ii

+
[
ḡ(z1) Ω ḡ(z2)

]
ii
− ḡii(z1) Ωi ḡii(z2)

)
D̃i
α(z2) (3.33)

= Di
α(z1)

(
ḡ<,ii(z1, z2)− ḡii(z1) Ωi ḡii(z2)

)
D̃i
α(z2) (3.34)

with ḡ<(z1, z2) =
〈
g(z1)Ag(z2)

〉
= ḡ(z1)A ḡ(z2) + ḡ(z1) Ω ḡ(z2)

For convenience we note that D̃i
α(z∗) = Di

α(z)†. An important identity which the restricted
average must fulfill is

ḡ<,ii =
〈
[g A g]ii

〉
=
∑
α

ciα
〈
[g A g]ii

〉
i=α

=
∑
α

ciα g
<,i
α . (3.35)
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To show this we note that for some expression (·) independent of α we have∑
α

ciαD
i
α (·) D̃i

α =
∑
α

ciα
(
1 + ḡii xiα

)
(·)
(
1 + xiα ḡ

ii
)

=
(∑

α

ciα

)
(·) + ḡii

(∑
α

ciα x
i
α

)
(·) + (·)

(∑
α

ciα x
i
α

)
ḡii + ḡii

(∑
α

ciα x
i
α (·)xiα

)
ḡii

= (·) + ḡii
(∑

α

ciα x
i
α (·)xiα

)
ḡii, (3.36)

where the second and third term vanished because of the CPA condition. In the present case we
have (·) = ḡ<,ii − ḡii Ωi ḡii and in the last term we recognize the vertex corrections eq. (3.16c).
This cancels with the second term in eq. (3.34). Thus, we verify that eq. (3.35) is fulfilled for
the restrictedly averaged GFs obtained in this section.

For the special case of a binary alloy, the restricted averages can also be obtained in a
different way using projection operators [73, A4]. The derivation and the equivalence of the
results to the general expressions in this section are discussed in appendix B.1. Recently, an
alternative approach to NEGF+CPA has been proposed [70, 155], where the CPA is applied
directly to contour GFs. This is discussed (in a modified notation) in appendix B.2. It yields
vertex corrections and one-side restrictedly averaged GFs g<,i

α as given above. Since this alternate
approach allows for a simpler derivation, we use it to derive the two-site restricted average of the
two-particle expression g<,ij

αβ (see eq. (B.21)).

3.6 Bloch spectral density

The Bloch spectral density [45] (BSF for Bloch spectral function) is the density of states resolved

with respect to the Bloch vector ~k. To derive an expression for the BSF we first note that for a
periodic system (in equilibrium or ground state) the real-space gDOS is also periodic

A(E;~r + ~T ,~r′ + ~T ) = A(E;~r, ~r′) = A(E;~r0, ~r
′
0 + ~T ′), (3.37)

where ~r0 and ~r′0 are restricted to the primitive cell V0, which uniquely determines ~T ′. Thus,

its Bloch-Fourier transform (or ~k-th projection [150]) is diagonal in ~k (and also periodic with
respect to reciprocal lattice vectors)

A(E;~k, ~r0, ~r
′
0) =

∑
~T

ei
~k ~TA(E;~r0, ~r

′
0 + ~T ). (3.38)

Analogous equations hold for real-space GFs of a periodic system. With this, the BSF can be
defined as

AB(E;~k) =
1

2π

∫
V0

d~r0 A(E;~k,~r0, ~r0) (3.39a)

= − 1

π
Im

∫
V0

d~r0

∑
~T

ei
~k ~TG(E;~r0, ~r0 + ~T ). (3.39b)

By writing the gDOS (or the GF) in terms of Bloch waves, one can show that for a perfect crystal
[45]

AB(E;~k) =
∑
n

δ(E − εn(~k)), (3.40)

thus in this case the BSF is basically equivalent to the band structure εn(~k). When defined in
terms of the GF, the BSF can be extended to complex energies. In this case the δ-functions turn
into Lorentzians, whose width is determined by the imaginary part of the energy.
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Applying eq. (3.39b) to the KKR GF (eq. (A.2a)) of a periodic system results in (see appendix
A.2 for notations)

AB(z;~k) = − 1

π
Im
∑
~S

∫
V~S

d~r
(
R
~S(z;~r) g

~S~S(z;~k)R
~S(z;~r)× +G

~S
sc(z;~r, ~r)

)
(3.41a)

= − 1

π
Im
∑
~S

Tr
L

∫ r
~S
ASA

0

dr r2
(
R̃
~S(z; r) g

~S~S(z;~k) R̃
~S(z; r) + G̃

~S
sc(z; r, r)

)
, (3.41b)

where we used that the scattering solutions are independent of ~T and the single-scatterer GF
contributes only for ~T = 0. In the second step the angular integration was performed assuming
ASA potentials, which results in a trace over the angular momentum index. This expression
allows a decomposition of the BSF into separate contributions from different atoms (via the site

index ~S), angular momenta L, and also spins σ (suppressed in this section). If IRRs for the

group of ~k are known, a useful decomposition can be obtained in terms of the corresponding
basis functions, i.e. the lattice harmonics. Since the IRR is a quantum number of the eigenstates
at ~k, this facilitates separating contributions from different states. From the discussion in section
2.5 this means that we need to transform from spherical harmonics to lattice harmonics and take
the trace over all basis functions of an IRR.

In alloys the gDOS (or GF) for a fixed configuration usually has no spatial symmetries and in
particular is not periodic. However, taking the full configuration average restores the underlying
space group symmetry (for the substitutional alloys considered in this work). In particular, this
is true for the CPA averages. Thus, we can extend the BSF to this case by using the CPA
averaged GF. When calculating the Bloch-Fourier transform of the latter, one needs to consider
the different form of site-diagonal (eq. (3.22b)) and non-site-diagonal terms (eq. (3.28b)). This
results in [45]

AB~S (z;~k) = − 1

π
Im

∫
V~S

d~r
(∑
α,β

c
~S
α c

~S
β R

~S
α(z;~r)D

~S
α(z) ḡ

~S~S(z;~k) D̃
~S
β (z)R

~S
β (z;~r)×

−
∑
α,β

c
~S
α c

~S
β R

~S
α(z;~r)D

~S
α(z) ḡ

~S~S(z) D̃
~S
β (z)R

~S
β (z;~r)×

+
∑
α

c
~S
α

(
R
~S
α(z;~r)D

~S
α(z) ḡ

~S~S(z)R
~S
α(z;~r)× +G

~S
sc,α(z;~r, ~r)

))
, (3.42)

where the second and third term are independent of ~k and may be considered as a correction
which becomes necessary because of the SSA [45]. Because Bloch waves are not eigenstates of the
alloy, the BSF does not consist of δ-functions. Since the Bloch waves are scattered by disorder,
they obtain a finite lifetime, which results in a broadening of the bands. Since the CPA effective
medium restores the full symmetry of the space group we can also obtain a decomposition in
terms of IRRs as discussed above.

It is possible to obtain the BSF of an alloy by an alternative approach using supercells [109].
In the band structure of a large supercell the bands are ‘folded’ into the much smaller Brillouin
zone, which makes an interpretation difficult. However, by mapping the eigenstates onto Bloch
states of the parent lattice, a BSF in the original Brillouin zone can be defined; this procedure is
called unfolding [109]. In the terms of this section, we can obtain an unfolded BSF by imposing
a Bloch-Fourier transform of the parent lattice on the gDOS of the supercell. This is no longer
diagonal in ~k, but we are only interested in the diagonal part. Assuming that the supercell
comprises NS primitive cells at ~T1 · · · ~TNS

we define the unfolded BSF as the average over the
NS sites

AB~S (z;~k) =
1

NS

∫
V~S

d~r

NS∑
i,j=1

ei
~k (~Tj−~Ti)A(z; ~̃k, ~S + ~Ti + ~r, ~S + ~Tj + ~r), (3.43)
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where ~̃k is the Bloch vector onto which ~k is folded.
A BSF can equally be defined for the non-equilibrium density. We only need to replace A with

its non-equilibrium counterpart. This method, in particular in combination with a decomposition
into IRRs, allows a detailed analysis of transport processes.
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4 Results – Tunnel magnetoresistance

4.1 Electronic structure of FeCo alloys

In this section we discuss the electronic structure of iron (Fe), cobalt (Co), and their binary
alloys (we use FeCo as an abbreviation for Fe1−xCox with 0 < x < 1). This topic has already
been addressed in [A3]. Here, we use the advanced methods introduced in previous sections to
obtain a deep and comprehensive understanding of the electronic states, their symmetry, and the
effects of disorder scattering. This provides a sound basis to apprehend the complex transport
processes in tunnel junctions containing alloy layers.

In this work we assume that all metals have the equilibrium lattice structure of iron, i.e.
a body-centered cubic (bcc) structure with a lattice constant of aFe = 0.287 nm [142]. This
means we neglect a change in the lattice constant or even the lattice structure caused by adding
cobalt [A3] (which has a hexagonal close-packed (hcp) equilibrium structure). The intention is
to separate purely electronic effects from additional effects caused by the lattice structure. We
further assume that the FeCo alloys form completely disordered substitutional alloys, which is a
prerequisite for applying the CPA.

The band structure of iron and cobalt is shown in figure 4.1; we focus on the ∆ high-symmetry
~k-line, which is of great importance in later sections. The ∆-line can be either of the Cartesian
axes in ~k-space and has C4v symmetry. This point group is discussed in section 2.5 and the
corresponding lattice harmonics (appendix A.3) are used to separate the IRRs. As explained in
section 2.5 this does not give a complete set of quantum numbers (e.g. two ∆1 bands appear in
figure 4.1 for each spin). However, states of the same symmetry are well separated in energy.
Thus, for practical aspects the symmetry allows for a separation of the eigenstates.

Since 26Fe and 27Co differ only by one electron (and core charge) the difference in their
band structures can, to a large extend, be understood by band filling, which leads to a higher
Fermi-energy in Co. Additionally, one can observe a decrease in the exchange splitting (or Stoner
splitting) in Co, i.e. the energy difference between majority and minority spin. In combination,
both effects lead to a different position of the Fermi-energy relative to the ∆1 half-metallic region,
which is the energy range between the lowest majority ∆↑1 and minority ∆↓1 conduction band
states.

Following the idea of a VCA (section 3.1), the bands of an FeCo alloy should be describable
as an interpolation between both elements. From the BSF of Fe0.5Co0.5 shown in figure 4.1 we
can see that this is in fact the case for some of the bands. However, some bands show a notable
broadening, as expected from the discussion in sections 3 and 3.6. This cannot be understood
within a VCA and requires taking into account effects of disorder. The broadening varies strongly
with energy, between different bands, ~k-points, and both spins. It is most pronounced for the
minority spin close above the Fermi-energy. For the ∆↓1 and ∆↓2 bands it is so large that an
interpretation in terms of a modified band structure (i.e. a quasiparticle interpretation) becomes
ambiguous. Since both bands originate from the same doubly degenerate state at Γ (Γ12 →
∆1 + ∆2), they have the same BSF at that ~k-point. A close inspection, shown in figure 4.2,

reveals that it has a two-peak structure. Along the ∆-line for ∆↓1 (∆↓2) the lower (upper) peak

is reduced to a shoulder and decays; however, for the ∆↓1 states it retains a notable density at
the Fermi-energy throughout half of the Brillouin-zone (figure 4.2). A plausible explanation for
the two-peak structure is that the states split into iron- and cobalt-like states. To verify this
and to obtain a quantitative description of the full concentration dependence we analyze the
BSF at the Γ-point as a function of the concentration, shown in figure 4.3. The bands have a
rather complicated non-linear concentration dependence. The main reason is the structure of the
DOS, which for iron shows a minimum above the Fermi-energy followed by a pronounced peak
[A3]; this leads to a non-linear concentration dependence of EF via band filling. The details

of concentration dependence and broadening vary for the four bands. An inspection of the Γ↓12

band confirms the explanation above: it consists of an iron and a cobalt peak, which maintain
their position in energy, only the weight is shifted from the Fe to the Co peak with increasing Co
concentration. This explains the strong broadening of these states and the two-peak structure
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Figure 4.1: (Top) Band structure of (bcc) cobalt and iron along the ∆-line (i.e. Γ−H) for both
spins; the ∆1 half-metallic energy range is marked;
(Bottom) Bloch spectral density of Fe0.5Co0.5 obtained with the CPA, the spin channels are
shown in separate plots;
the high-symmetry ~k-points are: Γ = 2π

a {0, 0, 0} and H = 2π
a {0, 0, 1}.
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Figure 4.2: Cross sections of the Bloch spectral density shown in figure 4.1 for different kz values
along half of the ∆-line showing only the ∆↓1 and ∆↓2 bands.

observed in figure 4.2. A similar effect is observed in the corresponding part of the DOS [A3].
Because of the importance of the peculiar broadening in later sections, we would like to

verify that it is not an artifact of the CPA method. This is accomplished by using the alternative
approach to BSFs of alloys explained in section 3.6, i.e. by unfolding of supercell band structures.
As it turns out, this requires very large supercells even for qualitative results. To reduce the
computational costs we use self-consistent CPA potentials to construct the supercell potentials.
The result for the full ∆-line is shown in figure 4.4. The strength and distribution of the
broadening are in good agreement to the CPA result (figure 4.1). Despite the large supercells
the unfolded BSF shows a strong coarseness, which can be attributed to the supercell size. We
also investigate the peculiar broadening at the Γ-point in detail, which is shown in figure 4.5.
While the two-peak structure is not well reproduced, the overall broadening and in particular
the density at the Fermi-energy are in good agreement with the CPA result. The unfolding
method offers an alternative interpretation of the CPA results, namely as the projection of the
eigenstates of the disordered alloy onto Bloch states of the parent lattice.
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Figure 4.6: Interface structure of magnesium oxide grown epitaxially on iron
(Left) Top view showing the first layer of MgO on top of the first two layers of iron; the squares
indicate the cubic cells of both materials; the top face of the iron cell is also the bottom face of
the tetragonal MgO cell.
(Right) Side view of the interface structure.
(Table, Bottom) Lattice parameters and distances [142, 29].

4.2 Tunnel magnetoresistance in Fe/MgO/Fe tunnel junctions

In this section we introduce the tunnel magnetoresistance (TMR) in (coherent) magnetic tunnel
junctions (MTJ). These junctions consist of two ferromagnetic layers separated by an insulating
layer, which is thin enough to allow for a measurable tunneling current. We focus on junctions
where the tunneling is coherent, which means that the state (i.e. the energy, spin, ~k-vector, and
IRR) of the tunneling electrons is preserved. This requires a crystalline barrier and epitaxial
interfaces. Coherent MTJs are in contrast to diffusive ones (e.g. with an amorphous AlOx

barrier), where the tunneling is incoherent. The latter ones can be described by the Jullire
model in terms of the spin polarization of the DOS at the Fermi-energy (see section 1.1). This
simple model is not valid for the coherent MTJs discussed in this work [62].

As a typical example of a coherent MTJ we discuss the case of a magnesium oxide (MgO)
barrier separating two semi-infinite iron (Fe) leads. This structure was the first proposed coherent
MTJ and has been extensively investigated [131]. It is suitable to introduce the quantum-
mechanical effects that lead to the large TMR observed in many coherent MTJs. It has been
shown that MgO can be grown epitaxially on Fe (see discussion and refs. in [25, 94]). The
resulting interface structure is shown in figure 4.6. In the growth direction (z-direction), which
is also the direction of the current in transport calculations, both materials are aligned along
their [001] axis. In-plane (i.e. perpendicular to the growth direction) the MgO cubic cell is
rotated by 45◦ and matched to the Fe surface in such a way that the oxygen atoms lie on top of
the iron atoms. Because of the lattice mismatch between both materials, the MgO is deformed
from its equilibrium rock-salt structure (two interpenetrating face-centered cubic (fcc) lattices
with octahedral coordination) to a body-centered tetragonal (bct) structure. The space group
of the junction is P4/nmm (D7

4h) (for an even number of atomic MgO layers); however, if the
z-direction is fixed by transport boundary conditions, it reduces to P4mm (C1

4v) [126, 127].

The different lattice constants and distances are given in figure 4.6. We assume a simplified
structure (‘ideal’ structure) [29, A5], where the iron maintains its equilibrium structure through-
out, while the MgO is compressively strained in-plane by 5% to match the lattice constant of
iron. Along the growth direction we assume (about) the equilibrium lattice constant of MgO,
although, because of the in-plane compression, an expansion is also feasible. The distance be-
tween the last Fe and the first MgO layer is constructed by bringing the MgO surface, including
one layer of empty-spheres, to touching distance. The resulting distance is slightly larger than
other values considered in the literature [25]. Relaxation of atoms near the interface from the
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Gp G↑↑ G↓↓ Gap G↑↓ = G↓↑ TMR nTMR
22.3 21.3 1.00 0.495 0.248 4410 95.7

Table 4: Conductance (per junction area) of the Fe/MgO/Fe tunnel junction for the different
channels given in units of 109 Ω−1m−2 and tunnel magnetoresistance ratio given in %. Note that
the area of the primitive in-plane cell is A = a2

Fe = 0.0821 nm2.

described positions are not considered. The lattice structure is intentionally kept simple to sep-
arate electronic and structural effects. Throughout this work we use a barrier thickness of six
atomic layers of MgO (1.27 nm).

To obtain DFT self-consistent potentials for the MTJ, the semi-infinite leads are replaced by
finite slabs of 30 Fe layers on each side and the resulting structure is treated as a supercell. The
self-consistent potentials (including their Fermi-energy) are used for the transport calculations,
where the outermost Fe layers are repeated to produce the leads. The magnetizations in both
Fe leads are parallel (P) to each other and (by default) aligned with the z-axis. To calculate the
TMR we also need the potentials for anti-parallel (AP) aligned magnetizations; these are obtained
by simply replacing spin-up and -down potentials from the middle of the barrier on, without a
subsequent self-consistent calculation. This is justified by the strong separation of both leads
via the insulating barrier. Strictly speaking, having the magnetization pointing perpendicular
to the layers is a special (and particularly interesting) case which only occurs for very thin Fe
slabs [A9]. However, since we neglect relativistic effects, in particular spin-orbit interaction, the
absolute direction of the magnetization has no physical effect, only the relative alignment of the
magnetizations in both leads has.

Using the NEGF method introduced in section 2.2 we calculate the conductance of this
junction for P and AP alignment of the magnetizations. In this section we consider the limit
of zero bias and zero temperature, where the conductance is obtained in linear response from
eq. (2.21) as

G =
Itot
V

=
e2

h
T (EF ). (4.1)

Since in these non-relativistic and collinear calculations both spins are decoupled, we obtain two
separate contributions for each alignment, which we denote by Gσσ′ for the conductance between
spin σ in the left lead and spin σ′ in the right lead. The spins are labeled by ↑ for the local
majority and ↓ for the minority spin. The total conductance for each alignment is

Gp = G↑↑ +G↓↓ and Gap = G↑↓ +G↓↑. (4.2)

The results are given in table 4. One immediately notes that the conductance for P is much larger
than for AP alignment. This difference can be used to infer the alignment from a conductance
measurement. The size of the difference is measured by the (optimistic) TMR ratio

TMR =
Gp −Gap
Gap

=
Rap −Rp

Rp
=
Ip − Iap
Iap

, (4.3)

where R = 1/G is the resistance. Alternatively, the normalized TMR ratio (nTMR)

nTMR =
Gp −Gap
Gp +Gap

=
Rap −Rp
Rp +Rap

=
Ip − Iap
Ip + Iap

(4.4)

can be used; it is restricted to the interval (−1, 1), whereas the optimistic TMR diverges for
Gap → 0. Both ratios are zero for Gp = Gap and in (−1, 0) for Gp < Gap. The ratios calculated
for the MTJ are given in table 4. Although the very large predicted TMR ratio of over 4000% is
not achieved in experiments, the measured values are large, up to about 500% (1000%) at room
(low) temperature [146, 84], which is why these MTJs are widely used in applications [131, 147].
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4.2.1 Origin of the giant TMR ratio

The main goal of this section is to explain the physical reason for the large TMR value. We show
that it is the result of an interplay between the band structure of iron and the (complex) band
structure of MgO. This concept has originally been developed by Butler [25] and Umerski [94];
this section is based on their work.

The key is to understand the tunneling process at the Γ̄-point, i.e. the center of the two-
dimensional Brillouin zone. Since the junction is periodic in-plane and we are not considering
any disorder scattering (for now), the in-plane ~k-vector (~k‖) is conserved. If ~k‖ has a non-trivial
symmetry group G~k‖, the IRR of the states (or symmetry, see section 2.5) is also a conserved

quantum number. Keeping in mind that the transport direction is fixed, the group of Γ̄ for the
present structure is C4v, which has been introduced in section 2.5. Thus, we can use the lattice
harmonics given in appendix A.3 to separate the contributions of different IRRs. As indicated in
sections 4.1, this amounts to a separation of the eigenstates in Fe and also in MgO (shown below).
In figure 4.7 we show the layer- and IRR-resolved tunneling density of states (TDOS) at Γ̄ and
EF [25], i.e. the density of only those states connected to the left lead (eq. (2.18)). Since each
IRR corresponds to one eigenstate only, each curve has the form expected from a simple tunnel
barrier. This means, in the left lead we have a single incoming and the corresponding reflected
wave leading to an oscillating density. The wavelength can be compared to the corresponding
kz-value from figure 4.1, although this is difficult in some cases, since we only have one sampling
point per atom (or layer). Of course, only states which are present at the Fermi-energy in the
spin channel can provide incoming states7. In the barrier we find an exponential decay for all
IRRs as expected inside the band gap of an insulator. The decay rate depends strongly on the
IRR, but not on the spin channel. In the right lead we have either the constant density of a
single outgoing wave or another exponential decay, if the incoming IRR is not present at EF in
the outgoing spin channel (compare figure 4.1). In the latter case, iron, although metallic, acts
as an insulator for unavailable states.

The outgoing TDOS is closely related to the transmission probability at Γ̄, which is also
given in figure 4.7. In all channels ∆′2 and ∆2 states (when present) have no significant contri-
bution, since their decay rates in MgO are large and thus their transmission probabilities small
in comparison to the others IRRs. ∆5 states are present in all channels and contribute in a
similar way, although the contribution depends on the states in both Fe leads, which are quite
different for majority and minority spin. ∆1 states have by far the smallest decay rate and thus
the largest transmission probability. However, they can only contribute in the ↑↑ channel for P
alignment. The reason is that ∆1 states are not present at EF in the minority spin of iron, i.e.
Fe is half-metallic with respect to ∆1 states. Therefore, they cannot contribute in any of the
other channels: in the ↓↓ and ↓↑ channels there are no incoming ∆1 states and in the ↑↓ channel
the outgoing ∆1 states decay in the right lead. Consequently, the transmission in the ↑↑ channel
is much larger than in any other channel leading to an (of course purely hypothetical) TMR of
4 · 109 % for the Γ̄-point.

The different decay rates in MgO are the crucial ingredient, since they lead to a symmetry
selection in the barrier. Clearly, this requires coherent tunneling, because otherwise the symmetry
(IRR) would not be conserved. Without this effect, we would need a true half-metal to obtain
a large TMR. The different decay rates can be understood by investigating the complex band
structure of MgO. The complex band structure is a generalization of the usual band structure
obtained by reducing the physical boundary conditions to allow exponentially decaying states
∝ e−κz z in one direction (here the z-direction). The decay rate κz is regarded as an imaginary
part of the Bloch wave vector kz in this direction. These evanescent states cannot exist in a
bulk crystal, but they are important in the vicinity of interfaces for the description of interfaces
states or incoming states from another material as in the present case. In particular, neglecting
modifications near the interfaces (the complex band structure is calculated in a bulk crystal),
the tunneling process can essentially be understood as follows: the incoming states couple to

7Actually, by numerical error (because of the necessary artificial broadening) there is a small spurious contri-
bution of the unavailable IRRs, which is suppressed in the figure.
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Figure 4.7: (Top) Layer-resolved tunneling density of the states connected to the left lead (TDOS)
in the MTJ at the Γ̄-point and Fermi-energy for the four spin channels nLσσ′(z; Γ̄, EF ); contri-
butions of the IRRs are shown separately. The TDOS is summed over the atoms in each layer;
empty spheres are disregarded.
(Table, Bottom) Transmission T (Γ̄, EF ) for the different spin channels and IRRs; small values

are clipped at 10−20. Note that the ~k‖-resolved transmission probability is unitless.
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position of the Fermi-energy in the Fe/MgO/Fe MTJ.

decaying states from the complex band structure, which then couple to the outgoing states.

We calculate the complex band structure of MgO for the constrained bct structure and also
in its equilibrium fcc structure for comparison. In both structures ~k-vectors the along kz-axis
have C4v symmetry; the IRRs remain valid for the complex band structure. The results for both
structures are shown in figure 4.8. Note that the roles of ∆2 and ∆′2 are interchanged between fcc
and bct, since both structures are rotated by 45◦ relative to each other [25]. Figure 4.8 also shows
the position of the Fermi-energy in the Fe/MgO/Fe MTJ relative to the band gap10. We find
that in our calculation the Fermi-energy is close to the center of the band gap. The decay rates
of the various states at EF can be directly read of and agree well with the ones obtained from the
TDOS (figure 4.7) of the inner four MgO layers. Thus, despite a strong impact of the confinement
on the states in the MgO barrier (visible in DOS and BSF), the tunneling is well described by
the bulk complex band structure. In principle, all complex bands with kx = ky = 0 contribute
to the tunneling at Γ̄ regardless of their real part of kz. Thus, there may be several bands at EF
belonging to the same IRR (e.g. for ∆1). However, the tunneling is always dominated by the
band with the smallest decay rate κz.

In a similar way, the decay of the evanescent states in iron can be explained using the
corresponding complex band structure. Since the specific decay rates are of no importance, this
discussion is omitted here. Noteworthy, the peculiar decay of ∆1 states can be attributed to a
mixing of two states, one of them with real part kz 6= 0 [144].

We now extend the discussion to the full two-dimensional Brillouin zone. The ~k‖-resolved

transmission Tσ,σ′(~k‖;EF ) is shown in figure 4.9. Integrating it over ~k‖ and multiplying by e2

h
yields the conductance shown in table 4. Since the junction is symmetric (i.e. it has a mirror

9Usually, different labels are used for the symmetry points and lines in bct structure [20]; for simplicity we use
the fcc labels for both cases.

10The position of EF,Fe is determined by comparing the band structure of bulk bct MgO to the one obtained
by using a MgO potential taken from the center of the barrier.
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Figure 4.9: Transmission Tσ,σ′(~k‖;EF ) in the two-dimensional Brillouin zone at the Fermi-energy
for the different spin channels; note that T↓↑ = T↑↓ = Tap/2; some sharp peaks are clipped; the
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plane in the center), the transmissions for the ↓↑ and ↑↓ channel are equal. Of course, a general
~k‖-point has no symmetries and the method applied at the Γ̄-point cannot be used. In general,
any band in Fe can couple with any complex band in MgO. The combination of the couplings and
decay rates determines the transmission probability. This cannot be described accurately by a
simple model. However, in the vicinity of the Γ̄-point we can argue that e.g. ∆1-like bands in Fe,
i.e. bands which have ∆1 symmetry at Γ̄, will couple predominantly to ∆1-like complex bands in
MgO etc. Calculations show [25, 63] that the ∆1-like complex band with the smallest decay rate
at Γ̄ retains a small decay rate in a large spot around Γ̄, which also is by far the smallest decay
rate of all complex bands at EF in the entire two-dimensional Brillouin zone. This ∆1-like band
causes the spot around Γ̄ in the T↑↑ channel, which integrates to the large conductance G↑↑. In
the Tap channel there are some contributions in this region originating from tunneling between
bands of different character at Γ̄ through the ∆1-like complex bands in MgO. For large barrier
thicknesses these contributions limit the TMR [63]. For the thickness considered here, there are
also contributions in other regions of the Brillouin zone, where the symmetry selection has no
effect. Clearly, there can only be contributions to Tap at ~k‖-points where states exist for both
spin directions (see also figure 4.10).

4.2.2 Interface resonance states

In order to understand the structure of T↓↓ (figure 4.9) we need to take into account effects of
the interfaces, which have been disregarded so far. The dominant peaks in T↓↓ and also the
corresponding peaks in Tap cannot be explained from the bulk bands. They are a result of an
interface resonance state (IRS). An IRS occurs when an interface state, i.e. a two-dimensional
state localized at an interface, overlaps with a bulk band and couples to it. This can lead to
a strongly increased amplitude of the wave function and density at the interface in such a ~k‖-
region, which also enhances the coupling to the MgO. The IRS responsible for the peaks in T↓↓
can be observed in the BSF (section 3.6) at EF for the interfacial Fe layer shown in figure 4.10.
This figure also shows the corresponding bulk BSF for comparison, which further indicates the
states available for transport at each ~k‖-point. For example, no transport through the MTJ is

possible in empty ~k‖-regions, where no bulk states are available. Comparing bulk and interfacial
BSF shows the strong enhancement caused by the IRS about 2/5 along the ∆̄-line. It also
shows a depletion of other states at the interface. This is reasonable, since the MgO acts as
an almost impenetrable barrier and thus incoming states have a node at the interface. A closer
consideration reveals more IRSs close to the edge of the Brillouin zone for majority spin and in
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Figure 4.10: Bloch spectral density of iron for the bulk crystal and the Fe/MgO interfacial layer
in the two-dimensional Brillouin zone at the Fermi-energy; the bulk density is calculated in the
cubic bcc cell and projected (i.e. integrated) along kz.

the center for minority spin, which can also be observed in the transmission.
To investigate the IRS in more detail we calculate the minority BSF in the interface layer

along the ∆̄-line (similar to the investigation in [108] for Fe/Vacuum) and the Σ̄-line in an energy

range around EF . These ~k‖-lines have a mirror symmetry and we can distinguish even and odd
states. In figure 4.11 the interfacial BSF is compared to the respective bulk BSF. It turns out
that the IRS which causes the peak in figure 4.10 has even symmetry along ∆̄ and a very flat
dispersion. It is located around the Fermi-energy in a gap of the even bulk states, which, strictly
speaking, makes it an interface state along the symmetry line, since it cannot couple to bulk
states. This gap is covered by states with odd symmetry and off the ∆̄-line the IRS can couple
to these bulk states leading to the broadening observed in figure 4.10. The interfacial BSF of
states with odd symmetry along ∆̄ follows the respective bulk BSF and shows no clear sign of
IRSs. Along the Σ̄-line the IRS has odd symmetry and lies in a gap of the odd bulk states. It
crosses the Fermi-energy close to the Γ̄-point but then stays at least 11 meV above it. Along Σ̄
we can also observe an interface state close to it above EF . It lies inside a full gap of the bulk
states and has even symmetry. A third IRS is observed 1.32 eV above EF close to Γ̄, which has
even symmetry along both lines. A closer look reveals several other IRSs, however these are less
important for later discussions. For the IRS at higher energies we can analyze the symmetry at
Γ̄, which reveals a ∆1 character (see figure 4.20). It lies directly below the minority ∆↓1 band
bottom. The IRS close to EF disappears right before the Γ̄-point at the energy where the ∆2

and ∆5 bands cross; the characters along both ~k‖-lines equally match the splitting rules for ∆2

and ∆5; because of the relatively small decay rate [25] we label this IRS ∆5-like.
It is important to understand the different effects of the IRS at EF on T↓↓ and Tap. In both

cases the IRS leads to a significant contribution (figure 4.9). For T↓↓ the IRSs on both sides
of the barrier are perfectly aligned and the effect is ‘squared’. Nevertheless, T↓↓ is still small
compared to T↑↑ and has only a minor impact on the TMR. The perfect alignment is easily
disturbed in experimental junctions, which would further reduce the effect [13]. In both channels
for AP alignment the IRS occurs only on one side leading to a smaller absolute contribution.
However, since both AP channels are equally small, the IRS actually leads to a reduction of the
TMR by increasing Tap. Additionally, the impact on Tap is less sensitive to small disturbances
at the interfaces. Since the large contributions of the IRS are away from Γ̄ they cannot couple to
the ∆1-like complex band with the smallest decay rate in MgO. Thus, the (relative) contribution
of the IRS reduces strongly with increasing barrier thickness, while it may have a crucial impact
for thin barriers [25, 13].
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Figure 4.11: Bloch spectral function for the minority spin in the interface Fe layer at an Fe/MgO
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bulk states along ∆̄ and the odd bulk states along Σ̄ for comparison.

4.2.3 Experimental results

The large theoretically predicted TMR ratios for coherent MTJs inspired a major effort to achieve
these in experiments. Nevertheless, typical TMR values obtained in experimental junctions are
one order of magnitude smaller than the predictions [146]. Many different possible reasons have
been proposed and investigated in the literature and some are briefly reviewed below. To date,
no conclusive explanation for this discrepancy has been found and likely a combination of these
and other effects is present. The occurrence/importance of different effects may also depend on
details of the structure of the MTJ and on the preparation method and conditions.

When comparing different TMR values some general issues are important. The relative mag-
nitude of different contributions to the conductance depends sensitively on the barrier thickness.
Thus, not only the TMR ratio but also its qualitative dependence on some parameter or effect can
change considerably with the thickness. The TMR decreases moderately with increasing temper-
ature due to an increase in the AP conductance [105]. Since ab initio calculations rarely include
finite-temperature effects a comparison is only feasible for low-temperature measurements.

Most of the proposed mechanisms causing a reduction of the TMR are based on structural
imperfections in experimental junctions. One possible defect is the formation of an iron(II) oxide
(FeO) layer at the interfaces. This effect has been intensively investigated theoretically [153, 61]
and experimentally [99, 98]. The formation of FeO can be controlled and prevented by controlling
the growth conditions [149, 145]. Recent systematic experiments indicate a rather weak influence
of an FeO layer on the TMR [17, 4].

The lattice mismatch between iron and MgO leads to lattice distortions and dislocations at
the interfaces and in the barrier [149, 18]. It has been demonstrated experimentally that a high
density of dislocations reduces the TMR [18]. These extended defects are difficult to describe
computationally and theoretical results have not yet been published. However, it has been shown
that oxygen vacancies in the barrier lead to scattering and reduce the TMR [100, 116].

The IRSs are particularly difficult to investigate, since they are very sensitive to the interface
structure as well as details in the calculation. Effects of an IRS can be experimentally observed
via tunnel spectroscopy, i.e. by investigating derivatives of the tunnel current. The onset of new
contributions to the current is visible as peaks in the second derivative d2I/dV 2. Using this
method, peaks at 0.16–0.2 V and 1.0–1.1 V for AP alignment have been attributed to minority
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IRSs [151, 90], which may be identified with the ∆5-like and ∆1-like IRS. These experiments
also show that IRSs are quenched by interface roughness. The calculated AP conductance,
which is discussed in section 4.5, shows a rather broad peak at 0.1 V resulting from the ∆5-like
IRS, this creates a maximum in d2I/dV 2 at about 0.04–0.05 V. It is unclear, whether only the
dispersion of the IRS is different in the experiments or if it is shifted to higher energies altogether.
Recent calculations using the quasiparticle self-consistent GW approximation predict the IRS at
higher energies [44]. The peak resulting from the ∆1-like IRS falls outside the bias voltage
range considered in section 4.5, but a large sharp peak is observed in the energy-dependent AP
transmission at 1.32 V in section 4.2.4 in reasonable agreement with the experiments. When
interpreting tunnel spectroscopy results, one should keep in mind that they also include other
effects, in particular inelastic scattering by magnons and phonons [39, 90], and the assignment
may not always be unambiguous.

4.2.4 Energy-dependent transmission

In this section we briefly discuss the energy-dependent transmission for an Fe/MgO/Fe tunnel
junction in a large energy range for the different spin channels [113]. Because of the Pauli
exclusion principle, the transport properties at zero bias voltage are determined solely by the
transmission at the Fermi-energy at zero temperature or in a small energy range around EF
for finite temperatures. Nonetheless, this discussion is instructive, since it shows the influence
of various effects on the transmission and it is beneficial for understanding their impact on
the transport properties discussed in later sections. The results are summarized in figure 4.12,
which shows the energy-dependent transmission as well as the ~k‖-resolved transmissions for
selected energies and channels. Although this calculation is performed with an increased artificial
broadening (see appendix A.5) of 2.71 · 10−4 eV to reduce the computational costs, some noise

is visible in T↓↓ resulting from a not fully converged ~k‖-mesh. Additionally, only 10 Fe layers
on each side of the barrier have been included in the middle region. The main effect of the
broadening is to reduce the large peaks in T↓↓ related to IRSs. It is likely that a similar effect
is present in experiments due to disorder and finite temperature. Therefore, the broadening is
used by some authors to simulate ‘generic disorder’ [113, 133]. On the downside, this broadening
leads to a non-conserving approximation, i.e. scattered particles are removed rather than being
scattered into a different state. In particular, scattering should reduce the symmetry filtering
and thereby the TMR as observed in experiments, however, this is not the case for the artificial
broadening [113]. Still, since this section is intended to illustrate the qualitative effects, this
approximation is reasonable.

The most prominent features observed in the transmission functions in figure 4.12 are a result
of IRSs. When interpreting these peaks, one should keep in mind that they are the result of
a complicated interplay of the coupling of the IRS to the Fe bulk bands, the coupling to the
evanescent MgO bands and their decay rates, and also of the amplitude of the IRS. The largest
peaks are a result of the ∆1-like IRS. For T↑↑ this occurs around -0.95 eV and marks the onset

of the ∆↑1 band. The latter provides the large dominating contribution to T↑↑ in the rest of
the shown energy range. This shows relatively little structure with a minimum at 0.11 eV and
a moderate increase towards higher energies, which is a result of the energy dependence of the
complex ∆1-like band in MgO. Note that the large contributions from the valence and conduction
bands in MgO are far outside the shown energy range. In T↓↓ the peak from the ∆↓1-like IRS
at 1.34 eV is even larger than the one in T↑↑; it marks the end of the ∆1 half-metallic region in
Fe. The dispersion and the coupling to bulk states are quite different for the IRS for both spins
resulting in the distinct peak shapes. This difference is also visible in the ~k‖-resolved transmission
shown for the maxima of both peaks. As expected, this also shows that the contributions are
located in the center of the Brillouin zone, where the complex ∆1-like MgO band has a small
decay rate. The ∆↓1-like IRS also causes a large peak in Tap, since ∆1-like states become available
for both spins

Figure 4.12 includes a detail view of Tap around EF showing effects of the minority ∆↓5-like
IRS. This shows that its contribution is not maximal at the Fermi-energy but has two peaks at
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-97 meV and 44 meV, where the minimum between both peaks is close to EF . The ~k‖-resolved
plots show that for both peaks the contributions are located along the ∆̄-line. Remarkably, the
effect of the same IRS on T↓↓ is quite different, since in this case the IRSs in both leads are
aligned. In particular, T↓↓ shows a steep increase directly above EF , which is related to a saddle
point of the IRS along the Σ̄-line. This has no visible effect on Tap, since the decay rates in

MgO are large in this ~k‖-region. The contributions of the ∆↓5-like IRS end abruptly at about 0.1
eV; for higher energies the IRS lies completely in a gap of the bulk states (compare figure 4.10)
and cannot contribute to transport. Above the IRS T↓↓ shows a pronounced minimum around
0.2 eV; actually T↓↓ appears to have a broad minimum around the Fermi-energy, which is only
disrupted by the IRS. This roughly coincides with a minimum in the minority bulk DOS [A3],
however the minimum in T↓↓ is primarily related to a decreased coupling of the available states
to the ∆1-like complex MgO band around Γ̄. At higher energies additional states with increased
coupling to this complex band become available and lead to an increase in T↓↓ around 0.5 eV.
A similar but much less pronounced dependence is observed for Tap. A direct comparison of the
~k‖-resolved transmissions shows that the same states control the dominating contribution in both
cases. Using symmetry arguments we can classify these states further. Since the ∆1-like states
have even symmetry along both symmetry lines (∆̄ and Σ̄), we can compare the ~k‖-resolved
transmission with the available states along both lines shown in figure 4.10. This shows that the
minimum in T↓↓ and Tap is related to the ‘hole’ around EF in the even states along the ∆̄-line.



4.3 Alloy leads — The effect of disorder 43

majority

spin n­

MgOFe0.5Co0.5 ­

atomic layers

135791113151719 1 2 3 4 5 6

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0
10-5

10-4

10-3

0.01

0.1

1

10

z (nm)

B
S

F
n

(z
;G_

,E
F
)

D1

D2

D2
¢

D5

minority

spin n¯

MgO

Fe0.5Co0.5 ¯

atomic layers

135791113151719 1 2 3 4 5 6

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

z (nm)

Figure 4.13: Layer-resolved Bloch spectral density at Ef and Γ̄ for an Fe0.5Co0.5/MgO interface;
both spins and the IRRs are shown separately.

4.3 Alloy leads — The effect of disorder

In this section we extend the discussion of MTJs from section 4.2 by replacing the iron leads
with disordered FeCo leads. Many of the substantial changes in this case are not a result of
the band filling (which could be described by a VCA) but result from the disorder scattering,
which is included in the CPA description. This means the transport electrons can be (elastically)

scattered between different states at the same energy, in particular different ~k‖-points and IRRs.
We start by investigating the (equilibrium) density at EF for a single interface between FeCo

and MgO (both semi-infinite) in the same structure as the interfaces in the MTJs. To obtain
an effective medium for the semi-infinite FeCo lead, we copy the one from the outermost CPA
site in the middle region in each CPA self-consistent iteration. One can equally use an effective
medium exported from a corresponding bulk calculation, which leads to the same result. Using
the experience from section 4.2.1, we first analyze the BSF at the Γ̄-point for an Fe0.5Co0.5/MgO
interface shown in figure 4.13. Since there are no states coming from a right lead, this can be
compared to the left half of the TDOS for iron leads (figure 4.7). We observe that the oscillation
in the densities resulting from the interference of incoming and reflected wave decays away from
the interface. This is a result of the dephasing caused by the disorder scattering. For states which
are strongly affected by scattering (e.g. minority ∆↓1 states) it basically quenches the oscillation.

The scattering and dephasing is weakest for the majority ∆↑1 states as shown in section 4.1.
By comparing figure 4.13 to the TDOS for iron leads an important difference becomes im-

mediately apparent: for both spins all IRRs have a finite density in FeCo, including those which
would not be available at the Fermi-energy in a VCA description. This is caused by the broad-
ening of the bands observed in an alloy (see figure 4.1), which can lead to a finite density far
away (in energy) from the actual band. An equivalent perspective is that the evanescent states
are continually filled by in-scattering from other bands. For the majority spin this only leads
to a small density in the three IRRs which otherwise would not be available at EF . However,
in the minority spin the finite ∆↓1 density obtained this way has profound consequences. First,

the ∆↓1 density is relatively large, because the ∆↓1 band shows an extremely large broadening
extending across EF . More importantly, since the complex ∆1 band in MgO has the smallest
decay rate (section 4.2.1), the minority density extending into the MgO is dominated by the

scattering-induced ∆↓1 contribution after three layers of MgO. This means that, because the
FeCo alloy is not fully ∆1 half-metallic, we have a dominating contribution of ∆1 states not only
in the majority but also in the minority spin. Since the combination of symmetry filtering and
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Figure 4.14: Layer-resolved DOS at the Fermi-energy for the Fe0.5Co0.5/MgO interface (middle)

and ~k‖-resolved density (Bloch spectral density) for bulk, the FeCo layer at the interface, and in
the fifth MgO layer for minority (top) and majority (bottom) spin.

∆1 half-metallicity is the key effect for obtaining the large TMR for iron leads, we anticipate
that these minority ∆↓1 contributions reduce the TMR for FeCo leads. The density in figure 4.13

is calculated for a Co concentration of 50%; however, the broadening of the minority ∆↓1 band
occurs already for relatively small Co concentrations and persists almost to pure cobalt (figure
4.3). Thus, the effect observed above is important in a large range of concentrations.

Next, we consider the density at EF in the full two-dimensional Brillouin zone. Figure 4.14
shows the layer-resolved DOS for the Fe0.5Co0.5/MgO interface and the ~k‖-resolved density (BSF)
in selected layers. The bulk majority BSF in FeCo is much simpler than the one for iron (figure
4.10), since the flat d-bands are below the Fermi energy. The minority BSF shows a strong
broadening as expected from the BSF shown in figure 4.1. For both spins, the entire Brillouin
zone is covered with at least a little density. At the interface, the majority BSF is only slightly
depleted. As for iron, the minority BSF at the interface is very different from the bulk one. The
bulk states are depleted and instead it shows two IRSs, which overlap on the Σ̄ line (compare
figure 4.11). For iron these IRSs lie in a gap of the bulk states, but for FeCo they overlap with
the scattering-induced density. The IRSs show a strong broadening, in particular compared to
the very sharp peak for pure iron (figure 4.10), as a result of the disorder and the coupling to
bulk states. The effect of the IRSs is still visible in the outbound BSF for the minority spin
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Figure 4.15: ~k‖-resolved tunneling density of states at EF in a
Cu/Fe0.5Co0.5/MgO/Fe0.5Co0.5/Cu junction with anti-parallel alignment of the magneti-
zations shown for selected layers. The spin labels are relative to the local magnetization. The
last column shows the transmission in the respective channel.

inside the MgO. However, the dominating contribution is located in the center of the Brillouin
zone close to the Γ̄-point. A part of this contribution is a result of electrons which are scattered
into ∆1-like states as explained above. Additionally, it contains contributions of states which
become available at EF via band filling (compare figures 4.12 and A.1). Both tunnel via the
∆1-like complex band with the low decay rate in MgO. In the majority BSF inside the MgO
we find a peak around Γ̄, which closely resembles the peak in the majority transmission for iron
(figure 4.9) and has the same origin, i.e. ∆1-like states decaying via the complex ∆1-like band of
MgO.

The next step is to investigate a full MTJ with FeCo leads. Unfortunately, it is not possible
at present to calculate transport properties when using CPA alloys for the semi-infinite leads.
While obtaining an (equilibrium) effective medium for the leads is straightforward (see above),
the non-equilibrium lead self-energies and vertex corrections for this case have not been derived.
Thus, one has to resort to introducing a third material, which is ordered and can be used for
the leads. There are several obvious choices including pure iron or cobalt or a VCA alloy with
the same composition. Here, we use a different option: the leads are modeled using copper
(Cu) in the bcc structure of iron. The reason for this choice is that we need a finite width of
the ferromagnetic regions for spin-transfer torque calculations, which are discussed later in this
work. This rules out the more obvious choices. To avoid unnecessary influence of the leads a
free-electron-like metal suggests itself. The details of the metal are of no importance and the bcc
structure is chosen for convenience [58]. The Cu/FeCo interfaces lead to additional effects, which
are discussed bellow. A typical junction investigated in this work consists of a six-monolayer MgO
barrier with 20-monolayer FeCo slabs (with the same composition) and semi-infinite (bcc) Cu
leads on either side. 10 monolayers of each Cu lead are included in the middle region for the
self-consistent calculation (see figure 4.15).

We start right away by discussing the TDOS in a Cu/Fe0.5Co0.5/MgO/Fe0.5Co0.5/Cu MTJ
for AP alignment. Note that this requires the NEGF-CPA-BSF developed in this work. The
~k‖-resolved TDOS at EF in various layers is shown in figure 4.15. Just as in its equilibrium
fcc structure, copper in bcc structure has a single-sheeted Fermi-surface. This results in the
simple TDOS shown in figure 4.15. The hole around X̄ originates from a corresponding hole in
the Fermi-surface around the N -point on the face of the bcc Brillouin zone. The lateral faces
of the Fermi-surface are folded back into the simple cubic transport cell leading to the double
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coverage along the edges of the two-dimensional Brillouin zone. The TDOS shows some weak
oscillations originating from the boundary condition at the Cu/FeCo interface. Since the copper
is non-magnetic, both spins are very similar; the small differences result from the adjacent FeCo.

In the FeCo slab the additional interface leads to quantum-well states, since it is now enclosed
by a different material on both sides. In the majority spin these lead to smooth oscillations in
most regions of the Brillouin zone, since the quantum-well states are broadened by coupling
to the states in copper. However, in the ~k‖-region where the copper TDOS shows a hole, the
quantum-well states are sharp, since they cannot couple to (bulk) states on either side of the
FeCo slab. In the minority spin the quantum-well states are strongly broadened by the disorder
scattering. Apart from some small variations and the region around X̄ for the majority spin, the
TDOS at the FeCo/MgO interface is very similar to the BSF observed for semi-infinite FeCo in
figure 4.14. Thus, the same effects as discussed above for that case apply. In particular, inside
the MgO we obtain a TDOS coming from the left lead, which is very similar to the equilibrium
BSF in MgO in figure 4.14. Here, these states couple into the right lead.

In both spin channels the dominant contributions tunnel via the ∆1-like complex band in the
vicinity of Γ̄. The electrons tunneling from majority to minority spin are quickly redistributed
across the states at EF by the strong disorder scattering in the right FeCo slab. This way, the
∆1-like states can contribute to transport rather than just decay as observed in pure iron. The
minority TDOS in the right FeCo slab resembles the bulk BSF. Accordingly, we obtain a rather
smooth outbound TDOS in the right Cu lead, which no longer shows the origin of the tunneling
states. In the majority spin the disorder scattering is weak and the peak around Γ̄ is clearly
visible in the outbound TDOS. The sharp quantum-well states at X̄ in the FeCo majority spin
cannot couple to states in the Cu leads and thus contribute to the transport only indirectly via
the weak in- and out-scattering. The TDOS related to the minority IRSs, which is still visible
in the fifth MgO layer, is further reduced in the last MgO layer and no longer visible in the first
FeCo layer (not shown), thus its contribution to transport is small.

Keeping in mind the difference in normalization (compare eqs. (2.19) and (2.22)), the out-
bound TDOS in the last copper layer agrees well with the transmission through the junction,
which is also shown in figure 4.15. Thus, the (~k‖-resolved) TDOS provides a powerful tool to in-
vestigate the effects that determine the transmission, even in the presence of disorder scattering.
Note that, in the sense of section 2.4, the transmission is given in terms of the ~k‖-states of the

right lead. This illustrates that in this case the ~k‖-resolved transmission shows the contribution

at that ~k‖-point where the electron arrives in the right lead.

To summarize, we observe that the disorder scattering leads to additional contributions of
∆1-like states tunneling from the FeCo minority spin, in particular for AP alignment. Similarly,
incoming ∆1-like states are redistributed in the FeCo minority spin and can also contribute
to transport. We have discussed the two channels for AP alignment, the two channels for P
alignment can be explained analogously from the same effects (see also figure 4.21).

From the discussion above, it seems that the copper leads have only little impact on the
actual tunneling, since the states arriving at the barrier are similar as for semi-infinite FeCo
leads. Thus, the qualitative results, which are determined by the ferromagnetic material and
the barrier, are insensitive to the leads. However, the quantum-well states lead to a more or
less pronounced oscillatory dependence of many quantitative results on various parameters, in
particular the thickness of the ferromagnetic slabs. These oscillations are strongest and most
weakly damped by disorder scattering in the majority spin. The assumed perfect Cu/FeCo
interfaces are difficult to achieve in experiments and interface roughness would interfere with
the quantum-well states. Also, the thickness dependence would restrict the significance of many
results to a fixed slab thickness. Therefore, we reduce the effect of the quantum-well states
by introducing a rough interface between the FeCo slab and the Cu lead, which is modeled by
averaging over several slap thicknesses. We repeat each calculation varying the slab size on each
side independently between 19 and 21 layers, which results in nine combinations. The results
are averaged with a weight of 25%, 50%, 25% for 19, 20, 21 layers. This reduces the oscillations
quite effectively, since the dominating oscillations (for iron) have a period of about two layers
[56]. We treat the junctions with different thicknesses as conducting independently in parallel,
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Figure 4.16: Tunnel magnetoresistance in junctions with Fe1−xCox ferromagnetic layers as a
function of the Co concentration for zero bias voltage; the inset shows a detailed view at inter-
mediate concentrations. Modified from [A5].

thus the conductances, currents, etc. are averaged and the derived quantities like the TMR are
obtained from the averaged result. The rough interface might also be considered as a transition
to an amorphous region.

4.4 Material dependence of the TMR

In the following sections we systematically investigate various transport phenomena in MTJs
with disordered FeCo leads. We focus mainly on TMR and STT, but the discussion also includes
e.g. spin currents, which are important in many spintronic applications. In the present section
we analyze the dependence of the TMR at zero bias voltage on the Co concentration. To this
end, we calculate the TMR in the full concentration range from pure iron to pure cobalt. The
calculations include the thickness averaging for the finite-width FeCo slabs, which are contacted
by copper leads, as described in the previous section. The results are shown in figure 4.16.

Because of the additional copper leads, the TMR of 5490% for pure iron is larger than the
one reported for semi-infinite iron lead in section 4.2. The values obtained individually for
the different thicknesses show a considerable spread with a standard deviation of 15%, which
demonstrates the necessity of the averaging. For pure cobalt the spread is even larger. However,
some of this variance can be attributed to the definition of the (optimistic) TMR ratio, which is
very sensitive to small changes in Rap.

The TMR shows a steep drop from the pure materials to the first finite concentrations included
in the calculations resulting in a value of about 2000%. From this dependence and the discussion
in section 4.3 we assume that this is related to effects of disorder scattering. To confirm this
idea, we investigate the conductances entering in the TMR (eq. (4.3)). These are shown in figure
4.17. For P alignment the conductance varies only moderately by less than 10% showing a slight
decrease with the Co concentration. In contrast, the AP conductance doubles from 0% to 10%
and from 100% to 80% cobalt. This increase causes the observed decrease in the TMR. Figure
4.17 also shows the contribution described by the vertex corrections, which can be interpreted as
the diffusive part of the conductance (see eq. (2.26)). In the majority spin only a small fraction of

the conductance is diffusive, showing the weak effect of disorder scattering on the ∆↑1 states. The
minority conductance is almost completely diffusive for finite concentrations. This is expected,
since in both contributing channels (↑↓ and ↓↑) the electrons need to traverse a minority FeCo
region, which exhibits strong scattering even for small concentrations. The ↓↓ channel for P
alignment is also completely diffusive, but gives only a small contribution (1 − 2%) to the P
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conductance. Only for pure iron it has a relevant contribution of about 10%, which is a result
of the ∆5-like IRS.

In section 4.3 we found that for 50% Co an important contribution to the transport for AP
alignment is created by electrons which are scattered from or into minority ∆↓1-like states and
tunnel in the center of the two-dimensional Brillouin zone. To analyze for which concentrations
this contribution is important we calculate the relevant density in FeCo alloys, i.e. the density
at the Fermi-energy of such states which are projected onto Γ̄ in the transport geometry [14].

This is the density at ~k‖ = 0 integrated over kz
11; it is shown in figure 4.18. In the majority

spin the ∆′↑2 and ∆↑5 bands shift below the Fermi-energy at small Co concentrations and their

contributions decrease rapidly leaving only ∆↑1 states. For the minority spin the contributions

from ∆′↓2 and ∆↓5 states decrease with the concentration while the ∆↓2 contribution increases.

However, the important part is the ∆↓1 contribution; we find that it increases slowly at small
concentrations, then shows a broad peak at high concentrations with a maximum at 75% Co,
and afterwards decreases quickly towards pure cobalt12. From the ∆↓1 density we can infer
that the effect described in section 4.3 has a significant influence on the AP conductance for
concentrations & 40%. In the same range we also expect an increase of contributions via band
filling (compare section 4.2.4 and appendix A.4). Thus, at small concentrations we anticipate
additional contributions to explain the observed AP conductance.

To identify potential additional contributions for small Co concentrations we analyze the
TDOS inside the MgO barrier shown in figure 4.19. As shown in section 4.3 this provides a
more reliable view on the actual tunneling process than the transmission, which is influenced by
disorder scattering in the right lead. The TDOS provides a clear picture of additional contri-
butions: we find an additional peak along the ∆̄ line, which is due to the ∆5-like IRS that has
already been observed for iron in section 4.2.2. Note that in a VCA picture this would actually
be shifted below EF by the band filling for 20% Co (see appendix A.4), but is still visible because
of a large disorder broadening. The two IRS observed along the Σ̄ line for 50% Co (figure 4.14)
are faintly visible for ≥ 20% Co. These also cause the outer peaks close to X̄ for ≥ 20% Co.
Further, there are peaks close to X̄, which are related to quantum-well states (see section 4.3).

11Note that the projected density is different from the corresponding line in figure 4.3, which includes only
states at kz = 0.

12Note that the minority ∆↓
1 contribution does not decrease completely to zero because of some necessary

artificial broadening and the proximity to the actual ∆↓
1 band in Co.
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Figure 4.19: Tunneling density of states in the fifth layer of the MgO barrier coming from the
minority spin in the left lead of a MTJ with 20 monolayer FeCo slabs in anti-parallel alignment;
shown for three different compositions.
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Although these cannot contribute directly to the transport they could make a small contribution
via in- and out-scattering. With increasing Co concentration the additional peaks become less
important relative to the peak around Γ̄ and become negligible for & 30%. As explained in

section 4.3 this peak results from a combination of electrons which are scattered into this ~k‖
region and states that become available via band filling (which are of course also influenced by
the disorder). It is a curious coincidence that the sum of these contributions leads to a basically
concentration-independent AP conductance for 10% ≤ x ≤ 50%. In particular, the decrease in
Gap observed for iron leads at energies above the IRS (figure 4.12) and in the VCA result for
x > 8% (figure A.1) is compensated by effects of disorder scattering.

In section 4.2.2 we observed another IRS at higher energies in the minority spin of iron; it
has ∆1 symmetry at Γ̄ and leads to a very large contribution in T↓↓ and Tap (figure 4.12). One
might expect that via band filling this IRS would shift close to or even cross the Fermi-energy
with increasing Co concentration, which should have a large effect on the TMR. To explain why
this is not the case, figure 4.20 shows the interfacial minority ∆↓1 BSF at Γ̄ for Fe0.5Co0.5 and the
pure materials. The figure also includes the corresponding bulk BSF. For the pure materials the
latter shows the expected 1/

√
E dependence at the band onset, while for the alloy it shows the

broadened two-peak structure observed in figure 4.2. For iron the BSF at the interface shows a
sharp peak from the IRS directly below the bulk-like states. The concentration dependence of
the ∆1-like IRS is very different from a simple band filling. Similar to the bulk ∆↓1 states, the ∆↓1
IRS peak of FeCo alloys splits in an iron- and a cobalt-like peak at finite concentrations. While
the iron-like peak retains its position, the cobalt-like peak shifts towards the Fermi-energy. Both
peaks overlap with the bulk states and are strongly broadened by this coupling and the disorder.
For pure cobalt the IRS is still far above EF (at 0.68 eV) and inside the bulk-like states, which
explains why it is not observed in the TMR at zero bias. The described trends have been verified
for more Co concentrations and also for the interfacial BSF along symmetry ~k‖-lines (not shown).
Interestingly, for a plain bcc Co surface the IRS is predicted below EF [19], which shows that
the MgO layer has a strong influence on the IRS.

Finally, we discuss the (~k‖-resolved) transmission for the case of the pure lead materials in
more detail. These are shown in figure 4.21 including the previously discussed case of Fe0.5Co0.5

for comparison. In the ↑↑ channel for P alignment we find the pronounced peak at Γ̄ for all
concentrations, which has been observed and explained in section 4.2.1. The other channels for
the pure materials show a strong influence of the quantum-well states, which lead to additional
structure in the ~k‖-resolved transmission. For T↓↓ the structure is particularly sharp, since the
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quantum-well states are aligned on both sides of the barrier. For iron we find the structure
observed for semi-infinite leads (figure 4.9), including the peaks from the IRS, but superimposed
by the structure from the quantum-well states. For cobalt a relatively weak effect of an IRS is
visible close to M̄ . Note that the indicated plus-sign like shape of the contributions for both
pure cases (and also some other figures before) is a result of the complex band structure of MgO
[63].
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4.4.1 Experimental results

The interest in FeCo alloys as ferromagnetic leads has originally been inspired by calculations
predicting even larger TMR ratios for ordered equimolar Fe1Co1 alloys or pure Co than for pure
Fe [152]. In these calculations the ordered alloy was described by a B2 structure13. Although
growth of this ordered structure is occasionally observed [36], it is unclear whether it plays a role
in MTJs. From the previous sections it is clear that neglecting the effects of disorder is not a
valid approximation for this system. Thus, the applicability of these results is questionable and,
either way, they cannot be extended to arbitrary concentrations.

The concentration dependence of the TMR has been subject to systematic experimental
investigations [84, 19]. Despite different growth methods (molecular beam epitaxy [19] and
radio frequency magnetron sputtering [84]) both investigations obtain similar qualitative trends:
Starting from pure iron the TMR increases with the Co concentration and shows a maximum
at 25% Co, which has ca. 150% of the value for pure Fe. For higher Co concentrations the
TMR drops to about half the Fe value at 75% Co. This trend is observed at room temperature
as well as at low temperature. The largest observed values are 530% [19] and 1010% [84] at
low temperature. This experimental concentration dependence is quite different from our result.
In particular, the steep increases towards pure lead materials are not observed. This is not
surprising given the discrepancy between calculations and experiments for pure Fe leads, which
was already discussed in section 4.2.3. The decrease of the TMR for large Co concentrations
observed in the experiments may be explained by the mechanisms found in section 4.3.

In the initiating publication [152], the predicted increase in TMR with the Co concentration

was explained by the disappearance of majority ∆↑5 (and ∆′↑2 ) contributions at Γ̄ leading to an

infinite TMR for this ~k‖-point (compare section 4.2.1). This argument is not quite conclusive,
since the contributions from these bands at Γ̄ are negligible either way. However, it seems
plausible that shifting the majority d-bands below the Fermi-energy (the ∆1-band is regarded
‘s-like’) should reduce the overlap of the states contributing to the AP conductance, since these
are then purely s-like in the majority and purely d-like in the minority spin. The d-bands are
completely below Ef for about 20% Co [A3]. In section 4.2.4 we found a decrease in the AP
transmission for energies above the contributions from the ∆5-like IRS. However, this decrease
is related to the iron minority states in that energy range, which also cause a strong decrease in
T↓↓. In a simple VCA picture (and ignoring the IRS) this decrease and the subsequent increase
in Tap result in a concentration dependence of the TMR, which is qualitatively similar to the
experimental one [130] (compare appendix A.4). This provides an alternative explanation of the
experimentally observed increase. In our CPA calculations the contributions from the IRS, which
is strongly broadened by disorder scattering, actually lead to a constant Tap in this concentration
range. Because of the rather thin barrier and the absence of interface roughness, the effect of
the IRS may be overestimated in our calculations compared to the experiments (see also section
4.2.3), which could explain the discrepancy (apart from the limits of pure lead materials).

It is interesting that the concentration dependence of the TMR follows qualitatively the one
of the magnetization [A3], i.e. the Slater-Pauling curve, which shows a maximum of 2.37µB for
17% Co (refined from [A3]). This maximum occurs, when the majority d-bands are completely
filled and the higher minority d-bands are still empty. This explanation is related to the one
above (apart from IRS), but for the TMR the coupling of the different states to the ∆1-like
complex band in MgO is more important than their density.

The calculated lattice constant also shows a similar concentration dependence [A3]. The
increase at small Co concentrations is overestimated compared to experiments [36] and has little
effect on the lattice mismatch. On the other hand, the decreasing lattice constant at large
Co concentrations may impair the MgO and interface quality. Furthermore, the latter may be
influenced by a change in the interface chemistry. Thus, one may expect an effect of a change in
growth quality in addition to the electronic effects discussed above.

The band alignment between the ferromagnets and the MgO barrier depends on the alloy

13The Caesium chloride or B2 structure consists of two interpenetrating simple cubic lattices with cubic coor-
dination.



4.4 Material dependence of the TMR 53

composition. In our calculations this leads to a small, about linear shift of the Fermi-energy
toward the valence bands in MgO with increasing Co concentration, which is 0.22 eV for Co and
has little influence on the transport. However, in experiments this alignment may be influenced
by details of the interface and the barrier.

The concentration dependence of the IRSs has also been studied experimentally [19]. This
investigation uses spin- and symmetry-resolved photoemission spectroscopy to investigate the
electronic structure of an FeCo surface. They identify a minority IRS which crosses the Fermi-
energy from above at about 30% Co and indicates ∆↓1 symmetry [19, 4]. This would mean that the

cobalt-like peak of the ∆↓1-like IRS shifts downwards in energy with the Co concentration much
faster than observed in our calculations and crosses the Fermi-energy at small concentrations.
Such a substantial discrepancy might be attributed to unanticipated surface conditions (e.g.
oxidation). Conversely, if the experimental symmetry assignment is incorrect, the observed IRS

might be identified with the ∆↓5-like IRS observed in the calculations (but not observed in these

experiments). This would reduce the discrepancy, although it would mean that the ∆↓5-like IRS
is located at a higher energy in the experiments.
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Figure 4.22: Bias-voltage dependence of the TMR in MTJs with Fe, Fe0.5Co0.5, and Co ferro-
magnetic slabs. [A5]

4.5 Bias-voltage dependence of the TMR

In this section we study the TMR at finite bias voltage for different compositions in the ferromag-
netic layers. The applied bias voltage V corresponds to a difference in the chemical potentials
(or quasi Fermi-levels) of electrons in both leads µL−µR = −e V , where e = |e| is the (positive)
elementary charge. The sign of the bias voltage is defined in such a way that for positive voltages
the electrons tunnel from the right to the left lead (which means that the conventional current
direction is left to right). In the calculations, the bias voltage is described by a rigid-band shift
[61]: the left lead and the metallic layers left of the barrier are shifted by −e V/2 and those on
the right by +e V/2; in the barrier a linear drop between these values is assumed. The shift
is applied by shifting the self-consistent potentials accordingly. This form of the potential cor-
responds to an ideal capacitor. It has been shown that this assumed potential is very similar
to a self-consistent result [113]. The calculations are performed for zero temperature, thus the
Fermi-functions of the leads are step functions and the energy integration in eq. (2.21) can be
restricted to [µL, µR]. The thickness averaging for the ferromagnetic slabs (see section 4.3) is
included in these calculations. Since the averaged junctions are symmetric, the TMR is an even
function of the bias and only positive voltages are shown.

Figure 4.22 shows the bias-voltage dependence for Fe0.5Co0.5 alloys and both pure materials.
The TMR at zero bias shows the reduction from pure lead materials to FeCo alloys explained
in section 4.4. The junction with Fe leads shows a pronounced S-shape structure at small bias
and a moderate decrease at larger bias to 40% of its zero-bias value at 0.88 V 14. For the FeCo
alloy we obtain a very smooth bias dependence. It starts from 1910% at zero bias, stays almost
constant at small bias, and then decreases about linearly to 237% at 0.88 V. For Co leads the bias
dependence shows a narrow S-shape around 0.1 V followed by a steep decrease to only 18% TMR
at 0.88 V. Because of the much faster decay, the TMR for Co even drops below the FeCo value
for voltages > 0.28 V. Thus, the bias dependence is very different for the three lead materials
and needs to be discussed separately for each case.

To understand the bias-voltage dependence of the TMR we analyze the bias-voltage depen-
dence of the corresponding conductances G = Itot/V shown in figure 4.23. We find that the P
conductance is basically independent of the bias voltage and the Co concentration. The TMR
is controlled by the AP conductance, which shows a very different bias dependence for the three
materials ranging from a moderate increase for Fe to an exponential increase for Co. The two

14The bias voltage sampling, as most other energy meshes, is set in Rydberg units leading to odd numbers in
SI units.
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Figure 4.23: Bias-voltage dependence of the conductance in MTJs containing Fe, Fe0.5Co0.5, and
Co leads for parallel and anti-parallel alignment of the magnetizations; the dashed lines with
open symbols show the contribution of the dominating channel, which is G↑↑ for P and G↓↑ for
AP conductance. [A5]

channels contributing for each alignment (eq. (4.2)) can be investigated separately. As already
observed at zero bias, the P conductance is dominated by the G↑↑ contribution; this remains
valid for all concentrations and considered bias voltages. This also means that the tunnel current
for P alignment is strongly spin-polarized. Only at zero bias for the pure materials G↓↓ has a
notable contribution, which disappears at the first sampling point (34 mV). For the AP conduc-
tance both channels are equal at zero bias; however, their bias dependence is very different and
at large bias the AP conductance is dominated by G↓↑, i.e. electrons tunneling from the majority
spin in the right lead to the minority spin in the left.

The different bias-voltage dependences can be understood qualitatively using results from
the previous sections, in particular section 4.2.4. Since additional structure from quantum-well
states impedes a direct interpretation of the energy- and ~k‖-resolved conductances, we mostly
confine the discussion to this qualitative level. Note however that the energy integration at finite
bias voltage leads to an additional averaging and further reduces the effects of quantum-well
states for integrated properties. The MgO barrier causes a strong decoupling of both leads.
Therefore, we can assume that the states in both leads, including the IRSs, are only unalteredly
shifted relative to each other in energy by the bias voltage [113]. Additionally, since the complex
bands in MgO show only a weak energy dependence in the relevant energy range inside the band
gap (figure 4.8), the modification of the barrier by the bias voltage can be ignored in the first
approximation. These simplifications can be justified by the transmission functions calculated at
finite bias for iron leads discussed in [113]. As an additional simplification for the AP conductance
we can ignore the weak energy dependence of the majority ∆1 band and assume that the bias
dependence is determined solely by shifting the minority states in the other lead. The last
approximation is particularly convenient, since it allows to estimate the conductances for the AP
channels at finite bias from the energy-dependent AP conductance at zero bias; this estimate is
given by the average over the interval [EF − V,EF ] ([EF , EF + V ]) for electrons tunneling from
(into) the minority states.

As an illustration we explain the observed S-shape for iron at low bias voltage in detail.
It is a result of the minority ∆↓5-like IRS, which influences the three conduction channels in
different ways. The drop in the TMR from zero bias to the first bias point is caused by the
reduction in G↓↓, which in turn results from misaligning the IRSs in both leads. Since the IRS

has a flat dispersion, small shifts in energy diminish the overlap in ~k‖-space. This is enhanced
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and supplemented by quantum-well effects, which lead to an additional localization in ~k‖-space
(see figure 4.21). Consequently, the large enhancement at zero bias for G↓↓ only appears for
symmetric junctions entering in the thickness averaging. An analogous effect does not occur
for G↑↑, since the position of the ∆1-like peak in the ~k‖-resolved transmission is fixed by the
barrier, or the AP channels, which contain no alignment of similar states. The subsequent broad
minimum in the TMR for Fe extending from 0.034 V to 0.17 V results from a maximum in
Gap, which is actually the sum of two peaks. One peak appears in G↓↑ at ca. 0.06 V resulting
from electrons tunneling into the IRS in the left lead and corresponds to the peak above the
Fermi-energy observed in Gap in figure 4.12. The second peak occurs in G↑↓ at ca. 0.12 V and
results from electrons tunneling from the IRS in the right lead (peak below EF in figure 4.12).
A similar explanation might hold for cobalt, which shows a weak influence of an IRS observed
close to M̄ .

After the IRS related peak, Gap for iron shows a moderate linear increase, which leads to the
observed reduction in the TMR. This results from an increase in G↓↑ with increasing bias voltage
(while G↑↓ decreases) in agreement with the estimate from the energy-dependent conductance
in figure 4.12. Thus, for iron we can qualitatively understand all important features of the bias
dependence from the explanations in previous sections. Note that we do not see any influence
of the minority ∆↓1 IRS or bulk band, which cause a large increase in figure 4.12, since they lie
outside the considered bias range.

Next, we discuss the bias-voltage dependence for cobalt leads. From the previous sections it
is evident that the steep increase in the ↓↑ channel is related to the proximity of the minority
∆↓1 band to the Fermi-energy. For cobalt it is only 0.134 eV above EF , whereas for iron it is
far away (1.36 eV). The effect is illustrated in figure 4.24, which shows the situation at a large
bias voltage. For convenience, we consider the ↑↓ channel for a negative bias voltage, i.e. the
electrons are tunneling from left to right. By symmetry, this is equivalent to ↓↑ at positive bias.
Via the rigid-band shift, the bands in both leads are shifted relative to each other, such that the
difference between the chemical potentials in both leads yields −e V , but locally the chemical
potential is in the position of the equilibrium Fermi-energy. Only occupied states in the left lead
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(i.e. below µL) and above the chemical potential in the right lead contribute to the transport;
below µR contributions in both directions cancel. For a sufficiently large (negative) bias voltage,

minority ∆↓1 states in the right lead shift into the resulting energy window [µR, µL] from above.

This means that majority ∆↑1 states from the left lead can tunnel into these states and no longer
decay in the right lead; these make a large contribution to the current. In other words, the bias
voltage effectively reduces the ∆1-half-metallic gap, which was responsible for the large TMR in
the first place, and causes contributions from a ∆1-metallic region. Thus, the strong reduction
of the TMR in this case is evident. This also explains the observed threshold voltage of ca.
0.14 V for the exponential increase in G↓↑. To substantiate this explanation we investigate the
energy-resolved transmission. We expect a significant increase starting 0.134 eV above µR; this
can be observed in figure 4.24. The increase is about exponential after the threshold. For the
junction with a fixed slab size of 20 monolayers Co we observe pronounced oscillations, which are
superimposed on the increase. These are strongly suppressed in the thickness-averaged curve,
which shows that they result from a quantum-well effect. Finally, figure 4.24 shows the ~k‖-
resolved transmission at both endpoints of the energy window, which can be compared to figure
4.21. At the lowest energy µR we observe a transmission which is very similar to Tap at zero
bias. At the highest energy µL the transmission looks like a typical ↑↑ transmission and shows
the pronounced peak around Γ̄ (without a hole in the center), which indicates (bulk) ∆1-like
contributions.

Note that the observed increase in G↓↑ (figure 4.23) is still much smaller and smoother than
what might be expected from figure 4.12, which shows an extremely large peak in Tap(E) for

iron at the onset of the ∆↓1 states. The reason for this discrepancy is the different position of

the ∆↓1-like IRS, which lies directly below the ∆↓1 bulk band for iron but is shifted into the bulk
bands for cobalt as explained in section 4.4. This also shows the strong influence of the density
at the interface (with or without IRS) on the transport, since the bulk density is similar for both
materials (figure 4.20).

From the above explanation it is clear that a similar large contribution cannot occur in G↓↓,

since, while the minority ∆↓1 band in one lead is shifted down into the energy window, the one in
the other lead is shifted upwards and always stays above the energy window. Consequently, G↓↓
shows only a very small increase with the bias voltage and makes no significant contribution to
Gp (figure 4.23). An analogous explanation holds for G↑↓ (for positive bias), where the ∆↓1 band
in the right lead always stays above the energy window. G↑↓ is basically independent of the bias
voltage.

The above explanations for Co can be easily extended to the Fe0.5Co0.5 alloy. In this case,
because of the large disorder broadening, the minority ∆↓1 band extends even below the Fermi-
energy. It contributes to Gap in addition to states which become available via band filling. The
sum is responsible for the small TMR (compared to the pure materials) at zero bias. This was
explained in section 4.4. This contribution outweighs (for 50% Co) the small contributions from
IRSs, which are moreover broadened by disorder. This explains the smooth bias dependence of
the TMR at small bias voltage. For G↓↑ we observe a steep but smooth increase with the bias

voltage as the Co-like ∆↓1 peak in the left lead shifts into the energy window (compare figure 4.20).

G↑↓ slightly decreases, since the energy windows includes an increasing share of the decaying ∆↓1
tail and the less efficiently tunneling states. Nevertheless, G↑↓ makes a significant contribution
to Gap up to high voltages. As for the pure materials Gap is responsible for the decreasing TMR,
whereas Gp is basically constant and strongly dominated by G↑↑. G↓↓ contributes less than 1%

to Gp and shows a complicated bias dependence resulting from the ∆↓1 band as well as several
IRS.

To conclude this section on the TMR at finite bias voltage and finite concentrations we
discuss the full concentration dependence at a high bias voltage of 0.544 V. This is shown in
figure 4.25; additionally figure 4.26 shows the concentration dependence of the corresponding
conductances. The concentration dependence at the high bias voltage is very different from the
one at zero bias and shows a smooth decrease with the Co concentration, which results from an
about linear increase in G↓↑. This is expected from the previous discussions and indicates an
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increasing contribution of electrons which tunnel via ∆1-like states in MgO. The Co-like minority
∆↓1 peak lies inside the energy window created by the bias voltage and gains weight as the Co
concentration increases (compare figure 4.3). Further, we have contributions from the states
that cause the increase in Tap(E) for pure iron at higher energies (figure 4.12). For pure iron
the latter are the main reason for the decrease in TMR with the bias voltage, while at increased
Co concentrations the former dominate (figure 4.24). It is notable that Gap is smooth through
to the limiting cases of pure materials, unlike at zero bias, where we found a steep increase
from the pure materials to small concentrations. Such a dependence is still observed at the high
bias voltage in G↑↓(x), which shows the form of an inverted parabola. This behavior can be
explained by generic disorder scattering, which leads to additional conduction channels. Such
a contribution depends on the amount of disorder and should behave roughly like ∝ x (1 − x).
A similar dependence is observed in G↓↓ but with additional contributions from IRSs for small

concentrations and the ∆↓1 states at high concentrations. G↓↓ is small and contributes less than
0.6% to Gp. On the other hand, G↑↓ contributes up to 29% to Gap and adds to the decrease
in TMR for low Co concentrations. G↑↑ shows a moderate decrease with the Co concentration

to 82% of its maximal value, which can be attributed to a decrease in the ∆↑1 density with
increasing energy. Noteworthy, the slight maximum in G↑↑ is the result of a relatively large
diffusive contribution (not shown), which decreases for higher Co concentration.

In general, it is difficult to compare calculated TMR values at finite bias voltage to experimen-
tal results, since the latter always include inelastic contributions (e.g. from electron-magnon scat-
tering) even at low temperature. Moreover, a systematic investigation of the Co-concentration
dependence at large bias has not been published. Although it is not the equilibrium structure,
metastable cobalt in bcc structure has been successfully grown and deployed in tunnel junctions
[148]. This investigation also shows that the TMR with Co leads decreases faster with increasing
bias voltage than for Fe in agreement with our results.

We briefly comment on the symmetry relations between the spin channels at finite bias
voltage. Considering a general junction containing nL (nR) monolayers in the left (right) ferro-
magnetic slab we rotate the system by 180◦ around the x- or y-axis. This yields a similar system
at the negative bias voltage (the simultaneous rotation of the magnetizations has no effect). We
obtain the relation

GnLnR

σσ′ (+V ) = GnRnL

σ′σ (−V ), (4.5)

thus for a symmetric or the averaged junction we have G↑↓(+V ) = G↓↑(−V ) and G↑↑, G↓↓, Gp,
and Gap are symmetric in V.
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5 Results – Spin-transfer torque

5.1 Introduction and method

In the preceding sections we only considered collinear (P or AP) alignments of the magnetizations
in the ferromagnetic leads of the MTJs. For non-collinear alignments, i.e. configurations with
an arbitrary angle θ between the magnetizations, new effects develop. To generate non-collinear
configurations in our calculations we start from self-consistent potentials for P alignment and
rotate the exchange field (i.e. the spin-dependent part of the Hamiltonian, see eq. (2.10)) for
lattice sites right of the center of the barrier in the x-z-plane from15 −~ez to ~eR = −~e(θ);
the directions are illustrated in figure 5.1. In practice, this is accomplished by rotating the
combined spin-dependent t-matrix in spin space [28]. We remind that in our non-relativistic
calculations only the relative angle between the magnetizations is important; thus, the other two
degrees of freedom of a general rotation can be disregarded. Further, no correlations between the
orientations in real space and spin space (e.g. from spin-orbit interaction) need to be considered.

For an infinite barrier the magnetization in the right lead would follow the rotation of the

15Note that (because of the sign in eq. (2.10b)) the magnetization and exchange field are anti-parallel to the
spin polarization/majority-spin direction.
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exchange field; thus, for the net magnetic moment on site i we expect ~M i
eq = M i

s ~eR, where

M i
s =

∣∣∫
Vi

d~r ~meq(~r)
∣∣ is the (equilibrium) saturation magnetic moment. However, in the non-

collinear MTJ we obtain a small part of the magnetization in the right lead δ ~m, which is not
aligned with the exchange field; the different contributions to δ ~m are discussed later. The
exchange field exerts a torque on this magnetization [5, 52]

δ ~̇m = −γS δ ~m× ~∆, (5.1)

which leads to a (counterclockwise) precession of δ ~m around ~∆, analogous to the Larmor pre-
cession in a magnetic field. Conversely, by conservation of angular momentum, this means that
δ ~m exerts an equal and opposite torque on the local magnetic moment ~M i, which is the source
of the exchange field; for site i we obtain the spin-transfer torque [57, 59] (STT)

~τ i = ~̇M i
∣∣∣
STT

= −
∫
Vi

d~r δ ~̇m(~r) (5.2a)

= γS

∫
Vi

d~r δ ~m(~r)× ~∆(~r) (5.2b)

= τ iip ~eip + τ iop ~eop. (5.2c)

Note that in this work the torque has units of change in magnetization (not angular momentum)
per time.

The STT enters as a driving term in the Landau-Lifshitz-Gilbert(-Slonczewski) (LLG) equa-
tion [83, 48, 124], a differential equation of motion for the magnetization in a ferromagnet, which
is widely used in micromagnetics (see e.g. [110]). The LLG equation describes rotations of the

direction of the magnetization ~M while its magnitude | ~M | = Ms is assumed to be fixed to the
saturation magnetization Ms

16. The LLG equation can include terms describing the inter-atomic
exchange (Heisenberg exchange) and other coupling mechanisms, a phenomenological damping,
and external and internal magnetic fields. It may further include spin-orbit related terms (e.g.
anisotropy), finite-temperature effects, and others [22]. The required parameters can often be
obtained by ab initio calculations [87, 5, 41]. The LLG equation usually assumes a continu-
ous magnetization but can also (with some modifications) be applied to discrete (e.g. atomic)
magnetic moments, which basically results in an extended classical Heisenberg model. In the
macrospin approximation one can also treat larger collinear parts of the magnetization as a single
magnetic moment.

Eq. (5.1) is equivalent to the motion of a localized, isolated spin in an external magnetic

field ~∆. In contrast, here the spins are carried by itinerant, interacting electrons and eq. (5.1)
is obtained from the electronic equation of motion [5, 52]. Furthermore, we need to take into

account that ~∆ is itself a functional of the electronic density and magnetization. Therefore,
the derivation of eq. (5.1) relies on the adiabatic approximation [5, 15, 52]: the slow motion of
the magnetization (more precisely of the direction of the magnetization) can be separated from
the fast electronic motion. The electronic Hamiltonian contains the orientations as parameters;
conversely, the torque acting on the magnetization is determined by the electronic system. This
is analogous to the Born-Oppenheimer approximation for the slow motion of the atomic nuclei.
The adiabatic approximation is justified by comparing magnetic energies (inter-atomic exchange
parameters) with electronic energies (exchange splitting, bandwidth) [5]. Additionally, we can
use δ ~m� ~meq to justify using the equilibrium exchange field in eq. (5.1) [52]. The derivation in

refs. [52, 103] actually focuses on a change δ~∆ in the exchange field created by the non-collinear

magnetization δ ~m, which acts on the equilibrium magnetization ~meq. They find δ~∆ = ∆
meq

δ ~m,

thus this equivalent point of view yields the same result.
There are two contributions to the non-collinear magnetization in the right lead. First, there

are electrons tunneling from the left, which are spin-polarized in the direction of ~eL. Additionally,
electrons coming from the right which are reflected at the barrier can become non-collinear to

16The somewhat similar Bloch-Torrey equation [138] includes diffusion, relaxation, and dephasing of the mag-
netization and can be used e.g. to describe injected spin currents in a non-magnetic material.
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~eR. Because of the non-collinear alignment of the leads, the transmission and reflection of the
barrier are non-diagonal in spin space. Consequently, in both cases the electrons can become
non-collinear. For both contributions the driving force can be an applied bias voltage or diffusion.
In the latter case, electrons below the Fermi-energy (or the lower limit of the energy window
created by the bias voltage) tunnel in both directions; their charge currents cancel but they can
still create a torque on the layers.

From the previous sections on TMR we know that the current is dominated by ∆1-like
electrons whenever these states are present in both leads. This is always the case for non-collinear
magnetizations, since the majority states in both leads always have a finite overlap. Thus, the
majority ∆↑1 states provide the dominant contribution to the torque. The non-collinear states
contributing to δ ~m are linear combinations of majority and minority states. Thus, the observed
precession is a result of interference between both components [59] and is caused by the difference
in their wave vectors, which in turn is a consequence of the exchange splitting. For most states
one of the spin components is evanescent, in particular the minority component for the ∆1

states at EF . These components decay exponentially away from the barrier. This also means
that the electrons become polarized along a collinear direction (majority for ∆1 states). Thus,
the contributions to the torque decay away from the barrier. This is important since without
the decay the contributions would mostly average to zero. This is different in junctions with a
metallic spacer instead of a tunnel barrier (GMR structure). In this case also a decay occurs,
but it results from dephasing between contributions with different precession frequencies and the
decay is slower [59].

We assume that the magnitude of the magnetic moments remains unchanged; therefore, the
torque must be perpendicular to the magnetic moment on which it acts. In eq. (5.2c) we have
introduced a decomposition of the torque in the right lead into two components. The in-plane (IP

or damping-like) component lies in the plane spanned by ~eL and ~eR and rotates ~MR in that plane
towards or away from ~eL. The out-of-plane (OP or field-like) component is perpendicular to this

plane and causes a precession of ~MR around ~eL, which leaves θ unchanged. The definition of the
directions is given in figure 5.1. Despite their similar origins, we find that the two components
behave quite differently.

In the following sections we mostly focus on the net torque exerted on the right ferromagnetic
slab ~τR =

∑
i∈R ~τ

i. In a macrospin picture we can assume that the total magnetic moment of
the right lead rotates under the influence of ~τR.

5.2 Spin-transfer torque from spin currents

In this section we introduce an alternative method to calculate the in-plane component of the
STT developed by Slonczewski [121]. It is based on (global) conservation of angular momentum
and the evaluation of spin currents. Since the latter are related to currents which have already
been discussed, this approach is very useful to understand the results obtained via eq. (5.1).
Additionally, it allows to obtain some general relations for the torques.

As explained above, most non-collinear contributions to the transport decay away from the
barrier. Thus, we can assume that at some point in the left/right lead the current is com-
pletely polarized along ~eL/R and can be decomposed into majority and minority component

IL/R = I
L/R
↑ + I

L/R
↓ . (As usual, ↑ and ↓ indicate the local majority and minority spin.) We

define the spin current at this point as [128, 123]

~I
L/R
S = (I

L/R
↑ − IL/R↓ )~eL/R = I

L/R
S ~eL/R, (5.3)

which describes the polarization of the current. Note that the sign of IS depends on whether the
current is majority- or minority-dominated (|I↑| ≷ |I↓|) and also on the sign of the bias voltage
and currents. In contrast to other definitions in the literature, this spin current is usually
accompanied by a charge current. Unlike the charge currents, the spin currents in both leads can
differ in magnitude (and of course orientation). Assuming angular momentum conservation, the

net torque on both leads must be equal to the difference between ~IRS and ~ILS . Thus, we obtain
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Figure 5.2: Relation between the in-plane torques and the spin currents implied by eq. (5.4) for

an arbitrary angle θ (assuming the electrons are tunneling from left to right and I
L/R
S > 0); the

prefactor is suppressed.

[121] (considering the direction of the electrons)

~τR + ~τL
V >0
=

µB
e

(~IRS − ~ILS )
V <0
=

µB
e

((− ~ILS )− (− ~IRS )), (5.4)

where the prefactor converts from charge to magnetization. By assumption, both spin currents
and thus the right-hand side of eq. (5.4) lie in the plane spanned by ~eL and ~eR. Hence, considering
the perpendicular direction (along ~eop, figure 5.1) we obtain a general relation

~τRop + ~τLop = 0 (5.5)

relating the OP components (eq. (5.2c)) on both sides. This means that the OP component
describes an exchange of angular momentum, i.e. a coupling, between both leads. Note that it
is nonetheless strongly influenced by the bias voltage and currents. On the other hand, the IP
component describes a torque which is induced by the current. At zero bias the currents, spin
currents, and the right-hand side of eq. (5.4) vanish and we find that the IP components vanish

V = 0 ⇒ ~τRip + ~τLip = 0 ⇒ τRip = τLip = 0, (5.6)

since the directions of ~τRip and ~τLip are linearly independent for non-collinear alignment. This is
not the case for the OP component, which can have finite contributions from diffusing electrons
without a net charge current. In the presence of spin currents the IP components are the vector
decomposition of the net spin current ~IRS − ~ILS into the junction; this is illustrated in figure 5.2
(the signs and directions are discussed in the next section). By projecting eq. (5.4) onto the
direction ~eL we obtain an explicit expression for τRip

− τRip sin(θ) =
µB
e

(IRS cos(θ)− ILS ), (5.7)

where we used ~τL ⊥ ~eL and relations between the different unit vectors introduced in figure 5.1.
For θ = 90◦ this simplifies to (including the analogous projection onto ~eR)

τRip(90◦) =
µB
e
ILS (90◦) and τLip(90◦) = − µB

e
IRS (90◦). (5.8)

The spin currents depend on the bias voltage and the angle θ. To proceed we introduce four
currents iσσ′ connecting the spins on either side of the barrier in an equivalent circuit [121] via

ILσ = iσ↑ + iσ↓ IRσ′ = i↑σ′ + i↓σ′ IL = i↑↑ + i↓↓ + i↓↑ + i↑↓ = IR = I

ILS = i↑↑ + i↑↓ − i↓↓ − i↓↑ IRS = i↑↑ + i↓↑ − i↓↓ − i↑↓.
(5.9)

Using the assumption that the states on either side are coupled only indirectly via the coherent,
non-magnetic barrier (compare section 4.5), one can obtain explicit θ dependences for these
currents [121] from the rotation transformation in spin space

i↑↑, i↓↓ ∝ cos2(θ/2) and i↑↓, i↓↑ ∝ sin2(θ/2).
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These remain valid in the collinear limits P (θ = 0) and AP (θ = 180◦), where we can identify
the currents introduced in eq. (4.2); we obtain

i↑↑(θ) = I↑↑ cos2(θ/2) i↓↓(θ) = I↓↓ cos2(θ/2)

i↑↓(θ) = I↑↓ sin2(θ/2) i↓↑(θ) = I↓↑ sin2(θ/2).
(5.10)

This means that the full angular dependence (at a fixed bias voltage) can be recovered from the
four collinear currents. Using this we simplify the angular dependence of the various currents

I(θ) =
Ip + Iap

2
+
Ip − Iap

2
cos(θ) (I

L/R
S and IL/Rσ analogous) (5.11)

and the in-plane torque given in eq. (5.7)

τRip(θ) =
µB
e

(
(i↑↑ − i↓↓) tan(θ/2) + (i↑↓ − i↓↑) cot(θ/2)

)
(5.12a)

=
1

2

µB
e

(
I↑↑ − I↓↓ + I↑↓ − I↓↑

)
sin(θ) (5.12b)

=
µB
e
ILS (90◦) sin(θ) =

µB
e

ILS,p + ILS,ap
2

sin(θ) (5.12c)

with ILS,p = I↑↑ − I↓↓ = IRS,p and ILS,ap = I↑↓ − I↓↑ = −IRS,ap. (5.12d)

Thus, as a result of the combination of the θ dependence of the (spin) currents and the vector
decomposition (figure 5.2), the IP torque has a simple sin(θ) dependence and can be obtained
from the spin current at θ = 90◦ in the other lead, which in turn is the average of the collinear
spin currents.

As noted above, the OP component describes an interfacial coupling between the ferromag-
netic slabs and is therefore often called interlayer exchange coupling (IEC) [23, 53]. It can be
considered as the result of a Heisenberg-like coupling between the magnetizations [120]

Hiec = − J ~ML ~MR = −J MLMR cos(θ) (5.13a)

⇒ ~τRop = ~τRiec = − γs J ~MR × ~ML = − γs J MRML sin(θ)~eRop = −~τLiec. (5.13b)

The coefficient J may depend on the bias voltage but not on the angle θ. Thus, τop has the
same angular dependence as τip. For positive (negative) J this coupling energetically favors the
P (AP) state and leads to a counterclockwise (clockwise) rotation of the magnetizations around
each other. From the perspective of the free layer it is equivalent to a (homogeneous) external

magnetic field J ~ML. In eq. (5.13a) we only consider the lowest-order coupling; higher orders
correspond to repeated tunneling between both leads and only matter for very thin barriers.

Until now, no symmetry of the junction has been assumed and the above results remain valid
for asymmetric junctions. For a symmetric junction we find additional relations by considering
a rotation of the junction (compare section 4.5). We obtain (with the directions defined in figure
5.2)

τLip(+V ) = τRip(−V ) and τLop(+V ) = τRop(−V ) for a symmetric junction. (5.14a)

By combining the latter relation with eq. (5.5) we find that the OP component is symmetric in
V

τRop(+V ) = τRop(−V ) for a symmetric junction, (5.14b)

when eq. (5.4) is applicable. Note that no similar relation holds for τip as discussed below.

5.3 Bias-voltage dependence of the STT

In this section we discuss the bias dependence of the STT in junctions with pure Fe, Fe50Co50,
and pure Co leads. The net torque on the free (right) layer is calculated using eq. (5.2) for an
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Figure 5.3: Net spin-transfer torque (per junction area) exerted on the free layer as a function of
the bias voltage calculated using eq. (5.2) for junctions with Fe, Fe50Co50, and Co ferromagnetic
slabs and a six-monolayer MgO barrier for an angle θ = 90◦ between the magnetizations. A
thickness averaging is performed for the Fe and Co slabs; for Fe50Co50 20 monolayers are consid-
ered. The prefactor e/µB converts the units from ‘change in magnetization’ to charge current.
[A5]
The calculations for the pure material were performed by M. Czerner [29].
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Figure 5.4: Bias-voltage dependence of the in-plane component of the STT from figure 5.3 (solid,
colored) compared to the result calculated from spin currents via eq. (5.12) (dashed, black) for
the same setup. The curves for different lead materials are shifted to improve visibility. [A5]

angle θ = 90◦ between the non-collinear magnetizations in both leads; the results are shown in
figure 5.3.

The energy integration required to obtain δ ~m splits into two parts: In the energy window
[µL, µR] created by the bias voltage only states for one direction are occupied (assuming zero
temperature) and the contributions to δ ~m are calculated from NEGFs (section 2.4). In the energy
range (−∞,min(µL, µR)] both directions are occupied and the contributions can be calculated
from equilibrium GFs using a complex-energy contour integration [150]. This part describes dif-
fusion in both directions without a net charge current and only contributes to τop. Calculating
vertex corrections for the non-collinear system (for the NEGF part for FeCo leads) is computa-
tionally very expensive; therefore, we omit the thickness averaging for the junction with FeCo
alloys. In this case, the quantum-well states cause some weak oscillations, which are visible in
the results.

In addition to the result via δ ~m we calculate the IP component of the STT from spin currents
using eq. (5.12), where we can reuse the bias-dependent conductances from section 4.5 (figure
4.23). This is compared to the result from eq. (5.2) in figure 5.4. Except for Co leads at
large negative bias we find perfect agreement between both methods; thus, the spin-current
approach can be used in explanations. One can show that STT via δ ~m is equivalent to local
conservation of angular momentum [52, 114]. Since we do not consider spin scattering, we have
global conservation of angular momentum, which explains the perfect agreement (the deviation
for Co are discussed later). Note that, since all magnetizations within one lead are aligned, the
disorder scattering for FeCo alloys does not lead to a scattering between both spins.

We start by discussing the IP component of the STT. At zero bias τip vanishes. At small
bias τip(V ) is linear with a similar slope for all three materials. This can be understood from the
spin currents via eq. (5.12b). For sufficiently small bias voltages all conductances are basically
constant (figure 4.23) leading to linear (spin) currents. In particular, the dominating G↑↑ is
independent of the bias and also of the Co concentration (see also next section). To understand
the direction of τip we consider the case of electrons tunneling from left to right and majority-
dominated spin currents in both leads, which is illustrated in figure 5.2. (By our convention this
corresponds to a negative bias voltage and currents, and the artificial sign in eq. (5.4, V < 0) is

included in the spin currents.) We find that the torque is oriented to rotate the free layer ~MR

in the ~eL/R-plane towards the direction of the fixed layer ~ML (which by our convention for ~eip
corresponds to a negative value of τip). The net magnetization of the current tunneling into the
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Figure 5.5: Bias-voltage dependence of the spin currents in the left lead (i.e. the fixed layer) for P
and AP alignment (eq. (5.12d)), which control the in-plane torque in the right lead (eq. (5.12c)).
Note that ILS,p is always majority-dominated but ILS,ap is minority- (majority-)dominated for
positive (negative) bias. [A5]

right lead is oriented along ~eL and rotates ~MR towards that direction. In contrast, the torque
on the fixed layer is oriented to rotate ~ML away from ~MR (figure 5.2, eq. (5.8)), i.e. to increase
θ. This torque is created by a decaying spin current of reflected electrons in the left lead, which
have their magnetic moments oriented along −~eR to compensate for the spin current in the right
lead (oriented along +~eR). By analogy (or eq. (5.14a)) this explains the IP torque on the free
layer for positive bias voltages.

For larger bias voltages we observe a deviation from the simple linear dependence, which is
asymmetric in V and becomes more pronounced with increasing Co concentration. It leads to a
reduction (enhancement) of τip for large positive (negative) bias. For pure Co it even leads to an
inversion of the direction of the torque at large positive bias (at 0.97 V, outside the plot range).
This can be explained from the collinear spin currents, which contribute to τip via eq. (5.12c);
these are shown in figure 5.5. From the symmetry of the collinear conductance channels (eq. (4.5))
we can infer the symmetry of the spin currents (for symmetric junctions)

I
L/R
S,p (−V ) = I

L/R
S,p (+V ) and I

L/R
S,ap (−V ) = − IL/RS,ap (+V ), (5.15)

which means that it is different for ILS,p and ILS,ap; hence, the IP torque is asymmetric, since
it is proportional to the sum of both. For negative bias both contributions add up while for
positive bias they cancel each other. For AP alignment and sufficiently large negative bias
(Fe: V . −0.3 V; FeCe, Co: V < 0 V) the spin current in the left lead is majority-dominated
and increases with the negative bias voltage because of an increase in G↑↓. Concurrently, the
spin current in the right lead is minority-dominated (IRS,ap = −ILS,ap, eq. (5.12d)) and the same
effect leads to an increase in the negative polarization. For non-collinear alignment these spin

currents mix with the majority-dominated P spin currents I
L/R
S,p (eq. (5.12c)), which leads to an

enhancement (attenuation) in the left (right) lead. For θ = 90◦ the net spin currents in both
leads remain majority-dominated for all considered materials and shown bias voltages. Since
the IP torque is proportional to the spin current at θ = 90◦ (eq. (5.12c)), the discussion above
(in combination with eq. (5.14a)) explains the observed bias dependence. The increase in G↑↓
is a result of minority ∆↓1 states which shift into the bias window at large bias or large Co
concentration as explained in section 4.5. Thus, we can understand the bias voltage and Co
composition dependence of τip from the corresponding discussion in that section.

Next, we discuss the OP component of the torque (figure 5.3). For all three compositions



5.3 Bias-voltage dependence of the STT 69

- 6
- 3
0
3
6

C o
 

C u
e/(

�
B A)

 � (
10

9  A m
-2 )

 i n - p l a n e
 o u t - o f - p l a n e

C o :  � 0 . 6 8 0  V

C o C u

C o :  + 0 . 6 8 0  V

- 6
- 3
0
3
6

F e C u

F e :  � 0 . 6 8 0  V

F e 0 . 5 C o 0 . 5 C u

F e 0 . 5 C o 0 . 5 :  � 0 . 6 8 0  V

Figure 5.6: Layer-resolved spin-transfer torque in the free layer for different lead materials and
bias voltages. [A5]

the OP torque is negative at zero bias and increases to positive values for positive and negative
bias voltages. For Fe and FeCo the bias dependence is symmetric as expected from eq. (5.14b).
However, for Co we observe a deviation from this symmetry; from the smoothness of the curve
for positive bias we may assume that the deviations originate at negative bias, just as for the
IP component. Unfortunately, the method using spin currents discussed in section 5.2 does not
provide the means to calculate the OP component. This would require knowledge of the OP
component of the spin currents inside the barrier [120, 128], which cannot be obtained from
the four collinear conductance channels. We can use the interpretation as an IEC (eq. (5.13))
to understand the physical significance of the OP component. The negative value at zero bias
τop(0) implies that the coupling coefficient J is positive, which means that the IEC favors the
P state. The IEC can also be obtained from total (band-)energy calculations by calculating the
energy of the junction as a function of θ and fitting the angular dependence from eq. (5.13a). We
have verified for several cases that this yields the same τop(0) and that the P state has indeed
the lowest energy (not shown). For all three materials the OP torque changes sign at a certain
(positive and negative) bias voltage; thus for larger bias the IEC favors the AP state. Because
of a reduction in |τop(0)| and an increased curvature the necessary bias voltage reduces with the
Co concentration from ±0.74 V for Fe to ±0.34 V for Co.

To understand the bias dependence we may assume that eq. (5.5) holds separately for each
energy and direction of the tunneling electrons (L � R). As a result, for a symmetric junction
at zero bias the contributions for both directions are equal. In the limit of vanishing bias we
can neglect the bias dependence of τop(E;V ). Then, when applying a small bias voltage, the
additional contributions above µ̄ = (µL+µR)/2 for one direction are largely canceled by removing
the contributions for the other direction below µ̄. For all three materials, the energy-resolved
contributions to the OP torque in the vicinity of the Fermi-energy (not shown) are positive
and show an increase with energy, which leads to the observed positive curvature of the bias
dependence. For iron we find a rather simple bias dependence, which can be well described
by a biquadratic polynomial (τop(V ) ≈ a + b V 2 + c V 4) with positive coefficients b ≈ c > 0
(with c scaled by 1 V2). For FeCo a similar dependence is superimposed with oscillations from
quantum-well states; the curve is narrower than for Fe (0 < c < b). For Co (considering only
positive bias) the curve is still narrower and the curvature changes sign at a large bias voltage.
In a biquadratic approximation we find c < 0 < b and |c| < |b|. It seems plausible that the origin
of this concentration dependence is related to the same effects that govern the IP component.

We still need to explain the deviations of the STT for Co at negative bias from the behavior
predicted in section 5.2. For the IP component this is observed as a deviation from the result via
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spin currents (figure 5.4), while for the OP component it results in an asymmetry in the bias-
voltage dependence (figure 5.3). In both cases, the deviations oscillate and increase in amplitude
and ‘wavelength’ with the negative bias voltage. The origin of these deviations is identified by
investigating the layer-resolved torque, which is shown in figure 5.6 for different cases. In all
cases, both components of the torque oscillate and decay away from the barrier as expected from
the discussion in section 5.1. For Fe and FeCo and also for Co at positive bias the decay is
very rapid and extends only over few (≈ 5) monolayers. On the other hand, for Co at negative
bias the decay is slow and not completed within the finite-width Co slab. This means that the
current emitted into the right copper lead is (and remains) incompletely polarized along ~eR.
Thus, in this case the assumption in section 5.2 that the current becomes completely polarized
sufficiently far from the barrier cannot be fulfilled and the predictions may be violated. Some
angular momentum is lost via the emitted current and does not contribute to the torque. Since
the OP torques on both leads are not equal, an interpretation as IEC is not valid in this case (the
emitted angular momentum is not exchanged between both leads). Note that neither polarizing
an unpolarized incoming current nor emitting a polarized current into a non-magnetic lead causes
a torque. In the introduction, the decay of the STT was explained from an exponential decay of
evanescent states for one spin. However, for Co the minority spin ∆↓1 states are close above the
Fermi-energy and contribute at increased negative bias via the ↑↓ channel (section 4.5). These
states and their contribution to the torque do not decay. Thus, a decay of the torque can only
occur due to dephasing. This decay is much slower, in particular since the relevant contributions
are strongly localized in ~k‖-space (figure 4.24), which explains the decay observed in figure 5.6.

The contribution of minority ∆↓1 states increases with the negative bias voltage, which explains
the observed bias dependence of the deviations.

5.4 Material dependence of the STT

In this section we systematically investigate the dependence of the STT on the FeCo-alloy com-
position in the ferromagnetic slabs. We analyze the torque at θ = 90◦ for small bias voltages by
calculating a Taylor expansion around zero bias. The results are given in figure 5.7, which shows
the torque and its first and second derivative with respect to the bias voltage at zero bias for the
IP and OP component. These coefficients are discussed separately.

The IP component of the torque τip(0) vanishes at zero bias for all concentrations in accor-
dance with eq. (5.6). This remains true for asymmetric junctions. One can show [114] that in
equilibrium δ ~m lies in the plane spanned by ~eL/R; thus, this result is more general than eq. (5.4)
and also holds for the layer-resolved torque. The OP component τop(0) is negative for all con-
centrations and constitutes an (equilibrium) IEC which favors the P state. It shows a decrease
in negative value with the Co concentration to 38% at Co of its value at Fe. The dependence
is somewhat similar to the Slater-Pauling curve, i.e. a transition from a (slight) increase at low
concentrations to a linear decrease at high concentrations. This OP torque includes large oscil-
lating contributions in the energy range where the oxygen-2p-like states render the MgO barrier
metallic. Thus, τop(0) is largely based on cancellation and we make no attempt to rationalize
the observed dependence. Because of these complicated contributions, τop(0) may be sensitive
to the computational details.

The first derivative of the torque with respect to the bias voltage ~τ ′ = d~τ
dV is called torkance

[122]. Since the OP component is symmetric in V for a symmetric junction (eq. (5.14b)), the
OP torkance τ ′op(0) must vanish at zero bias, which is fulfilled for all concentrations. The IP
torkance τ ′ip(0) is almost independent of the Co concentration; it shows only a small decrease of
6% from Fe to Co and some weak fluctuations. This concentration dependence is very different
from the one of the TMR (figure 4.16). As explained in section 4.4 the TMR is governed by
the AP conductance, while the P conductance is basically independent of the Co concentration
(and also the bias voltage). Since G↑↓(0) = G↓↑(0) for symmetric junctions (eq. (4.5)), the
contribution of the AP spin current to the IP torkance vanishes at zero bias and remains small
until one of the AP channels dominates the AP transport (figure 5.5). More general, the much
larger P contribution outweighs a small AP contribution to τip, unlike for TMR where the AP
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Figure 5.7: Cobalt-concentration dependence of the spin-transfer torque exerted on the free layer
at θ = 90◦ for small bias voltages. The figure shows the coefficients of a Taylor expansion around

V = 0: τ(V ) ≈ τ(0) + dτ
dV (0) V + 1

2
d2τ
dV 2 (0) V 2 for the in-plane and out-of-plane component. The

coefficients include a prefactor e
µB

and their units are 109 Am−2 for e
µB

τ , 109 Ω−1m−2 for e
µB

dτ
dV ,

and 109 Ω−1V−1m−2 for e
µB

d2τ
dV 2 ; they are calculated via a quadratic fit (or a finite difference

method) from data points at 0 V and ±68 mV. The thickness averaging for the FeCo slabs
is included in this calculation. The dashed lines indicate the result obtained neglecting vertex
corrections. Note that τ(0) is calculated from equilibrium GFs only and contains no vertex
corrections. [A5]
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conductance appears in the denominator. Since G↑↑ � G↓↓, the IP torkance is governed by the
↑↑ channel, which explains the weak concentration dependence (compare figure 4.17). One might
expect a contribution from the minority IRS for pure iron, which leads to a relatively large G↓↓(0)
and thus reduces the P spin current. However, since this contribution diminishes rapidly at finite
bias, it is not observed in our result based on data points at finite bias. It could be recovered via
linear-response calculations [59] or by calculating the IP torkance from the conductance channels
via eq. (5.12). The latter approach yields a torkance τ ′ip(0) = 9.11 · 109 Ω−1m−2 for iron, which
is smaller than the Co value.

As observed in section 5.3, the IP torque is linear at small bias; thus, the second derivative
at zero bias τ ′′ip(0) is expected to be small (but not necessarily zero). This is confirmed by the
results, which show a small negative value. By taking the second derivative of eq. (5.12b) and
using the symmetry relations eq. (4.5) we find that only the AP channels contribute to τ ′′ip(0)
for symmetric junctions. The exponential increase for some of the AP spin currents has little
effect at small bias. Of course, the symmetry argument only holds for symmetric junctions;
some of the asymmetric junctions entering in the thickness averaging show a considerable τ ′′ip(0)
comparable to the OP component. The second derivative for the OP component τ ′′op(0) is positive
for all concentrations and shows an increase with the Co concentration. For Co it has almost 2.5
times the value at Fe. This increase has already been noted in section 5.3, where we found that
the bias dependence becomes narrower with increasing Co concentration. We also found that
concurrently the fourth derivative decreases with the Co concentration, which is not calculated
here. The concentration dependence shows a rather complicated structure; however, this might
be an artifact from quantum-well states, which has not been removed by the thickness averaging.

Figure 5.7 also shows the result which would be obtained if diffusive contributions (i.e. the
vertex corrections) were neglected. Since calculating the vertex corrections for this case is com-
putationally expensive, it might be tempting to simply neglect this contribution. At first sight,
the deviations for this case seem not very significant; in particular the important IP torkance
is well reproduced (because the dominating majority ∆1 states are only weakly affected by the
disorder). However, on closer consideration one notes that the OP torkance τ ′op(0) obtains a
finite value in violation of the symmetry of the junction. This is also observed in the full bias de-
pendence of the OP component τop(V ) for Fe0.5Co0.5, which becomes asymmetric (not shown).
Furthermore, τ ′′ip(0) obtains a positive sign for some concentrations, which implies the wrong
curvature of the bias dependence for the IP torque compared to the full results. Thus, neglecting
the vertex corrections leads to qualitatively wrong and even ‘unphysical’ results.

5.5 Discussion and experimental results

For the IP component of the STT the expression in terms of spin currents (eq. (5.12)) allows for
a clear and comprehensive understanding. In the previous sections we showed that the IP torque
is completely determined by ∆1 states, which dominate the relevant (spin) currents. The other,
small contributions, which are important for the TMR, have little influence on the IP torque.
Thus, we could further simplify the discussion by neglecting conductance channels without ∆1

contributions, i.e. the ↓↓ channel and the ↑↓ (↓↑) channel for V > 0 (V < 0). This corresponds to
assuming an ideal, large-gap half-metal for the leads, whose band gap corresponds to the ∆1-half-
metallic region in our case. In this case the collinear spin currents and thus the IP torque could
be obtained directly from the P and AP conductance. In experiments, inelastic scattering and
other effects create additional contributions, which can affect all spin channels and can partially
cancel for the spin currents; thus this approximation is only limitedly applicable. Conversely, if
the torque and the conductances can be accurately measured, this allows to draw conclusions
about these additional effects [122].

A major application of the STT is switching the magnetization of the free layer [35], which
benefits from large torques. For the P spin current the maximal contribution to the IP torque is
obtained if the ↓↓ channel vanishes (which means that the P current is completely polarized). For
the AP contribution the case is less clear. For a symmetric junction the AP spin current always
leads to a reduction of τip for one direction of the current (eq. (5.15)), which is unfavorable, since
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switching is required for both directions. Thus, if large bias voltages are required for switching,
our results favor small Co concentrations, since in this case the AP (spin) currents remain small.
One might try to engineer an asymmetric junction in such a way that G↑↓ � G↓↑ for both bias
voltage polarities, which optimizes the IP torque on the free layer. Since we additionally require
a large TMR at small bias, G↑↓ should strongly increase above a convenient threshold voltage
for both polarities and G↓↑ should remain small. This way one can increase the IP torque on
the free layer by an AP contribution while reducing the torque on the fixed layer, nearly obtain
the optimal IP torque per current τip/I⊥ . 1 (eq. (5.16) below), and avoid an asymmetric bias
dependence. If we retain the MgO barrier and choose e.g. an iron fixed layer, this would require
a ferromagnetic free-layer material which has a small minority ∆↓1 band gap that is symmetric
about the Fermi-energy. Of course, this discussion based on band engineering neglects other
effects which are important, in particular the crystal and interface quality attainable for a chosen
material combination.

Unlike the IP component of the STT, which directly rotates ~MR towards or away from ~eL, the
OP torque only causes a rotation of ~MR around ~eL and hence cannot directly contribute to the
switching for the considered geometry. Nevertheless, in combination with damping it can have
an impact on the angle θ. The IEC (eq. (5.13)) determines an energetically preferred collinear
state and the damping should lead to a relaxation towards this alignment. However, the IEC
energy is very small, e.g. for iron we have e

µB
τop(0) = −3.54 · 109 Am−2, which corresponds to a

coupling energy J MLMR = 1.14 ·10−6 Jm−2 = (Eap−Ep)/2. This contribution competes with
other energies like magnetocrystalline anisotropy energy (from spin-orbit interaction) or shape
anisotropy energy (from magnetic dipole-dipole interaction), which can be considerably larger
[A9]. The complicated interplay of the different effects can be investigated by micromagnetic
simulations [22]. For cases where the OP component is important, our results indicate that the
Co concentration can be used for tuning; in particular the offset at zero bias τop(0) and the sign
changes can be controlled in a wide range.

The STT has been extensively studied in experiments. One method to measure the STT
is via spin-transfer-driven ferromagnetic resonance [132] (ST-FMR). In these experiments, first
an initial angle between the magnetizations is created by an external magnetic field. Then, a
current with a microwave-frequency component is applied to the MTJ, which creates a time-
dependent STT. This torque induces a small-amplitude precession around the initial orientation
and the time-varying angle is measured via the resistance of the junction. The frequency is swept
through a resonance of the induced precession of the magnetization. From the resulting signal
the STT is extracted by fitting a macrospin-model equation obtained from the LLG equation.
This procedure is quite intricate, which has led to misinterpreted results in some cases ([82],
see [140]). Usually, these experiments measure a DC signal generated by mixing the oscillating
current and resistance. In a more recent experiment [141] a time-dependent signal reflected by
the sample is recorded and evaluated. The authors claim that this approach remains valid at
high bias voltages [141], where the usual method suffers from strong artifacts [140]; at small bias
they still use the DC method.

When comparing our results to experimental ones, one should keep in mind that some aspects
are strongly influenced by the chosen symmetry of the junction. On the other hand, real junctions
are not perfectly symmetric even if the same material and thickness is used for both ferromagnetic
slabs, in particular since one layer has to be magnetically ‘fixed’ 17 and also because the interface
quality at the barrier depends on the growth sequence. Additionally, the experimental junctions
have a much smaller TMR, in particular since most STT experiments are carried out at room
temperature; typical TMR values in this case are 80–150% depending on the barrier thickness,
which means that Iap is 56–40% of Ip. Since the IP torque is proportional to the currents, one
needs to factor in the conductance for a quantitative comparison. Thus, a convenient quantity
is the ‘torque per current’

‘ τip/I⊥ ’ =
τip(V, 90◦)/µB
I(V, 90◦)/e

or
τ ′ip(0, 90◦)/µB

G(0, 90◦)/e
at zero bias, (5.16)

17Typically, the layer is fixed by coupling it antiferromagnetically (via a metallic interlayer) to another ferro-
magnetic layer, which in turn is pinned by exchange bias (coupling to an antiferromagnet).



74 5 RESULTS – SPIN-TRANSFER TORQUE

where one may replace I(90◦) = (Ip + Iap)/2 and τip(90◦) = τip(θ)/ sin(θ) because of eqs. (5.11,
5.12c). Since each electron carries a magnetic moment of 1µB , the torque per current is bounded
|τip/I⊥| ≤ 1 and obtains its maximum only in the idealized cases discussed above. For symmetric
junctions at zero bias the AP channels do not contribute to τip; thus, one can also consider

‘ τip/(Ip/2) ’ =
τ ′ip(90◦)/µB

Gp/(2e)
instead, which becomes one for a completely polarized Ip. However,

τip/(Ip/2) may exceed one for asymmetric junctions (or finite bias voltages). Note that for

symmetric junctions at zero bias this gives the polarization of the P conductance
τ ′ip(90◦)/µB

Gp/(2e)
=

G↑↑−G↓↓
G↑↑+G↓↓

. From our results we find τip/I⊥ > 91% and τip/(Ip/2) > 94% at zero bias for all Co

concentrations 18. For negative bias τip/I⊥ gets even closer to one, whereas for positive bias the
value reduces with bias and Co concentration.

Of course, these idealized values are not obtained in experiments. As an example, we discuss
the experimental results presented in ref. [115]. The considered junction contains Fe0.25Co0.75

leads (disregarding boron), a 1.25 nm MgO barrier, and shows a TMR of 154% at room temper-
ature; it is remarkably symmetric (visible in I ′(V ) ≈ I ′(−V ) and τ ′op(0) ≈ 0). For this junction
the STT is measured via ST-FMR at room temperature. From the presented results we obtain
τip/I⊥ = 60% and τip/(Ip/2) = 83% at zero bias. The reason for these small values is related
to the low TMR, which implies large AP and ↓↓ currents and also a low polarization of the
currents (i.e. small spin currents). The measured bias dependence of the IP torkance shows a
slight linear decrease, which is superimposed by some oscillations. The linear decrease can be
approximated by τ ′ip(V ) ≈ τ ′ip(0) (1+ b V ) for |V | < 0.3 V with b = −0.27 V−1. This value might
be underestimated due to neglected correction terms [140]. Taking into account these corrections,
a larger value b = −0.58 V−1 is obtained for a similar junction [140]. This can be compared
with the small negative τ ′′ip(0) in figure 5.7, which yields values for b between −0.21 V−1 and

−0.12 V−1 for Co concentrations x ≥ 40%. However, these numerical second-order derivatives
are not very accurate. From a linear fit to τ ′ip(V ) calculated via spin currents for |V | < 0.3 V

we obtain b = −0.29 V−1 for pure Co, which is still smaller than the (corrected) experimental
value (for Fe and Fe0.5Co0.5 τ

′
ip(V ) does not allow a credible linear approximation in that bias

range). Possible reasons for this discrepancy include a slight asymmetry of the junction and ad-
ditional contributions to the (spin) currents via inelastic scattering, which also lead to a quicker
decrease of the TMR. For a junction with a very thin barrier and low TMR=92%, a smaller
τip/I⊥ = 40%, τip/(Ip/2) = 61%, and a larger b = 1 V−1 were obtained in ref. [140]. The bias
range where experimental results based on the DC ST-FMR method are accurate is too small
to include clear signs of the non-linear contributions to τip observed in our calculations for large
Co concentrations. Using the time-resolved method STT measurements in a larger bias range
|V | < 0.6 V were reported in ref. [141]. Unfortunately, the considered junctions have a very
thin barrier, a low TMR, and also a relatively high asymmetry (I ′(V ) 6≈ I ′(−V )). Because of
the asymmetry, they obtain a strong decrease of τ ′ip(V ) (b = 8.8 V−1) at small bias |V | < 0.2
V, where the DC method is applied. Unexpectedly, this linear decrease flattens quite abruptly
into a constant dependence at larger bias, where the time-resolved method is applied. This is in
contradiction to our results, which predict a non-linear enhancement of the decrease. The reason
for this discrepancy is unclear, but it might be related to the asymmetry. The experimental
bias dependence might also include effects of quantum-well states in the thin FeCo slabs, which
in our calculations cause a quite strong structure before the thickness averaging on a similar
bias-voltage scale, which can obscure the expected increase. Thus, the experiment should be
repeated with symmetric, high-TMR junctions with different FeCo-layer thicknesses, different
Co concentrations, and at low temperature.

The ST-FMR experiments also measure the OP component of the STT. For τop we have no
simple relation to the (spin) currents; however, one may assume that the bias-dependent part
τop(V ) − τop(0) has a similar dependence on e.g. the barrier thickness as the current, since the
coupling is transmitted by the conduction electrons. To cancel out this dependence we divide

18Here we neglect the contribution of the interface resonance state to the ↓↓ channel for pure iron; including
this effect in τip and G reduces the torque per current to τip/I⊥ = 76% and τip/(Ip/2) = 77%; however, it is
likely that the effect is overestimated compared to experiments (see section 4.4.1).
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by the IP torkance. All experiments discussed above measure a linear bias dependence of the
OP torkance at small bias with τ ′op(0) ≈ 0. From the slope one obtains τ ′′op(0), which determines
the quadratic dependence of τop at small bias. For junctions similar to ours with high Co
concentrations experimental values τ ′′op(0)/τ ′ip(0) = 1.3 V−1 [115] or τ ′′op(0)/τ ′ip(0) = 1.6 V−1

[140] were measured. These values can be compared with τ ′′op(0)/τ ′ip(0) calculated from the

concentration-dependent data in figure 5.7, which yields values 0.46–3.2 V−1 with a similar
concentration dependence as τ ′′op(0) in fair agreement with the experiments. In the discussed
experiments using the DC method, the linear dependence is retained up to 0.6 V, although this
might be outside the range where this method is valid. From our calculations clear deviations
are expected only for larger bias voltages. Using the time-resolved method a flattening of τ ′op(V )
is observed for |V | > 0.2 V in [141], which is similar to the dependence observed for the IP
component and may have similar reasons.

The ST-FMR method determines the torkance ~τ ′; thus, the offset τop(0) at zero bias cannot
be determined by this method. The equilibrium IEC can be investigated by measuring the
hysteresis loop e.g. via the magneto-optical Kerr effect. For the barrier thickness considered in
this work experiments obtain a small positive coupling and the result in [71] for Fe leads agrees
with our value stated above. For thinner barriers the experiments find a strong increase of
the IEC; however, different experiments yield very different results [71, 119] (including different
signs), which may be attributed to different preparation conditions (leading to oxygen-vacancies,
pinholes, etc.).

Eqs. (5.12b) and (5.13b) predict a simple sin(θ) dependence of the STT on the relative angle θ
between the magnetizations. This corresponds to the lowest-order coupling of the states entering
the barrier from the ferromagnetic slabs [120, 121]. It has been shown in experiments [115, 140]
and ab initio calculations [59] that this dependence is accurately fulfilled for the barrier thickness
considered in this work. Since this dependence is a result of the barrier, we expect no deviations
due to alloys in the leads and an investigation of the angular dependence is omitted.
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6 Conclusions/Outlook

In this work we have investigated various transport properties of coherent magnetic tunnel junc-
tions (MTJ), including tunnel magnetoresistance (TMR) and spin-transfer torque (STT), using
advanced ab initio methods. The primary focus lies on the impact of different lead materials, i.e.
the composition of the Fe1−xCox alloys. However, to provide a solid basis for the explanations,
we have also discussed the prototypical system with iron leads in great detail, illustrating many
important effects, in particular the symmetry/spin filtering in the MgO barrier, which is the
central effect in this class of coherent MTJs. Although this system has been extensively studied
in the literature, this consistent treatment proves to be very beneficial because of the great sen-
sitivity to details in the computations. On this basis, the observed results can be traced back
to the underlying physical effects and contributing states. This discussion greatly benefits from
the combination of several advanced techniques including methods for treating alloys (CPA),
transport (NEGF), and spatial symmetry (via IRRs). This allows for a profound understanding
of the origin of the calculated results like the alloy-composition and bias-voltage dependence of
TMR and STT.

The concentration dependence of the TMR at zero bias voltage shows a steep drop from pure
Fe and Co to finite concentrations but remains about constant in between. This striking result
suggests the assumption that the decrease is related to the disorder induced by alloying. This
causes disorder scattering, which interferes with the coherent tunneling. However, the detailed
analysis reveals a more complicated interplay of different effects. At small Co concentrations the
TMR is mostly controlled by interface resonance states, which increase the conductance for anti-
parallel alignment; these are strongly affected by the disorder. For intermediate concentrations
this contribution is superseded by two kinds of contributions, which both tunnel via the ∆1-
like complex band in MgO that provides the smallest decay rate. First, there are bulk states
which couple efficiently to this complex band and become available via band filling. The second
contribution results from the disorder scattering but is very specific to the considered FeCo
alloy: the disorder leads to a very strong broadening of the minority ∆↓1 band resulting in a
finite density of these states at the Fermi-energy. This effect constitutes an interesting interplay
between symmetry and disorder. These specific contributions dominate compared to the more
general effects of disorder-induced scattering, which creates additional conductance channels
between different symmetries and ~k‖-points (diffusive transport). Furthermore, the large TMR
for pure Co is actually a consequence of the Cu leads and not reproduced with semi-infinite Co
leads. Nonetheless, our results demonstrate that (as expected) disorder has a strong impact on
the coherent tunneling.

The TMR decreases with the bias voltage for all compositions of the FeCo alloys, but the
decrease is much faster for higher Co concentrations. This dependence is explained from the
contributing states. In particular, at high Co concentrations the minority ∆↓1 states give the
dominating contribution and lead to the fast decrease for pure Co. At intermediate concentra-
tions, details in the voltage dependence are smeared out by the alloy broadening leading to a
smooth decay.

The STT is discussed separately for the in-plane and out-of-plane component, which are quite
different in behavior and physical effect. The in-plane component induces a rotation of the mag-
netizations in their common plane and can directly change their relative alignment. It is linear at
small bias voltages (and vanishes at zero bias) but shows a non-linear and asymmetric deviation
at large bias. This deviation becomes more pronounced with increasing Co concentration and
even leads to an inversion of the direction of the torque at a high (positive) bias voltage for
pure Co. At negative bias it leads to an enhancement of the torque. The in-plane component
can be markedly well described by a model in terms of spin currents. Since the latter can be
calculated from the conductance channels for the collinear alignments, this allows for an expla-
nation in terms of effects already discussed for the TMR. In particular, the non-linear deviations
are mainly caused by the minority ∆↓1 contributions. On the other hand, some contributions
which affect the TMR via small currents for anti-parallel alignment have no significant impact
on the STT, which is governed by the large ∆1-like contributions. This explains why the in-plane
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component at small bias is basically independent of the Co concentration.
Unlike the in-plane component, the out-of-plane component of the STT is usually non-zero at

zero bias. It constitutes a coupling between the layers, the interlayer exchange coupling, and leads
to a rotation of the magnetizations around each other for non-collinear alignment. For symmetric
junctions it is (usually) an even function of the bias voltage. We find that it is negative at zero
bias for all concentrations and increases to positive values with the bias voltage. Its (negative)
value at zero bias reduces with Co concentration, while the bias dependence becomes narrower.

The yield for the STT in experiments is smaller than the theoretical predictions, i.e. the torque
per current is lower than our results and the fundamental maximum value. This is expected and
results from loss mechanisms (e.g. scattering) which are not included in the calculations. For
the TMR a comparison between calculated and experimental results is more difficult and usually
shows a deviation of almost an order of magnitude, even for low-temperature measurements.
This notorious deviation is observed in our results, in particular for the pure materials, but
also for the alloys the calculated value is considerably larger than typical experimental results.
Further, the concentration dependence differs from experimental results, which show a maximum
at about 25% Co. This observation might be explained from the available bulk states in the FeCo
alloys, however in our calculations this effect is obscured by interface resonance states; the latter
in turn might be quenched by interface roughness in the experiments. The common deviation
between experimental and calculated TMR values results form a larger conductance for anti-
parallel alignment in experiments and has inspired a broad, prolonged investigation. Although
many different possible reasons have been proposed and investigated, no clear explanation has
been found, among other things because of the multitude of candidates. Since most of the
proposed effects are related to structural imperfections in the experimental junction, in order to
make progress a systematic and detailed experimental investigation of the structure of ‘typical’
junctions appears to be called for, with special regard to large-scale reproducibility, device-to-
device variability, and dependence on growth conditions and barrier thickness. Such a study
might also investigate the interface resonance states and the band alignment. This considerable
effort can be justified not only by the direct application of MTJs as magnetic sensors (or in
MRAM) but also by the great importance of tunnel contacts in the growing, active field of
spintronics. The next step is to systematically include the most relevant effects in theoretical
investigations; here, suitable models might be necessary and in particular alloy analogies would
be beneficial. Eventually, one might also include inelastic effects to improve agreement at finite
temperatures and high bias voltages. The detailed view and profound explanations provided by
ab initio calculations can help to identify new approaches to improve the spin-currents, TMR,
and STT.
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A Appendix I

A.1 Abbreviations

ASA Atomic-sphere approximation, appendix A.2

BSF Bloch spectral density, section 3.6

CPA Coherent potential approximation, section 3.1

DFT Density functional theory, section 2.1

GF Green’s function, section 2.2

G/TMR Giant/tunnel magnetoresistance, sections 1, 4.2

(g/T)DOS (generalized/Tunneling) Density of states, sections 2.2, 4.2.1

IEC Interlayer exchange coupling, section 5.2

IP/OP In-plane/out-of-plane component of STT, section 5.1

IRR Irreducible representation of a symmetry group, section 2.5

IRS Interface resonance state, section 4.2.2

KKR Korringa-Kohn-Rostoker method, appendix A.2

LLG Landau-Lifshitz-Gilbert equation, section 5

L(S)DA Local-(spin)-density approximation, section 2.1

MTJ Magnetic tunnel junction, section 4.2

MRAM Magnetic random-access memory, section 1

NEGF Non-equilibrium GF, section 2.2

NECPA Non-equilibrium coherent potential approximation, appendix B.2

P/AP Parallel/anti-parallel alignment of the magnetizations in a MTJ, section 4.2

SSA Single-site approximation, section 3.1

ST-FMR Spin-transfer-driven ferromagnetic resonance, section 5.5

STT Spin-transfer torque, section 5.1

VC Vertex correction, section 3.3

VCA Virtual crystal approximation, section 3.1 and appendix A.4

A.2 The Korringa-Kohn-Rostoker (KKR) method

The KKR method was introduced in [A3]. Here, we only repeat the most important expressions
for reference. It is necessary to introduce cell-centered coordinates, i.e. a local coordinate system
for each atom (or empty sphere), which in turn requires partitioning real space into individual
cells. Throughout this work we use the atomic-sphere approximation (ASA), where a spherical
volume is assigned to each atom and the potential is assumed to be spherically symmetric inside
this region [A3]. A real-space vector ~r inside the domain Vi of atom i is decomposed as

~r = ~Ri + ~ri = ~Ti + ~Si + ~ri, (A.1)
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where ~Ri is the center of atom i, ~Ti is a lattice vector, and ~Si is part of the basis.

In the KKR method the real-space one-electron GF is written in the basis of scattering
solutions of the atomic potentials. For convenience, we introduce different notations for the
KKR-GF [150, A3]

〈~r|G(z)|~r′〉 = G(z;~r, ~r′) = G(z; ~Ri + ~ri, ~R
′
j + ~r′j) = Gij(z;~ri, ~r

′
j)

= Ri(z;~ri) g
ij(z)Rj(z;~r′j)

× + δij G
i
sc(z;~ri, ~r

′
i) (A.2a)

= Y (~̂ri)
T R̃i(z; ri) g

ij(z) R̃j(z; r′j)Y (~̂r′j)
∗ + δij Y (~̂ri)

T G̃isc(z; ri, r
′
i)Y (~̂r′i)

∗, (A.2b)

where Gisc is the single-scatterer GF

Gisc(z;~ri, ~r
′
i) = Ri(z;~ri)H

i(z;~r′i)
×Θ(r′i − ri) +Hi(z;~ri)R

i(z;~r′i)
×Θ(ri − r′i) (A.2c)

= Y (~̂ri)
T
(
R̃i(z; ri) H̃

i(z; r′i) Θ(r′i − ri) + H̃i(z; ri) R̃
i(z; r′i) Θ(ri − r′i)

)
Y (~̂r′i)

∗. (A.2d)

Here, Ri and Hi are the regular and irregular scattering solution for the isolated potential of
atom i [150]. g = {gij} is the structural GF and describes contributions from multiple scattering
between the atoms. It is obtained by solving the multiple-scattering equation (or algebraic Dyson
equation)

g =
(
g−1

0 − t
)−1

, (A.3)

where g0 is the structural GF for the empty system, which describes the free propagation between
the atomic sites (free structure constants), and t = {δij ti} is the t-matrix [150] and describes
the scattering of the atoms. All these quantities are matrices (or vectors) in angular momentum
(possibly incl. spin) indices. The KKR method results in a separation of the atomic properties
and the crystal structure. Instead of calculating g directly from g0, one can introduce interme-
diate systems (e.g. a screened reference system [150]); this possibility is an important advantage
of the KKR method.

The derivation of the quantum transport equations in section 2.4 relies on a decomposition
of the Hamiltonian into leads, middle region, and their couplings (figure 2.1). To create such
a separation in the KKR method, one can introduce artificial, repulsive potential barriers V ldc
between the leads and the middle region, which are added to the Hamiltonian and approximately
decouple the different regions [64, 57]. By considering the Dyson equation relating the decoupled
and coupled system (i.e. with and without decoupling potential), one can extract an expression
for the lead self-energy [A4]

Σ
r/a
l = V ldcG

r/a
dc V ldc, (A.4)

where G
r/a
dc is the GF for the decoupled system. Since G

r/a
dc decays exponentially in the decou-

pling barriers, Σ
r/a
l can be clipped to a thin slab adjacent to lead l (decoupling region). This

expression can be translated to the KKR scheme [29, A4]. For the transport equations one
obtains expressions in terms of the structural GFs which are analogous to their operator form
in section 2.4. For the density of occupied states originating from lead l one obtains (compare
eq. (2.8a,2.19))

nnl (E, ~Ri + ~ri) =
1

2π
Rr,i(E;~ri) g

n,ii
l (E)Ra,i(E;~ri)

× with gnl = fl g
r γl g

a, (A.5)

which is valid in the part of the middle region where Σl is zero. For the transmission (compare
eq. (2.22)) one obtains

T̄l←l′ = Tr
[
γl g

r γl′ g
a
]
, (A.6)

where the trace is over angular momentum indices and sites where γl/l′ (or Σ
r/a
l/l′ ) is non-zero.

Here, γl is the KKR version of Γl (eq. (2.18a)); for an explicit expression and a detailed derivation
of the formulas above we refer to the literature [64, 57, 1, A4].
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l = 0 Y00 = 1

l = 1 Y s11 = y, Y10 = z, Y c11 = x

l = 2 Y s22 = x y, Y s21 = y z, Y20 = 3z2 − 1, Y c21 = x z, Y c22 = x2 − y2

l = 3 Y s33 = 3x2 y − y3, Y s32 = x y z, Y s31 = y (5z2 − 1), Y30 = 5z3 − 3z

Y c31 = x (5z2 − 1), Y c32 = (x2 − y2) z, Y c33 = x3 − 3x y2

Table 5: Real spherical harmonics (unnormalized);

~̂r = {x, y, z} = {cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)} is a point on the unit sphere.

∆1 Y00, Y10, Y20, Y30

∆2 Y c22, Y
c
32

∆′2 Y s22, Y
s
32

∆5 {Y c11, Y
s
11}, {Y c21, Y

s
21}, {Y c31, Y

s
31}, {Y c33,−Y s33}

Table 6: Basis functions for the point group C4v (or 4mm) for l ≤ 3 in terms of the real spherical
harmonic given in table 5; note that the lowest basis function for ∆′1 has l = 4.

A.3 Basis functions for C4v and Oh

In order to find all required basis functions for the point group C4v, we start from the basis
functions given in table 3 in section 2.5, which were take from [38]. We can easily find higher
order polynomials that transform in the same way. These polynomials are then expressed in
terms of spherical harmonics. It is always possible to find linear combinations that result in
spherical harmonics with the same l. It is convenient to express the basis functions using real
spherical harmonics, defined as [20]

Y rlm =


i
(
Ylm − (−1)m Yl−m

)
/
√

2 = Y sl−m if m < 0

Yl0 if m = 0(
(−1)m Ylm + Yl−m

)
/
√

2 = Y clm if m > m

, (A.7)

which are also orthonormal. We assume the Condon-Shortley phase convention for Ylm. The
real spherical harmonics for l ≤ 3 are given in table 5. We obtain all basis function for C4v for
l ≤ 3. They are listed in table 6. The basis functions obtained here are in agreement with those
given in [20].

For the group Oh describing the full cubic symmetry we proceed analogous. We start from
the character table and the basis functions given in [38]. They are reproduced in table 7. For
l ≤ 3 we only need one additional set of basis functions for Γ15. The resulting basis functions
are given in table 7. Apart from an arbitrary sign they agree with [20, 3].

A.4 Results – Virtual crystal approximation

The VCA provides an alternative description of substitutional disordered alloys, which however
neglects the effects of disorder scattering (see section 3.1). Conversely, we can use the VCA to
investigate the effects of band filling without the additional effects of disorder; this is more reliable
than simply shifting the Fermi-energy starting from the pure materials. We obtain a straight-
forward VCA for Fe1−xCox alloys by considering a material with the fractional atomic number
Z(x) = 26 + x, which is treated self-consistently by DFT. Using this model, we investigate
the TMR for MTJs with semi-infinite VCA FeCo leads in the full concentration range. (10
monolayers of FeCo on each side of the barrier are included in the middle region.) The results
are summarized in figure A.1; they are similar to the ones in ref. [130]. At low Co concentrations



82 A APPENDIX I

Oh 1 3C2 6C4 3σv 6σd i

Γ1 1 1 1 1 1 1 1

Γ12 2 2 0 2 0 2 {x2 − y2, 3z2 − 1}
Γ′25 3 -1 -1 -1 1 3 {x y, y z, z x}
Γ′2 1 1 -1 -1 1 -1 x y z

Γ15 3 -1 1 1 1 -3 {x, y, z}
Γ25 3 -1 -1 1 -1 -3 {(x2 − y2) z, . . .}

Γ1 Y00

Γ12 {Y c22, Y20}

Γ′25 {Y s22, Y
s
21, Y

c
21}

Γ′2 Y s32

Γ15 {Y c11, Y
s
11, Y10}, {−s Y c31 + c Y c33,−s Y s31 − c Y s33, Y30}

Γ25 {Y c32,−c Y c31 − s Y c33, c Y
s
31 − s Y s33}

Table 7: Cubic symmetry group Oh (or m3m).
(Top) Character table [38]. We only show the relevant irreducible representations and symmetry
elements. The basis functions for Γ25 are {(x2 − y2) z, x (y2 − z2), y (z2 − x2)}.
(Bottom) Basis functions for l ≤ 3. c =

√
5/8 and s =

√
3/8.
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Figure A.1: Conductance and TMR as a function of the Co concentration in a MTJ with
Fe1−xCox leads and a six-monolayer MgO barrier, where the disordered alloys are treated within

VCA. Note the different scales for G and TMR. Additionally, the ~k‖-resolved transmission is
shown for selected concentrations and conductance channels.
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the results agree well with those obtained by simply shifting the Fermi-energy in a MTJ with
pure iron leads (section 4.2.4, figure 4.12) and the discussion is analogous.

At low Co concentrations the TMR shows a quite complicated concentration dependence. It
shows an abrupt increase between zero and 2%, which is caused by the IRS directly above the
Fermi-energy along the Σ̄ line for Fe (figure 4.11). This gives a large contribution to G↓↓ but is
largely blocked for Gap. However, the IRS contributes to Gap along the ∆̄-line, which leads to a
subsequent increase in Gap up to ca. 8% Co and consequently a decrease in the TMR. For higher
concentrations the IRS no longer contributes and Gap decreases, which leads to a very large
TMR. The states available at the Fermi-energy couple only weakly to the ∆1-like complex band
in MgO along the Σ̄-line leading to a small transmission. At higher concentrations new states
become available around Γ̄ (already visible for 17%), which couple more efficiently along the
∆̄-line and lead to an increase in Gap; consequently, the TMR decreases. The new contributions
saturate and the TMR remains roughly constant at around 2500% for x & 40%.

This dependence is quite different from the one predicted by the CPA (figure 4.16 in section
4.4). The TMR for both pure materials is smaller than the CPA result; in particular, it does
not show an increase towards pure Co. This difference is a result of the additional Cu leads,
which were included in the CPA calculations. More interestingly, the large maximum around
15% Co is not observed in the CPA results. As explained in section 4.4 the AP conductance
in this concentration range is dominated by contributions from IRSs (figure 4.19), which are
already below the Fermi-energy in the VCA description. Thus, the maximum is not observed
due to the disorder broadening of the IRS, which shows the importance of both: the IRSs and
the effects of disorder. Finally, the increase in Gap after the minimum is much weaker than the
one observed in the energy-dependent transmission for pure iron leads (figure 4.12). This shows
that simply shifting the Fermi-energy in pure materials is not a good approximation for larger
concentrations even compared to the VCA.

A.5 Numerical parameters and convergence

The various ab initio calculations presented in this work involve several numerical parameters,
which have to be carefully chosen. Most of these parameters were introduced in [A3] and are
briefly summarized below.

• Energy integration:

Complex energy contour: For equilibrium quantities the energy integration over the
valence bands along the real axis is deformed into a contour in the complex energy plane
using analytic properties of the retarded GF. The contour consists of three lines sampled
by NE1, NE2, NE3 energy points via Gaussian quadrature (see [A3]). Additionally, the
GF has to be calculated at the Matsubara poles [150] of the cut-off Fermi-function [A3];

thus the total number of energy points is NE1 +NE2 +NE3 +NP . Note that the ~k-mesh is
chosen individually for the complex energy points depending on the imaginary part Im z,
thus the computational costs can be very different.

Real energy integration: Non-equilibrium quantities must be calculated on the real
energy axis and integrated over the energy window created by a bias voltage; only a very
small imaginary part is added to facilitate convergence of the other parameters. In this
case a simple trapezoidal rule with NE2 points is used for the numerical integration.

Imaginary part of the complex energy Im z: For the complex contour integration the
maximum imaginary part is given by Im z = 2π kB T NP , where T is the ‘temperature’ in
the cut-off Fermi-function; for the integration (or energy-resolved quantities) along the real
axis the small imaginary part (artificial broadening) is parameterized by Im z = π kB T .

• ~k-point mesh: For DFT self-consistent calculations the (maximal) ~k-mesh contains N~k =

Nk1Nk2Nk3
~k-points, which are equally spaced along the reciprocal lattice vectors. How-

ever, for the long supercells (along z) containing a tunnel barrier considered in this work

we can choose Nk3 = Nkz = 1. For transport calculations the ~k‖-mesh contains Nk1Nk2 =
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energy-mesh ~k-mesh ref. sys. CPA

NE T , NP , Im z NkxNky Rcl, Ncl εx̃

DFT sc. 2 + 20 + 2 + 10 800 K, 10, 0.318 Ry 242 1.5 aFe, 27 10−3

STT equ. 5 + 70 + 5 + 40 100 K, 40, 0.159 Ry 302 2.8 aFe, 169 10−6

non-equ. NE2(V ) 0.2 K, – , 3.98 µRy 2002 2.8 aFe, 169 10−6

Table 8: Convergence parameters which were used in the main calculations: DFT self-consistent
calculations (DFT sc.) to obtain the potentials, the equilibrium part of STT calculations (STT
equ.) and the non-equilibrium (non-equ.) calculations. The same parameters were used in the
non-equilibrium calculations for STT and TMR.
For equilibrium calculations NE is given as NE1 +NE2 +NE3 +NP ; for non-equilibrium calcu-
lations NE is given as a function of the bias voltage NE2(V ) = e |V |/1 mRy + 1, which means
that the bias window [µL, µR] is sampled in steps of 1 mRy.
Ncl is given for the bcc metals, it is up to three times larger inside the MgO barrier.
In STT equ. calculations the full ~k‖-mesh is used for all energy points regardless of Im z.
For the decimation technique a block size of four layers is used.
The given values are lower bounds, higher values have been used in some calculations (see also
text).
1 Ry = 13.6 eV

NkxNky points, while the z-direction is treated by decimation technique [150]. The ~k-mesh
is reduced to the irreducible Brillouin zone making use of space group symmetries (section
2.5).

• Reference system: A system with repulsive muffin-tin step potentials with a hight of 8 Ry
placed on all atomic and empty-sphere sites is chosen as reference system. The reference
GF is calculated in real space [150] on spherical clusters with cut-off radius Rcl containing
Ncl sites.

• Coherent potential approximation: The CPA introduces an additional convergence param-
eter εx̃, which determines if the CPA self-consistent iteration is converged. For compa-
rability to [A3] this is defined by19

∑
i ‖x̃i‖/NCPA < εx̃ where x̃i = (t̄i)−1 x̄i (t̄i)−1 and

‖ · ‖ is the Frobenius matrix norm. Additionally, a similar convergence parameter occurs
if the vertex corrections are calculated iteratively; however, since this iteration is outside
the ~k-integration and computationally cheap it can be easily converged and need not be
discussed.

Throughout this work we use an angular momentum cut-off lmax = 3 in all calculations re-
sulting in 16×16 matrices (32×32 for non-collinear) per atom. All calculations are spin-polarized
and non-relativistic. Convergence of DFT self-consistent calculations with CPA alloys has been
thoroughly discussed in [A3]. These calculations add relatively little to the total computational
costs and transport results are rather insensitive to details of the potentials. Thus, the relevant
parameters need not be discussed in detail and are stated in table 8. Note that the oxygen 2s
states in MgO are treated as semi-core states (i.e. included in the valence bands), thus the energy
integration extends over a range of almost 2 Ry. The lattice structure is described in section
4.2; empty spheres are placed inside the MgO barrier and at the FeCo/MgO interfaces and are
excluded in determining the ‘muffin-tin zero’ energy.

The convergence parameters for transport calculations are more difficult to choose, since com-
putational costs can quickly increase prohibitively. The values used in this work are summarized
in table 8. The choice of the small imaginary part of the energy Im z is particularly intricate.
Unlike in the complex contour integration for equilibrium quantities where it is mathematically
justified, this artificial broadening poses an unphysical approximation (see section 4.2.4) and

19x̃ is the excess scattering matrix in Z-J basis, see section 3.2.
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Figure A.2: Convergence of TMR (in linear response) and conductances (at EF ) with respect

to the ~k‖-mesh in a MTJ with 20-monolayer ferromagnetic slabs of Co, Fe0.5Co0.5, and Fe. The
figures show the relative deviation |x(Nkx)− x∞|/x∞ from a reference value x∞ obtained for a
much larger Nkx outside the plot range.
(Left) TMR and total conductance for P and AP alignment.
(Right) Conductances in the different channels; note that G↑↓ = G↓↑.

should be chosen as small as possible. On the other hand, a larger Im z strongly facilitates the
convergence of most other parameters. Here, we adopt the choice from [56], where it has been
shown that this value provides a sensible compromise between accuracy and computational costs
for comparable transport calculations. For a given Im z the cluster radius Rcl for the reference
system should be chosen carefully, since an insufficient value can lead to unphysical results [A3].
It was shown in [56] that the present value is sufficient for MTJs with Fe leads; we have verified
that this also holds for the FeCo leads considered in this work. Since the CPA self-consistent
calculations are computationally relatively cheap, the value for εx̃ has been chosen well beyond
the necessary accuracy.

The ~k‖-mesh convergence depends strongly on the particular system and quantity under
consideration, which makes a systematic study quite complex. We discuss this for conductance
and TMR in more detail. Clearly, the convergence of the conductance depends on the structure
of the ~k‖-resolved transmission (e.g. figure 4.21 in section 4.4). Sharply localized contributions
e.g. from IRSs or quantum-well states are difficult to sample, whereas the broad ∆1-peak is
easily converged. This is illustrated in figure A.2, which shows the convergence of TMR and
conductance in different channels for MTJs with Co, Fe0.5Co0.5, and Fe leads. The figure is
slightly crowded but still gives a clear picture. It also shows that the convergence is superimposed
by large fluctuations, which impede the convergence study. The convergence is quite similar for
TMR, P, and AP conductance but different for the three lead materials. For the FeCo alloy it is
much faster than for the pure materials, since disorder broadening smears out the structure in
the ~k‖-resolved transmission. For Fe leads it is slowest because of sharply localized contributions
from the IRS. This is more clearly visible in the separate spin channels: for the pure materials
G↑↑ converges rapidly but G↓↓ shows a very slow convergence. Only because G↓↓ is much smaller
than G↑↑, their sum Gp converges more quickly. Interestingly, for the FeCo alloy it is opposite:
G↓↓ converges rapidly because of the very strong broadening, whereas G↑↑ converges rather
slowly, which is related to the convergence of the effective medium20.

This study shows that the chosen ~k‖-mesh (Nkx = 200, table 8) is sufficient to converge the
results for Fe0.5Co0.5 to a residual error of about 2% and we have verified that it is sufficient for
all considered finite concentrations (10% – 90% Co). However, this ‘standard’ ~k‖-mesh is too

20Because of the strong scattering, the effective medium for the minority spin converges slower with the CPA
iterations than the majority one but more quickly with the ~k-mesh.
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coarse for the pure materials. The data in figure A.2 is obtained for a fixed thickness of the
ferromagnetic slabs; yet in most calculations we apply a thickness averaging, which could reduce
the error. Additionally, for finite bias voltages the energy integration induces an averaging over
NE energy points. Assuming independent random errors, the combination of both could reduce
the error by a factor of about 0.4/

√
NE − 1 (taking into account the weights). To improve the

convergence for pure lead materials we use increased parameters for TMR calculations from the
standard values in table 8: at zero bias we use a denser ~k‖-mesh with N~k = 10002 points and
for small bias voltages we increase the E-mesh to at least NE ≥ 20 points (with the standard
~k‖-mesh).

As shown in section 5 the STT is mostly determined by ∆1-like contributions. Since the
latter are easily converged, the standard parameters are sufficient for STT calculations for all
considered materials.
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B Appendix II – Coherent potential approximation

B.1 Restricted averages via projection operators

In this section we need to introduce the occupation variables η, which are sometimes used to
describe the alloy configuration [150, 73]

ηiα =

{
1 if site i is occupied by species α

0 else.
(B.1)

They obey some useful identities∑
α

ηiα = 1 ηiα η
i
β = δαβ η

i
α (B.2a)〈

ηiα
〉

= ciα
〈
ηiα η

j
β

〉
= δij δαβ c

i
α +

(
1− δij

)
ciα c

j
β . . . (B.2b)

With the occupation variables we can write configuration-dependent quantities, e.g. the t-matrix,
as

ti =
∑
α

ηiα t
i
α. (B.3)

Because of eq. (B.2a), ηiα may be used as a projection operator, since ηiα (·) vanishes for any
expression (·) if site i is not occupied with α. In particular, we can write the restricted averages
as 〈

(·)
〉

=
∑
α

〈
ηiα(·)

〉
=
∑
α

ciα
〈
(·)
〉
i=α

, i.e.
〈
(·)
〉
i=α

=
1

ciα

〈
ηiα(·)

〉
. (B.4)

One may recognize the form of a conditional expectation value. For the special case of a binary
alloy with components A and B (ciB = 1− ciA), ηiA and ηiB may be written as [73]

ηiA =
(
tiB − tiA

)−1 (
tiB − ti

)
ηiB =

(
tiA − tiB

)−1 (
tiA − ti

)
.

(B.5)

Note that these are on-site matrices; they can be trivially extended to the full scalar matrices
via ηiA ⊗ 1, etc. By taking the average of the Dyson equation (3.4) we find 〈t g〉 = t̄ ḡ and in
particular 〈ti gii〉 = t̄i ḡii. In agreement with the SSA we can disregard indirect effects of ηiα via
the other sites (see section 3.4). With this we can evaluate the restricted averages of the GF [73]

ḡiiA = 〈gii〉i=A =
1

ciA

〈
ηiA g

ii
〉

=
1

ciA

(
tiB − tiA

)−1 (
tiB − t̄i

)
ḡii

ḡiiB = 〈gii〉i=B =
1

ciB

〈
ηiB g

ii
〉

=
1

ciB

(
tiA − tiB

)−1 (
tiA − t̄i

)
ḡii.

(B.6)

Similarly, we can calculate the restricted averages for the two-particle expression g< = g A g. We
suppress the energy arguments and the operator ((·)A) index (see section 3.3). Using the Dyson
equation and the definition of the vertex corrections (eq. (3.14)) we find

〈g<〉 = 〈g A g〉 =
〈(
ḡ + ḡ (t− t̄) g

)
Ag
〉

= ḡ A ḡ + ḡ 〈t g A g〉 − ḡ t̄ 〈g A g〉 = ḡ (A+ Ω) ḡ = ḡ<

⇒ 〈t g<〉 = 〈t g A g〉 = t̄ 〈g A g〉+ Ω ḡ = t̄ ḡ< + Ω ḡ

and in particular 〈ti g<,ii〉 = t̄i ḡ<,ii + Ωi ḡii. With this we obtain the restricted averages [73]

ḡ<,ii
A =

1

ciA

〈
ηiA g

<,ii
〉

=
1

ciA

(
tiB − tiA

)−1
((
tiB − t̄i

)
ḡ<,ii − Ωi ḡii

)
ḡ<,ii
B =

1

ciB

〈
ηiB g

<,ii
〉

=
1

ciB

(
tiA − tiB

)−1
((
tiA − t̄i

)
ḡ<,ii − Ωi ḡii

)
.

(B.7)
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Before we show the equivalence of these expressions to the general formulas, we derive some
useful identities for the case of a binary alloy. In this case, the CPA condition

0 = 〈xi〉 = ciA x
i
A +

(
1− ciA

)
xiB ⇔ xiB =

ciA
ciA − 1

xiA (B.8)

can be solved for ḡii

ḡii =
(
1− ciA

) (
tiA − t̄i

)−1
+ ciA

(
tiB − t̄i

)−1
. (B.9)

Inserting this in the general expressions in section 3.2 we obtain

Di
A =

1

ciA

(
tiB − tiA

)−1 (
tiB − t̄i

)
D̃i
A =

1

ciA

(
tiB − t̄i

) (
tiB − tiA

)−1
(B.10a)

Di
B =

1

ciB

(
tiA − tiB

)−1 (
tiA − t̄i

)
D̃i
A =

1

ciB

(
tiA − t̄i

) (
tiA − tiB

)−1
(B.10b)

xiA =
1

ciA

((
tiA − t̄i

)−1 −
(
tiB − t̄i

)−1
)−1

=
ciA − 1

ciA
xiB . (B.10c)

Using eq. (B.10a) and (B.10b) we obtain ḡiiα in eq. (B.6) directly from the general expression
eq. (3.10b). To verify the two-particle expression we first note that for a binary alloy the equation
for the vertex corrections (eq. (3.16c)) can be written (using eq. (B.8))

Ωn = −xnA
(
ḡ<,nn − ḡnn Ωn ḡnn

)
xnB = −xnB

(
ḡ<,nn − ḡnn Ωn ḡnn

)
xnA. (B.11)

We rewrite the general expression for ḡ<,ii
α eq. (3.34) (using eq. (3.10c))

ḡ<,ii
α = Di

α

(
ḡ<,ii − ḡii Ωi ḡii

)
D̃i
α = Di

α

(
ḡ<,ii − ḡii Ωi ḡii +

(
ḡ<,ii − ḡii Ωi ḡii

)
xiα ḡ

ii
)
.

The last term is replaced using eq. (B.11)

ḡ<,ii
A = Di

A ḡ
<,ii −Di

A

(
ḡii + (xiB)−1

)
Ωi ḡii

ḡ<,ii
B = Di

B ḡ
<,ii −Di

B

(
ḡii + (xiA)−1

)
Ωi ḡii

and using eqs. (B.9) and (B.10) we obtain eq. (B.7). Thus, we find that for binary alloys the
restricted averages obtained via projection operators are equivalent to the general expressions.
However, this method is difficult to generalize to more components. The generalization for the
projection operator e.g. for three components would be

ηiA =
tiB − ti

tiB − tiA
tiC − ti

tiC − tiA
, etc. (B.12)

This leads to terms like 〈t2 g〉, which are difficult to calculate.

B.2 Non-equilibrium coherent potential approximation (NECPA)

In this section we discuss an alternative approach for combining NEGF and CPA. The idea is to
introduce the CPA directly for ‘contour’ GFs rather than taking the alloy average of the Keldysh
equation as in sections 3.3 and 3.5. This has been proposed in [70, 155]. Our derivation is similar
to [155]; however, we use a Keldysh matrix notation [75, 88] rather than working with actual
contour quantities [75, 55], which simplifies the derivation.

We start by combining the Dyson equation for the retarded and advanced GF (2.13) and the
Keldysh equation (2.14a) (exemplary for the lesser GF) to a single matrix equation

gC1 = gC0 + gC0 ΣC gC1 where (B.13)

gCi =

(
0 gai
gri g<

i

)
and ΣC =

(
Σ< Σr

Σa 0

)
.
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We call the combined matrix gC contour GF21. The advantage of the contour GF is that we
can treat retarded, advanced, and lesser component simultaneously. Note that the retarded and
advanced component do not mix with the others. The Dyson equation for the contour GF has
the same form as the one for the retarded GF. Thus, we can repeat the derivation of the CPA
from section 3.2 in terms of the contour GF (in place of the retarded GF), which automatically
leads to the correct lesser component (i.e. including vertex corrections).

As an example we calculate g< using the explicit form of the Dyson equation (2.13)

g<

1 =
[(

(gC0)−1 − ΣC
)−1
]<

= gr1
(
(gr0)−1 g<

0 (ga0 )−1 + Σ<
)
ga1 (B.14a)

=
(
1 + gr1 Σr

)
g<

0

(
1 + Σa ga1

)
+ gr1 Σ< ga1 , (B.14b)

where we used the inverse of contour quantities

(gC)−1 =

(
−(gr)−1 g< (ga)−1 (gr)−1

(ga)−1 0

)
and (B.15a)

(ΣC)−1 =

(
0 (Σa)−1

(Σr)−1 −(Σr)−1 Σ< (Σa)−1

)
(B.15b)

and the usual Dyson equation (2.13).
To derive the NECPA we treat the non-equilibrium condition (i.e. the self-energy of the leads

ΣC) and the disorder simultaneously. We obtain the Dyson equation for the effective medium
contour GF (compare eq. (3.3))

ḡC =
(
(gC0)−1 − ΣC − t̄C

)−1
where t̄C =

(
Ω< t̄r

t̄a 0

)
. (B.16)

Using g<

0 = 0 we find ḡ< =
[
ḡC
]<

= ḡr Σ< ḡa + ḡr Ω< ḡa, which is identical to eq. (3.14) if Ω<

are the vertex corrections from section 3.3 associated with the operator Σ<. To obtain the CPA
condition we repeat the steps leading to eq. (3.9) for the contour quantities and find

〈xC,i〉 =
∑
α

ciα x
C,i
α = 0 where (B.17)

xC,iα =
((
tC,iα − t̄C,i

)−1 − ḡC,ii
)−1

and tC,iα =

(
0 tr,iα
ta,iα 0

)
.

We evaluate the lesser component and obtain

x<,i
α =

[
xC,iα
]<

= xr,iα
(
ḡ<,ii − (∆tr,iα )−1 Ω<,i (∆ta,iα )−1

)
xa,iα = xr,iα ḡ<,ii xa,iα − D̃r,i

α Ω<,iDa,i
α .
(B.18)

Using
∑
α c

i
α D̃

r,i
α (·)Da,i

α = (·) +
∑
α c

i
α x

r,i
α ḡr,ii (·) ḡa,ii xa,iα analogous to eq. (3.36), we obtain

eq. (3.16c) (with A→ Σ< and ΩA → Ω<). Thus, we find that the NECPA is equivalent to CPA
plus vertex corrections.

We can also obtain the (one-site) component GF using eq. (3.20) or (3.10b)

g<,i
α =

[
ḡC,ii + ḡC,ii xC,iα ḡC,ii

]<
=
[(

(ḡC,ii)−1 −∆tC,iα
)−1
]<

=
(
(ḡr,ii)−1 −∆tr,iα

)−1 (
(ḡr,ii)−1 ḡ<,ii (ḡa,ii)−1 − Ω<,i

) (
(ḡa,ii)−1 −∆ta,iα

)−1

= Dr,i
α

(
ḡ<,ii − ḡr,ii Ω<,i ḡa,ii

)
D̃a,i
α , (B.19)

which is equivalent to eq. (3.34). Comparing this derivation with the one in section 3.5 reveals
some advantage of the NECPA approach. Finally we consider the two-site component GF. We
start from eq. (3.27)

gC,ijαβ = DC,iα ḡC,ij D̃C,jβ , (B.20a)

21These matrices represent contour quantities [88, 75, 55]; we can perform calculations ‘on the contour’ by
using these matrices and then obtain the usual (real-time) GFs by taking the corresponding element of the matrix
(analytic continuation).
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where we define and simplify

DC,iα = ( 1 0
0 1 ) + ḡC,ii xC,iα =

(
Da,i
α 0

D<,i
α Dr,i

α

)
with (B.20b)

D<,i
α = ḡr,ii x<,i

α + ḡ<,ii xa,iα = Dr,i
α

(
ḡ<,ii xa,iα − ḡr,ii Ω<,iDa,i

α

)
D̃C,jβ = ( 1 0

0 1 ) + xC,jβ ḡC,jj =

(
D̃r,j
β D̃<,j

β

0 D̃a,j
β

)
with (B.20c)

D̃<,j
β = xr,jβ ḡ<,jj + x<,j

β ḡa,jj =
(
xr,jβ ḡ<,jj − D̃r,j

β Ω<,j ḡa,jj
)
D̃a,j
β .

Note that we could use DC to obtain g<,i
α =

[
DC,iα ḡC,ii

]<
or g<,i

α =
[
ḡC,ii D̃C,iα

]<
, which yield

eq. (3.34). With this we obtain

g<,ij
αβ =

[
DC,iα ḡC,ij D̃C,jβ

]<
= Dr,i

α ḡr,ij D̃<,j
β +Dr,i

α ḡ<,ij D̃a,j
β +D<,i

α ḡa,ij D̃a,j
β . (B.21)

B.3 Numerical verification

The necessary equations to calculate equilibrium and non-equilibrium quantities within the CPA
are derived analytically in section 3 and appendix B.2. In addition, in this section we aim to
verify these equations and their implementation by numerical test calculations. One possibility
is to compare CPA results to supercell calculations (section 3.1). In [A3] this has been used to
verify the CPA results for various equilibrium properties of FeCo alloys. In section 4.1 we use
this method to check the (equilibrium) BSF via unfolding of the supercell density. Here, we
aim to verify the non-equilibrium quantities (transmission function, density, and BSF) and in
particular the vertex corrections.

We start by comparing the CPA result for the transmission to supercell calculations. We
consider a test system consisting of a 10-monolayer slab of FeCo alloy, which is embedded in
copper. As usual, we use the bcc lattice structure of iron for all metals and the materials are
stacked along the [001] direction. For this system we calculate the transmission in z-direction for
several concentrations (in steps of 1/8) using a 4×4 in-plane supercell (16 atoms per layer). The
concentration is enforced individually in each layer and we use CPA potentials to construct the
supercells. We use numerical parameters similar to table 8 but with an increased broadening of
Im z = 20µRy and an appropriately reduced ~k‖-mesh for the supercells [A4]. The transmission is
calculated for 10 random configurations for each concentration and compared to the CPA result;
this is shown in figure B.1. We find an excellent agreement between both methods. Despite
the large supercells (160 alloy sites) the supercell results show a considerable spread around the
CPA result. Figure B.1 also shows CPA results neglecting vertex corrections. The contribution
of the vertex corrections is particularly large for the spin-down channel as a result of the strong
disorder scattering for this spin, which is also visible in several other calculations in this work.

A similar test could be used to verify the non-equilibrium density (eq. (2.8a)). However, a
more convenient and more accurate test is to compare the non-equilibrium to the equilibrium
density: if all states in all leads are fully occupied (fl = 1 for all leads l and energies), the
non-equilibrium density should equal the equilibrium one (nL + nR = neq). Effectively, this
amounts to testing eqs. (2.1a) and (2.14c), i.e. i

(
Gr−Ga

)
= A = Gr ΓGa. An example is shown

in figure B.1 for an Fe0.3Co0.7 slab. This shows a very good agreement; the small remaining
difference is a consequence of the finite artificial broadening. The figure also shows results where
the vertex corrections are calculated iteratively with different numbers of iterations. This shows
a quick and steady convergence; for 100 iterations the result is basically indistinguishable from
the one via inversion (not shown). These results are obtained with the alternative method for
restricted averages introduced in appendix B.1, which is applicable only for binary alloys. We
have checked that the general method derived in section 3.5 (and appendix B.2) yields the same
result. We also use this test for the component-resolved density. This is shown in figure B.2
for a similar system with an Fe0.5Co0.5 slab. Here, we additionally assume an interdiffusion of
25% between the layers adjacent to the interfaces. This corresponds to the thickness averaging
used in most calculations in this work (see section 4.3) and introduces a ternary FeCoCu alloy,
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Figure B.1: (Left) Transmission through a thin slab of Fe1−xCox alloy embedded in Cu at the
Fermi-energy as a function of the Co concentration for both spins separately and their sum; we
compare results calculated for supercells, with CPA, and with CPA neglecting vertex corrections
(VC).
(Right) Layer-resolved density of states for an Fe0.3Co0.7 slab at the Fermi-energy for both spins
calculated via equilibrium and non-equilibrium GFs. For the non-equilibrium density we show
several stages in the calculation of the vertex corrections. Note that the non-equilibrium density
cannot be calculated in the outermost layers (decoupling region). Modified from [A4].

which requires application of the general restricted averages. Finally, we test the non-equilibrium
BSF; this is shown in figure B.2 for the same system for the Γ̄-point. This figure also shows the
symmetry-resolved density, i.e. resolved with respect to the IRRs of the symmetry group for this
~k‖-point. Note that Cu has only ∆1-states at Γ̄ at the Fermi-energy; thus the other symmetries
are restricted to the vicinity of the alloy slab, where, moreover, the majority spin has only very
small densities for these states. We have also checked the density resolved with respect to other
quantum numbers, e.g. the angular momentum indices, and for the full two-dimensional Brillouin
zone; in all cases we find the same perfect agreement observed in the figures.
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Figure B.2: (Left) Component-resolved and total density of states at the Fermi-energy in an
Fe0.5Co0.5 slab embedded in Cu with a thin interdiffusion layer; for each density the equilibrium
(equ.) and non-equilibrium (neq.) result is shown.
(Right) Symmetry-resolved and total Bloch spectral density in the same system at the Fermi-
energy and Γ̄-point. Note the scaling of the majority density.
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Otani, Gerrit E. W. Bauer, Jan-Ulrich Thiele, Martin Bowen, Sara A. Majetich, Mathias
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