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Abstract Color is a prime example of categorical perception, yet it is unclear why and how color 
categories emerge. On the one hand, prelinguistic infants and several animals treat color cate-
gorically. On the other hand, recent modeling endeavors have successfully utilized communicative 
concepts as the driving force for color categories. Rather than modeling categories directly, we 
investigate the potential emergence of color categories as a result of acquiring visual skills. Specif-
ically, we asked whether color is represented categorically in a convolutional neural network (CNN) 
trained to recognize objects in natural images. We systematically trained new output layers to the 
CNN for a color classification task and, probing novel colors, found borders that are largely invariant 
to the training colors. The border locations were confirmed using an evolutionary algorithm that 
relies on the principle of categorical perception. A psychophysical experiment on human observers, 
analogous to our primary CNN experiment, shows that the borders agree to a large degree with 
human category boundaries. These results provide evidence that the development of basic visual 
skills can contribute to the emergence of a categorical representation of color.

Editor's evaluation
This paper addresses the long- standing problem of color categorization and the forces that bring it 
about, which can be potentially interesting to researchers in cognition, visual neuroscience, society, 
and culture. In particular, the authors show that as a "model organism", a Convolutional Neural 
Network (CNN) trained with the human- labelled image dataset ImageNet for object recognition can 
represent color categories. The finding reveals important features of deep neural networks in color 
processing and can also guide future theoretical and empirical work in high- level color vision.

Introduction
Color vision is a prime example of categorical perception, and, as such, has received considerable 
attention across several research domains (Harnad, 1987). Being dependent on both linguistic and 
perceptual processing has made it difficult to pinpoint the mechanisms responsible for the emer-
gence of color categories, and determine why particular colors are grouped the way they are. This 
has led to a protracted debate as to what extent categorization develops universally (independent of 
local language and culture) and to what extent it is relative to local communication (for an elaborate 
discussion on the Sapir- Whorf hypothesis see Kay, 2015; Kay and Kempton, 1984). Proponents of 
the universalist view have pointed toward the overlap in focal colors across different cultures (Regier 
et al., 2005). Furthermore, it appears that categories can to a certain degree emerge independent of 
language development: Pre- linguistic infants pay more attention to color changes crossing categor-
ical borders than color changes within categories (Skelton et al., 2017) and several animal species 
respond to color categorically (Caves et al., 2018; Jones et al., 2001; Poralla and Neumeyer, 2006). 
Relativists (Davidoff, 2001), however, point toward the difficulty children have acquiring color names 
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(Roberson et al., 2004) and the case of a patient whose language impairments were associated with 
color sorting problems (Roberson et al., 1999). Also, while categorization has been found in several 
animals, researchers have failed to find categorization in some primates (e.g. baboons) and it has been 
argued that the methodology of other primate studies was biased toward finding categorical results 
(Fagot et al., 2006). Moreover, just as universalists point to the strong commonality among the devel-
opment of color categories, proponents of the relativist view highlight differences (Roberson et al., 
2000; Roberson et al., 2005).

With the apparent contradictions in findings, in more recent years, the universalist versus relativist 
debate evolved from contrasting two extremes, to looking at how different factors contribute to the 
process of categorization (Kay and Regier, 2006; Steels and Belpaeme, 2005). Importantly, recent 
advances have also started taking into account the varying utility of colors (Conway et al., 2020; 
Gibson et al., 2017; Zaslavsky et al., 2019). One seminal study shows that warm colors are commu-
nicated more efficiently than cool colors (overall) and, importantly, that at the cultural level categorical 
differences between languages are the result of differences in usefulness of color (Gibson et  al., 
2017). Subsequent papers have demonstrated that utilizing a perceptually uniform color space in 
combination with concepts from communication theory, such as an information bottleneck (Zaslavsky 
et al., 2018) or rate distortion (Twomey et al., 2021) can be powerful in modeling the shape of color 
categories. Notably, a recent study, where communicating deep neural networks played a discrimina-
tion game, demonstrated that allowing continuous message passing made the emergent system more 
complex and decreased its efficiency (Chaabouni et al., 2021).

While the modeling approaches incorporating communication principles have proven powerful 
in predicting categorization characteristics, the strong reliance on communication does not address 
the existence of what appears to be categorical behavior for color in the above- mentioned pre- 
linguistic infants and various animals. Also, a recent case study shows that color naming can be 
impaired while color categorization remains intact, emphasizing that in humans the link between 
communication and categorization can be decoupled (Siuda- Krzywicka et al., 2019). Furthermore, 
the trend of looking at the ecological relevance of color in shaping categories has also extended to 
animal research. Host birds rely on a single- threshold decision rule in rejecting parasite eggs rather 
than the dissimilarity in color to their own eggs (Hanley et al., 2017) and female zebra finches cate-
gorically perceive the orange to red spectrum of male beak color (Caves et al., 2018). These latter 
findings, particularly, emphasize that in general the utility of color is at the basis of color categories. 
Because the utility of color will also be reflected in communication, the fact that communicative 
concepts are powerful in modeling the shape of categories does not necessarily prove a causal 
relationship. Moreover, in the case study by Siuda- Krzywicka and colleagues their patient, RDS, 
tries to use objects to link names to colors (“this is the color of blood; it must be red” page 2473). 
A link between color categories and objects would be able to bridge the discrepancy between 
models that rely on communicative concepts to incorporate the varying usefulness of color and the 
experimental findings on pre- linguistic categorical effects. If object recognition is a driver of color 
categories, this would be a crucial step towards an answer to why and how color categories spread 
across perceptual color space the way they do. The possible causes range from visual perception 
being shaped based on the physical properties of the world all the way to the need for efficient 
communication about color.

Here, we focus on color categorization as a potential emergent property of acquiring object recog-
nition. Specifically, we investigate whether a categorical representation of color emerges in a Convo-
lutional Neural Network (CNN) trained to perform an object recognition task on natural images. With 
this, our approach is not to model specific color category data directly, nor to model specific brain 
processes. Rather, we investigate whether a categorical representation of color can emerge as a side 
effect of acquiring a basic visual task; object recognition. The CNN is an excellent candidate for this 
purpose as unlike in any living species we can control its visual diet and train it on one specific task. 
Previously, many studies on the representation of color in a CNN rely on physiological style approaches 
(Engilberge et  al., 2017; Flachot et  al., 2020; Flachot and Gegenfurtner, 2018; Rafegas and 
Vanrell, 2018). Considering color categorization is likely a higher order process, we rely on classical 
principles from a long history of psychophysical studies to study the emergence of color categoriza-
tion. In the CNN this translates to replacing the final layer with a new classifier which can be trained to 
perform alternate tasks on the representation the network builds (over the layers) to perform object 
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classification on. Our findings show that a CNN trained for object recognition develops a categorical 
representation of color at the level where objects are represented for classification.

Results
Border invariance
Perceptual research in non- human species requires indirect measures: in numerous species match- to- 
sample tasks have successfully been utilized for a long time to study visual perception (Kastak and 
Schusterman, 1994; Skinner, 1950). Pigeons, for example, were trained to match colors to one of 
three main color samples (Wright and Cumming, 1971). Subsequently, novel colors were introduced 
to evaluate to which of the sample colors they were matched to. This allowed the authors to find 
the hues where pigeons switch from one color to another. When they repeated the experiment with 
different training colors, they found crossover points to be similar across experiments, indicating a 
categorical perception of color. Here we use a similar approach to evaluate the color representation 
of a ResNet- 18 CNN (He et al., 2016) that has been trained on the ImageNet dataset, where objects 
in natural images have to be classified (Deng et al., 2009). First, we replaced the original output layer 
(which classified the 1000 objects) with a new classifier. The new classifier was then trained (while 
keeping the original weights in the rest of the network constant) to classify stimuli containing a single 
word of a specific color (selected from narrow bands in the HSV hue spectrum at maximum brightness 
and saturation). For stimulus examples see Figure 1A; the hue spectrum with corresponding training 
bands is found in Figure 1B. In a second step we evaluate the retrained network using colors from 
the whole hue spectrum and determine to which classes these colors are generalized. As shown in 
Figure 1C, colors from outside of the training bands are largely classified to the neighboring bands in a 
consistent manner. As a consequence, the best color match for each point on the hue spectrum can be 
determined in a straightforward manner by taking the mode (see Figure 1D). The important question 
regarding categorization now is what determines the transitions (or borders) between the matches? 
One option is that the borders are dependent on the positions of the training bands, meaning a shift 
in these bands should translate to a shift in borders. Alternatively, the borders between the colors 
could be due to a categorical representation of color in the network. In this latter case we expect 
the borders to be (at least partially) invariant to shifts in the training bands. To investigate this, we 
repeated the above process many times over, while slightly shifting the training bands over the iter-
ations. Unfortunately, there is no prior work on color categories in CNNs to base the number bands 
on. From the human perspective 6 of the 11 basic color terms appear in the spectrum (red, orange, 
yellow, green, blue, and purple), as such we varied the number of output classes from 4 through 9 in 
an exploratory manner. The result for 6 output classes has been visualized in Figure 1E: As the training 
bands are gradually shifted (indicated by the black lines) we observe that the borders between cate-
gories appear largely invariant to these shifts in training bands.

To determine whether the borders are consistent across the shifting training bands, we plot the 
transition count that indicates the co- occurrence of borders in Figure 2A (i.e. the number of times 
a border occurs in a specific location, while the bands are shifted). Note that while Figure 1E only 
displays the results for a network trained with 6 output nodes, the full result depends on borders 
found when training the network with 4 through 9 output nodes. As those results are collapsed, 
inspecting the transition count shows that there are about 7–8 discontinuities in the hue circle. Using 
a basic peak detection algorithm that relies on neighboring data points to find peaks, 7 peaks are 
found (red dots in Figure 2A). Utilizing those peaks, we divide the hue spectrum in 7 different regions 
(Figure 2C), and averaging the colors in each region (weighing them based on the reciprocal of the 
transition count) results in 7 colors that can be seen as representing each category.

Since the degree of invariance is not constant over the different borders, the question becomes 
what we consider sufficient evidence for finding categories and how we can exclude the possibility that 
this is a chance finding. To ensure the latter is not the case, we have rerun the same experiment using 
the same and similar architectures (notably a ResNet- 34, ResNet- 50 and ResNet- 101; see Appendix 1: 
Network Repetitions). In Appendix 1—figure 1 one can see, that given a similar architecture, similar 
border locations are obtained. In Appendix 8 we have also included a number of different architec-
tures to ensure the current results are not exclusive to ResNets. Quantifying how ‘categorical’ the 
current results are is more complicated, however. If the color representation is strictly categorical, the 
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result in Figure 1E would primarily show straight lines. On the other hand, if the network incorporated 
some form of a continuous representation of color, we expect borders to shift with the shifting color 
bands. In the latter case diagonal transitions, following the diagonal of the training bands, should be 
most prominent. In the categorical case, the highest cross- correlation between individual rows would 
be found by keeping them in place. However, in the continuous case, the maximum cross- correlation 
would be found by shifting the rows relative to each other. We can contrast these two cases by calcu-
lating, for pairs of rows, the lateral shift that produces the highest cross- correlation and inspect the 
frequency for each of the found shifts. If the borders move along with the training colors, the shifts 
should be distributed more uniformly (−7 to 7; range is equal to the width of 7 uniform bands). If 
the borders are stable across the different training iterations, we expect most shifts to be small (say 
between –2 to 2). Simulations for the categorical and continuous case are shown by the green and 
purple curve in Figure 2E, respectively (see Appendix 2: Simulation Classification for more details). 

Figure 1. Invariant border experiment. (A) Six stimulus samples corresponding to the primary and secondary colors in the hue spectrum (red, green, 
blue, yellow, cyan and magenta, respectively). (B) Hue spectrum from HSV color space (at maximum brightness and saturation). The colors for each 
class are selected from narrow, uniformly distributed, bands over the hue spectrum. Bands are indicated by the transparent rectangles. (C) Evaluation 
from the training instance for which the bands are depicted in B. In each instance, the same ImageNet- trained ResNet- 18 is used, but a novel classifier 
is trained to perform the color classification task with the number of output nodes corresponding to the number of training bands. Each individual 
pixel represents one classified sample, colored for the class it has been assigned to (i.e. using the hue of the center of the training band). (D) A one- 
dimensional color signal produced by taking the mode of each pixel column in C. In this manner, we obtain the overall prediction for each point on 
the spectrum and can determine where the borders between classes occur. (E) Results of all instances trained on 6 bands as they are shifted through 
the hue spectrum. Each row represents the classification of a single network (as in D), trained on 6 bands, the center of which is marked by a black tick 
(appearing as black diagonal lines throughout the image).

https://doi.org/10.7554/eLife.76472


 Research article      Computational and Systems Biology | Neuroscience

de Vries et al. eLife 2022;11:e76472. DOI: https://doi.org/10.7554/eLife.76472  5 of 35

The histogram plotted in light blue shows the actual data, which more closely follow the green line, 
representing the categorical simulation. A Fisher’s Exact Test shows the difference between the count 
distribution is significant for all comparisons (p<0.0001; both pairwise and three- way). While the distri-
bution in Figure 2D relies on comparing each individual row to all rows, this leads to the inclusion of 
doubles. For the statistical test, we therefore only include each comparison once and take the shift 
as a positive distance value. The counts for each positive shift occurrence were entered into the test. 
Even though all comparisons were significant, it is important to note that the overlap between the 
current data and the shifting simulation is much smaller than with the categorical simulation (48% vs 
74%). As such, despite a significant difference for both comparisons, it seems that the current findings 
more closely match with the categorical simulation. The significant difference between these two 
can be explained by the fact that directly training the color categories will lead to a less noisy color 
representation than when a network is trained on objects. Also, comparing the classification from 
the simulated data in Appendix 2—figure 1 (Appendix 2: Simulation Classification) we can see that 
the color classifications from the current ResNet- 18 and the categorically trained ResNet- 18 are very 
similar and both deviate considerably from the continuous simulation.

Our procedure requires the use of a hue spectrum that wraps around the color space while including 
many of the highly saturated colors that are typical prototypes for human color categories. We have 
elected to use the hue spectrum from the HSV color space at full saturation and brightness, which 
is represented by the edges of the RGB color cube. As this is the space in which our network was 
trained, minimal deformations are introduced. Other potential choices of color space either include 
strong non- linear transformations that stretch and compress certain parts of the RGB cube, or exclude 
a large portion of the RGB gamut (yellow in particular). Varying the hue in the HSV space, however, 
does not only change the color of the word stimuli, but also their luminance. To ensure the current 
borders do not stem from a spurious correlation between color and luminance, we have rerun the 

Figure 2. Border transitions in the color classifications. (A) Summation of border transitions, calculated by counting the border transitions (as depicted 
in Figure 1E) for each point on the HSV hue spectrum (thin grey line). A smoothed signal (using a Gaussian kernel; blue thick line) is plotted to reduce 
the noise. Peaks in the signal (raw count) are found using a simple peak detection algorithm (findpeaks from the scipy.signal library) and indicated 
in red. (B) The peaks are superimposed on the hue spectrum as vertical black dotted lines. (C) Category prototypes for each color class obtained by 
averaging the color in between the two borders (using reciprocal weighing of the raw transition count in A). (D) For each row (as in Figure 1E), the 
optimal cross- correlation is found by comparing the row to all other rows in the figure and shifting it to obtain the maximum correlation. In blue we plot 
the distribution of shifts when 7 output classes are used (as we appear to find 7 categories). For comparison, we plot the result of a borderless situation 
(where borders shift with training bands) in purple and in green the result for a network trained from scratch on the found 7 color categories.

https://doi.org/10.7554/eLife.76472
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current experiment with different stimuli that include luminance distractors and a variable background 
luminance (see Appendix 3: Luminance Variation). While border locations are not a perfect one- to- one 
match with the current results, they are similar and a categorical representation is again found. With 
the introduction of distractors and variation in background luminance the network can rely only on 
kernels coding purely for color and not a combination of color and luminance to perform the task. 
We should note that the analysis does not suggest that the representation of color is completely 
luminance independent. Some color categories are inherently dependent on luminance contrast. For 
instance, the only difference between orange and brown is relative luminance (see for instance: Figure 
1B in Lindsey and Brown, 2009). The current analysis only excludes the notion that the borders are 
solely based on luminance. We also explored an alternative hue spectrum from a single plane of RGB 
color space. This led again to a categorical representation, albeit more noisy, presumably due to the 
reduction in chromatic contrast (see Appendix 4: Circular Color Spectrum).

The final important question that arises from the current results is to what extent they are related 
to the acquisition of object classification, and to what extent the architecture of our model and the 
colors in the dataset drive the categorical representation. Previous studies have already shown that 
the perceptual structure can in part explain color naming (e.g., Zaslavsky et al., 2019). However, what 
we believe makes the current finding particularly interesting is that the current results stem from a 
network trained for object recognition and, importantly, we find the categorical color representation 
in the final layer of the network (the network’s representation that enables object classification). This 
suggests that this categorical color representation is beneficial to the object classification task. If this 
color representation is indeed present in the final layer to the benefit of object classification, there 
should also exist other classification tasks which do not result in a categorical representation of color 
in the CNN. Therefore, we trained the ResNet- 18 architecture on the same images, but on a different 
classification task, specifically, on distinguishing natural from man- made scenes. We keep the color 
distribution of the input the same by using the same ImageNet dataset for this task. The color classifi-
cations of the networks trained on different tasks can be found in Figure 3, with the left panel showing 
the classification of colors in the original object- trained ResNet- 18 and the right panel showing the 
classification of the ResNet- 18 trained to distinguish the two scene types. The color representation 
for the latter ResNet- 18 is not one that dissects the hue spectrum in human- like categories. As we do 
again observe a number of straight transitions, one could argue that the color representation does 
show categorical traits, however, it is clear that the color representation does not follow the hue spec-
trum in a manner similar to that of the object- trained version. As such, it appears that the representa-
tion build for object recognition is considerably closer to what we expect from humans.

Figure 3. Left the classification of colors for 7 training bands being shifted over the hue spectrum as in Figure 1E. Right the same analysis, but applied 
to a network trained to classify scenes (natural vs. artificial).

https://doi.org/10.7554/eLife.76472
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Human psychophysics
The previous experiment shows that the network has built a representation of color that appears cate-
gorical in nature. However, the approach and analysis do not have a direct equivalent in human color 
categorization studies. To evaluate whether the results from this novel approach are akin to human 
behavior, we measured human observers on a match- to- sample task modeled after the task for the 
CNN. Ten human observers performed an experiment where (centrally) presented color samples had 
to be matched to one of 7 peripheral colored disks (see Figure 4A for an example stimulus display). 
As in the CNN experiment, to determine borders we vary both the central target color, as well the 
hues of the 7 peripheral choices the observer has to pick from over trials.

To allow for comparison with the previous experiment, we plot the results in a similar manner. The 
human data can be found in Figure 4B–D; In Figure 4B, we see that much in the same way as in the 
previous experiment there are clear locations in the hue spectrum where borders occur regardless 
of the hues of the peripheral disks. Particularly, as with the neural network we find categories are 
narrower in the red- yellow range, while the green region is the broadest. The transition count in 
Figure 4C highlights that, much in the same way as with the CNN experiment, the borders are not 
absolute and some borders are stronger than others.

However, we should also acknowledge that considering the repetitions here are different observers, 
the variance is partly driven by different perceptual experiences and potentially also by the applica-
tion of different strategies. Still, the variance is also present in individual observers and observing 
Figure 4D where we have estimated the color prototypes for each human color category, shows a 
pattern that is highly analogous to the CNNs prototypes. To ensure the border count in Figure 4C is 

Figure 4. Human psychophysics. (A) Example display of an iPad trial. The observer’s fingertip is placed in the central circle (white at the start of the trial) 
upon which it shrinks and disappears (over 150ms); subsequently it reappears in the target color (red in the current example). In the current display, 
the peripheral choices, on the imaginary half- circle are rotated slightly counter- clockwise, this alternates every trial between clockwise and counter- 
clockwise. (B) Color selections of all observers averaged over hue. The target colors are represented on the x- axis and each row represents a different 
set of peripheral choices, the hues of which are indicated by the black tick marks. Each pixel in the graph is colored for the averaged observers’ choice. 
The white vertical dotted lines indicate the estimated categorical borders based on the transition count. (C) The transition count as in Figure 2A, but 
now cumulated over observers, rather than network repetitions. (D) As in Figure 2C we have determined the prototypical color of each category by 
calculating the average, weighted by the reciprocal of the transition count.

https://doi.org/10.7554/eLife.76472
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reliable, we tested for significance by comparing the correlation among observers to a bootstrapped 
null- distribution (see methods section) and find the correlation of the transition count is significantly 
different to transition counts of bootstrapped observers for whom counts do not align (p<1 × 10–6).

Evolutionary algorithm using principles of categorical perception
The generalization over neighboring colors and the invariant discontinuities between them are consis-
tent with the notion that the network builds a categorical representation of color. Nevertheless, the 
lack of a broad understanding of CNNs in general and particularly their representation of color makes 
us wary to draw a definitive conclusion from only one type of analysis. To evaluate whether the colors 
within the boundaries can indeed best be seen as belonging to categories, we turn to the concept 
of categorical perception, where differences between colors within the same category are seen as 
smaller than differences between colors from different categories (Goldstone and Hendrickson, 
2010). If the discontinuities we found indeed mark borders as in a categorical representation of color, 
we expect that generalizing colors falling between two borders should be easier than generalizing 
colors that cross discontinuities. In humans, categorical perception is often studied using reaction 
time tasks (Kay et al., 2009; Winawer et al., 2007; Witzel and Gegenfurtner, 2011), but a direct 
analogue of reaction times in neural networks is not available. There is however a different temporal 
performance measure available: the ability to evaluate how quickly a network can learn a task. If the 
boundaries found in the Invariant Border Experiment indeed resemble categorical borders, it should 
be faster for the network to learn to generalize colors within two neighboring discontinuities to a 
specific class than to generalize colors crossing discontinuities.

Specifically, in the current experiment, we evaluate how well a set of borders fits the color repre-
sentation of the network by evaluating how easily sets of 2 narrow training bands placed directly 
inside of each neighboring border pair can be generalized to single classes. One straightforward way 
of evaluating the discontinuities found above would be to make direct comparisons based on their 
locations. However, this would mean either using biased comparisons based on the borders found 
above, or require an almost infinite number of comparisons to ensure we compare the found borders 
to every alternative. To avoid this, rather than using the previously found borders as a starting point, 
we developed a search algorithm that uses the principle of categorical perception to find the optimal 

Figure 5. Evolutionary results. The evolutionary algorithm is repeated 12 times and we calculate the frequency of borders in the top 10 border sets of 
each repetition. The resulting frequencies are plotted in blue. Border- location estimates from the Invariant Border Experiment are plotted in the graph 
and on the hue spectrum in dotted black vertical lines for comparison. Running the algorithm 12 times results in 120 solutions with 7 borders each. The 
7 borders are ordered from left to right and then, from the 120 solutions we take the median border for the 1st through 7th border. We have plotted these 
medians as points, including a horizontal errorbar that indicates a standard deviation to visualize the variability of these values. As can be seen, the 
estimate for each column closely agrees to the estimate from the invariant border experiment.

https://doi.org/10.7554/eLife.76472
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set of borders for the network from scratch. The only information taken into account from the previous 
experiment is that approximately 7 borders were found: An evolutionary algorithm is initialized with 
100 sets of 7 randomly placed borders. Allowing the network to train for a limited number of epochs 
(the number of times all images in the dataset are passed through the network) we evaluate the 
performance of each of the randomly initialized border- sets. In evolutionary algorithms the fitness 
function serves to evaluate how well solutions perform. As such the short training of the network 
serves as the fitness function for the border- sets. Using the fitness of each set, the best 10 performers 
are copied to the next generation (elitism) as well as a set of 90 novel border- sets. The latter sets 
are generated by randomly selecting parents from the previous generation (with a bias for better 
performing ones) and recombining their borders to create new border sets. By allowing this process to 
run for some 40 generations, it converges to a specific set of borders with little variation between the 
top ten performers. As evolutionary algorithms are not guaranteed to converge to a global optimum, 
we ran the algorithm 12 times to ensure the results are consistent. In the current case, the borders 
should be less variable, but still line up with the peaks of the invariant border experiment.

Figure 5 shows where the evolutionary algorithm places the borders and we see a strong corre-
spondence with the previously found borders (indicated by black vertical dotted lines). The only 
exception appears in the border between green and turquoise. However, note that this is also the 
region of color space where the transition count (as shown in Figure 2A) did not show a sharp peak, as 
was the case for most other borders. Interestingly, this is also the border where the largest variability 
is observed for human observers (Hansen and Gegenfurtner, 2017). The current results suggest that 
the best explanation for the discontinuities we observed in the Invariant Border Experiment are that 
they indeed represent categorical borders dividing the color space. The fact that color categoriza-
tion emerges in a CNN trained for object recognition underscores that color categorization may be 

Figure 6. Multi- colored stimuli classification performance. (A) 7 example stimuli, each sampled from a different color band. Each stimulus consists of 
three equally colored (target) words of which the color is determined by the selected class. Subsequently, two randomly colored (distractor) words were 
drawn on top. All words are randomly positioned in the image. Finally, the background for each image is chosen randomly from the hue spectrum, but 
with a reduced brightness of 50%. (B) Error proportion as a function of hue. Separate output layers have been trained on a set of 7 color bands that 
are shifted from the left to the right border in 10 steps for each category (with 15 repetitions per step). This means, that while one network is trained to 
classify words of colors sampled from a narrow range on the left side of each category, another network is trained to classify words of colors sampled 
from the right side of each category for each respective class. After training, the performance is evaluated using novel samples on the hue spectrum that 
match the color bands the network is trained on. Subsequently, the resulting error rate is displayed in the colored line by combining the performance for 
all the network instances (shaded grey region represents one standard deviation). The black dotted vertical lines indicate the category bounds found in 
the original Invariant Border Experiment. In this manner, we can see the error rate typically increases as it approaches a border.
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important to recognizing elements in our visual world (Witzel and Gegenfurtner, 2018). The notion 
that color categories emerge as a result of acquiring a basic visual task such as object recognition 
is also in line with the finding of universal tendencies in the development of color categories across 
cultures (Kay and Regier, 2003). Further exploring the origin of the borders, the results shown in 
Appendix 5: K- Means Clustering indicate that efficiently representing the distribution of colors in the 
ImageNet database we used might, in part, explain the borders, in line with earlier results by Yendrik-
hovskij, 2001.

Mixed color stimuli
The converging results from the above experiments provide a strong indication that the network 
represents colors categorically. Still, the stimuli used above deviate considerably from the ImageNet 
database. We, therefore, wanted to ensure that the estimated borders are directly connected to how 
the network treats color. We proceed by investigating to what extent the borders generalize to tasks 
more similar to the one that the network was originally trained on. Here, in a first step, we introduce 
more complex stimuli that are comprised of multiple, colored, words on a randomly colored back-
ground to introduce contrast variations (see Figure 6A). Specifically, stimuli were comprised of three 
words colored based on the training specifications, as well as two additional words that were colored 
randomly. Finally, the background color is also randomly selected from the hue spectrum, however, at 
a lower brightness to ensure that there is sufficient contrast between words and background. The task 
of the network is to classify the stimuli based on the three correspondingly colored words. The colors 
of the distractor words as well as the background have no predictive value and should be ignored by 
the network.

The key question is not whether the network can perform this task, but whether the categories 
obtained above are meaningful in light of more complex color images. Therefore, we trained new clas-
sifiers while iteratively shifting training bands from left to right within each category (in 10 steps). This 
allows us to evaluate performance as a function of the training band positions within the category. Two 
possible outcomes can be distinguished: On the one hand it is possible that for such complex stimuli 
the network deviates from the obtained categories and performance does not depend on where we 
select our training bands in the category. Alternatively, if the system can benefit from the categorical 
coding of color, we expect performance to be highest (and the error rate to be lowest) at the center of 
the categories, while the error rate should peak when the training bands align with the borders of the 
categories. In Figure 6B, we see that this latter categorical approach is indeed what the network relies 
on: Overall, the network is able to perform the task reasonably well, but error rates are lowest toward 
the category centers, while increasing towards the borders. As in the experiments above, there is a 
slight divergence at border between green and turquoise.

Recognizing colored objects
The previous experiment extends our finding to more complex color stimuli. We chose word- stimuli 
because they are made up of a rich set of patterns with many orientations. One notable element 
missing in these word stimuli are the large surface areas that are typically found in objects. In this 
experiment, we investigated whether the previously found categorical borders still guide classifica-
tion when classifying objects that incorporate large uniform areas. For generating objects with larger 
uniformly colored areas, we rely on the Google Doodle Dataset (Ha and Eck, 2017). This dataset 
includes thousands of examples of hand drawn objects gathered from individual users. Because each 
drawing in the dataset is stored as a series of vectors it lends itself well to redraw the lines and fill the 
resulting shape with a uniform color (we plot some examples in Figure 7A). To further evaluate the 
usage of color categories in object recognition of the CNN, we added one additional manipulation. 
So far, our experiments have aimed at looking on the reliance on color in isolation of potential other 
factors. However, with the introduction of objects of different shapes, a natural question is to what 
extent the network uses color or shape(s) to classify the objects? To obtain a better insight into the 
interaction between these components, we also raised the number of classes from 7 to 14. This allows 
us to evaluate whether the network simply ignores the color categories when they are not the sole 
source of discrimination, or can use them in combination with shape features.

We ran 100 iterations, for each selecting a random permutation of 14 objects and assigning them 
to the 14 constant training bands on the HSV hue spectrum (note that this results in 2 object classes 
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per category). After training, the newly trained output layer is evaluated by taking examples of each 
of the 14 objects and filling them with colors from over the entire hue spectrum (again divided in 
100 steps). In Figure 7B we plot the results for each of the 14 bands, separately. We observe that 
performance is consistently high within the category borders in which the training band falls, while in 
most cases there is a steep drop in performance outside of the category bounds. This means that on 
the one hand the network uses color to distinguish objects from those that are colored for different 
categories. At the same time, however, it appears that to discern two objects within a category, clas-
sification relies on the object shape. As such, the network appears to combine both color and shape 
information and, important to the current research question, the representation of color it relies on, 
closely follows the previously found category borders.

Discussion
The relation between cognitive concepts and language has sparked a lively debate (e.g. Casasanto, 
2008). In this light, the potential relation between language and color categorization has been exten-
sively researched as a prime example of categorical perception. A number of recent studies on color 

Figure 7. Colored objects experiment. (A) Samples of the google doodle dataset as colored by our simple coloring algorithm. (B) Proportion correct 
as a function of hue. The 14 individual plots correspond to the 14 training bands that have been selected, 2 per category, one to the left of the 
category center, another to the right. The training bands are indicated by transparent rectangles on the spectrum, colored for the center of the band. 
The network’s output layer is retrained 100 times, each time with a different permutation set of the 14 objects. For each permutation, we evaluate 
performance for each object, matching the training band. Per instance, 80 drawings of the respective object are filled with each color of the hue 
spectrum (over 100 steps) and proportion correct is averaged for each object over the hues. The colored lines represent the median performance on this 
evaluation (over the 100 iterations), with the hue of the line representing the color in which the object was evaluated. The shaded grey area indicates the 
standard deviation over the 100 repetitions.
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categorization have focused on the development of categories by explicitly modeling their shape 
utilizing communicative concepts. Here we have taken a different approach by evaluating whether 
color categorization could be a side effect of learning object recognition. Indeed, we find that color 
categorization is an emergent property of a Convolutional Neural Network (CNN) trained for object 
recognition. Notably, we show that the final layer of a ResNet- 18, where objects are represented for 
classification, reveals a color representation where colors are organized in categories similar to those 
of humans. In contrast, the representation of color in a ResNet- 18 trained to classify scenes (distin-
guishing man- made from natural) does not follow the hue spectrum and deviates considerably from 
the human categorical organization. The fact that task modulates the color representation in the final 
layer of the CNN, where objects are represented, suggests an important connection between object 
recognition and color categorization.

Importantly, our findings are in line with most of the previous research on color categorization. 
First, the notion that color categories arise based on an interplay between the distribution of colors 
in the visual world and basic visual tasks is in line with the notion that the emergence of color catego-
ries over cultures broadly follows a universal pattern. However, given that the current study does not 
directly test this assumption we should emphasize that we can only conclude that the current results 
do not conflict with the notion that categories emerge similarly over cultures during the forming of 
the visual system. Second, the findings are in line with the notion that color categorization emerges in 
pre- linguistic infants and animals. Third, the findings are in line with recent reports showing a dissoci-
ation between color naming and color categorization. Fourth, while many of recent studies highlight 
how communicative concepts can be used to model category shapes, this correlates strongly with 
the utility of colors regarding objects. As such, the predictive power of these models may not rely on 
communication about colors per se, but on taking into account the varying utility over colors. There-
fore, it is likely that the implicit incorporation of color patterns useful during object recognition leads 
to a categorical representation of color in the object representation of the CNN.

The discussion on the genesis of color categorization has a long history, with, for instance, Glad-
stone already noting the deviating use of color terms in the Homeric poems where the sky is referred 
to by many analogies (e.g. copper, iron, starry), but never blue (see section 4 of Gladstone, 1858). Or 
the suggestion that color categorization is culturally dependent by Ray, 1952. The current scientific 
debate draws strongly on the seminal work by Berlin and Kay, 1969 who proposed that color cate-
gories across a wide range of languages could be described using 11 basic categories and advocated 
that one universal process guides the development of categories across cultures. While this hypoth-
esis was initially based solely on visual inspection of collected categorization data, later, evidence was 
provided by demonstrating statistical regularities across cultures (Kay and Regier, 2003; Regier et al., 
2005). The current findings are in line with the notion that the general development of categories is 
similar across languages: When we consider color categorization to be a side effect of acquiring basic 
visual skills (given relatively similar circumstances across the globe) color categories are expected to 
shape in a similar fashion throughout many cultures. Naturally, the current findings do not preclude 
the notion that categories develop differently in cultures. If categories emerge based on acquiring 
basic visual skills, we should also see local differences based on different color distribution in the 
objects important in cultures. An important next step to verify that there is any explanatory value to 
the current results, would be to gather datasets specific to different cultures and evaluate whether 
training networks on similar tasks leads to categories that align with the local culture.

Measuring the full hue circle in pre- linguistic infants, Skelton et al., 2017 found that their novelty 
preference was dependent on categorical crossings. As such it appears that some form of categor-
ical representation develops early on. However, it is unclear whether these categories are the direct 
basis for categories in verbal communication. Four of the five categorical distinctions Skelton and 
colleagues found can be separated by the cardinal axis corresponding to the color representation 
in the retinogeniculate pathways, suggesting some of the categorical behavior may rely on the early 
representation of color (an issue pointed out by, e.g. Lindsey et al., 2010; Witzel and Gegenfurtner, 
2013). Also, color naming develops much later and children that have not yet acquired color names 
make recognition errors based on perceptual difference (Roberson et al., 2004). Similarly, it is unclear 
whether categorical representations of color in animals resemble those in humans. Nevertheless, 
recent findings have shown, that, as in humans, the utility of color may play an important role for the 
categorical color representation in animals (Caves et al., 2018; Hanley et al., 2017). As such, while 
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the nature of the categorical representations in pre- linguistic infants and animals is still somewhat 
unclear, the novel finding that a categorical perception emerges with the general acquisition of visual 
skills is in line with the recent findings. Moreover, it is likely that any pre- linguistic categorical behavior 
lays the basis for subsequent color naming.

As in animal studies, we relied on a match- to- sample task for studying color categories in a CNN. 
With this indirect approach, some limitations are similar to those in studies on animals. Importantly, 
however, there are also clear advantages to studying categorization in a CNN. We were able to repeat 
the match- to- sample task for a great number of training colors (without the risk of inducing a sequen-
tial bias over training sessions) allowing for better estimates. Moreover, verifying the border loca-
tions using the concept of categorical perception with an evolutionary algorithm is a computationally 
intensive task that cannot be straightforwardly applied to any living system, but is feasible for CNNs 
because of the speed at which an output layer can be retrained. Of course, compared to animal and 
infant models the CNN is the least convincing version of the adult human visual system. Nevertheless, 
an important benefit is that the access to activity of artificial neurons is complete and can be exploited 
in future research: While neural networks are often described as black boxes, compared to biological 
systems, artificial neural activity is much more accessible, as one can easily probe the activation of all 
neurons. With this kind of access, a logical next step is to investigate how the obtained categories 
are coded in the CNN. Coding of colors seems to become narrower and more variable beyond the 
LGN (as demonstrated in macaque studies by Conway et al., 2007; Kiper et al., 1997; Lennie et al., 
1990) and colors belonging to the same category seem to be clustered together in human visual 
cortex (Brouwer and Heeger, 2013). Zaidi and Conway, 2019 suggested such narrowing may take 
place over areas (from V1 to IT) by combining earlier inputs (equivalent to a logical AND) or through 
clustering of local cells. CNNs can serve as a model for testing the viability of several of such concepts.

Where the terms color categorization and color naming are often used synonymously, the subtle 
distinction between them is key to the debate on the emergence of color categorization. From a 
strong universalist point of view, a color name is no more than a label applied to perceptually formed 
categories. From the relativist point of view, the direction is reversed and it is the existence of a color 
term that dictates the existence of the respective perceptual category (Jraissati, 2014). A recent case 
study shows a dissociation between color naming and categorization. Patient RDS is able to catego-
rize colors, but his color naming ability is impaired (Siuda- Krzywicka et al., 2019; Siuda- Krzywicka 
et al., 2020). The dissociation between the two, favors a view where categorization is a process that 
can exist independently of linguistical labels. Interestingly, despite the problems in color naming, 
the link between objects and colors was preserved in RDS (Siuda- Krzywicka et al., 2019). While it 
is possible to argue that our CNN does communicate (as it assigns objects to a class), it is important 
to note that the CNN at no point is required to communicate about colors directly, but at best about 
objects. However, there is no exchange (back and forth) of information between multiple CNNs, rather 
a single CNN merely imparts information. Therefore, while the current findings could be viewed in 
terms of communication indirectly shaping color categories, they only show a very limited overlap with 
the hypotheses linking category formation and communication in current literature. As such, we argue 
that the most important part of the current finding is that it demonstrates a direct connection between 
the formation of color categories and learning to identify objects.

The fact that the current categorical representation appears to emerge in the absence of color 
naming emphasizes that explicit color naming is not a necessity for the development of categories. 
This may seem to stand in contrast to many of the recent studies that use communicative concepts as 
a means to model the shape of categories (Chaabouni et al., 2021; Twomey et al., 2021; Zaslavsky 
et al., 2020). However, many of those studies derive their predictive power from combining these 
concepts with the non- uniformities in the utility across colors. As such, the communicative concepts 
could merely be a means to incorporate the varying utility across colors. Previous studies have demon-
strated that the utility of colors as they relate to objects is reflected in the notion that warmer colors 
are communicated more efficiently than cooler colors (Gibson et al., 2017), it has also been shown 
that objects are associated with warmer colors than backgrounds and that classifiers trained using only 
color information can distinguish animate from inanimate object at a performance level comparable 
to using shape features (Rosenthal et al., 2018). The latter emphasizes that the higher communica-
tive need for warmer colors, likely stems from their prevalence in objects. While we do not argue the 
process is completely devoid from communicative factors, the current results can unify many previous 
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findings by showing that acquiring a skill like object recognition can lead to the emergence of a cate-
gorical representation of color.

Methods
Invariant border Experiment
Software architecture and stimuli
The experiment utilizes a ResNet- 18 as provided in the models module from the torchvision package 
(Marcel and Rodriguez, 2010). The network is initialized with the pretrained option on: weights 
are set based on having been trained on ImageNet (Deng et al., 2009) a large database of human- 
labeled natural images. After initializing the network, we replace the output layer (that performs the 
object classification) with a smaller output layer with anywhere from 4 to 9 output nodes. The weights 
to this novel (replacement) classification layer are randomly initialized.

Stimulus images are generated using the Pillow package (Clark, 2015). Image size is the same 
as that used for the original ImageNet training (224x224 pixels). Each image contains the word 
‘color’ randomly positioned on a mid- grey background (font size 40, approximately 100 by 25 pixels, 
depending on font type). The color of the word is randomly (uniform) selected from the bands on the 
hue spectrum in HSV space. Color bands representing the individual classes are uniformly distributed 
over the hue space (see Figure 1A for stimuli sampled from example bands in Figure 1B). Bright-
ness and saturation are set to the maximum level. The HSV color for each pixel is converted to its 
equivalent in RGB space as the network has been trained using three input channels for red, green 
and blue, respectively. The font of the word is selected from 5 different fonts. Stimuli are normalized 
using the same parameters across all images (the same values as used for the original normalization 
of ImageNet images). Note that this normalization is purely done to have a range with 0 mid- point, 
making the numerical computation more stable and should not affect the colors as the channels are 
independently fed to the network and multiplied by learned parameters.

For the scene- task, where natural scenes are distinguished from artificial scenes, we used the clas-
sification in the subclass of ImageNet that distinguishes natural from artificial scenes. Otherwise, the 
analysis was the same as for the object- trained network.

Procedure
For each number of output nodes (4 through 9), we instantiate the network 150 times, replace their 
output layers and train each on a slightly shifted set of training bands. The combined width of the 
training bands equals 20% of the total hue range. During network training we only allow the weights 
of the new classification layer to be updated, the weights of all preceding layers remain as they were 
trained on ImageNet. Because we cannot determine the number of potential color categories a- priori, 
we vary the number of output classes from 4 through 9. This results in training a newly initialized 
output layer for 150 (band shifts) times 6 (4 through 9 output classes) networks, making for a total 
of 900 training sessions. 500 samples are provided for each class and the network is trained for 5 
epochs. During the training, we keep track of the best network using 50 separate validation samples 
per class (from the same training bands). After training the network to classify the colors from the 
training bands, each network is evaluated over the whole hue spectrum by providing the network 
with 60 samples for each step on the HSV hue spectrum (divided into 100 steps). This results in 6000 
classified samples for each of the 900 trained networks.

Analysis
The 6000 test samples for each trained output layer are used to determine the border crossings. In 
Figure 1C we plot the classification of these 6000 samples for a single training iteration. To determine 
the best prediction, for each step on the hue spectrum (each column in Figure 1C), we take the mode. 
In this manner, we transition to a one- dimensional representation of the network’s performance on the 
evaluation task, with the prediction for each hue. Importantly, this one- dimensional representation, as 
plotted in Figure 1D, is used to determine the border crossings: for each network we determine the 
borders by simply picking the transition between predicted classes. Finally, we sum all the borders 
and from this we use a simple straightforward peak detection algorithm (findpeaks from the  scipy. 
signal library) to find the locations on the spectrum where the borders are most invariant to change. 
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To determine how ‘categorical’ the found border invariances are, we determine the maximum cross- 
correlation for each row compared to every other row, by shifting one of the rows and finding the 
optimal shift by looking for the maximum cross- correlation. To ensure the circular nature of the hue is 
preserved, hues are converted to 2D locations on a unit circle and a 2D cross- correlation is run for the 
x and y coordinates. By obtaining the shift for each row compared to all other rows, we obtain a distri-
bution of shifts, that can be compared to distributions representing a categorical result and contin-
uous color result. The former is generated by training a ResNet- 18 (from scratch, i.e. initialized with 
random weights and allowing for the parameters of all layers to be updated) on the currently obtained 
categories and, subsequently, evaluating it in the same manner as we evaluated the ResNet- 18 trained 
on ImageNet. The latter distribution is determined by calculating the optimal shifts for the case where 
the borders between colors move in parallel to the shifting bands.

Human psychophysics
Observers
Ten observers were included in the experiment (of which 5 male and 5 female) with an average age of 
32.1 (SD: 4.3). Two of the observers are also authors (JV and AA). Informed consent was obtained from 
all observers prior to the experiment. All procedures were approved by the local ethics committee at 
Giessen University (LEK 2021–0033).

Stimulus and apparatus
Stimuli consist of one central colored ring accompanied by 7 colored, peripheral, disks placed on an 
imaginary half circle around the central circle (see Figure 4A for an example stimulus). The central 
ring color is selected from the hue spectrum of the HSV color space divided in 35 steps. The periph-
eral ring colors are also selected from the HSV hue spectrum in a manner consistent with the original 
Invariant Border Experiment, meaning that 7 equidistant hues are selected for each trial and they 
are shifted in 35 steps around the hue spectrum. The experiment is performed on an iPad (9 of 10 
observers performed the experiment on the same ipad). A strict distance (eyes- to- center- screen) is 
not controlled, however, at a typical operating distance of ~50 cm, the eccentricity of the peripheral 
disks is 5.6 degrees and their diameter approximates 1.8 degrees. The center disk is 2.8 degrees in 
diameter at the typical operating distance.

Procedure
Starting the experiment each observer gets to select their preferred iPad orientation (landscape or 
portrait) to perform the experiment in. The observer is bound to performing the whole experiment 
in this orientation (changing the orientation of the iPad results in the experiment being paused with 
a warning). To ensure the observer has ample time to observe all options and avoid choices being 
influenced by transient or salient effects, the 7 colored peripheral choices are presented throughout 
the entire trial. With the 7 colored peripheral choices, the observer is presented with a central white 
circle. Upon placing the finger on this circle, it shrinks to disappearance (over 150ms) after which it is 
replaced with the ring in the target color. Upon the color change, the observer is tasked to select the 
peripheral disk that is most similar in color. The observer selects a peripheral disk simply by tapping 
it with her/his finger. Once the selection has taken place the trial is completed and the peripheral 
disks change color while being shuffled into novel locations in preparation of the next trial and the 
central circle reverts to white. For each trial, the disks (with respect of the midpoint) are rotated either 
slightly clockwise or counterclockwise (15 degrees) to reduce the overlap of the disks between trials. 
Observers are told to perform the trials in a speedy manner, but aim to maintain a high accuracy (in 
accordance with their own perception, as there are no predetermined correct responses) over the 
trials. In total, each observer completes 1225 trials (35 hue target variations x 35 shifts in the periph-
eral disk hues). To ensure finger fatigue does not negatively affect the results, observers are free to 
pause the experiment at any point and return to it later.

Statistical analysis
To ensure the transition count over observers, as presented in Figure 4C, is reliable we constructed 
a statistical test utilizing bootstrapping. Specifically, we created a null- distribution of uncorrelated 
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observers by generating bootstrapped datasets where the observers’ transition counts were randomly 
shifted. This null- distribution is then used to compare with the observed correlation in our original 
observers.

To estimate the number of observers required for this analysis, we used data obtained from the 
different architectures analyzed (see Appendix 8). From this data, we created two bootstrapped distri-
butions: One null- distribution where the transition counts in the bootstrapped datasets are randomly 
shifted (as above) and one without random shifts, to obtain a distribution for correlated observers. 
This demonstrated that with 6 network ‘observers’, the probability of obtaining a non- significant was 
already less than 5%. However, to air on the side of caution and allow for potential follow- up analyses 
we decided to recruit 10 observers.

Evolutionary experiment
For this experiment we initialize 100 sets of 7 borders, each ordered from left to right (each repre-
senting a point- position on the hue spectrum). For each border- set the ResNet- 18 pre- trained on 
ImageNet is initiated and again the final fully connected layer is replaced. The stimuli for training the 
networks are generated via the same procedure as described in the Invariant Border Experiment, but 
now the hues for each class are selected from two narrow bands just inside of each set of neighboring 
borders (see Figure 8). Both band positions, as well as width, are relative to the two adjacent borders; 
The band starts slightly inside the border (with the closest edge located 5% from the border) and the 
band width is set to 10% of the total distance between the borders. We use two narrow bands at the 
ends of the potential category as this will mean that when the borders cross a categorical boundary 
the network will have to learn to generalize colors from different categories to single classes, while 
if the borders are located optimally, the 2 bands for each class will stem from 1 category each. We 
judge the fitness of a border set by evaluating how fast the network can learn the classes defined by 
the bands on the inside of two adjacent borders. Therefore, each network is trained for 3 epochs only, 
which is insufficient to reach peak performance, but allows us to evaluate which border set best fits 
the color representation of our ResNet- 18: Border sets that align with the color representation of the 
network should allow the network to reach a higher performance quicker.

After training the 100 networks, the border sets are sorted by the performance of their respective 
network. Note that while we base the ordering on the performance of the network, the network is 
assumed a constant factor and the performance is attributed to the border set that is used to generate 
the training set; Essentially the network (trained on only 3 epochs) is the fitness function for the border 
sets. Once the fitness of each border representation has been established, the sets can be ordered by 

Figure 8. A single set of 7 borders (indicated by vertical dashed lines; labeled B1 through B7). Each space in between two adjacent borders represents 
a class. Colors for the training samples for, for example, Class 1 are randomly selected from one of the two bands, LB1 (Left Band for Class 1) and RB1 
(Right Band for Class 1), on the inside of the borders of the class. Each of the two bands (not drawn to scale) comprises 10% of the space between 
neighboring borders; for class C1 this is the distance between first dotted vertical line (B1) and the second dotted vertical line (B2). Note that this 
means that the bands for class C3 for example are thinner than for Class 1. To ensure the training bands do not overlap at the borders, there is a gap 
(comprising 5% of the category space) between the border and the start of the band.
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fitness and we generate a new generation of border sets. Firstly, through the principle of elitism, the 
top 10 performers of the current generation are copied directly into the next generation. Addition-
ally, a novel 90 border sets that are created by recombining border sets from the current generation. 
Specifically, to create a new set, we select two parent border sets and, first, combine any borders that 
occupy similar positions across the two sets: This is done by averaging borders that are less than 5% 
apart between the sets (we start by combining the closest borders and the threshold is lowered when 
many borders are within a 5% range). Secondly, from the resulting borders, 7 are randomly selected 
to create a new border set. In order to converge to the optimal border- set, the selection of the two 
parent sets is biased towards the better performing border instantiations in the current generation as 
follows: 55% of the parents are selected from the 25 best performing border sets; 30% from the next 
25 sets; and 15% of the borders are selected from the 25 sets thereafter. The bottom 25 border sets 
(in terms of performance) do not participate in the creation of offspring. To ensure some exploration 
occurs, in the offspring, some borders are randomly shifted. Specifically, we randomly select 2.5% of 
all borders and randomly shift them (random shift is normally distributed with an SD of 2.5% of the 
hue spectrum). The whole process is repeated 40 times. To allow for convergence after 30 generations 
random mutation is switched off.

Multi-color Experiment
Software architecture and stimulus
Again, the same ResNet- 18 trained on ImageNet is used as in the previous experiments. In the current 
version, the output layer is replaced by one with 7 output classes, each matching a category. The 
stimuli were designed to include 2 factors that were absent previously. Firstly, we introduce multiple, 
colored elements in a single stimulus: Each stimulus class is still defined by a narrow color band on the 
hue spectrum, but we now draw 3 words into a 224- by- 224 pixel image (we will refer to these as the 
target words). On top of that we add two additional words to the image of which the color is randomly 
selected from the hue spectrum (we will refer to these as the distractors). All words are colored using 
the HSV hue spectrum at maximum brightness and saturation. Secondly, we introduce variations in 
color contrast. For the categorical borders to be meaningful in classifying stimuli, their utility should 
not be overly dependent on color contrast (whether a banana is sitting on a green or a brown table, 
the network should still be able to use yellow to identify the banana). Therefore, we introduce a vari-
ation in color contrast by randomly selecting the color of the background from the hue spectrum. To 
prevent words from blending into the background, we set the brightness of the background to 50%. 
Stimulus examples can be found in Figure 6A.

Procedure
Each network is trained on 7 classes divided in 7 color bands, based on the borders found in the 
Invariant Border Experiment. The bands, making up 10% of each category range, are shifted from the 
left category border to the right border in 10 steps, for each step a novel classifier is trained 15 times 
to obtain a reliable average. After being trained we evaluate performance for each network: The error 
rate for the color bands which the network was trained on is obtained by evaluating it for the ticks on 
the hue spectrum that fall in that range. Subsequently, we plot the error rates for the all networks as 
a single- colored line (see Figure 6B), to demonstrate how performance varies, depending on training 
bands.

Objects Experiment
Software architecture and stimulus
Stimuli are generated using the line drawings available from the google doodle dataset (Ha and Eck, 
2017). The database contains hundreds of objects; we selected a subset based on two criteria. First, 
we selected objects that lend themselves to a simple color filling algorithm. This mainly consisted of 
finding objects that had clear outer borders with large spaces on the inside. Secondly, we prioritized 
objects that were reasonably consistent with regard to shape. The drawings are created by many 
different users, and, therefore, the approach could vary significantly. For instance, a user could have 
chosen to just draw only a cat’s head prominently or include its entire body. Of course, such varia-
tions are not unlike the variation encountered in the images the network has originally been trained 
on. However, we are only retraining the classification layer of the network. The latter means that the 
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network has to rely on previously trained kernels to classify the shape, and a high degree of variation 
may not be easy to represent when only adapting the input weights to the last layer.

The drawing of the stimuli follows a simple procedure. Based on the drawn lines we create a color 
mask. This mask is created by determining, for each pixel in the image, whether it is ‘enclosed’ by 
drawn lines. Enclosed, here, is defined by having a drawn line to its left (not necessarily directly adja-
cent), a drawn line above it, to its right and below it. After the colored area is filled, we draw, on top of 
it, the drawn lines at a thickness of 4 pixels. Example results of the process can be found in Figure 7A.

Procedure
The network is trained to classify a set of 14 objects (strawberry, apple, crab, dog, school bus, cow, 
dolphin, mushroom, bird, submarine, angel, sweater, sailboat, duck). For the training of each network, 
we selected 500 samples for each object from the google doodle dataset. We also selected another 
50 samples per object to obtain a validation set to monitor the performance of the network throughout 
training. The fill color for all of these objects is randomly (uniformly) selected from narrow bands on 
the hue spectrum. Bands are selected to be non- overlapping and having 2 bands per category, one 
positioned right of the category center and the other left (each takes up 1/5 of the category bounds, 
one in the center of the right half and one in the center of the left half of the category). This results in 
14 bands that are not exactly evenly spaced, or uniformly distributed throughout the spectrum. The 
bands can be observed in Figure 7B. To obtain a reliable estimate of performance on this task and 
to minimize the effects of the specific object selection we run the experiment 100 times, each with a 
different permutation of the object set with respect to the 14 color bands.

After having trained the new classification layer of the network on the 14 objects assigned to the 
color bands, 80 different drawings for each object class are used to evaluate the network. System-
atically changing the color of each of these 80 drawings over the hue spectrum divided in 100 steps 
creates 8000 colored samples, that allow us to evaluate to what extent the object is classified based 
on its color compared to its shape. Repeating this process for the 14 trained objects (assigned to the 
respective color band on each iteration) allows us to evaluate to what extent color was used to define 
the object class.
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Appendix 1
Network repetitions
We have chosen to focus on the ResNet- architecture as it introduced residual connections that 
allowed for creating networks that were much deeper than before. Furthermore, ResNet is uniquely 
used as the backbone of several important deep networks, vision- language models (CLIP), semantic 
segmentation (FCN and DeepLab), and Taskonomoy networks. It is also frequently used to compare 
with human performance in literature (Geirhos et al., 2018; Huber et al., 2021).

To ensure that our interpretation of the peaks in the transition counts as invariant borders in 
the hue spectrum rather than noise is correct, we re- run the Invariant Border Experiment a number 
of times. To also ensure the result is not dependent on network depth, we use the other ResNets 
available in the models- module from the torchvision package. Specifically, we repeat the experiment 
with a ResNet- 34, a ResNet- 50 and a ResNet- 101, all of them pretrained on ImageNet. Moreover, we 
include a second ResNet- 18 trained on ImageNet to ensure the original result replicates. The results 
are plotted in Appendix 1—figure 1 below, Figure 1A repeats the results from the ResNet- 18 as 
presented in the main text for comparison. Comparing the transition count from the newly trained 
ResNet- 18 as well as the ResNets of different depths (Figure 1B- E), we clearly see a very similar 
pattern repeat. Most borders occur in approximately the same locations across the networks, only 
slight variations are seen as in some cases an extra border is found (around green or magenta) or a 
border is missing (between red and orange).

https://doi.org/10.7554/eLife.76472
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Appendix 1—figure 1. Transition counts for five different ResNet instances. (A) Transition count for the ResNet- 18 
from the Border Invariance Experiment in the main text. Transition counts are calculated by summing all transitions 
in the network’s color classifications going around the hue spectrum (see the main document for more details). 
The thin grey line represents the raw counts, to remove noise we have also included a thicker light blue line which 
is a smoothed version of the raw count. Detected peaks are indicated using red dots. (B) Identical ResNet- 18 
architecture and dataset, but different training instance. (C–E) Same architecture but deeper ResNets all trained on 
ImageNet: ResNet- 34 (C), ResNet- 50 (D) ResNet- 101 (E).

https://doi.org/10.7554/eLife.76472
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Appendix 2
Simulation classification
To determine to what extent the classifications of the ResNet- 18 on the color task can be seen as 
categorical we compare the classifications to two alternative cases. On the one hand we have the case 
where borders shift with the training bands, as could be expected when colors are represented in a 
(quasi) continuous manner. The shifting border simulation is plotted below in Appendix 2—figure 
1 on the left. On the other hand, we have the case where the network relies on a true categorical 
representation. For this case we have trained a ResNet- 18 from scratch on the categorical borders 
found in the Invariant Border experiment and repeated the same analysis as in the Invariant Border 
experiment. The result can be seen in Appendix 2—figure 1 in the right plot. In the middle we have 
plotted the result from the original Invariant Border experiment for reference. As can be seen, the 
object- trained and the categorically- trained network produce very similar results, with the exception 
that the categorically trained result looks less noisy. A quantification of the differences can be found 
in Figure 2D of the article.

Appendix 2—figure 1. Classification simulation. We plot the color classification for the 3 cases from left to 
right (Shifting borders, data from the Invariant Border experiment and data from a categorically trained network, 
respectively). Each row in the subplots represents the classifications of a single output layer trained on 7 bands, the 
center of which is marked by a black tick (appearing as black diagonal lines throughout the image).

https://doi.org/10.7554/eLife.76472
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Appendix 3
Luminance variation
In the invariant border experiment, we have drawn colored words on a uniform grey background. 
While varying the target word over the hue spectrum of the HSV color space, its luminance also 
changes. From this perspective it is possible that the obtained borders stem partially from a variation 
in luminance, rather than color. To ensure this is not the case, we repeated the same experiment 
as before, but now with two important stimulus adaptations. Firstly, 10 greyscale words (random 
luminance) have been drawn into the background. Secondly, the background luminance is also 
randomly selected [range: 80–175 out of 0–255]. Stimulus examples are shown in Appendix 3—
figure 1A. Otherwise the experiment is the same as the original.

Appendix 3—figure 1. Luminance controlled stimuli. (A) Stimulus examples drawn from 6 training bands aligning 
with the primary and secondary colors. (B) Raw transition count, that is, the number of times borders between 
colors are found in a specific location as the network is trained on different training bands is plotted in grey. A 
smoothed version is plotted in light blue. The found peaks (based on the raw count) are indicated in red. (C) 
Found peaks indicated in the hue spectrum using black vertical dotted lines. (D) Average color for each category. 
The average is weighted by the reciprocal of raw transition count, making the troths in the data the most heavily 
weighted points.

The results are depicted in Appendix 3—figure 1B- D. While the locations of some borders are 
slightly shifted compared to the original borders, overall, we find a very similar pattern to those of 
the original experiment. As such, adding luminance variation does not change the notion that a 
categorical representation of color seems to underlie the current results.

Since the network can rely only on kernels coding purely for color and not a combination of color 
and luminance to perform the task, it is not surprising that the evaluation produces borders that are 
slightly different from those when luminance variations are not included.

https://doi.org/10.7554/eLife.76472
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Appendix 4

Circular color spectrum
The hue spectrum from the HSV color space (at maximum brightness and saturation) follows the 
edge of the RGB color space (see Appendix 4—figure 1). To evaluate whether this irregular shape is 
a factor in the current results we repeat the experiment using a different hue spectrum. Specifically, 
we rerun the original experiment using colors picked from a single plane in RGB space, all at equal 
distance from the center (see Appendix 4—figure 1 for a contrast with the original hue spectrum). 
The novel hue spectrum is defined as a circle with a maximum radius (staying inside the RGB cube) 
in the plane of R+B+G=1.5. Repeating the original experiment (with a colored word on a uniform 
background) still shows a certain degree of categorical representation, but, looking at the raw signal 
count, the result is clearly noisier than the original experiment. Therefore, we have also repeated the 
experiment using the stimuli from Appendix 3 above. Adding luminance variation, we find a stronger 
correspondence between the borders from the HSV hue spectrum and the hue spectrum that follows 
a circular shape in RGB.

Appendix 4—figure 1. HSV hue spectrum and RGB hue spectrum displayed relative to RGB color cube. HSV 
hue spectrum at maximum brightness and saturation can be seen following the edges of the RGB color cube 
(subsection of RGB space in which values fall between 0 and 1). The RGB hue spectrum is defined as the maximum 
circle in the plane R+G+B=1.5 (plane is indicated in transparent grey).

Using single word stimuli from a hue spectrum following a circular shape through the RGB cube 
leads to a slightly noisier categorical representation (Appendix 4—figure 2A- C), presumably due to 
the reduction in chromatic contrast. Repeating the experiment with the stimuli containing luminance 
variation, however, does result in the same borders as with the HSV hue spectrum (Appendix 4—
figure 2D- F). We hypothesize that the difference relies on the different kernels the network can rely 
on to perform the task. Likely, when getting closer to the center of the RGB cube there are even 

https://doi.org/10.7554/eLife.76472
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more kernels that classification can rely on. And, therefore, subtle luminance differences can be 
exploited and borders become less pronounced.

Appendix 4—figure 2. Left: Results from rerunning the original experiment with stimuli sampled from the custom 
RGB spectrum. Right: Results from rerunning the experiment with the stimuli as defined in Appendix 3, but 
sampling colors from the custom RGB spectrum.

https://doi.org/10.7554/eLife.76472
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Appendix 5
K-means clustering
Given the consistency of the borders over the experiments, the question arises what the origin of the 
locations of the found borders is. Previously, Yendrikhovskij, 2001 demonstrated that performing 
k- means clustering on colors from natural images results in cluster centers that are more similar to 
the focal color configuration than cluster centers obtained from uniform RGB values. To investigate 
whether the color distribution of pixels in the ImageNet dataset could explain the location of the 
current borders, we perform a k- means clustering on them. For this we obtained the frequencies of 
colors in the HSV hue spectrum from a large sub- selection of images from the ImageNet database 
(subsection contained images that included bounding boxes; 535,497 images).

K- means clustering is performed by projecting the hues (taken as an angle 0–359) of the pixel 
values to the unit circle. The 2D coordinates are supplied to the k- means algorithm from the Scikit- 
learn package (Pedregosa et al., 2011) with a count of 7 for the clusters parameter. After clustering 
is performed the cluster means and cluster borders are projected back to the hue spectrum. In 
Appendix 5—figure 1 we see that there is correspondence between many of the borders obtained 
by the k- means algorithm and those found in the convolutional neural network. However, given that 
the borders do not line up exactly it also cannot completely explain the current border locations. 
Nevertheless, the correspondence makes it likely that the image statistics drive the location of the 
borders between the colors.

Appendix 5—figure 1. Histogram of colors in ImageNet. Colors from ImageNet have been selected to have 
brightness and saturation exceeding 99%. The bars are colored in seven different colors, corresponding to hues of 
the centers found by the k- means clustering algorithm. As such, borders between clusters are indicated by color 
changes in the bars. The black vertical dotted bars indicate the borders as found in the original Invariant Border 
Experiment.

https://doi.org/10.7554/eLife.76472
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Appendix 6
Layer analysis
It is already known that the structure of color spaces themselves can account in part for the category 
structures in humans (e.g., Zaslavsky et al., 2019). Moreover, the results from the K- means analysis 
above suggest that the categorical representation in the CNN capitalizes on the variations in the hue 
distribution in the dataset. At the same time a ResNet trained for scene classification on the same 
dataset does not incorporate the same categorical representation of color. This emphasizes that 
even though a color structure can be extracted from the input set, it does not necessarily dictate the 
color representation in the final layers: Not only does the structure have to be picked up on, it needs 
to be preserved over many transformations throughout the layers of the network. Given the overlap 
between the results from the K- means analysis and the categorical representation in the final layer, 
we expect the categorical representation to be present from the initial layer. To determine whether 
the representation is already present in the early layers we performed an analysis where we connect 
a classifier to different components of the CNN pretrained on the object- task: We repeat the original 
analysis, but now, rather than replacing the final classifier, we attach a classifier to different parts of 
the network. In this manner, we can see how the color representation evolves through the network.

The ResNet architecture consists of five areas. The initial input area (Area 0) is represented by 
a convolutional layer of kernel size 7x7, followed by a max pooling layer over a region of 3x3. The 
subsequent four areas encompass several residual blocks whose skip connections are modeled by 
summing the input to the output. Within each area, the spatial resolution remains intact. From one 
area to another the spatial resolution of the signal is reduced by a factor 2 as a result of step size 
in the convolution operation. We train a new classification layer for each of the different areas of 
the ResNet- 18 in the same manner as we did for the full network to evaluate the representation 
throughout the layers. In Appendix 6—figure 1 in the left column we plot the evaluation of the 
classification when shifting 7 training bands on the right side we plot the transition counts as obtained 
by summing all transition for the results from 4 through 9 training bands.

https://doi.org/10.7554/eLife.76472
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Appendix 6—figure 1. Color representations throughout the layers. In the left column each panel shows 
classification of the network as 7 training bands are shifted through the hue space, as in Figure 1E of the main 
text. In the right column we show the cumulative transition count as accumulated by repeating the process with 4 
through 9 training bands. Each row shows the result for a different area of the network with the top row presenting 
the results for the first area in the network (Area 0). Following rows show the subsequent areas and the final row 
shows the original result from the fully connected layer of the network. Details can be found in Figure 2A of the 
main text.

The results demonstrate that the representation of color categories is similar throughout the 
layers and appears to already be present in the initial layer. At the same time, there is clearly some 
modulation throughout the areas as well; the border between cyan and blue is much stronger in the 
later areas compared to Area 0.

https://doi.org/10.7554/eLife.76472
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Appendix 7
Random variations
In pursuit of what drives color categorization in the CNN, here, we explore the general tendencies 
for the representation of color in the ResNet- architecture. For this we analyze two instances with 
other parameter weights compared to the object- trained version. We train one ResNet- 18 while 
applying a random hue shift to each input, the random hue network. In this manner the structure of 
the input is kept the same (three input channels; RGB), but absolute hue values become meaningless 
and the network has to rely on contrasts and/or luminance to perform the task. With this network we 
can evaluate what the effects of training a network on RGB images are, without the ability to rely on 
hues directly. In a second control we initialize weights of a ResNet- 18 randomly, the random weights 
network, and do not train the network on ImageNet. With this network we can evaluate what the 
general tendency of the CNN is, outside of being trained on object classification with ImageNet.

We display the color representation for the networks with the output layer replaced and trained 
on 6 shifting training bands in Appendix  7—figure 1. Left we show the results of the original 
experiment for reference. Comparing the performance of the random hue network (middle) we see 
that as expected color is no longer represented in a continuous manner along the hue spectrum. As 
such, this continuous representation of color is clearly a result of being trained on a dataset where 
color is distributed in a meaningful manner. Looking at the classification in the random weights 
network (right) we see that the color representation appears to follow the hue spectrum, but there 
is a considerable amount of noise, a logical result of propagating activity through the randomly 
initialized weights. Despite the noise, one could argue that there is still a tendency for straight 
borders to form.

Appendix 7—figure 1. Classification of input samples by hue, as extracted from the final layer upon which object 
classification is performed. Left: The results from the original Invariant Border Experiment for reference. Center: 
The classification for the random hue network, where the colors in each input image are subjected to random hue 
shifts. Right: The classification for the random weights network, for which weights have been initialized randomly.

https://doi.org/10.7554/eLife.76472
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Appendix 8
Network controls
The results from the ResNets are consistent. However, in its current state one could argue the paper 
only demonstrates that color categories are obtained from ResNets, rather than deep convolutional 
neural networks in general. To see if the result does generalize over CNNs in this section we replicate 
the experiment with 5 different models, specifically: (1) Alexnet, the first network to score a sub- 25% 
error rate on ImageNet. For efficiency, the network was designed to run two parallel parts on two 
separate GPUs. Interestingly, it has been found that this parallel design leads to slightly segregated 
color processing, where the neurons in one stream are more attuned to color, while the other 
stream includes more neurons attuned to greyscale patterns (Flachot and Gegenfurtner, 2018). 
(2) GoogLeNet, the winner of the 2014 ImageNet competition, based on the Inception network. 
(3) VGG19 (runner- up in 2014) A large deep CNN with small (3x3) kernels and a large number of 
channels per convolutional layer. Also notable is that kernels remain small throughout the network. 
(4) MobileNet V2: a light- weight CNN developed specifically for usage on mobile devices with less 
processing power. (5) DenseNet, a densely connected CNN, where all layers are connected to all 
other layers.

The results can be found in Appendix 8—figure 1, where the left column displays the transition 
counts and the right column the classification plots. While the overall results appear similar, several 
things stand out. The results from the ResNet- 18 appear quite similar to those of AlexNet, with the 
strongest invariance between cyan and blue, and smaller peaks at similar locations distinguishing 
red, orange and yellow. Overall, the border between cyan and blue appears strongly invariant in 
all networks. Like ResNet and Alexnet, GoogLeNet appears to have a distinction between red 
and orange. While all networks, generally, appear to show a categorical structure following the 
hue spectrum, VGG19 appears an exception to this rule. Potentially this is due to the fact that the 
network relies on small kernels throughout the network, that may make it more difficult to rely on 
colors that come in surfaces and may be more focused on simple edges.

https://doi.org/10.7554/eLife.76472
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Appendix 8—figure 1. Transition counts (left column) and classification visualization (right column) for six different 
CNNs: From top to bottom: ResNet- 18, Alexnet, GoogLeNet, VGG- 19, MobileNet V2 and DenseNet. Transition 
counts are calculated by summing all transitions in the network’s color classifications (as obtained from retraining a 
new output layer for 4 through 9 training bands) and evaluating classification around the hue spectrum. For further 
details, see the main text; Figure 2A. Classification plots are shown for the network trained on 7 training bands. 
Rows ,in the subplot, show classification for a specific combination of training bands, shifted slightly leftwards for 
each row. For more details see main text; Figure 1E.

https://doi.org/10.7554/eLife.76472
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Appendix 9
Borders along training bands
To provide a complete insight into the color classification and with this the behavior of the borders 
as different numbers of training bands are shifted through the hue spectrum, in Appendix 9—figure 
1 we include a classification plot for each number of bands used in the experiment in the Invariant 
Border Experiment. Notably we can see the classification for 4 training bands is noisier, which is likely 
due to fact that the space between bands is comprised by more than two categories and as such 
in- between hues are more likely to be generalized to a different class.

Appendix 9—figure 1. Classification plots for 4, 5, 6, 7, 8, and 9 training bands, respectively, ordered left- to- right, 
top- to- bottom. Specifications of these plots can be found in the main text; Figure 1E.

To further explore the notion that borders are invariant to the training bands, we also introduce 
a post- hoc test for the borders obtained in the Invariant Border Experiment. For this evaluation, 
rather than training novel output layers on color bands that are evenly spaced, we train output 
layers with bands that are placed strategically within the category bounds. In 9 steps we train the 
output layer on bands placed within each border that are shifted from the left category border, to 
the right category border. Again, the classification is evaluated by testing the network on 60 samples 
for each point on the hue spectrum. To allow for detailed evaluation of the results, including noise, 
the classification results are plotted in Appendix 9—figure 2. Observing the results, we again see 
that some borders (notably between cyan and blue, as well as between blue and purple) are less 
invariant than other borders (notably the border between yellow and green). We also observe that 
in many some cases where a training band falls strongly on one side of the category, rather than 
borders shifting, the classification on the other side of the category can become noisier. While this 
leaves open the possibility that the concept of a color category is not as strong in the CNN as in 
humans, it is important to note that the network is not constrained to using color per se to perform 
the task and it can easily deviate to a different distinction. Note for instance that in the second row 
of Appendix 9—figure 2, the two orange patches are high in luminance (in terms of mean RGB).

https://doi.org/10.7554/eLife.76472
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Appendix 9—figure 2. Each row displays the evaluation of a separate output layer trained on a set of color bands. 
These training bands are represented by darkened opaque vertical bands. Each layer is trained on 7 training 
bands, each falling within one of the categories found in the Invariant Border Experiment. After training, the 
output layer is evaluated by presenting it with 60 samples of each color on the hue spectrum (divided in 100 steps). 
Each pixel represents one classification sample and is colored for the training color of the class it is assigned to. 
To allow for comparing the discontinuities in each row with respect to the training bands and the category bounds 
from the original Invariant Border experiment, simultaneously, the latter have been added in the form of white 
vertical segmented lines.

https://doi.org/10.7554/eLife.76472
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