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1 INTRODUCTION 

1.1 TASK-1 channels 

An increase in pulmonary artery pressure (PAP) is known as pulmonary hypertension 

(PH). It is a complex disease which is characterized by the thickening of the arterial 

wall built up by pulmonary arterial smooth muscle cells (PASMC), increased 

pulmonary vascular resistance due to vasoconstriction and elimination of pulmonary 

microvasculature. These processes lead to decrease in exercise tolerance and right heart 

failure and ultimately death [1-5]. It also contributes to the morbidity (a diseased state, 

disability, or poor health due to any cause) and mortality of patients with various lung 

and heart diseases [6-13]. Tightening of blood vessels under certain conditions, diseases 

like pneumonia, blocking of blood vessels due to some parasites, blood clots and 

tumors, unknown chemicals or toxins and low supply of oxygen to lungs are a few 

examples of PH causing agents [14].  

Pulmonary vasoconstriction (PV) induced by reduced pulmonary arterial pO2 is known 

as hypoxic pulmonary vasoconstriction (HPV). This is a physiological phenomenon in 

which blood is shifted from poorly oxygenated to better ventilated areas of lung. In this 

way, systemic O2 delivery [15] and ventilation-perfusion matching is optimized while 

reducing shunt fraction [16]. Persistent or intermittent hypoxia contributes to obstructive 

sleep apnea (obstruction of the upper airway during sleep), pickwickian syndrome also 

known as obesity hypoventilation syndrome (a condition when overweight people fail to 

breathe rapidly or deeply enough resulting in low blood oxygen and high blood carbon 

dioxide levels) and injury or damage to the respiratory center. Chronic hypoxia occurs 

in obstructive pulmonary disease (COPD, a disease characterized by narrowing of 

airways), cystic fibrosis (thick, sticky mucus is built up in the lungs and digestive tract), 

diffuse interstitial pulmonary fibrosis (characterized with swollen and scarred deep lung 

tissues), radiation fibrosis (lungs get scarred from radiations) and infiltrative lung 

tumors [6-12]. Hypoxia-induced pulmonary vascular remodelling decreases luminal area 

of the vessels and increases vascular resistance. It leads to PH and right ventricular 

hypertrophy [4]. Under hypoxic conditions deposition of collagen, elastin, fibronectin 

and tenascin in pulmonary vessels [17-19] and an increased expression of transforming 

growth factor was observed [20-24].  
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Changes in oxygen concentration affect PASMC proliferation and ion transport across 

the plasma membrane. In PASMC, chronic, acute, and subacute hypoxia induce 

intrinsical changes in the ionic balance and calcium homeostasis, resulting in membrane 

depolarization and elevation in resting intracellular calcium concentration [Ca2+]i 
[25-28]. 

Cytosolic Ca2+ triggers smooth muscle cell (SMC) contraction via the actin-myosin 

apparatus and expression of immediate early genes, thus inducing a proliferative 

response [29] and PV [27, 30]. The extent of SMC contraction depends upon 

phosphorylation of 20-kDa myosin light chain (MLC20). An increase in MLC20 

phosphorylation will increase the contraction of SMC [31]. The pore-forming proteins 

which help to establish and control the small voltage gradient across the plasma 

membrane and allow movement of ions according to their electrochemical gradient are 

described as ion channels. A living cell contains more than 300 types of these channels 
[32] and among these potassium (K+) channels are most widely distributed [33]. 

K+ channels are protein complexes present in biological membranes. They form 

potassium-selective pores and allow the passive movement of K+ across membranes. 

They are considered as therapeutic targets in the treatment of pain [34] and play an 

obligatory role in controlling K+ homeostasis and cell volume. They contribute to 

modifications of the electrical membrane potential, neurotransmitter and hormone 

secretion, and neuronal and muscular excitability [35]. K+ channels have different 

numbers of transmembrane segments (TMS) and pore (P) domains. Two pore domain 

K+ channels or K2P channels with 4 TMS can be briefly divided into following 

categories: (1) TWIK-1 (Tandem of P domains in Weak Inward rectifier K+ channels), 

also known as KCNK1 (potassium channel, subfamily K, member 1) [36] is involved in 

the regulation of cardiac excitability [37, 38], (2) TREK-1 (TWIK-Related K+ channel), 

also known as KCNK2 [39], is involved in thermosensation [40, 41], (3) TASK-1 (TWIK-

related Acid-Sensitive K+ channels), also known as KCNK3 [42, 43], (4) TRAAK (TWIK-

Related Arachidonic Acid (AA)-stimulated K+ channels), also known as KCNK4 [44], is 

also involved in thermosensation [40, 41], (5) TASK-2, also known as KCNK5 [45], is 

important for osmotic volume regulation in kidney [46], (6) TWIK-2 [47], is also involved 

in the regulation of cardiac excitability [9], (7) KCNK6, (8) KCNK7 [48], both are thought 

to be silent subunit and their activation depends upon the presence of a partner [49, 50], 

(9) TASK-3, also known as KCNK9 [51] has 54% same amino acid sequence as that of 

TASK-1, but less than 30% with those of other tandem pore K+ channels and regulates 
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membrane potential and neuronal firing in the cerebellum [52-54], (10) TASK-4, also 

known as KCNK17 [55], is expressed predominantly in adrenal glands and pancreas and 

is sensitive to alkaline pH [55, 56], (11) TASK-5, also known as KCNK15, being mainly 

expressed in adrenal glands and pancreas is suggested to be involved in the regulation 

of hormone secretions [56]. Amongst the above stated K2P channels, TASK-1 and TASK-

3 channels are present in oxygen sensing bodies like the rat carotid body. TASK-1 is an 

oxygen sensitive channel and has a structure containing two inward-rectifier α subunits 

and may form dimer with TASK-3 [57]. 

Oxygen tension, pH, mechanical stretch and G-proteins are involved in the regulation of 

TASK-1 channel open probability [50]. Their expression has been reported in rabbit [58], 

rat [59, 60], and human [61] PASMC. The arterial tone is also regulated by the membrane 

potential of PASMC. The closing of K+ channels in the membrane of PASMC decreases 

K+ efflux, which causes membrane depolarization and as a result voltage-dependent 

Ca2+ channels will open. Entry of Ca2+ will cause vasoconstriction. On the other hand, 

opening of K+ channels will lead to increase in K+ efflux, membrane hyperpolarization 

and restrict Ca2+ entry into the cells. Thus, hyperpolarization of the PASMC membrane 

will cause vasodilation [61, 62]. Oxidants and reducing agents may alter the function of K+ 

channels [63]. Oxidants mimic normoxia and dilate pulmonary vessels, and reducing 

agents mimic hypoxia and cause constriction to the pulmonary vessels [64]. There are 

certain elements in animal bodies which exhibit altered activity in response to changes 

in O2 tension. Mitochondrial complex II [65], NOX4 [66, 67], and several oxygen-sensitive 

K+ channels subunits which open under hypoxia and reversibly close by hypoxia [68-78] 

are examples of such elements.  

The pulmonary trunk branches into left and right pulmonary arteries. The pulmonary 

arteries gradually extend towards the periphery of the lung and further divide by two 

ways: (1) The stem branch bifurcates into two equal sized branches and the sum of the 

diameters of both branches is greater than the stem branch, (2) the stem branch 

collaterally divides into two branches, one of which has same size as the stem and runs 

in the same direction and the other is of smaller size. Arteries are divided into small and 

large arteries according to their diameter, Reid et al. classified arteries as small arteries 

having size up to 1 mm [79]. Hislop et al. classified them as small with 50-1000 µm in 

external diameter and the smaller arteries present specifically in alveolar region as intra-
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acinar arteries with diameter < 100 µm [80]. Tabuchi et al. divided arteries into medium-

sized arterioles (30-50 µm diameter), and small arterioles (< 30 µm) [81]. Pulmonary 

vessels with different lumen diameter are different in their muscularization. Vessels 

with diameter < 100 µm are partially muscular [82, 83]
 and in the rat vessels with diameter 

< 50 µm have been described as having no muscle at all. Vessels being different in 

muscularization and size have been investigated independently [81, 84-86]. Tabuchi et al. 

observed prominent HPV in medium-sized arterioles (30-50 µm diameter), minor in 

small arterioles (< 30 µm), and it was absent in venules in a mouse model [81]. We also 

divided arteries into small intra-acinar arteries (lumen diameter 25-40 µm) and larger 

arteries (lumen diameter 41-60 µm) and investigated the role of TASK-1 channels in 

response to hypoxia separately. Drexler et al. also described mechanical differences 

between pulmonary trunk and right and left main extrapulmonary arteries and assumed 

an independent and different behaviour of every section of extrapulmonary arteries [87].    

The first aim of present study was to investigate the role of TASK-1 channels in the 

contraction of pulmonary vessels and airways under hypoxia, as amongst the K2P 

channels this one has been reported as being O2 sensitive and its opening being 

regulated by O2 tension [52, 59]. To carry out this study, bronchoconstriction and PV were 

investigated under normoxic and hypoxic conditions using precision cut lung slices 

(PCLS). Intra-acinar and larger pulmonary arteries were studied separately. TASK-1 

KO mice and inhibitors (anandamide and A293) were used. In a parallel study, PAP 

under hypoxia and normoxia was also measured using isolated perfused and ventilated 

lungs from KO and WT mice.    

1.2 TASK-1 and NOX4 

The NOX (nicotinamide adenine dinucleotide phosphate, NADPH, oxidases,) family of 

membrane proteins consists of 7 known members, i.e. NOX1, NOX2, NOX3, NOX4, 

NOX5, DUOX1 and DUOX2 [88-90]. They are characterized by NAD(P)H and FAD 

(flavin adenine dinucleotide) binding domains in their C-terminal ends that produce 

superoxide (O2
.−) by transferring an electron from NADPH (or NADH) to O2 

[90]. 

According to recent studies, NOX4 predominantly produces hydrogen peroxide (H2O2) 

instead of O2
.− [91-94]. NOX1 expression has first been described in colon [95]. NOX 

proteins are present only in specific tissues except NOX4 which was initially reported to 

be highly expressed in the kidney [96, 97]. NOX4 is also highly expressed in endothelial 
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cells [98], SMC [99], cardiomyocytes [100, 101], placenta, pancreas, bone, lung [88], human 

airway and PASMC [102, 103]. Furthermore, immunohistochemical studies show that 

NOX components are present in carotid bodies [104], pulmonary neuroepithelial bodies 

(NEB) [105], and PASMC [106]. 

NOX1 is suggested to be involved in mitogenesis (mitosis induction) [95]. NOX2 is 

thought to produce a burst of O2
.− and thus kills bacteria [2]. This classical leukocyte 

NOX plays an important role in host defense against bacterial and fungal pathogens [107, 

108]. It contributes to the development of cardiac hypertrophy and contractile 

malfunctioning induced by angiotensin II, myocardial infarction (tissue death) or 

pressure overload [109-114]. NOX1 and NOX4 are thought to play a role in vascular 

pathology [115, 116]. In the heart, expression of NOX4 is highly increased during pressure 

overload [110]. NOX4 distinguishes from other NOX family members in that it is 

regulated mainly at expression level. Further, its activation is not dependent upon 

agonist stimulation or regulatory subunits [91, 92, 117]. It is also upregulated under chronic 

hypoxic conditions in pulmonary microvasculature [118, 119]. 

NOX4 has also been linked to K2P function. Several subunits assemble to form 

functional K2P channels. In case of TASK-1, dimerisation of subunits forms a functional 

channel but this is not containing any structure capable of sensing changes in oxygen 

and regulating opening and closing of the channel pore [62]. Therefore, it is thought that 

TASK-1 may have a partner protein which primarily senses oxygen tension and then 

regulates the opening of the TASK-1 channel. A hemeprotein is reported to be 

associated with NOX activity. Spectral analysis [120] detected the heme signal, and 

hypoxia induced FAD and NADP+ reduction. These effects were inhibited by NOX 

inhibitors. In HEK293 (human embryonic kidney) cells, co-localization of TASK-1 and 

NOX4 has been observed in plasma membranes using fluorescence fusion proteins 

(combination of two different genes, which originally coded for separate proteins, to 

create a new protein). TASK-1 channel activity was inhibited by hypoxia and 

augmented by increasing NOX4 expression. Moreover, TASK-1 responses to changes 

in pO2 were abolished by using NOX4 siRNA and NOX inhibitors. Thus, NOX4 is 

considered as an important partner of TASK-1 in regulating its response to oxygen 

tension [121]. 
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The second objective of the present study was to investigate the functional relationship 

between TASK-1 and NOX4. The study was performed using TASK-1 and NOX4 KO 

mice. Contraction of pulmonary small and large vessels in TASK-1 WT and KO mice in 

response to normoxia and hypoxia was investigated and these results were then 

compared with results under the same conditions as used previously with NOX4 WT 

and KO mice. 

1.3 Mucociliary clearance  

Mucociliary clearance (MCC), also known as mucociliary apparatus, is the process by 

which bronchi get rid of foreign particles and bacteria and clean themselves. The 

respiratory epithelium consists of basal cells, unicellular glands known as goblet cells 

and ciliated cells and dark cytoplasmic non-ciliated cells. A basal membrane is present 

beneath the epithelium for its support. The basal cells lie near the basal membrane and 

are considered as stem cells which grow into different kinds of cells. The goblet cells 

have a shape like a glass and produce mucus. The ciliated cells are equipped with motile 

cilia, and dark cytoplasmic non-ciliated cells contain secretory granules [122]. Brush cells 

are also reported in respiratory epithelium in lower airways, characterized by an apical 

tuft of microvilli. They are reported to be involved in chemosensation [123], regulating 

the mucous viscosity [124], taste sensing [125] and the regulation of respiration [126]. The 

ciliated cells line the main bronchi down to the smallest bronchioli. Mucus fluid in the 

airways captures the foreign objects such as allergens, bacteria, dust particles, and 

pollutants. Cilia move in coordination and push the mucus towards the pharynx where it 

is either swallowed or expelled out through the mouth. MCC depends upon the number, 

structure, activity and coordinated movement of cilia. Optimum activity of cilia is 

achieved at a temperature of 37 °C and an absolute humidity of 44 mg/dl³ corresponding 

to a relative humidity of 100% [127-129].  

The name cilium is derived from the Latin word for "eyelash" because cilia resemble 

the tiny projections from cell bodies. Cilia are of two types: motile cilia, usually present 

on cell surface and beating in a coordinated pattern, and non-motile, also known as 

primary cilia, having sensory functions. They contain a microtubule-based cytoskeleton 

known as axoneme. There is also a difference between primary and motile cilia on the 

basis of the axoneme. In case of primary cilia, the axoneme contains a ring of nine outer 

microtubule doublets, and in motile cilia, the axoneme has two central microtubule 



 

 

7 

singlets and nine outer doublets. The axoneme provides support to cilia and serves to 

provide binding sites to molecular motor proteins. In this way, movement of proteins up 

and down the microtubules becomes possible. Dynein is an example of molecular motor 

proteins. A large amount of energy is required for high ciliary beat frequency (CBF). 

Under normal conditions, cilia of most mucosal surfaces either remain at rest or beat 

with very slow frequency. However, a variety of receptor-mediated stimuli can 

dramatically change CBF. For example, when purinergic P1 and P2 [130, 131], cholinergic 
[132-134] and adrenergic receptors [135], present on ciliated frog palate and esophagus cells, 

are activated, a profound and prolonged enhancement of CBF is recorded. 

Acetylcholine (Ach), a neurotransmitter, is also known to accelerate CBF in mammals 
[136-140] and non-mammals [130, 131]. 

Calcium ions are considered very important for participating in regulation of virtually 

all cell processes. They act by binding and regulating the activity of a large number of 

cellular proteins, including protein kinases and phophatases, calmodulin (CaM), 

phosphodiesterases, adenylate cyclase, ATPases, membrane channels, cytoskeleton 

elements and many others [141]. They also exert their effect on CBF. In ciliated cells, an 

increase in CBF is recorded with an increase in [Ca2+]i 
[142, 143]. Moreover, cytosolic 

Ca2+ also regulates the direction and movement of paramecium [144]. Cholinergic 

stimulation in sheep trachea leads to increase in [Ca2+]i and this subsequently results in 

increase in CBF [145, 146]. Shear stress also causes a large increase in CBF via increase in 

[Ca2+]i 
[147]. In addition to cytosolic Ca2+, other components like cAMP and cGMP are 

also important in enhancing CBF [148-150]. These three second messengers (Ca2+, cAMP, 

and cGMP) directly interact with the axoneme [149]. When K+ channels in the plasma 

membrane of PASMC are inhibited, a decrease in K+ efflux is observed and membrane 

depolarization is resulted. Due to this depolarization, voltage-dependent Ca2+ channels 

get opened and Ca2+ enters into the cells. Conversely, opening of K+ channels increases 

K+ efflux, which causes membrane hyperpolarization. It will cause closing of voltage-

dependent Ca2+ channels and, consequently, a decrease in Ca2+ entry [61, 62, 25-28].  

Inhibition of K+ channels causes membrane depolarization, opening of Ca2+ channels 

and, consequently, it will facilitate an increase in Ca2+ entry into the cells. In ciliated 

cells, this is expected to rise CBF which is directly related to the amount of Ca2+ present 

within the cells. So the third aim of our study was to explore the role of TASK-1 
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channels in cilia driven particle transport speed (PTS) in mouse trachea. TASK-1 

channels blockers (anandamide and A293) and activators (isoflurane and avertin) were 

used, and changes in PTS were recorded from isolated trachea from mouse. The role of 

TASK-1 channels in PTS was further investigated in TASK-1 KO mice and recordings 

from these animals were compared with corresponding WT animals.  

Taken together, there are the following aims of this study: 

1. To investigate the role of TASK-1 channel in HPV and bronchial constriction in 

mice. 

2. To find out the functional relation between TASK-1 and NOX4 for sensing 

changes in O2 tension.  

3. To explore the role of TASK-1 channel in cilia driven PTS in mice. 
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2 MATERIALS AND METHODS 

2.1 Animals 

Animals of both sexes were used and maintained under standard laboratory conditions. 

All experiments were carried out according to guidelines on the care and use of 

experimental animals provided by National Institutes of Health and after the approval of 

Regierungspräsidium Giessen. For bronchoconstriction study, FVB mice were used, and 

for HPV studies, mice were of the C57BL/6 background. Knockout (KO) mice, 

deficient in kcnk3 (TASK-1) described in detail previously [151] were a kind gift from 

Prof. W. Wisden, Imperial College London, and NOX4-null mice, described previously 
[101], were from Prof. Ralf Brandes, Goethe University, Frankfurt. KO Mice from the 

colony were compared to age-matched, WT mice housed in similar conditions. 

Genotyping of the animals was carried out by polymerase chain reaction (PCR). 

Genomic DNA used for genotyping was extracted from ear biopsies as template. Mice 

used were 14-16 weeks old and sacrificed by cervical dislocation or administration of an 

overdose of inhaled isoflurane or CO2 asphyxation.  

2.2 Immunohistochemistry 

TASK-1, NOX4 WT and KO mice were sacrificed by administration of an overdose of 

inhaled isoflurane (Abbott, Wiesbaden, Germany), then perfused via the left ventricle 

with Zamboni’s fixative (15% saturated picric acid, 2% paraformaldehyde in 0.1 M 

phosphate buffer) and proceeded by rinsing solution [152]. Tissues were also put in 

Zamboni’s fixative directly after dissection. Another way of fixing organs was to fill the 

lungs first with cryoembedding medium (Tissue Tek, Sakura, Netherlands) in 0.1 M 

phosphate buffer, pH 7.4, via a tracheal cannula, and then organs were freshly dissected 

and shock-frozen in isopentane cooled with liquid nitrogen. Specimens were sectioned 

with a cryostat (Leica CM 1900, Germany) at 10 µm thickness, mounted on SuperFrost 

Plus slides (R. Langenbrinck, Emmendingen, Germany), air-dried and subsequently 

fixed in acetone for 10 min at _20 °C. Next, sections were either first treated with 

microwaves or directly saturated with blocking solutions. Saturation of nonspecific 

protein binding sites was done by incubating cryosections for 1 h in blocking medium 

consisting of either (a) 10% normal swine serum, 0.5% tween, 0.1% bovine serum 

albumin (BSA) in phosphate buffered saline (PBS), (b) 5% BSA, 5% normal goat serum 



 

 

10 

in PBS, or of 0.1 M Tris, 5% normal horse serum, 0.5% sodium dodecyl sulfate (SDS), 

1% BSA followed by overnight incubation at room temperature with one of the 

following antibodies: polyclonal rabbit-anti-TASK-1 antibodies (lot # AN 02 and 06, 

Alomone Labs. Jerusalem, Israel), three different polyclonal rabbit anti-TASK-1 

antibodies were a gift from Prof. Rüdiger Veh, Charité - Universitätsmedizin Berlin, 

monoclonal rabbit anti-NOX4 antibody (cat # 3187-1, Epitomics, Burlingame, 

California, USA), mouse monoclonal anti-aldosterone synthase antibody was a gift 

from Prof. Celso E. Gomez-Sanchez, University of Mississippi Medical Center, 

Jackson, USA. The above mentioned antibodies except the last one, were used 

individually in combination with monoclonal FITC-labelled anti-α-smooth muscle actin 

(αSMA) antibody (1:500, clone 1A4, Sigma Aldrich, Steinheim, Germany). Then the 

samples were washed in PBS, followed by incubation for 1 h with either Cy3-

conjugated donkey anti-rabbit Ig (Millipore, California, USA) or Cy3-conjugated 

donkey anti-mouse Ig (Dianova, Hamburg, Germany). Sections were washed in PBS, 

postfixed for 10 min in 4% paraformaldehyde, and then washed again in PBS. Mowiol 

4-88 (pH 8.6; Merck, Darmstadt, Germany) was applied on the sections, and glass 

coverslips were placed over them. Sections were evaluated with a Zeiss Axioplan 2 

epifluorescence microscope (Jena, Germany) equipped with appropriate filter sets. 

2.3 Western blot 

TASK-1, NOX4 WT and KO mice were killed with isoflurane and different organs 

[lung, cerebellum, heart, trachea, kidney, adipose tissue (AT)] were removed. Tissue 

were weighed and the 5-fold volume of extraction buffer (7 M urea, 10% glycerol, 10 

mM Tris-HCl pH 6.8, 1% SDS), 5 mM dithiothreitol (DTT), 0.5 mM 

phenylmethylsulfonylfluorid (PMSF), and 1x concentrated Complete Mini Protease 

Inhibitor Cocktail (Roche Diagnostics, Mannheim, Germany) was added to homogenize 

the tissues. The samples which were later analyzed with rabbit monoclonal anti-NOX4 

antibody were also treated without Protease Inhibitor cocktail. After disintegration of 

the tissues by a ball mill (Mixer Mill MM300; Retsch GmbH, Haan, Germany) total 

protein concentrations were determined using Bio-Rad Protein assay (Bio-Rad 

Laboratories, Munich, Germany). Thirty microgram protein per lane was resolved by 

10% SDS polyacrylamide gel electrophoresis (PAGE) and transferred onto 

polyvinylidene fluoride (PVDF) membranes (Millipore, Schwalbach, Germany). The 
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membranes were first incubated with blocking solution (Tris-buffered saline (TBS), 

0.01% Tween 20, and 10% milk powder) for 1 h at room temperature, then overnight at 

room temperature with following different antibodies: polyclonal rabbit anti-TASK-1 

(lot # AN 02, 03, 08), (H-300, Santa Cruz Biotechnology, Germany), monoclonal rabbit 

anti-NOX4 (cat # 3187-1, Biomol GmbH, Hamburg, Germany),  1:2,000 diluted in 

TBS, 0.01% Tween 20, and 5% milk powder. After washing the membranes with TBS, 

0.01% Tween 20, they were incubated with horseradish peroxidase (HRP)-conjugated 

goat anti-rabbit IgG (1:10,000 in TBS, 0.01% Tween 20, and 2.5% milk powder; Pierce, 

Rockford, Illinois, USA). One volume of Super Signal West Dura Extended Duration 

Substrate (Pierce/Perbio Science Deutschland, Bonn, Germany) mixed with 9 volumes 

of Super Signal West Pico Chemiluminescent Substrate and X-ray film (Amersham) 

were used for visualization of bound antibody. 

2.4 Two-dimensional gel electrophoresis 

Specificity of anti-TASK-1 lot # AN 02 antibody was investigated by two-dimensional 

(2-D) gel electrophoresis analysis. Antibody along with cerebellum extracts from 

TASK-1 WT and KO mice were sent to protein analysis laboratory, Institute of 

Biochemistry, Justus-Liebig University, Giessen, where this experiment was conducted.  

2.5 PCR 

2.5.1 RT-PCR  

TASK-1, NOX4 WT and KO mice were sacrificed by administration of an overdose of 

inhaled isoflurane. Expression levels of TASK-1, TASK-2, TASK-3 and NOX4 

transcripts from lung, cerebellum, heart, AT, kidney, trachea (at least n = 3 for each 

organ or tissue) were determined by RT-PCR. Total RNA was extracted using RNeasy 

Micro Kit (Qiagen) and was reverse-transcribed by applying following conditions:  8 µl 

of RNA was incubated with DNAse and 10x DNAse reaction buffer, 1 µl of each for 15 

min at 25 °C, then 1 µl ethylenediaminetetraacetic acid (EDTA) (25 mM) for 10 min at 

65 °C, samples were then directly placed on ice and RT mix [1 µl Oligo (dt), 1 µl 

dNTPs (10 mM), 1 µl super script II reverse transcriptase (200 U/µl), 4 µl 5x first strand 

buffer, 2 µl DTT (0.1 M; all reagents were from Invitrogen except dNTPs which were 

from Qiagen)] was added. The samples were then PCR-amplified using TASK-1, 
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TASK-2, TASK-3 and NOX4 primers (Table 1). The following conditions were 

applied: 1 µl cDNA as template, 2.5 µl 10x PCR buffer II, 2 µl MgCl2 (25 mM), 0.75 µl 

dNTPs (10 mM), 0.75 µl of each primer, 0.2 µl AmpliTaq Gold DNA Polymerase (5 

U/µl; all reagents from Applied Biosystems), and 15.3 µl H2O. The PCR was conducted 

using a thermal cycling profile of 95 °C for 12 min, followed by 39 cycles of 20 s at 95 

°C, 20 s at 60 °C, and 20 s at 72 °C. The absence of any contaminating genomic DNA 

was verified via the inclusion of reactions without reverse transcriptase during the first 

round of cDNA synthesis. Samples were also processed without template. The products 

were analysed on a 2% agarose gel, which was stained by ethidium bromide and 

visualized by UV transillumination.  

2.5.2 Laser-assisted microdissection and subsequent RT-PCR  

Laser-assisted microdissection was used to isolate cardiomyocytes, tracheal epithelium 

(n = 5), bronchi (n = 1), and SMC from cryosections of small intra-acinar (n = 2) and 

large pulmonary arteries (n = 3) of TASK-1 WT mice using a MicroBeam System 

(P.A.L.M. Microlaser Technologies, Bernried, Germany). Animals were killed with 

isoflurane and lungs were filled with Tissue Tek in 0.1 M phosphate buffer. Organs 

were freshly dissected and shock-frozen in isopentane cooled with liquid nitrogen. The 

membrane slides (P.A.L.M. Microlaser Technologies) were radiated with UV light (254 

nm) for 30 min and cryosections with 6 µm thickness were collected on them. The lid of 

cups was covered with a film of mineral oil and within 1 h after collecting cryosections, 

tissue was picked and captured into that lid. RNeasy Micro Kit (Qiagen) was used for 

further RNA isolation and purification according to the protocol provided by 

manufacturer. Ten microliter RNA were incubated at 70 °C for 10 min. RT mix was 

added [2 µl 10x PCR buffer II, 4 µl MgCl2 (25 mM), 1 µl dNTPs (10 mM), 1 µl random 

hexamers (50 mM), 0.5 µl RNase inhibitor (20 U/µl), 1 µl Moloney Murine Leukemia 

Virus (MuLV) RT (50 U/µl), 0.5 µl H2O; all reagents were obtained from Applied 

Biosystems, Darmstadt, Germany]. RNA was reverse-transcribed into cDNA for 75 min 

at 43 °C and RT was inactivated by heating the samples for 5 min at 99 °C. PCR was 

performed using gene-specific intron spanning primers for TASK-1 and β-actin (Table 

1). Four microliter cDNA, 2.5 µl 10x PCR buffer II, 2 µl MgCl2 (25 mM), 0.5 µl dNTPs 

(10 mM), 0.5 µl of each primer, 0.2 µl AmpliTaq Gold DNA Polymerase (5 U/µl; all 

reagents from Applied Biosystems), and 15.3 µl water were applied. The following 
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conditions were used for PCR: one cycle of 4 min at 95 °C for initial denaturation, 

followed by 50 cycles with 20 s at 95 °C, 20 s at 59 °C, 20 s at 73 °C, and a final 

extension of 7 min at 72 °C. Negative controls were run without RT step in sample 

processing and control reactions for primers included water instead of cDNA. The PCR 

products were then analyzed using 2% Tris-acetate-EDTA agarose gel electrophoresis.  

2.5.3 Real-Time RT-PCR 

Total RNAs from lung (n = 3), cerebellum (n = 3) and heart (n = 6) from TASK-1 WT 

and KO mice were extracted using the RNeasy method according to the protocol 

described by the manufacturer (Qiagen). Contaminating DNA was digested using 1 unit 

of DNase I (Invitrogen, Karlsruhe, Germany) per microgram total RNA. RT-PCR was 

performed for 50 min at 42 °C using 200 units of SuperScript II RT (Invitrogen, 

Karlsruhe, Germany) per microgram RNA. Real-Time PCR was conducted in an 

iCycler (Bio-Rad, Munich, Germany) with QuantiTect SYBR Green PCR Kit (Bio-

Rad). Gene specific intron spanning primer sets for TASK-1, β-actin, and β-2-

microglobulin (β2M) were used (Table 1). The following PCR conditions were used: 

one cycle of 10 min at 95 °C for initial denaturation; followed by 40 cycles of 20 s at 95 

°C, 20 s at 60 °C, and 20 s at 72 °C. Control reactions were followed in the absence of 

DNA and RT. Expression of TASK-1 mRNA was calculated in above mentioned 

samples by comparing their cycle threshold (CT) values to CT values of β-actin, or 

β2M, used as reference genes. Relative expression was calculated by using following 

formula: 2-(KO∆ct-WT∆ct), where ∆ct is the difference in CT values between the gene of 

interest and the housekeeping gene. The values obtained from WT animals were set as 

100% and the values from KO were expressed as percentage of that. The amplicons 

were analysed by 2% Tris-acetate-EDTA agarose gel electrophoresis. 
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Table 1 Primer pairs used for RT-PCR. 

For: forward primer, Rev: reverse primer. 

2.6 Videomorphometry 

2.6.1 Preparation of precision cut lung slices  

Animals were killed by cervical dislocation and precision cut lung slices (PCLS) were 

prepared using protocols described by Martin et al. [153] and Pfaff et al. [154]. For 

videomorphometric analysis of pulmonary vessels, the pulmonary vasculature was 

made free from blood by in situ perfusion with 37 °C hydroxyethyl piperazine ethane 

sulphonic acid (HEPES)-Ringer buffer (10 mM HEPES, 5.6 mM KCl, 136.4 mM NaCl, 

11 mM glucose, pH 7.4) containing heparin, 250 I.U./ml (Ratiopharm, Ulm, Germany) 

and penicillin/streptomycin, (PAA Laboratories, Austria) 1% via the right ventricle. The 

lungs were filled with 1.5% low melting point agarose (Bio-Rad Laboratories GmbH, 

Munich, Germany) via the cannulated trachea to stabilize the lung and facilitate the 

cutting. Thoracic viscera were rapidly excised en bloc and transferred in ice-cold 

HEPES-Ringer buffer and the agarose was solidified. Lobes of lungs were separated 

and 200 µm thick slices were cut using a vibratome (VT 1000 S, Leica, Bensheim, 

Germany). The solidified agarose was removed from the PCLS by incubating them at 
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37 °C in a humid atmosphere in phenolred-free minimal essential medium (MEM, 

Invitrogen, Germany) continuously bubbled with a gas containing 21% O2, 5% CO2, 

74% N2 for 2-6 h. 

2.6.2 Videomorphometric analysis of precision cut lung slices  

Experiments on PCLS were carried out in a flow-through superfusion chamber (Hugo 

Sachs Elektronik, March-Hugstetten, Germany) mounted on an inverted microscope. 

For investigating hypoxic effects, the chamber was filled with phenolred-free MEM, 

and for investigating effect of drugs on bronchoconstriction, it was filled with HEPES 

buffer. Images of intrapulmonary vessels with inner diameters between 25 and 60 µm 

and of bronchi 150-250 µm were recorded using a charge-coupled device (CCD)-

camera (Stemmer Imaging, Puchheim, Germany). The PCLS were placed in the 

chamber and held with a platinum ring containing nylon strings. Images were recorded 

every 2 min for pulmonary vessels and every minute for bronchi. Optimas 6.5 software 

(Stemmer Imaging, Puchheim, Germany) was used for this purpose. Area of the lumen 

of vessels or airways was set as 100% at the beginning of the experiment. The 

constriction and dilatation of the lumen were expressed as relative decrease or increase 

of that area. In case of pulmonary vessels, the value obtained before exposure to 

reduced oxygen content was set as 100%. In that way, the effects of different substances 

on hypoxia were presented on the graphs. At the beginning of each experiment, the 

viability of the vessels was tested with 0.1 µM U46619, a thromboxane analog (Sigma 

Aldrich, Deisenhofen, Germany), and 25 µM sodium nitroprusside (Nipruss, Schwarz 

Pharma GmbH Deutschland, Monheim, Germany). That initial phase of the experiments 

testing the viability of the vessels was not incorporated in the graphs. In case of bronchi, 

viability was tested by stimulation with 1 µM muscarine (Sigma Aldrich, Deisenhofen, 

Germany). Only those vessels or bronchi were included in the study, which responded 

to a stimulus of U46619 (0.1 µM) or muscarine (1 µM), respectively, with at least 20% 

reduction of the area of lumen. The flow rates through the perfusion chamber were 0.7 

ml/min under normoxia (21% O2, 74% N2, 5% CO2) or hypoxia (1% O2, 94% N2, 5% 

CO2) and 6 ml/min for washing steps. There was no flow through the perfusion chamber 

during the application of muscarine, U46619 and nipruss, and when other substances 

were applied, the flow rates were low (0.7 ml/min).  
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2.6.3 Statistical analysis of videomorphometric data 

Data in the figures are given as means ± standard error of the mean (SEM) of 7-13 intra-

acinar and 8-13 larger pre-acinar pulmonary arteries per condition. Only one vessel or 

bronchus per PCLS was analysed. PCLS for intra-acinar arteries were obtained from 3-0 

mice and for large arteries from 5-9 mice. SPSS 11.5.1 software was used for statistical 

analysis. Analysis of differences among experimental groups was with the Kruskal-

Wallis-test followed by the Mann-Whitney-test. P values ≤ 0.05 and ≤ 0.01 were 

considered as significant, and highly significant, respectively. For bronchoconstriction 

study, 3-5 PCLS were obtained from 1-2 mice. 

2.7 Particle transport speed 

2.7.1 Preparation of the trachea and imaging 

Mice were killed by exposure to carbon dioxide environment. The submandibular gland 

and the infrahyoid musculature were removed after the thorax being opened with 

scissors. The trachea was cut caudal to the larynx and cranial to the bifurcation, and 

then transferred to a Delta T culture dish (Bioptechs, Butler, PA, USA). The Sylgard 

polymer (Dow Corning, Wiesbaden, Germany) was used to fill the bottom of the dish 

which was filled with 2 ml cold HEPES-Ringer solution. The blood vessels and 

connective tissues from the trachea were detached and discarded and it was oriented 

with the trachealis muscle facing upward. Two insect needles were inserted through 

trachea in Sylgard polymer on opposite sides for its fixation. 

The trachealis muscle was cut using Vannas-Tübingen spring scissors (Fine Science 

Tools, Heidelberg, Germany) and rinsed with HEPES. Then, the HEPES-Ringer 

solution was replaced by 1-2 ml fresh warm buffer and the trachea was submerged in it. 

Then the culture dish was transferred to the Delta T Stage holder 30 min after the death 

of animal. The temperature of the dish was kept constant at 30 °C during the 

experiment. To conduct the experiments where application of isoflurane was involved, 

an isoflurane vaporizer (Abbott, Wiesbaden, Germany) was used. Imaging was 

proceeded with a Till Vision imaging system (Till Photonics, Gräfelfing, Germany) 

based on an Olympus BX50 WI microscope (Olympus, Hamburg, Germany), which 

was equipped with an Imago CCD camera having 1280 x 960 pixels (Till Photonics). 
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Prior to measurements, 1.5-2.3 µl of a polystyrene bead suspension (mean diameter 2.8 

µm, Invitrogen Dynal AS, Oslo, Norway) were added to Delta dish and mixed well and 

gently. The tracheal epithelial surface was imaged in bright field mode using a 20x 

water immersion objective (Olympus). Polystyrene beads were recognized by their 

round structure and brownish colour. An area between two cartilages was chosen for 

imaging and recordings to avoid large differences in image brightness. Two hundred 

images were taken for each time point. The exposure time for each image was 20 ms 

and delay between two images was 85 ms. At the end of each experiment the viability 

of the ciliated cells was tested with 100 µM ATP, which stimulates CBF via purinergic 

receptors. Fifty five mice were sacrificed for the experiments. The number of mice for 

each experiment is shown in the respective figures and legends. 

2.7.2 Particle tracking 

An average of 200 images of an individual series was calculated and subtracted to 

remove non-moving objects in the images. It was done on the basis of pixel-by-pixel 

from each image in the series. If the subtraction value was negative, then the absolute 

value was taken. The above mentioned procedure facilitated in obtaining a bright image 

of the formerly darker polystyrene beads. A binary picture was obtained from the copy 

of series by a thresholding procedure and the image of polystyrene beads was adjusted 

to bright and the background to dark. A reduction of original film was made from 12 to 

8 bit grayscale. Both series were further used for particle tracking by an automatic 

tracking procedure. TILLvisTRAC software (Till Photonics) was used for this purpose. 

Only those tracks were included in further calculations which were measured over a 

length of at least 10 frames.  The average of the mean speed of all tracks was calculated. 

2.7.3 Statistical analysis of PTS data  

Effects of substances on PTS were measured at the first time interval after their 

application. Moreover, ∆ values of substances and vehicles were also compared. SPSS 

11.5.1 software was used to conduct statistical analysis. Normal distribution of data was 

tested with Kolmogorov-Smirnov test, showing no significant difference of the data set 

to normal distribution. To compare the difference between two points from one 

experiment and to compare the same time point from different experiments, analysis 
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was carried out with paired t-test and ANOVA test, respectively. P values ≤ 0.05 were 

regarded as being statistically significant. 
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3 RESULTS  

3.1 Immunohistochemistry 

3.1.1 TASK-1 immunohistochemistry in the lung 

Five different anti-TASK-1 antibodies were used to locate the TASK-1 protein in the 

lung. Immunohistochemical studies were also performed on specimens taken from 

TASK-1 KO mice and staining was compared with the corresponding WT mice. Anti-

αSMA antibody was also used in all the samples to visualize SMC. Rabbit polyclonal 

anti-TASK-1 (lot # AN 06) antibody labelled SMC of vessels and airways. It also 

intensively labelled bronchial epithelium (Fig. 1A). Amongst the rabbit polyclonal anti-

TASK-1 antibodies (gift from Prof. Rüdiger Veh, Charité), labelling with one antibody 

was strong in bronchial epithelium as compared to bronchial and vascular SMC (Fig. 

1C), and with two other antibodies, a very weak staining was observed both in vessels 

and airways (Figs. 1E, G). Rabbit polyclonal anti-TASK-1 (lot # AN 02) antibody 

resulted in labelling only in large but not in small arteries (Fig. 1K). It also stained 

airway SMC, but only weakly the bronchial epithelium (Fig. 1F).  All TASK-1 

antibodies showed equal staining intensity in KO mice samples (Figs. 1B, D, F, H, J) 

when compared with corresponding WT (Figs. 1A'-J').  Labelling was absent in the 

sample treated without primary antibody (Fig. 1L). Different patterns of labelling with 

the above described antibodies and the presence of staining in KO mice demonstrated 

the nonspecific binding of these antibodies. 
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Fig. 1 TASK-1 immunohistochemistry, lung. 

Staining patterns with different TASK-1 antibodies were different. KO samples also 

showed similar staining results when compared to WT. A'-J' represent anti-αSMA 

staining to demonstrate SMC. The sample treated without primary antibody showed no 

labelling (L). First row represents labelling with anti-TASK-1 antibody lot # AN 06. 

Second, third, and fourth with anti-TASK-1 antibodies gifted by Prof. Rüdiger Veh, 

Charité. Fifth row and K with anti-TASK-1 antibody lot # AN 02. Thick arrows: 

bronchial epithelium, thin arrows: smooth muscle cells. Abbreviations: V: vessel, Br: 

bronchus, SA: small artery, LA: large artery, WT: wild-type, KO: knockout, bar: 50 µm. 
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3.1.2 TASK-1 immunohistochemistry in the cerebellum 

In the cerebellum of TASK-1 WT and KO mice, labelling was observed in pia mater, 

molecular layer, Purkinje cell layer and granule cell layer with rabbit polyclonal anti-

TASK-1 (lot # AN 02) antibody (Fig. 2A). Amongst the TASK-1 antibodies provided 

by Prof. Rüdiger Veh, Charité, one antibody did not show staining in cerebellum (Fig. 

2C), while the other two antibodies labelled only pia mater (Figs. 2E, G). All TASK-1 

antibodies tested also produced identical immunohistochemical labelling patterns in the 

cerebellum taken from KO (Figs. 2B, D, F). Secondary reagent control treated under the 

same experimental conditions but without TASK-1 antibodies was without any staining 

(Fig. 2I). Different staining patterns and the presence of identical staining in KO mice 

demonstrated nonspecific binding of TASK-1 antibodies. 
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Fig. 2 TASK-1 immunohistochemistry, cerebellum. 

All antibodies produced different labelling patterns. Abbreviations: P: pia mater, ML: 

molecular layer, PC: Purkinje cell layer, GC: granule cell layer, WT: wild-type, KO: 

knockout, PA: primary antibody, arrows: pia mater, bar: 50 µm. 

3.1.3 NOX4 immunohistochemistry in lung, kidney, and cerebellum 

Monoclonal rabbit anti-NOX4 antibody was used to investigate the localization of 

NOX4 protein in the lung, kidney, and cerebellum. Anti-αSMA antibody was used to 

visualize SMC. The NOX4 WT and KO mice used were perfused with and samples 

subsequently immersed in Zamboni’s fixative. Samples were also treated with 
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microwave/proteinase K/proteinase K plus microwave. Treatment of samples with 

proteinase K was carried out in an attempt to reduced nonspecific binding to other 

proteins since NOX4 itself is more resistant to digestion (Prof. R. Brandes, personal 

communication). Different patterns of labelling with anti-NOX4 antibody in different 

tissues and under different experimental conditions were observed. In microwave 

treated lung samples, from both KO and WT mice, labelling with NOX4 antibody in 

vessels and bronchial SMC was either absent or too weak to be observed. However, in 

bronchial epithelium, staining was detected although it was not prominent (Figs. 3A, B). 

Still strong staining with αSMA antibody was observed in vessels and bronchial SMC 

(Figs. 3A', B'). In microwave plus proteinase K treated lung samples from WT and KO 

mice, staining with anti-NOX4 (Figs. 3C, D) and anti-αSMA (Figs. 3C', D') antibodies 

was absent or very weak. No staining was observed from the secondary reagent control 

lung sample, where it was treated in the same way (microwave treatment) but without 

primary antibody (Fig. 3O).     

The kidney samples, from NOX4 WT and KO mice, were treated with 

microwave/proteinase K/microwave plus proteinase K. Labelling with anti-NOX4 

antibody was very weak or absent in microwave (Figs. 3E, F), proteinase K (Figs. 3G, 

H) and microwave plus proteinase K (Figs. 3I, J) treated samples. Staining was also 

absent from the sample treated under the same conditions (microwave) but without 

primary antibody (Fig. 3P). A weak labelling with NOX4 antibody was observed in 

cerebellar molecular, Purkinje and granule cell layers in microwave (Fig. 3K) and 

microwave plus proteinase K (Fig. 3M) treated samples from NOX4 WT mice. In 

microwave treated cerebellum from NOX4 KO mice, staining was intense (Fig. 3L) and 

in microwave plus proteinase K treated KO cerebellum it was weak as compared to WT 

sample (Fig. 3N). The kidney, cerebellum and lung samples from NOX4 WT mice 

showed expression of NOX4 mRNA in RT-PCR analysis, and this expression was 

absent in KO mice. Therefore, presence of immunohistochemical labelling in lung and 

cerebellum samples from NOX4 KO mice and the absence of labelling in the kidney 

from both WT and NOX4 KO animals, pictured the unspecific binding of antibodies in 

the tissues. Immunolabelling was absent from the cerebellum treated under same 

conditions (microwave treatment) but without primary antibody, demonstrating that 

nonspecific labelling was not caused by the secondary antibody (Fig. 3Q).  
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Fig. 3 NOX4 immunohistochemistry in the lung, kidney, and cerebellum. 

First row: microwave treated lung, second row: microwave plus proteinase K treated 

lung, third row, E, F: microwave treated, and G, H: proteinase k treated, fourth row: 

microwave plus proteinase K treated kidney, fifth row, K, L: microwave treated, and M, 

N: microwave plus proteinase K treated cerebellum, sixth row: microwave treated, WT 

lung (O), kidney (P), and cerebellum (Q), secondary reagent controls. Thick arrows: 

bronchial epithelium, in case of lung and glomerulus in case of kidney samples. A'-D' 

represent staining with anti-αSMA antibody. Thin arrows: tracheal and vessels SMC in 

lung samples, and Bowman's capsule in kidney. Abbreviations: WT: wild-type, KO: 

knockout, Br: bronchus, V: vessel, G: glomerulus, GC: granule cell layer, PC: Purkinje 

cell layer, ML: molecular layer, bar: 50 µm.       
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3.1.4 Aldosterone synthase immunohistochemistry in the adrenal gland 

Western blot and immunohistochemistry analysis by available antibodies did not yield 

reliable results since staining patterns in KO and corresponding WT mice were 

indistinguishable. Moreover, real-time RT-PCR data also showed some residual mRNA 

expression in KO mice. To remove the ambiguity about the KO mice used, 

immunohistochemistry was performed on adrenal glands from female TASK-1 WT and 

KO mice with mouse monoclonal anti-aldosterone synthase antibody (gift from Prof. 

Celso E. Gomez-Sanchez), as female KO mice show disrupted adrenal gland zonation. 

Distribution of aldosterone synthase extends to deeper regions of the adrenal cortex 

instead of restraining to zona glomerulosa [155]. This KO mouse strain was used in our 

study, and in female WT, the labelling with aldosterone synthase antibody was confined 

to the zona glomerulosa (Fig. 4A), whereas, in female KO mice, staining was very weak 

and absent in that region. Instead it was distributed over the entire adrenal cortex (Fig. 

4B). This phenotype confirmed that indeed TASK-1 KO mice were used, albeit with 

some residual mRNA content detected by RT-PCR.   

 

Fig. 4 Aldosterone synthase immunohistochemistry, adrenal gland. 

TASK-1 WT and KO mice samples showed quite different labelling patterns with anti-

aldosterone synthase antibody. Labelling was absent in the WT sample treated without 

primary antibody (C).  Abbreviations: ZG: zona glomerulosa, ZF: zona fasciculata, ZR: 

zona reticularis, WT: wild-type, KO: knockout, bar: 50 µm. 
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3.2 Western blot analysis  

3.2.1 Western blot analysis with anti-TASK-1, lot # AN 03 

Western blot study gave different results with different antibodies. The molecular 

weight of the TASK-1 protein is 45.4 kDa. The polyclonal rabbit anti-TASK-1 antibody 

(lot # AN 03) labelled samples in the following organs and tissues from TASK-1 WT 

mice: lung, TE, trachea without epithelium (from which TE was abraded), heart and 

cerebellum (Fig. 5). Heart and cerebellum were taken as a positive control, as TASK-1 

is highly expressed in these organs. All tested organs were also run without primary 

antibody to test the specificity of the secondary antibody. An unexpected band of 55 

kDa and very weak labelling in heart samples indicated unspecific binding of this 

antibody.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Western blot, TASK-1 antibody, lot # AN 03. 

An immunoreactive band of 55 kDa was observed. Abbreviations: kDa: kilodalton, TE: 

tracheal epithelium, Ø TE: without tracheal epithelium, Ø PA: without primary 

antibody, WT: wild-type.  

 

 

 

L
un

g

T
E

T
ra

ch
ea

 Ø
T

E

L
un

g

T
E

T
ra

ch
ea

 Ø
T

E

H
ea

rt

C
er

eb
el

lu
m

H
ea

rt

C
er

eb
el

lu
m

WT

75 -

50 -

37 -

25 -

20 -

100 -
150 -

kDa

Ø PA

L
un

g

T
E

T
ra

ch
ea

 Ø
T

E

L
un

g

T
E

T
ra

ch
ea

 Ø
T

E

H
ea

rt

C
er

eb
el

lu
m

H
ea

rt

C
er

eb
el

lu
m

WT

75 -

50 -

37 -

25 -

20 -

100 -
150 -

kDa

75 -

50 -

37 -

25 -

20 -

100 -
150 -

kDa

Ø PA

 



 

 

27 

3.2.2 Western blot analysis with anti-TASK-1, lot # AN 08 

Lung, heart, and cerebellum from both TASK-1 KO and corresponding WT mice were 

investigated for TASK-1 protein expression with polyclonal rabbit anti-TASK-1 

antibody but from different lot # AN 08. Bands on the membrane were observed in 

samples of all the above mentioned organs except cerebellum taken from both KO and 

WT animals (Fig. 6), and even more than one band were observed in lung samples in 

both cases (WT and KO). Here, labelling of KO samples questions the specificity and 

validity of this antibody, and absence of any band in cerebellar samples further adds to 

the antibody nonspecificity as TASK-1 is highly expressed in the cerebellum.    

 

 

 

 

 

 

 

 

Fig. 6 Western blot, TASK-1 antibody, lot # AN 08. 

A band of 45 kDa was observed, corresponding exactly to the molecular weight of 

TASK-1 protein. However, this labelling was noted both in WT and KO samples. Heart 

and cerebellum were used as a positive control. Abbreviations: kDa: kilodalton, Ø TE: 

without tracheal epithelium, Ø PA: without primary antibody, WT: wild-type, KO: 

knockout.  

3.2.3 Western blot analysis with anti-TASK-1, lot # AN 02 

Protein expression of TASK-1 in the lung from KO, heterozygous (HZ) and WT mice 

was examined using polyclonal rabbit anti-TASK-1 antibody, lot # AN 02. Strongly 
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immunolabelled bands were observed in heart samples as compared to cerebellum, and 

labelling of lung extracts was very week or absent. Samples treated without primary 

antibody showed no band on the membrane. Detection of bands in KO samples and very 

week labelling in lungs points towards the unspecificity of this antibody also.  

Fig. 7 Western blot, TASK-1 antibody, lot # AN 02. 

A band of 45 kDa was observed. Heart and cerebellum were used as a positive control. 

Abbreviations: kDa. kilodalton, Ø PA: without primary antibody, WT: wild-type, KO: 

knockout, HZ: heterozygous, L, H, and C: lung, heart, and cerebellum, respectively. 

3.2.4 Western blot analysis with anti-NOX4, Santa Cruz 

Molecular weight of the NOX4 protein in mouse is 64.2 kDa (Gene bank accession No. 

NP_056575.1). Rabbit polyclonal anti-NOX4 (Santa Cruz, sc-30141) antibody was used 
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to detect the expression of NOX4 protein in extracts from lung, heart, cerebellum, fat, 

and kidney from both NOX4 KO and corresponding WT mice. All the samples showed 

labelling with NOX4 antibody from both KO and WT animals (Fig. 8). In contrast, 

labelling was absent in all the samples when treated without primary antibody. 

Labelling in the cerebellum was either absent or too weak to be seen on the membrane. 

Kidney [96] and fat [156] were used as positive controls, as NOX4 is expressed in these 

organs. Appearance of multiple bands on the membrane and labelling in KO 

demonstrate nonspecific labelling with this antibody as our RT-PCR data depicts no 

NOX4 mRNA expression in KO organs. 
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Fig. 8 Western blot, NOX4 antibody, Santa Cruz. 

A band of about 70 kDa was labelled on the membrane. Abbreviations: kDa: kilodalton, 

Ø PA: without primary antibody, WT: wild-type, KO: knockout, L, H, C, and K: lung, 

heart, cerebellum, and kidney, respectively. 

3.2.5 Western blot analysis with anti-NOX4, Biomol 

Labelling with anti-NOX4 rabbit monoclonal (catalogue No. 3187-1, Biomol) antibody 

was observed in extracts from lung, heart, cerebellum and trachea (n = 2 each) from 

NOX4 KO and WT mice. No band appeared in the samples treated in the same way but 

without primary antibody. Kidney [96] and AT [156] were used as a positive controls being 

places of expression of NOX4 protein. The samples were treated with and without 

Lung

WT KO

Heart

WT KO

Cerebellum

WT KO

AT

WT KO

75 -

50 -

37 -

25 -

20 -

100 -
150 -

kDa

L H C AT K

WT, Ø PA 

WT

Kidney

KO

75 -

50 -

37 -

25 -

20 -

100 -
150 -

kDa

Lung

WT KO

Heart

WT KO

Cerebellum

WT KO

AT

WT KO

75 -

50 -

37 -

25 -

20 -

100 -
150 -

kDa

L H C AT K

WT, Ø PA 

WT

Kidney

KO

75 -

50 -

37 -

25 -

20 -

100 -
150 -

kDa

75 -

50 -

37 -

25 -

20 -

100 -
150 -

kDa



 

 

31 

protease inhibitors. Lung, AT, trachea, and heart samples exhibited double bands. In the 

heart, however, the second band was not so prominent and single bands appeared in 

kidney and cerebellum (Fig. 9). The labelling with NOX4 antibody could also not be 

considered as a specific because of appearance of double bands in the above mentioned 

samples, and most important, positive results obtained in all KO samples.   
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Fig. 9 Western blot, NOX4 antibody, Biomol.  

A band of about 63 kDa was observed on the membrane. Abbreviations: AT: adipose 

tissue, kDa: kilodalton, Ø PA: without primary antibody, WT: wild-type, KO: knockout, 

+ PI: with protease inhibitors, Ø PI: without protease inhibitors. 
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3.3 Validity of anti-TASK-1 lot # AN 02, analysed by 2-D gel electrophoresis  

Immunoreactivities were detected by anti-TASK-1 lot # AN 02 antibody from 

cerebellum from TASK-1 WT and KO animals. The 2-D gel electrophoresis results also 

showed identical positive signals in above mentioned samples. Two spots were detected 

on each membrane from WT and KO samples, these spots were cut and on-membrane 

proteolytic digest was performed. The MS-analysis described spot 1, and spot 2 from 

WT and KO as glial fibrillary acidic protein isoform 2 (GFAP2), and mitochondrial 

cytochrome b-c1 complex subunit (cyt b (c1)), respectively. Furthermore, immobilized 

pH gradient (IPG)-strips covering 3-5.6 isoelectric point (PI) range were used for 

isoelectric focusing (IEF) separation of proteins. The reactivity was low and very little 

protein was detected on both WT and KO gels. Protein analysis by 2-D gel 

electrophoresis showed that above mentioned antibody did not bind to TASK-1 protein, 

which demonstrated nonspecificity of antibody.   

3.4 Qualitative and quantitative RT-PCR 

3.4.1 Expression of TASK-1, TASK-2, and TASK-3, analysed by RT-PCR 

TASK-3 is reported to form a dimer with TASK-1 [57], and in this way it may 

compensate the absence of TASK-1 and start functioning in place of TASK-1 channel. 

TASK-3 mRNA expression was studied in lung, cerebellum, heart, TE (abraded by 

cotton swab), TM (collected by scissors) and kidney samples from TASK-1 WT mice 

and compared with TASK-1 and β-actin. In addition, TASK-2 mRNA expression was 

also studied in these samples. TASK-1, TASK-2, and β-actin were expressed in all the 

samples. TASK-3 was strongly expressed in the cerebellum, very weakly in TM, and in 

the rest of the samples it was absent or very low expressed as judged by the appearance 

of the bands in the gel (Fig. 10).                                                                                                                  
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Fig. 10 Expression of TASK-1, TASK-2, and TASK-3, RT-PCR, agarose gel. 

β-Actin was used as a housekeeping for RT-PCR control and to compare its expression 

with other targets (TASK-1, TASK-2, and TASK-3). Heart was used as positive control 

for PCR and water was used without DNA template. Abbreviations: M: base pair size 

marker, Ø RT: control run without reverse transcriptase, TM: trachealis muscle, TE: 

tracheal epithelium.   

3.4.2 Expression of TASK-1 mRNA in manually dissected tracheal epithelium 

and trachealis muscle  

The trachealis muscle (TM) is a smooth muscle bridging the gap between the free ends 

of C-shaped cartilages at the posterior border of the trachea. It can be seen by naked eye 

or with a dissecting microscope, and was dissected manually using laboratory scissors. 

TE was collected by scrolling a cotton swab on the cut and opened surface of the 

trachea from TASK-1 WT mice. A band of 250 base pair (bp) size for TASK-1 and of 

300 bp for β-actin was detected by RT-PCR from both TM and TE samples. Strong 

expression of TASK-1 mRNA in TE, TM and heart samples was observed. β-Actin, a 

housekeeping gene, was equally expressed in all the tested samples (Fig. 11). 
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Fig. 11 Expression of TASK-1 in manually dissected tracheal epithelium and 

trachealis muscle, RT-PCR, agarose gel.                                                                   

β-Actin, as a housekeeping gene, was used to control for the RT-PCR efficacy and to 

compare its expression with TASK-1 expression. Heart was included as a positive 

control for PCR, and water was run without DNA template. Abbreviations: M: base pair 

size marker, Ø RT: control run without reverse transcriptase, TM: trachealis muscle, 

TE: tracheal epithelium.   

3.4.3 Laser-assisted microdissection and RT-PCR for TASK-1 mRNA detection 

in pulmonary cells 

3.4.3.1 Laser-assisted cell picking 

Laser-assisted microdissection was carried out to clearly define the localization of 

TASK-1 mRNA in the lungs from TASK-1 WT mice. Larger pulmonary arteries run 

adjacent to bronchi and small intra-acinar arteries run deep into the alveolar region. 

Bronchi, characterized with ciliated epithelium, can easily be distinguished from other 

lung structures. Cells from bronchi, larger and small pulmonary vessels were picked and 

studied (Fig. 12). Cells from only those vessels were picked which were having 

diameter 25-40 µm in small pulmonary vessels, and in larger pulmonary vessels it was 

41-60 µm. About 60 profiles were picked for each sample and each profile might have 

different sample size.   
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         A                         B 

Fig. 12 Laser-assisted cell picking, larger pulmonary vessel. 

The white line, indicated by a thick arrow, reflects the diameter of the vessel. It 

represents the maximum distance between intimal surfaces at a right angle (90°) to the 

longitudinal axis which follows the direction of the thick arrow. Thin arrows point to 

the path selected for the laser beam to cut the tissue. A: before picking, B: same vessel 

is absent as being catapulted by laser. LPV: larger pulmonary vessel.    

3.4.3.2 Expression of TASK-1 mRNA in pulmonary structures 

Expression of TASK-1 mRNA was detected in bronchi (n = 1) and larger pulmonary 

vessel (n = 3). However, in small pulmonary vessels (n = 2) expression in all samples 

was either absent or too low to be visible on the gel. Expression of TASK-1 mRNA was 

prominent in cardiomyocytes also picked by laser for a positive control for the whole 

laser-assisted cell picking process. β-Actin was used as an internal control and detected 

in all the samples run with it. No bands were obtained with β-actin and TASK-1 specific 

primers in all the samples run without reverse transcriptase/DNA template (Fig. 13). 

 

 

 

 

 

 

 

 

LPV

75 µm

LPV

75 µm

LPV

75 µm

LPV

75 µm

LPV

75 µm

LPV

75 µm



 

 

37 

Fig. 13 Laser-assisted microdissection and RT-PCR, agarose gel. 

β-Actin was used as a housekeeping gene for its comparison with TASK-1 and control 

for the RT-PCR efficacy. Heart was used a positive control for PCR and water control 

was run without DNA template. One sample from LPV gave positive band and one not. 

Abbreviations: M: base pair size marker, Ø RT: control run without reverse 

transcriptase, LPV: larger pulmonary vessel, SPV: small pulmonary vessel.  

3.4.3.3 Expression of TASK-1 mRNA in tracheal epithelium 

TASK-1 mRNA expression was studied by RT-PCR in laser-assisted microdissected 

tracheal epithelium (TE) from TASK-1 WT mice. Cardiomyocytes were also 

microdissected as a positive control for the whole laser-assisted microdissection process 

as TASK-1 highly expressed in cardiomyocytes [57]. β-Actin was used as an internal 

control and detected in all the samples. TASK-1 was expressed in TE but its expression 

was not as strong as seen in heart samples. However, laser microdissected samples run 

with β-actin gave equal band intensities on the gel (Fig. 14).  
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Fig. 14 Expression of TASK-1 in laser-microdissected tracheal epithelium, RT-

PCR, agarose gel.                                                                                                 

β-Actin was used as a housekeeping gene. Heart was used as a positive control for 

TASK-1 PCR, and water was without DNA template. Abbreviations: M: base pair size 

marker, Ø RT: control run without reverse transcriptase, TE: tracheal epithelium. 

3.4.4 Expression of TASK-1 mRNA, analysed by real-time RT-PCR 

Real-Time RT-PCR analysis of mRNA isolated from lung, heart, and cerebellum from 

both TASK-1 WT and KO mice revealed the expression of TASK-1 in all of these 

organs. Surprisingly, there was still TASK-1 mRNA detectable in TASK-1 KO mice. 

Residual mRNA content was 0.75 ± 0.31% (mean ± S.D.; n = 3) in the cerebellum, 12.7 

± 2.7% (mean ± S.D.; n = 3) in the lung, and 0.10 ± 0.07% (mean ± S.D.; n = 6) in the 

heart. Agarose gel electrophoresis confirmed correct size of the amplified products (Fig. 

15). 
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Fig. 15 Real-Time RT-PCR analysis of TASK-1 in cerebellum and lung. 

β-2-Microglobulin (β2M) was used as housekeeping gene for comparison with TASK-1 

and to control for the real-time RT-PCR efficacy. Abbreviations: M: base pair size 

marker, Ø RT: control without reverse transcription step, WT: wild-type, KO: knockout, 

water: control without DNA template.  

3.4.5 Expression of NOX4 mRNA in NOX4 KO mice, analysed by RT-PCR 

NOX4 has been previously reported as a functional partner of TASK-1 [121]. NOX4 

mRNA expression was studied in organs (lung, cerebellum, heart, adipose tissue, 

kidney, and trachea) from NOX4 KO mice and compared with corresponding WT mice. 

β-Actin was used as a control for RT-PCR and for comparison of mRNA expression 

between samples from WT and KO mice. It was equally expressed in all the samples 

both from WT and KO mice. A band of 126 bp revealing NOX4 specific amplicons, 

was detected from the all the WT samples, but not in the corresponding KO organs (Fig. 

16). 
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Fig. 16 Expression of NOX4 mRNA in NOX4 KO mice, RT-PCR, agarose gel. 

β-Actin was used as a housekeeping for RT-PCR control and to compare its expression 

with other targets (TASK-1, TASK-2, and TASK-3). Heart was used as positive control 

for PCR and water was used without DNA template. Abbreviations: M: base pair size 

marker, Ø RT: control run without reverse transcriptase. 

3.5 Videomorphometric analysis of PCLS  

TASK-1, NOX4 WT and KO mice were sacrificed by cervical dislocation. In PCLS, 

arteries with inner diameters 41-60 µm located close to bronchi, small intra-acinar 

arteries having inner diameters 25-40 µm located at gussets of alveolar septa next to 

alveolar ducts and bronchi with 150-250 µm inner diameters were subjected to 

videomorphometric analysis. Initially, the thromboxane analogue U46619 and 

muscarine induced constrictions of pulmonary arteries and bronchi, respectively. Wash-

out of the drug from the chamber by perfusion either with medium and subsequent 

addition of the NO donor nipruss or by medium only induced vasodilatation and 

bronchodilation, respectively. These results show that intra-acinar, larger arteries and 

bronchi maintain their ability to vasoconstriction and dilatation in PCLS. To clarify the 

role of TASK-1 channels and its potential partner NOX4 in oxygen sensing, PCLS were 

exposed to hypoxic medium and reduction of luminal area of the vessels was observed. 

No changes in the luminal area of the vessels were observed in control incubations with 

normoxic gassed medium (pO2: 160 mmHg) (Figs. 17-20). In case of bronchial analysis, 

PCLS were also exposed to hypoxic medium for 40 min. To check the viability of the 
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vessels and bronchi, PCLS were subsequently exposed to U46619 (Figs. 17-20) and 

muscarine (Fig. 21), respectively, which again resulted in a marked constriction, 

regardless whether the PCLS had been previously exposed to normoxic or hypoxic 

medium.  

3.5.1 Videomorphometric analysis of pulmonary vessels in response to hypoxia in 

TASK-1 KO mice 

Hypoxia induced an about 25% reduction of the luminal area of intra-acinar arteries in 

WT mice. In TASK-1 KO mice, HPV was not prevented (Fig. 17A). In larger vessels, 

hypoxia induced luminal area reduction was about 20% in WT mice. KO mice 

developed initial HPV that was not sustained. Significant differences in HPV between 

TASK-1 KO and WT mice were observed at 29-39 min after switching to hypoxic 

gassed medium (Fig. 17B). 
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Fig. 17 Videomorphometry, HPV in TASK-1 KO and WT mice. 

The luminal area of the vessels before exposure to hypoxia is set as 100% and changes 

in the luminal areas are presented as relative values. A: HPV in small intra-acinar 

pulmonary arteries, B: HPV in large pulmonary arteries.  Data are presented as means ± 

SEM. *p ≤ 0.05, **p ≤ 0.01, n.s.: not significant, n: number of vessels/animals. 
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3.5.2 Videomorphometric analysis of pulmonary vessels in response to 

anandamide 

In small intra-acinar arteries, anandamide induced constriction at one point under 

normoxia and significantly reduced HPV also at one time point (Fig. 18A). In larger 

arteries, it did not induce constrictions under normoxia and lead to a significantly 

reduced HPV at 29-39 min after switching to hypoxic gassed medium (Fig. 18B).  
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Fig. 18 Videomorphometry, effect of anandamide on PV under normoxia and 

hypoxia in TASK-1 WT mice. 

The luminal area of the vessels before exposure to hypoxia or anandamide 

administration is set as 100% and changes in the luminal areas are presented as relative 

values. A: Effect of anandamide on PV under normoxia and hypoxia in small intra-

acinar pulmonary arteries, B: Effect of anandamide on PV under normoxia and hypoxia 

in large pulmonary arteries. Data are presented as means ± SEM. *p ≤ 0.05, **p ≤ 0.01, 

n.s.: not significant, n: number of vessels/animals.  
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3.5.3 A293 causes contractions of vessels independent from TASK-1 channels 

Effect of A293 (inhibitor of TASK-1 channel) on vasoconstriction was investigated 

under normoxic and hypoxic conditions. Moreover, under normoxic conditions, its 

effect was studied in TASK-1 KO mice.  Under normoxic conditions, A293 caused 

significant constriction in WT small vessels, and no further constriction under hypoxic 

conditions was observed (Fig. 19A). Similarly, in larger vessels, it also caused 

significant constriction under normoxia and prevented further HPV (Fig. 19B). In KO 

animals, under normoxic conditions, the constrictory effect of A293 was not reduced. A 

significant vasoconstriction in both small intra-acinar (Fig. 19C) and larger (Fig. 19D) 

arteries was still observed. No changes in the luminal area of vessels were observed in 

control experiments with normoxia plus DMSO, the vehicle used for A293 application. 

These data show that vasoconstriction induced by A293 does not operate through 

TASK-1 channels.  
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Fig. 19 Videomorphometry, effect of A293 on PV under normoxia and hypoxia in 

TASK-1 WT mice. 

The luminal area of the vessels before exposure to hypoxia or A293 administration is 

set as 100% and changes in the luminal areas are presented as relative values.  A: Effect 

of A293 on PV under normoxia and hypoxia in small intra-acinar pulmonary arteries, B: 

Effect of A293 on PV under normoxia and hypoxia in large pulmonary arteries. Data 

are presented as means ± SEM. *p ≤ 0.05, **p ≤ 0.01, n.s.: not significant, n: number of 

vessels/animals.  
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Fig. 19 Videomorphometry, effect of A293 on PV under normoxia in TASK-1 KO 

mice. 

The luminal area of the vessels before A293 administration is set as 100% and changes 

in the luminal areas are presented as relative values. C: Effect of A293 on PV under 

normoxia in small intra-acinar pulmonary arteries, D: Effect of A293 on PV under 

normoxia in larger pre-acinar pulmonary arteries. Data are presented as means ± SEM. 

*p ≤ 0.05, **p ≤ 0.01, n.s.: not significant, n: number of vessels/animals.  

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

Time [min]

U46619 +/- A293

0

20

40

60

80

100

120

V
es

se
l

lu
m

in
a

l
a

re
a

[%
]

Wash

D

n.s

**

n.s.

****** ** ** * **

n.s.
n.s.

n.s.n.s. n.s.

Normoxia + DMSO n = 8/3

Normoxia + A293 n = 9/3

Significances tested:
normoxia + DMSO – normoxia + A293
(Kruskal-Wallis-test followed by Mann-Whitney-test

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

Time [min]

U46619 +/- A293

0

20

40

60

80

100

120

0

20

40

60

80

100

120

V
es

se
l

lu
m

in
a

l
a

re
a

[%
]

Wash

D

n.s

**

n.s.

****** ** ** * **

n.s.
n.s.

n.s.n.s. n.s.

Normoxia + DMSO n = 8/3

Normoxia + A293 n = 9/3

Significances tested:
normoxia + DMSO – normoxia + A293
(Kruskal-Wallis-test followed by Mann-Whitney-test

 

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

Time [min]

U46619 +/- A293

0

20

40

60

80

100

120

V
es

se
l

lu
m

in
a

l
a

re
a

[%
]

Wash

C
Normoxia + DMSO n = 9/3

Normoxia + A293 n = 9/3

n.s.

**
** ** * * ** n.s. n.s.

n.s.

n.s. n.s.

n.s.

n.s.
*

Significances tested:
normoxia + DMSO – normoxia + A293
(Kruskal-Wallis-test followed by Mann-Whitney-test

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

Time [min]

U46619 +/- A293

0

20

40

60

80

100

120

V
es

se
l

lu
m

in
a

l
a

re
a

[%
]

Wash

C
Normoxia + DMSO n = 9/3

Normoxia + A293 n = 9/3

n.s.

**
** ** * * ** n.s. n.s.

n.s.

n.s. n.s.

n.s.

n.s.
*

Significances tested:
normoxia + DMSO – normoxia + A293
(Kruskal-Wallis-test followed by Mann-Whitney-test

 



 

 

48 

3.5.4 Videomorphometric analysis of pulmonary vessels in response to hypoxia in 

NOX4 KO mice 

PCLS from NOX4 WT and KO mice were incubated with hypoxic medium. In this set 

of experiments, exposure to hypoxia induced an about 40% reduction of the luminal 

area of intra-acinar arteries in WT mice. In PCLS taken from KO mice, a significant 

reduction in the hypoxic constriction of luminal area was observed (Fig. 20A). In WT 

larger vessels, reduction of the luminal area under hypoxia was about 20%, and in KO 

mice the constriction of the vessels was not reduced (Fig. 20B). 
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Fig. 20 Videomorphometry, HPV in NOX4 KO and WT mice. 

The luminal area of the vessels before exposure to hypoxia is set as 100% and changes 

in the luminal areas are presented as relative values. A: HPV in small intra-acinar 

pulmonary arteries, B: HPV in large pulmonary arteries Data are presented as means ± 

SEM. *p ≤ 0.05, **p ≤ 0.01, n.s.: not significant, n: number of vessels/animals.  
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3.5.5 Effect of hypoxia and anandamide on bronchoconstriction 

PCLS from TASK-1 WT were exposed to hypoxia and no reduction of bronchial 

luminal area was observed (Fig. 21A). Similarly, anandamide had no impact on 

bronchial diameter taken from PCLS analysis from TASK-1 WT and KO mice (Fig. 

21B). These data show that hypoxia and TASK-1 do not regulate bronchoconstriction in 

mice. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21 Videomorphometry, effect of hypoxia and anandamide on bronchial 

diameter. 

The luminal area of the airways before muscarine administration is set as 100% and 

changes in the luminal areas are presented as relative values. A: Effect of hypoxia on 

bronchial diameter, B: Effect of anandamide on bronchial diameter in TASK-1 WT and 

KO mice. n: number of bronchi/animals. 
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3.6 Measurement of cilia-driven PTS  

3.6.1 Inhibition of TASK-1 channels does not affect cilia-driven PTS  

TASK-1 inhibitors (anandamide and A293) did not induce an increase in PTS. 

Cumulative application of 1 µM, 10 µM and 100 µM anandamide had no effect on PTS 

(Fig. 22A). Similarly, application of 100 nM, 200 nM, 500 nM and 1000 nM A293 did 

not affect the speed of particles (Fig. 22C). Vehicles for anandamide (Fig. 22B) and for 

A293 (Fig. 22D) had no effect on PTS. ATP applied at the end of experiment increased 

PTS significantly in all cases showing non-toxicity of the substances used.  

Concentrations of 100 µM anandamide and 1000 nM A293 were used to further 

investigate the effects of avertin in the presence of inhibitors. 

Fig. 22 Inhibition of TASK-1 channel does not affect the cilia-driven PTS. 

B: vehicle: ethanol, D: vehicle: DMSO, Q < 1.15: those particles which from start to 

end point do not deviate more than 15% from their direct way, n.s: not significant, P 

values ≤ 0.05 are set in bold type (paired t-test), N = Number of tracheae. Values are 

means ± SD.  
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3.6.2 Effect of anesthetics on the cilia-driven PTS 

Anesthetics are reported to decrease cilia-driven PTS [158] and TASK-1 is their target 

molecule [159-163]. PTS was different depending upon the type of anesthetic and its 

concentration applied. Vaporized isoflurane (2%) had no effect on PTS (Fig. 23A) as 

vehicle (HEPES) alone also had no effect on PTS by its own (Fig. 23B). ATP applied at 

the end of experiments increased PTS significantly.   

Another anesthetic, avertin, with unclear affinity to TASK-1 was studied at different 

concentrations. A concentration of 400 µM avertin did not decrease and ATP increased 

PTS significantly, respectively (Fig. 23C). But when compared with vehicle (water), 

avertin induced decrease in PTS was significant (P = 0.009) and the effect of ATP 

remained unchanged. Avertin at 1 mM concentration significantly decreased PTS (Fig. 

23D), and its effect was also significant when compared with vehicle (P = 0.005) and 

the effect of ATP on PTS was also reduced significantly in the presence of avertin (P = 

0.003) showing some toxic effect of avertin at that concentration. Avertin at 4 mM 

concentration, robustly decreased PTS but after the application of ATP, no increase in 

PTS was observed (Fig. 23E), indicating that avertin might be toxic at that 

concentration. Vehicle (water) added instead of avertin, did not affect PTS (Fig. 23F). 

Effect of avertin at all concentrations (combined) was highly significant (P ≤ 0.001).   A 

concentration of 1 mM avertin was used for next experiments with inhibitors of TASK-

1 channels and in TASK-1 KO mouse model. 
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Fig. 23 Effect of anesthetics on the cilia-driven PTS. 

B: vehicle: HEPES, F: vehicle: water, Q < 1.15: those particles which from start to end 

point do not deviate more than 15% from their direct way, n.s: not significant, P values 

≤ 0.05 are set in bold type (paired t-test), N = Number of tracheae. Values are means ± 

SD.  

3.6.3 Avertin-induced decrease in PTS persisted in the presence of TASK-1 

inhibitors and in TASK-1 KO mice 

TASK-1 channels inhibitors were applied before administration of avertin. In the 

presence of anandamide, avertin did not induce a significant decrease in PTS, and ATP 

application caused a significant increase in PTS (Fig. 24A). The same pattern was seen 
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when ethanol, the vehicle for anandamide, was used instead of anandamide, so that it 

was not considered as a specific effect (Fig. 24B).  In the presence of A293, avertin 

decreased and ATP increased PTS significantly, respectively (Fig. 24C), and the effect 

of ATP was significantly reduced when compared with control. The vehicle added 

instead of A293 had no effect on PTS and did not affect ATP induced increase in PTS 

(Fig. 24D). 

The avertin-induced decrease in PTS was still observed in TASK-1 KO mice (Fig. 24E). 

ATP administered at the end of experiment increased PTS significantly. The effect of 

avertin remained unchanged, and the ATP induced increase in PTS was significantly 

reduced (P = 0.05) when compared with vehicle (water, Fig. 24F). These data show that 

avertin did not decrease PTS through TASK-1 channels. 
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Fig. 24 Avertin-induced decrease in PTS in the presence of TASK-1 inhibitors and 

in TASK-1 KO mice. 

B: vehicle: ethanol, D: vehicle: DMSO, and water, E: unchanged effect of avertin in 

TASK-1 KO, F: vehicle: water, Q < 1.15: those particles which from start to end point 

do not deviate more than 15% from their direct way, n.s: not significant, P values ≤ 0.05 

are set in bold type (paired t-test), N = Number of tracheae. Values are means ± SD.  
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4 DISCUSSION 

4.1 Antibodies and TASK-1 KO mice validity 

TASK-1 KO mice used in our study have been created by Aller et al. and described in a 

previous study [151]. Certain studies confer TASK-1 gene absence in the modulation of 

different physiological functions. In cerebellar granule neurons, absence of TASK-1 has 

been linked to alter the modulation of a leak conductance [151]. These mice exhibit 

increased motor impairment in rotarod and beam-walking test after application of 

diazepam and flurazepam and prolonged loss of righting reflex by propofol and 

pentobarbital [164], and CO2-evoked increase in the carotid sinus nerve chemoafferent 

discharge [165]. Also, adrenal gland zonation and mineralocorticoid homeostasis 

disruption in female animals [155], increased sensitivity to thermal nociception in a hot-

plate test and reduction of analgesic, sedative and hypothermic effects of WIN55212-2 
[166] and reduction in blood pressure [167] have been reported in the same strain of KO 

mice.  

Heitzmann et al. [155] detected amplicons in RT-PCR using TASK-1 specific primers in 

the adrenal gland of these KO mice (personal communication, R. Warth). Linden et al. 

[166] reported similar findings in the forebrain of KO mice (shown in Fig. 2). We also 

quantitatively measured TASK-1 mRNA from different tissues from TASK-1 KO mice, 

and 0.75% residual mRNA content was detected in the cerebellum, 0.1% in the heart 

and 12.7% in the lung. So, our real-time RT-PCR data are consistent with above 

mentioned studies. Even if any protein were translated from such low amounts of 

mRNA, it can be expected to be much reduced and might not be considered to be fully 

functional. Utku et al. [168] described 98% reduced protein translation from mRNA when 

it was downregulated to 80% in siRNA transfected cells. In general, studies carried our 

with siRNA transfected cells usually do not achieve downregulation of a certain gene up 

to 100%, and functionally effective studies are carried out when downregulation is 

accomplished up to > 80% [168-171]. To validate functional absence of TASK-1 in the 

mice used in our study, we used the same antibody (against aldosterone synthase) but 

from a different lot for immunohistochemistry and same methodology as used by 

Heitzmann et al. [155] to investigate for disruption of adrenal gland zonation in female 

TASK-1 KO mice. Labelling pattern of aldosterone synthase in zona glomerulosa in 

female TASK-1 WT mice was different from the corresponding female KO mice. 
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Labelling in WT was strictly confined to only zona glomerulosa whereas in KO it was 

very weak and irregular, and some labelling was also observed in zona reticulo-

fasciculata (Fig. 4). However, this labelling was not as strong as reported by Heitzmann 

et al. [155] which may be attributed to the use of antibodies from different lots.  

Detection of TASK-1 protein was attempted by using different TASK-1 antibodies. 

Different organs such as lung, cerebellum, and heart were studied from both TASK-1 

WT and KO mice. Immunohistochemistry and western blot results showed labelling 

with TASK-1 antibodies in all these organs and this labelling neither vanished nor was 

reduced in the organs from KO mice. These results question the specificity and validity 

of these antibodies. In line with this observation, there are accumulating reports on a 

previously unexpected extent of non-specific reactions with antibodies as evidenced by 

the use of respective gene-deficient mice [151, 172, 173]. Alternatively, these antibody data 

may indicate the presence of TASK-1 protein also in KO mice. To solve this dilemma 

and remove the ambiguity of TASK-1 protein presence in KO mice, 2D gel 

electrophoresis was also performed using cerebellum from WT and KO mice. TASK-1 

antibody from alomone laboratory, lot # AN 02, was used for this purpose as it gave 

particularly strong labelling in the cerebellum. Data from 2D gel electrophoresis 

confirm the nonspecific binding of TASK-1 antibody in both organs, as the substrate to 

which TASK-1 antibody bound was not TASK-1 protein. Instead, the antibody labelled 

glial fibrillary acidic protein isoform 2 (GFAP2) and mitochondrial cytochrome b-c1 

complex subunit (cyt b (c1)). In line with these observations, Aller et al. [151] had also 

reported on non-specific labelling in brain with TASK-1 antibodies in KO mice lacking 

TASK-1 mRNA.  

Collectively, these data demonstrate functionally efficient deficiency in TASK-1 in the 

mouse strain used in this study, but lack of suitability of currently available TASK-1 

antibodies for TASK-1 protein detection. 

4.2 TASK-1 channels 

Our data do not support a prominent role of TASK-1 channels in causing pulmonary 

vasoconstriction in response to change in O2 concentration. The expression of this 

channel in rabbit [58], rat [59, 60] and human [61] PASMC has been described previously, 

and previous studies linked TASK-1 to the regulation of resting membrane potential 
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(Em) in PASMC [58, 59, 61].  Our study model was based upon the idea behind the role of 

TASK-1 channels being present in airways and PASMC. To conclusively explore the 

role of this channel, TASK-1 KO mice and inhibitors (anandamide and A293) were 

used in the present study. Based on data indicating expression of TASK-1 not only in 

pulmonary vessels and but also airways, changes in diameter of airways, small intra-

acinar and larger pre-acinar arteries in response to hypoxia were measured.  

The reactivity of the pulmonary vessels in response to different stimuli varies in 

different species and areas along the pulmonary vascular tree as small and large vessels 

are known to be different in receptor equipment and neurotransmitter sensitivity. In the 

rat, hypoxia induces constriction for a short period of time followed by relaxation in the 

pulmonary vessels with external diameter more than 300 µm. The vessels with external 

diameter below 300 µm respond to hypoxia with monophasic constriction. This 

differential response is attributed to the localization of electrophysiologically distinct 

types of K+-channels [181, 182]. Park et al. divided the rabbit pulmonary arterial system 

into large extralobar pulmonary arteries (diameter 2-3 mm), large intralobar pulmonary 

arteries (diameter 2-3 mm) and small intralobar pulmonary arteries (diameter 300-500 

µm), and ascribed that in determining contractile responses of pulmonary arteries in the 

rabbit, location in pulmonary vessels was more important than the diameter itself [183]. 

Similarly, 5,6-epoxyeicosatrienoic acid relaxes extralobar but constricts intralobar rat 

pulmonary arteries [184]. Drexler et al. [87] identified significant differences in mechanical 

characteristics between the pulmonary trunk and the main arteries in the rat and 

suggested not to expect from each section of the extrapulmonary arterial system to 

behave identically. Hypoxia and the thromboxane analog U-46619 induced striking 

vasoconstriction in medium sized arteries (30-50 µm diameter), weak in small arteries 

having diameter less than 30 µm, and in venules no constriction was observed [81]. 

Moreover, Paddenberg et al. [185] reported that PAP did not depend upon the constriction 

of small intra-acinar arteries. So, small intra-acinar and larger pre-acinar arteries were 

studied separately in the present study to explore the role of TASK-1 channels in 

response to hypoxia. Furthermore, overall rise in PAP due to hypoxia was also 

measured from TASK-1 WT and corresponding KO mice including the use of inhibitors 

(anandamide and A293).  
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Oxygen dependent modulation of TASK-1 has been described differently in different 

organs and model systems. In transfected HEK293 cells, TASK-1 channel function of 

sensing O2 was moderately inhibited [121]. In human brain, TASK-1 was potentially 

inhibited by hypoxia [186]. In contrast, no response to changes in O2 tension was 

observed in TASK-1 expressing Xenopus oocytes [62] and the TASK-like current in 

adrenomedullary chromaffin cells was also O2 insensitive [187]. Hypoxia causes rise in 

pulmonary vascular resistance, constriction of pulmonary vessels, pulmonary artery cell 

proliferation and ultimately can lead to PH [4, 20, 188-191]. PAP in response to hypoxia was 

measured in the laboratory of Prof. Norbert Weissmann, Excellence Cluster Cardio-

Pulmonary System, Justus-Liebig-University, Giessen, in isolated, buffer perfused and 

ventilated lungs from TASK-1 WT and corresponding KO mice. There was no 

difference of rise in PAP under hypoxia between TASK-1 WT and KO mice, although 

there was a slight reduction in HPV at certain time points in larger pre-acinar arteries in 

PCLS prepared from KO mice. Most recently, Paddenberg et al. [185] demonstrated that 

HPV was prevented only in intra-acinar arteries in mitochondrial complex II 

heterozygous mice, and rise in hypoxic PAP remained unaffected in these mice. These 

findings can be assigned to the presence of a different muscularisation along the length 

of pulmonary arteries, and difference in sensitivity of cells to hormones, 

neurotransmitters, and hypoxia. The difference in response to hypoxia along the length 

of pulmonary arteries from heart to the capillaries can also be attributed to the presence 

of different proteins which sense changes in oxygen tension, their low and high 

expression, their translation from mRNA, and certain genes which regulate contraction 

of vessels. In a previous study [192], TRPC6 gene KO mice showed impaired PAP under 

acute hypoxic conditions. With respect to PH, different species can adapt to chronic 

hypoxic conditions and vascular remodeling is not induced. Pika, yak, snow pig, and 

llama [3, 193-195] represent such cases. Moreover, intensity and magnitude of hypoxia-

induced changes vary according to the species, sex and the developmental stages of 

animal [196-199]. 

Hypoxia [61, 74] and blockers of TASK-1 channels [61, 157, 175-177] cause membrane 

depolarization, resulting in SMC constriction. Here, we investigated the effect of 

hypoxia and anandamide on bronchial constriction. Our data show that anandamide 

does not affect murine bronchial SMC at all, thus conflicting with the data from 

previous studies [178-180] where anandamide was described to induce bronchoconstriction 
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in guinea-pig. Our videomorphometric data from bronchus implicate that TASK-1 is not 

involved in the constriction of at least murine bronchial SMC. These results were quite 

unexpected as TASK-1 channels are expressed in bronchi, as shown by laser-assisted 

cell picking and subsequent RT-PCR, and their inhibition is supposed to cause 

bronchoconstriction. Either, TASK-1 mRNA is not translated into functional protein in 

murine bronchial SMC, which could not be directly investigated due to the proven 

unspecificity of all available TASK-1 antibodies, or TASK-1 is not linked to 

constriction in murine bronchial SMC. 

Moreover, TASK-1 was proposed to regulate the vascular tone by cell membrane 

depolarization and thus causing PASMC contraction [58, 61, 157, 200]. In our study, when 

anandamide was used under hypoxia, hypoxic contraction was unaffected except at one 

time point in small intra-acinar and two in larger pre-acinar arteries. Response of 

vessels to anandamide under hypoxic conditions was more or less expected, and this is 

consistent with the results from a previous study [61]. Furthermore, to make the role of 

anandamide more clear, it was used in normoxic conditions where it could not induce 

constriction in vessels. So, our results from anandamide were conflicting with above 

mentioned studies [58, 61, 200] and we report that probably anandamide does inhibit 

TASK-1, but since it is not responsible for HPV, no effect resulted from that. The 

reason of different response of anandamide in our study and others may attribute 

towards the type of experiment model used, and the difference in TASK-1 being 

involved in these settings. 

A293 was described for the first time as a blocker of TASK-1 channels in Xenopus 

oocytes by Putzke et al. [157].  They further demonstrated that a low concentration (200 

nM) of A293 also inhibited TASK-1 channels in rat cardiomyocytes. Our data from 

A293 describe it as a strong pulmonary vasoconstrictor. Under normoxia, A293 induced 

significant contraction in small intra-acinar and large vessels. This reaction was in 

accord to the original hypothesis as A293 might have caused depolarization of cell 

membrane by blocking TASK-1 channel, leading to PASMC contraction. The role of 

A293 was further elaborated under hypoxic conditions and using TASK-1 KO mice. 

Constrictory effects of A293 and hypoxia were not additive, in that no further 

vasoconstriction was induced by hypoxia. To make the role of A293 more clear, it was 

used under normoxic conditions in KO mice, where its constrictory effect was not 
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vanished in both small intra-acinar and larger pre-acinar arteries. Our data from A293 

demonstrate that it induces strong constriction of pulmonary vessels but not through 

TASK-1 channels. 

In our experimental model, hypoxia induced constriction of intra-acinar and larger pre-

acinar PASMC. In TASK-1 KO mice, HPV was reduced significantly at certain time 

points only in large vessels but not in small intra-acinar arteries. In our study of NOX4 

KO mice, HPV was reduced only in small intra-acinar arteries. Similar vessel-specific 

results were also presented by Paddenberg et al. [185] from mitochondrial complex II 

heterozygous mice, showing that the response of vessels varies among pre-acinar and 

intra-acinar arteries [87]. In a recent study, Manoury et al. [203] investigated the role of 

2PK-channels in regulating contractility of PASMC. They used TASK-1 KO mice, the 

same strain as used by us [151]. Effects of hypoxia and vasoconstrictors (phenylephrine, 

serotonin, prostaglandin F2 alpha, and endothelin-1) on pulmonary arteries were 

studied. Effects of hypoxia on pulmonary arteries could not be carried out by this group 

because in their experimental model hypoxia-induced vasoconstriction was very small 

in WT mice and could not be compared with KO. The study with other vasoactive 

agents mentioned above did not demonstrate any difference of response between WT 

and KO mice. So, this study is in complete harmony with our data that TASK-1 is not a 

key player in causing vasoconstriction in response to hypoxia and vasoconstrictors in 

mice.  

Collectively, this study provides strong evidence that in mice the two-pore domain K+ 

channel, TASK-1, (a) is not involved in HPV of small intra-acinar arteries, (b) is 

marginally involved in maintenance of HPV of larger pre-acinar arteries, (c) does not 

affect overall rise in PAP due to hypoxia, and (d) plays no role in modulating 

muscarinic bronchoconstriction.  

4.3 Relationship between TASK-1 and TASK-3  

Different studies reported co-expression of TASK-3 and TASK-1 in different tissues 

and it has been suggested that these two subunits can form heterodimeric channels [51, 57, 

151, 167, 201, 202]. Rajan et al. [201] reported 62% identity of TASK-1 with TASK-3 in 

human, and 54% identity in rat has been documented by Kim et al. [51]. In rat carotid 

body glomus cells, expression of TASK-1 and TASK-3 channels has also been 
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documented in a previous study where TASK-1/3 heteromer shall act as a site of 

sensing changes in O2 tension [57]. TASK-3, like TASK-1, is also sensitive to pH [201]. 

So, TASK-3 may compensate in the absence of TASK-1 expression [151, 202]. Therefore, 

we also investigated the expression of TASK-3 channels by RT-PCR in different 

organs. Despite it was easily demonstrated in the cerebellum, we could not detect its 

expression in lung, heart and tracheal epithelium, suggesting that TASK-3 mRNA is 

either expressed at a very low level or not expressed at these sites. In contrast, TASK-1 

was expressed in all of these samples. Previous studies about the TASK-3 expression 

report contradictory observations. Manoury et al. [202] described pulmonary arteries free 

of TASK-3 gene. Northern blot analysis using rat multiple tissue blots did not show 

TASK-3 transcripts in the following 12 organs: heart, skin, kidney, muscle, small 

intestine, small intestine, spleen, thymus, liver, lung, testis, and brain. However, by RT-

PCR TASK-3 could be detected in most of the above mentioned organs including lungs 
[51]. RT-PCR study by Rajan et al. [201] implicated strong expression of TASK-3 in brain 

and almost no in lung and heart in guinea pig RNA samples. In a recent study, Manoury 

et al. [203] investigated the contractility of PASMC. They used two different types of 

TASK-1 KO mice, one was the same as used by us [151] and the other one was double 

KO (TASK-1/3) [165]. Effects of hypoxia and vasoconstrictors (phenylephrine, serotonin, 

prostaglandin F2 alpha, and endothelin-1) on pulmonary arteries were studied. Double 

KO mice were compared to TASK-1 KO mice to assess the role of TASK-3 in the 

absence of TASK-1 gene. No difference in response between WT and either strain of 

KO mice was observed. So, our data on the expression of TASK-3 is consistent with 

Rajan et al. [201] and Manoury et al. [203], and do not support heterodimerisation between 

TASK-1 and TASK-3, because of the absence of TASK-3, in the lung and tracheal 

epithelium. So, we can strongly argue that TASK-3, being absent or very poorly 

expressed in lung and tracheal epithelium, does not compensate TASK-1 absence at 

least at these locations. Our data, when compared with previous studies, also depict that 

the levels of expression of TASK-3 and other background K+ channels in the rat, mice 

and other species are not the same. 

4.4 NOX4 

The major finding of this study is that NOX4 is not an essential partner for TASK-1 to 

initiate HPV. Previous studies reported expression of NOX4 mRNA in vascular wall 
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cells to a significantly higher amount than other NOX enzymes [98, 99, 204-206]. NOX4, 

being prominently expressed in pulmonary arteries and upregulated under hypoxia [118], 

may contribute to pathophysiological changes in pulmonary arteries and vasculature [103, 

107, 121, 124]. It acts as an oxygen sensor and is reported crucial in the regulation of TASK-

1 activity in HEK293 cells [121]. 

To investigate the role of NOX4 as a potential oxygen sensor partner of TASK-1, 

NOX4 KO mice were used. NOX4 mRNA and protein expression were detected in the 

lung from mouse. NOX4 mRNA extraction from lung, heart, cerebellum, adipose tissue, 

kidney, and trachea, followed by RT-PCR and agarose gel electrophoresis showed that 

relative expression of NOX4 was high in the sample from kidney as compared to others, 

as it was also reported previously [96]. The expression of mRNA was absent in the above 

mentioned samples from the corresponding NOX4 KO mice, thereby validating both 

method and mouse strain.   

Manish et al. [118] reported NOX4 localization in PASMC, and confocal imaging of 

immunolabelled cells revealed the presence of TASK-1 together with NOX4 in the 

plasma membranes in transfected HEK293 cells [121]. Moreover, colocalization of 

TASK-1 and NOX4 in the apical membranes of pulmonary NEB cells in the lungs of 

rabbits and rats was also revealed in previous reports [66, 207]. We detected TASK-1 

mRNA expression in PASMC. Expression of TASK-1 in oxygen sensing cells like 

PASMC has also been reported previously [58, 59, 61, 201]. TASK-1 is also expressed in 

other oxygen sensing cells, such as carotid body type I cells [70] and NEB cell-derived 

H146 line [208]. A prominent response of pulmonary vessels to hypoxia is their 

constriction. So, our model was based on the concept of colocalization of TASK-1 and 

NOX4 proteins in pulmonary vessels and interaction between them. We considered 

PASMC to explore the functional relationship between TASK-1 and NOX4 proteins in 

response to changes in O2 tension.  

In our experimental set up, the response to hypoxia in small intra-acinar and larger pre-

acinar pulmonary vessels was investigated separately. In TASK-1 and NOX4 WT mice, 

hypoxia induced constriction in both small and large arteries, albeit with some size-

dependent differences. In TASK-1 KO mice, hypoxia-induced vasoconstriction was not 

altered in small intra-acinar arteries but significantly reduced at certain time points in 

larger pre-acinar arteries. In NOX4 KO mice, on the other hand, HPV was maintained 
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in larger pre-acinar arteries, whereas small intra-acinar arteries showed significant 

reduction in HPV only at certain time points. Hence, small intra-acinar and larger pre-

acinar pulmonary vessels responded differently in NOX4 and TASK-1 KO mice. 

Consequently, our data from pulmonary vessels do not demonstrate NOX4 as a 

modulator of hypoxic response of TASK-1.  

Reduction in HPV of small intra-acinar arteries was observed only in NOX4 KO mice. 

Furthermore, changes in PAP under hypoxic conditions were also measured from 

isolated perfused and ventilated mouse lungs in the laboratory of Prof. Norbert 

Weissmann, Excellence Cluster Cardio-Pulmonary System, Justus-Liebig-University, 

Giessen. Hypoxia induced an increase in PAP in both WT and NOX4 KO mice to the 

same extent. In a previous study Paddenberg et al. [185] observed a similar vessel-

specific response from mitochondrial complex II heterozygous mice assigning to the 

presence of a different muscularisation along the length of pulmonary arteries, and 

difference in sensitivity of cells to hormones, neurotransmitters and hypoxia. The 

difference in response to hypoxia along the length of pulmonary arteries from heart to 

the capillaries can also be attributed to the presence of different proteins which sense 

changes in oxygen tension, their low and high expression, and their translation from 

mRNA. The data from isolated perfused and ventilated lungs show that NOX4 is not 

responsible for rise in overall PAP under hypoxia and has no connection with TASK-1 

in this parameter in mice.      

Our data are quite different from those of Lee et al. [121]. According to their data, in 

HEK293 cells, TASK-1 senses changes in O2 tension and its activity was inhibited by 

hypoxia. Furthermore, inhibition of TASK-1 activity was modulated and augmented by 

NOX4. Inhibitors and siRNA of NOX4 nullified the function of TASK-1, leading to the 

conclusion that NOX4 regulates its oxygen sensing function. The reason behind this 

may be attributed to different experimental model used. Difference of direct and indirect 

effect on cells of substances could not be ignored. There may be a difference in 

response between from isolated and cultured cells and intact tissues [209]. P22phox, a 

subunit present in murine pulmonary arteries [118] associated with NOX4 was described 

to produce reactive oxygen species [210]. Park et al. [211] described p22 protein as a 

necessary partner for proper signalling from NOX4 to TASK-1 for hypoxic response. 

The reason for this difference in difference in function may be ascribable, at least in 
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part, to different type of species, cells and experimental conditions. Cells in cultured 

conditions may respond in a different mode than the cells when they are embedded in 

intact tissues [209].  

In conclusion, in TASK-1 KO mice, HPV is reduced marginally in larger pre-acinar 

arteries and remains unaffected in small intra-acinar arteries. In case of NOX4 KO 

mice, HPV is reduced in small intra-acinar arteries and remains unaffected in larger pre-

acinar arteries. So, TASK-1 and NOX4 behave independently in pulmonary vessels in 

mouse. Here NOX4 neither confers O2 sensitivity to TASK-1 nor does it mediate 

responses to changes in O2 tension in larger pre-acinar arteries. Moreover, NOX4 does 

not play a role in rise in overall PAP under hypoxic conditions. 

4.5 Particle transport speed 

The mechanism of regulation of CBF and MCC is complicated and still not fully 

understood. Many intrinsic factors are responsible for this regulation [158, 212-214], among 

them is ATP [212, 214]. The beating of cilia is regulated by many factors such as [Ca2+]i 
[142-146], cAMP and cGMP [148-150]. The Ca2+ flux across the membrane is regulated by 

the depolarization and hyperpolarization of the cell membrane [15, 16, 25, 30, 32, 215]. 

Anesthetics reduce CBF [158] and target TASK-1 channels while activating them [159-163]. 

In the present study, we demonstrated TASK-1 mRNA expression in mouse tracheal 

epithelium. Hence, TASK-1 appeared as a candidate mediating the effects of anesthetics 

on CBF. This issue was addressed in the present study by measuring PTS on the surface 

of explanted mouse tracheas utilizing TASK-1 inhibitors (anandamide and A293), 

anesthetics (isoflurane and avertin), and TASK-1 KO and WT mice. Avertin used in our 

investigation is an anesthetic with an unclear affinity to TASK-1.  

The inhibition of TASK-1 channels by anandamide and A293 did not increase the PTS. 

Similarly, isoflurane had no effect on PTS. Results from Hua et al. [216] also showed that 

isoflurane concentration up to 2.1% had very small effect on MCC in mice. They 

further reported that impaired MCC was observed when 3% isoflurane was used. In 

contrast, a previous study has pointed out that 2% isoflurane can significantly decrease 

CBF in cultured rat epithelial cells [158]. Similarity and difference between our results 

and those of Hua et al. [216]
 and Matsuura et al. [158], respectively, may be assigned, at 

least in part, due to different species, and experimental parameters used. Difference of 
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direct and indirect effect on cells of substances could not be ignored. There may be a 

difference in response between from isolated and cultured cells and intact tissues [209].    

Effects of avertin on PTS were dose dependent. Avertin had slight reducing effect on 

PTS at 400 µM concentration, and 4 mM avertin robustly decreased PTS. When ATP 

was applied after 4 mM avertin, no increase in PTS was observed, indicating that 

trachea had lost viability. Avertin at 1 mM concentration decreased PTS significantly, 

and the preparation still responded to ATP. Similarly, in a previous study, avertin was 

also described to play an important role in causing a robust decrease in MCC [158]. These 

first results from experiments performed with avertin match with the assumption that a 

decrease in PTS might be due to opening and closing of TASK-1 and Ca2+ channels, 

respectively. For further investigation, TASK-1 channels inhibitors were used before 

applying avertin but reduction in PTS was still observed. The role of TASK-1 channels 

in regulating PTS was further clarified by using TASK-1 KO mice. In the absence of 

TASK-1 gene, however, the effect of avertin was not abrogated. Collectively, the data 

from the experiments with TASK-1 inhibitors and with tracheas from TASK-1 gene 

mice show that TASK-1 is not the target molecule of avertin for modulation of PTS.  

Previous studies described volatile anesthetics including isoflurane as cilioinhibitors, 

thus hindering MCC [158, 209, 212]. Our data from isoflurane and avertin also support the 

use of less than 2% isoflurane and 400 µM avertin as an anesthetic reagent, as they have 

very small or no effect on MCC at these concentrations in mice. We demonstrate that 

TASK-1 is expressed in tracheal epithelium and is not involved in the regulation of PTS 

in mouse trachea. Decrease in PTS with avertin may not involve TASK-1 channels and 

some unknown mechanism is involved in that reduction of PTS and MCC in mouse. 

Moreover, previous studies, where TASK-1 is reported as target molecule of anesthetics 
[159-163], are contradictory to our data. We do not find a relation between avertin and 

TASK-1. Avertin does not target and activate TASK-1 in reducing PTS in mouse 

model. 

4.6 Conclusions 

Taken together, this study reflects multifactorial function of TASK-1 and suggests 

different species and organs might have different levels of expressions of these 

channels. Our present data strongly indicate that TASK-1 does neither regulate to a 
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significant extent HPV nor PTS or bronchoconstriction in mice. Still, it has to be 

considered that TASK-1 protein (a) possibly remains inactive after being synthesized, 

(b) becomes modified into another protein, (c) is not transported to the cell membrane in 

mice, (d) has very low expression that it is not fully functional, (e) function of TASK-1 

protein in its absence may be compensated by another unknown protein, (f) TASK-1 

KO mice might have adapted to counterbalance the absence of gene, (g) in mice, 

PASMC and tracheal epithelium, inhibition of TASK-1 channels may not further trigger 

activation of calcium channels and consequently PASMC constriction and increase in 

PTS are not induced. Additional studies from different species and organs are still 

required to clearly define TASK-1 channels and explore TASK-1 for better 

understanding of its role in HPV, PTS and relationship with TASK-3 and NOX4. 
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5 SUMMARY 

TASK-1 is a member of the two pore domain K+ channel family. Its closing causes a 

decrease in K+ efflux, depolarization of cell membrane, opening of calcium channels 

and Ca2+ entry into the cell. This has been reported to occur under hypoxia while 

volatile anesthetics activate this channel. Consequently, TASK-1 may be involved in 

mechanisms of hypoxic pulmonary vasoconstriction (HPV) and anesthetics-induced 

inhibition of mucociliary clearance. In cell culture, the superoxide generating enzyme 

NOX4 has been considered as a functional partner of TASK-1 in O2 sensing. On this 

background, we set out to investigate in mice (1) the role of TASK-1 channel in HPV 

and bronchial constriction, (2) the functional relation between TASK-1 and NOX4 in 

sensing changes in O2 tension in pulmonary vessels, and (3) the role of TASK-1 in cilia 

driven particle transport on the tracheal mucosal surface. 

Immunohistochemistry and western blot with different anti-TASK-1 and anti-NOX4 

antibodies, real-time RT-PCR, RT-PCR, laser-assisted microdissection and subsequent 

RT-PCR studies were carried out on various organs from TASK-1 and NOX4 knockout 

(KO) and corresponding wild type (WT) mice. Effects of hypoxia on bronchi and of 

TASK-1 inhibitors in TASK-1 KO and corresponding WT mice, effects of hypoxia on 

small intra-acinar and larger pre-acinar pulmonary arteries of TASK-1 and NOX4 KO 

and corresponding WT mice, effects of TASK-1 inhibitors under normoxia and hypoxia 

on small intra-acinar and larger pre-acinar arteries of TASK-1 WT mice, and effects of 

A293 (TASK-1 inhibitor) under normoxia on small intra-acinar and larger pre-acinar 

arteries of TASK-1 KO mice were investigated by videomorphometric analysis. 

Changes in pulmonary arterial pressure induced by hypoxic ventilation were measured 

in isolated perfused and ventilated lungs from TASK-1 and NOX4 KO mice. Effects of 

inhibitors of TASK-1 and anesthetics on PTS were investigated.  

Immunoreactivity patterns with TASK-1 and NOX4 antibodies were the same in 

different organs from both KO and WT mice, thus questioning the validity of the 

antibodies. Residual mRNA content was detected by quantitative PCR analysis in the 

cerebellum, lung, and heart from TASK-1 KO mice, thereby indicating background 

expression of a pseudogene or hitherto unknown gene duplication. Still, functional 

ablation of the TASK-1 gene was validated by demonstration of disrupted adrenal gland 

zonation, as previously reported. Laser-assisted cell picking and subsequent RT-PCR 
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showed TASK-1 mRNA expression in bronchi, tracheal epithelium, and larger pre-

acinar arteries. No mRNA was detected from NOX4 KO mice samples by RT-PCR 

indicating these mice as true KO. 

In videomorphometric analysis, the TASK-1 inhibitor anandamide induced constriction 

of small intra-acinar arteries at one time point under normoxia and significantly reduced 

HPV also at one time point in WT mice. In larger arteries, it did not induce constrictions 

under normoxia and lead to a significantly reduced HPV at 29-39 min after switching to 

hypoxic gassed medium. Under normoxia, A293 caused significant constriction in WT 

small vessels, and no further constriction under hypoxic conditions was observed. 

Similarly, in larger vessels, it also caused significant constriction under normoxia and 

prevented further HPV. In TASK-1 KO animals, under normoxic conditions, the 

constrictory effect of A293 was not reduced. A significant vasoconstriction in both 

small intra-acinar and larger arteries was still observed. In NOX4 KO mice, HPV was 

reduced in small arteries and remained unaffected in larger pre-acinar arteries. In 

muscarinic pre-constricted bronchi, hypoxia and anandamide induced no alteration of 

bronchial diameter. TASK-1 and NOX4 KO mice also responded normally in the 

hypoxic isolated perfused lung model. Data from cilia driven particle transport speed 

(PTS) experiments demonstrated that inhibitors of TASK-1 channels had no effect on 

PTS, and amongst anesthetics only avertin, but not isoflurane reduced basal PTS. In 

TASK-1 KO mice, neither basal nor ATP-stimulated PTS was affected and the avertin 

effect remained unchanged. 

According to our data, TASK-1 channels do not play a prominent role in causing 

pulmonary vasoconstriction in response to change in O2 concentration. It is not involved 

in HPV of small intra-acinar and marginally involved in HPV of larger pre-acinar 

arteries. TASK-1 and NOX4 behave independently in murine pulmonary vessels. Here, 

NOX4 neither confers O2 sensitivity to TASK-1 nor does it mediate responses to 

changes in O2 tension in larger pre-acinar arteries. Moreover, TASK-1 and NOX4 do 

not play a role in rise in overall pulmonary arterial pressure under hypoxic conditions. 

Hypoxia and TASK-1 do not regulate bronchoconstriction in mice. TASK-1 does not 

regulate PTS in mice, while avertin inhibits this mucociliary clearance mechanism 

independent from TASK-1. 
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6 ZUSAMMENFASSUNG 

TASK-1 ist ein Mitglied der zweiporigen K+-Kanalfamilie. Sein Schluss resultiert in 

einer Abnahme des Kaliumausstroms, Depolarisierung der Zellmembran, Öffnung von 

Kalziumkanälen und Ca2+-Einstrom in die Zelle. Es wurde berichtet, dass dies unter 

Hypoxie geschieht, wohingegen volatile Anästhetika den Kanal aktivieren. 

Dementsprechend könnte TASK-1 in die Mechanismen der hypoxischen pulmonalen 

Vasokonstriktion (HPV) und der durch Anästhetika induzierten Hemmung der 

mukoziliären Clearance involviert sein. Aufgrund von Zellkulturexperimenten wurde 

angenommen, dass das Superoxid generierende Enzym NOX4 bei der zellulären 

Sauerstoffmessung als funktioneller Partner von TASK-1 fungiert. Vor diesem 

Hintergrund sollten in der Maus untersucht werden: 1.) die Rolle von TASK-1 in der 

HPV und Bronchokonstriktion, 2.) der funktionelle Zusammenhang zwischen TASK-1 

und NOX4 im Sauerstoffsensormechanismus pulmonaler Gefäße und 3.) die Rolle von 

TASK-1 im zilienvermittelten Partikeltransport auf der trachealen 

Schleimhautoberfläche. 

 

An verschiedenen Organen von TASK-1 und NOX4 knockout (KO) und 

korrespondierenden Wildtyp (WT) Mäusen wurden Immunhistochemie und Western 

Blot mit verschiedenen TASK-1- und NOX4-Antikörpern, Real-time RT-PCR, RT-

PCR, sowie laserassistierte Mikrodissektion mit nachfolgender RT-PCR durchgeführt. 

Die Effekte von Hypoxie und von TASK-1-Inhibitoren wurden videomorphometrisch in 

Bronchi, kleinen intra-azinären und größeren prä-azinären pulmonalen Arterien 

untersucht. In isoliert perfundierten und ventilierten Lungen von TASK-1 und NOX4 

KO und WT Mäusen wurden hypoxiebedingte Änderungen des pulmonal-arteriellen 

Druckes untersucht. Effekte von TASK-1-Inhibitoren und Anästhetika auf die 

Partikeltransportgeschwindigkeit wurden in isolierten Tracheen analysiert. 

 

Antikörper gegen TASK-1 und NOX4 erwiesen sich als unspezifisch, da sie sowohl im 

Western Blot als auch in der Immunhistochemie die gleichen Ergebnisse in KO und WT 

Mäusen zeigten. Quantitative PCR-Analyse zeigte einen residualen mRNA-Gehalt im 

Kleinhirn, Lunge und Herz von TASK-1 KO Mäusen, welches als ein Hinweis auf eine 

Hintergrundexpression eines Pseudogens oder auf eine bisher unbekannte 

Genduplikation gedeutet wird. Dennoch zeigten sich die TASK-1 KO Mäuse als 
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diesbezüglich funktionell inaktiv, was durch den Nachweis einer gestörten Zonierung 

der Nebenniere validiert werden konnte, welches aufgrund von Befunden einer anderen 

Arbeitsgruppe mit dem funktionellen Verlust des Gens assoziiert ist. Laserassistierte 

Mikrodisektion und nachfolgende RT-PCR zeigen TASK-1 mRNA-Expression in 

Bronchien, Trachealepithel und größeren prä-azinären Lungengefäßen. In NOX4 KO 

Mäusen war kein residualer mRNA-Gehalt nachweisbar. 

 

Der TASK-1-Inhibitor Anandamid induzierte nur zu einem der untersuchten Zeitpunkte 

eine Kontraktion kleiner intra-azinärer Arterien unter Normoxie und reduzierte zu 

einem weiteren Zeitpunkt signifikant die HPV. In größeren Arterien induzierte er keine 

Konstriktion unter Normoxie und führte zu einer signifikant reduzierten HPV zwischen 

der 29. und 39. Minute unter hypoxischer Begasung. Der Inhibitor A293 bewirkte eine 

signifikante Konstriktion in normoxischen kleinen Gefäßen, die durch zusätzliche 

Hypoxie nicht weiter verstärkt wurde. Eine vergleichbare Reaktion zeigte sich in 

größeren Gefäßen. Der konstriktorische Effekt von A293 war in TASK-1 KO Tieren 

unverändert. In NOX4 KO Mäusen war die HPV in kleinen Arterien geschmälert und 

blieb unbeeinflusst in größeren prä-azinären Arterien. TASK-1 und NOX4 KO Mäuse 

zeigten keine Veränderungen im Modell der isoliert perfundierten Lunge. Hypoxie und 

Anandamid hatten keinen Einfluss auf den bronchialen Durchmesser nach 

Präkonstriktion durch Muskarin. In der Analyse des ziliengetriebenen  

Partikeltransports zeigten TASK-1-Inhibitoren keinen Effekt, und unter den getesteten 

Anästhetika bewirkte Avertin, aber nicht Isofluran, eine Verringerung der basalen 

Transportgeschwindigkeit. Dieser Avertin-Effekt blieb in TASK-1 KO Mäusen 

bestehen. 

 

Nach dieser Datenlage spielt TASK-1 keine wesentliche Rolle im Mechanismus der 

HPV. Es ist bei der HPV kleiner intra-azinärer Gefäße unbeteiligt und nur marginal in 

die HPV größerer prä-azinärer Gefäße involviert. Im Rahmen der HPV agieren TASK-1 

und NOX4 unabhängig im pulmonalen Gefäßsystem der Maus. NOX4 vermittelt weder 

O2-Sensitivität von TASK-1, noch vermittelt es hypoxische Antworten in größeren prä-

azinären Gefäßen. Beide, TASK-1 und NOX4, sind nicht für den pulmonalen arteriellen 

Druckanstieg unter hypoxischer Beatmung verantwortlich. Hypoxie und TASK-1 

regulieren ebenfalls nicht die Bronchokonstriktion in der Maus. Der mukoziliäre 
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Clearance-Mechanismus wird nicht über TASK-1 reguliert. Das Anästhetikum Avertin 

inhibiert diese mukoziliären Reinigungsmechanismen, aber unabhängig von TASK-1. 
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