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1 Introduction

We consider the computational complexity of some problems for self-verifying finite automata
(svFA), such as the problem to determine whether a given finite state machine is a self-verifying
automaton, which is PSPACE-complete. Moreover, we show that the promise versions of the
general membership, non-emptiness, and universality problem for self-verifying finite automata
is NL-complete. Here the promise is that the given input is in fact a self-verifying device. In
particular, the NL-completeness on the universality problem for self-verifying automata nicely
contrasts the PSPACE-completeness of the same problem for ordinary nondeterministic finite
automata. We also we study counting problems for self-verifying finite automata. In the course
of action we prove as a byproduct also some results on self-verifying pushdown automata.

The note is organized as follows: In the next section we introduce the necessary notations
on finite automata and computational complexity theory. Then we present our results: we start
by generalizing svFAs to self-verifying Turing machines, proving in passing that NL can be alter-
natively characterized as those languages that are accepted by self-verifying logspace bounded
Turing machines. This alternative characterization allows us to define a variant of a reachability
problem which can easily be converted into the promise version on the general membership prob-
lem for svFAs. As a byproduct of this characterization we also prove some results on self-verifying
pushdown automata. Finally we also give precise computational bounds on the promise versions
of the non-emptiness and the universality problem for svFAs and consider the computational
complexity of counting problems on self-verifying finite automata.

2 Preliminaries

We recall some definitions on finite automata as contained in [6]. A nondeterministic finite
automaton (NFA) is a quintuple A = (Q,Σ, δ, q0, F ), where Q is the finite set of states, Σ is the
finite set of input symbols, q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting states, and
δ : Q × Σ → 2Q is the transition function. The language accepted by the finite automaton A
is defined as L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F 6= ∅ }, where the transition function is recursively
extended to δ : Q×Σ∗ → 2Q. A finite automaton is deterministic (DFA) if and only if |δ(q, a)| = 1,
for all states q ∈ Q and letters a ∈ Σ. Then we simply write δ(q, a) = p instead of δ(q, a) = {p},
assuming that the transition function is a total mapping δ : Q×Σ → Q.

Self-verifying automata were introduced in [4]. A self-verifying finite automaton (svFA) is a
six-tuple A = (Q,Σ, δ, q0, F+, F−), where Q, Σ, δ, and q0 are the same as for NFAs, F+ ⊆ Q is the
set of accepting or “yes” states, F− ⊆ Q is the set of rejecting or “no” states, and F+ ∩F− = ∅.
The states in F+ ∪ F− are called final, and the remaining states in Q, i.e., Q \ (F+ ∪ F−), are
called neutral or “don’t know” states. Moreover, it is required that for each input string w in Σ∗,
there exists at least one computation ending in a final state, i.e. in an accepting or in a rejecting
state, that is, δ(q0, w)∩(F+∪F−) 6= ∅, and there are no words w such that both δ(q0, w)∩F+ and
δ(q0, w)∩F− are nonempty—this will be called the self-verifying property. The language accepted
by the self-verifying finite automaton A is defined as L+(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F+ 6= ∅ },
while the language rejected by A is L−(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F− 6= ∅ }. For both definitions
the transition function is recursively extended to δ : Q×Σ∗ → 2Q as usual. Notice that L+(A)
and L−(A) form a partition of Σ∗ because of the self-verifying property. We may also write L(A)
instead of L+(A) for the language accepted by A.

It is easy to see that the family of languages accepted by DFAs, svFAs, and NFAs are
all equal, but their descriptional complexity may vary, which may induce differences in the
computational complexity of standard problems thereof. In this note we are interested on the
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computational complexity of some problems for svFAs. To this end we assume the reader to
be familiar with the basics in computational complexity theory. Consider the inclusion chain
L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE. Here L (NL, respectively) refers to the set of problems accepted
by deterministic (nondeterministic, respectively) logspace bounded Turing machines, P (NP,
respectively) is the set of problems accepted by deterministic (nondeterministic, respectively)
polynomial time bounded Turing machines, and PSPACE is the set of problems accepted by
deterministic or nondeterministic polynomial space bounded Turing machines. Further, for a
complexity class C, the set coC is the set of complements of languages from C. Hardness and
completeness is always meant w.r.t. deterministic logspace bounded many-one reducibility.

Finally, we recall some known facts on the complexity of standard problems for DFAs and
NFAs. Most problems for DFAs are easy. In particular, the general membership is L-complete,
the non-emptiness problem, and the universality problem are NL-complete [3, 9]. The former two
problems are NL-complete for NFAs [9], while the latter one becomes PSPACE-complete [10], and
thus highly intractable.

3 Results

Our first result for svFAs is to determine, whether a given finite state device with accepting
and rejecting states fulfills the self-verifying property. This problem is shown to be already
PSPACE-complete.

Theorem 1. Given a finite state device A with accepting and rejecting states, decide whether A
is a self-verifying automaton, i.e., whether it fulfills the self-verifying property, is PSPACE-
complete.

Proof. The containment in PSPACE is seen as follows: From A we construct two NFAs B and B′

such that L(B) = L+(A) and L(B′) = L−(A) by simply defining the accepting states properly.
Then we have to check (i) L(B)∪L(B′) = Σ∗ and (ii) L(B)∩L(B′) = ∅. By the standard cross
product construction one builds two NFAs C and C ′ accepting L(B)∪L(B′) and L(B)∩L(B′),
respectively, of polynomial size. Then checking C for universality and C ′ for emptiness results
in a test for the self-verifying property for A. Since the former one is solvable in PSPACE and
the latter one in NL, the containment in PSPACE follows.

It remains to show PSPACE-hardness. We present a reduction from the universality problem
for NFAs. Given a NFA A we interpret this automaton as a finite state device with accepting
states and neutral states, but with an empty set of rejecting states. Assume that Σ is the input
alphabet of A. Then the following holds: if L(A) = Σ∗, then the newly interpreted device is
obviously an svFA. On the other hand, if L(A) 6= Σ∗, then there is a word w 6∈ L(A), and
thus, the newly interpreted device cannot fulfill the self-verifying property, since it is violated
by w: there is no accepting computation by assumption and there is no rejecting computation,
since the device under consideration does not have rejecting states at all. This shows PSPACE-
hardness. ut

This result shows that problems on svFAs are already PSPACE-hard, since the check whether
the input obeys the self-verifying property is that complicated. Thus, in the forthcoming we only
consider promise problems, i.e., problems where the input already is in fact an svFA. Next we
study the computational complexity of the general membership problem for self-verifying finite
automata, which is the problem of deciding for a given self-verifying finite automaton A and an
input word w, whether w ∈ L(A) holds.
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Theorem 2. The promise version of the general membership problem for self-verifying finite
automata is NL-complete.

In order to prove this result we proceed as follows: (i) we generalize svFAs to self-verifying
Turing machines, and moreover, to self-verifying complexity classes, then (ii) we show that NL
coincides with the class of all languages accepted by logspace bounded self-verifying Turing
machines, (iii) the previous characterization induces a special variant of a graph reachability
problem to be NL-complete, which (iv) is then used to prove Theorem 2.

The definition of self-verifying automata generalizes to Turing machines. In general, a self-
verifying device A is allowed to give three possible answers “yes,” “no,” and “don’t know.” The
machine A is not allowed to make mistakes: if the answer is “yes,” then the input is in L(A).
On the other hand, if the answer is “no,” then the input cannot be in the language L(A). For
every input there is at least one computation that does not finish with the answer “don’t know.”
Notice that a self-verifying machine may have different computations on the same input, just
like a nondeterministic machine. It is allowed that a computation ends with the answer “yes”
(or “no”) and another computation on the same input ends with “don’t know,” but it cannot
be the case that there are computations on the same input such that one answers “yes” and the
other answers “no.”

Now we can introduce the self-verifying variants for space and time bounded complexity
classes C, by referring to it as svC. For example, svNL refers to the class of languages accepted
by logspace bounded self-verifying Turing machines. Then the first lemma on the way to prove
the previous theorem reads as follows:

Lemma 3. svNL = NL.

Proof. The inclusion from left to right is obvious. For the converse inclusion, that is, NL ⊆ svNL,
we argue as follows. Let L ⊆ Σ∗ be in NL. Then there is a nondeterministic logspace bounded
Turing machine M that accepts L, i.e., L = L(M). Since NL is closed under complementation [8,
13], there is also a nondeterministic logspace bounded Turing machine M that accepts the
complement of L. In other words L(M) = Σ∗ \ L. Without loss of generality we may assume
that both Turing machines M and M are polynomial time bounded.

From M and M we construct a self-verifying machine M ′ for L. The Turing machine M ′

operates as follows: it runs the Turing machine M on the given input w. If M halts in an
accepting configuration, then the Turing machine M ′ answers “yes” and halts. In this way the
input is accepted. Otherwise, if the computation of M halts in a non-accepting configuration, the
Turing machine M is started. In case M halts in an accepting configuration, then M ′ answers
“no” and thus rejects the input. Otherwise, the Turing machine M ′ answers “don’t know.” By
construction it is easy to see that M ′ is logarithmically space bounded and moreover, is a self-
verifying Turing machine. ut

Remark 4. The proof of the previous lemma can be generalized such that the following identity
holds

svC = C ∩ coC,

where C is a two-way complexity class that is able to restart the computation from the very
beginning, svC is the self-verifying variant of C, and coC refers to the complement class of C. In
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particular this shows

svL = L,

svP = P,

svNP = NP ∩ coNP,

and

svPSPACE = PSPACE.

The details are left to the reader. Moreover one can show that

svNAuxPDASpTi(log n, poln) = NAuxPDASpTi(log n, poln),

where NAuxPDASpTi(s(n), t(n)) refers to the class of languages that are accepted by nondeter-
ministic auxiliary pushdown automata with s(n) space and t(n) time—this is a resource bounded
Turing machine with a separate resource unbounded pushdown store. This result is based on
the fact that this class is closed under complementation [2] and the above described simulation.
A similar result also holds for the deterministic version of auxiliary pushdown automata. Both
of these classes are of special interest, beause they are closely related to context-free languages.
In [12] it was shown that

LOG(DCFL) = DAuxPDASpTi(log n,poln)

LOG(CFL) = NAuxPDASpTi(log n,poln),

where DCFL (CFL, respectively) refers to the class of languages accepted by deterministic (non-
deterministic, respectively) pushdown automata and LOG(C) refers to the closure of C under
deterministic logarithmic space boundedn many-one reduction, that is,

LOG(C) = {L | L ≤log
m L′, for some L′ ∈ C }.

In the furthcoming we abbreviate nondeterministic pushdown automata by NPDA and determin-
istic pushdown automata by DPDA, respectively. This nice relation between the formal language
class of the (determinstic) context-free languages and the appropriate complexity classes rises
the question what can be said about the logspace closure of the self-verifying variants of the
(determinstic) context-free languages. Let svDCFL (svCFL, respectively) refer to the class of lan-
guages accepted by self-verifying DPDAs (NPDAs, respectively). Since this classes are defined by
one-way automata, the above given simulation used in the proof of Lemma 3 is not applicable.
Neverthless, by a slight modificaiton of this simulation we find the following situation.

Theorem 5. svDCFL = DCFL ⊂ svCFL = CFL ∩ coCFL ⊂ CFL.

Proof. Let L ⊆ Σ∗ be accepted by a self-verifying pushdown automaton. Regardless whether
this automaton is deterministic or nondeterministic one obviously obtains two automata, namely
one for the language L and an other one for the complement of L, i.e., for the language Σ∗ \L.
Hence we get the inclusions

svDCFL ⊆ DCFL ∩ coDCFL and svCFL ⊆ CFL ∩ coCFL.

Because DCFL is closed under complementation [5], the former inclusion simplifies to svDCFL ⊆
DCFL. Moreover, interpreting an ordinary DPDA as a self-verifying automaton by identifying
the accepting states with “yes” answers and the non-accepting states with “no” answers show
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the converse inclusion DCFL ⊆ svDCFL. Thus, svDCFL = DCFL. For self-verifying NPDAs we
use a slightly different argumentation. Let L ∈ CFL∩ svCFL be a language over the alphabet Σ.
Then there is a NPDA A (A, respectively) for the language L (Σ∗ \ L, respectively). From A
and A we construct a self-verifying pushdown autamaton A′ for L. The automaton A′ operates
as follows: it guesses either to run A or A on the given inpt w. If it runs A and it halts in an
accepting configuration, then the pushdown automaton A′ answers “yes” and halts. In case A
was choosen to be executed and it halts in an accepting configuration, then the device A′ answers
“no” and halts. In all other cases A′ returns “I don’t know” as answer. By construction it is easy
to see that A′ is a self-verifying NPDA accepting L. Thus, CFL ∩ coCFL ⊆ CFL and therefore
svCFL = CFL ∩ coCFL. Finally, the remaining inclusion svCFL ⊆ CFL is trivial.

It remains to prove the strictness of the inclusions. The strictness of the first inlcusion
DCFL ⊆ svCFL can be seen by the language

L = { anbnc | n ≥ 0 } ∪ { anb2nd | n ≥ 0 }.

It is well known that this language is not determinsitic context free. A self-verifying NPDA
accepts this language as follows: first it guesses whether the input ends with a letter c or a d.
In the former case it verifies deterministically whether the input is of the form anbnc, for some
n ≥ 0. If this is the case, the it answers “yes;” if this is not the case, then the answer is “no” in
case the last letter was a c, while it is “I don’t know” otherwise. The latter case is treated in a
similar fashion. The self-verifying pushdown machine checks determinisically whether the input
is of the form anb2nd, for some n ≥ 0. If it is of the form, then the automaton answers “yes.” If it
is not of this form and ends with a d, then the answer is “no;” otherwise it is “I don’t know.” It
is obvious that the constructed automaton accepts L. Therefore DCFL ⊂ svCFL. The strictness
of svCFL ⊆ CFL easily follows, since CFL is not closed under complementation in general, and
thus CFL∩coCFL, which is equal to svCFL, is a strict subset of CFL. Therefore svCFL ⊂ CFL. ut

The proof reveals that the characterization svC = C ∩ coC also holds in case C is a one-way
formal language or complexity class that is

1. deterministic or
2. nondeterministic and is able to perform a guess at the very beginning of the computation in

order to start two subcomputations.

Yet another application of this characterization would, e.g., the class of languages accepted by
self-verifying nondeterminsitic one-turn pushdown automata, which is then equal to LIN∩coLIN,
where LIN refers to the class of linear context-free languages. With a similar proof as Theorem 5
one can show the next result, where svDLIN (svLIN, respectively) refer to the class of languages
accepted by self-verifying one-turn DPDAs (one-turn NPDAs, respectively).

Theorem 6. svDLIN = DLIN ⊂ svLIN = LIN ∩ coLIN ⊂ LIN. ut

Now let us come back to the logspace many-one closure of svCFL. The next theorem shows
that this is equal to LOG(CFL) = NAuxPDASpTi(log n,poln).

Theorem 7. LOG(svCFL) = LOG(CFL).

Proof. We have LOG(CFL) = NAuxPDASpTi(log n,poln), which in turn is equal to

svNAuxPDASpTi(log n,poln)
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by our previous investigation. Therefore it suffices to show

LOG(svCFL) = svNAuxPDASpTi(log n,poln),

where the inclusion from left to right already follows by svCFL ⊂ CFL. Here we use the fact that
the inclusion C ⊆ D implies LOG(C) ⊆ LOG(D), and the aforementioned equalities. Thus it
remains to show that svNAuxPDASpTi(log n,poln) ⊆ LOG(svCFL). By well-known techniques
auxiliary pushdown automata with logarithmic space bounded working tape are identical to
(two-way) k-head pushdown automaton, for some k ≥ 1. This also holds true for a polynomial
time constraints and for self-verifying devices. In [12] the following results were shown:

1. If L is accepted by a two-way NPDA in polynomial time, then L ≤log
m L′ for some context-free

language L′.
2. Language L is accepted by a two-way 2k-head NPDA in polynomial time if and only if
T (L) = { (#w$)|#w$| | w ∈ L } is accepted by a two-way k-head NPDA in polynomial time.

These results imply that NAuxPDASpTi(log n,poln) ⊆ LOG(CFL). A careful inspection of the
proofs of these statements reveal that they also work for self-verifying pushdown automata and
self-verifying context-free languages. Therefore, we conclude

svNAuxPDASpTi(log n, poln) ⊆ LOG(svCFL),

which proves the stated claim. ut

Finally we show that the self-verifying property for pushdown automata is not decidable,
in general, and becomes decidable when ocnsidering unary pushwon automata. For the former
result we use a tool that is widely used to proof undecability results, namely the set VAL(M) of
valid computations of a Turing machine M , which basically contains the histories of accepting
Turing machine computations, see, e.g., [7]. Now we are ready for the next theorem.

Theorem 8. Given a pushdown automaton A with accepting and rejecting states, it is unde-
cidable ito determine whether A is a self-verifying automaton, i.e., whether it fulfills the self-
verifying property. The problem becomes decidable if A is a unary pushdown automaton.

Proof. Let M be a Turing machine. We consider the set INVAL(M) of invalid computation of M ,
which is the complement of VAL(M) for a suitable encoding of the alphabet. Obviously, for some
Turing machine M the set INVAL(M) is universal if and only if L(M) is empty. Moreover for a
given Turing machine M one can effectively construct a context-free grammar or equivalently a
nondetermnistic pushdown automaton A accepting INVAL(M)—see, e.g., [7]. Now interpret A
as a pushdown automaton with accepting and neutral states, but with an empty set of rejecting
states. But then we have L(M) = ∅ if and only if L(A) is universal. In case L(A) is universal,
the newly interpreted device is a self-verifying pushdown automaton; otherwise if L(A) is not
universal, there is a word w 6∈ L(A) and thus A is not a self-verifying pushdown automaton since
the self-verifying property is violated by w. Therefore L(M) = ∅ if and only if A is a self-veryfing
pushdown automaton. Since checking emptiness for Turing machines is undecidable, we conclude
that it is undeciable to deterime whether a pushdown automaton with accepting and rejecting
states fulfills the self-verifying property.

In case the pushdown automaton A with accepting and rejeting states accepts unary lan-
guages only, we argue as follows: it is well known that a context-free language definded over a
one-letter alphabet is regular and that moreover one can effectively transform it into an equiv-
alent nondeterministic finite automaton—see,e.g., [11]. Thus one can construct NFAs B and B′
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such that L(B) = L+(A) and L(B′) = L−(A). Then A satisfies the self-verifying property if and
only if (i) L(B)∪L(B′) is universal w.r.t. the one-eltter alphabet and (ii) L(B)∩L(B′) = ∅. Be-
cause these two properties are obviously decidable for finite state devices, the claim follows. ut

This closes our detour on the computational complexity of self-verifying devices. ut

Next we introduce a variant of the NL-complete graph reachability problem that incorporates
the self-verifying property:

– SwitchGap: Given a direct graph G, source node s and two target nodes t+ and t− with
the promise that there is a path from s to either t+ or t−, but not to both. Is there a path
from the source s to target node t+?

Observe, that either node t+ or t− is reachable from s, but not simultaneously—this will be used
later to control the self-verifying property of the to be constructed automaton. We now show
that SwitchGap is NL-complete.

Lemma 9. SwitchGap is NL-complete, even if the two target nodes of the instance do not
have any out-going transitions.

Proof. The containment in NL is obvious, since we have to search for a path linking s and t+, as
for the usual graph accessibility problem. Therefore SwitchGap is contained in NL. Observe,
that we can even check in NL whether the given instance fulfills the promise on the reachability
of the target nodes. In order to show this one uses the fact that NL is closed under complemen-
tation [8, 13]. The details are left to the reader.

For the NL-hardness we argue as follows: let M be a nondeterministic logspace bounded
Turing machine. By Lemma 3 we can construct an equivalent logspace bounded self-verifying
Turing machine M ′, with L(M ′) = L(M). We may safely assume that M ′ has only one halting
configuration which answers “yes” and one other halting configuration that answers “no.” Let
us refer to these configurations as Cyes and Cno, respectively. For a given word w we construct
the configuration graph of the Turing machine M ′ in the usual way. Let G be this graph.
Then G together with the unique initial configuration Cinit and the target nodes Cyes and Cno

form an instance of the SwitchGap problem. Observe that, since Cyes and Cno are halting
configurations, both configurations do not have out-going edges in the configuration graph G.
It is easy to see that this instance can be constructed within deterministic logspace and that
it satisfies the promise of the problem under consideration. This shows that SwitchGap is
NL-hard, and with the containment of the problem in NL we deduce that SwitchGap is NL-
complete. ut

Now we are ready to prove one of the main theorems of this note.

Proof (of Theorem 2). The containment of the general membership problem for self-verifying
finite automata in NL is obvious, since already the general membership problem of ordinary non-
deterministic finite automata belongs to this complexity class. It remains to show NL-hardness.

Let G = (V,E) with the source node s and the target nodes t+ and t− be an instance of the
SwitchGap problem. Without loss of generality we may assume that both target nodes do not
have any out-going edges. From that instance we construct a self-verifying finite automaton A
and a word w such that there is a path from s to t+ if and only if w is accepted by A. We
first modify the SwitchGap instance such that every node has at least one out-going edge,
by introducing self-loops. This does not change the solvability status of the problem under
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consideration. Moreover, by this we ensure that if there is a path from s to t+ (or t−), then
there is a path that has length |V | − 1.

We now construct the automaton A = (Q,Σ, δ, q0, F+, F−) with input alphabet Σ = {a},
state set

Q = V × {1, 2, . . . , |V |+ 1},

from which q0 = 〈s, 1〉 is the initial state, and the transition function reads as

δ(〈u, i〉, a) =

{⋃
(u,v)∈E{〈v, i+ 1〉} if 1 ≤ i ≤ |V |
{〈u, |V |+ 1〉} otherwise.

Almost all states of A will answer “no.” To be more precise, all states 〈v, i〉 with second com-
ponent i 6= |V | will answer “no.” These states take care about words that are too short or too
long. All states 〈v, |V |〉, except the two states 〈t+, |V |〉 and 〈t−, |V |〉 are “don’t know” answering
states. Finally, state 〈t+, |V |〉 answers “yes” and state 〈t−, |V |〉 answers “no.” Thus,

F+ = { 〈t+, |V |〉}
and

FR = { 〈v, i〉 | v ∈ V and i ∈ {1, 2, . . . , |V | − 1, |V |+ 1} } ∪ {〈t−, |V |〉}.

The input word for the instance of the general membership problem is a|V |−1. This completes
the description of problem instance, which clearly can be constructed in deterministic logspace.
By construction, automaton A is an svFA, which can either accept only the word a|V |−1 or no
word at all. Hence the graph G, together with the source node s and both target nodes t+ and t−
is a positive instance of SwitchGap if and only if the svFA A accepts the word a|V |−1. This
shows NL-hardness and our claim follows. ut

A slight modification of the previous proof also shows that the promise variant of the univer-
sality problem for svFAs is NL-complete, too. Containment in NL is obvious, since one has only
to verify that there is no rejecting computation at all. This is a simple reachability problem and
thus can be solved in nondeterministic logspace. For the hardness, one has only to re-define the
accepting and rejecting states of the constructed automaton A such that all words that are too
short or too long will be accepted, while the states 〈t+, |V |〉 and 〈t−, |V |〉 remain as they were.
This results in the following theorem

Theorem 10. The promise version of the universality problem for self-verifying finite automata
is NL-complete. ut

Finally, it is easy to see that also the promise version of the (non-)emptiness problem for
svFA is NL-complete, too, since the problem is already NL-hard for DFAs and contained in NL.

Theorem 11. The promise version of the emptiness problem for self-verifying finite automata
is NL-complete. ut

In the remainder of this note we consider counting problems. Counting problems for de-
terminsitic and nondeterminstic finite automata were studied in [1]. In particular, the census
function problem and the complement of the census function problem were investigated. The
former problem is defined as follos: given a finite automaton A and a 1n, how many words of
length n are accepted by A? The difference to the complement variant is, that one asks for how
many words are not accepted by the automaton? For DFAs both problems are #L-complete,
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while for NFAs the census problem is span-L-complete and the complement of the census prob-
lem is even #P-complete [1]. Here #L (#P, respectively) refers to the class of those functions f ,
where f is the number of accepting paths of an NL (NP, respectively) machine and span-L is
the class of those functions computable as |S|, where S is the set of output values returned by
the accepting paths of an NL transducer. The inclusion chain #L ⊆ span-L ⊆ #P is known. For
more on counting classes we refer to [1] and [14, 15]. For svFAs we find the following situation.

Theorem 12. The promise version of the census and the complement of the census problem for
self-verifying finite automata are span-L-complete.

Proof. First we consider the census problem for svFAs. The span-L uper bound immediately
follows from the above mentioned result of [1], because svFAs are special kinds of NFAs. For the
lower bound we cannot rely on the fact NL = svNL, since this equality is a language equivalence
and not a functional equivalence. Neverthless, a close inspection of the proof of Theorem 3
reveals that it preserves the output on accepting paths of the NL machine, which in our case is
a transducer. Thus, any function in span-L can be implemented on a svNL transducer. Hence,
proceeding as in the proof of Lemma 9 one may construct an svFA(instead of a SwitchGap
instance), together with a word 1n, where n is the running time of the svNL transducer. This
shows the span-L lower bound, and therefore we deduce that the census problem for svFAs is
span-L-complete.

For the complement of the census problem we first exchange accepting and rejecting states of
the underlying svFA. Here this can be done without any further cost, since we are dealing a self-
verifying devices. Then we argue in similar veins as above. Hence, proving span-L-completeness
in this case, too. ut
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