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Abstract:
The commons literature increasingly recognizes the importance of contextual factors in
driving collaboration in governance systems. Of particular interest are the ways in which
the attributes of a resource system influence the dynamics of cooperation. While this may
occur through many pathways, we investigate the mechanisms by which ecological fac-
tors influence both the risk of cooperation as well as the density of networks in which
strategic interactions take place. Both of these factors influence the co-evolutionary
dynamics of network structure and cooperative behavior. These dynamics are inves-
tigated through agent-based simulations, which provide preliminary evidence that: 1)
low-density networks support higher levels of cooperation, even in high-risk Prisoner’s
Dilemma scenarios; and 2) in high-risk scenarios, networks that develop higher levels of
clustering generally enjoy higher societal gains.

1. Introduction

Empirical work on commons governance is increasingly oriented towards un-
derstanding the ways in which contextual variables influence the dynamics of
cooperation and sustainability outcomes (Dietz and Henry 2008). An important
set of contextual variables are ecological factors, or characteristics of the natu-
ral environment in which a particular resource system is embedded. The direct
and indirect influence of ecological factors on cooperation and governance has
long been recognized in theoretical work (Mazmanian and Sabatier 1980; Os-
trom 2007; Sabatier 1999) and there is a growing body of empirical research
linking ecological factors and emergent patterns of cooperation (Heinrich et al.
2005; Leibbrandt et al. 2010; Nisbett 2003; Prediger et al. 2011). This paper
seeks to build upon existing research in this area by positing general but precise
models of how fixed or slowly-changing ecological factors influence the dynamics
of cooperation in commons governance systems.

Our investigation of the influence of ecological factors on cooperation focuses
on two distinct, but related, pathways. First, ecological factors influence the
density of social networks that both constrain and enable strategic interaction.
While some ecological settings are likely to support greater opportunities for in-
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teraction within an action arena (and more dense networks), other settings may
support only infrequent interactions (and more sparse networks)—this may, for
example, be related to population density or the transaction costs inherent in
working with others across natural obstacles such as mountains or waterways
between islands.

Second, ecological factors partially determine the benefits and costs of coop-
eration within any particular setting. These costs and benefits help to define the
risk that is inherent in any actor’s decision to engage in collective action, since
increasing incentives to ‘free-ride’ also increase the risk that any particular co-
operator will pay the costs of cooperation without enjoying any of the benefits.
Benefits of defection, for example, may be especially high in an environment
where the resource grows slowly (as with high value timber) or has slow regen-
eration rates (as with certain types of fish stocks).

These dynamics are explored through a series of computational, agent-based
simulations of strategic interaction within a hypothetical action arena using
a small number of plausible assumptions. Strategic interaction takes place
through multi-player games that are played within random networks, which
are allowed to evolve over time as the simulation progresses. The network layer
allows us to represent the particular structure of opportunities for interaction in
the system. While the system may be large, individual actors interact with only
subsets of other players—thus, in any given system there is an ‘ecology’ of over-
lapping games being played (Long 1958; Lubell et al. 2010). The networks that
constrain and enable interaction not only exercise an important influence on the
evolution of cooperation in social systems (Nowak 2006; Ohtsuki et al. 2006), but
might also be influenced by cooperative strategies as a system matures (Skyrms
and Pemantle 2000).

By allowing actors to adjust their local network and choose their collabora-
tors as the model progresses, we are able to explicitly model these co-evolutionary
dynamics. Risk is represented in the structure of the games being played. Risk
and network density are both fixed as exogenous factors representing the ecolog-
ical setting in which interactions occur; we then examine the emergent patterns
of cooperation within different ecological settings.

We find that, consistent with theoretical expectations, the level of coopera-
tion decreases with increasing network density and levels of risk. On the other
hand, cooperation is still possible in high-risk scenarios when network density is
low. Regarding the types of network structures that emerge under varying eco-
logical conditions, we find that high-risk settings favor high levels of transitiv-
ity (such that actors tend to share common partners), whereas low-risk settings
provide no clear incentives for actors to form transitive network relationships.

2. Model Overview

We model how actors within a commons governance system (an ‘action arena’)
make strategic decisions using a game theoretic perspective. In particular, we
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assume that actors are linked together in a network and play repeated games
with their network neighbors, or other actors with whom they share a linkage.
The following sections discuss the model itself, as well as the ways in which fixed
model parameters are likely to be influenced by ecological factors.

2.1 The Role of Network Density
Interaction within the action arena is described by a network G = (V,E), on
n = |V| vertices and m = |E| edges. The vertex set V represents all n ac-
tors in the action arena, V = {vi} for i ∈ {1,2, . . . ,n}. The edge set E represents all
relationships between actors within the system, where viv j ∈ E if and only if ac-
tors vi and v j share a relationship. Ties are interpreted as undirected; therefore
viv j ∈ E implies that v jvi ∈ E, and vice-versa. When two actors share a relation-
ship, they will have an opportunity to strategically interact. Although the set
of vertices remains fixed, the set of interactions among vertices may evolve over
time. The edge set at time t is denoted Et, and the full network G at time t is
thus described by Gt = (V, Et).

The density of the network in which interactions occur is fixed—network
density is defined as the proportion of all possible actor-actor pairs in which a
network linkage exists, and is a function of model parameters n and m. Thus,
although the contents of the set E are allowed to change over time, the overall
size of the set is fixed throughout the course of a simulation.

Network density is one measure of the overall intensity of interactions within
a particular system, or the frequency with which any two actors are likely to in-
teract (since the model assumes that, at each time step, a single interaction
occurs within each linkage). Ecological factors may play an important role in
network density. For example, network density may reflect the population den-
sity in a given action arena—when individuals live or work in closer proximity to
one another, the opportunities for interaction also increase. Thus, larger density
parameters may represent more urbanized environments whereas smaller den-
sity parameters may be more consistent with rural communities or communities
that face high transaction costs for managing their resource base (for example,
in resource systems dispersed across islands or in high mountains). It is impor-
tant to note, however, that it is also possible to have situations where localized
subgroups experience frequent interactions, although the density of the global
network may remain small—for example, within ‘segregated’ networks parti-
tioned into several disconnected communities (Henry et al. 2011).

Network density may also be influenced by resource characteristics—for ex-
ample, resources with higher productivity may increase local populations if they
attract new residents or support higher fertility rates. Similarly, some resource
characteristics may require higher levels of interaction, which is tantamount
to increasing the density of the underlying network—for example; the extrac-
tion of some resources requires greater interdependencies among actors, as with
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some species of fish that can be encircled by several boats in order to maximize
harvest.1

2.2 Risk of Cooperation and Model Parameter b
In a single iteration of the game considered here, all actors simultaneously play
a multi-person game with their network neighbors. Each actor chooses a strat-
egy, either cooperate (C) or defect (D). Actors who choose cooperation receive a
payoff of 1 for every other cooperator they are connected to, and lose b for every
other defector they are connected to. Actors who choose defection receive no pay-
off for other defectors in their network neighborhood, but receive a payoff of b
for every other cooperator they are connected to. In this scenario, the parameter
b represents the benefits of defection and is hence a measure of the riskiness of
the underlying game—when b > 1, this game is a high-risk Prisoner’s Dilemma,
while b < 1 yields a low-risk coordination game where both players prefer the
same Nash equilibrium outcome {C,C} (Berardo and Scholz 2010; Hegselmann
and Flache 1998).

We apply a rather narrow definition of riskiness for the underlying game.
Our risk parameter is not related to uncertainty of payoffs and predictability
of the resource. Rather, our risk parameter captures the benefits of defection
that arise from resource characteristics such as varying growth or replenish-
ment rates. As noted above, resources that grow slowly may correspond with
larger risk parameters, whereas rapidly-growing resources may correspond with
smaller risk parameters. This is because slow-growing resources will demand
greater investments over time, and if these resources are highly valued then
the potential benefits of free-riding on the prior investments of others will in-
crease. These differences may be observed across resources such as fast growing
eucalyptus or palm trees for timber production versus slow growing, high value
timber such as teak or mahogany, or across fish stocks with varying reproduction
rates.

2.3 Network Structure, Risk, and Cooperation
We now turn to the question of how network structure and risk—represented by
model parameter b—exercise their influence on cooperative dynamics.

For a particular iteration of the game, let us focus our attention on one ac-
tor named ‘Ego’ and represented by the network vertex vEgo. Suppose that
Ego is connected to k other players in the network such that vEgovi∈E for all
i∈{1,2,. . . ,k}. Also, let p(i) denote the objectively-determined probability that
player vi will cooperate. The probability p(i) is based on vi ’s history of cooper-
ation, and is equal to the proportion of rounds in which vi has cooperated. All
agents have full knowledge of all other agents’ prior strategies, and so p(i) does
not vary from one Ego to another.

1 Fish traps consisting of several boats were frequently used to capture migrating bluefin tuna and
albacore. Nowadays, such traps are still used to harvest tuna in the Mediterranean Sea and
Japan.
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vi cooperates vi defects
(Ci = 1) (Ci = 0)

Ego cooperates
(CEgo = 1) 1 -b
Ego defects
(CEgo = 0) b 0

Table 1: Payoff to Ego given Ci and CEgo

For housekeeping purposes, let the variable Ci denote the strategy played by
actor vi, where Ci = 1 if and only if vi cooperates, and Ci = 0 if and only if vi
defects. In order to support cooperation in the first round, all actors begin with
the optimistic assumption that all other players will cooperate (such that p(i) =
1 for all actors).

Given any set of probabilities p(i), Ego may now estimate her expected pay-
offs given her own strategy CEgo. Note that for a particular alter vi, Ego will
receive payoffs as summarized in table 1.

From Ego’s point of view, vi will cooperate with probability p(i), and defect
with probability 1 − p(i). Thus, Ego’s expected payoff for a particular alter is:

PEgo =
{

p (i)−b (1− p (i)) if CEgo = 1.
b · p (i) if CEgo = 0.

Across all of Ego’s k network neighbors, it follows that Ego’s expected payoff is:

PEgo =
{ ∑k

i=1 p (i)−b (1− p (i)) if CEgo = 1.∑k
i=1 b · p (i) if CEgo = 0.

Given these expected payoffs, how does Ego choose a strategy? She begins by
considering two key values: her expected payoff if she cooperates (the expected
benefit of cooperation, or EBC), and the difference between the expected benefits
of defection and the expected benefits of cooperation (the marginal benefit of
defection, or MBD). Ego is then assumed to choose a strategy according to the
following decision rules:

1. If the marginal benefit of defection is zero or less, then Ego will cooperate.

2. If the marginal benefit of defection is positive, and the expected benefits of
cooperation are zero or negative, then Ego will defect.

3. If the marginal benefit of defection is positive and the expected benefits of
cooperation are positive, then Ego will defect with probability proportional
to the marginal benefit of defection.

These decision rules imply that if Ego is in a position to choose between coopera-
tion and defection, there is always some possibility of cooperation. On the other
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hand, this probability shrinks as the benefits of defection increasingly outweigh
the benefits of cooperation. In particular, we assume that the probability that
Ego chooses cooperation, or pEgo, is exponentially decreasing in the size of the
marginal benefit of defection:

pEgo ∝ 1
eBEgo

, where BEgo = Ego’s marginal benefit of defection.

In choosing a precise functional form for pEgo, it is useful to note that a long
line of research has shown that observed behaviors—both in the field and in
controlled experimental settings—deviate greatly from theoretical expectations
in contexts outside of highly competitive markets. While individuals commonly
choose strategies below social optimums, one generally observes substantially
more cooperation than predicted by Nash equilibrium. Thus, we introduce into
the model a mechanism through which cooperation is possible even if such a
choice involves a strategy dominated in substantive payoffs (that is, when b >
1).

In particular, let a∈[0,1] be an exogenously-fixed, global model parameter
that reflects an inherent preference for cooperation (‘a’ is chosen for ‘altruism’).
In this model, smaller values of a reflect greater self-interest and larger values
of a capture stronger preferences for cooperation versus defection. A parameter
value of a = 1 reflects the (very rare) situation where all actors are unconditional
cooperators.

Given a, Ego chooses cooperation according to the function:

pEgo = 1
eBEgo(1−a) .

Larger values of a therefore have the effect of shrinking the perceived marginal
benefit of defection—since a may be no greater than 1, it follows that altruism
cannot change dominant strategies, but it can shrink the perceived differences
between payoffs based on defection versus cooperation.

This functional form implies a few principles of cooperation that are reflected
in the model. Of course, these principles reflect contestable hypotheses that
should be tested in field and/or experimental work, however in general these
principles are consistent with empirical research on collective action:

1. The probability of cooperation is never zero. Even though actors may not
have an inherent preference for cooperation, there is always some non-
zero possibility that a strictly rational actor (with parameter a = 0) will
still cooperate. This reflects the notion that we are dealing with stochastic,
rather than deterministic, strategic decisions (Selten 1975).

2. In cases where the expected payoffs from defection equal the expected pay-
offs from cooperation, actors will always choose cooperation. This idea is
reflected in the property that pEgo = 1 when the marginal cost of defec-
tion is zero (when BEgo = 0). While in practice this may be a rare phe-
nomenon, it has important theoretical implications. All else being equal,
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actors are likely to prefer cooperative strategies as they tend to result in
more socially-desirable outcomes, and because they bring additional bene-
fits (in the form of reputation, trust, and social capital) to individual actors.
This may also reflect the Hobbesian notion that humans are more averse
to exploitation than they are prone to exploit others—thus, all else being
equal they will prefer defensive strategies motivated by fear rather than
outright exploitation motivated by greed (Kliemt 2005).

3. Even altruistic agents are likely to defect when the expected marginal ben-
efit of defection is large. While the probability of cooperation decreases
exponentially in BEgo, BEgo decreases only linearly in a. Thus, while al-
truism may be a powerful force behind cooperation, even highly altruistic
actors will seek to protect themselves when surrounded by frequent defec-
tors. Alternatively, even altruistic agents may be tempted to defect when
the benefits of defection are very high.

2.4 The Co-evolution of Networks and Cooperation
In this model, players are allowed to dynamically rewire their network; thus,
the set of actors with whom any particular Ego interacts may not be static over
time. Network rewiring gives individual players greater control over their well-
being in competitive situations. Individual actors are assumed to maximize their
individual well-being by abandoning unproductive relationships for others that
hold greater promise for beneficial outcomes. In other words, actors have the
opportunity to adjust the set of actors they ‘play the game with’ as the model
progresses, which may yield results that deviate from theoretical expectations
where interactions are fixed.

The network rewiring process is as follows: At each time step, every actor as-
sesses their network linkages and independently decides whether each linkage
is to be rewired. Specifically, the probability that Ego will rewire their linkage
with a given actor (say, actor vi) is given by REgo(i), where

REgo (i)=maximum
{

L, 1−WEgo,1− p (i)
}
.

In this formula, L is a fixed model parameter representing the elasticity of the
network. Network elasticity L ranges from 0 to 1, and gives a minimum proba-
bility that any particular tie will be rewired. For example, setting elasticity to
1 will force all linkages to be rewired at each time step, whereas a small value
(say, elasticity = 0.05) will ensure that all linkages are rewired with at least 5%
probability. This parameter reflects the inherent stability of relationships in the
system.

WEgo represents Ego’s well-being (in terms of net payoffs), and is defined as
the percentile score of Ego’s net payoffs as compared to others in the system.
Given the formulation for REgo, actors are more likely to rewire their local net-
work when they fall at the lower end of the distribution of net payoffs.
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The parameter p(i) is the posterior probability that vi will cooperate (as dis-
cussed above); this is also a measure of vi ’s positive reputation. Setting a mini-
mum probability of 1–p(i) for the rewiring of the link vEgovi reflects the notion
that Ego will tend to cut ties with defectors more frequently than she will cut
ties with cooperators.

When a particular linkage is terminated, it is then assigned to the actor that
made the decision to cut the link. If both actors simultaneously choose to cut
the link between them, then the linkage is assigned (uniformly at random) to
one of the two. The actor that ‘owns’ the terminated link then chooses a random
actor from the system to form a new relationship with. This process holds net-
work density constant since the total number of linkages is fixed; however, the
distribution of actor degrees may change as some actors (frequent defectors in
particular) lose linkages that they themselves did not choose to terminate.

3. Simulation Runs and Results

The model described above is used to simulate the dynamics of cooperation in
varying ecological conditions, represented by the density of networks and the
risk inherent in cooperation.

The results presented here are based on 1,000 individual simulation runs.
In each simulation an action arena was defined with n = 25 agents, and model
parameters were randomly assigned as follows: risk (parameter b) ranged from
0.5 to 1.5; network density (parameter m) ranged from 0.05 to 0.5; preferences
for altruistic behavior (parameter a) ranged from 0 to 1; and network elasticity
(parameter L) ranged from 0 to 0.1. These parameters are randomly assigned at
the beginning of each simulation run, but remain fixed throughout the course of
each simulation. Each simulation was run for 20 time periods.

An example of a single simulation is illustrated in figure 1. In this figure,
actors are represented by the circular network nodes, and interactions are rep-
resented by the linkages between nodes. The size of nodes are proportional to
the actors’ net payoffs, and the number beside each node is p(i), or the proportion
of time periods in which the corresponding actor played a cooperative strategy.
One may observe the evolution of the network structure and relative size of pay-
offs as the model progresses.

In the following sections we investigate the situations that tend to emerge
under varying conditions. We not only examine how fixed model parameters
(with a particular focus on risk and density) produce varying expectations of
wealth and cooperation, but we also take a look at the types of emergent network
structures that tend to be favored by these exogenously-fixed factors.
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Figure 1: Sample simulation over 20 time periods; expected density = 0.15; b = 1.2;
a = 0.2; elasticity = 0.1
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3.1 The Emergence of Cooperation in Varying Ecological Conditions
One of the most important outcomes of interest is the degree of cooperation that
is observed in various conditions. We operationalize agents’ overall propensity
to cooperate as the average strategy played by all players over all rounds; simi-
larly, this variable may be defined as the average cooperation shown in the final
round. Since ‘0’ is viewed as a defective strategy and ‘1’ as a cooperative strat-
egy, average cooperation will take on a value of 0 to 1, indicating the average
proportion of actors who play cooperative strategies.

Figure 2 depicts average levels of cooperation observed across all rounds,
plotted against the fixed risk parameter (b) for each simulation (left panel) and
average levels of cooperation observed across all rounds, plotted against the den-
sity of the network in each simulation (right panel). In very low-risk scenar-
ios where the benefits of cooperation outweigh the benefits of defection (when
b<1), all agents cooperate all of the time. This follows from the structure of the
model—when b<1, the marginal benefit of defection is always negative; there-
fore all agents will cooperate unconditionally. On the other hand, it is possible
that cooperation still survives in situations where b>1, and agents are facing a
classic Prisoner’s Dilemma at each time period. Indeed, figure 2 suggests a high
degree of variance in average levels of cooperation when b>1. We also find a
negative relationship between network density and average cooperation.
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Figure 2: Cooperation is possible when b > 1
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Time series data were recorded for each simulation, allowing us to examine the
proportion of actors who cooperate at each time step. To better understand the
role of risk and network density in cooperative behavior when actors face Pris-
oner’s Dilemma games (b>1), figure 3 depicts the average levels of cooperation
across all actors at each time step for four basic scenarios: high and low levels
of risk (but where b>1 in any case), and high and low levels of network density.
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Figure 3: Evolution of cooperation when risk and network density are high/low

Figure 3 demonstrates a clear pattern linking risk and network density to coop-
eration—controlling for network density, higher levels of risk lead to lower lev-
els of average cooperation over the 20 time periods studied here. This is an
unsurprising result, and follows simply from the fact that all agents perceive
larger marginal benefits of defection as b increases. On the other hand, lower
densities tend to support higher levels of cooperation controlling for risk. This is
because actors perceive smaller marginal benefits of defection when they have
fewer network partners, thereby increasing incentives to cooperate. The result
is that cooperative behavior is almost never observed when both risk and density
are high (lower-right quadrant of figure 3), however high-density and high-risk
scenarios may both support moderate levels of cooperation even when the other
parameter is very large.

These results are further supported by a set of Tobit regression models, sum-
marized in table 2. Here we model average levels of cooperation over all time
periods (estimation 1), average wealth over all time periods (estimation 2) and
the cumulated standard deviation of wealth (estimation 3) as a function of fixed
simulation parameters.
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(1) (2) (3)
Average

cooperation
in 20 rounds

Average
wealth in 20

rounds

Cumulated
standard

deviation of
wealth

Risk (b) -1.125*** 40.06*** -0.252
(0.148) (10.30) (2.520)

Altruism (a) 0.714*** -5.995* 4.761***
(0.0328) (3.125) (0.699)

Network density (m) -2.030*** 267.1*** 1.741
(0.599) (40.61) (10.03)

Risk * Network density 0.626 -184.2*** 5.875
(0.476) (31.43) (7.564)

Clustering increase 0.124 11.44 7.943***
(0.120) (8.247) (1.948)

Elasticity -0.279 25.48 -4.604
(0.326) (21.53) (5.081)

Avg. coop 15.91*** 12.19***
(5.424) (1.159)

Std. wealth 2.872***
(0.142)

Avg. wealth 0.168***
(0.00825)

Constant 1.692*** -76.08*** -1.148
(0.191) (13.81) (3.446)

Observations 494 494 494
Left censored 12 46 12
Right censored 4 - -
Log likelihood 73.89 -1814 -1258
Chi-squared 581.6 1090 1280
Notes: Robust standard errors clustered for each simulation run in
parentheses; *** p<0.01, ** p<0.05, * p<0.1

Table 2: Cooperation, wealth and standard deviation of wealth as a function of simulation
parameters when b > 1



142 Adam Douglas Henry and Björn Vollan

The model parameters representing ecological factors—network density and risk
of cooperation—both have a significant negative influence on average levels of
cooperation. These results are consistent with the observations above, but also
show that cooperation decreases as both risk and network density increase, even
controlling for other factors such as actors’ inherent preference for cooperation
(or altruism, model parameter a) and interaction effects across simulation pa-
rameters. While altruism has a strong positive influence on cooperation (as ex-
pected), network elasticity has no significant effect—thus, these results appear
to be robust even to small degrees of random mutations that are introduced
in the network structures. The interaction effect of risk and network density
is positive and insignificant, which suggests that there is no reinforcing effect
of high risk and high density even though both effects are strong independent
predictors for average cooperation over 20 rounds.

3.2 Societal Wealth
It makes sense that higher levels of cooperation would promote greater societal
wealth, operationalized here as the average net payoffs for all actors across all
20 time periods. In fact, we observe high levels of variance in societal wealth
even when cooperation is high (see figure 4). This suggests the need to exam-
ine the relative influence of various factors in providing more or less desirable
outcomes, controlling for overall levels of cooperation.

Table 2 also presents the results of a Tobit regression model predicting soci-
etal wealth (estimation 2). The model demonstrates that, controlling for average
cooperation levels and the distribution of wealth, the total payoffs observed are
strongly determined by both network density as well as risk. However, when
controlling for cooperation levels, risk and network density are both positively
related to wealth. This indicates that, for constant average cooperation levels,
high risk and high networks generate higher wealth—this is most likely due to
higher benefits of defection combined with the possibility of finding enough link-
ages. The significantly negative interaction effect between these two variables
suggests that when both risk and density are high, societal payoffs do increase in
absolute terms (123= 40+267−184) compared to situations with high risk and
low networks density (40), low risk and low network density (0) but decreases
relative to a situation with high network and low risk (267).2

Interestingly, neither risk nor network density account for inequality of wealth
once we control for average cooperation and average wealth (table 2, estimation
3). We find that higher levels of altruism increase inequality, possibly since
actors cooperate unconditionally and are thus willing to incur losses for them-
selves.

2 When further subtracting the constant (-76) from the coefficients one can see that wealth is ac-
tually decreasing in situations with high risk and low networks density (40−76 = −36) and in
situations with low risk and low network density (0−76=−76).
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Figure 4: Total accumulated wealth varies even when cooperation is high

3.3 Favored Network Structures
These preliminary model runs also reveal some useful insights regarding the
evolution of networks and cooperative dynamics. For a given simulation, the
variable clustering increase represents the change in actors’ average clustering
coefficient between the initial and final time periods—a single actor’s clustering
coefficient is the proportion of linkages that exist between the actor’s network
neighbors. Higher clustering coefficients reflect more redundant, transitive re-
lationships in the network, which are hypothesized to support legitimacy and
trust within dyadic relationships (Berardo and Scholz 2010; Henry and Dietz
2011; Henry et al. 2011). Thus, positive values of clustering increase indicate
scenarios where networks have become more clustered as the simulation pro-
gresses.

While this model assumes that actors will terminate linkages with higher
probability if these links appear to correlate with negative well-being, agents
are also not assumed to follow any explicit calculus (other than random selec-
tion) in choosing new network linkages. One the one hand, this assumption does
lack some realism. It stands to reason that agents would use their informa-
tion about other players’ cooperative history to find other network partners that
will be more likely to cooperate in future rounds. On the other hand, random
rewiring of the network allows for a simpler model but also poses a conservative
standard for network evolution. Under an assumption of random rewiring, it
is likely that whatever network characteristics emerge over time are a result of
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agents’ increased well-being, and not because they reflect specific (and poten-
tially artificial) preferences that are programmed into the model.

What network structures do we expect will be ‘learned’ over time? Berardo
and Scholz (2010) advance the Risk Hypothesis, that actors engaged in games
where there is a high risk of defection (i.e., large b parameters) will seek out
transitive, clustered relationships. Indeed, we do see a positive effect of cluster-
ing increase in all three models in table 2; this suggests that actors who develop
higher levels of clustering do tend to be better off in the sense that cooperation
is more likely and more societal wealth is generated. However, additional re-
search is needed to understand the co-evolving relationships between network
structure and cooperation, and how these relations are conditional upon exoge-
nous contextual factors. Given these initial results, it may be that agents would
learn to form clustered networks with higher probability if the number of itera-
tions were to be substantially increased.

The implications for network evolution are clearer in low-risk scenarios. As
noted above, cooperation is always dominant when b < 1. While societal wealth
varies when b < 1, this outcome is completely determined by density (correla-
tion = 1.0). This makes sense, given that actors always cooperate under these
conditions—thus, payoffs are always proportional to the number of individuals
in one’s network. The more interactions one has, the more they will gain. Thus
it follows that the worse-off actors will be those with relatively few network
links; they will tend to rewire their linkages with higher probability and will
ultimately seek (if allowed to learn optimal strategies) network positions with
higher levels of centrality.

4. Conclusion

With the pioneering work of Elinor Ostrom (1990), scholars have worked to de-
velop a predictive theory of successful commons governance. While Ostrom’s ear-
lier work emphasized certain design principles that characterize the governance
system as well as the attributes of the resource users, more recent frameworks
have focused on both the social and the ecological system (Ostrom 2007). How-
ever, empirical work often does not allow for strong causal inferences regarding
the effect of ecological factors on cooperation. This paper contributes to a small
but growing body of research that links exogenous ecological factors (that we
assume influence networks of interaction and risk) with cooperation in a social
dilemma situation. We defined two major influences of ecology on cooperation
and tested their influence on cooperation and resulting societal wealth.

Table 3 summarizes our main results: The best situations seem to be low-risk
scenarios coupled with low-density networks. This is the case of small communi-
ties with secure access rights harvesting a fast growing resource. When network
density increases and risk remains low, ceteris paribus cooperation rates drop to
an intermediate level but wealth increases. Thus, it seems that people are coop-
erating too much in the low-risk, low-density scenario. When a community has
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Low network density High network density
Intermediate level of

Low risk High cooperation (60%) cooperation (31%)
and high wealth (30) and high wealth (39)
Intermediate level of

High risk cooperation (29%) Low cooperation (7%)
and low wealth (7) and low wealth (8)

Table 3: Classification of our main results based on mean values and thresholds used in
figure 3

low network density but faces a high risk of resource extraction, cooperation is
at intermediate levels and wealth is low. Thus, lower network densities may
support cooperation despite the risk; however, in these situations cooperators
are not able to generate large amounts of societal wealth because they have rel-
atively few opportunities to interact with others. Finally, high-risk, high-density
cases have both low cooperation levels and low wealth. When taking societal
wealth as an evaluative criterion, our result suggests that network density mat-
ters less compared with riskiness of cooperation. Our findings underscore the
importance of sustaining cooperation in high-stakes commons governance sce-
narios.

These results suggest a number of future research directions. First and fore-
most, the simulation results presented here yield plausible hypotheses regard-
ing expected cooperation levels that will be observed under varying ecological
conditions. Testing these hypotheses in the field is an important direction for
future research. At the same time, empirical work is needed to link environmen-
tal factors, including characteristics of the resource system, with the structure
of the game being played as well as the structure of the networks that define
opportunities for strategic interaction.

Understanding the role of evolving network structures in cooperative dynam-
ics is an emerging area of research. Our model suggests that network density
and risk interact in important ways, but further research is needed on several
counts. First, the results presented here are for relatively few time periods, and
likely represent the “burn-in” period where results at the final time step are
heavily influenced by the initial conditions. In further research it will be impor-
tant to examine the conditions under which cooperation is an evolutionary sta-
ble strategy, in the sense that cooperative strategies can survive over infinitely
many time periods (Nowak 2006). It is possible that, in the models presented
here, situations that appear to favor cooperation (such as the low-density, low-
risk scenario) will still lead to defection in the long run. Thus, our results should
be interpreted in terms of short-term trends rather than long-term equilibria—
that is, cooperation survives longer in low-density scenarios than in high-density
scenarios.



146 Adam Douglas Henry and Björn Vollan

Further research will also examine variations on the game structure, as well
as additional effects in the evolution of the network. Many variants of the game
introduced here may be examined; for example, where strategic interaction oc-
curs in the dyads (rather than a single strategy being applied to all network
neighbors) or using continuous strategies. In terms of network evolution, un-
derstanding how actors learn both efficient strategies and efficient network po-
sitions is an important area for future research—these learning dynamics are
likely to include social influence processes, where agents learn or imitate norms
of cooperative behavior from others in the system. Understanding these dynam-
ics through rigorous modeling and theoretical development will ultimately help
us to understand how institutions may be designed to effectively and sustain-
ably govern common pool resources.
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