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1 Introduction 
 

The liver is the central organ of metabolism. It serves as a filter against 

drugs and toxicants absorbed from the intestinal tract before passing to the 

systemic circulation (Michalopoulos and De Frances, 1997). 

 

1.1 Architectures of the liver 
1.1.1  External anatomy 

 
Mouse liver weighs 1.3 -1.5 g forming approximately 5-6% of the total 

body weight. It occupies the cranial third of the abdominal cavity just caudal to 

the diaphragm and surrounded by a thin capsule (Glisson’s capsule) (Piper and 

Suzanne, 2012). Similarly as for other mammals, the mouse liver is a multi-lobar 

organ. It consists of four lobes: the right, left, median and caudate lobe (Fig.1.1). 

The left lobe is the largest liver lobe in mice located at the peritoneal surface of 

the liver. However, the caudate lobe is small has two segments and located at 

the visceral surface of the liver. The right lobe is sub-divided horizontally into 

anterior and posterior portion. The median lobe has an incomplete fissure where 

the falciform ligament attaches. This fissure divides the median lobes into two 

segments where the gall is bladder located in between (Thoolen et al., 2010).  
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Fig. 1.1: Anatomy of the mouse liver. (A)The mouse liver is located just caudal to the 
diaphragm. It occupies the entire cranial third of the abdominal cavity. The mouse liver has four 
lobes: left, right, median and caudate. (B) The peritoneal surface of the mouse liver showing the 
left, right and median lobe. The gall bladder protrudes between the two segments of the median 
lobe. (C) The visceral surface of the mouse liver showing the caudate lobe in addition to the left, 
right, median lobes and the gall bladder (source: Elsevier Inc., WWW.Netterimages.com). 
 
 
 
1.1.2 The hepatic vascular system 
 

The liver receives its blood supply via two sources, the portal vein and the 

hepatic artery. The portal vein serves as a drainage system for the capillaries of 

the gastrointestinal tract, spleen and pancreas. It contributes with 75% of the 

total blood supply of the liver. However, the hepatic artery participates by the 

remaining 25% and supplies the liver with arterial blood.  Both vessels enter the 

liver through the hilus where they branch to guide the blood to the periportal 

regions of the liver lobules. From there the blood flows through the hepatic 

http://www.netterimages.com/
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sinusoids and drains into the central vein at the center of the lobule (Fig. 1.2). 

The central veins collect into hepatic veins which leave the liver and drain into 

the inferior vena cava (Vollmer and Menger, 2009; Hoehme et al., 2010).  

 

Fig. 1.2: The hepatic blood supply. Both the portal vein and the hepatic artery enter the liver at 
the hilus, the site where the bile duct leaves the liver (arrows). The blood flows through the 
hepatic sinusoids from the periportal to the pericentral region of the liver lobule. Then it drains into 
the central veins which collect into the liver vein. The liver veins finally drain into the caudal vena 
cava (Source: jw1.nwnu.edu.cn/jpkc/ jwc/2009jpkc/rtkx/jp.htm). 

 

 

 

 

http://jw1.nwnu.edu.cn/jpkc/jwc/2009jpkc/rtkx/jp.htm
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1.1.3 Cellular composition of the liver and heterogeneity along 
the porto-central axis of the liver lobule 

 
The liver involves both parenchymal (hepatocytes) and non parenchymal 

cells. The integration of these cells allows the liver to fulfill a wide variety of 

functions (Saxena and Theise, 2004).  

 

1.1.3.1 Hepatocytes 

 
Hepatocytes (parenchymal cells) are polygonal epithelial cells. They are 

arranged in plate like cords separated by the adjacent sinusoids. They are the 

most predominant cell type of the liver, accounting for about 60-65% of the total 

cell number and about 80% of liver mass. The average diameter is 25-30µm. 

About 25% of hepatocytes are binucleated (Weibel et al., 1969; MacSween and 

Scothorne, 1994; Desmet, 2001). Hepatocytes are polarized epithelial cells 

having basal, apical and lateral surfaces. The basal surface faces the sinusoidal 

endothelium and has microvilli to increase the surface area for exchange of 

materials between hepatocytes and the blood. The apical surface faces the 

adjacent hepatocytes and forms the bile canaliculi. It has microvilli to increase 

the surface area for bile secretion (Cardell and Cardell, 1997). There is a small 

discrepancy between the periportal and pericentral hepatocytes regarding the 

cell volume. Drochmans et al. (1975) reported a difference ranging from 3800-

4800µm3 for periportal and perivenous hepatocytes, respectively.  

 

1.1.3.2 Sinusoids 

 
Hepatic sinusoids are unique micro-vascular structures. They are formed of 

fenestrated endothelial cells, macrophages (Kupffer cells), lymphocytes and 

stellate cells (table 1.1). Sinusoidal cells account for about 30-40% of the total 

cell number and approximately 6.3% of the liver mass (Bioulac-Sage et al., 

1990). 
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1.1.3.2.1 Endothelial cells 
 
Endothelial cells account for 15-20% of the total liver cells and 2.8% of liver 

volume (Kuntz and Kuntz, 2006). They are flat fenestrated cells lacking the 

basement membrane. They function as a filter that controls the exchange of 

materials between the blood and hepatocytes (Schuppan et al., 1998). The 

fenestrae of endothelial cells exhibit heterogeneity along the porto-central axis of 

the liver lobule. The fenestrae at the periportal area are larger in size, fewer in 

number and less porous in comparison to the pericentral area of the liver lobule 

(Wisse et al., 1985; Vidal-Vanaclocha and Barbera, 1985). 

 

1.1.3.2.2 Kupffer cells 
 

Kupffer cells constitute about 8-12% of the total liver cells and 2.1% of the 

liver volume. Although phagocytosis was reported to be higher in the pericentral 

area of the liver lobule, the number of Kupffer cells is higher in the periportal area 

(Bouwens et al., 1986; Lough et al., 1987; Te Koppele and Thurman, 1990). 

 

1.1.3.2.3 Ito Cells 
 

Ito cells are also known as fat-storing cells, hepatic stellate cells or 

lipocytes. They count about 3-8% of the total liver cells and 1.4% of the liver 

mass. They lie in the space of Disse with a higher frequency in the periportal 

area of the liver lobule. They function as storage for vitamin A. They are 

considered as a source of the hepatocyte growth factor (HGF) and the 

transforming growth factor beta (TGF-β) (Wake, 1974; Burt, 1999; Stockert and 

Wolkoff, 2001).  

 

1.1.3.2.4 Liver-associated lymphocytes 
 

Different types of liver associated lymphocytes have been described 

including granular lymphocytes (Pit cells). Pit cells are natural killer cells showing 
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a lower frequency compared to Kupffer cells. They play a role in defence against 

tumors and viruses (Nakatani et al., 2004). 

 
Table 1.1: The cellular composition of the liver and the heterogeneity along the porto-
central axis of the liver lobule (source: modified from Gebhardt, 1992b) 
 

Lobular heterogeneity 
Cell type 

Cell 
number 

(%) 

Cell 
volume 

(%) Periportal Pericentral 

 

Hepatocytes 

Endothelial cells 

Kupffer cells 

Ito cells 

Pit cells 

 

60-65 

15-20 

8-12 

3-8 

<2 

 

80 

2.8 

2.1 

1.4 

- 

 

- 

Larger in size 

Higher in number 

Higher in number 

Not known 

 

- 

More porous, higher in number 

More phagocytic activity 

 

Not known 

 
 
1.2 Metabolic zonation of the liver 
1.2.1 Metabolic zones of the liver lobule 
 
 

Metabolic zonation is a characteristic phenomenon for the site specific 

function of liver cells. Hepatocytes display different metabolic functions according 

to their position along the porto-central axis of the liver lobule. There are two well 

known metabolic zones in the liver lobule, the periportal and the pericentral zone 

(Fig. 1.3). The periportal zone (zone1) involves hepatocytes close to the hepatic 

blood inflow around the portal triad. The pericentral (perivenous zone, zone3) 

involves hepatocytes close to the central veins. In addition, there is a less-

defined midlobular population of hepatocytes (zone2) (Jungermann and 

Kietzmann, 1996; Braeuning et al., 2006). 
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Fig.1.3: The structure and the metabolic zonation of the liver lobule. (A) Three dimensional 
structure of the liver lobule (source: Hoehme et al., 2010). The liver lobule is formed of a central 
vein surrounded by hepatocyte plates separated by sinusoids.  At the portal area, a branch of the 
portal vein and the hepatic artery enter the liver lobule and a branch of the bile duct leaves. (B) 
Metabolic zonation of the liver lobule (source: www.Quizlet.com). Three metabolic zones can be 
defined in the liver lobule: (i) Zone 1, the periportal hepatocytes, involves hepatocytes 
surrounding the portal triad. (ii) Zone 3, the pericentral hepatocytes, involves hepatocytes 
surrounding the central vein. (iii) Zone 2, involves hepatocytes between zones 1 and 3. 

 
 

1.2.2 Types of metabolic zonation of the liver 
 

There are two types of metabolic zonation in the liver, the gradient and the 

compartment zonation. In the gradient type, there is a heterogeneous expression 

http://www.quizlet.com/
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of a certain metabolic process in all hepatocytes in a gradient manner. For 

example, the gluconeogenesis process shows a periportal to pericentral gradient 

of activity. In contrast, cholesterol7α-hydroxylase in lipid metabolism shows a 

pericentral to periportal gradient of activity. The most important feature of 

gradient zonation is the dynamic adaptation, i.e. if there is defect of the periportal 

hepatocytes the pericentral hepatocytes show a compensatory response and 

vise versa (Gebhardt and Gaunitz, 1997). In the compartment type of zonation a 

certain metabolic process is restricted to a certain region of the liver lobule 

without compensation even when the critical region is damaged (static). The best 

example for the compartment zonation is ammonia detoxification. Carbamoyl 

phosphate synthetase (CPS1), the rate limiting enzyme of the urea cycle, is only 

expressed in the periportal area of the liver lobule. In contrast, glutamine 

synthetase is restricted to 1-3 layers of the pericentral hepatocytes (Gebhardt, 

1992b; Colnot and Perret, 2011).  

 
1.2.3  Regulation of metabolic zonation of the liver 
 

There are several hypotheses to explain the metabolic zonation in the 

liver: 

 

1.2.3.1 The porto-central direction of the blood flow 
 

The liver lobule receives its blood supply at the portal area through 

branches of the portal vein and the hepatic artery. The blood then flows through 

sinusoids and drains into the central vein. The concentration of substances, 

hormones and oxygen is usually highest at the periportal area of the liver lobule 

and decreases in a gradient manner towards the pericentral hepatocytes 

(Fig.1.4). Thus, according to the position of hepatocytes along the porto-central 

axis of the liver lobule, they are exposed to different microenvironments 

(Kietzmann and Jungermann, 1997). This model might explain the gradient type 

of zonation as in carbohydrate metabolism (Colnot and Perret, 2011). 
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Fig. 1.4: The porto-central direction of the blood flow. The liver lobule receives its blood 
supply at the portal area through a branch of the portal vein and the hepatic artery. Then the 
blood flows through sinusoids (shown in red) and drains into the central vein. In contrast, the bile 
flows in the opposite direction (green) and leaves the liver lobule at the portal triad. The 
concentration of oxygen decreases in a gradient manner from the periportal to the pericentral 
hepatocytes (source: Colnot and Perret, 2011). 

 

 

1.2.3.2 Cell-cell interaction 
 
This phenomenon is very obvious in glutamine synthetase positive 

hepatocytes which are restricted to one to three layers of hepatocytes around the 

central vein. These hepatocytes need to be in contact with the central vein to 

express glutamine synthetase. This suggests that there is a cross talk between 

these hepatocytes and the endothelial cells lining the central vein (Kuo et al., 

1991; Gebhardt, 1992a). 

 

1.2.3.3 Transcriptional regulation 
 

Wnt/β-catenin has been proven to be the master regulator of the genetic 

program and metabolic zonation of the liver. This comes after the discovery that 

glutamine synthetase is a direct target of β-catenin (Cadoret et al., 2002; 

Nicholes et al., 2002; Loeppen et al., 2002). Benhamouche et al. (2006) reported 

that there is complementary localization of the unphosphorylated β-catenin (the 

active form of β–catenin) in the perivenous hepatocytes and the adenomatous 

polyposis coli (APC) in periportal hepatocytes as a negative regulator. APC 



1 Introduction 
 

 10 

knock out or over expression of β-catenin forces the perivenous genetic program 

throughout the whole liver. However, blocking the Wnt/ β-catenin pathway forces 

the periportal genetic program throughout the whole liver lobule (Fig.1.5) 

 

 

Fig. 1.5: Wnt/β-catenin is the master regulator of metabolic zonation of the liver. (A) there is 
a complementary distribution between the active β-catenin in the pericental hepatocytes (PC) and 
the adenomatous polyposis coli (APC) in periportal hepatocytes (PP). (B) Activation of β-catenin, 
mediated by APC knock out (APC KO) forces the pericentral genetic program throughout the 
whole liver lobule (perivenous like liver). (C) β-catenin knouck out (β-catenin KO) allows the 
expression of the periportal genetic program throughout the whole liver lobule (periportal like 
liver) (source: Benhamouche et al., 2006; Torre et al., 2011). 
 
 
 
1.3 Metabolic function of the liver 
 

The strategic position of the liver allows maintaining the metabolic 

homeostasis throughout the body. The liver receives absorbed substances from 

the intestinal tract via the portal vein and delivers metabolized harmless products 

to other body organs via the hepatic vein (Michalopoulos and De Frances, 1997; 

Michalopoulos, 2007). 

 

1.3.1 Protein metabolism and ammonia detoxification 
 

Ammonia metabolism is an obvious example for the compartment 

zonation of the liver. Ammonia is detoxified in the liver through the urea cycle and 

the glutamine synthetase reactions (Haussinger et al., 1992).  
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1.3.1.1 Sources of ammonia  
 

About 40% of ammonia is generated by the intestine from nitrogenous 

substances by the action of bacterial ureases and amino acid oxidases. The 

remaining 60% is derived from the metabolism of glutamine and the 

transamination of the other amino acids (Lemberg and Fernandez, 2009). Within 

the liver, ammonia is generated through the glutaminase and trans-deamination 

reactions. Both occur in the periportal hepatocytes. Glutaminase degrades the 

circulating glutamine into ammonia and glutamate (Haussinger, 1983; Gebhardt 

et al., 1988). Transamination reactions help to collect the amino group from most 

of amino acids in the form of glutamate (Fig.1.7). Then the glutamate is 

deaminated by the action of the glutamate dehydrogenase to form ammonia and 

α-ketoglutarate (Christen and Metzler, 1985). 

 

1.3.1.2 The role of the urea cycle in ammonia detoxification 
 

The urea cycle is a high capacity low affinity system for ammonia 

detoxification. It is restricted to the periportal hepatocytes. It involves five 

enzymatic steps and ends with the production of urea (Fig.1.6). The urea cycle 

provides a permanent pathway for ammonia detoxification (Haussinger et al., 

1992 and Rodés et al., 2007). Carbamoyl phosphate synthetase1 (CPS1), the 

enzyme which catalyzes the first step in the urea cycle, is considered to be the 

rate limiting enzyme for the urea cycle. CPS1 is expressed in approximately 93% 

of the liver parenchyma (Gaasbeek Janzen et al., 1984; Gebhardt, 1992b).  
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Fig. 1.6: Urea cycle and reactions that produce ammonia. There are two sources of ammonia 
in the periportal hepatocytes: (i) the glutaminase enzyme which degrades glutamine into 
ammonia and glutamate and (ii) the glutamate dehydrogenase enzyme which catalyzes the 
oxidative deamination of glutamate into ammonia and α-ketoglutarate. Ammonia is then passed 
to the urea cycle. The urea cycle involves five enzymatic steps: (i) carbamoyl phosphate 
synthetase 1 (CPS1) which catalyzes the formation of carbamoyl phosphate from ammonia and 
bicarbonate. (ii) Ornithine transcarbamoylase (OTC) catalyzes the formation of citrulline from 
ornithine and carbamoyl phosphate. Both CPS1 and OTC reaction occur in the mitochondria 
whereas, the subsequent three reactions occur in the cytoplasm. (iii) Argininosuccinate 
synthetase1 (ASS1) catalyzes the formation of agininosuccinate from citrulline and aspartate. (iv) 
Argininosuccinate lyase (ASL) degrades the agininosuccinate into arginine and fumarate. (v) 
Arginase1 (Arg1) forms urea and ornithine from arginine (Source: Lehninger Principles of 
Biochemistry, 2008).  
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1.3.1.3 The role of glutamine synthetase in ammonia detoxification 
 

Glutamine synthetase (GS) is a low capacity high affinity system for 

ammonia detoxification. It temporarily detoxifies ammonia in the form of 

glutamine (Häussinger and Gerok, 1983). GS is restricted to the pericentral 

hepatocytes occupying approximately 7% of the liver parenchyma (Gebhardt et 

al., 2007). The anatomical localization of GS after the urea cycle allows it to act 

as a scavenger for ammonia that escapes the urea cycle (Häussinger, 1990). 

 

1.3.2 Carbohydrate metabolism 
 

The liver shows a zonated glucose metabolism. The gluconeogenesis 

process is mostly periportal, whereas the glycolysis process is mostly pericentral. 

Enzymes that are involved in gluconeogenic reactions, such as glucose-6-

phosphatase, fructose-1,6-biphosphatase and phosphoenolpyruvate 

carboxykinase predominate in the periportal area. In contrast, enzymes that are 

involved in glycolysis reactions such as glucokinase and pyruvate kinase are 

higher expressed in the pericentral area of the liver lobule (Katz et al., 1977). In 

contrast to proteins, carbohydrate metabolism is a gradient type of zonation. To 

maintain the homeostasis of the blood glucose level, adaptation changes can 

happen according to the nutritional status. During starvation, the liver adapts by 

expansion of the gluconeogenetic region on the expense of the glycolytic area 

and vise versa (Jungermann, 1986; Gebhardt, 1992b). 

 

1.3.3 Metabolism of drugs and xenobiotics 
 

The liver is an effective barrier preventing toxicants from passing to the 

systemic circulation. Drugs and xenobiotics are converted in the liver to an easily 

excreted compound through two phases: (I) Phase I, in which a basic structural 

alteration happens in the drug molecule either by oxidation, reduction or 

hydrolysis. (II) Phase II, in which a water soluble moiety is attached to the drug 

molecule through a process termed conjugation (Williams et al., 2003). Phase I is 

catalyzed by cytochrome P450 enzymes. Whereas, the conjugation reactions 
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(phase II) are catalyzed either by glutathione S-transferases, sulphotransferases, 

N-acetyltransferases or UDP-glucuronoyl transferases (Park et al., 2005; 

Parkinson and Ogilvie, 2008). The metabolism of drugs and xenobiotics also 

shows a well-defined zonation, occurring mostly in the pericentral hepatocytes 

(Colnot and Perret, 2011). CYP2E1 and CYP1A2, which are important drug 

metabolizing enzymes, show a restricted pericentral zonation (Apte et al., 2009; 

Torre et al., 2011). In phase II, glucuronidation occurs in the pericentral 

hepatocytes. Incontrast, sulfation is predominant in the periportal hepatocytes 

(Jungermann and Kietzmann, 1996). 

 

1.3.4 Lipid metabolism 
 

The liver is also the center of lipid metabolism including lipogenesis, β-

oxidation, ketogenesis, cholesterol biosynthesis and lipoprotein metabolism. The 

zonation of lipid metabolism is not clear in liver (Jungermann and Katz, 1989). 

 

1.3.5 Bile formation and secretion 
 

The metabolism of bile acids, bilirubin and glutathione displays a well 

defined zonation. Cholesterol 7α-hydroxylase, involved in bile acid synthesis, is 

highly expressed in the pericentral hepatocytes (Ugele et al, 1991). UDP-

glucuronyl transferase, the enzyme responsible for the conjugation of bilirubin to 

glucuronic acid, shows predominantly a pericentral activity (Ullrich et al., 1984). 

Glutathione-S-transferases and glutathione peroxidases catalyze the antioxidant 

reactions of glutathione. Glutathione-S-transferases display predominantly a 

pericentral activity. In contrast, glutathione peroxidases display predominantly a 

periportal activity (Kera et al., 1987).  

 

1.4 Liver damage and regeneration 
1.4.1 Selective zonal necrosis of the liver lobule by CCl4 

Carbon tetrachloride (CCl4) is one of the hepatotoxic agents which require 

metabolic activation in the liver. The major drug metabolizing enzyme of CCl4 is 
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cytochrome P4502E1 (CYP2E1) (Gruebele et al., 1996). CCl4 is metabolized by 

CYP2E1 to the trichloromethyl (CCl3*) radical (Fig.1.7) (Slater, 1966). In 

presence of oxygen, the CCl3* radical is further metabolized to trichloromethyl 

peroxy (CCl3OO*) radical (Connor et al., 1986; Lutz et al., 2003). These free 

radicals can react with polyunsaturated fatty acids of the membrane of 

hepatocytes leading to lipid peroxidation and consequently cell necrosis 

(Recknagel and Glende, 1973; Recknagel et al., 1989). CCl4 intoxication 

selectively kills the pericentral hepatocytes. This is due to the restricted zonation 

of CYP2E1 to the pericentral region of the liver lobule which corresponds for 

approximately 40% of the entire liver mass (Hoehme et al., 2007; 2010). 

 

 
 

 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.7: Metabolic activation of carbon tetrachloride (CCl4). CCl4 is metabolized by 
cytochrome P450 2E1 (CYP2E1) to the trichloromethyl radical (CCl3*). In the presence 
of oxygen, the CCl3* radical is further metabolized to the trichloromethyl peroxy radical 
(CCl3OO*). 
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1.4.2 Liver regeneration 
 

Due to critical functions of the liver, particularly the metabolic 

homeostasis, a rapid well-orchestrated regeneration process is essential after 

liver injury (Taub, 2004; Michalopoulos and DeFrances, 2005). Normally the adult 

liver represents a non proliferating organ. The proliferation rate of hepatocytes is 

less than 1% in normal liver (Fausto and webber, 1994; Taub, 2004). In contrast, 

the liver has the capacity to fully regenerate after loss of its mass (Michalopoulos 

and DeFrances, 1997; Taub, 2004; Michalopoulos, 2007). The regenerative 

response of the liver differs according to the type of injury and the duration of 

exposure. A single injection of 1.6 g/kg CCl4 leads to selective pericentral 

damage of the liver lobule. In this case, the periportal hepatocytes proliferate and 

the dead cell area is fully restored within six days in mice (Hoehme et al., 2007; 

2010). However, after chronic exposure to CCl4 the liver regenerates with scar 

formation leading to liver cirrhosis (Michalopoulos and DeFrances, 2005). In 

contrast to the selective zonal necrosis of the liver lobule induced by CCl4, whole 

liver lobes are removed in case of partial hepatectomy. In this model of liver 

regeneration three lobes of the liver are surgically removed (70% of the liver 

mass). Under these conditions, the remaining liver lobes increase in size to 

restore the original liver mass within five to seven days (Higgins and Anderson, 

1931; Michalopoulos and DeFrances, 2005). At the cellular level all hepatic cells 

cooperate after liver injury to restore the lost tissue (Fig.1.8). After liver injury 

some endotoxins like lipopolysaccharide (LPS) travel to the liver through the 

portal vein (Taub, 2004; Michalopoulos and DeFrances, 2005). This stimulates 

the production of cytokines, like tumor necrosis factor alpha (TNF-α) and 

interleukin 6 (IL6) from stellate and Kupffer cells. These cytokines activate 

downstream signals which guide hepatocytes to pass the restriction point at the 

G1-phase of the cell cycle. Various growth factors, especially HGF, EGF and 

TGF-α, then allow the progression of hepatocytes through the cell cycle 

(Michalopoulos and DeFrances, 1997; Taub, 2004; Fausto et al., 2006, Bohm et 

al., 2010). Liver regeneration is controlled by the liver size. Once the liver 
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reaches the appropriate liver body weight ratio, termination of liver regeneration 

occurs (Michalopoulos and De Frances, 1997). The transforming growth factor 

beta (TGF-β) is the main terminator of liver regeneration (Campbell et al., 2001; 

Taub, 2004). 

 

Fig. 1.8: Control of liver regeneration after injury. Liver regeneration is controlled by various 
cytokines and growth factors. (i) The role of cytokines: after liver injury, the gut derived 
lipopolysaccharides (LPS) are up regulated and reach the liver through the portal vein. This 
stimulates the production of the tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL6) from 
stellate and Kupffer cells. These cytokines stimulate hepatocytes to pass the restriction point at 
the G1-phase of the cell cycle. (ii) The role of growth factors: after passing the restriction point, 
cooperative signals from intra hepatic and extra hepatic tissues allow the progression of 
hepatocytes through the cell cycle. These include insulin from the pancreas, epidermal growth 
factor (EGF) from the duodenum or salivary glands, nor epinephrine from the adrenal gland, 
triodothronine (T3) from the thyroid gland and the hepatocyte growth factor (HGF) from stellate 
cells. The transforming growth factor beta (TGF-β) terminates the regeneration process when the 
liver reaches the normal size (source: Taub, 2004). 
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1.5 Aim of the work 
 
 
The most vital function of the liver is the maintenance of the metabolic 

homeostasis throughout the body. Although extensive studies on the field of liver 

regeneration are available, little is known about how the complex metabolic 

function of the liver is restored after liver injury. The aim of this study is to model 

the metabolic alterations during liver damage and regeneration after CCl4 

intoxication. The main goals are to 

· study the alteration of the metabolic function of the liver after CCl4 

intoxication 

· model ammonia detoxification during liver damage and 

regeneration 

· study the alteration of metabolic zonation during liver damage and 

regeneration 

· identify the possible compensatory mechanisms for ammonia 

detoxification during liver damage and regeneration 
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2 Materials and methods 
 
2.1 Materials 
 
2.1.1 Chemicals 

Acetic acid 
 

Carl Roth, Karlsruhe, Germany 

Adenosine diphosphate 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 
 

Adenosine 5-triphosphate disodium 
salt solution 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

Albumin 
 

Carl Roth, Karlsruhe, Germany 

Alpha-ketoglutaric acid  
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

3,3′-Amino-9-ethylcarbazole 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

Aminotriazole 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

Ammonium chloride 
 

Carl Roth, Karlsruhe, Germany 

2, 3-Butanedione monoxime  
  

Sigma-Aldrich Corp., St. Louis, MO, USA 

Calcium chloride 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

Carbon tetrachloride 
 

Carl Roth, Karlsruhe, Germany 

Citric acid monohydrate 
 

Carl Roth, Karlsruhe, Germany 

L-Citrulline 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

Collagenase 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

Collagen (rat tail) Roche diagnostics GmbH, Manheim, 
Germany 
 

Dexamethason  
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

Diaminobenzidine 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

Disodium hydrogen phosphate  Applichem GmbH, Darmstadt, Germany 
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Dulbecco´s Modified Eagle Medium 
(DMEM) 
 

PAN Biotech GmbH, Aidenbach, Germany 

N,N-Dimethylformamide 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

Eosin Y disodium salt 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

Entellan 
 

Merk, Darmstadt, Germany 

Ethanol, absolute 
 

Carl Roth, Karlsruhe, Germany 

Ethyline diamine tetra acetic acid 
disodium salt 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

EGTA 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

Fetal calf serum 
 

Biochrom AG, Berlin, Germany 

Gentamycin 
 

Invitrogen GmbH, Karlsruhe, Germany 

D-(+)- Glucose monohydrate 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

L- Glutamine 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

L- Glutamate 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

L- Glycine 
 

Carl Roth, Karlsruhe, Germany 

Goat Serum 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

Guanosine 5′-triphosphate sodium 
salt hydrate 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

HEPES 
 

Carl Roth, Karlsruhe, Germany 

Hydrochloric acid 4mol/L 
 

Carl Roth, Karlsruhe, Germany 

Hydrogen peroxide 30% 
 

Carl Roth, Karlsruhe, Germany 

Hydroxylamine-Hydrochloride 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

Iron (III)chloride 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

Imidazol Sigma-Aldrich Corp., St. Louis, MO, USA 
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Ketamin 
 

Ratio pharm, Ulm, Germany 

L-Leucine 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

L-Lysine 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

Magnesium sulfate 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

Manganese(II) chloride 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

Mayer’s  hemalum solution Merk, Darmstadt, Germany 
 

N,N-Dimethylformamide 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

N-Acetyl-L-glutamic acid 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

Nonidet P40 (NP-40) 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

O-(Carboxymethyl) hydroxylamine 
hemihydrochloride 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

L-Ornithine monohydrochloride 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

Penicillin/ streptomycin 
 

PAN Biotech GmbH 

Phenyl methyl sulfonyl fluoride  
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

Potassium chloride 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

Potassium dihydrogen phosphate 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

Phosphatase inhibitor Cocktail I and 
II 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

Protease inhibitor Cocktail Roche, Mannheim, Germany 
 

2-Propanol 
 

Carl Roth, Karlsruhe, Germany 

2,6-Pyridinedicarboxylic acid 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

Rompun 2% 
 

Bayer health care, Leverkusen, Germany 

Roti®-Histo-fix 4 % 
 

Carl Roth, Karlsruhe, Germany 
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L-Serine Sigma-Aldrich Corp., St. Louis, MO, USA 
 

Sodium chloride 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

Sodium dodecyl sulfate (SDS), ultra 
grade 
 

Carl Roth, Karlsruhe, Germany 

Sodium deoxycholate 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

Swine serum 
 

DakoCytomation, Glostrop, Denmark 

Thiosemicarbazide 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

Tris 
 

Carl Roth, Karlsruhe, Germany 

Trizma Hydrochloride 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

Tween20 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

William’s Medium E 
 

PAN Biotech GmbH 

Xylene 
 

Merk, Darmstadt, Germany 

 

2.1.2 Consumables 
 

BD Microlance™ 3- 26G 5/8 
0.45x16mm 

Becton Dickinson (BD) GmbH, Heidelberg, 
Germany 
 

Cell culture plates (6-well) Sarstedt, Numbrecht, Germany 
 

Cell scrapers Sarstedt, Numbrecht, Germany 
 

Cover slips Menzel, Braunschweig, Germany 
 

Glass spectrophotometer cuvettes Sigma-Aldrich Corp., St. Louis, MO, USA 
 

Inject – f B\Braun, Wertheim, Germany 
 

MicroAMP optical 96-well plate Applied Biosystems, California, USA 
 

Microscopic slides Thermo Scientific, Braunschweig, 
Germany 
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Pestle/micro tube (1.5ml) VWR international, Darmstadt, Germany 
 

Pipette tip Sarstedt, Numbrecht, Germany 
 

Plastibrand disposable cuvettes Brand, Wertheim, Germany 
 

QIAshredder spin column  Qiagen, Hilden, Germany 
 

Safe Seal tubes Sarstedt, Numbrecht, Germany 
 

Serological pipettes Sarstedt, Numbrecht, Germany 
 

Sterican - 0,3   x 12 – 30g x ½ B\Braun, Wertheim, Germany 
 

96-Well Assay Plate Corning Incorporated, USA  
 

 

2.1.3 Equipment 
 

ABI 7500 Fast Real-Time PCR 
System 

Applied Biosystems 
 
 

Micro Centrifuge  Kendo, Hanau, Germany 
 

Fluorescence Microscope BX41 Olympus, Hamburg, Germany 
 

Incubator Binder GmbH, Tuttlingen, Germany 
 

Microwave  Sharp Electronics (Europe) GmbH, 
Hamburg, Germany 
 

Nanodrop ND-1000 Thermo Scientific, Braunschweig, 
Germany 
 

Perfusions pump Type D0132 Fresenius Medical Care AG & Co. KGaA,  
Bad Homburg, Germany 
 

Phase contrast Microscope Nicon 
eclipse TS100 

Nikon GmbH, Dűsseldorf, Germany 

 
pH-Meter (Seven Easy) Mettler-Toledo GmbH, Gießen,, Germany 

 
Sonopuls Ultrasonic homogenizer Bandelin Electronic · GmbH & Co. KG, 

Berlin, Germany 
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Spectrophotometer V-530 Jasco, USA 
 

Water bath  GFL, Burgwedel, Germany 
 

Vortex Beyer GmbH, Dűsseldorf, Germany 
 

Micro Plate reader, infinite M200 
PRO 

Tecan, Switzerland 
 
 

Balance BL150S  Sartorius AG, Göttingen, Germany 
 

HM 450 Sliding Microtome  Microm, Walldorf, Germany 
 

Spin Tissue Processor STP 120 Microm, Walldorf, Germany 
 

EC 350 – Modular tissue 
embedding center 

Microm, Walldorf, Germany 
 
 

Thermocycler T3000 Biometra, Göttingen, Germany 
 

 

2.1.4 Buffers and solutions 
2.1.4.1 Prepared buffers and solution 

 
0.01 M Citrate buffer, pH 6.0  
 

Citric acid monohydrate (2.1 g/L), set to pH 6 
with NaOH  
 

Collagen gel (10 mg vial) - Reconstitution with 12ml of sterile 
acetic acid (0.2%) 

- Further dilution with 1.2ml of 10x 
DMEM 

- pH neutralization with 1M NaOH 
 

EDTA (anticoagulant) Na2EDTA  32mg in 1 ml distilled H2O 
 

Eosine 1% 1 g Eosin Y disodium salt in 100 µl distilled 
H2O, 1 drop glacial acetic acid 
 

GS activity assay buffers 
(Amount for 100ml distilled H2O) 
 

 
 

· Imidazol buffer (250mM) Imidazol  1.7g, set to pH 6.8 with HCl 
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· L-Glutamine (250mM) L-Glutamine  3.655 g, set to pH 6.8 with 1M 
NaOH 
 

· Hydroxylamine-
Hydrochloride (250mM) 

NH2OH HCl  1.735 g 
 
 

· Adenosindiphosphat 
(1.6mM) 

ADP  75.4 g 
 
 

· Di-Sodium-Hydrogen 
arsenate (250mM) 

Na2HAsO4x 7H2O 7.8 g 
 
 

· Manganese chloride (10mM) MnCl2  99 mg 
 

· Stop-Mix FeCl3 x 6H2O 2.42 g, TCA 1.45 g, HCl 14.5 
ml 
 

Perfusion buffers  
 

· Calcium chloride solution 19 g/L CaCl2*2 H2O 
 

· Collagenase buffer - 55 ml glucose (9 g/L) 
- 25 ml KH Buffer pH 7.4 
-  25 ml HEPES, pH 8.5 
- 30 ml amino acids solution 
- 10 ml CaCl2 (19 g/L) 
- 2.5 ml glutamine (7 g/L) 

à Add 90 mg collagenase freshly before use 
 

· EGTA buffer 
 
 
 
 

 

- 124 ml glucose (9 g/L) 
- 20 ml KH buffer pH 7.4 
- 20 ml HEPES pH 8.5 
- 30 ml amino acids solution 
- 2 ml Glutamine (7 g/L) 
- 0.8 ml EGTA pH 7.6 
 

· EGTA, pH 7.6 47.5 g/L in d.H2O dissolve with a bit of 
NaOH, set to pH 7.6  with HCl  
 

· HEPES buffer, pH 7.6 60 g/L set to pH 8.5 with NaOH  
 

· HEPES buffer, pH 8.5 60 g/L set to pH 8.5 with NaOH  
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· Krebs-Henseleit buffer (KH 
buffer) 

60 g/L NaCl, 1.75 g/L KCl, 1.6 g/L KH2PO4 
Set to pH 7.4 using NaOH 
 

· Suspensions buffer - 124 ml glucose (9 g/L) 
- 20 ml KH Buffer pH 7.4 
- 20 ml HEPES pH 7.6 
- 30 ml amino acids solution 
- 2 ml glutamine (7 g/L) 
- 1.6 ml CaCl2 (19 g/L) 

- 0.8 ml MgSO4 (24.6 g/L MgSO4*7 
H2O) 

à Add 400 mg BSA freshly before use 

 

Staining solution 5 mg 3,3′-Diaminobenzidine , 20 mg 
aminotriazole and 3.3 µl H2O2 in 10 ml 0.1 M 
Tris/HCL (pH 7.6) 
 

10x TBS, pH 7.4 265 g NaCl, 60 g Tris, add 5 L distilled H2O 
 

1x TBS-T 250mL 10x TBS, 2.5mL Tween 20, add 2.5 L 
distilled H2O 
 

1x TE buffer – 1liter  10ml 1M Tris (pH 8), 2ml 0.5M Na2EDTA (pH 
8), in 1L distilled H2O 
 

0.1M Tris/ HCl, pH 7.6 15.76 g/L Trizma® hydrochloride, set to pH 
7.6 with NaOH  
 

 

2.1.4.2 Commercial buffers and solutions 

 
Amino acids solution PAN Biotech GmbH, Aidenbach, Germany 

 
Diethylpyrocarbonate (DEPC) 
treated water 
 

Sigma-Aldrich Corp., St. Louis, MO, USA 

QuantiTech Primer assays Qiagen, Hilden, Germany 
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2.1.5 Hepatocyte cultivation media 
 

Full media 

 

William's E Medium, 10% FCS, Pen/Strep 

(100  U/ml  Penicillin  ,  0.1  mg/ml  

Streptomycin), 10 µg/ml Gentamycin, 

100nM Dexamethason, 2mM Glutamine 

 

Normal cultivation media  

 

William's E Medium, Pen/Strep (100 U/ml 

Penicillin , 0.1 mg/ml Streptomycin), 10 

µg/ml Gentamycin, 100nM Dexamethason, 

2mM Glutamine 

 

2.1.6 Commercial kits 
 

L-Alanine Assay Kit Abcam, Cambridge, UK 
 

Alpha Ketoglutarate Assay Kit  Abcam, Cambridge, UK 
 

Ammonia Assay Kit Sigma-Aldrich Corp., St. Louis, MO, USA 
 

Avidin and Biotin blocking Vector laboratories, Burlingame, USA 
 

Deproteinizing Sample Preparation 
Kit 

Abcam, Cambridge, UK 
 
 

Glucose (HK) Assay Kit Sigma-Aldrich Corp., St. Louis, MO, USA 
 

Glutamate Dehydrogenase 
Detection Kit  

Abcam, Cambridge, UK 
 
 

High-capacity cDNA Reverse 
Transcription kit 

Applied Biosystems, California, USA 
 
 

Lactate Colorimetric Assay Kit Abcam, Cambridge, UK 
 

Pyruvate Assay Kit Abcam, Cambridge, UK 
 

QuntiTect SYBR Green RT-PCR Kit Qiagen, Hilden, Germany 
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RNeasy Mini Kit Qiagen, Hilden, Germany 
 

Urea Assay Kit BioAssay Systems, Hayward, USA 
 

 

2.1.7 Antibodies 
2.1.7.1 Primary antibodies 
 

Rabbit Anti-CPS1 antibody - Liver 
mitochondrial marker 

Abcam, Cambridge, UK 
 
 

Rabbit Anti-CYP2E1  Sigma-Aldrich Corp., St. Louis, MO, USA 
 

Mouse Anti-glutamine synthetase 
monoclonal antibody  

BD Bioscience, San Jose, USA 

 
Purified Mouse Anti-Arginase I BD Bioscience, San Jose, USA 

 
 

2.1.7.2 Secondary antibodies 

 
Anti-mouse IgG-POD Sigma-Aldrich Corp., St. Louis, MO, USA 

 
 

Polyclonal swine anti-rabbit 
immunoglobulins/HRP 

DakoCytomation, Glostrop, Denmark 
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2.2 Methods 
 
2.2.1 Induction of liver damage by CCl4 
 
2.2.1.1 Experimental animals 
 

10-12 weeks old male C57BL/6N mice were used (Charles River, Sulzfeld, 

Germany). Animals were housed under specific pathogen-free conditions and 

fed ad libitum with Ssniff R/M-H, 10 mm standard diet (Ssniff, Soest, 

Germany). All experiments were approved by the German authorities. 

 

2.2.1.2 CCl4 administration 
 
2.2.1.2.1 Induction of maximum pericentral liver damage 
 

 For induction of maximum liver damage a single dose of 1.6 g/kg body 

weight CCl4 was administered intraperitoneally (i.p.) in olive oil (Hoehme et 

al., 2007; 2010). A control group received only olive oil as a vehicle control. 

The application volume was 4 ml/kg (0.4 g/ml). Three mice were used for 

each of the time periods given in the results section. 

 

2.2.1.2.2 Administration of various doses of CCl4  
 

For induction of various degrees of liver damage various doses of CCl4 

were injected intraperitoneally in olive oil (table 2.1). A control group received 

only olive oil as a vehicle control. The application volume was 4 ml/kg. Three 

mice were used for each dose given in the results section. 
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Table 2.1 Dosing schedule of CCl4 
Dose (mg/kg) CCl4 (µl) Olive oil (µl) 

0 0 0 

10.9 6.81 3993.19 

38.1 23.81 3976.19 

132.4 82.75 3917.25 

460 287.5 3712.5 

1600 1000 3000 

Oil 0 4000 

 

 

2.2.2 Blood and liver tissue samples collection 
 

At the specified period of time mice were anaesthetized by an i.p. injection 

of a mixture of rompun 2% (20 mg/kg) and ketamin (120 mg/kg) 

intraperitoneally (Flecknell, 1996). After loss of all reflexes, the abdominal wall 

of the mouse was carefully opened. 

 

2.2.2.1 Blood sampling and plasma separation 
 

For later metabolic analysis blood samples were collected from three 

different positions of the vascular system of mouse: (i) from the portal vein 

representing the “liver inflow”, (ii) from the hepatic vein representing the “liver 

outflow” and (iii) from the right heart chamber representing the “systemic 

circulation” (Fig. 2.1). For collection of the blood from the hepatic and portal 

veins a 30 gauge needle was used. In order to visualize the hepatic vein the 

median liver lobe was carefully reflected cranially and the left liver lobe was 

gently pulled caudally. The tip of the needle was inserted in the hepatic vein 

and the blood was collected slowly. In order to expose the portal vein the 

median and left liver lobes were carefully reflected cranially. The abdominal 

viscera were gently pulled outside the abdominal cavity. The needle tip was 

inserted in the portal vein against the direction of the blood flow. For collection 
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of the blood from the heart, all liver lobes were returned to their normal 

anatomical position. A 25 gauge needle passed the diaphragm and was 

inserted into the right heart chamber. All blood samples were collected on 

EDTA as anticoagulant (50 µl/ml of blood). About 170 µl of blood were 

collected from each site.  For plasma separation the blood was directly 

centrifuged for 10 min at 13000 rpm at 4°C. 60 µl of clear plasma was 

carefully transferred into a pre-cooled eppendorf tube. The plasma was stored 

at -80 °C until analysis except for ammonia which was measured directly 

before freezing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.1: Sites of blood collection. The blood was collected under anesthesia from three 
different positions of the vascular system of mouse: (i) from the portal vein representing the 
“liver inflow”, (ii) from the hepatic vein representing the “liver outflow” and (iii) from the right 
heart chamber representing the “systemic circulation”. About 170 µl of blood was collected 
from each position using EDTA as anticoagulant. 
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2.2.2.2 Collection of liver tissue samples 
 

After the blood collection the whole liver was carefully excised without 

damaging the liver capsule. Three pieces about 20 mg in weight were 

collected from the median liver lobe and snap frozen in liquid nitrogen. 

Subsequently, the snap frozen liver tissue samples were stored at -80°C for 

later RNA isolation and enzyme activity assay. For the immunohistochemical 

analysis a piece of 1.5-2.5 cm2 size was collected from the left liver lobe and 

fixed in 4% paraformaldehyde  (PFA) for 48h at 4°C (Fig. 2.2). 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.2: Collection of liver tissue samples. A piece of 1.5-2.5 cm2 size was collected from the 
left lobe of the liver and fixed in 4% paraformaldehyde for the immunohistochemical analysis. Two 
pieces about 20 mg in weight were collected from the right segment of the median liver lobe and 
snap frozen in liquid nitrogen then stored at -80°C for enzymes activities assay. One piece about 
20 mg in weight was collected from the left segment of the median liver lobe and snap frozen in 
liquid nitrogen then stored at -80°C for the RNA analysis. 

 

 

2.2.2.3 Paraffin embedding of the mouse liver 
 

After fixation, samples were washed in PBS for 48h at 4°C to remove the 

PFA. Subsequently, the tissue was embedded in paraffin with the use of Microm 

STP120 embedding automate (Microm, Walldorf, Germany). The embedding 

RNA analysis 

Enzyme activity assay 

Paraffin embedding 
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program is summarized in table (2.2). After embedding solid paraffin blocks 

suitable for cutting were made using the EC 350 – modular tissue embedding 

center (Microm, Walldorf, Germany). 

 
Table  2.2: Embedding program of the mouse liver tissue 

Step Treatment Time (minute) 
1 70%  Ethanol 30 
2 70%  Ethanol 60 
3 90%  Ethanol 30 
4 90%  Ethanol 30 
5 99%  Ethanol 30 
6 99%  Ethanol 35 
7 99%  Ethanol 60 
8 Xylol 30 
9 Xylol 35 

10 Xylol 60 
11 Paraffin Histowax 80 
12 Paraffin Histowax 105 

 

 

2.2.3 Visualization and quantification of necrotic 
lesions 

 
2.2.3.1 Hematoxylin and eosin staining 
 

Using a microtome (Microm, Walldorf, Germany) 5 µM tissue sections 

were prepared and mounted on microscopic slides. For dewaxing, sections 

were warmed at 56-60°C for 30min and then briefly at 65-70°C until the 

paraffin started melting. Sections were then incubated three times for 5min in 

xylene. After deparaffinization, sections were then rehydrated through an 

isopropanol gradient (98%, 96%, 90%, 80% and 70% respectively for 5min 

each). After washing in distilled H2O for 5min, sections were incubated in 

hematoxylin for 5min for nuclear staining. Subsequently, sections were rinsed 

for 15min in a running tap water to remove the excess of hematoxylin. For 

staining of the cytoplasm sections were incubated for 3min in 1% eosin 

followed by a brief rinsing in distilled H2O for 10s.  Sections were then 
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dehydrated through an isopropanol gradient (70%, 80%, and 90%, for 5s 

each and two times for 5min in absolute isopropanol). Finally, sections were 

incubated for 3 min in xylene and preserved by mounting with enellan.   

 

2.2.3.2 Quantification of necrotic lesions 
 

2.2.3.2.1 Quantification of the area of necrotic lesions 
 

In order to quantify the area of necrotic lesions, images were acquired 

from the hematoxylin and eosin stained liver using the Cell  ̂ M software 

(Olympus, Hamburg, Germany). The dead cell area was defined as the area 

where no nuclei of hepatocytes were visible (Hoehme et al., 2010). In order to 

precisely quantify the necrotic lesion three areas were measured using the 

NIS element software (Nicon, Dusseldorf, Germany): (i) The total image area 

“A1” (ii) the area of the necrotic lesion including the central vein “A2” and (iii) 

the area of the central vein “A3” (Fig. 2.3). The percentage of necrotic lesion 

was calculated according to the following formula: 

 

 

 

 

Three mice were used for each of the time periods and CCl4 doses given 

in the results section. Ten representative images were analyzed from each 

mouse. 
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Fig. 2. 3: Quantification of the necrotic lesion using the NIS element software. The dead cell 
area defined as the area where no nuclei of hepatocytes were visible. Lines defining the total 
image area, the dead cell area (including the area of the central vein “CV”) and the area of the 
central vein were drawn. The percentage of the necrotic lesion was calculated as: {dead cell area 
(including the area of the CV) - area of the CV} / the total image area. Hematoxylin and eosin 
staining, scale bar: 100 µM. 

 

 

2.2.3.2.2 Counting of necrotic lesions 
 
In order to calculate the number of necrotic lesions, whole slide scans were 

prepared. Images were acquired from the whole slide using the Cell  ̂M software 

(Olympus, Hamburg, Germany). These images were organized to reconstruct the 

whole slide (Fig. 2.4). All necrotic lesions on the slide, controlled by central veins, 

were counted manually and normalized to the total slide area. Three mice were 

used for each of the CCl4 doses given in the results section. 
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Fig. 2.4: A whole slide scan of mouse liver at day one after injection of 1.6 g/kg CCl4. 
images were captured using the Cell ^ M software (Olympus) and organized to reconstruct the 
whole slide. All pericentral necrotic lesions were counted manually and normalized to the total 
slide area. Hematoxylin and eosin staining, scale bar: 200 µM. 
    

2.2.3.2.3 Measurement of hepatic damage markers 
 

Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels 

were measured in plasma separated from the heart blood. The measurement 

was done in cooperation with our cooperation partner (LADR Medizinisches 

Versorgungszentrum, Dortmund, Germany). 
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2.2.4 Metabolic analysis 
 

2.2.4.1 Ammonia assay 
 

Ammonia was measured enzymatically in the plasma using a 

commercially available kit according to the manufacturer’s instructions 

(Sigma, St. Louis, MO, USA). Ammonia reacts with α-ketoglutaric acid (KGA) 

and reduces nicotinamide adenine dinucleotide phosphate (NADPH) in the 

presence of L-glutamate dehydrogenase (GDH) to form L-glutamate and 

oxidized nicotinamide adenine dinucleotide phosphate (NADP+). The 

decrease in absorbance at 340nm wavelength due to the oxidation of NADPH 

is proportional to the concentration of ammonia in the sample (Bergmeyer 

and Beutler, 1985). 

 

2.2.4.2 Amino acids assay 
 

Glutamine, glutamate, alanine and arginine were measured in plasma by 

HPLC in cooperation with our cooperation partner (LADR Medizinisches 

Versorgungszentrum, Dortmund, Germany). 

 

2.2.4.3 Urea assay 
 

Urea was measured colorimetrically in plasma using a commercially 

available kit (BioAssay Systems, Hayward, USA). The test is based on the 

use of a chromogenic reagent which specifically forms a colored complex with 

urea. The intensity of the color, measured at 520nm wavelength, is 

proportional to the concentration of urea. With the aid of the urea standard the 

concentration of urea in the sample was calculated. 

 

 

 

 



2 Materials and methods 
 

 38 

2.2.4.4 Glucose assay 
 

Glucose was measured enzymatically in plasma using a commercially 

available kit (Sigma, St. Louis, MO, USA). The principle was that glucose can be 

phosphorylated by adenosine triphosphate (ATP) in a reaction catalyzed by 

hexokinase to generate glucose-6-phosphate (G6P). In the presence of 

nicotinamide adenine dinucleotide (NAD), G6P can be oxidized by the action of 

glucose-6-phosphate dehydrogenase (G6PDH) into 6-phospho gluconate plus 

reduced NAD (NADH). The consequent increase in absorbance at 340nm 

wavelength is directly proportional to the concentration of glucose (Bondar and 

Mead, 1974). 
 

Glucose + ATP                        G6P + ADP 

 

G6P + NAD                          6-Phosphogluconate + NADH 

 
 

2.2.4.5 Lactate assay 
 

The plasma lactate was measured colorimetrically using a commercially 

available kit according to the manufacturer’s instructions (Abcam, Cambridge, 

UK). The test based on the oxidation of lactate by the lactate dehydrogenase 

enzyme. The product then reacts with a probe to generate a color (λmax = 

450nm). The intensity of the color was detected using a micro plate reader at an 

optical density of 450nm. With the aid of the lactate standard curve the lactate 

content in the sample was calculated (Fig. 2.5). 

 

 

 

 

 

 

Hexokinase 

G6PDH 
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Fig. 2.5: Lactate standard curve. Concentrations of 0, 2, 4, 6, 8 and 10 nM lactate /well were 
incubated with the reaction mix for 30min in a 96 well plate. The intensity of the developed color 
was measured by a micro plate reader at an optical density of 450nm. The background was 
corrected by subtracting the value derived from zero from all readings 
 
 
 
 

2.2.4.6 Pyruvate assay 
 

The level of pyruvate in plasma was measured colorimetrically using a 

commercially available kit according to the manufacturer’s instructions (Abcam, 

Cambridge, UK). The test principle was that pyruvate can be oxidized by 

pyruvate dehydrogenase to generate a colored product (λmax = 570nm). The 

color intensity was detected using a micro plate reader at an optical density of 

570nm. After performing a pyruvate standard curve (Fig. 2.6) the concentration of 

pyruvate in the sample was calculated. 
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Fig. 2.6: Pyruvate standard curve. Concentrations of 0, 2, 4, 6, 8 and 10 nM pyruvate/well were 
incubated with the reaction mix for 30min in a 96 well plate. The intensity of the developed color 
was measured using a micro plate reader at an optical density of 570nm. The background was 
corrected by subtracting the value derived from zero from all readings. 
 
 
 

2.2.4.7 Alpha-ketoglutarate assay 
 

The concentration of alpha-ketoglutarate (α-KG) in plasma was measured 

colorimetrically using a commercially available kit according to the 

manufacturer’s instructions (Abcam, Cambridge, UK). The test was based on the 

transamination of α-KG into pyruvate by an enzyme mixture. Pyruvate then 

reacts with a probe leading to color development (λmax = 570nm). The color 

intensity was measured using a micro plate reader at an optical density of 

570nm. To avoid false positive results from pyruvate a blank sample in which the 

converting enzymes mixture was omitted was run in parallel with the test 

samples. Subsequently, the background was controlled by subtracting the blank 

value from the test value. After performing a standard curve from the α-KG 

standard the concentration of α-KG in the sample was calculated (Fig. 2.7). 
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Fig. 2.7: Alpha-ketoglutarate (α-KG) standard curve. Concentrations of 0, 2, 4, 6, 8 and 10 nM 
α-KG /well were incubated with the reaction mixture for 30min in a 96 well plate. The intensity of 
the developed color was measured using a micro plate reader at an optical density of 570nm. The 
background was corrected by subtracting the value derived from zero from all readings. 

 
 
 
2.2.5 Immunohistochemical staining  
 

The Immunohistochemical staining was done using paraffin slices. 

Sections of 5 µM thickness were prepared using a microtome (Microm, Walldorf, 

Germany) and mounted on microscopic slides. Sections were then warmed at 

56-60°C for 30min and then briefly at 65-70°C until the paraffin started melting. 

For deparaffinization sections were incubated in xylene two times for 5min each. 

Rehydration of the tissue sections was done by incubation in a descending 

ethanol gradient: absolute ethanol (two times for 3min each), 96% and 70% (one 

time for 3min). Before proceeding to the next step sections were washed in 

distilled H2O for 3min and in TBS for 5min. For antigen retrieval sections were 

boiled in 0.01M citrate buffer (pH 6.0) three times for 5min each (Shi et al., 1998). 

Subsequently, sections were allowed to cool down for 30 min at room 

temperature followed by washing for 5min in distilled H2O. After antigen retrieval 

blocking of the endogenous peroxidase activity was done by incubation in 0.3% 

H2O2 in TBS for 15min at room temperature (Ramos-Vara, 2005). Sections were 
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then washed briefly in distilled H2O and in TBS two times for 10 min each. Non 

specific binding sites were blocked by incubation with 5% goat serum (for the GS 

and Arginase1 staining) or with 5% swine serum (for the CPS1 and CYP2E1 

staining) in TBST. Moreover, endogenous avidin and biotin were blocked using 

the commercially available kit according to the manufacturer’s instructions 

(Vector laboratories, Burlingame, USA) (Rodriguez-Soto et al., 1997). Leaving 

out the washing step, sections were then incubated overnight with the primary 

antibody in a humid chamber at 4°C (Table 2.1). Before proceeding to the next 

step sections were washed in TBST three times for 5min each. To identify 

primary antibody bindings sections were incubated with the secondary antibody 

in a humid chamber for 2h at room temperature (Table 2.3). Subsequently, 

sections were washed three times in TBST for 5min each and one time in 0.1M 

Tris HCl for 5min. Sections were then incubated with the DAB staining solution 

for 4-7min according to the intensity of the color development. The reaction was 

stopped by washing in TBS for 5min. In order to stain the nucleus sections were 

counter stained with Mayer’s hemalum (Merk, Darmstadt, Germany) for 90 sec. 

Sections were then rinsed in a running tap water for 10min. Subsequently, 

sections were dehydrated using a graded ethanol series (70%, 90%, 95%, and 

100% for 30sec each) and then incubated in roti-histol four times for 1min each. 

The slides were mounted with entellan and stored at room temperature. 

 
Table 2.3: Concentrations of primary and secondary antibodies 

Primary antibodies Secondary antibodies Antigen Antibody  Concentration Antibody  Concentration 

CPS1 Rabbit anti-
CPS1 1:1000 Swine anti-

rabbit 1:25 

GS 
Mouse 

monoclonal 
anti-GS 

1:1000 anti-mouse 
IgG-POD 1:500 

CYP2E1 Rabbit anti-
CYP2E1 1:20 Swine anti-

rabbit 1:25 

Arginase1 Mouse Anti-
Arginase I 1:400 anti-mouse 

IgG-POD 1:500 
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2.2.6 Enzyme activity assay 
 

2.2.6.1 Glutamine synthetase activity assay 
 

The activity of the glutamine synthetase (GS) enzyme was measured in 

liver tissue homogenate according to the method of Gebhardt and Williams 

(1986). The principle of the test was that GS exerts a glutamyl-transferase 

activity. It catalyzes the formation of γ-Glutamylhydroxymate from glutamine 

and hydroxyl amine in the presence of ADP and either phosphate or arsenate 

(Levintow, 1954). 

 

L-Gln + NH2OH                                      γ-Glutamylhydroxymate + NH3 

 

γ-Glutamylhydroxymate can react with ferric tri-chloride generating a 

colored complex.  The intensity of the color was proportional to the activity of 

the GS enzyme. The color development was measured in a photometer at 

540nm wavelength. Results were normalized to the protein content of the 

sample.  

 
 

2.2.6.2 Glutamate dehydrogenase activity assay 
 
The activity of the GDH enzyme was measured colorimetrically using a 

commercially available kit according to the manufacturer’s instructions (Abcam, 

Cambridge, UK). GDH catalyzes the deamination of glutamate into ammonia and 

alpha ketoglutarate. During this reaction NADP is converted to NADPH+ leading 

to color development. The intensity of the color was measured using a micro 

plate reader at 450nm wavelength. Plasma samples were measured directly. 

However, liver tissue samples (20 mg) were firstly homogenized in the GDH 

assay buffer centrifuged at 13000 rpm for 10min at 4 °C and the clear 

supernatant was used for the assay. To avoid the false positive results a blank 

sample in which glutamate was omitted was used. Both the sample and the blank 

ADP 

PO4 or AsO4 
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were measured at 3min and 30min after incubation with the reaction mixture. The 

3min reading was subtracted from the 30min reading. Subsequently, blank 

values were subtracted from test values. The NADPH standard curve was used 

to calculate the GDH enzyme activity in plasma and liver samples (Fig. 2.8). The 

GDH activity in the liver tissue was normalized to the protein content. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.8: NADPH standard curve. Concentrations of 0, 2, 4, 6 and 8 nM NADPH /well were 
incubated with the reaction mixture for 3 min in a 96 well plate. The intensity of the color was 
measured using a micro plate reader at an optical density of 450 nm. 
 
 
 

2.2.7 Protein assay 
 

Protein was measured colorimetrically using the Thermo Scientific Pierce 

BCA  Protein  Assay  kit  (Kessler  and  Fanestil,  1986).  The  sample  was  diluted  

1:320 by adding 2.5 µl sample to 797.5 µl distilled H2O. 200 µl working reagent 

were prepared from reagent A and B (50:1) and added to the diluted sample. 

After mixing, the sample was incubated at 60°C for 30min with shaking. 

Subsequently, the sample was allowed to cool down for 10min. The protein 

concentration was measured at 562nm wavelength using the UV/VIS 

spectrophotometer (Jasco, USA). With the aid of a standard curve prepared with 

bovine serum albumen, the protein concentration of the sample was calculated. 
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2.2.8 Total RNA analysis 
 

2.2.8.1 RNA extraction 
 
 

Extraction of the total RNA was done using the RNeasy Mini kit according to 

the manufacturer’s instructions (Qiagen, Hilden, Germany). A piece of 20 mg 

weight of the frozen liver tissue was homogenized in a buffer containing 

guanidium thiocyanate using a pestle. Guanidium thiocyanate helped in lysis of 

the cells and in maintaining the RNA integrity by denaturation of RNases 

(Chomczynski and Sacchi, 1987). The lysate was then transferred into a 

QIAshredder spin column placed in a collection tube (Qiagen, Hilden, Germany) 

and centrifuged for 2min at 13000 rpm.  A further centrifugation step of the lysate 

was done at 13000 rpm for 3min. The supernatant was then transferred into a 

new micro-centrifuge tube and one volume of 50% ethanol was added. 

Subsequently, the sample was transferred into an RNeasy spin column and 

centrifuged at 11000 rpm for 15sec. For washing of the RNA, one volume of a 

buffer contains ethanol was added to the spin column. Subsequently, 

centrifugation at 11000 rpm for 15sec was done. The washing step was repeated 

and the centrifugation was done at 11000 rpm for 15sec and for 2min. To elute 

the RNA, the spin column was transferred into a new collection tube and 30 µl of 

RNase-free water were added. The spin column was then centrifuged at 11000 

rpm for 1 min. The extracted RNA was stored at -20 °C. 

 
 

2.2.8.2 RNA quantification 
 

RNA was quantified by measuring the absorption at 260nm using nanodeop 

ND-1000 (Thermo Scientific, Braunschweig, Germany). The RNase-free water 

was used as a blank. The purity of RNA was insured by the ratio of the 

absorbance at 260 and 280nm. The 260/280 ratio close to 2.0 indicated pure 

RNA. Whereas, lower 260/280 ratio indicated contamination particularly from 

protein (Glasel, 1995). 
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2.2.8.3 Reverse transcription polymerase chain 
reaction (RT-PCR) 

 
cDNA synthesis was done using the High-Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, California, USA). 2 µg of the RNA in a final 

volume of 10 µl in DEPC-treated water were added into a 0.2 ml strip tube. 

Subsequently, 10 µl of the master mix were added to the RNA. The master mix 

contains 2 µl of the10x reverse transcription buffer, 0.8 µl of 25x dNTPs (100 

mM), 2 µl of 10x reverse transcription random primers, 1 µl of the Multiscripe 

Reverse Transcriptase (50 U/ µl) and 4.2 µl of the DEPC-treated water. The 

reverse transcription was done in a thermo-cycler (Biometra, Göttingen, 

Germany) using the conditions illustrated in table (2.4). Following the reverse 

transcription the sample was diluted with DEPC-treated water to a final 

concentration of 10 ng/ µl and stored at -20°C. 

 
Table 2.4: The thermo-cycling profile of the reverse transcription polymerase chain 
  reaction 

Stage Duration (min) Temperature (°C) 

1 10 25 

2 120 37 

3 5 85 

4 ∞ 4 

 

 

2.2.8.4 Quantitative real-time polymerase chain 
reaction (qRT-PCR) 

 
The qRT-PCR was done using custom-designed Quantitect assay primers 

and SYBR Green reagents (Qiagen, Hilden, Germany). qRT-PCR allows the 

detection and quantification of a target gene at each cycle of amplification 

(VanGuilder et al., 2008). The SYBR Green dye binds to all double stranded 

DNA leading to the emission of fluorescence. The fluorescence increased at 

each amplification cycle reflecting the quantity of the target gene (Schneeberger 
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et al., 1995). The measurement was done in a MicroAMP optical 96-well plate 

(Applied Biosystems, California, USA) in a 25 µl reaction. The Quantitect assay 

primer was reconstituted with 1.1 ml TE buffer, pH 8. In each reaction, 12.5 µl 

SYBR Green reagents, 2.5 µl assay primer and 5 µl of DEPC-treated water were 

added to 50 ng cDNA (5 µl). All samples were measured in triplicate. DEPC-

treated water was used as a negative control whereas GAPDH was used as a 

house keeping gene. The plate was briefly centrifuged. The qRT-PCR was done 

using the Applied Biosystems 7500 real time PCR system (Applied Biosystems, 

California, USA). The running conditions were summarized in table (2.5). 

 
Table 2.5: Running conditions of the quantitative real-time polymerase chain reaction 

Stage Repetitions 
Duration 

(min) 
Temperature (°C) Function 

1 1 02.00 50 

2 1 15.00 95 

Initiate the DNA 

polymerase 

3 40 

00.15 

00.30 

00.35 

94 

55 

72 

DNA denaturation 

Primer annealing 

Extension 

4 1 

00.15 

00.20 

00.15 

00.15 

95 

60 

95 

60 

Create a melt 

curve 

 

 

2.2.8.5 Data analysis 
 

The relative total RNA expression was calculated using the ∆∆Ct method 

(Livak and Schmittgen, 2001). The Ct value is the cycle number at which the   

fluorescence signal crosses the threshold. Firstly, the expression of the target 

gene was compared to the expression of the house keeping gene (∆Ct). 

Secondly, the expression of the target gene was normalized to controls (0h) 

(∆∆Ct). The fold change was calculated as 2-∆∆Ct. 
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2.2.9 Isolation and cultivation of mouse hepatocytes 
 
2.2.9.1 Mouse hepatocytes isolation 
 

Male C57BL/6N mice (8-12 weeks old) were used for hepatocytes 

isolation. The experiment was approved by the experimental animals committee. 

Animals were handled and housed according to specific pathogen-free 

conditions. Hepatocyte isolation was done according to Seglen (1972) and 

Klingmüller et al. (2006). The mouse was anaesthetized with an i.p. injection of a 

mixture of 2% Rompun (20 mg/kg) and ketamin (120 mg/kg). The liver was 

perfused through the caudal vena cava with the EGTA buffer for 15min at 37 °C. 

Subsequently, the perfusion was continued with the collagenase buffer for 5-

7min at 37 °C. After perfusion, the liver was excised out from the animal and 

dissociated in a suspension buffer. The liver cell suspension was filtered through 

gauze and centrifuged for 5min at 50g. Subsequently, cells were washed twice 

with the suspension buffer and re-centrifuged. Cells were re-suspended in 10 ml 

suspension buffer. Before counting cells, the suspension was diluted 1:5 with the 

suspension buffer and thereafter a 1:1 dilution in trypan blue solution was done. 

 
 

2.2.9.2 Sandwich cultures of mouse hepatocytes 
 

Hepatocytes were cultivated on 6-well plates. Before plating of cells, the 

plate was prepared by adding 250 µl of rat tail collagen (1st collagen layer). The 

gel was allowed to polymerize for 30min and then 2 ml of full media were added. 

800000 cells per well were seeded (confluent culture). Subsequently, cells were 

allowed to attach for 3h at 37 °C, 5 % CO2. After attachment, cells were washed 

3 times with William’s E medium to remove the floating cells. Subsequently, the 

second layer of collagen was added (250 µl of rat tail collagen) and allowed to 

dry for 30min at 37 °C, 5 % CO2. Cells were further cultivated overnight in normal 

cultivation media (2 ml/well) before starting the experiment. 
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2.2.10 Mathematical modelling 
 

The mathematical simulation model was established in cooperation with 

our cooperation partners Dr. Stefan Höhme and Dr. Dirk Drasdo (IZBI, Leipzig, 

Germany); Dr. Dominik Driesch and Dr. Sebastian Henkel (BioControl Jena 

GmbH, Jena, Germany). The technique of the spatial-temporal model has been 

described in Hoehme et al. (2010). 

 
 

2.2.11 Statistical analysis 
 

Statistical analysis was done using the SPSS software (Dunnett-t- test). At 

least three mice were used for each set of experiments. Data were expressed as 

means ± standard error. Differences were considered significant at P  <  0.05 

(Levesque, 2007). 
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3 Results 
 
3.1 Alteration of ammonia and carbohydrate metabolism 

in relation to CCl4-induced liver damage 
 

3.1.1  Induction of liver damage by a high dose of CCl4 
 

In order to provide a data base that could be used for later mathematical 

modelling a mouse system was used where the hepatotoxic compound CCl4 was 

injected. The aim of these experiments was to study the degree to which 

ammonia and carbohydrate metabolism is altered in response to liver damage. 

For this purpose, a single dose of 1.6 g/kg body weight CCl4 was injected 

intraperitoneally into mice and sampling was done using the time dependent 

experimental schedule outlined in Fig. 3.1.  

Fig. 3.1: Induction of liver damage and metabolic analysis. Mice received 1.6 g/kg CCl4 and 
blood samples were collected at different time intervals from the portal vein, hepatic vein and the 
right heart chamber. Liver tissue was also collected and stained with hematoxylin and eosin 
(H&E). Three mice were analyzed per time point. 
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Oil 0h 
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CCl4 intoxication caused obvious hepatic macroscopical alterations in the 

form of white spots, especially evident from days one to three after injection (Fig. 

3.2). By day six after CCl4 administration the liver looked similar to the control. 

 

Fig. 3.2: Gross appearance of mouse liver at different time intervals after administration of 
1.6 g/kg CCl4. The Liver showed a characteristic spotted pattern from day one up to day three 
after CCl4 injection. After six days the liver looked similar to the control.  
 

In order to visualize the hepatic lesion induced by CCl4 formalin fixed 

paraffin embedded liver sections were stained with hematoxylin and eosin. 

Microscopically, the liver of CCl4-treated mice showed a pericentral necrosis 

which became obvious approximately one day after injection (Fig. 3.3). Between 

days two and four, the dead cell area became smaller, and after six days the 

damaged area was almost fully regenerated. 
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Fig. 3.3: Microscopic appearance of mouse liver at different time intervals after 
administration of 1.6 g/kg CCl4.  Between 6 and 12h after CCl4 injection the liver shows deep 
eosinophilic staining in the cytoplasm of pericentral hepatocytes. From day one up to day four; 
the liver shows pericentral necrosis (arrows), whereas six days after injection; the liver appeared 
similar to the control. Hematoxylin and eosin staining, scale bars: 100µm 
 
 
 

In order to obtain quantitative measures for the CCl4-induced liver damage 

the dead cell area was quantified using image analysis software. This analysis 

showed that the peak of pericentral necrotic lesion was obtained on day one after 

CCl4 injection, with approximately 40% of the entire liver affected. This value 

decreased during the following three days to approximately 9% on day four (Fig. 

3.4). Six days after the CCl4 injection the liver was back to the control level. 
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* * 

Fig. 3.4: Quantification of the area of the necrotic lesion at different time intervals after 
injection of 1.6 g/kg CCl4. The liver damage was most evident one day after CCl4 injection with 
recovery by day six. The data are mean ± S.E. and obtained from three mice per time point. * No 
necrotic area detectable.  

 

Moreover, the degree of liver damage was further quantified by measuring 

the plasma concentrations of hepatic damage markers alanine transaminase 

(ALT) and aspartate transaminase (AST). Both liver enzymes were elevated with 

a maximum concentration measured on day one after CCl4 injection. Enzyme 

concentrations returned back to the basal level six days after CCl4 injection (Fig. 

3.5 and 3.6). 

In conclusion, the morphological alterations of the liver tissue and the 

elevation of liver enzymes are similar to those reported in previous studies 

(Hoehme et al., 2010). Therefore, the present experimental set up sufficiently 

allow for the quantification of alterations of ammonia and carbohydrate 

metabolism in response to liver damage. 
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Fig.  3.5:  Injection  of  1.6  g/kg  CCl4 resulted in elevation of plasma level of alanine 
transaminase (ALT). The peak concentration was reached one day after injection and returned 
to the basal level by day four. Data obtained from six mice per time point and expressed as mean 
± S.E. * P< 0.05 compared to the control (0h). 
 

 

 

 

 

 

 

  

 

 

 

 

 

 

 
Fig. 3.6: Changes of plasma  aspartate transaminase (AST) level (U/l) at different time 
intervals after administration of 1.6 g/kg CCl4, showing the time curve of AST elevation which 
is maximal one day after injection and returns to the basal level by day four. Data obtained from 
six mice per time point and expressed as mean ± S.E. * P< 0.05 compared to the control (0h). 
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3.1.2  Quantification of metabolic alterations during liver 
damage and regeneration 

 
In order to quantify the alterations in ammonia and carbohydrate 

metabolism during the destruction and regeneration process after CCl4 

intoxication blood samples were collected from 3 positions in each mouse: (i) 

from the portal vein (representing “liver inflow”), (ii) from hepatic vein 

(representing “liver outflow”) and (iii) from the right heart chamber (to determine 

the extra hepatic contribution particularly for ammonia detoxification). From these 

blood samples, plasma was separated and different metabolic parameters 

relevant for ammonia and carbohydrate metabolism were measured, including 

ammonia, glutamate, glutamine, urea, glucose, alanine, lactate and pyruvate. 

In control mice, the highest ammonia concentration was measured in the 

portal vein (approximately 250µM), while in plasma obtained from the hepatic 

vein, ammonia concentration was very low (approximately 40µM), and was 

slightly higher in the systemic circulation (approximately 55 µM).  After CCl4 

intoxication there was a time-dependent increase in ammonia that peaked on 

days one and two after injection. Although it was increased at all positions where 

the blood was collected, ammonia was low in the heart blood compared to the 

hepatic and portal vein (Fig. 3.7). By day four after CCl4 injection, ammonia 

concentrations returned to the basal level in the portal vein and systemic 

circulation. In contrast, in hepatic vein blood it remained approximately two fold 

higher compared to the control, which took almost one month for recovery. 
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Fig. 3.7: Concentrations of ammonia (µM) in plasma obtained from the portal vein, the 
hepatic vein and the heart of mice at different time intervals after injection of 1.6 g/kg CCl4. 
The control mice had high ammonia concentration in the portal vein and lower levels in the 
hepatic vein and heart blood. After CCl4 injection, ammonia increased at all positions of the mice 
with peak concentrations measured on days one and two after injection. By day four, ammonia 
recovered in the portal vein and heart blood while it took one month for recovery in hepatic vein. 
Data are mean ± S.E. of three mice per time point. * P< 0.05 compared to the corresponding 
control (0h). # P< 0.05 compared to the corresponding hepatic vein results. 
 
 

Similar to the results of ammonia, glutamate concentration in the control 

mice was high in the portal vein (approximately 80µM) and very low in the 

hepatic vein (approximately 20µM), with a small increase in heart blood 

(approximately 36µM). After CCl4 intoxication glutamate concentration was 

increased at the three measured positions of the vascular system especially at 

the time of pericentral necrosis (day one up to day four).  The concentration of 

glutamate was lower in the heart blood compared to the hepatic and portal vein 

values. Six days after CCl4 injection, glutamate levels recovered in the portal vein 

and heart blood, while it took almost one month for glutamate levels to reach the 

basal level in the hepatic vein blood (Fig. 3.8). 
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Fig. 3.8: Concentrations of glutamate (µM) in plasma obtained from the portal vein, the 
hepatic vein and the heart of mice at different time intervals after injection of 1.6 g/kg CCl4. 
Glutamate in the control mice is very high in the portal vein and minimal in hepatic vein and heart. 
After CCl4 injection; glutamate increased at all positions of the mice especially from day one up to 
day four. By day six, glutamate levels recovered in the portal vein and heart blood, while in 
hepatic vein it took one month for recovery. Data are mean ± S.E. of three mice per time point. * 
P< 0.05 compared to the corresponding control (0h). # P< 0.05 compared to the corresponding 
hepatic vein results. 
 
 

In contrast to ammonia and glutamate, glutamine levels were not 

significantly different between the portal and hepatic vein values, and only slightly 

increased in heart blood. After CCl4 intoxication, glutamine was markedly 

elevated in the systemic circulation and also in the portal vein in a time 

dependent manner, peaking on day one after injection and returning to the basal 

level one month after injection. In hepatic vein blood, glutamine concentration 

was lower than the control at most of the tested time points except on days one, 

two and three where it was slightly elevated. Twelve days after CCl4 injection, the 

glutamine concentration became similar to the control (Fig. 3.9). In the case of 

urea there was no observable difference between the three measured positions 

for both control and CCl4-treated mice. A transient decrease in urea was 

recorded only at day one after CCl4 injection at all positions in mice, while at all 

other time points, urea measurement was comparable to the control values (Fig. 

3.10). 
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Fig. 3.9: Concentrations of glutamine (µM) in plasma obtained from the portal vein, the 
hepatic vein and the heart of mice at different time intervals after injection of 1.6 g/kg CCl4, 
showing marked elevation of glutamine in heart and portal vein plasma with peak at day one and 
recovered 30days post injection. In hepatic vein; glutamine is lower than the control at most of the 
tested time points except days one,two& three, and become similar to control after 12days after 
injection. Data are mean ± S.E. of three mice per time point. * P< 0.05 compared to the 
corresponding control (0h). 
 
 
 
 

Fig. 3.10: Concentrations of urea (µM) in plasma obtained from the portal vein, the hepatic 
vein and the heart of mice at different time intervals after injection of 1.6 g/kg CCl4, showing 
decreased blood urea concentration one day after CCl4 injection. Data are mean ± S.E. of three 
mice per time point. * P< 0.05 compared to the corresponding control (0h). 
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The glucose level was not changed between the plasma obtained from the 

portal vein, hepatic vein or heart of control mice. After CCl4 injection, there was a 

transient hypoglycemia at all measured positions, which was lowest on day one 

following injection. By day six after CCl4 injection, glucose values had returned to 

the normal levels at all positions (Fig. 3.11). In contrast to glucose there was a 

clear discrepancy in alanine concentration between portal vein, hepatic vein and 

heart of control mice. The highest value was in the portal vein (approximately 

800µM), whereas it was minimal in hepatic vein (approximately 250µM) and 

increased again in the heart blood (approximately 450µM). Induction of liver 

damage by CCl4 leads to the elevation of alanine at all positions of the mice with 

maximum concentration measured on day one after injection. Alanine levels 

returned to the basal level in portal vein and in the heart blood after six days, and 

after twelve days in hepatic vein blood (Fig. 3.12).  

 

Fig. 3.11: Concentrations of glucose (µM) in plasma obtained from the portal vein, the 
hepatic vein and the heart of mice at different time intervals after injection of 1.6 g/kg CCl4, 
showing marked hypoglycemia after CCl4 injection especially on day one, and returned to the 
basal level by day six after injection. Data are mean ± S.E. of three mice per time point. * P< 0.05 
compared to the corresponding control (0h). 
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Fig. 3.12: Concentration of alanine (µM) in plasma obtained from the portal vein, the 
hepatic vein and the heart of mice at different time intervals after injection of 1.6 g/kg CCl4. 
Alanine showed a marked elevation after CCl4 injection especially on day one, and returned to 
the basal level by day six in portal vein and heart, and by day twelve in hepatic vein. Data are 
mean ± S.E. of three mice per time point. * P< 0.05 compared to the corresponding control (0h). 
 
 
 

There was no clear discrepancy in either lactate and pyruvate levels 

between portal vein, hepatic vein or heart. Both metabolites were elevated time 

dependently after CCl4 intoxication and reached the peak concentration one day 

after injection. The plasma concentrations of both metabolites returned to the 

basal level on day four post injection (Fig. 3.13 and 3.14). 

In conclusion, CCl4 induced liver damage leads to obvious alterations in 

ammonia and carbohydrate metabolism. The time period approximately one day 

after CCl4 intoxication seems to be the most critical period showing the largest 

alterations of metabolic parameters. 
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Fig. 3.13: Concentration of lactate (µM) in plasma obtained from the portal vein, the hepatic 
vein and the heart of mice at different time intervals after injection of 1.6 g/kg CCl4. Lactate 
showed a marked elevation on day one after CCl4 injection and returned to the basal level by day 
four. Data are mean ± S.E. of three mice per time point. * P< 0.05 compared to the corresponding 
control (0h). 

 

 

 

Fig. 3.14: Concentration of pyruvate (µM) in plasma obtained from three positions in mice 
at different time intervals after injection of 1.6 g/kg CCl4. Pyruvate showed a marked 
elevation on day one after CCl4 injection and returned to the basal level by day four. Data are 
mean ± S.E. of three mice per time point. * P< 0.05 compared to the corresponding control (0h). 
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3.1.3  Dose dependent induction of liver damage by CCl4 
 

As the metabolic alteration was most obvious at day one after CCl4 

intoxication, it became important to investigate the alteration of ammonia and 

carbohydrate metabolism after administration of different doses of CCl4. For this 

purpose, mice received various doses of CCl4 intraperitoneally (Fig. 3.15). Blood 

and liver samples were collected 24h after injection.  

 

Fig. 3.15: Induction of liver damage by different doses of CCl4. Mice received various i.p. 
injections of CCl4 and 24h later, blood samples were collected from the portal vein, hepatic vein 
and the right heart chamber. Liver tissue was collected and stained with hematoxylin and eosin 
(H&E). Three mice were analyzed for each dose of CCl4. 
 
 

Grossly, the characteristic white spotted liver was observed only after 

injection of 132.4mg/kg CCl4 and higher doses. Lower doses (38.1 and 10.9 

mg/kg) failed to causes any macroscopic lesions (Fig. 3.16).  
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Fig. 3.16: Macroscopic appearance of mouse liver at day one after administration of 
different doses of CCl4, showing a characteristic spotted pattern. The white spots are evident 
after injection of 132.4 mg/kg CCl4 or higher doses, while the liver looks similar to the control after 
exposure to lower doses. 

 

It was not known whether lowering the dose of CCl4 decreased the 

diameter of necrotic lesions or caused a mosaic pattern, where the dead cell 

area still contains some living hepatocytes. To study this, formalin fixed paraffin 

embedded sections of liver tissue were stained with H&E and examined 

microscopically. The pericentral necrotic lesion was detectable only after injection 

of 132.4 mg/kg CCl4 and higher doses, while the lower doses failed to induce any 

necrotic lesion. Interestingly, the dead cell area was completely free of any viable 

hepatocytes (Fig. 3.17). 

 



3 Results 

 64 

460 mg/kg 1600 mg/kg 

Control 10.9 mg/kg 

38.1 mg/kg 132.4 mg/kg 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.17: Microscopic appearance of mouse liver at day one after administration of 
different doses of CCl4. The liver shows dose related centrilobular necrosis. The necrotic area is 
free from any living hepatocytes. Hematoxylin and eosin staining, scale bars: 100µm 
 

 

In order to quantify the lesion induced by each dose of CCl4, the dead cell 

area was quantified using image analysis software. The highest diameter of the 

necrotic lesion was recorded after injection of the highest studied dose of 1.6 

g/kg (approximately 38% of the total area). The diameter of this lesion decreased 

in a dose dependent manner to 14% after injection of 132.4 mg/kg (Fig. 3.18). 

With even lower doses the necrotic lesion was no longer detectable. 
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Fig. 3.18: The area of necrotic lesion (%) at day one after administration of different doses 
of CCl4. The area of necrotic lesion is detectable after injection of 132.4 mg/kg CCl4 and 
increased in a dose dependent manner by increasing the dose of CCl4. The data are mean ± S.E. 
of three mice per time point. 

 

Also, it was not clear whether the dead cell area only decreased in 

diameter due to the lower doses of CCl4 or whether there were also a reduced 

number of necrotic lesions. To investigate this whole slide scans were done and 

all necrotic lesions were quantified manually. The result revealed that all doses of 

CCl4 which induced necrotic lesions resulted in similar numbers of necrotic 

lesions (Fig. 3.19). Therefore, it seems that lowering the dose of CCl4 reduces 

only the diameter of the necrotic area but not the total number of necrotic lesions. 
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Fig. 3.19: Quantification of necrotic lesions/mm2 in liver at day one after administration of 
different doses of CCl4. For doses which induce necrotic lesion (132.4 mg/kg and higher) the 
liver showed a similar number of necrotic lesions. The data are mean ± S.E. of three mice per 
time point. 

 

In addition, the dose dependent liver damage seen after CCl4 injection 

was also controlled by the analysis of the liver enzymes ALT and AST. Both 

enzymes were elevated in a dose-dependent manner after CCl4 administration 

(Fig. 3.20 and 3.21). In conclusion, administration of different doses of CCl4 leads 

to dose-dependent alterations of liver tissue morphology. 
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Fig. 3.20: Plasma alanine transminase (ALT) levels (U/l) at day one after administration of 
different doses of CCl4.   ALT increased in a dose-dependent manner after CCl4 intoxication. 
Data were obtained from six mice per time point and were expressed as mean ± S.E. * P< 0.05 
compared to controls (0). 
 

 
 

 
 

Fig. 3.21: Plasma aspartate transaminase (AST) levels (U/l) at day one after administration 
of different doses of CCl4.  AST increased in a dose dependent manner after CCl4 intoxication. 
Data were obtained from six mice per time point and were expressed as mean ± S.E. * P< 0.05 
compared to controls (0). 
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3.1.4  Relation between CYP2E1 expression and CCl4 
induced liver damage 

 
After injection of 1.6 g/kg CCl4, the diameter of the necrotic lesion reached 

the highest level, i.e. by increasing the dose of CCl4 in contrast, the diameter of 

dead cell area did not increase. To investigate whether this was associated with 

the expression pattern of CYP2E1, the enzyme responsible for metabolic 

activation of CCl4, formalin fixed paraffin embedded sections of liver tissue were 

immunostained using antibodies against CYP2E1. The control liver showed the 

typical pericentral zonation of CYP2E1. Injection of 132.4 mg/kg CCl4 led to small 

central spots of dead cells surrounded by surviving CYP2E1 positive 

hepatocytes. By increasing the dose of CCl4 (460 mg/kg), the diameter of the 

dead cell area increased and only a small rim of surrounding CYP2E1 positive 

hepatocytes remained visible. After injection of 1.6 g/kg CCl4, all CYP2E1 

positive hepatocytes were killed. Even with such a high dose (1.6 g/kg), the 

periportal region, which is negative for CYP2E1, did not show any morphological 

alterations (Fig. 3.22). 
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Fig. 3.22: Relationship of CYP2E1 expression and CCl4 induced hepatotoxicity in mouse 
livers at day one after administration of different doses of CCl4. The control liver shows the 
pericentral zonation of CYP2E1. Low doses of CCl4 kill only the central fraction of CYP2E1 
positive hepatocytes whereas after injection of 1.6 g/kg CCl4 the entire area of CYP2E1 positive 
hepatocytes was killed. The periportal region, which is negative for CYP2E1, did not show any 
morphological alterations after CCl4 intoxication. CV= central vein, PV= portal vein. Scale bars: 
200µm. 
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3.1.5 Quantification of metabolic changes at various degrees 
of  liver damage induced by CCl4 

 
The aim of this experiment was to quantify the changes of the metabolic 

function of the liver, specifically ammonia and carbohydrate metabolism, at 

various degrees of liver damage induced by injection of different doses of CCl4. 

For this purpose, blood samples were collected from the three aforementioned 

positions (portal vein, hepatic vein and heart) in each mouse on day one after 

CCl4 injection. Then plasma was separated and various metabolic parameters 

relevant for ammonia and carbohydrate metabolism were analyzed. 

Ammonia and glutamate analysis showed the previously mentioned 

discrepancies between portal vein, hepatic vein and heart in the control group. 

CCl4 intoxication caused a dose dependent elevation of ammonia and glutamate 

concentrations at all three analyzed positions of vascular system (Fig. 3.23 and 

3.24). Even with the highest dose (1.6 g/kg), ammonia and glutamate were lower 

in the heart blood compared to the hepatic and portal vein. In contrast, a dose 

dependent elevation of glutamine concentration was measured in the heart blood 

after CCl4 injection (Fig. 3.25). The urea assay did not show any changes in CCl4 

treated groups compared to controls, except for the highest tested dose (1.6 

g/kg), where urea concentrations were slightly lower compared to controls (Fig. 

3.26). 

The glucose assay after induction of liver damage by different doses of 

CCl4 revealed a dose-dependent hypoglycemia (Fig. 3.27). In contrast, alanine, 

lactate and pyruvate analyses showed dose-dependent elevations at all analyzed 

positions of the vascular system (portal vein, hepatic vein and heart) after CCl4 

intoxication (Fig. 3.28; 3.29 and 3.30).  In conclusion, the degree of alterations in 

metabolic function of the liver was associated with the degree of liver damage. 
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Fig. 3.23: Concentration of ammonia (µM) in plasma obtained from three positions in mice 
at day one after administration of different doses of CCl4. The control mice show high 
ammonia concentrations in the portal vein and low ammonia concentrations in the hepatic vein 
and heart blood. After CCl4 injection, ammonia increased at all positions of the mice in a dose-
dependent manner. Data are mean ± S.E. of three mice per time point. * P< 0.05 compared to 
controls (0). # P< 0.05 compared to the corresponding hepatic vein results. 
 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.24: Concentration of glutamate (µM) in plasma obtained from three positions in mice 
at day one after administration of different doses of CCl4. In control mice glutamate 
concentrations were high in the portal vein and were low in the hepatic vein and heart blood. After 
CCl4 injection, glutamate increased at all positions of the mice in a dose-dependent manner. Data 
are mean ± S.E. of three mice per time point. * P< 0.05 compared to controls (0). 
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Fig. 3.25: Concentration of glutamine (µM) in plasma obtained from three positions in mice 
at day one after administration of different doses of CCl4. There is a dose-dependent 
elevation of glutamine in heart blood after CCl4 intoxication. Data are mean ± S.E. of three mice 
per time point. * P< 0.05 compared to controls (0). 
 
 
 
 

Fig. 3.26: Concentration of urea (µM) in plasma obtained from three positions in mice at 
day one after administration of different doses of CCl4. Only after injection of the highest 
dose of CCl4 (1.6 g/kg), a slight reduction of blood urea concentrations was observed. Data are 
mean ± S.E. of three mice per time point.  
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Fig. 3.27: Concentration of glucose (µM) in plasma obtained from three positions in mice at 
day one after administration of different doses of CCl4, showing dose-dependent 
hypoglycemia at all positions of the mice. Data are the mean ± S.E. of three mice per time point. 
*P< 0.05 compared to controls (0). 
 
 
 
 
 

Fig. 3.28: Concentration of alanine (µM) in plasma obtained from three positions in mice at 
day one after administration of different doses of CCl4, showing dose-dependent elevation at 
all positions of the mice. Data are mean ± S.E. of three mice per time point. * P< 0.05 compared 
to controls (0). 
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Fig. 3.29: Concentration of lactate (µM) in plasma obtained from three positions in mice at 
day one after administration of different doses of CCl4, showing dose-dependent elevation at 
all positions of the mice. Data are mean ± S.E. of three mice per time point. * P< 0.05 compared 
to controls (0). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.30: Concentration of pyruvate (µM) in plasma obtained from three positions in mice 
at day one after administration of different doses of CCl4, showing dose-dependent elevation 
at all positions of the mice. Data are means ± S.E. of three mice per time point. * P< 0.05 
compared to controls (0). 
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3.2 Modelling of ammonia detoxification during liver 
damage and regeneration 

 
3.2.1  Establishment of a metabolic model 

 
In the previous section I have shown how liver damage influences the levels 

of metabolites involved in ammonia metabolism. A next question of interest is 

whether these changes in metabolites can be explained by a mathematical 

metabolic model that includes all known pathways of ammonia detoxification. 

Therefore a metabolic model was established (Fig. 3.31). 

Ammonia detoxification occurs in both the periportal and the pericentral 

compartment of the liver lobule. The periportal compartment involves the 

glutaminase reaction and the urea cycle. The pericentral compartment involves 

the glutamine synthetase reaction. Glutaminase enzyme catalyzes the 

degradation of glutamine into ammonia and glutamate. Ammonia is then 

metabolized through the urea cycle into urea. Urea cycle is a high capacity low 

affinity system for ammonia detoxification. Ammonia that escapes the urea cycle 

in the periportal compartment can be metabolized by glutamine synthetase in the 

pericentral compartment into glutamine. Thus, glutamine degraded by 

glutaminase in the periportal compartment of the liver lobule is re-synthesized by 

glutamine synthetase in the pericentral compartment. Urea formation is the 

permanent pathway for the detoxification of ammonia. In contrast, glutamine 

formation is a temporary pathway for ammonia detoxification acting as a 

scavenger for ammonia that escapes the urea cycle. 
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Fig. 3.31: Ammonia detoxification along the periportal (pp) and the pericentral (pc) 
compartment of the liver lobule: Ammonia passes to the liver through portal vein in the form of 
free ammonia and glutamine. Glutamine is then metabolized in the pp by glutaminase to form 
ammonia and glutamate. Ammonia is firstly metabolized permanantly through the urea cycle into 
urea, and any ammonia that escapes the urea cycle in the pp can be temporarly scavenged by 
glutamine synthetase in the PC to form glutamine. Thus glutamine breackdown by the 
glutaminase in the periportal compartment is re-synthesized by glutamine synthetase in the 
pericentral compartment. 

 

The model is a two compartment model consisting of differential equations for 

the main metabolites, glutamine, ammonia and urea. In the periportal (pp) 

compartment, the glutaminase and the carbamoyl-phosphate synthetase 

(representing the urea cycle) reactions take place, whereas in the pericentral 

compartment (PC) the glutamine synthetase reaction occurs. Therefore, three 

main reactions were involved: 

 

a) Glutaminase (G, periportal): 

L-glutamine + H2O  à L-glutamate + NH4
+

 

 

b) Carbamoyl-Phosphate Synthetase (CPS, periportal): 

2ATP + NH4
++ CO2 + H2O à 2 ADP + phosphate + carbamoyl phosphate 

Simplified sum reaction of CPS and urea cycle enzymes: NH4
+ à 1/2Urea. 
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c) Glutamate-Ammonia Ligase (Glutamine Synthetase = GS, pericentral): 

ATP + L-glutamate + NH4
+ à ADP + phosphate + L-glutamine 

 

Based on these three reactions, three state variables (entities or species that 

are supposed to change over time) were defined: glutamine, urea and ammonia. 

The change of these state variables described by inflows (portal vein values) and 

outflows (hepatic vein values) was modeled by ordinary differential equations 

(Fig. 3.32). For every measured time point, a steady-state was assumed. 

Fig. 3.32: Ammonia detoxification model. Glutamine, ammonia and urea enter (cGLN,Input, 
cNH4,Input,  cUrea,Input) and leave (cGLN,output,  cNH4,output,  cUrea,output) the model structure at defined 
concentrations and a defined flow (F). The molecules can be taken up or released by both the 
periportal PP (1) and the pericentral compartment PC (2) as indicated by arrows. In the PP 
glutamine is degraded by glutaminase (G) to glutamate and ammonia. Ammonia is then 
converted to urea {carbamoyl phosphate synthetase (C)}. The concentrations of glutamine, 
ammonia and urea within the PP (1) are indicated by cGLN,1,  cNH4,1 and  cUREA,1.  In  the  PC  
glutamine is generated from ammonia and glutamate {glutamine synthetase (GS)}. Here the 
concentrations are given by cGLN,2,  cNH4,2 and cUREA,2. The volumes of the PP and the PC 
compartment are defined as V1 and V2, respectively. Ammonia is released from the PP (C NH4, 

endog1) and close to the PC (C NH4, endog 2). 
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3.2.2  Model simulation of experimental data 
 
In order to model the changes of ammonia detoxification during liver damage 

and regeneration, a single dose of 1.6 g/kg CCl4 was injected i.p. into mice (as 

described in section one). The changes in ammonia, urea and glutamine 

between the portal vein and hepatic vein were simulated using the described 

model. Interestingly, a transient discrepancy between the experimental and the 

simulated data was identified. The experimental data for ammonia and glutamine 

were less than the model prediction, especially for glutamine on days four and six 

after intoxication (Fig. 3.33 and 3.34). 

 

 
Fig. 3.33: Discrepancy between the measured (red) and simulated (orange) glutamine 
output (in hepatic vein) after CCl4 intoxication. The measured glutamine is less than the 
model prediction at all tested time points especially on days four and six after CCl4 injection. Data 
are mean ± S.D. of three mice per time point. 
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Fig. 3.34: Discrepancy between the measured (red) and simulated (orange) ammonia 
output (in hepatic vein) after CCl4 intoxication. The measured ammonia is less than the model 
prediction at most of the tested time points, particularly on day one after CCl4 injection. Data are 
mean ± S.D. of three mice per time point. 
 
 
3.2.3  Delayed recovery of glutamine synthetase after CCl4  

intoxication 
 
In order to find the reason for the deviations between the measured and 

simulated glutamine, the recovery of the glutamine synthetase (GS) was traced 

after CCl4 intoxication. For this purpose, RNA was isolated from frozen liver 

tissue to quantify the relative RNA expression of GS by qPCR. Moreover, at the 

protein level the activity of GS was measured from frozen liver tissue. In addition, 

formalin fixed paraffin embedded liver sections were immunostained using 

antibodies against glutamine synthetase. qPCR analysis of GS after CCl4 

intoxication revealed lower levels of GS as early as six hours post injection. GS 

expression returned to controls levels one month after CCl4 injection (Fig. 3.35). 
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Fig. 3.35: Relative RNA expression of glutamine synthetase (GS) in a time course after 
injection of 1.6 g/kg CCl4, showing transient down regulation. One month after CCl4 intoxication, 
GS expression was similar to controls. Data are mean ± S.D. of three mice per time point. 

 

This was also confirmed at the protein level by the GS activity assay. GS 

activity was almost completely lost from day two up to day four post injection. By 

day six, GS activity began to recover, whereas full recovery was reached only 

after one month following CCl4 injection (Fig. 3.36). In addition, immunostaining 

of GS showed the normal pericentral localization of GS in the control mice. After 

CCl4 intoxication, GS staining was lost in a time dependent manner. At day four 

post injection, the liver stained completely negative for GS. By day six, a very 

faint staining was seen, while after twelve days it became similar to the control 

situation (Fig. 3.37). From all these data, it is clear that despite the complete 

recovery of the damaged tissue by day six after intoxication, the recovery of GS 

activity was delayed up to one month after CCl4 administration. 
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Fig. 3.36: GS activity assay at different time intervals after administration of 1.6 g/kg CCl4. 
Glutamine synthetase (GS) activity was almost completely lost between days two and four after 
intoxication. By day six it began to recover. Full recovery was only reached one month after CCl4 
injection. Data are mean ± S.D. of three mice per time point. * P< 0.05 compared to controls (0h). 
 

 

 

 

 
 
 
 
 

Fig. 3.37: Immunostaining of GS at different time intervals after administration of 1.6 g/kg 
CCl4. The control liver shows the normal pericentral zonation of glutamine synthetase (GS). After 
CCl4 intoxication, GS protein was lost in a time-dependent manner. On day four, GS staining was 
completely negative.  A very faint staining was observed on day six post injection. After twelve 
days, GS staining was similar to the control. Scale bars: 200µm. 
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3.2.4  Influence of the delayed recovery of glutamine 
synthetase 

 
In a next step, the delayed recovery of GS activity was included into the 

model. Inclusion of these data into the model helped to reduce the deviation 

between the measured and simulated glutamine, particularly on days four, six 

and twelve post CCl4 intoxication (Fig. 3.38). On the other hand, the delayed 

regeneration of GS activity led to the prediction of higher ammonia output 

particularly on days four, six and twelve (Fig. 3.39). In conclusion, by considering 

the delayed recovery of GS activity, glutamine output was correctly predicted 

while the discrepancy of ammonia prediction became even worse. 

 

 
Fig. 3.38: The measured (red) and simulated (orange) glutamine output (in hepatic vein) 
after CCl4 intoxication. Consideration of the delayed recovery of GS allowed a correct prediction 
of glutamine. Data are mean ± S.D. of three mice per time point. 
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Fig. 3.39: The measured (red) and simulated (orange) ammonia output (in hepatic vein) 
after CCl4 intoxication. Consideration of the delayed recovery of GS led to the prediction of 
more ammonia particularly on day six after CCl4 intoxication. Data are mean ± S.D. of three mice 
per time point. 

 

 

3.2.5  Over expression of CPS1 during liver regeneration 
 

Because the pericentral compartment is almost completely lost after CCl4 

intoxication, the following studies will focus on the periportal compartment of the 

liver lobule, with the aim to study if a compensatory mechanism for ammonia 

detoxification during liver damage takes place. Carbamoyl phosphate 

synthetase1 is well known to be the rate limiting enzyme of the urea cycle. One 

hypothesis is that the delayed recovery of GS is compensated for by over 

expression of CPS1 in the PP compartment. To study this hypothesis, formalin 

fixed paraffin embedded sections of liver tissue were immunostained using 

antibodies against CPS1 in control, as well as in days four, six and twelve after 

CCl4 intoxication. The control liver showed a restricted periportal zonation of 

CPS1, whereas on days four and six after CCl4 intoxication, CPS1 was 

expressed throughout the whole liver lobule (periportal-like liver). By day twelve 

after injection, CPS1 expression returned to the normal periportal zonation (Fig. 

3.40). 
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Fig. 3.40: CPS1 immunostaining in liver tissue at control as well as days four, six and 
twelve after CCl4 intoxication. The control liver shows restricted periportal zonation of CPS1. 
On day four and six; CPS1 covers the whole liver parenchyma. Twelve days after CCl4 injection, 
normal periportal zonation of CPS1 was observed. Scale bar: 200µm. 
 
 
 
3.2.6  Influence of CPS1 over expression during liver 

regeneration 
 

To simulate the influence of the altered expression patterns of CPS1 the 

corresponding data were included into the model. This allowed the fitting 

between the experimental data and simulation results of ammonia output on days 

four and six post CCl4 intoxication (Fig. 3.41). In conclusion, the loss of GS 

activity during liver regeneration was compensated for by the over expression of 

CPS1. 
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Fig. 3.41: Influence of carbamoyl phosphate synthetase1 (CPS1) Over expression. Over 
expression of CPS1 corrected the prediction of ammonia during liver regeneration. Consideration 
of the over expression of carbamoyl phosphate synthetase1 during liver regeneration led to better 
prediction of ammonia (orange) on day six. Data are mean ± S.D. of three mice per time point. 

 

3.2.7   Expression of urea cycle enzymes after induction of 
liver damage by CCl4 

 
3.2.7.1 Down regulation of urea cycle enzymes after CCl4    

intoxication 
 
Despite the model improvement, the measured and the predicted ammonia 

are still not fitting together, particularly at the time period of maximal liver damage 

(12h, days one and two after CCl4 injection). One hypothesis is that the capacity 

of the urea cycle to detoxify ammonia is altered after damage of the pericentral 

compartment of the liver lobule by CCl4. To investigate this, RNA was isolated 

from frozen liver tissue specimens after CCl4 intoxication and all urea cycle 

enzymes were analyzed by qPCR. Out of arginase1, all other urea cycle 

enzymes, including carbamoyl phosphate synthetase1 (CPS1), argininosuccinate 

synthetase1 (ASS1) and argininosuccinate lyas1 (ASL), were down regulated 

12h up to day three after CCl4 intoxication. On days four and six, both CPS1 and 

ASS1 showed slight up regulation and became similar to control levels one 

month after CCl4 injection (Fig. 3.42; 3.43; 3.44). 
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 Fig. 3.42: Carbamoyl phosphate synthetase1 (CPS1) RNA expression at different time 
intervals after CCl4 intoxication. CPS1 down regulated between 12h up to day three after CCl4 
injection. Data were normalized to the control and expressed as mean ± S.D. of three mice per 
time point. 
 
 
 
 
 

Fig. 3.43: Argininosuccinate synthetase1 (ASS1) RNA expression at different time intervals 
after CCl4 intoxication. ASS1 down regulated between 12h up to day three after CCl4 injection. 
Data were normalized to the control and expressed as mean ± S.D. of three mice per time point. 
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Fig. 3.44: Argininosuccinate lyase (ASL) RNA expression at different time intervals after 
CCl4 intoxication. ASL down regulated between 12h up to day four after CCl4 injection. Data 
were normalized to the control and expressed as mean ± S.D. of three mice per time point. 

 

Moreover, immunostaining of CPS1 after CCl4 intoxication showed also a 

decrease of its signal in the periportal compartment of the liver lobule (Fig. 3.45). 

In conclusion, CCl4 intoxication resulted in more than 50% reduction in urea cycle 

capacity for ammonia detoxification. 

 

Fig. 3.45: Carbamoyl phosphate synthetase1 (CPS1) immunostaining in liver tissue of 
controls as well as days one, two and three after CCl4 intoxication. The control liver shows 
restricted periportal zonation of CPS1. CCl4 intoxication decreases the CPS1 signal in the 
periportal compartment of the liver lobule. Scale bars: 200µm. 
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3.2.7.2 Arginine loss after CCl4 intoxication 
 

Arginine is the final substrate of the urea cycle. It metabolized by arginase1 

forming urea and ornithine. Despite the alterations of urea cycle enzymes, the 

urea concentration in the blood was not highly altered. To study whether this was 

due to over consumption of arginine, the plasma level of arginine was measured. 

For this purpose, blood samples were collected from the portal vein, hepatic vein 

and from the right heart chamber at different time intervals after intoxication by 

1.6 g/kg CCl4. In control mice the highest concentration of arginine was 

measured in the blood of the portal vein, while the concentration was low in the 

blood of the hepatic vein and the heart. CCl4 intoxication caused almost a 

complete depletion of arginine between 12h up to day two after injection (Fig. 

3.46). By day three, arginine was even higher compared to control mice at all 

analized positions of the vascular system. Arginine returned to the basal levels 

by day twelve after intoxication. 

 
 

 
Fig. 3.46: Concentration of arginine (µM) in plasma obtained from three positions in mice 
at different time intervals after injection of 1.6 g/kg CCl4, showing a marked loss of arginine at 
all measured positions of the vascular system between 12h up to day two post injection. Data are 
mean ± S.D. of three mice per time point. * P< 0.05 compared to the corresponding control (0h). 

 

To explain such a drastic decrease in arginine concentration, arginase1 (the 

enzyme which metabolizes arginine to urea and ornithine) was analyzed by 
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qPCR after isolation of RNA from frozen liver tissue. Arginase1 RNA expression 

showed a slight down regulation between six hours and day six after CCl4 

intoxication, and returned to the control levels by day twelve (Fig. 3.47).  

To investigate whether such modest down regulation has affected the protein 

level, arginase1 was also detected by immunostaining in formaline fixed paraffin 

embedded sections using antibodies againest arginase1. Arginase1 staining 

showed the typical periportal zonation in the control liver. After CCl4 intoxication, 

arginase1 was similar to the control at all tested time points (Fig. 3.48). 

 

Fig. 3.47: Arginase1 RNA expression at different time intervals after CCl4 intoxication, 
showing a slight down regulation between six hours up to day six after CCl4 injection. Data were 
obtained from three mice per time point, normalized to the control and expressed as mean ± S.D. 
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Fig. 3.48: Immunostaining of arginase1 in formalin fixed paraffin embedded sections of 
mouse liver at different time intervals after CCl4 intoxication. The control liver showed the 
typical periportal zonation of arginase1. After CCl4 intoxication, arginase1 was similar to the 
control at all tested time points. Scale bars: 200µm. 
 
 
 
3.2.8 Influence of urea cycle alterations 
 

CPS1 is well known to be the rate limiting enzyme of the urea cycle. The 

qPCR data and immunostaining suggested more than 50% impairment of this 

enzyme after CCl4 intoxication. By integerating this information into the model, 

the discrepancy between the simulated and the measured ammonia output 

became even worse. The discrepancy increased particularly at 12h and day one 

after CCl4 intoxication (Fig. 3.49). From all these data, it can be concluded that 

the known mechanisms of ammonia detoxification are not sufficient to explain the 

metabolite concentrations after induction of liver damage. Further mechanisms 

that detoxify ammonia must be activated. 
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Fig. 3.49: Influence of urea cycle alteration. Alteration of CPS1 after CCl4 intoxication 
(particularly between 12h and day one) led to a higher ammonia output prediction. The 
discrepancy between the predicted and the experimentally obtained data became even worse. 
Data are mean ± S.D. of three mice per time point. 
 
 
 
3.2.9 Identification of a novel mechanism by mathematical 

modelling 
 

3.2.9.1 The glutamate dehydrogenase switch hypothesis 
 

It is well known that glutamate dehydrogenase (GDH) generates ammonia in 

the periportal compartment of the liver lobule (Boon et al., 1999). It catalizes the 

oxidative deamination of glutamate into ammonia and alpha-ketoglutarate (α-

KG). Ammonia then enter the urea cycle where it is permenantly detoxified in the 

form of urea. 

 

 

 

 

After alteration of urea cycle enzymes in the periportal compartment of the 

liver lobule, it became important to focus on the GDH reaction and the involved 

metabolites. 
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As shown previously, the measured ammonia was lower compared to the 

model prediction (Fig. 3.49). Moreover, glutamate concentrations were elevated 

at all three analyzed positions of the vascular system after induction of liver 

damage (Fig. 3.8). To analyze α-KG, blood samples were collected from the 

portal vein, hepatic vein and heart of mice in a time-dependent manner after 

injection of 1.6 g/kg CCl4. The concentration of α-KG in control mice was highest 

in the portal vein (approximately 30µM) and was lowest in the hepatic vein 

(approximately 19µM) with a slight elevation in heart blood (approximately 

22µM). CCl4 intoxication resulted in a drastic decrease of α-KG at all analyzed 

positions of the vascular system between 12h up to day two after injection. On 

day three, α-KG was higher compared to controls in the portal and in the hepatic 

vein blood. By day four after CCl4 injection α-KG returned to control levels at all 

analyzed positions (Fig. 3.50). In conclusion, after induction of liver damage, the 

concentration of glutamate was increased while the concentration of α-KG was 

strongly decreased. 

 

Fig. 3.50: Concentration of alpha ketoglutarate (µM) in plasma obtained from the portal 
vein, hepatic vein and heart of mice at different time intervals after injection of 1.6 g/kg 
CCl4. alpha ketoglutarate decreased to almost undetectable levels between 12h up to day two 
after CCl4 injection. Data are mean ± S.E. of three mice per time point. * P< 0.05 compared to the 
corresponding control (0h). 
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To study whether the depletion of α-KG was due to the decreased 

expression of GDH, analysis of the RNA expression of GDH was performed. For 

this purpose mice were injected with 1.6 g/kg CCl4. Liver tissue samples were 

collected and snap frozen in a time-dependent manner after injection. RNA was 

isolated from frozen liver tissue and the RNA expression of GDH was measured 

by qPCR. In addition, a GDH activity assay was performed in liver homogenate 

extracted from the frozen liver tissue. qPCR analysis of GDH expression 

revealed a slight up regulation after CCl4 intoxication compared to control levels 

(Fig. 3.51). This was also confirmed at the protein level by the enzyme activity 

assay. The activity of GDH was slightly elevated in liver tissue after CCl4 

intoxication compared to control levels. The GDH activity returned to basal levels 

one month after CCl4 intoxication (Fig. 3.52). In conclusion, CCl4 intoxication 

failed to alter the activity of GDH in liver tissue. 

 

Fig. 3.51: Relative RNA expression of GDH in liver tissue at different time intervals after injection of 
1.6 g/kg CCl4 showing a slight up regulation particularly between 12h and day three after CCl4 
intoxication. Data were normalized to the control and expressed as mean ± S.D. of three mice per time 
point. 
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Fig. 3.52: GDH activity assay in liver tissue at different time intervals after injection of 1.6 
g/kg CCl4 showing a slight elevation after CCl4 intoxication. Data are mean ± S.D. of three mice 
per time point. * P< 0.05 compared to controls (0h). 
 

 

All these data allowed to raise the hypothesis that under the condition of 

liver damage a GDH switch from ammonia production to ammonia consumption 

occurs as a compensatory mechanism as suggested by the red dotted arrow in 

the schedule below. 
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3.2.9.2 Confirmation of the glutamate dehydrogenase 
switch hypothesis 

 
3.2.9.2.1 The switch of the GDH reaction in cultivated 

hepatocytes 
 

The aim of this experiment is to investigate whether the cultivated 

hepatocytes can be used to study ammonia detoxification. For this purpose, 

mouse hepatocytes were isolated and cultivated in a collagen sandwich using 

conditions where the cells reached confluency. Various concentrations of 

ammonium chloride (NH4Cl) (0, 200, 1800, 16200µM) were added to the 

hepatocytes culture and to the media control. 1h and 24h following the onset of 

NH4Cl, ammonia was measured in the culture supernatant. After 1h, there were 

no obvious changes of ammonia concentrations. However, after 24h a clear 

ammonia detoxification was observed in the hepatocytes culture compared to the 

negative control (without hepatocytes) (Fig. 3.53). This experiment confirms that 

the in vitro  system is useful to study ammonia metabolism. 

 

Fig. 3.53: Ammonia concentrations in the culture medium of cultivated mouse hepatocytes 
(collagen sandwich). 1h after incubation with NH4Cl, there were no clear changes in ammonia 
concentrations. However, after 24h there was an obvious ammonia detoxification by hepatocytes 
(red) compared to the negative control (blue). Data are mean ± S.D. of three independent 
experiments. * P< 0.05 compared to the corresponding control (- hepatocytes). 
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To study the role of GDH in ammonia metabolism, a GDH inhibitor was 

used. Mouse hepatocytes were isolated and cultivated as a collagen sandwich 

and incubated with various concentrations of NH4Cl  in presence or absence of  

2,6-pyridinedicarboxylic acid (PDAC), a GDH inhibitor. After 24h, ammonia was 

measured in the culture supernatant whereas glutamate and GDH activity were 

analyzed in the cellular extracts (Fig. 3.54). 

 

Fig. 3.54: Identification of the glutamate dehydrogenase (GDH) switch in cultivated mouse 
hepatocytes. Hepatocytes were isolated from C57BL/6N mice and cultivated on six well plates 
as a collagen sandwich using conditions where cells reach  the confluency. The cultivated 
hepatocytes wrere incubated with various concentrations of ammonium chloride (0, 2.5, 5 and 
10mM) ± 5mM 2,6-Pyridinedicarboxylic acid (PDAC, a GDH inhibitor). After 24h, ammonia was 
measured in the culture supernatant whereas glutamate and GDH activity were measured in 
cellular extracts and the results normalized to the protein content. 

 

Incubation with 5mM PDAC inhibited the activity of GDH enzyme by 

approximately 50% compared to control levels (Fig. 3.55).  

http://en.wikipedia.org/w/index.php?title=File:Mars_symbol.svg&page=1
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Fig. 3.55: Inhibition of GDH activity in cultivated mouse hepatocytes. Exposure to 5mM 2,6-
Pyridinedicarboxylic acid caused approximately 50% inhibition (red) of GDH activity compared to 
the control (blue). Data are mean ± S.D. of 3 independent experiments. * P< 0.05 compared to 
the corresponding control. 
 
 
 

Using the phase contrast microscopy, the hepatocyte morphology 

appeared normal in absence of the GDH inhibitor even with the highest 

concentration of NH4Cl (10mM). However, after inhibition of the GDH, 

hepatocytes were completely killed by 5mM NH4Cl and higher concentration (Fig. 

3.56). In absence of NH4Cl, inhibition of the GDH resulted in decreased ammonia 

concentrations in the culture media of cultivated hepatocytes. However, after 

incubation with high concentrations of NH4Cl, inhibition of the GDH resulted in 

increased ammonia concentrations in the culture media (Fig. 3.57). In contrast, 

the concentration of glutamate was reduced in the hepatocyte cultures after 

inhibition of the GDH and exposure to high concentrations of NH4Cl (Fig. 3.58). 

All these data confirm that GDH can switch from ammonia production to 

ammonia consumption after exposure to high concentrations of ammonia. 
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Fig. 3.56: Morphology of cultivated mouse hepatocytes after exposure to various 
concentrations of ammonium chloride (NH4Cl) ± the GDH inhibitor. In absence of the GDH 
inhibitor the hepatocyte morphology looked normal even at the highest concentration of NH4Cl, 
whereas after inhibition of GDH hepatocytes were completely killed by 5mM NH4Cl or at higher 
concentrations. Scale bars: 50µm. 
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Fig. 3.57: Ammonia concentrations in the culture medium of cultivated mouse hepatocytes 
after exposure to various concentrations of ammonium chloride (NH4Cl) ± the glutamate 
dehydrogenase (GDH) inhibitor. After exposure to high concentrations of NH4Cl, inhibition of 
the GDH activity resulted in increased ammonia concentrations in the culture media of cultivated 
hepatocytes. Data are mean ± S.D. of three independent experiments. * P< 0.05 compared to the 
corresponding control. 
 
 
 

Fig. 3.58: Glutamate concentrations in the culture medium of cultivated mouse 
hepatocytes after exposure to various concentrations of ammonium chloride (NH4Cl) ± the 
glutamate dehydrogenase (GDH) inhibitor. After exposure to high concentrations of NH4Cl, 
inhibition of the GDH activity resulted in decreased glutamate concentrations in the culture media 
of cultivated hepatocytes. Data are mean ± S.D. of three independent experiments. * P< 0.05 
compared to the corresponding control. 
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3.2.9.2.2 Alpha-ketoglutarate substitution provides systemic 
protection against ammonia in acute liver damage 

 
The previous experiments confirmed that GDH can detoxify ammonia in 

vitro in response to high concentrations of ammonia. A next question of interest 

is whether this effect can happen in vivo after liver damage. To get a closer 

system to the in vivo situation, the switch of the GDH was studied in mouse 

plasma. In order to investigate the level of GDH in blood after induction of liver 

damage, mice received an intraperitoneal injection of 1.6 g/kg CCl4.  At  day one 

after injection, the time point of maximal liver damage, blood samples were 

collected from the portal vein, hepatic vein and heart. Subsequently, the activity 

of the GDH was measured in plasma. The GDH activity assay revealed an 

obvious increase after CCl4 intoxication at all of the three measured positions of 

the vascular system compared to controls (Fig. 3.59). 

 
 

 

 

 

 

 

 

 

 

 
Fig. 3.59: GDH activity in plasma obtained from the portal vein, hepatic vein and heart of 
mice at day one after injection of 1.6 g/kg CCl4 . The GDH activity sharply increased at all of 
the three measured positions of the vascular system after CCl4 intoxication compared to controls. 
Data are mean± S.D. of three mice. * P< 0.05 compared to the corresponding control. 
 
 

A next question of interest is whether the increase of the plasma GDH 

activity after induction of liver damage can play a role in ammonia detoxification. 

To study this, a group of C57BL/6N mice received an intraperitoneal injection of 

1.6 g/kg CCl4. After 24h, blood samples were collected from the three previously 
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mentioned positions of the vascular system (portal vein, hepatic vein and heart). 

Plasma was separated and the concentration of ammonia was measured 

(control). To investigate the ability of the GDH to detoxify ammonia, the collected 

plasma was incubated with either NH4Cl only or NH4Cl plus α-KG or NH4Cl plus 

α-KG plus the GDH inhibitor. After 1h incubation at 37°C, ammoia, glutamate and 

GDH activity were measured (Fig. 3.60). 

Fig. 3.60: Identification of the GDH switch in mice plasma. Blood samples were collected 
from the portal vein, hepatic vein and heart of mice on day one after injection of 1.6 g/kg CCl4.  
The plasma was separated and the concentration of ammonia was measured (control). Then the 
plasma was incubated with either ammonium chloride (NH4Cl) only or NH4Cl plus alpha 
ketoglutarate (α-KG) or NH4Cl plus α-KG plus a glutamate dehydrogenase (GDH) inhibitor. After 
1h incubation at 37°C, ammonia, glutamate and GDH activity were measured. Three mice were 
used. 
 
 

Incubation with 10mM PDAC led to 90% inhibition of the plasma GDH 

activity  compared to controls (Fig. 3.61).  In the absence of α-KG, the added 

ammonia was not metabolized. Whereas, addition of α-KG led to ammonia 

detoxification. This effect was blocked by the GDH inhibitor (Fig. 3.62). Moreover, 

glutamate was produced only when α- KG was added. Inhibition of GDH blocked 

the production of glutamate (Fig. 3.63). a clinically relevant conclusion is that the 

GDH can systemically detoxify ammonia if α-KG is supplemented. 
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Fig. 3.61: Inhibition of GDH activity by PDAC. Plasma was separated from Blood samples 
collected from the portal vein, hepatic vein and heart of mice on day one after injection of 1.6 g/kg 
CCl4. Plasma was incubated with 10mM 2,6 pyridinedicarboxylic acid (PDAC) for 1h at 37°C (red 
bar). Exposure to 10mM PDAC caused 90% inhibition of the GDH activity. Data are mean± S.D. 
of three mice. * P< 0.05 compared to the corresponding control. 
 
 

Fig. 3.62: Plasma from mice with acute liver damage consumes ammonia. Blood samples 
were collected from the portal vein, hepatic vein and heart of mice on day one after injection of 
1.6 g/kg CCl4.  The plasma was separated and the concentration of ammonia was measured 
(control). The plasma was further incubated with either ammonium chloride (NH4Cl) only, NH4Cl 
plus alpha-ketoglutarate (α-KG) or NH4Cl plus α-KG plus a glutamate dehydrogenase (GDH) 
inhibitor. After 1h incubation at 37°C, ammonia was measured. The added ammonia was 
metabolized only when α-KG was added. This effect was blocked by the GDH inhibitor. Data are 
mean± S.D. of three mice. * P< 0.05 compared to the corresponding NH4Cl results. # P< 0.05 
compared to the corresponding NH4Cl + α-KG results. 
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Fig. 3.63:  Plasma from mice with acute liver damage produces glutamate. Blood samples 
were collected from the portal vein, hepatic vein and heart of mice on day one after injection of 
1.6 g/kg CCl4.  The plasma was separated and the concentration of glutamate was measured 
(control). The plasma was further incubated with either ammonium chloride (NH4Cl) only, NH4Cl 
plus alpha ketoglutarate (α-KG) or NH4Cl plus α-KG plus a glutamate dehydrogenase (GDH) 
inhibitor. After 1h incubation at 37°C, the concentration of glutamate was measured. Addition of 
α-KG led to glutamate production. This effect was blocked by the GDH inhibitor. Data are mean± 
S.D. of three mice. 
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4 Discussion 
 

4.1 Acutely damaged liver tissue provides systemic 
protection against ammonia by GDH release 

 
An unexpected and clinically relevant result of this thesis is that the liver 

upon acute damage provides systemic protection against ammonia. This is due 

to the release of GDH from damaged hepatocytes (Fig. 4.1). The healthy liver 

serves as a barrier and prevents the passage of the toxic metabolite ammonia 

into the systemic circulation. Ammonia is delivered to the periportal hepatocytes 

via the portal vein. Further ammonia is generated in the periportal hepatocytes 

through the degradation of glutamine by glutaminase (Haussinger, 1983; 

Gebhardt et al., 1988). Moreover, GDH provides ammonia in the healthy liver 

(Christen and Metzler, 1985). Ammonia is then metabolized in the periportal 

hepatocytes through the urea cycle into urea (Gaasbeek Janzen et al., 1984; 

Haussinger et al., 1992). Some ammonia that escapes the urea cycle detoxified 

by GS in the pericentral hepatocytes into glutamine (4.1A) (Haussinger, 1990; 

Gebhardt et al., 2007). After liver damage, the metabolism of ammonia through 

these pathways is massively compromised. This results in the escape of the toxic 

metabolite ammonia into the systemic circulation. A serious complication of 

hyperammonemia is the risk of hepatic encephalopathy (Fig. 4.1B) (Lemberg and 

Fernández, 2009; Cash et al., 2010). Interestingly, our model suggests that 

under conditions of hyperammonemia the GDH reaction switches from ammonia 

production into ammonia detoxification. This occurs by consumption of ammonia 

plus α-KG and production of glutamate. Due to the release of GDH from 

damaged hepatocytes into the systemic circulation, this reaction can systemically 

detoxify ammonia upon acute liver damage (Fig. 4.1C). By this reaction the 

organism gets rid of the toxic metabolite ammonia and forms the non toxic 

glutamate. However, this reaction can only proceed until the α-KG present in the 

blood is consumed by the GDH reaction (Fig. 4.1D). Subsequently, no further 

ammonia detoxification by this intravascular GDH reaction is possible (Fig. 3.62). 



4 Discussion 
 

 105 

A clinically relevant conclusion is that α-KG should be substituted in such a 

scenario (acute liver damage). In the following part the discovery of this novel 

mechanism will be discussed. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.1A: Pathways of ammonia detoxification in healthy liver. The portal vein guides 
ammonia and glutamine (Gln) to the periportal compartment (PP) of the liver lobule. Gln is 
catabolised via glutaminase (Glnase) into ammonia and glutamate. Additional ammonia is formed 
in the PP of the liver lobule through the deamination of glutamate (Glu) by glutamate 
dehydrogenase (GDH). Ammonia is then permanently detoxified into urea through the urea cycle. 
Ammonia that escapes the urea cycle is scavenged through the glutamine synthetase reaction 
(GS) in the pericentral hepatocytes (PC) generating Gln. These efficient mechanisms prevent the 
passage of the toxic ammonia into the blood circulation. 
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Fig. 4.1B: Alteration of ammonia metabolism after CCl4 intoxication. After induction of liver 
damage by CCl4, the pericentral compartment of the liver lobule is completely destroyed. Also, 
the activity of the urea cycle is compromised. This results in escape of toxic ammonia into the 
blood circulation. Hepatic encephalopathy might occur as a consequence of hyperammonemia. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.1C: Acute liver damage provides systemic protection against ammonia by GDH 
release. After hepatic damage the glutamate dehydrogenase (GDH) reaction switches from 
ammonia production into glutamate production (1). Moreover, GDH is released from damaged 
hepatocytes into the systemic circulation leading to systemic detoxification of ammonia (2). The 
switch of the GDH reaction provides protection for the brain from the risk of encephalopathy. 
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Fig. 4.1D: Depletion of alpha-ketoglutarate (α-KG) due to consumption by the GDH reaction 
after liver damage. The continuous consumption of α-KG by the glutamate dehydrogenase 
(GDH) reaction results in systemic depletion of α-KG from the blood. Subsequently, no further 
ammonia detoxification by the reversed GDH reaction is possible. This results in elevation of 
ammonia concentration in the blood which might leads to hepatic encephalopathy.  
 
 
 

4.2 Compromised ammonia detoxification after CCl4 
intoxication 

 
In healthy mice the portal vein blood has the highest ammonia 

concentration of the organism. In contrast, much lower ammonia concentrations 

were measured in the hepatic vein and in the systemic circulation (Fig. 3.7). The 

portal vein serves as a drainage system leading ammonia generated in the 

intestinal tract into the liver (Lemberg and Fernandez, 2009). The liver is 

efficiently detoxifying ammonia through the urea cycle and the GS reaction in the 

periportal and pericentral hepatocytes, respectively (Haussinger, 1990; Olde 

Dominik et al., 2002). Thus, the liver acts as a filter that prevents the passage of 

toxic ammonia into the systemic circulation. 

CCl4 intoxication specifically damages the pericentral hepatocytes 

(Hoehme et al., 2007; 2010). This is due to the restricted zonation of the 
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metabolizing enzyme CYP2E1 to the pericentral compartment of the liver lobule 

(Braeuning et al., 2006). A consequence of CCl4 induced liver damage is 

systemic hyperammonemia. Although ammonia was elevated at all measured 

positions of the vascular system, the heart blood showed lower ammonia 

concentrations compared to the hepatic and portal vein values. This can be 

explained by the extra-hepatic contribution from other organs that also express 

GS. In addition to the pericentral hepatocytes, GS is also expressed in the 

skeletal muscles, brain (astrocytes) and lungs (Chatauret and Butterworth, 2004; 

Ytrebø et al., 2006). GS allows the temporary detoxification of ammonia through 

glutamine formation. Ammonia can again be released from glutamine upon 

catabolism by the glutaminase enzyme (Haussinger, 1983; Gebhardt et al; 1988). 

 

 

4.3 Mathematical modelling of ammonia detoxification 
leads to wrong predictions 

 
As a starting point, a model of ammonia detoxification was established 

(Fig. 3.32). The model is an extension of Hoehme et al. (2010). The model 

involves urea and glutamine synthesis which are the major pathways of ammonia 

detoxification. Based on these pathways the model predicts the hepatic output of 

ammonia, urea and glutamine before and after CCl4 intoxication (Fig. 4.2). In a 

next step, experiments were performed to validate the model predictions. Mice 

received a single dose of 1.6 g/kg CCl4 and then ammonia, urea and glutamine 

were measured in the portal vein (liver inflow) and in the hepatic vein (liver 

outflow) in a time dependent manner. Interestingly, a transient discrepancy 

between the predicted and the experimentally obtained data was identified. 

Predictions of both ammonia and glutamine were higher than the experimental 

data. This was most obvious on day one for ammonia and on days four and six 

for glutamine (Fig. 3.33; 3.34). Therefore, the following set of experiments was 

designed to identify explanations for this discrepancy (4.4; 4.5; 4.6).  
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Fig. 4.2: Spatial-temporal modelling of ammonia detoxification during liver damage and 
regeneration on the level of the individual cell (A-F). The three frontal left lobules show the 
destruction and the regeneration process following CCl4 intoxication. The red colored shade 
indicates hepatocytes proliferation. The other four liver lobules show the alteration of ammonia 
metabolism during liver damage and regeneration on each individual hepatocyte. The highest 
concentration of ammonia is in the periportal region (red color), whereas minimal ammonia 
concentration is in the pericentral region (blue color). Time points where images were taken are 
(T= 0, 12h, 1d, 2d, 4d and 6d days after injection of 1.6 g/kg CCl4). 

 
 

4.4 Disturbance of metabolic zonation during liver 
regeneration 

 
GS is a well known pericentral marker of the liver lobule restricted to 1-3 

layers of hepatocytes surrounding central veins (Fig. 4.3) (Gebhardt and Mecke, 

1983). Although complete regeneration of liver architecture was reached six days 

after CCl4 intoxication, the recovery of GS activity took at least 12 days. Possibly 

this was due to the periportal origin of the newly formed hepatocytes. These cells 

may need a period of contact to the endothelial cells of central veins until they 

become reprogrammed to express the pericentral signal. The theory of this 

sinusoidal cell-hepatocyte interaction was previously reported by Kuo et al. 

(1991) and Gebhardt (1992a). These findings allowed correcting the prediction of 
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glutamine during liver regeneration. However, the delayed recovery of GS led to 

even worse ammonia prediction. 

In contrast to GS, CPS1 is expressed in the periportal hepatocytes 

occupying 93% of the liver parenchyma (Gebhardt, 1992b). CPS1 is well known 

to be the rate limiting enzyme of the urea cycle (Gaasbeek Janzen et al., 1984; 

Gebhardt, 1992b). Immunohistochemical analysis of CPS1 during liver 

regeneration showed unexpected results. The territory of CPS1 was extended to 

cover the whole liver parenchyma on days four and six after CCl4 administration 

(Fig. 4.3). By including these data into the model, ammonia was correctly 

predicted during liver regeneration. 

 

Fig. 4.3: Illustration of the disturbed zonation of glutamine synthetase (GS) and carbamoyl 
phosphate synthetase1 (CPS1) during liver regeneration. The liver lobule is divided into two 
metabolic compartments: the periportal (PP) and the pericentral (PC) compartment. Both of which 
are subdivided into proximal and distal part. (A) In normal liver the expression of GS is restricted 
to the proximal PC of the liver lobule. In contrast, CPS1 is expressed in the whole PP and in the 
distal PC of the liver lobule. (B) During liver regeneration after CCl4 intoxication the territory of 
CPS1 is extends to cover the whole liver parenchyma (periportal like liver). PV: portal vein; CV: 
central vein. 

 

 

4.5 Reduction of the urea cycle capacity after CCl4 
intoxication 
 

Based on image analysis, CCl4 intoxication destroyed maximally 32% of 

the periportal compartment of the liver lobule. However, the urea cycle capacity 

was reduced by approximately 60% after CCl4 intoxication. These findings were 

in agreement with Haussinger and Gerok (1984); Gebhardt et al. (1988). When 
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these results were included into the model, the prediction of ammonia became 

even worse. The model predicted too high ammonia concentrations in 

comparison to the experimentally obtained data. This was most obvious on day 

one after CCl4 administration (Fig. 3.49).  

Although the capacity of the urea cycle was reduced after CCl4 

intoxication, the blood urea concentration was slightly or almost unaltered. A 

possible explanation for this is the release of arginase from damaged 

hepatocytes. Arginase catalyzes the hydrolysis of arginine into urea and 

ornithine. This resulted in systemic depletion of arginine (Fig. 3.46). Arginine 

consumption was previously reported in similar scenarios of acute liver damage 

(Reid et al., 2007; Murayama et al., 2008; Jeyabalan et al, 2008). 

 

 

4.6 The reversibility of GDH and systemic protection 
against hyperammonemia 

 
GDH is homogeneously expressed in the liver parenchyma (Wimmer and 

Pette, 1979; Lamers et al., 1988; Boon et al., 1999). However, the function and 

the activity of GDH show a spatial heterogeneity. Lamers et al. (1988) reported a 

“U-shaped” activity profile of GDH: medium/high activity in the periportal 

hepatocytes, high activity in the pericentral hepatocytes and low activity in the 

mid-zonal area. The periportal GDH serves as a source of ammonia in the liver. It 

catalyzes the deamination of glutamate into ammonia and α-KG. In contrast, the 

pericentral GDH is ammonia consumer. It catalyzes the formation of glutamate 

from ammonia and α-KG. Glutamate is then consumed by the GS reaction to 

form glutamine (Haussinger, 1990; Meijer et al., 1990; Maly and Sasse, 1991; 

Boon et al., 1999). This is due to the spatial difference of the affinity of GDH to 

glutamate (Jonker et al., 1996). 

A key observation in this study is the systemic depletion of α-KG after 

induction of liver damage by CCl4 (Fig. 3.50). This was accompanied with 

systemic elevation of glutamate concentrations. Moreover, the activity of GDH 
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was also increased after CCl4 intoxication. These data suggest that under 

conditions of liver damage the GDH reaction switches from ammonia production 

to ammonia detoxification. Priesnitz et al. (2012) investigated the switch of the 

GDH reaction toward glutamate production in a brain cell line exposed to high 

concentrations of ammonium chloride. Moreover, several studies have reported 

glutamate production after administration of high concentrations of ammonia in 

experimental animals (Brosnan and Williamson, 1974; Cooper et al., 1987; 

Nissim et al., 2003; Dadsetan et al., 2011). 

 

4.6.1  Confirmation of the GDH switch in cultivated hepatocytes 
 

In order to investigate the role of the GDH in ammonia metabolism a GDH 

inhibitor was used. Inhibition of GDH in cultivated hepatocytes resulted in 

decreased ammonia concentrations in the culture media (Fig. 3.57). These 

findings confirm that under normal conditions GDH works in the direction of 

ammonia production. In contrast, inhibition of the GDH in hepatocyte cultures 

exposed to high concentrations of ammonium chloride resulted in elevation of 

ammonia concentrations in the culture media. Inhibition of GDH under these 

conditions caused cytotoxic effects in the cultivated hepatocytes (Fig. 3.56). 

These findings suggest that GDH acts as an ammonia scavenger under 

conditions of high ammonia concentrations.  

In addition, the intracellular glutamate concentration decreased after 

inhibition of the GDH in cultivated hepatocytes exposed to high concentrations of 

ammonium chloride. This confirms the switch of the GDH reaction toward 

glutamate production under conditions of high ammonia concentrations. 

However, in absence of the GDH inhibitor there was no obvious increase in 

glutamate concentrations, even after exposure to high concentrations of 

ammonium chloride. It should be considered that glutamate interacts with many 

biochemical pathways in hepatocytes (Fig. 4.4). Glutamate which is generated by 

the switch of the GDH reaction might be consumed by these pathways. 

The switch of the GDH reaction from ammonia production to ammonia 

detoxification was observed only after incubation with high concentrations of 
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ammonium chloride. This might be because all mechanisms of ammonia 

detoxification (urea cycle, GS) are functioning in cultivated hepatocytes. These 

mechanisms might be sufficient to detoxify the relatively low concentrations of 

ammonia. 

 

Fig. 4.4: Pathways of glutamate metabolism. In addition to the glutamate dehydrogenase 
(GDH) reaction, glutamate can be further metabolized by many metabolic pathways in the liver: (i) 
Aminotransferases reactions to form other amino acids. (ii) Glutamine synthetase reaction to form 
glutamine. (iii) N-acetyl glutamate (NAG)-synthetase to form NAG. (IV) Cysteine and glycine to 
form glutathione (source: Kelly and Stanley, 2001) 
 
 
 
 
4.6.2  Identification of a novel mechanism of systemic protection 

against ammonia 
 

Induction of liver damage by CCl4 resulted in systemic elevation of the 

GDH activity (Fig. 3.59). This was due to the release of GDH from damaged 

hepatocytes. Analysis of the plasma GDH activity is routinely used as a marker of 

hepatic necrosis (O'Brien et al., 2002). 
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In order to test whether the released GDH can detoxify ammonia, plasma 

was collected from the portal vein, hepatic vein and heart of mice after induction 

of acute liver damage by CCl4. The plasma was incubated with a certain 

concentration of ammonium chloride in presence or absence of α-KG. 

Interestingly, the results showed obvious ammonia consumption and glutamate 

production only when α-KG had been added (Fig.3.62). This is because that the 

released GDH catalyzes the conversion of ammonia and α-KG into glutamate 

and thereby consumes the α-KG available in the plasma. This suggests that 

supplementation of α-KG in case of acute liver damage should reestablish 

systemic detoxification of ammonia through the reversed GDH reaction. This 

unique hitherto unrecognized mechanism can provide systemic protection 

against hyperammonemia in patients with acute liver damage. A clinically 

relevant implication of these results is that α-KG should be supplemented in 

patients with acute liver damage. 
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5 Summary 
 

The liver is responsible for maintaining the metabolic homeostasis 

throughout the body. Therefore, acute liver failure is life threatening. Only little is 

known about how the complex metabolic function of the liver is restored after 

liver injury. The goals of this thesis were to 1) study the metabolic alterations 

during liver damage and regeneration, 2) model ammonia detoxification during 

liver damage and regeneration, 3) study the alterations of metabolic zonation and 

to 4) identify possible compensatory mechanisms for ammonia detoxification 

during liver damage and regeneration. For this purpose I used a mouse system 

where the hepatotoxic agent CCl4 was injected to induce acute liver damage. 

Metabolic parameters relevant for ammonia and carbohydrate metabolism were 

quantified in a time and in a dose-dependent manner after CCl4 intoxication 

including ammonia, urea, glutamine, glutamate, glucose, lactate, pyruvate, 

alanine, arginine and alpha-ketoglutarate. The measurement was done in blood 

collected from the portal vein “representing the liver inflow”, the hepatic vein 

“representing the liver outflow” and from the heart “representing the mixed 

venous blood”. 

For deeper understanding of ammonia metabolism during liver damage 

and regeneration, a model of ammonia detoxification was established. Model 

predictions and experimental data were compared. After iterative cycles of 

modeling and experiments the following so far unknown mechanism was 

identified. Upon acute liver damage hepatocytes release glutamate 

dehydrogenase (GDH) (together with further liver enzymes) into the systemic 

circulation. As soon as blood ammonia concentrations increase, the GDH 

reaction takes place in a reversed manner. This means that GDH uses ammonia 

and alpha-ketoglutarate (α-KG) as substrates to form glutamate. By this reaction 

the toxic ammonia is detoxified to form the non-toxic glutamate. Interestingly, this 

reaction is not limited to the liver itself but upon release of GDH from damaged 

hepatocytes protection against ammonia is provided systemically in blood. 

However, this protection lasts only as long as α-KG is present in the blood. It can 
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not continue when α-KG has been consumed by the GDH reaction. This 

observation is of clinical relevance since it might be possible to therapeutically 

substitute α-KG after induction of acute liver damage. This mechanism was 

discovered in experiments with plasma of mice and in vitro with cultivated 

hepatocytes. After administration of CCl4 a transient increase of plasma GDH 

was observed which was accompanied by a decrease in α-KG. When plasma 

was taken from such mice detoxification of ammonia to glutamate was only 

observed when α-KG was added. Ammonia detoxification as well as glutamate 

production were both blocked by addition of the GDH inhibitor 2,6-

pyridinedicarboxylic acid (PDAC). In cultivated hepatocytes PDAC increased 

ammonia cytotoxicity. Interestingly, hepatocytes decreased the ammonia 

concentrations in the culture medium at high ammonia concentrations. In 

contrast, hepatocytes released ammonia if its concentrations in the culture 

medium were relatively low. This fits to the mechanism that GDH switches from 

ammonia production to ammonia detoxification if the concentrations of ammonia 

increase. 

Studying the metabolic zonation after CCl4 intoxication showed a transient 

disturbance of metabolic zonation during liver regeneration. This included the 

delayed recovery of the pericentral marker glutamine synthetase. In contrast, the 

territory of the periportal marker carbamoyl phosphate synthetase1 is extended 

to cover the whole liver parenchyma on days four and six after CCl4 intoxication. 

When these findings were included into the model, the predictions of both 

ammonia and glutamine were in a good accordance with the experimentally 

obtained data. 

In conclusion, the acutely damaged liver provides systemic protection 

against hyperammonemia by the release of GDH into the blood. As soon as 

plasma α-KG is consumed by the GDH reaction it should be therapeutically 

substituted. 
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6 Zusammenfassung 
Die Leber spielt eine zentrale Rolle bei der Aufrechterhaltung des 

metabolischen Gleichgewichts. Akutes Leberversagen ist daher 

lebensbedrohlich. Relativ wenig ist bekannt, wie metabolische Funktionen 

während und nach Leberschädigung aufrechterhalten werden. Die Ziele dieser 

Arbeit waren daher 1) metabolische Veränderungen der Leber der Maus 

während Leberschädigung- und Regeneration zu untersuchen, 2) die Ammoniak-

Entgiftung zu modellieren, 3) die Veränderungen der metabolischen Zonierung 

des Leberläppchens während Leberschädigung und Regeneration zu 

berücksichtigen, 4) mögliche Kompensationsmechanismen während der 

Schädigungs- und Regenerationsphase zu identifizieren. Für diese 

Untersuchungen wurden Mäuse eingesetzt, denen Tetrachlorkohlenstoff (CCl4) 

zur Verursachung eines akuten Leberschadens injiziert wurde. Für den 

Ammoniakstoffwechsel relevante Parameter wurden Zeit- und Dosisabhängig 

nach Injektion von CCl4 erfasst: Ammoniak, Harnstoff, Glutamin, Glutamat, 

Glucose, Laktat, Pyruvat, Alanin, und alpha-Ketoglutarat. Diese Analysen wurden 

durchgeführt in Blut aus a) der Portalvene, welche den „Lebereingang“ 

repräsentiert, b) der Lebervene als „Leberausfluss“ und c) der rechten 

Herzkammer, um auch gemischt venöses Blut zu erfassen. 

Um die komplexen Vorgänge des Ammoniakstoffwechsels quantitativ 

erfassen zu können, wurde ein metabolisches Modell eingesetzt. Vorhersagen 

dieses metabolischen Modells (welches alle zur Zeit wesentlichen Prozesse des 

Ammoniakstoffwechsels einschließt) wurden mit den experimentellen Daten 

verglichen. Nach mehreren Zyklen von Experimenten und Modellierung wurde 

hierbei gezeigt, dass die bisher bekannten Mechanismen nicht ausreichen, den 

Ammoniakstoffwechsel während Leberschädigung quantitativ zu beschreiben. 

Vielmehr wurde der folgende Mechanismus identifiziert, welcher für das 

Verständnis der gesamten Situation wesentlich ist: nach Leberschädigung setzen 

geschädigte Hepatozyten neben zahlreichen weiteren Proteinen 

Glutamatdehydrogenase (GDH) in dem systemischen Blutkreislauf frei. Sobald 
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die Ammoniakkonzentrationen im Blut ansteigen, findet eine GDH-Reaktion in 

umgekehrter Richtung statt. Bei dieser Reaktion wird der toxische Ammoniak 

dadurch entgiftet, dass er mit Ammoniak zum relativ untoxischen Glutamat 

verbunden wird. Ein neuer Aspekt ist hierbei, dass Ammoniakentgiftung in Folge 

der GDH-Freisetzung nicht nur in der Leber, sondern auch systemisch im Blut 

stattfindet. Allerdings kann diese entgiftende Reaktion im Blut nur so lange 

stattfinden, bis das dort vorhandene alpha-Ketoglutarat durch die GDH-Reaktion 

verbraucht wurde. Diese Beobachtung ist möglicherweise von klinischer 

Relevanz. Denn sobald die alpha-Ketoglutarat Konzentration in der Leber als 

Folge der GDH-Reaktion absinkt, könnte es therapeutisch substituiert werden. 

Dieser Mechanismus der reversen GDH-Reaktion wurde bei Experimenten mit 

Plasma von Mäuse und mit kultivierten Hepatozyten der Maus beobachtet. Nach 

Verabreichung von CCl4 an Mäusen wurde eine transiente Zunahme von GDH 

im Plasma beobachtet. Dies ging einher mit einer sehr starken Abnahme des 

alpha-Ketoglutarat. Falls Plasma in diesem Zustand Mäusen entnommen wurde, 

konnte Ammoniak-Entgiftung zu Glutatmat nur dann beobachtet werden, 

nachdem alpha-Ketoglutarat zugesetzt worden war. Weiterhin konnten im 

Plasma sowohl die Ammoniakentgiftung, als auch die Bildung von Glutamat 

durch den GDH-Inhibitor 2,6 Pyridine dicarboxylsäure (PDAC) gehemmt werden. 

In kultivierten Hepatozyten steigerte PDAC die Toxizität des Ammoniaks. 

Bemerkenswert ist, dass kultivierte Hepatozyten nur bei hohen 

Ammoniakkonzentrationen im Kulturmedium Ammoniak zu Glutamat entgifteten. 

Bei niedrigen Konzentrationen gaben Hepatozyten sogar noch Ammoniak in das 

Kulturmedium ab. Auch diese Beobachtung passt zur Hypothese des „GDH 

switch“, wobei GDH bei niedrigen Ammoniakkonzentrationen Ammoniak 

produziert, hingegen bei hohen Konzentrationen konsumiert.  

Leberschädigung mit  CCl4 verursachte eine transiente Störung der 

metabolischen Zonierung des Läppchens. Zum Beispiel wurde eine verzögerte 

Erholung des perizentralen Markers Glutaminsynthetase beobachtet. Im 

Gegensatz hierzu dehnte das normalerweise auf die periportale Region 

begrenzte Enzym Carbamoylphosphat-Synthetase sein Territorium auf das 



6 Zusammenfassung 

 119 

gesamte Leberläppchen aus. Dies wurde zwischen Tag 4 und 6 nach Intoxikation 

mit CCl4 beobachtet. Nachdem sämtliche neue Mechanismen im Modell 

berücksichtigt wurden, ergab sich eine gute Übereinstimmung zwischen der 

Modellsimulation und den experimentellen Daten.  

Zusammenfassend kann festgestellt werden, dass die Leber nach akuter 

Schädigung einen systemischen Schutz gegen Hyperammonämie durch 

Freisetzung von GDH vermittelt. Eine mögliche klinische Relevanz dieser 

Beobachtung besteht darin, dass alpha-Ketoglutarat im Plasma therapeutisch 

substituiert werden könnte, sobald es durch die GDH Reaktion verbraucht 

worden ist.  
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