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1 Introduction

We know from our everyday experience that the properties of an object depend on
the surrounding environment. Consider, for example, the different weight of an item
– or the different resistance to its motion – in air and in water. Such effects, aris-
ing from interactions with the medium, play also an important role in microscopic
many-body systems. In this thesis, we will explore the influence of dynamical corre-
lations on the properties of quarks and nucleons in quark matter and nuclear matter,
respectively. We will focus on the short-range correlations here. In comparison to
the well-investigated long-range correlations that determine the bulk properties of the
quarks and nucleons – like effective masses and binding energies – they have a more
subtle influence on the in-medium properties of the particles.

To illustrate the difference between long- and short-range correlations, we can con-
sider a simple system of interacting “particles” [Buß04]: Persons that stroll along a
street in a pedestrian area. The upper panels of Fig. 1.1 show the path of a walker
in three situations with a varying number of other pedestrians (late at night, on a
regular weekday, and on the Saturday before Christmas). The lower panels indicate
the corresponding probabilities to find the walker at a certain (instantaneous) veloc-
ity |�v |. The first scenario does not require much discussion. Late at night, no other
persons are in the street. The walker can move along a straight line with constant
velocity. This corresponds to the motion of free particles in the vacuum.

In the second case, a few other pedestrians will be present. This is a typical example
for long-range correlations. The spaces between the pedestrians remain large and our
walker can see them from far away. Thus, he can adjust his path long before he runs
into another person. Compared to the first case, he has to slow down a little. However,
he can still walk with a constant velocity along the smoothly curved path. Note that
we would obtain the same velocity distribution if there were no other persons but the
street had a little slope that slows down the walker. This corresponds to a so-called
mean-field approach where the interactions between the particles are absorbed into
an effective potential or an effective mass.

The third scenario shows the effect of short-range correlations. On the Saturday
before Christmas, the street will be crowded with other pedestrians – moving in non-
uniform ways and obstructing the view of the walker. Hence, he cannot plan his path
in advance. It becomes necessary for the walker to adjust his velocity (and direction)
dynamically. At some times it will be better to stop for a moment, at other times
it will be better to rush through a gap. The probability to find the walker at a
certain velocity turns from a sharp peak into a broad distribution. It should be clear
from our simple example that the magnitude of the broadening, i.e. the importance
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1 Introduction

Figure 1.1: A simple example for long- and short-range correlations: The path of a
walker through a pedestrian area (upper panels) – late at night (left), at daytime
on a regular weekday (middle), and at noon on the Saturday before Christmas
(right). White dots stand for other pedestrians. The lower panels indicate the
probability to find the walker at a certain (instantaneous) velocity |�v |. The
dashed lines in the middle and the right panel denote the free case.

of the short-range correlations, depends strongly on the density of the medium. A
description of the short-range effects by a simple potential is not feasible. Hence,
their investigation will be more complicated than the study of long-range effects.

Of course, the details of the interactions between pedestrians, quarks, or nucleons
differ. Nonetheless, the observed effects are universal. In quark matter and nuclear
matter, we use spectral functions to describe the properties of the particles. The
spectral functions, that determine the probability to find a particle with a given energy
at a certain momentum (or vice versa), are closely related to the velocity distributions
of the above example: When only long-range correlations between quarks or nucleons
are considered, we observe a sharp peak that has no width – a so-called quasiparticle
peak – in the spectral function. The position of this peak is shifted with respect
to a free particle. Short-range correlations lead to a breakdown of the quasiparticle
picture. Interactions, in which the particles exchange energy and momentum, induce
the collisional broadening of the peak in the spectral function as illustrated in Fig. 1.1.
The existence of states far away from the maximum of the peak will lead to interesting
effects that we discuss below.

After we have established the basic concepts, let us take a closer look at quark
matter. To our present knowledge, quantum chromodynamics (QCD) is the theory
of the strong interaction. All properties of strongly interacting systems should be
described by QCD [PS95]. However, QCD does not provide an easy access to the
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Figure 1.2: The phase diagram of QCD (schematic), taken from [Kar06]. Model
calculations indicate that the chiral phase transition is of first order at low
temperatures (solid line) and turns into a smooth crossover (dotted line) above
a critical point. At large chemical potentials µ and low temperatures T , a color
superconducting phase may exist above the chiral phase transition. Below the
phase transition, chiral symmetry is broken (χ-sb). The line at low µ (∼ µ0) and
T denotes the liquid–gas phase transition [BBI+95] of normal nuclear matter.

investigation of phenomena at moderate energies: The theory is not directly solvable
and it is not possible to perform perturbative calculations since the running coupling
of the QCD Lagrangian becomes large at low energies. The numerical realization of
QCD in the form of Lattice QCD [Cre83] is technically challenging and – in particular
at finite chemical potentials – still limited in its applications [Kar02]. Consequently,
effective models have been developed to investigate the low energy phenomenology
of QCD and the underlying mechanisms. These effective models treat the quarks
usually as quasiparticles, i.e., sharp energy–momentum distributions are assumed.
Even when systems with considerable quark densities are explored, the possibility of
short-range correlations that lead to a collisional broadening of the quark spectral
function is not taken into account.

The Nambu–Jona-Lasinio (NJL) model [NJL61a, NJL61b, Kle92, VW91, HK94]
is an effective quark model with a pointlike interaction that has been constructed
to resemble the symmetries of QCD. The NJL model is frequently used to explore
phenomena related to chiral symmetry – in particular the dynamical breaking of
this symmetry at low temperatures and densities and the chiral phase transition at
higher temperatures T and/or chemical potentials µ. In the last years, the model has
also become very popular to explore the effects of color superconductivity and their
impact on the QCD phase diagram at high densities and low temperatures. See, e.g.,
[RW02, Bub05] for recent reviews. Fig. 1.2 shows a schematic QCD phase diagram.
Like many phenomenological models [Kar06], the NJL model in the quasiparticle
approximation (Hartree or Hartree–Fock) generates a chiral phase transition that is

3



1 Introduction

Figure 1.3: The effective quark mass as function of the chemical potential at T = 0
in the NJL model. The solid line shows the Hartree–Fock result, the dashed
line the result of a calculation with a constant quark width of 28 MeV. The
shaded area denotes the region of a first-order phase transition. See the text for
details. (Due to the width, the dashed line drops faster at low µ. This means
the density ρ ∼ (µ2 − m∗2)3/2 rises faster than in the quasiparticle calculation.
Consequently, the dashed curve drops at a slightly lower µ than the solid curve.)

of first order at low T and high µ and turns into a smooth crossover at high T and
low µ.

At zero temperature, just above the chiral phase transition, quark densities a few
times larger than normal nuclear matter density (ρ0 = 0.17 fm−3) are reached. It is
not unlikely that short-range correlations exist at such densities and have considerable
influence on the properties of the medium [Pes04]. For example, a simple estimate in-
dicates that the character of the chiral phase transition at low temperatures changes
when a small width is added to the quasiparticle quark propagator: The result of
such a calculation is shown in Fig. 1.3. The solid line shows the result of a stan-
dard Hartree–Fock calculation including a finite current quark mass. In the shaded
region, three solutions for the effective mass m∗(µ) are found for a given value of µ.
This is characteristic for a first-order phase transition [PB94]. The upper and the
lower solution correspond to minima of the thermodynamical potential (free energy)
[SKP99, Kle92] that is shown in Fig. 1.4 and thus are stable. The intermediate solu-
tion for m∗ is metastable, it corresponds to a maximum of the potential. Somewhere
in the shaded region of Fig. 1.3 (lines (b-d) in Fig. 1.4), the two minima have the
same value (line (c)). There, the actual phase transition takes place and the system
drops from the upper to the lower solution for m∗ discontinuously.

The dashed curve in Fig. 1.3 shows a different behavior. It has been obtained after
inserting a constant width into the quasiparticle quark propagator. The collisional
broadening turns the phase transition into a crossover: The region where multiple
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Figure 1.4: The free energy (schematic) as a function of the order parameter in the
vicinity of a first-order phase transition [PB94]. The order parameter of the
chiral phase transition is the effective mass m∗. The lines (a)-(e) correspond to
increasing values of the chemical potential µ (from bottom to top). The phase
transition occurs when the two minima of the free energy have the same value,
cf. line (c).

solutions for m∗ exist has disappeared, the quark mass dropsrapidly but continuously
now. In other words, the (quasiparticle) predictions for the character of the chiral
phase transition and/or the position of the critical point are considerably modified.
Note that the width is just chosen as an arbitrary constant here. Fig. 1.3 is meant
as an illustrative example. A more realistic calculation with a self-consistently deter-
mined width will be given below.

We have investigated the possibility of short-range effects for the first time in [Frö01,
FLM03b, FLM03c]. Our simple but fully self-consistent approach to the NJL model
was based on techniques that haven proven to be very successful in the investigation
of nuclear matter. To illustrate the importance of short-range correlations, we shall
discuss the case of nucleons in some detail before we return to quarks.

For nucleons in nuclear matter, short-range effects are well known and have been
the subject of many investigations [DVN05]. In finite nuclei the effects of short-
range correlations can be observed in A(e, e′p)X and A(e, e′pp)X experiments (see,
e.g., [dWH90] and [CdAPS91]). Theoretically, the effects have been investigated first
in sophisticated many-body calculations [RPD89, RDP91, BFF92, BBG+92]. It has
been found that a full understanding of nuclear matter and finite nuclei is not possible
when the short-range effects are not taken into account. At zero temperature and
normal nuclear matter density ρ0, the effects range on a 10% level. This can, e.g., be
seen in the momentum distribution that is shown in Fig. 1.5: Strength is shifted away
from the quasiparticle peaks of the spectral function. This leads to a depletion of
the occupation probabilites inside the Fermi-sphere (below the Fermi momentum) in
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1 Introduction

Figure 1.5: The nucleon momentum distribution in cold nuclear matter at saturation
density [LLLM02] (solid line). The dotted line indicates the momentum distri-
bution of a system of non-interacting particles (free fermion gas). See the text
for details.

comparison to a system of non-interacting particles. The missing strength is shifted
to higher momenta by nucleon–nucleon collisions – producing a long tail above the
Fermi momentum.

In the last years, the properties of nucleons in (isospin symmetric) nuclear matter
have been studied extensively in self-consistent approaches that allow a simultaneous
treatment of long- and short-range effects. A recent review can be found in [DB04].
Those approaches solve Dyson–Schwinger equations for the full in-medium nucleon
propagator that is dressed with an energy and momentum dependent complex self-
energy. Some of the calculations have been performed in T-matrix approaches using
realistic NN potentials [Bȯz02, FM03]. Other approaches have been based on very
simple interaction models [LEL+00, LLLM02], namely the lowest order diagrams for
the collisional self-energy and a pointlike interaction for the short-range part. Note
that more recently, those studies have also been extended to asymmetric nuclear
matter [Bȯz04, FMR+05, KLM05].

Concerning the short-range effects, the results of the theoretical approaches agree
rather well. Already with a pointlike interaction it is possible to reach a good agree-
ment with the more realistic calculations and the experimental data. It is striking that
spectral functions, momentum distributions, occupation probabilities, and response
functions can be reproduced with the overall strength as the only free parameter.
Thus, what matters is not the detailed modeling but the overall strength of the in-
teraction and a reliable description of the collisional phase space [LEL+00].

The density and temperature dependence of the short-range correlations in nuclear
matter is of particular interest for various regions of nuclear physics. For example, in
heavy ion collisions like those planned at the Compressed Baryonic Matter (CBM)
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facility at GSI [GGHM01], densities of several times the nuclear matter saturation
density ρ0 = 0.16/ fm3 are reached. Similar conditions are encountered in astrophysi-
cal scenarios. When a neutron star is formed in a supernova explosion, temperatures
of several tens of MeV and densities far beyond normal nuclear matter density arise.
The neutrinos emitted from the nascent neutron star provide important information
about the ongoing cooling processes. Nucleon correlations, however, affect the neu-
trino opacity in dense nuclear matter. The neutrino cross sections can be significantly
reduced due to the presence of correlations in the medium [Saw95, RPLP99]. There-
fore it is important to take nucleon correlations into account when interpreting the
neutrino spectra.

So far, there has been no consistent investigation of the properties of the nucleon
spectral function that covers the full temperature and density range of those scenarios.
Even though the main focus of the present work is on the short-range correlations
in quark matter, we will address this problem in the following – see also [FLM03a].
Therefore, we reconsider the approach to short-range correlations in nuclear matter
(at T = 0 and saturation density) presented in [LEL+00, LLLM02] and extend it to
the more general cases of finite temperatures and densities beyond the nuclear matter
equilibrium point.

Such an extension requires a reliable description of the static mean-field self-energy
which in [LEL+00, LLLM02] could most conveniently be absorbed into a redefinition
of the chemical potential. To obtain consistent results at all T and ρ, an explicit
treatment of the density and momentum dependent mean-field, i.e. the long-range
part of the nucleon–nucleon interaction, is necessary. The (repulsive) pointlike in-
teraction used to generate the short-range effects cannot describe the long-range
interactions in nuclear matter. Thus, we incorporate the static properties of the
mean-field into our model by an empirical, Skyrme-type energy-density functional
[Sky59, BFvGQ75, VB72].

Alvarez-Ruso et al. [ARFdCO96] have performed calculations similar to ours for
densities from half to twice ρ0 and temperatures up to 20 MeV. In their “semi-
phenomenological” approach they have evaluated second order diagrams taking the
magnitude of the NN interaction from experiment. However, they did not perform
their calculations self-consistently. Note that the basis of their work was also a model
for cold nuclear matter [FdCO92]. In the self-consistent T-matrix approach of Bożek
[Bȯz99], the temperature dependence of the spectral function was investigated up to
T = 20 MeV while the density dependence has been ignored.

In this work, we go far beyond the temperature and density ranges of the former
approaches. To study the role of short-range correlations in supernovae and heavy ion
collisions at CBM, we consider temperatures up to 70 MeV and densities from ρ0 to
3ρ0. Note that this is the first time that such a large range is investigated consistently
within the same model. The self-consistent calculations will yield interesting results
concerning the temperature and density dependence of the short-range correlations
in nuclear matter. Some of the results will also be instructive for our investigation of
quark matter.

7



1 Introduction

Let us return to quarks now: The success of using pointlike interactions in nuclear
matter had motivated our first approach to quark matter [FLM03b]. The NJL model
provides a similar interaction for quarks that respects the relevant symmetries of
QCD. We have used it in a self-consistent calculation where the collisional self-energy
was determined by the direct and the exchange Born diagram, i.e., at a 2-loop level.
The results of [FLM03b] have shown that this approach generates rather small colli-
sional widths. The short-range effects are more than one order of magnitude smaller
than in nuclear matter. A similar approach to higher order effects in quark matter
can be found in [DBM93, DM94] where several NJL inspired interactions are com-
pared. In those works, the collisional self-energy was not determined self-consistently
and the calculations were restricted to µ = 0. Nonetheless, the results for the quark
width range on the same order of magnitude as in [FLM03b].

A priori, there is of course no reason to expect a certain order of magnitude for the
correlations. On the other hand, it is known that a loop-expansion is questionable
in the NJL model since the coupling is large. An expansion in the inverse number
of colors, 1/Nc, is preferable [QK94, DSTL95]. While the Born diagrams are the
only diagrams in next-to-leading order of the coupling, an infinite number of self-
energy diagrams in next-to-leading order of 1/Nc exists. Hence, the results of a 1/Nc

expansion should differ from [FLM03b] and [DBM93, DM94].
In this work, we bring our approach from [FLM03b] to a consistent level in 1/Nc.

We include all quark self-energy diagrams of the next-to-leading order O(1/Nc) in a
self-consistent calculation, not only the Born diagrams. This leads to the introduction
of dynamically generated RPA mesons, i.e., in our SU(2) approach states with the
quantum numbers of the σ and π. In contrast to the standard Hartree+RPA scheme
[Kle92] we do not calculate the RPA polarizations with quasiparticle propagators
but with the full in-medium quark propagators. The RPA mesons are part of the
self-consistent procedure and their properties are fed back into the quark self-energy.
By solving a coupled set of Dyson–Schwinger equations for the quark and meson
propagators in an iterative calculation we are able to explore the off-shell effects in
quark matter.

1/Nc extensions to the NJL model on the quasiparticle level – using a pole ap-
proximation for the dynamically generated mesons and not considering the collisional
broadening of the quarks – have been discussed before [QK94, DSTL95, NBC+96].
The purpose of those considerations was to find next-to-leading order corrections
to the Hartree+RPA approximation without disturbing the chiral properties of the
model. It has been shown in [DSTL95, NBC+96] that the generation of massless
pions (Goldstone modes) in a perturbative expansion relies on a careful choice of di-
agrams for the meson polarizations. Our self-consistent ansatz iterates diagrams up
to arbitrary orders in 1/Nc but does not generate all contributions of any given order.
Thus, the RPA pions become massive in the chirally broken phase. Note that we
obtain a reasonable pion mass – in comparison to the Hartree+RPA approximation
– above the chiral phase transition. An approach that is self-consistent and yields
massless pions (in the chiral limit) has not been proposed so far for the NJL model.

8



The result of our self-consistent calculation could be used as input for an additional
formalism which yields realistic pion properties. However, in the approach proposed
in [DSTL95] and similarly in [OBW00, vHK02], the Goldstone pions are not fed back
into the calculation of the quark properties.

Our approach goes beyond the quasiparticle models of [DSTL95, NBC+96]. We do
not only consider the poles of the RPA meson propagators but also the continuum
of off-shell states. As we will see later, these states are much more important for
the quark properties than the poles. A detailed analysis of the different off-shell
contributions to the quark width will show that some of them are sensitive to the
pion mass while others are not. Concerning the chirally broken phase, it will turn out
that our self-consistent calculation yields a conservative estimate of the short-range
correlations in quark matter.

In the present work, as a first step, we ignore diquark condensates and color su-
perconductivity – relevant at high chemical potentials µ and low temperatures T and
explore the role of the short-range correlations in the chirally broken and restored
phase. We restrict our numerical calculations to a wide range of chemical potentials
at zero temperature. Nevertheless, the formalism that is presented here can also be
used at finite T . At some places we will use simplifications for T = 0. In the present
form the method is not applicable to flavor asymmetric matter – we have consequently
used all simplifications that are possible in symmetric quark matter. An approach to
asymmetric systems would be technically more involved because the up and the down
quarks as well as the three pions π0,± would have to be treated separately. Hence,
instead of working with flavor multiplets we would have to change to the basis of
particle states which is better suited for flavor asymmetric systems. However, there
are no fundamental problems with such an approach. For nuclear matter this has
been demonstrated in [KLM05].

This work is structured as follows. In Chapter 2 we briefly present the NJL model
and introduce the different approaches to the quark properties – the mean-field Har-
tree+RPA approximation as well as our self-consistent O(1/Nc) approach. A review
of 1/Nc corrections to the NJL model that leave the chiral theorems intact is also
included. In the end of the chapter we discuss the structure of the propagators and
self-energies in the real-time formalism that we use for our calculations at finite chem-
ical potentials. In Chapter 3 we show how to calculate the quark self-energy and the
meson polarizations using the full in-medium propagators. The imaginary parts will
be determined in a direct calculation. For the real parts we use dispersion relations.
This requires a close inspection of the analytical expressions.

In Chapter 4 we use quasiparticle approximations and simple phase space argu-
ments to explore the structure of the quark width and its density dependence. We
also investigate the influence of the RPA pion mass on the on-shell width. The nu-
merical realization of our model is presented in Chapter 5. We show results from cal-
culations with two sets of parametrizations, one with a finite current quark mass m0

and one with vanishing m0 (chiral limit). We discuss the influence of the short-range
correlations on the properties of the quarks and investigate the density dependence
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1 Introduction

of the effects. The results for quark matter are compared to calculations for nuclear
matter and our former results from [FLM03b].

Our approach to the short-range correlations in nuclear matter at finite temper-
atures and high densities can be found in Chapter 6. We will compare our results
to other models (at T = 0 and finite temperatures) and discuss the temperature
and density dependence of the short-range correlations. A summary, reviewing the
dynamical correlations at the various scales from quark to nuclear matter, is found
in the concluding discussion in Chapter 7 where we also give an outlook to future
improvements.

10



2 The formalism

In the following we present the components of our model. We begin with a short
introduction to the NJL model and the concept of expansions in the inverse number
of colors. After reviewing the standard mean-field approach to quarks and mesons
in the NJL model, we construct a fully self-consistent approach to the quark self-
energies beyond the mean-field approximation. In the last part of this chapter, we
discuss the formal structure of the in-medium propagators and self-energies that enter
our calculations.

In the derivation of our model we assume that the system is in thermal equilibrium.
For simplicity, we work in the rest frame of the medium. The formalism that we derive
here is also suitable for calculations at finite temperatures. However, it is presently
restricted to flavor symmetric quark matter. In contrast to our earlier approach to
short-range correlations [FLM03b] there is no restriction to the chirally restored phase
of the system.

2.1 The NJL interaction

The Nambu–Jona-Lasinio (NJL) model in its original form has been introduced in
1961 [NJL61a, NJL61b]. Inspired by the Bardeen–Cooper–Schrieffer (BCS) theory of
superconductivity [BCS57], Nambu and Jona–Lasinio had constructed an effective,
local nucleon–nucleon interaction. Quarks and quantum chromodynamics (QCD)
were yet unknown at this time.

After the rise of QCD, the need for effective quark interaction models became
apparent. The running coupling of QCD becomes small only at large momentum
transfers (asymptotic freedom). Thus, the perturbative methods that were developed
for quantum electrodynamics (QED) are not applicable in QCD at the length scales
and momentum transfers that are typical for hadronic physics. This has led to a
reconsideration of the NJL model: The NJL Lagrangian is by design the simplest
effective interaction that resembles all relevant symmetries of QCD [Kle92], namely
SUV (2) ⊗ SUA(2) ⊗ UV (1) (for two flavors) while the UA(1) symmetry is broken,

SUV (2) : ψ → ψ′ = e−i�α·�τ/2ψ

SUA(2) : ψ → ψ′ = e−iγ5�β·�τ/2ψ

UV (1) : ψ → ψ′ = e−iσψ

UA(1) : ψ → ψ′ = e−iγ5ρψ ,

where the τi are the isospin Pauli matrices and �α, �β, σ, ρ are (constant) isospin vectors
and numbers. Since the symmetries are among the most important features of QCD,

11



2 The formalism

the NJL interaction has been identified with a low energy approximation to QCD and
its degrees of freedom have been reinterpreted as (up and down) quarks.

Detailed investigations of the NJL model in SU(2) and SU(3), i.e. for two and
three quark flavors, can be found in the reviews of Klevansky [Kle92], Vogl and
Weise [VW91], and Hatsuda and Kunihiro [HK94]. The NJL model is useful in many
situations where it is not necessary to treat gluons as explicit degrees of freedom and
they can thus be absorbed in an effective qq̄ coupling1. In particular, it is very popular
for the investigation of chiral symmetry (see below) and its dynamical breaking at
low temperatures and densities.

In the lowest order mean-field approach – the Hartree+Random Phase Approxima-
tion (RPA), see Section 2.3.1 for details – a finite constituent quark mass is generated
and breaks chiral symmetry dynamically at low µ and T . Pions that can be identified
with the Goldstone modes of the model are found in the RPA approach. At higher µ
and/or T , chiral symmetry is restored and the NJL model allows an investigation of
the chiral phase transition.

Let us now turn to the details of the NJL interaction. The standard version of the
two flavor Lagrangian, including a small current quark mass m0, is given by

LNJL = ψ̄
(
i/∂ − m0

)
ψ + G

[
(ψ̄ψ)2 + (ψ̄iγ5�τψ)2

]
, (2.1)

where G is the constant coupling strength and the τi are the isospin Pauli matrices.
Note that the invariance under SUV (2)⊗SUA(2) transformations is equivalent to the
invariance under the chiral symmetries SUL(2) ⊗ SUR(2):

SUL(2) : ψL → ψ′
L = e−i�σ·�τ/2ψL ,

SUR(2) : ψR → ψ′
R = e−i�ρ·�τ/2ψR ,

with the left-handed state ψL = 1
2
(1 − γ5)ψ and the right-handed state ψR = 1

2
(1 +

γ5)ψ. The term m0ψ̄ψ is not invariant under these transformations. Hence, chiral
symmetry is broken explicitly – to a small extent – when m0 is set to a finite value.
This is, however, a small effect in comparison to the dynamical symmetry breaking
that we will discuss below.

Due to the constant coupling, the model cannot be renormalized. Several regu-
larization schemes for the NJL interaction exist, the simplest one is to introduce a
(three-)momentum cutoff Λ. The coupling G, the cutoff Λ and the (optional) current
quark mass m0 are the free parameters of the NJL model. Usually their values are
fixed such that reasonable results are obtained for the quark condensate and the pion
decay constant in vacuum – and for the pion mass in the case m0 �= 0. We list some
typical sets of parameters for mean-field calculations in Table 2.1. The simplicity of

1An effective quark interaction without gluons can be motivated by the BCS theory [Kle92]: In
the theory of superconductivity, an effective electron–electron interaction is generated – inde-
pendently of the Coulomb interaction between the electrons – by electron–phonon interactions.
Complicated gluon exchange processes could generate, in analogy to this phenomenon, an effec-
tive quark–quark interaction.
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2.1 The NJL interaction

Table 2.1: Mean-field NJL parameter sets, using a three-momentum cutoff Λ. The
values and the naming scheme are consistent with [Kle92] and references therein.
Sets I and II include a finite current quark mass m0. The coupling G is fitted
for Hartree calculations. The coupling GHF for the Hartree–Fock approximation
is obtained from G by a rescaling factor 12/13. m∗ and 〈ūu〉 are the effective
mass and the quark condensate that are found using the given parameters.

m0 GΛ2 GHFΛ2 Λ m∗ 〈ūu〉1/3

[MeV] [MeV] [MeV] [MeV]

Set 0 - 2.14 1.98 653 313 -250
Set I 5.5 2.19 2.02 631 336 -247
Set II 5.0 2.17 2.00 925 472 -359

11 iγ5τiiγ5τi

σ

Γσ

π0,±

Γ0,±

(a) (b)

Figure 2.1: The scalar and the pseudoscalar qq̄ vertices of the standard NJL interac-
tion (a) and the qq̄-meson vertices of the bosonized NJL interaction (b). The
solid dots in (a) represent the coupling constant G. The dashed lines in (b)
correspond to dynamically generated σ and π mesons. The coupling constant
G does not appear explicitly but is hidden in the meson propagators.

this model leads also to certain shortcomings like the lack of asymptotic freedom and
the absence of confinement. The cutoff is sometimes interpreted as a crude imple-
mentation of asymptotic freedom. For confinement no such simple emulation exists.

The NJL Lagrangian in the present form provides scalar and pseudoscalar qq̄ in-
teraction channels. Fig. 2.1(a) shows the corresponding interaction vertices. After a
slight rearrangement, the vertices resemble the quantum numbers of σ, π0 and π+, π−

meson exchanges, respectively:

LNJL = ψ̄
(
i/∂ − m0

)
ψ +

∑
l

G(ψ̄Γlψ)(ψ̄Γ̃lψ) , (2.2)

with l = σ, 0, +,− and

Γσ = Γ̃σ = 1 ,

Γ0 = Γ̃0 = iγ5τ3 ,

Γ± = Γ̃∓ = iγ5τ± = iγ5(τ1 ± iτ2)/
√

2 .

(2.3)
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2 The formalism

In the last years, the NJL model has been frequently used to investigate the phe-
nomenon of color superconductivity, see [Bub05] and references therein. Therefore, a
vertex was added to the Lagrangian that introduces an attractive interaction in the
qq channel. We do not consider such an extension to the Lagrangian in the present
work. However, it would be a consequent extension of our approach to investigate
the structure of the phase diagram in a self-consistent model that also incorporates
the effects of color superconductivity.

It is also possible to construct a bosonized version of the NJL Lagrangian [Kle92,
HK94, ZW92]. Using the notation of [Reh98] we rewrite the Lagrangian,

LNJL = ψ̄
(
i/∂ − m0

)
ψ − ψ̄ (σΓσ + π0Γ0 + π+Γ− + π−Γ+) ψ

− 1

4G

(
σ2 + π2

0 + 2π+π−
)

, (2.4)

where the σ and π fields are defined as

σ = −2Gψ̄Γσψ ,

π0,± = −2Gψ̄Γ0,±ψ .
(2.5)

The new form of the Lagrangian describes an effective quark–meson (σ,π) interaction.
The corresponding vertices are shown in Fig. 2.1(b). It should be noted that the
Lagrangian (2.4) does not contain a dynamical part for the meson fields. Thus their
dynamics are completely determined by that of the quark fields they are generated
from. For a discussion on the quantization of (2.4) we refer to [Reh98, ZW92].

2.2 1/Nc expansion in the NJL model

2.2.1 Order counting in 1/Nc

The NJL model is a strongly interacting theory. It can be seen in Table 2.1 that
GΛ2 – the relevant quantity to estimate the interaction strength – has a value of
approximately 2 for all given parameter sets. Thus, a perturbative expansion in
terms of the coupling constant G is not feasible. However, the NJL model is a QCD
inspired theory and it is possible to perform an expansion in the inverse number of
colors, 1/Nc. Expansions in 1/Nc that go beyond the usual Hartree+RPA approach
have been studied in [QK94, DSTL95] on the level of Feynman diagrams. For that
purpose, a scheme is developed that allows to determine the order in 1/Nc of Feynman
diagrams by counting vertices and loops. A factor G is assigned to each interaction
vertex and a factor Nc to each closed fermion loop (a loop corresponds to the trace over
a quark propagator in color space). In this symbolic notation one sets GNc = O(1).
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(a) (b)

(c) (d)

Figure 2.2: The Hartree (a) and Fock (b) self-energies and the direct (c) and ex-
change (d) diagrams of the Born self-energy. The pointlike interaction vertex
has been replaced by a finite interaction line to make the diagrams graphically
distinguishable. Due to the closed fermion loop, the Hartree diagram is of or-
der O(GNc) = O(1) while the Fock diagram is of order O(1/Nc). The direct
Born diagram is also of order O(1/Nc) since G2N1

c = N−1
c (symbolic notation).

The exchange diagram does not include a closed fermion loop and is of order
O(1/N2

c ).

The (free) quark propagator is of order unity,

∼ O(1) ,

∼ O(G) ∼ O(1/Nc) ,

∼ O(Nc) .

(2.6)

The order of a diagram with n vertices and m loops is then given by GnNm
c = Nm−n

c .
In other words, in the 1/Nc expansion the order of a diagram is not determined by
the number of vertices or by the number of loops but by the difference of loops and
vertices.

2.2.2 Classification of self-energy diagrams

The difference between an expansion in 1/Nc and an expansion in the coupling can
be easily seen. Fig. 2.2 shows some diagrams that are of first (a,b) and second order
(c,d) in the coupling. According to the 1/Nc counting scheme, the Hartree diagram
(a) is the only contribution of order O(1) to the quark self-energy. The Fock diagram
(b) as well as the direct Born diagram (c) are of order O(1/Nc). The exchange Born
diagram (d) is even of order O(1/N2

c ). On the other hand, all diagrams in Fig. 2.3 are
of the same order, namely O(1/Nc). There is always one more vertex than there are
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Γl Γ̃l Γl

Γ̃l Γl

Γ̃l

(a) (b)

Γl

Γ̃l

Γl Γ̃l

Γl

Γ̃l Γl

Γ̃l

Γl
Γ̃l Γl Γ̃l

Γl

Γ̃l

(c) (d)

Figure 2.3: Self-energy diagrams of order O(1/Nc). The pointlike interaction was re-
placed by an interaction line to show the structure of the diagrams unambigu-
ously. (a) and (b) are the Fock and the direct Born self-energies, respectively.
Diagram (c) was constructed by adding one further vertex and quark loop to
(b), (d) was constructed by adding two more vertices and quark loops. Further
diagrams of higher order in G but of the same order in 1/Nc can be constructed
by adding more loops and vertices to the chain of loops in (d).

loops. Fig. 2.3(a) and (b) are again the Fock diagram and the direct Born diagram.
The other diagrams were constructed by adding pairs of loops and vertices to the
Born diagram. Diagrams of any higher order in the coupling while still on the same
order in 1/Nc can be found by adding further loops to the chain of loops in Fig. 2.3(d).
Note that all vertices in such a diagram must be of the same kind (i.e., the same l in
the Γl, Γ̃l of all vertices) to get a non-trivial contribution to the self-energy.

By dressing the internal quark lines in the diagrams of Fig. 2.2 with the Hartree
diagram, further diagrams of the same order as the original diagrams can be con-
structed. By dressing the quark loop of the Hartree diagram with, e.g., the Fock
or the direct Born diagram, diagrams of order O(1/Nc) can be constructed that are
not of the same structure as the diagrams of Fig. 2.3. Such diagrams will later be
generated automatically when the free propagators are replaced by dressed ones in a
self-consistent calculation. They are not discussed here to avoid double counting.

The counting scheme (2.6) does not work in a strict sense when dressed propagators
are considered: The full propagator of a self-consistent calculation can be dressed with
self-energies of arbitrary order in 1/Nc. It remains O(1) in leading order but gains
contributions of higher orders. Consequently, the Feynman diagrams constructed
from such propagators will not be purely of a certain order in 1/Nc. Like the dressed
propagators, however, the diagrams maintain a well defined leading order that is
identified by the counting scheme. In a self-consistent approach this means that we
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+ + + + · · ·

−→ Γl Γ̃l

Figure 2.4: The O(1/Nc) diagrams of the structure shown in Fig. 2.3 are added up
in a random phase approximation. An effective meson exchange (dashed line)
is generated, the type of the generated meson depends on the chosen Γl, Γ̃l. As
shown in Fig. 2.3, the first diagram of the series is the Fock diagram. The Har-
tree diagram is of different order and has to be treated separately. In contrast
to the Hartree diagram, the non-local meson exchange represents a complex
contribution to the quark self-energy.

can select Feynman diagrams by their leading order to find a consistent set of diagrams
for any given order. However, every diagram will contribute in subleading orders
in a possibly incomplete way. Note that the Hartree approximation constitutes an
exception. Since the Hartree self-energy is of order O(1/N0

c ), the order of a propagator
that is dressed only with such diagrams – even iteratively in a self-consistent approach
– remains exactly O(1).

2.2.3 The Random Phase Approximation

Usually, all O(1/Nc) diagrams of the structure shown in Fig. 2.3 are summed up in a
random phase approximation (RPA). The diagrams can be interpreted as contribu-
tions to an effective meson exchange as shown in Fig. 2.4. This allows us to treat a
whole class of self-energy diagrams in a simple and consistent way. The type of the
exchanged meson (σ, π0,±) is determined by the choice of Γl, Γ̃l (cf. Fig. 2.4). The
propagators of the RPA mesons have the following form:

σ/π
= + + + . . . , (2.7)

where (l = σ, 0,±)

−2G = ,

Πl(k) =
Γ̃l Γl .

(2.8)

Πσ(k) and Π0,±(k) are the σ and π0,± polarizations, respectively. They can be
interpreted as the fundamental building blocks of the RPA mesons.
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Using Eqs. (2.8) and introducing the symbol ∆l(k) for the meson propagators, we
can rewrite Eq. (2.7),

∆l(k) = −2G [1 + (−2G) Πl(k) + (−2G) Πl(k)(−2G) Πl(k) + . . .] . (2.9)

The rhs. of Eq. (2.9) is a geometric series. Thus, a simple analytic expression for the
effective meson propagators is found:

∆l(k) = − 2G

1 + 2G Πl(k)
. (2.10)

It should be noted that the effective propagators do not have explicit kinetic parts
of the form k2 − M2. The dynamics of the effective RPA mesons are completely
governed by the underlying qq̄ states and are thus hidden in the polarizations.

To illustrate the properties of the RPA mesons, we show the spectral function
(cf. Section 2.7) of the RPA pion from a mean-field calculation in Fig. 2.5. We can
make out two distinct components of the spectral function that are related to the
composition of the RPA propagators (2.7,2.10). The δ-peak is identified with the
actual RPA pion. It correspond to a bound qq̄ state and is located at a pole of the
propagator, i.e., 1+2GReΠl(k) = 0. The spectral function is, however, not restricted
to this bound state. At energies above k0 = µ+m∗ (2m∗ in the vacuum), contributions
from unbound qq̄ states (2.7) are picked up – in this region the RPA mesons are not
stable but decay into quark–antiquark pairs (see Section 4.5 for details). A wide
range of states with a large decay width, the so-called qq̄ continuum, is found in the
spectral functions above this threshold.

Coming back to the quark self-energy, the diagram in the second line of Fig. 2.4
replaces the diagrams of Fig. 2.3 – and all others of the same structure. Like the
Fock and the direct Born diagram, this is a contribution to the quark self-energy
of the order O(1/Nc). A diagram like this is crucial for our approach. Its non-
local structure generates a four-momentum dependent contribution to the self-energy.
This contribution is complex and its imaginary part will later be identified with the
collisional width of the quark spectral function. The O(1) Hartree diagram and the
O(1/N2

c ) exchange Born diagram are not included in the effective meson exchange.
They have to be treated separately, if needed.

2.3 Mean-field approaches

2.3.1 The O(1) Hartree+RPA approach

The standard approach to quarks and mesons in the NJL model is the Hartree+RPA
approximation. It works in leading order of 1/Nc, i.e. O(1), for the quarks. The com-
plete Hartree+RPA approximation can be summarized in the two Dyson–Schwinger
equations for quarks and mesons that are shown in Fig. 2.6.
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Figure 2.5: The spectral function of the RPA pion in the Hartree+RPA approxima-
tion at zero quark density and a constant three-momentum of 50 MeV, using
parameter set I of Table 2.1. See Sections 2.3.1 and 2.7 for more details. The
peak at k0 = 150 MeV (mπ = 142 MeV) corresponds to bound qq̄ states, the
broad structure at higher k0 is the qq̄ continuum. Note that ξπ is antisymmetric
in k0.

= +

σ/π
= +

Figure 2.6: The set of Dyson–Schwinger equations corresponding to the Hartree+RPA
approximation. The double lines denote quark propagators dressed with the
Hartree self-energy. The first line enters the gap equation, the second line
describes the RPA construction of the mesons. There is no feedback from the
mesons to the quarks in this O(1) approximation scheme.

A self-consistent Hartree calculation is used to determine the quark properties.
Therefore the so-called gap equation (first line of Fig. 2.6) is solved,

m∗ = m0 + ΣH = m0 + 2iGNfNc

∫
d4p

(2π)4
tr SH(p) , (2.11)

where m∗ = m0 + ΣH is the effective quark mass and SH(k) the dressed Hartree
propagator. “tr” denotes a trace in spinor space here. The meson properties are
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Figure 2.7: The chiral phase transition in the Hartree+RPA approximation, using
parameter set I from Table 2.1. The critical point – where the first-order phase
transition (solid line) turns into a smooth crossover (dotted line) – is located at
T = 37 MeV and µ = 343 MeV. (Data taken from [Kle92, AY89])

found by calculating the polarizations Πl(k) (second line of Fig. 2.6) using the Hartree
propagators,

1

i
Πl(k) = −

∫
d4p

(2π)4
Tr
[
Γ̃l SH(p)Γl SH(p − k)

]
, (2.12)

where “Tr” denotes a trace in color, flavor, and spinor space. Of course, the inte-
grals in both Dyson–Schwinger equations are divergent and have to be regularized.
We will come back to that in Section 2.4. Note that some technical details of the
Hartree(–Fock)+RPA approximation will be relevant for our extended model. We
discuss them in Appendix B.

The Hartree+RPA approach is well established and has been used extensively to
investigate quarks and mesons. Constituent quark masses are dynamically generated
at low T and µ, a chiral phase transition2 occurs at a higher chemical potential (or
temperature). Fig. 2.7 shows the chiral phase transition line that has been found in a
calculation using parameter set I from Table 2.1. The phase transition is of first order
[PB94] at low temperatures (and high densities) and turns into a smooth crossover
at higher temperatures.

The pions of the Hartree+RPA approximation satisfy the Goldstone theorem. Be-
low the chiral phase transition, they are massless in the chiral limit and light for finite
current quark masses. In the chirally restored phase, the pions become massive while
the constituent quark mass breaks down. In Fig. 2.8 we show the effective quark
mass and density and the RPA sigma and pion masses that are found, again using

2The order of the phase transition may depend on the choice of parameters and the regularization
scheme [Kle92].
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Figure 2.8: The effective quark mass and the RPA sigma and pion masses (left) and
the quark density (right) as functions of the chemical potential µ in the Har-
tree+RPA approximation (ρ0 = 0.17 fm−3), using parameter set I from Table 2.1
(m0 = 5.5 MeV). A first-order chiral phase transition occurs at µ = 355 MeV.
(Data taken from [Kle92, AY89])

parameter set I from Table 2.1. We will not investigate the Hartree+RPA approach
in more detail at this point. For a thorough analysis we refer to the extensive review
articles [Kle92, VW91, HK94].

Considering short-range effects, the Hartree+RPA approach has several shortcom-
ings. First, the Hartree self-energy is time-local. Thus it is real and does not lead to
a collisional broadening of the quark spectral function. The quarks remain quasipar-
ticles in this approach. Second, the properties of the RPA mesons have no influence
on the quark properties. Such a feedback would – in lowest order – correspond to
the self-energy diagram that is shown in Fig. 2.4 or the modified Hartree diagram in
Fig. 2.13. Those diagrams are, however, not of leading order in 1/Nc and therefore
beyond the Hartree+RPA approach. To investigate the effects of short-range correla-
tions it will be necessary to consider diagrams of next-to-leading order, i.e. O(1/Nc),
or higher, for the quark self-energy.

2.3.2 Hartree–Fock, RPA, and Goldstone modes

Let us briefy discuss another mean-field model before we present our approach to
short-range effects. Adding the Fock self-energy to the Dyson–Schwinger equations is
the simplest way to extend the Hartree+RPA approximation. The resulting approach,
to which we will refer as Hartree–Fock+RPA approximation in the following, is shown
in Fig. 2.9. The RPA mesons are now generated from quark loops (RPA polarizations)
with Hartree–Fock propagators. Since the Fock self-energy is time-local, the quarks
remain quasiparticles.

The Hartree–Fock+RPA approximation does not represent a clean 1/Nc expansion
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= +
(Hartree)

+
∑

l=σ,0,± (Fock)

RPA σ/π
= +

Figure 2.9: The Hartree–Fock+RPA approximation (see Fig. 2.2 for the difference
between the Hartree and the Fock diagram). Double lines denote quark propa-
gators dressed with the Hartree and Fock self-eneries. The first line enters the
gap equation, the second line describes the RPA construction of the mesons.
Like in the Hartree+RPA approach, there is no feedback from the mesons to
the quarks.

of the quark self-energy. However, it is useful to illustrate the influence of higher order
effects on the Goldstone boson character of the dynamically generated pions: Like in
the O(1/Nc) approach that we present below – and in contrast to the Hartree+RPA
approximation – the dressed quark propagators in the RPA polarizations are not
purely O(1). This leads to the automatic generation of higher order contributions
to the meson polarizations that are not present in the Hartree+RPA approximation.
An explicit calculation, that can be found in Appendix B, shows that the pions
generated by the present Hartree–Fock+RPA approximation cannot be identified with
Goldstone bosons. Even in the chiral limit, they acquire a considerable mass.

Expecting that a (regular) random phase approximation on the Hartree–Fock level
yields the Goldstone modes of the broken chiral symmetry [RS80, BR86, DVN05], this
result may come as a surprise. The reason for the breakdown of the chiral properties
of the RPA pions is the incomplete 1/Nc expansion of the meson polarizations in the
Dyson–Schwinger equations of Fig. 2.9. As we will discuss in detail in Section 2.5,
the generation of massless pions (in the chiral limit) in a 1/Nc expansion of the
NJL model depends on a delicate balance [DSTL95]: In each order of 1/Nc, the
contributions from different polarization diagrams must cancel each other. When the
Hartree–Fock propagator is inserted into the RPA polarizations, it will automatically
generate some higher order contributions to the polarization. This approach does,
however, not generate all (relvant) higher order contributions to the polarizations.
We illustrate this in Fig. 2.10: Both diagrams are next-to-leading order polarization
diagrams – but only diagram (a) is automatically generated by the present Hartree–
Fock+RPA scheme. Consequently, the cancellation effect remains incomplete and the
chiral properties of the dynamically generated pions are disturbed.

To recover the Goldstone modes, we would have to identify all polarization diagrams
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(a) (b)

Figure 2.10: Two examples for next-to-leading order contributions in 1/Nc to the
meson polarizations. Solid lines denote free quark propagators, dashed lines
RPA mesons. The pointlike NJL vertices have been replaced by (dotted) in-
teraction lines. Diagram (a) is automatically generated by the Hartree–Fock
approximation of Fig. 2.9 while diagram (b) is not automatically generated.

in next-to-leading and higher orders3 that are needed to cancel the automatically gen-
erated contributions and add them explicitly to the second Dyson–Schwinger equation
of Fig. 2.9. We will come back to such an approach in Section 2.5. It is interesting to
note that some of the missing higher order diagrams (Fig. 2.10(b), see also Fig. 2.14)
have the form of vertex corrections. Those contributions would dynamically adjust
the interaction in the (RPA) quark loops. The calculation in Appendix B shows
that we could recover the Goldstone modes in our Hartree–Fock+RPA by adjust-
ing the interaction in the second Dyson–Schwinger equation of Fig. 2.9 by a factor
(ΣH + ΣF)/ ΣH (the correction ΣF / ΣH is on the order of 1/Nc).

We have introduced the Hartree–Fock+RPA approximation here since it demon-
strates a general problem of 1/Nc extensions beyond the Hartree+RPA approxima-
tion. Our O(1/Nc) approach will generate RPA mesons in the same fashion as the
Hartree–Fock+RPA approximation. Hence, we will encounter similar problems with
the Goldstone boson character of the RPA pions below. The Hartree–Fock+RPA
approximation can then be used as an illustrative example that allows simple (ana-
lytical) estimates.

Let us clarify our terminology before we continue: Following the literature that
discusses 1/Nc extensions of the NJL model, see e.g. [DSTL95], we stay with the
term “RPA” for the summation of quark loops where propagators beyond the Hartree
approximation are used. Hence, we refer to the mesons that are generated by a Dyson–
Schwinger equation like the second one in Fig. 2.9 as RPA mesons – even when the
correspondence to a regular random phase approximation is lost and the RPA pions
do not satisfy the chiral theorems.

3The Hartree–Fock propagator contributes in all orders of 1/Nc since the O(1/Nc) Fock diagram
is iterated in the first Dyson–Schwinger equation.
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= + +
∑

l=σ,0,±

RPA σ/π
= +

Figure 2.11: The set of Dyson–Schwinger equations corresponding to the fully self-
consistent O(1/Nc) approach. The double lines denote dressed quark propaga-
tors. The first line enters the gap equation. The last term on the rhs. generates
a feedback of the mesons to the quarks that is not present in the Hartree+RPA
approach. The second line describes the RPA like construction of the mesons.
Since full propagators with off-shell contributions are used, this goes beyond
the standard RPA for quasiparticles.

2.4 The O(1/Nc) approach

2.4.1 Coupled set of Dyson–Schwinger equations

For our investigation of the short-range correlations in quark matter, we will calculate
the quark properties in next-to-leading order4 O(1/Nc) in the inverse number of colors.
Therefore, the meson exchange diagram shown in Fig. 2.4 is added to the quark self-
energy in the first Dyson–Schwinger equation of Fig. 2.6 while the second equation is
left unchanged. The new Dyson–Schwinger equations will self-consistently generate
all contributions to the self-energy of order O(1/Nc). As discussed before, this leads
to a feedback of the RPA mesons into the quark self-energy. The result is a fully
self-consistent model where quark and meson properties depend on each other. Since
the meson exchange is a non-local interaction, the quarks will acquire a finite width.

The set of coupled Dyson–Schwinger equations that corresponds to our O(1/Nc)
approach is shown in Fig. 2.11. The self-energy (upper line of Fig. 2.11) that enters
the gap equation reads now

Σ(k) = 2iGNfNc

∫
d4p

(2π)4
tr S(p) − i

∑
l

∫
d4p

(2π)4
Γl S(p)Γ̃l ∆l(p − k) , (2.13)

where S(k) denotes the full in-medium quark propagator beyond the Hartree approx-

4We have seen in Section 2.2 that the order of diagrams is not well defined in a fully self-consistent
approach. Only the leading order of a diagram can be determined. When referring to the order
of a diagram in the following, we always refer to the leading order of the diagram. Our approach
is of order O(1/Nc) in the sense that it contains all diagrams of orders O(1/Nc) and O(1) for the
quark self-energy. Additional diagrams of order O(1/Nn

c ) with n ≥ 2 are generated iteratively –
but not necessarily in a complete way.
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imation. The structure of this propagator will be discussed in detail in the next
section. ∆l(k) is the meson propagator as defined in Eq. (2.10). The RPA polariza-
tionsare calculated using the full quark propagators, as shown in the second line of
Fig. 2.11,

1

i
Πl(k) = −

∫
d4p

(2π)4
Tr
[
Γ̃l S(p)Γl S(p − k)

]
. (2.14)

The quark self-energy has no longer the simple form of an effective mass. Due to
the non-local meson exchange, the self-energy becomes complex and four-momentum
dependent. In addition, the new diagram in the Dyson–Schwinger equation introduces
contributions to the self-energy that have – in contrast to the Hartree self-energy – no
Lorentz scalar structure. The quark propagator and the self-energy acquire a more
complicated spinor structure. This will be discussed in detail in Sections 2.6 and 2.8.
The imaginary part of the self-energy is an effect of the short-range correlations that
are now present in the model. It is identified with the collisional width that leads to
the broadening of the quark spectral function.

The main drawback of the present approach has already been brought up in Sec-
tion 2.3.2. Like in the Hartree–Fock+RPA approximation of Fig. 2.9, we do not
consider a consistent 1/Nc expansion of the meson polarizations here. Hence, the
RPA pions will acquire a considerable mass. We will investigate this problem in more
detail in Section 2.5. There, we will also discuss methods, i.e. explicit higher or-
der corrections to the meson polarizations, that restore the Goldstone modes of the
broken chiral symmetry and thus the correspondence to a (regular) random phase
approximation. In our calculations, where we mainly use the RPA mesons to gener-
ate all next-to-leading quark self-energy diagrams (we have illustrated the procedure
in Fig. 2.4), we will, however, not take such corrections into account.

2.4.2 Regularization scheme

To complete our approach, we have to specify a regularization scheme for the divergent
integrals in Eqs. (2.13,2.14). A variety of schemes on different levels of sophistication
– from covariant four-momentum cutoffs to the gauge invariant Pauli–Villars scheme
– are available for this task. They are discussed in detail, e.g., in [Kle92]. To keep our
model numerically simple, we will work with a simple three-momentum cutoff Λ for
the time being. Like in [FLM03b] and [DBM93, DM94], we use the cutoff to restrict
the three-momentum of each quark in the integrals to values below Λ, i.e., the cutoff
is attached to all quark propagators,

S(p) → S(p)Θ(Λ − |�p |) .

This scheme is sufficient to regularize all integrals in (2.13,2.14). A meson cutoff is
implicitly included in this scheme since the quark loop integrals in the polarizations
can only yield finite results for three-momenta of the RPA mesons below 2Λ.
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As long as the collisional width does not become too large, most of the strength of
the quark propagator should remain in the vicinity of the on-shell peaks. Then the
three-momentum cutoff serves also as an energy cutoff,

|p0| < EΛ <
√

Λ2 + m∗2 ,

where m∗ is the effective quark mass. This will not be a sharp cutoff when the peaks
have a finite width, but the quark propagators at higher energies will be strongly
suppressed in the self-energy and polarization integrals.

Note that the cutoff can also be implemented in other ways. In [DSTL95, NBC+96,
OBW00], the restrictions are applied to the integration variables,∫

d4p →
∫

d4pΘ(Λ − |�p |) ,

after all δ-functions in the integrand have been used to reduce the number of integrals.
It is necessary to use two different cutoffs in this case – one for the quark and quark–
quark loops and another one for the quark–meson loops in Fig. 2.11. The masses
of the quarks and the RPA mesons should not be affected significantly by the two
different implementations of the cutoff. They are mainly determined by integrals over
single quark propagators (the details will be discussed later) and the cutoff schemes
do not differ for such integrals. The quark and meson widths, however, may depend
on the way the regularization is implemented.

2.4.3 Further remarks

Of course, an analytic solution of the self-consistency problem presented in Fig. 2.11
and Eqs. (2.13,2.14) is not possible. A solution can only be found in a numerical
calculation. Such a calculation is much more involved than the usual Hartree+RPA
approach and must be done iteratively. By using full in-medium propagators – in-
cluding off-shell contributions – we clearly go beyond the standard RPA approach. In
contrast to the Hartree+RPA approach where quasiparticle propagators are used, the
calculation of the polarizations is part of the self-consistent procedure here. We do
not use a pole approximation for the RPA propagators in the calculations. As we will
see in the following, the qq̄ continuum of the RPA spectral function is an important
component of our approach.

At this point, a remark concerning our earlier approach in [FLM03b] is in order.
We have not considered dynamically generated mesons there. Instead, the direct and
the exchange Born diagrams (cf. Fig. 2.2) were used to construct the collisional quark
self-energy. The corresponding Dyson–Schwinger equation is shown in Fig. 2.12. We
had restricted ourselves to the chirally restored phase in that approach, hence we did
not consider the Hartree and Fock diagrams. In the new approach we use all diagrams
of orders O(1) and O(1/Nc), not only the direct Born diagram. The exchange Born
diagram will be ignored here since it is of order O(1/N2

c ). In comparison to nuclear
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= +

Figure 2.12: The Dyson–Schwinger equation corresponding to the approach to short-
range correlations in [FLM03b]. Dynamically generated mesons were not dis-
cussed in this approach.

matter we found rather small widths for the quarks in [FLM03b]. By including an
infinite number of O(1/Nc) diagrams in the new approach the importance of collisional
broadening will increase significantly.

2.5 1/Nc corrections and chiral symmetry

In the past, there have been several approaches to extend the NJL model beyond the
Hartree+RPA approximation [QK94, DSTL95, NBC+96, OBW00]. Chiral symmetry
is considered as one of the most important features of the NJL model. Hence, it
was the main interest of those works to find next-to-leading order extensions in 1/Nc

that leave the chiral theorems like the Goldstone theorem, the Goldberger–Treiman
relation, and the Gell-Mann–Oakes–Renner relation intact.

To check the chiral theorems on the basis of analytical calculations, the quarks
and mesons have been treated only on the quasiparticle level5 in the considerations
of [QK94, DSTL95, NBC+96, OBW00]. Nonetheless, the results are relevant for the
present approach – that is technically more involved – and will be reviewed in this
section. The study of Dmitrašinović et al. [DSTL95] is of particular interest for us
since they have explored the 1/Nc expansion on the level of Feynman diagrams, using
the counting rules in Eq. (2.6). The basic idea of their approach is to consider the
1/Nc extensions as corrections to the Hartree+RPA approximation. The ansatz in
[DSTL95] is self-consistent and – like our model – dynamically generates diagrams of
arbitrary subleading orders.

Dmitrašinović et al. have shown that the validity of the chiral theorems in a next-to-
leading order approximation scheme relies on a delicate balance of the contributions
to the meson polarizations (see also [NBC+96]). To ensure that, e.g., the dynami-
cally generated pions become massless in the chiral limit, the polarization diagrams
in each order of 1/Nc must be chosen such that certain contributions cancel each
other. This is a straightforward exercise in leading order: There exists just one dia-
gram, the simple O(1) quark loop with Hartree propagators. The situation becomes
more complicated in higher orders where some of the relevant contributions may be
automatically generated while other must be considered explicitly.

5For the mesons a pole approximation has been used so that only bound qq̄ states were considered
but not the qq̄ continuum states.
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= + +
∑

l=σ,0,±

RPA σ/π
= +

Figure 2.13: The set of coupled Dyson–Schwinger equations that is used by Dmi-
trašinović et al. [DSTL95] for a self-consistent calculation. One obtains a 1/Nc

corrected quark propagator and – in comparison to the Hartree+RPA scheme
– modified RPA meson propagators.

2.5.1 Chirally invariant 1/Nc extensions

The starting point in [DSTL95] are the Dyson–Schwinger equations shown in Fig.
2.13. In comparison to the Hartree+RPA approximation, the equation for the quarks
has been extended by an O(1/Nc) self-energy diagram. This diagram corresponds to
a combination of the Hartree diagram and the meson exchange from Fig. 2.4. Since
only time-local diagrams6 are considered, the self-energy remains real and the quarks
can be treated as quasiparticles. This is a crucial difference to our approach where
the meson exchange diagram of Fig. 2.4 generates (complex) short-range effects.

The two Dyson–Schwinger equations in Fig. 2.13 are coupled by the O(1/Nc) dia-
gram and must be solved self-consistently. The 1/Nc extended quark propagator will
not be purely of order O(1), cf. Section 2.2. When the RPA polarizations are calcu-
lated using this propagator, contributions in subleading orders will be automatically
generated – in an incomplete way. The cancellation effect described in [DSTL95] re-
mains incomplete beyond leading order and the – in comparison to the Hartree+RPA
scheme – modified RPA pions do not satisfy the Goldstone theorem.

To find the physical 1/Nc extended mesons, the set (b,c,d) of correctional O(1)
diagrams in Fig. 2.14 must be added to the O(Nc) RPA polarization (a), see [DSTL95]
for details. The self-consistent propagators from the Dyson–Schwinger equations in
Fig. 2.13 are used to calculate those diagrams. The propagators of the 1/Nc extended
mesons are then given by

∆̃l(k) = − 2G

1 + 2GΠ̃l(k)
.

As shown in [DSTL95], ∆̃π is in agreement with the chiral theorems. It is important

6In [DSTL95] it is discussed that the meson exchange diagram (cf. Fig. 2.4) is numerically sup-
pressed compared to the modified Hartree diagram in Fig. 2.13. Thus, the four-momentum
dependent contribution to the self-energy has been dropped to simplify the calculations there.
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Π̃σ,π = +

(a) (b)

+ +

(c) (d)

Figure 2.14: The O(1) extended meson polarizations of [DSTL95]. The three O(1)
diagrams (b,c,d) must be added to the RPA polarization loop (a) to find pions
that satisfy the Goldstone theorem in the 1/Nc extended model. The diagrams
are calculated using the propagators from the Dyson–Schwinger equations in
Fig. 2.13. The double dashed lines indicate the 1/Nc extended mesons.

to stress that the improved propagators ∆̃l are not further modified. It is tempting
to reinsert them into the correctional diagrams in a self-consistent procedure, i.e., to
replace the single dashed lines in Fig. 2.14 by double dashed lines. This, however,
would destroy the chiral properties again. In short: The RPA mesons are calculated
self-consistently with the Dyson–Schwinger equations of Fig. 2.13 whereas the physical
mesons are determined only afterwards. The properties of the 1/Nc extended quarks
are determined by the Dyson–Schwinger equations where only the RPA mesons enter,
but not the physical mesons. Thus, this scheme is not fully self-consistent – concerning
the physical mesons – but it respects the chiral properties.

We will not discuss the chirally invariant 1/Nc extensions found in [NBC+96,
OBW00, vHK02] in more detail here. We note, however, that similar restrictions
apply for them. In all of those schemes it is necessary to perform 1/Nc corrections
that are not fed back into a self-consistent calculation.

2.5.2 Consequences for the O(1/Nc) approach

Let us compare the approach of Dmitrašinović et al. to our model. The main difference
between our Dyson–Schwinger equations in Fig. 2.11 and those in Fig. 2.13 is that we
include the meson exchange diagram from Fig. 2.4 explicitly. The O(1/Nc) diagram in
the Dyson–Schwinger equation for the quarks in Fig. 2.13 is present in our approach,
too. It is dynamically generated by the Hartree diagram and the meson exchange
diagram. Our Dyson–Schwinger equations also generate the first O(1) correctional
diagram (b) to the polarization in Fig. 2.14. The two vertex corrections (c) and (d)
in the second line of Fig. 2.14, however, are not generated. From the discussion in
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Figure 2.15: The real part of the denominator of the RPA pion propagator in the
Hartree+RPA and Hartree–Fock+RPA approximations using parameter set I
from Table 2.1 (m0 = 5.5 MeV, three-momentum cutoff Λ). The poles of the
propagator – and thus the RPA pion mass – are determined by the zeros of
this expression. In the vicinity of the zeros the function is rather flat – small
fluctuations can thus have significant influence on the mass.

[DSTL95] it is immediately suggestive that the extended RPA pions of our approach
will not satisfy the Goldstone theorem.

It is possible to estimate the mass of the RPA pions in our model roughly. Fig. 2.15
shows the real part of the denominator of the RPA pion propagator, 1 + 2GRe Ππ,
in the Hartree+RPA and Hartree–Fock+RPA approximations. The zeros of this
expression determine the poles of the propagator. We see that even small fluctuations
in higher orders of 1/Nc (that shift the Hartree+RPA curve) can have a significant
influence on the mass of the RPA pions. This effect shows up already in the Hartree–
Fock+RPA approximation scheme, where the O(1/Nc) Fock diagram from Fig. 2.2(b)
is added to the Dyson–Schwinger equation of Fig. 2.6 – see Appendix B and [Kle92]
for details. The shift of 0.08 – as estimated using Eq. (B.8) – raises the RPA pion
mass by ≈ 150 MeV. We will come back to this estimate in Section 3.7.

In principle, we can follow the approach of [DSTL95] to fix the chiral properties of
our model in next-to-leading order: The Dyson–Schwinger equations that are solved
self-consistently as a first step yield (massive) RPA pions. To find the physical pions
that satisfy the Goldstone theorem, we have to calculate the vertex corrections (c,d)
from Fig. 2.14. For this task, the quark and RPA meson propagators that were
determined from the Dyson–Schwinger equations in Fig. 2.11 have to be used.

This simple approach has a drawback: Since the physical mesons are not fed back
into the Dyson–Schwinger equations, the quark spectral function will not be affected
by the corrections to the pions. The short-range correlations in our model are gener-
ated by a meson exchange diagram, cf. Fig. 2.4, where the (intermediate) RPA pions
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– that might acquire a considerable mass – and not the physical pions enter. This
leaves us with two choices. Either, we find a more involved approach that feeds back
the Goldstone modes into the quark self-energies, or we stick to the RPA mesons in
the self-consistent calculations. In the latter case, we have to check that the influence
of the RPA pion mass on the quark properties does not become too large.

A fully self-consistent approach that yields massless pions has so far not been
proposed for the NJL model. (In [Leu07], such a scheme has been proposed which,
however, does not work in the vicinity of the chiral phase transition.) Adding the ver-
tex corrections (c,d) from Fig. 2.14 to the Dyson–Schwinger equation for the mesons
in Fig. 2.11 should improve – but not fix – the chiral properties of the pions and
generate a feedback on the quarks. Such an approach would increase the numerical
efforts significantly by involving two- and three-loop diagrams that must be calcu-
lated in every iteration. Since the numerical calculations are already rather involved,
we do not pursue this strategy any further at the present stage. It indicates, however,
how our model can be improved in the future.

This brings us back to the second option, i.e., working with the massive RPA
pions in the self-consistent approach as shown in Fig. 2.11. Recall that it is our
main interest to determine the extent of short-range correlations in quark matter.
We want to investigate the collisional broadening of the quark spectral function and
possible changes to the chiral phase transition. We are not primarily interested in
the properties of the dynamically generated mesons. As discussed in Section 2.2, we
rather use the RPA mesons as a tool to generate the next-to-leading order quark–
quark interactions beyond the Hartree level. In other words: we are not too concerned
about the chiral properties of the pions as long as the influence on the quark properties
remains limited.

The influence of the RPA pion mass on the quark width will be investigated in
Chapter 4. We will find there that the off-shell states of the RPA meson propagators
– that were not considered in the above discussion but are part of our full calculation
– are much more important for the width of the occupied quark states than the bound
qq̄ states. The qq̄ continuum in the timelike region is neither in its thresholds nor in its
magnitude affected by the cancellation problems and largely independent of the pion
mass, see Figs. 4.4 and 5.8 (concerning the qq̄ continuum of the meson propagators,
the vertex corrections are only next-to-next-to-leading order corrections of the quark
self-energy). The off-shell states in the spacelike region are more sensitive to the
RPA pion mass. A higher pion mass will lower the magnitude of the contributions
from this region to the quark width. Below the chiral phase transition, our approach
without the vertex corrections will thus yield a conservative estimate of the short-
range effects. (Above the phase transition, we obtain a pion mass comparable to the
Hartree+RPA approximation.)

At the end of this section we note that all corrections that have been considered
so far will only restore the chiral theorems in next-to-leading order. Due to the self-
consistent nature of our approach we generate diagrams of arbitrary order in a – for
the subleading orders – inconsistent way. To satisfy, e.g., the Goldstone theorem in
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any higher order it will be necessary to identify the correctional diagrams of that
order. This might be possible by using Bethe-Salpeter equations that generate vertex
corrections in all orders [vHK02]. The approach introduced by van Hess and Knoll,
however, can only be used to correct the meson properties in higher orders after the
self-consistent calculation. Hence, it is not suitable to improve the properties of the
quarks in our approach and we will not consider it any further.

2.6 Quark fields and propagators

In the previous sections, we have introduced the Dyson–Schwinger equations that
define our approach. Before we can actually solve these equations, we have to de-
termine the structure of the propagators, self-energies and polarizations in Fig. 2.11.
This will be done in the remaining sections of this chapter.

Let us begin by pointing out that (ground state) perturbation theory as it is found
in field theory textbooks (see, e.g., [PS95]) does not work in systems with a finite
chemical potential or temperature and systems that are not in thermodynamical
equilibrium. The reason for this failure is readily identified: In standard perturbation
theory one assumes that the interaction is switched on and off asymptotically so that
the system is in the ground state of the free theory |0〉 for t → −∞. The ground state
of the interacting theory |Ω〉 (at t = 0) is then related to |0〉 by the Gell-Mann–Low
theorem, |Ω〉 = U(0,−∞)|0〉, where U is the time evolution operator. Furthermore,
the state U(+∞,−∞)|0〉 should be equal to the state |0〉 up to a phase factor. In
the time evolution of many-body systems, however, no state of the future may be
identified with a state of the past [Dan84]. This should be clear, in particular, for
systems in non-equilibrium. Consequently, the Gell-Mann–Low theorem does not
hold and Wick’s theorem [PS95] cannot be used to obtain the usual Feynman rules.

To avoid the “problems” with time evolution in a many-body system, it is necessary
to modify the Green’s function formalism. This has been done, e.g., by Schwinger
[Sch61] and Keldysh [Kel64]. They have introduced the closed time-path that is
shown in Fig. 2.16. The contour C starts at an early time t0 (that can be set to
−∞) and runs along its chronological branch C1 to the time t – that must be equal
to the largest time that occurs in the calculation – before it returns along its anti-
chronological branch C2 to t0. The time arguments of operators are then placed on
this contour and the regular time ordering of operators along the real time axis is
replaced by a path ordering along the contour. In this formalism, the application
of Wick’s theorem becomes possible again [Dan84] and Feynman rules can be found
that are similar to the rules of standard perturbation theory. The main difference is
that all time integrals are replaced by integrals along the contour C.

Throughout the present work, we will use this so-called real-time formalism7 (or

7The name real-time formalism emphasizes the most obvious difference to the alternative Green’s
function formalism that has been introduced by Matsubara [Mat55]. This formalism for systems
in thermodynamical equilibrium, that was further developed by Martin and Schwinger [MS59],
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Figure 2.16: The time-path of the real-time formalism [Dan84, BM90, Das97] in the
complex plane. Corresponding to their direction in time, the upper and the
lower branch are called chronological and anti-chronological branch, respec-
tively. Points on the chronological branch are considered to be earlier than
points on the anti-chronological branch of C.

Schwinger–Keldysh formalism) for our calculations. The Feynman rules – in a form
that is most suitable for the present approach – can be found in Appendix C. We will
not discuss the technical details of the real-time formalism in more detail here. Di-
dactical introductions can be found in [Dan84, BM90, Das97]. Helpful discussions on
in-medium Green’s functions are also available in [KB62, PLM04] and the transport
theoretical approaches to quark matter in [MH94, ZW92, Reh98].

2.6.1 Green’s functions on a closed time-path

The fundamental elements of our model are the single-particle Green’s functions on
the closed time-path contour C that is shown in Fig. 2.16. The path-ordered Green’s
function is defined as

SP
αβ(1, 2) = −i

〈
P[ψα(1)ψ̄β(2)]

〉
, (2.15)

where α and β denote the spinor indices of the quark fields. The color and flavor
indices have been suppressed here. In symmetric quark matter, the propagator is
proportional to unit matrices in flavor and color space. P denotes the path-ordering
operator along the contour C,

P[A(1)B(2)] = ΘC(t1, t2)A(1)B(2) ∓ ΘC(t2, t1)B(2)A(1) ,

where the upper (lower) sign refers to quark (meson) operators and ΘC is the gener-
alized step function on the time-path,

ΘC(t1, t2) =

{
1 if t1 is later on C than t2,

0 if t1 is earlier on C than t2.
(2.16)

If both points are on the same branch, P corresponds to the regular time-ordering
operator T on the chronological and to the anti-time-ordering operator T̄ on the

allows only imaginary times within a finite interval (see, e.g.,[Das97] for details).
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anti-chronological branch,

T[A(1)B(2)] = Θ(t1 − t2)A(1)B(2) ∓ Θ(t2 − t1)B(2)A(1) ,

T̄[A(1)B(2)] = Θ(t2 − t1)A(1)B(2) ∓ Θ(t1 − t2)B(2)A(1) .

Consequently, SP(1, 2) reduces to the – time-ordered – causal (Feynman), the anti-
causal, or one of the non-ordered Green’s functions (or propagators) depending on
the positions of t1 and t2 on the two branches,

Sc
αβ(1, 2) = −i

〈
T[ψα(1)ψ̄β(2)]

〉
for t1, t2 ∈ C1 ,

Sa
αβ(1, 2) = −i

〈
T̄[ψα(1)ψ̄β(2)]

〉
for t1, t2 ∈ C2 ,

S>
αβ(1, 2) = −i

〈
ψα(1)ψ̄β(2)

〉
for t1 ∈ C2, t2 ∈ C1 ,

S<
αβ(1, 2) = i

〈
ψ̄β(2)ψα(1)

〉
for t1 ∈ C1, t2 ∈ C2 .

(2.17)

In our approach, it will be more convenient to work with the retarded and advanced
propagators Sret,av instead of the (anti-)time-ordered Sc,a. The reasons will become
clear in the following. Sret,av are, e.g., closely related to the spectral function and are
easier to handle at finite densities. Sc,a and Sret,av are related to each other via the
non-ordered propagators S≷,

Sret(1, 2) = Θ(t1 − t2)[S
>(1, 2) − S<(1, 2)] = Sc(1, 2) − S<(1, 2) ,

Sav(1, 2) = Θ(t2 − t1)[S
<(1, 2) − S>(1, 2)] = Sc(1, 2) − S>(1, 2) .

(2.18)

Note that Sret and Sav are complex conjugates of each other,

Sret(1, 2)
∗

= Sav(1, 2) . (2.19)

For our calculations it will be advantageous to work in momentum space. The
propagators in coordinate space can be transformed to momentum space by means
of a Wigner transformation

F̄ (X, k) =

∫
d4ueikuF (X + u/2, X − u/2) . (2.20)

Formally, the transformed two-point functions depend on the four-momentum k and
the space-time coordinate X. In this work we will consider only infinite systems in
thermal equilibrium. Our results will be independent of the position in the medium.
Hence, we can drop the X dependence of the functions in the following.

2.6.2 Lorentz structure

The relativistic, fermionic propagators have a matrix structure in spinor space. The
most general form of this Lorentz structure is found by writing down the Green’s
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functions in terms of the 16 linearly independent products of the Dirac γ matrices
(Clifford algebra),

14×4 (scalar), γ5 (pseudoscalar),

γµ (vector), γµγ5 (axial vector),

σµν (tensor),

where σµν = i
2
[γµ, γν ]. To obtain a Lorentz invariant propagator, γµ, γµγ5, and σµν

have to be contracted with four-vectors. This can be either kµ, the four-momentum
of the considered state, or nµ, the four-momentum of the medium. In the rest frame
of the medium (nµ = (n0, 0)) we find

S(k) = Ss(k) · 14×4 + Sp(k) · γ5

+ Sk(k) · kµγ
µ + Sn(k) · n0γ

0

+ Sk
a(k) · kµγ

µγ5 + Sn
a(k) · n0γ

0γ5

+ St(k) · n0kiσ
0i + Sε(k) · n0kiε0ijkσ

jk ,

(2.21)

where we have used σµµ = 0 and kµkνσ
µν = 0. Since we consider only flavor symmetric

quark matter in this work, Ss · · ·Sε are scalar functions that do not have a structure
in flavor space.

Note that Ss · · ·Sε do not depend on the four components of k independently but
are functions of k0 and |�k | in the present case: Lorentz invariance demands that the
functions depend only on the Lorentz scalars k2 and kµn

µ = k0n0 (rest frame of the

medium). In other words, Ss · · ·Sε depend separately on k2 = k2
0 − �k and k0 – this

can be reexpressed by a dependence on k0 and |�k |. It is not too surprising that the
functions are invariant under rotations when the medium is at rest.

Symmetry arguments help us to simplify the Lorentz structure in (2.21) since they
rule out many of the possible terms. This has been studied in very much detail in
Section 4.3 and Appendix B of [Frö01]: Our approach should be invariant under
parity and time-reversal transformations since we consider an infinite medium in
equilibrium and the strong interaction which obeys these symmetries. The symmetry
transformations are given explicitly by [PS95]

Pψ(x0, �x )P = ηγ0ψ(x0,−�x )

Pψ̄(x0, �x )P = η∗ψ(x0,−�x )γ0 and
Tψ(x0, �x )T = (−γ1γ3)ψ(−x0, �x )

T ψ̄(x0, �x )T = ψ(−x0, �x )(γ1γ3) ,

where P and T are the parity and time-reversal operators, respectively (η is a possible
phase with η2 = ±1, ηη∗ = 1). For the transformation of the fermion propagators
(∼ ψψ̄, cf. (2.15)) in momentum space, we obtain the following relations [Frö01]

P S(k0, �k )P = γ0 S(k0,−�k )γ0 ,

T S(k0, �k )T = (−γ1γ3) S(k0,−�k )(γ1γ3) .
(2.22)
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The pseudoscalar, axial vector, and ε-tensor terms in (2.21) are not invariant under
the parity transformation, the tensor term is not invariant under the time reversal
transformation of (2.22). Hence, the Lorentz structure of the propagators reduces to
three independent components [Frö01, BD65] in the rest frame of a strongly interact-
ing medium in thermodynamical equilibrium:

S(k) = Ss(k)14×4 + S0(k) γ0 − Sv(k)�ek · �γ = Ss(k) + Sµ(k) γµ , (2.23)

with �ek = �k/|�k | and Si(k) = Sv(k)ei
k. Note that Sk and Sn of (2.21) have been

recombined to S0 = Sk k0 + Sn n0 and Sv = Sk |�k |. The sign convention in (2.23)
differs from [FLM03b] where Sv had the opposite sign.

The three functions Ss, S0, and Sv can always be extracted from the full propagators
Sαβ using

Ss(k) =
tr S(k)

4
, S0(k) =

tr[γ0 S(k)]

4
, Sv(k) =

tr[�ek · �γ S(k)]

4
. (2.24)

Recall our convention from Section 2.3.1. “tr” denotes a trace in spinor space only
while the symbol “Tr” is used for a full trace in color, flavor, and spinor space.

2.6.3 Quark spectral function

The spectral function A(k) corresponds to the density of states at a given energy k0

and momentum �k. As the definitions in (2.17) show, the non-ordered propagators
i S>(1, 1) and −i S<(1, 1) are related to the density of the free and the populated
states in the medium, respectively [Dan84]:

i Tr γ0 S>(1, 1) =
〈
ψα(1)ψ†

α(1)
〉

,

−i Tr γ0 S<(1, 1) =
〈
ψ†

α(1)ψα(1)
〉

.
(2.25)

Thus, we can introduce the spectral function in terms of these propagators,

A(k) = i [S>(k) − S<(k)] = −2Im Sret(k) . (2.26)

Using the hermitian conjugate γ0F
†γ0, we define real and imaginary part here as

[FLM03b, BD65]

ReF =
1

2
(F + γ0F

†γ0) and ImF =
1

2i
(F − γ0F

†γ0) ,

respectively. This definition makes sure that

Im S = (Im Ss)14×4 + (Im Sµ) γµ ,

i.e. γµ = Reγµ in this formalism – see Appendix A. For Lorentz scalar functions there
is no difference to the normal definition.
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The spectral function inherits the Lorentz structure of the Green’s functions,

A(k) = As(k)14×4 + A0(k)γ0 −Av(k)�ek · �γ = As(k) + Aµ(k)γµ . (2.27)

The Lorentz components of A are purely real scalar functions. They are “normalized”
as shown in Appendix D,

+∞∫
−∞

dp0

2π
A0(p) = 1 ,

+∞∫
−∞

dp0

2π
As(p) = 0 ,

+∞∫
−∞

dp0

2π
Av(p) = 0 . (2.28)

The fermionic phase space distribution function nF(k) determines the probability
that a state with four-momentum k is populated. In thermodynamical equilibrium,
nF(k) depends only on k0 and not on ki. It is given by

nF(k0) =
1

e(k0−µ)/T + 1

T=0−−→ Θ(µ − k0) . (2.29)

At zero temperature, all states below the chemical potential µ are occupied while
all states with energies above µ are free. The distribution function can be used to
express the propagators S≷(k) in terms of the spectral function [KB62],

S>(k) = −iA(k)[1 − nF(k0)] , (2.30)

S<(k) = iA(k)nF(k0) . (2.31)

In other words, the density of the occupied states is given by the density of all states
multiplied with the occupation probability while the density of the free states is given
by multiplying with the probability that the states are not populated.

A few helpful relations between the different kinds of propagators and the spectral
function exist. They can be derived from Eqs. (2.18,2.19) and Eqs. (2.26,2.30,2.31).
We list them here for further reference:

Sc(k) = Sret(k) + S<(k) = Sret(k) + iA(k)nF(k0) ,

= Sav(k) + S>(k) = Sav(k) − iA(k)[1 − nF(k0)] ,

S<(k) = [Sav(k) − Sret(k)]nF(k0) ,

Re Sret,av(k) =
1

2
[Sret(k) + Sav(k)] ,

Im Sret,av(k) = ∓ i

2
([Sret(k) − Sav(k)] .

(2.32)

2.6.4 Real and imaginary parts of the propagators

For a system in thermodynamical equilibrium, the retarded and advanced propagators
in momentum space are given by

Sret,av(k) =
1

/k − m0 − Σret,av(k)
, (2.33)
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where Σret,av(k) = Σret,av
s (k) + Σret,av

µ (k)γµ are the retarded and the advanced self-
energy, respectively. They have the same Lorentz structure as the propagators,
cf. (2.23). The form of the propagators in (2.33) resembles that of the time-ordered
propagators Sc,a in vacuum. In contrast to the time-ordered propagators, however,
Sret,av keep the simple form in the presence of a medium while the (anti-)time-ordered
propagators gain extra terms [Das97]. Consequently, the retarded and advanced prop-
agators and the spectral function are much easier to handle in calculations at finite
µ.

Introducing the – four-momentum dependent and complex – effective masses m̃ret,av

and the effective four-momenta k̃ret,av,

k̃ret,av
µ = kµ − Σret,av

µ (k) ,

m̃ret,av(k) = m0 + Σret,av
s (k) ,

(2.34)

Eq. (2.33) becomes

Sret,av(k) =
1

/̃k
ret,av − m̃ret,av(k)

=
/̃k

ret,av
+ m̃ret,av(k)

k̃2
ret,av − m̃2

ret,av(k)
. (2.35)

For our calculations it will be necessary to disentangle the real and the imaginary
parts of the propagators, e.g., to determine the spectral function. Both, the numerator
and the denominator on the rhs. of Eq. (2.35) are complex since the self-energies
Σret,av(k) are complex quantities. The real and the imaginary part of the denominator
can be identified with

P(k) = Rek̃2 − Rem̃(k)2 −
[
Im Σret

µ (k)Im Σµ
ret(k) − Im Σret

s (k)2
]

, (2.36)

W(k) = −2
[
Rek̃µIm Σµ

ret(k) + Rem̃(k)Im Σret
s (k)

]
(2.37)

for the retarded propagator and

Pav(k) = P(k) , Wav(k) = −W(k)

for the advanced propagator. We have used Σ∗
ret(k) = Σav(k) here. Note that Rem̃ =

Rem̃ret,av and Rek̃ = Rek̃ret,av. The expansion with the complex conjugates of the
denominators yields [Hen92]

Sret,av(k) =

(
/̃k

ret,av
+ m̃ret,av(k)

)
(P(k) ∓ i W(k))

P2(k) + W2(k)
. (2.38)

The upper sign in the numerator refers to the retarded and the lower sign to the
advanced propagator, respectively. In both cases the same functions P and W –
defined in terms of retarded self-energies – are used.

The zeros of the function P(k) determine the position of the poles of the propa-
gator. W(k) – originating from the imaginary part of the denominator – generates
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2.6 Quark fields and propagators

the collisional and decay width of the propagators. In the following, we refer to
the broadened poles as on-shell peaks. The on-shell energy kos

0 (�k ) and the on-shell

momentum �kos(k0) are found by solving one of the equations

P
(
kos

0 (�k ), �k
)

= 0 , P
(
k0, �kos(k0)

)
= 0 . (2.39)

It should be noted that P and W both depend on the full complex self-energy and
not only the real or imaginary part. As we will see later, the imaginary part does
not become too large in the on-shell region. Hence, the influence of the quadratic
Im Σret terms in (2.36) will be limited. In a quasiparticle model like the Hartree+RPA
approach one has Im Σret = 0 and Re Σret = Σmf. Thus Wqp is zero and P reduces
to Pqp(k) = k2 − (m0 + Σmf)2 = k2 − m∗2, where m∗ is a real valued, momentum
independent effective mass.

The real and the imaginary part of the propagators can be easily extracted from
Eq. (2.38),

Re Sret,av(k) =
Rem̃ P+Im Σret

s W

P2 + W2 +
Rek̃µ P−Im Σret

µ W

P2 + W2 γµ ,

Im Sret,av(k) = ±Im Σret
s P−Rem̃ W

P2 + W2 ∓
Im Σret

µ P+Rek̃µ W

P2 + W2 γµ ,

where we have used Σ∗
ret(k) = Σav(k) again. The Lorentz components of the quark

spectral function A = −2Im Sret are identified as

As(k) = 2
Rem̃ W−Im Σret

s P

P2 + W2 ,

Aµ(k) = 2
Rek̃µ W +Im Σret

µ P

P2 + W2 .

(2.40)

In the absence of a finite current quark mass m0, the Lorentz scalar component
Ss – and thus also Σret

s – vanishes when chiral symmetry is restored. The Lorentz
structure is then simplified even further8. Using m0 = Σmf = Σret

s (k) = m̃ret(k) = 0 –
yields

Ac
s(k) = 0 ,

Ac
µ(k) = 2

Rek̃µ Wc +Im Σret
µ Pc

P2
c + W2

c

with Pc(k) = Rek̃2 − Im Σret
µ Im Σµ

ret and Wc(k) = −2Rek̃µIm Σµ
ret. This result is

equivalent to the expressions used in [FLM03b], taking the difference in the sign
convention into account.

8In case of a small but finite m0 chiral symmetry is restored only approximately. Ss and Σret
s will

become small but do not vanish entirely.
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Figure 2.17: Structure of the quark spectral function A(k0, �k ) in the energy–
momentum plane (schematic). The displayed features are universal for all
Lorentz components. The solid lines and the dark shaded regions denote the
location of the broadened quark and antiquark on-shell peaks. (µ and kF are
the chemical potential and the corresponding Fermi momentum. Λ is the three-
momentum cutoff of the NJL model.) See the text for details.

2.6.5 Spectral function in the energy–momentum plane

Let us briefly review the most important features of the quark spectral function. In
Fig. 2.17, we show a schematic plot of A(k) in the energy–momentum plane. The

position of the on-shell states – determined by P(k) = 0 (k0 ≈ ±[�k2 + m∗2]1/2)
– is indicated by the solid lines. We find on-shell states at positive and negative
energies that will later be identified with quark and antiquark states, respectively (see
Section 4.1.1). The dark shaded regions denote the broadening of the quasiparticle
peaks, induced by the collisional and decay width W(k) of our approach (in a realistic
calculation, off-shell states exist also outside the shaded regions). Only at the chemical
potential µ, the width will drop to zero and the quarks turn into quasiparticles – this
will be discussed in detail at the end of Section 3.3 and in Chapter 4.

At zero temperature, the populated states of the medium are located within the
light shaded region in Fig. 2.17: All states at energies below the chemical potential
µ are populated with quarks (Fermi sea). States at negative energies, however, are
reinterpreted as free antiquark states (see Appendix E for the exact definition of
quark and antiquark states). We obtain the quark density by integrating the spectral
function in the shaded region over energy and momentum, cf. Eq. (3.9). Due to the

cutoff of the NJL model, states at three-momenta |�k | > Λ will not contribute to the
density. Note that the spectral function does not vanish at momenta above the cutoff.
Because of the chosen regularization scheme (see Section 2.4.2), however, the spectral
function at larger momenta will not contribute to any self-energy or polarization
integral.
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Fig. 2.17 also shows that the three-momentum cutoff Λ constitutes an effective
energy cutoff. For energies |k0| > EΛ, where

EΛ = kos
0 (Λ)

(
EΛ ≈

√
Λ2 + m∗2

)
,

the on-shell peaks are located (at momenta) above the cutoff. Since most of the
spectral strength is concentrated within the vicinity of the on-shell peaks, the spectral
function will not yield large contributions to self-energy and polarization integrals at
higher energies than EΛ. The off-shell components of the spectral function at large
energies (and |�k | < Λ) are not affected by the regularization scheme – see Fig. 2.17.
Hence, the effective energy cutoff is not as strict as the three-momentum cutoff that
suppresses all contributions from |�k | > Λ.

The Fermi momentum kF can be identified with the three-momentum at which the
on-shell states cross the chemical potential, i.e.,

kF = |�kos(µ)|
(
kF ≈

√
µ2 − m∗2

)
.

In a mean-field approach, where the full strength of the spectral function is located
in sharp quasiparticle peaks (solid lines in Fig. 2.17), no populated states exist above
the Fermi momentum. Due to collisional broadening of the peaks, this is not the
case in our approach. We can see in the schematic plot of Fig. 2.17 that populated
off-shell states exist at |�k | > kF . This brings us to the momentum distribution of

the medium, cf. Fig. 1.5 (nuclear matter). The momentum distribution n(|�k |) is
found by integrating the spectral function over the energy of the populated states
at fixed momentum – see Eq. (5.4) and Appendix E. In contrast to the momentum
distribution of a free Fermi gas (quasiparticles, dotted line in Fig. 1.5), we will find
a high momentum tail (solid line in Fig. 1.5) in the momentum distribution of our
approach. This tail is generated by the populated off-shell states above kF .

2.7 Meson propagators and spectral functions

At the bosonization of the NJL Lagrangian in Eq. (2.4) we have introduced meson
fields (2.5). For the path-ordered σ and π0,± Green’s functions in terms of the fields
we find [Reh98]:

∆P
σ (1, 2) = −i {〈P[σ(1)σ(2)]〉 − 〈σ(1)〉 〈σ(2)〉} ,

∆P
0,±(1, 2) = −i

{〈
P[π0,+(1)π0,−(2)]

〉
−
〈
π0,+(1)

〉 〈
π0,−(2)

〉}
.

(2.41)

The causal, anti-causal, and non-ordered meson Green’s functions ∆c,a,≷ are found
in analogy to the quark propagators in (2.17). The meson Green’s functions are
scalar functions and have no Lorentz structure. Like for the quarks, the retarded and
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advanced propagators are defined as

∆ret(1, 2) = Θ(t1 − t2)[∆
>(1, 2) − ∆<(1, 2)] = ∆c(1, 2) − ∆<(1, 2) ,

∆av(1, 2) = Θ(t2 − t1)[∆
<(1, 2) − ∆>(1, 2)] = ∆c(1, 2) − ∆>(1, 2) .

We have dropped the indices σ, 0,± here since the definition is the same for all mesons.
In analogy to Eq. (2.26), the σ and π0,± spectral functions are introduced in terms

of the non-ordered propagators ∆≷,

ξ(k) = i [∆>(k) − ∆<(k)] = −2Im ∆ret(k) .

The bosonic phase space distribution function nB in thermodynamical equilibrium,

nB(k0) =
1

ek0/T − 1

T=0−−→ −Θ(−k0) , (2.42)

is – like nF – a simple step function at zero temperature. We can use nB to express
the non-ordered propagators ∆≷ in terms of the spectral functions [KB62],

∆>(k) = −iξ(k)[1 + nB(k0)] , (2.43)

∆<(k) = −iξ(k)nB(k0) . (2.44)

Note the subtle differences to the relations for the quarks in Eqs. (2.30,2.31). The
distributions nF(k0) in the quark relations correspond to −nB(k0) in (2.43,2.44), i.e.,
Pauli blocking is replaced by Bose enhancement.

The relations between the different kinds of quark propagators and the spectral
function (2.32) exist in equivalent form for the meson propagators. We summarize
them here since they will be helpful in the later sections.

∆c(k) = ∆ret(k) + ∆<(k) = ∆ret(k) − iξ(k)nB(k0) ,

= ∆av(k) + ∆>(k) = ∆av(k) − iξ(k)[1 + nB(k0)] ,

∆<(k) = [∆ret(k) − ∆av(k)]nB(k0) ,

Re ∆ret,av(k) =
1

2
[∆ret(k) + ∆av(k)] ,

Im ∆ret,av(k) = ∓ i

2
([∆ret(k) − ∆av(k)] .

(2.45)

In Section 2.2, the RPA meson propagators were determined in terms of the NJL
coupling and the polarizations, cf. Eq. (2.10),

∆ret
l (k) = − 2G

1 + 2G Πret
l (k)

, (2.46)

where l = σ, 0,± denotes the type of the meson and Πret
l (k) is the corresponding

polarization. Since ∆ret and Πret are scalar functions, we can easily disentangle the
real and the imaginary part of the retarded propagators,

∆ret
l (k) = −

1
2G

+ Re Πret
l (k) − iIm Πret

l (k)(
1

2G
+ Re Πret

l (k)
)2

+ Im Πret
l (k)2

. (2.47)
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The spectral function ξ = −2Im ∆ret is then identified with

ξl(k) =
−2Im Πret

l (k)(
1

2G
+ Re Πret

l (k)
)2

+ Im Πret
l (k)2

. (2.48)

Instead of a term of the form k2 −m2 we find a term 1
2G

+ Re Πret that determines
the dynamics, i.e. the pole structure, of the RPA propagators. The imaginary part
of the polarization generates the width of on-shell peaks. In contrast to the quark
case, the meson spectral functions are not normalized to a certain value. This can
be explained by the fact that no explicit coupling factors enter the quark–meson
interaction vertices, cf. Eq. (2.4). The effective coupling is hidden in the RPA meson
propagators. Hence, the RPA spectral function can be interpreted as the product of
a normalized spectral function and the effective quark–meson coupling.

2.8 Self-energy, polarizations and widths

2.8.1 Quark self-energy

In the real-time formalism, the single-particle quark self-energy is defined on the
same closed time-path contour as the Green’s function SP(1, 2) [Dan84, BM90, Das97].
When the times t1 and t2 are located on fixed branches of the contour in Fig. 2.16, the
path-ordered self-energy ΣP(1, 2) reduces – like the Green’s function – to the causal
(Feynman) self-energy Σc, the anti-causal self-energy Σa, or one of the collisional
(non-ordered) self-energies Σ≷, cf. (2.15) and (2.17).

The self-energies on the contour are not independent of each other. The time-
ordered self-energy Σc(1, 2) can be split up into the collisional self-energies Σ≷ and a
time-local mean-field part Σmf ∼ δ(t1 − t2),

Σc(1, 2) = Σmf(1, 2) + Θ(t1 − t2) Σ>(1, 2) + Θ(t2 − t1) Σ<(1, 2) .

The mean-field self-energy contains the long-range effects that can be described by the
motion of non-interacting particles in a mean-field potential. In the present O(1/Nc)
approach to the NJL model, the mean-field self-energy is identified with the Hartree
self-energy ΣH of the Dyson–Schwinger equation (2.13) that is shown in the first line
of Fig. 2.11. It is mainly responsible for the dynamical generation of the constituent
quark mass. Note that the Fock diagram, typically a mean-field self-energy, is part
of the RPA meson exchange. We must take this into account later when we calculate
the real part of the self-energy. The collisional self-energies Σ≷ contain the short-
range effects that arise from decays and particle collisions in the medium. They
correspond to the meson exchange diagram in the Dyson–Schwinger equation. In
the Hartree+RPA approximation, the self-energy in the gap equation (2.11) is purely
time-local. Collisional self-energies are not present in that approach.
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2 The formalism

In Section 2.6 we have already encountered the retarded and advanced self-energies
Σret,av. They are defined in analogy to the Green’s functions Sret,av (2.18),

Σret(1, 2) = Σmf(1, 2) + Θ(t1 − t2) [Σ>(1, 2) − Σ<(1, 2)] ,

Σav(1, 2) = Σmf(1, 2) + Θ(t2 − t1) [Σ<(1, 2) − Σ>(1, 2)] .
(2.49)

The Wigner transformed (2.20) self-energy Σret(k) enters the retarded quark propa-
gator Sret(k) (2.33) and thus the spectral function A(k) = −2Im Sret(k) (2.40). The
real part of Σret(k) represents in-medium corrections to the four-momenta and the
masses of the quarks in the spectral function, as one can see in Eqs. (2.34) and
(2.36,2.38). Note that the collisional corrections to the mass are usually smaller than
the mean-field self-energy.

The imaginary part of Σret(k) is responsible for the collisional broadening of the
quark states. As we can see in Eqs. (2.37,2.38), the width in the quark spectral
function is determined by the Lorentz components of −2Im Σret(k). In momentum
space, we find −2Im Σret(k) = i Σ>(k) − i Σ<(k) [Dan84] – a relation similar to
(2.26). As we will discuss in Chapter 4 in more detail, the self-energies i Σ>(k)
and −i Σ<(k) are identical to the total collision rates for scattering out of and into

of the configuration (k0, �k ), respectively [KB62, FLM03b]. Therefore, we can define
the quark width Γ – the overall measure for changes of a configuration – by the sum
of the two collisional self-energies,

Γ(k) = i Σ>(k) − i Σ<(k) = −2Im Σret(k) . (2.50)

The relation on the rhs. of (2.50) is of course nothing but the optical theorem [PS95]
that relates the imaginary part of a Feynman amplitude (Im Σret) to a total cross
section or collision rate (i Σ> −i Σ<). The relevant scattering and decay processes
can be identified with the help of cutting – or Cutkosky – rules [PS95, Das97]: A
total collision rate is found by cutting the Feynman diagram in all possible ways,
putting the cut propagators on-shell, and integrating over the four-momenta of the
cut propagators. When we cut the meson exchange diagram in Fig. 2.11, we find
processes like q → qπ and qq̄ → σ that contribute to the loss rate i Σ> and the
gain rate −i Σ<. We will examine the structure of these processes in more detail in
Chapter 4. An overview of all contributing processes can be found in Fig. 4.3.

Using the definition of the on-shell energy kos
0 (�k ) and the on-shell momentum �kos

in (2.39) we can also introduce on-shell self-energies and a on-shell width,

Σos(k0) = Σ(k0, �kos(k0)) ,

Σos(�k ) = Σ(kos
0 (�k ), �k ) ,

Γos(k0) = Γ(k0, �kos(k0)) ,

Γos(�k ) = Γ(kos
0 (�k ), �k ) .

(2.51)

Note that the definitions hold for all kinds of self-energies (Σc, Σret, etc.).
It follows from Eq. (2.33) that the quark self-energies and the width must have the

same Lorentz structure as the propagators,

Σ(k) = Σs(k)14×4 + Σ0(k) γ0 − Σv(k)�ek · �γ = Σs(k) + Σµ(k) γµ ,

Γ(k) = Γs(k)14×4 + Γ0(k) γ0 − Γv(k)�ek · �γ = Γs(k) + Γµ(k) γµ ,
(2.52)
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2.8 Self-energy, polarizations and widths

with the scalar functions Σs,0,v and Γs,0,v which are functions of k0 and |�k | only.
Relations similar to Eqs. (2.24) can be used to extract the Lorentz components from
complicated expressions for Σ or Γ:

Σs(k) =
tr Σ(k)

4
, Σ0(k) =

tr[γ0 Σ(k)]

4
, Σv(k) =

tr[�ek · �γ Σ(k)]

4
, (2.53)

and correspondingly for Γs,0,v.

2.8.2 RPA meson polarization

We turn now to the polarizations of the RPA mesons. Much of the above discussion
for the quark self-energy holds also for the polarizations. Thus, we can be rather brief
in the following. As one can see in Eq. (2.8), the RPA polarizations do not include
time-local mean-field contributions. Thus, the time-ordered polarization Πc

l can be

expressed solely in terms of the collisional polarizations Π≷
l ,

Πc
l (1, 2) = Θ(t1 − t2) Π>

l (1, 2) + Θ(t2 − t1) Π<
l (1, 2) .

The retarded polarization is then given by

Πret(1, 2) = Θ(t1 − t2) [Π>(1, 2) − Π<(1, 2)] .

Like the collisional self-energies Σ≷, the polarizations i Π> and −i Π< can be iden-
tified with total collision rates. We find processes like π → qq̄, σq → q, etc., when
we cut the polarization diagram in Fig. 2.14 (see Section 4.5 for details). In analogy
to the quark case and in accordance with the structure of the RPA propagators and
spectral functions (2.47,2.48), we introduce the RPA meson widths

Γl(k) = [i Π>
l (k) − i Π<

l (k)]/(2k0) = −Im Πret
l (k)/k0 . (2.54)

The additional factor 1/k0 in comparison to (2.50) is required to get the dimension of
the widths right. The factor 1/2 is conventional. It ensures that the non-relativistic
limit of this definition is identical to the widths from non-relativistic models [Leu01,
Y+06].
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3 Calculation of self-energies and
polarizations

In this chapter we show in detail how to calculate the quark self-energy and the
RPA meson polarizations in our self-consistent approach (cf. Fig. 2.11), using the full
in-medium propagators. After a short review of the mean-field self-energy we will
demonstrate how the quark and meson widths can be calculated via the collisional
self-energies Σ≷ and polarizations Π≷. In the last part of this chapter, the calculation
of the real parts of the retarded self-energy and the RPA polarizations via dispersion
integrals will be discussed. Note that the Feynman rules of the real-time formalism
for the quark–quark interaction (2.1) and the quark–meson interaction (2.4) can be
found in Appendix C.

3.1 Mean-field self-energy

With mean-field self-energy we refer here to the components of the full quark self-
energy that are calculated from typical mean-field diagrams like the Hartree or the
Fock diagram. This does not imply that a quasiparticle approximation is used. The
diagrams are calculated with full in-medium propagators including a collisional width.

3.1.1 Hartree self-energy

In our O(1/Nc) approach of Fig. 2.11, the Hartree diagram ΣH takes the role of the
mean-field self-energy Σmf,

−i ΣH = 2iG
∑

l

∫
d4p

(2π)4
Γl Tr[i Sc(p)Γ̃l] · (−1) = 2G

∫
d4p

(2π)4
Tr Sc(p) , (3.1)

where “Tr” denotes a trace in color, flavor, and spinor space. A cutoff must be used
to regularize the integral. Only the isospin scalar NJL vertex (l = σ) contributes to
the Hartree self-energy since Tr γ5 = Tr γµγ5 = 0, cf. Eqs. (2.3,2.23). With Sc(k) =
Sret(k) + S<(k), cf. (2.32) and using Eq. (D.5) we get

−i ΣH = 2G

∫
d4p

(2π)4
Tr S<(p) .
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3 Calculation of self-energies and polarizations

We can work out the trace since the Lorentz structure of the propagator is known
(2.23),

−i ΣH = 8GNfNc

∫
d4p

(2π)4
S<

s (p) = 8iGNfNc

∫
d4p

(2π)4
As(p)nF(p0) . (3.2)

The mean-field self-energy provided by the Hartree diagram has a very simple Lorentz
structure – only the Lorentz scalar part is finite. This result is independent of the
presence of a medium.

3.1.2 Fock self-energy

The Fock self-energy is part of the RPA meson exchange diagram and should be
treated in that framework. Since it will later be necessary to isolate a Fock-like term
from the real part of the collisional self-energy, an explicit discussion is in order. In
particular, the Lorentz structure of the Fock self-energy will be of interest later. The
Feynman rules (Appendix C.2.2) yield

−i ΣF = −2G
∑

l

∫
d4p

(2π)4
Γl S

c(p)Γ̃l . (3.3)

The time-ordered propagator can be decomposed into its real and imaginary part,

Sc(k) = Sret(k) + S<(k) = ReSret(k) − i

2
A(k)[1 − 2nF(k0)] .

From Eq. (D.4) follows that the k0 integral over Re Sret(k) vanishes. With∑
l

ΓlA(k)Γ̃l = A(k) − 3[As(k) −Aµ(k)γµ] = −2As(k) + 4Aµ(k)γµ ,

the Fock self-energy becomes

ΣF = 2G

∫
d4p

(2π)4
[As(p) − 2Aµ(p)γµ] [1 − 2nF(p0)] . (3.4)

The Lorentz components ΣF
s and ΣF

0 can be directly read off from Eq. (3.4). We
use the normalization of the spectral function (D.6) to simplify ΣF

s ,

ΣF
s = −4G

∫
d4p

(2π)4
As(p)nF(p0) ,

ΣF
0 = −4G

∫
d4p

(2π)4
A0(p)[1 − 2nF(p0)] .

(3.5)

The integrand of Eq. (3.4) contains a factor �p ·�γ – with the three-momentum �p of the

integration variables instead of the external �k. Thus, the rule of Eq. (2.24) has to be
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3.2 Quark condensate and quark density

used to extract ΣF
v . Using again the normalization of the spectral function (D.6), we

find

ΣF
v = 8G

∫
d4p

(2π)4
cos ϑAv(p)nF(p0) ,

where ei
ke

j
p tr γiγj = −4�ek · �ep = −4 cos ϑ has been used to find ΣF

v . Since Av(p) =

Av(p0, |�p |) and
∫ +1

−1
d cos ϑ cos ϑ = 0, ΣF

v can be simplified even further,

ΣF
v = 0 . (3.6)

We can conclude that the Lorentz structure of the Fock self-energy is more com-
plicated than that of the Hartree self-energy. Only ΣF

v vanishes for all µ and T . At
zero temperature we have [1 − 2nF(p0)] = sgn(p0 − µ). A0 is symmetric in p0 in
the vacuum. Thus, ΣF

0 vanishes for µ = 0 and becomes finite only in the presence
of a medium. ΣF

s is the only component that can be finite for all µ and T . It is
proportional to ΣH, cf. (3.2,3.5),

ΣF
s =

1

2NfNc
ΣH . (3.7)

In the Hartree–Fock approximation, ΣF
0 is usually absorbed into a redefined chemical

potential [Kle92]. In this case, the mean-field self-energy remains Lorentz scalar and
is given by Σmf = ΣH + ΣF

s . Of course, this is a purely technical measure and has no
influence on the results.

3.2 Quark condensate and quark density

The definitions of the quark condensate and the quark density are closely related to
the mean-field self-energy. Hence, we take a brief look at them at this point. In
isospin symmetric quark matter we have

〈ūu〉 =
〈
d̄d
〉

=
1

2

〈
ψ̄ψ
〉

= − i

2

∫
d4p

(2π)4
Tr Sc(p) .

Comparing this expression to Eq. (3.1) yields
〈
ψ̄ψ
〉

= −1/(2G) ΣH. Thus, we get for
the quark condensate

〈ūu〉1/3 = −
(

1

4G
ΣH

) 1
3

. (3.8)

The quark number density ρ(µ, T ) is related to
〈
ψ†

αψα

〉
= −i Tr γ0 S<(1, 1), cf.

(2.25). Using Eq. (2.31), this means that the density can be calculated by integrating
over Tr γ0A(p)nF(p0) – the spectral function weighted with the occupation probability.
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3 Calculation of self-energies and polarizations

The density is given by the number of quarks minus the number of antiquarks in the
system. We show in Appendix E that the calculation of this difference becomes very
sensitive to numerical fluctuations in the presence of short-range correlations. Thus,
we do not introduce the exact definition of the density here, but a numerically stable
approximation that works well at zero temperature: We identify the quarks – in
contrast to antiquarks – with the states that have a positive effective energy Rep̃0

(see the schematic plot in Fig. 2.17) and integrate only over those states,

ρ(µ) =

∫
Λ

d3p

(2π)3

∞∫
Rep̃0=0

dp0

2π
nF(p0) Tr γ0A(p)

= 4NfNc

∫
Λ

d3p

(2π)3

∞∫
Rep̃0=0

dp0

2π
nF(p0)A0(p) . (3.9)

As for the self-energies, the integrals in (3.9) have to be regularized by a cutoff. Note
that A0 is the only Lorentz component of A that remains finite in the non-relativistic
limit. The exact definition of the density (E.14) and a discussion on the quality of
the approximation used in (3.9) can be found in Appendix E.

In the quasiparticle approximation, the peaks of A0 become δ-functions, see (4.1).
The integral in the last term of (3.9) can then be easily calculated (T = 0). We find

ρqp(µ) = NfNc/(3π2)k3
F , (3.10)

where kF =
√

µ2 − m∗2 is the quasiparticle Fermi momentum.

3.3 Collisional self-energies and quark widths

The diagrams that correspond to the collisional self-energies Σ≷(k) are shown ex-
plicitly in Fig 3.1. Using the Feynman rules of the real-time formalism (see Ap-
pendix C.2.3) we find

−i Σ≷(k) =
∑

l

∫
d4p

(2π)4
Γl S

≷(p)Γ̃l ∆
≶
l (p − k) . (3.11)

It is possible to calculate the sum over the different kinds of mesons after replacing
Γl and Γ̃l according to Eq. (2.3). In flavor symmetric quark matter, the isospin matri-
ces τi commute with the quark propagators. For the γ5 matrices we have {γ5, γµ} = 0.
Shifting around the matrices yields

−i Σ≷(k) =

∫
d4p

(2π)4

(
S≷

s (p) + S≷
µ (p)γµ

)
∆≶

σ (p − k)

+

∫
d4p

(2π)4

(
− S≷

s (p) + S≷
µ (p)γµ

)
×
[
∆≶

0 (p − k) + (1 + τ3) ∆≶
+(p − k) + (1 − τ3) ∆≶

−(p − k)
]

,
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3.3 Collisional self-energies and quark widths

−i Σ>(k) =
∑

l Γl Γ̃l
p

p − k

−i Σ<(k) =
∑

l Γl Γ̃l

p − k

p

Figure 3.1: The collisional quark self-energies Σ> and Σ<. The directed quark and

meson lines correspond to the non-ordered propagators S≷ and ∆≷, respectively.
l = σ, 0,± denotes the different kinds of RPA mesons.

where we have used (γ5)
2 = 14×4 and τ iτ j = δij12×2 + iεijkτk (see Appendix A). The

contributions from the three different RPA pions are equivalent up to the different
propagators ∆≷

0 , ∆≷
± and the isospin factors

1 =

(
1 0
0 1

)
, 1 + τ3 =

(
2 0
0 0

)
, 1− τ3 =

(
0 0
0 2

)
.

This difference is important in asymmetric quark matter. In symmetric quark matter,
however, we have ∆0 = ∆+ = ∆− since the polarizations Π0,± are equal. This is shown
explicitly in Section 3.4, Eqs. (3.20,3.21). It is not necessary to treat the different
pions separately here1. Instead, the contributions to the quark self-energy can be
added up, Σ≷ = Σ≷

σ +3 Σ≷
π , after introducing the universal RPA pion propagators

∆≷
π ,

−i Σ≷(k) =

∫
d4p

(2π)4

[
S≷

s (p)
{
∆≶

σ (p − k) − 3 ∆≶
π (p − k)

}
+ S≷

µ (p)γµ
{
∆≶

σ (p − k) + 3 ∆≶
π (p − k)

}]
. (3.12)

It is a straightforward exercise to extract the Lorentz components Σ≷
s and Σ≷

0 from
Eq. (3.12). Σ≷

v has to be extracted using Eq. (2.53),

−i Σ≷
v (k) =

∫
d4p

(2π)4
cos ϑ S≷

v (p)
{
∆≶

σ (p − k) + 3 ∆≶
π (p − k)

}
, (3.13)

where ϑ is the angle between the three-momenta �k and �p.
To determine Im Σret and the quark width, it is convenient to replace the prop-

agators in (3.12) by spectral functions and distribution functions according to Eqs.

1Note that we use the same (averaged) current quark mass for up and down quarks in (2.1), i.e.
isospin symmetry is exact in our approach.
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3 Calculation of self-energies and polarizations

(2.30,2.31) and (2.43,2.44). We get

i Σ>(k) =

∫
d4p

(2π)4
[1 − nF(p0)]nB(p0 − k0)

× [As(p) {ξσ(p − k) − 3ξπ(p − k)} (3.14)

+Aµ(p)γµ {ξσ(p − k) + 3ξπ(p − k)}]

and

−i Σ<(k) =

∫
d4p

(2π)4
nF(p0)[1 + nB(p0 − k0)]

× [As(p) {ξσ(p − k) − 3ξπ(p − k)} (3.15)

+Aµ(p)γµ {ξσ(p − k) + 3ξπ(p − k)}] .

The quark width is given by the sum of the two collisional self-energies as shown
in Eq. (2.50), Γ = −2Im Σret = i Σ> −i Σ<. We find for the Lorentz components

Γs,µ(k) =

∫
d4p

(2π)4
[nF(p0) + nB(p0 − k0)]As,µ(p) [ξσ(p − k) ∓ 3ξπ(p − k)] , (3.16)

where the upper sign in the integrand refers to the Lorentz scalar and the lower
sign to the Lorentz vector component. Ai(p) should be read as Av(p) cosϑei

k when
determining Γv, cf. Eq. (3.13).

For T = 0, nF and nB become simple step functions (2.29,2.42). This can be used
to combine the distribution functions with the limits of the p0 integration,

+∞∫
−∞

dp0[nF(p0) + nB(p0 − k0)]· · · T=0−−→
µ∫

k0

dp0· · · (3.17)

One sees immediately that the width becomes zero for k0 = µ in this case: states
at the Fermi energy (µ,�k ) are stable (quasiparticles). Because of Pauli blocking
it is impossible to scatter into our out of those states. For finite temperature this
restriction is less strict. At low temperatures, however, the quark width will remain
small for energies in the vicinity of the chemical potential. Due to the structure of
the integration limits it can also be expected that certain Lorentz components of the
width change their sign at k0 = µ.

3.4 Collisional polarizations and RPA meson widths

Fig. 3.2 shows the diagrams corresponding to the collisional polarizations Π≷
l (k).

From the Feynman rules, we obtain for these diagrams

−i Π≷
l (k) = −

∫
d4p

(2π)4
Tr
[
Γ̃l S

≷(p)Γl S
≶(p − k)

]
, (3.18)
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3.4 Collisional polarizations and RPA meson widths

−i Π>
l (k) =

Γl Γ̃l

p

p − k

−i Π<
l (k) =

Γl Γ̃l

p − k

p

Figure 3.2: The collisional meson polarizations Π> and Π<. The directed quark and

meson lines correspond to the non-ordered propagators S≷ and ∆≷, respectively.
l = σ, 0,± denotes the different kinds of RPA mesons.

where l = σ, 0,± denotes the different kinds of RPA mesons. The trace in Eq. (3.18)
can be worked out after inserting the different Γl, Γ̃l pairs from Eqs. (2.3) explicitly.
Using the Lorentz structure of the quark propagators (2.23) we find for l = σ

−i Π≷
σ (k) = −4NfNc

∫
d4p

(2π)4

[
S≷

s (p) S≶
s (p − k) + S≷

µ (p) Sµ
≶(p − k)

]
, (3.19)

with

S≷
µ (p) Sµ

≶(p − k) = S≷
0 (p) S≶

0 (p − k) − S≷
v (p) S≶

v (p − k)�ep · �ep−k .

In flavor symmetric quark matter the isospin matrices τi commute with the quark
propagators. Since τ∓τ± = 1± τ3 and tr τ3 = 0, the same result is found for all pions
(l = 0,±),

−i Π≷
π (k) = −4NfNc

∫
d4p

(2π)4

[
− S≷

s (p) S≶
s (p − k) + S≷

µ (p) Sµ
≶(p − k)

]
. (3.20)

From Eq. (2.10) and Π≷
0 = Π≷

+ = Π≷
− follows that

∆≷
0 (k) = ∆≷

+(k) = ∆≷
−(k) . (3.21)

Thus, we can introduce a universal pion propagator ∆π, as already done in Eq. (3.12).
Of course, this simplification of the formalism is only possible in flavor symmetric sys-
tems. In flavor asymmetric matter the quark propagators have a non-trivial structure
in flavor space and will not commute with the isospin matrices τi. Different results
will then be found for the polarizations of π0, π+, and π−.

We can replace the quark propagators in Eqs. (3.19) and (3.20) by spectral functions
and distribution functions nF. This yields

i Π>
σ,π(k) = 4NfNc

∫
d4p

(2π)4
[1 − nF(p0)]nF(p0 − k0)

× [±As(p)As(p − k) + Aµ(p)Aµ(p − k)]
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3 Calculation of self-energies and polarizations

and

−i Π<
σ,π(k) = −4NfNc

∫
d4p

(2π)4
nF(p0)[1 − nF(p0 − k0)]

× [±As(p)As(p − k) + Aµ(p)Aµ(p − k)] ,

where the upper signs in the integrands refer to the sigma polarizations and the lower
sign to the pion polarizations. The widths of the RPA mesons are then found with
the help of Eq. (2.54), k0Γl(k) = −Im Πret

l (k) = [i Π>
l (k) − i Π<

l (k)]/2,

Γσ,π(k) =
2NfNc

k0

∫
d4p

(2π)4
[nF(p0 − k0) − nF(p0)]

× [±As(p)As(p − k) + Aµ(p)Aµ(p − k)] . (3.22)

Note that the integral is antisymmetric in k. To see that, we have to perform the
substitution p → p − 1

2
k,∫

d4p

(2π)4
[nF(p0 − 1

2
k0) − nF(p0 + 1

2
k0)]

×
[
±As(p + 1

2
k)As(p − 1

2
k) + Aµ(p + 1

2
k)Aµ(p − 1

2
k)
]

.

Obviously, the first part of the integrand is antisymmetric while the second part is
symmetric in k. It follows from the first part that the integral is antisymmetric in k0.
This is not surprising since the widths depend only on k0 and |�k |. The factor 1/k0

in front of the integral in (3.22) turns the antisymmetry into a symmetry for Γσ,π(k).
For T = 0 the distribution function nF becomes a simple step function (2.29). This

can be used to rewrite the p0 integration,

+∞∫
−∞

dp0[nF(p0 − k0) − nF(p0)]· · ·
T=0−−→

µ+k0∫
µ

dp0· · · . (3.23)

3.5 Dispersion integrals

In the previous sections we have shown how to calculate the mean-field self-energy and
the imaginary parts of the retarded self-energy and polarizations. The properties of
the quark and RPA meson spectral functions are predominantly determined by these
quantities. The imaginary parts describe the effects of collisional broadening. The
mean-field self-energy, on the other hand, is the main contribution to the effective
quark mass and thus determines also the properties of the chiral phase transition.
Nonetheless, for a complete description of the spectral functions it is also necessary
to consider the contributions to Re Σret and Re Πret

l that arise from the diagrams
shown in Fig. 3.3.
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3.5 Dispersion integrals

Figure 3.3: Diagrams that yield complex contributions to the time-ordered and re-
tarded quark self-energies and RPA meson polarizations.

In the NJL model, cutoffs are used to regularize momentum integrals. Besides
other effects, such cutoffs yield a violation of analyticity – i.e., the analytic connec-
tion between the real and the imaginary parts of the complex self-energy and the
RPA polarizations is destroyed. This gives us two choices for our calculation. The
first choice is to sacrifice analyticity and to calculate both, the real and the imaginary
parts, using the Feynman rules of the real-time formalism. As a consequence, some
properties of the spectral functions – like the normalization of A(k) (2.28) – would
be lost. The second choice is to calculate only the real or the imaginary parts di-
rectly and to use dispersion integrals to determine their counterparts. This approach
ensures that analyticity is preserved. However, even without cutoffs the results from
a dispersion integral might differ from a direct calculation. This point is discussed
in Appendix F. Note that the mean-field self-energy is time-local (see Section 2.8.1)
in coordinate space and thus energy independent in momentum space, cf. Eq. (3.1).
Consequently, Σmf is purely real and has no influence on the analyticity of the full
quark self-energy. It can be calculated separately in both cases.

Our main interest in the present work is to investigate the collisional broadening
of the spectral functions. For the self-consistent approach it is more reasonable to
preserve analyticity – and thus, e.g., the proper normalization of the quark spectral
function – than to calculate the real parts of the diagrams in Fig. 3.3 directly. There-
fore, we will calculate only Im Σret and Im Πret

l from the Feynman rules as shown in
Sections 3.3 and 3.4. The real parts are determined by the dispersion relations

Re Σret(k0, �k ) = Σmf +
1

2π

+∞

P

∫
−∞

dp0
Γ(p0, �k )

k0 − p0
+ const. ,

ReΠret
l (k0, �k ) =

1

π

∞

P

∫
0

dp2
0

p0Γl(p0, �k )

k2
0 − p2

0

+ const.

(3.24)

In the second line we have used the antisymmetry of p0Γl that has been mentioned
after Eq. (3.22).

Constant – or at least energy independent – contributions to Re Σret and ReΠret
l

do not interfere with analyticity and cannot be calculated from dispersion integrals.
Those shifts may have significant influence on the quark or meson properties and
should not be ignored. For example, the masses of the RPA pions depend strongly on
the inclusion of such constant terms, cf. Fig. 2.15. We must calculate them separately
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3 Calculation of self-energies and polarizations

and add them to the dispersion integrals, as shown in (3.24). To identify the energy
independent terms2, a closer investigation of the real parts that are given by the
Feynman rules is necessary.

The Feynman rules provide no direct access to the retarded self-energy and po-
larizations [Dan84, Das97] since – in coordinate space – the positions of the time
coordinates on the two branches of the time-path contour in Fig. 2.16 are not well-
defined, cf. (2.18). To search for constant terms, we can start from the time-ordered
self-energy Σc and polarizations Πc

l . They are related to Σret and Πret
l in a simple way

[Das97]:

Re Σc(k) = ReΣret(k) ,

Re Πc
l (k) = ReΠret

l (k) ,

Im Σc(k) = [1 − 2nF(k0)]Im Σret(k) ,

Im Πc
l (k) = [1 + 2nB(k0)]Im Πret

l (k) ,

(3.25)

with the zero temperature limits 1 − 2nF(k0) → sgn(k0 − µ) and 1 + 2nB(k0) →
sgn(k0). Note that 1 − 2nF(k0) = tanh(β(k0 − µ)/2) and 1 + 2nB(k0) = coth(βk0/2),
cf. Eqs. (G.2,G.4). The imaginary parts of Σret and Πret

l that are found in this
approach should of course be equivalent to the widths that we have found earlier
(3.16,3.22). In fact, this will be demonstrated below.

3.6 Real parts of the RPA meson polarizations

In the following we will examine the complex polarizations, not only the real parts, to
identify constant contributions to Re Πret

l . Therefore, we will construct an expression
for the retarded polarizations that contains only retarded and advanced propagators.
From that expression we will also construct the meson widths to check our result from
Section 3.4. In this section we will frequently use the relations between the different
kinds of propagators (Sc, Sret, S≷) that are summarized in Eqs. (2.32) without further
reference.

3.6.1 Time-ordered and retarded polarizations

The time-ordered polarizations of the RPA mesons (cf. Fig. 3.3) are given by

−i Πc
l (k) = −

∫
d4p

(2π)4
Tr
[
Γ̃l S

c(p)Γl S
c(p − k)

]
. (3.26)

2The Fock self-energy that is hidden in the RPA meson exchange is an example for such a term.
Since the Fock self-energy is – like the Hartree self-energy – constant and purely real, it cannot
be calculated dispersively from the imaginary part of the collisional self-energy.
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3.6 Real parts of the RPA meson polarizations

We can replace the time-ordered propagators by retarded and non-ordered propaga-
tors, Sc(k) = Sret(k) + S<(k). This yields

−i Πc
l (k) = −

∫
d4p

(2π)4
Tr
[
Γ̃l S

ret(p)Γl S
ret(p − k) + Γ̃l S

ret(p)Γl S
<(p − k) (3.27)

+Γ̃l S
<(p)Γl S

ret(p − k) + Γ̃l S
<(p)Γl S

<(p − k)
]

.

The first part of this integral,
∫

Γ̃l S
ret Γl S

ret, is zero: Since the poles of both
retarded propagators are located in the same half plane [Das97], the p0 integral can
be closed along a contour in the other half plane so that no poles are included. More
details can be found in Appendix D. After inserting Sret(k) = Re Sret(k) − i

2
A(k)

and S<(k) = iA(k)nF(k0), the polarizations Πc
l can be split up into their real and

imaginary parts:

ReΠc
l (k) =

∫
d4p

(2π)4
Tr
[
Γ̃lRe Sret(p)ΓlA(p − k)nF(p0 − k0)

+Γ̃lA(p)ΓlReSret(p − k)nF(p0)
]

, (3.28)

Im Πc
l (k) =

1

2

∫
d4p

(2π)4
[nF(p0) − nF(p0 − k0)][1 + 2nB(k0)]

× Tr
[
Γ̃lA(p)ΓlA(p − k)

]
, (3.29)

where we have used the relation

nF(p) + nF(p − k) − 2nF(p)nF(p − k) = [nF(p − k) − nF(p)][1 + 2nB(k)]

in the derivation of the imaginary parts. The proof for this relation can be found in
Appendix G. Re Πret

l (k) and Im Πret
l (k) can be directly read off from Eqs. (3.28) and

(3.29) with the help of the relations in (3.25). Note that the result for Im Πret
l (k) that

we have found here is identical to the result for the meson widths in Eq. (3.22) that
was found from the collisional polarizations, i[Π>(k) − Π<(k)]/2k0.

The real and imaginary parts of Πret
l can be combined to obtain an expression for

the complex polarization Πret
l (k):

Πret
l (k) =

∫
d4p

(2π)4
Tr

[
Γ̃l[Re Sret(p) − i

2
A(p)]ΓlA(p − k)nF(p0 − k0)

+Γ̃lA(p)Γl[Re Sret(p − k) +
i

2
A(p − k)]nF(p0)

]
.

Using S∗
ret(k) = Sav(k) and making the replacement iA(k)nF(k0) = S<(k), we find a

more compact form,

Πret
l (k) = −i

∫
d4p

(2π)4
Tr
[
Γ̃l S

ret(p)Γl S
<(p − k) +Γ̃l S

<(p)Γl S
av(p − k)

]
. (3.30)
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3 Calculation of self-energies and polarizations

3.6.2 Decomposition of the RPA polarizations

The purpose of the following – rather technical – manipulations is to isolate the non-
dispersive part of Re Πret. First, we bring the integrands in Eqs. (3.27) and (3.30) into
a more symmetric form by shifting the integration variable by 1

2
k, i.e., p → p − 1

2
k.

In addition, we introduce the shorthand notation3, cf. (2.34),

S≷,ret,av
± = S≷,ret,av(p±) p̃ret,av

±,µ = p±µ − Σret,av
µ (p±)

n±
F = nF(p±0 ) m̃ret,av

± = m0 + Σret,av
s (p±) ,

where p± = p ± 1
2
k. This yields the more compact form

Πret
l (k) = −i

∫
d4p

(2π)4
Tr
[
Γ̃l S

ret
+ Γl S

<
− +Γ̃l S

<
+ Γl S

av
−

]
,

Πc
l (k) = −i

∫
d4p

(2π)4
Tr
[
Γ̃l S

ret
+ Γl S

ret
− +Γ̃l S

ret
+ Γl S

<
− +Γ̃l S

<
+ Γl S

ret
− +Γ̃l S

<
+ Γl S

<
−

]
.

Next, we replace the non-ordered propagators in the integrands by S<
± = [Sav

± − Sret
± ]n±

F

to get expressions for the polarizations Πc,ret that contain only retarded and advanced
propagators. We find

Πret
l (k) = −i

∫
d4p

(2π)4
Tr
[
−Γ̃l S

ret
+ Γl S

ret
− n−

F + Γ̃l S
av
+ Γl S

av
− n+

F

+Γ̃l S
ret
+ Γl S

av
−
{
n−

F − n+
F

}]
, (3.31)

and

Πc
l (k) = −i

∫
d4p

(2π)4
Tr
[
Γ̃l S

ret
+ Γl S

ret
− (1 − n+

F )(1 − n−
F ) + Γ̃l S

av
+ Γl S

av
− n+

F n−
F (3.32)

+Γ̃l S
ret
+ Γl S

av
− (1 − n+

F )n−
F + Γ̃l S

av
+ Γl S

ret
− n+

F (1 − n−
F )
]

.

The integrand of Πc
l has an interesting structure. Each propagator Sret is connected

to a factor (1 − nF) and each propagator Sav to a factor nF. We will come back to
that aspect later.

At first glance the new expressions for Πret
l and Πc

l look more complicated than
the ones in Eqs. (3.27,3.30). However, they are a good starting point for our search
for the energy independent components of ReΠc,ret

l (k). Eqs. (3.31,3.32) contain only
retarded and advanced quark propagators in the integrals. Those propagators have
a structure that – even in an interacting medium – resembles the structure of the
free propagators. Thus, an investigation similar to the Hartree+RPA approach at
T = µ = 0 – see Appendix B and [Kle92] for details – is possible.

3Note that the effective masses that are defined here are complex and four-momentum dependent.
The mean-field self-energy Σmf is included in Σret,av

s , cf. Eq. (2.49).
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3.6 Real parts of the RPA meson polarizations

The full in-medium quark propagators are given explicitly in Eq. (2.35). Instead
of inserting the explicit forms of the retarded and advanced propagators into the
integrands of Eqs. (3.31) or (3.32) right away, we will investigate the more general
expression Tr Γ̃l S+ Γl S− first. In this trace, S+ and S− each represent either a retarded
or an advanced propagator. Thus the indices ± do not only mark the four-momentum
but implicitly also the kind (ret, av) of the propagators and the self-energies contained
in them. Later we can derive expressions for specific combinations of retarded and
advanced propagators from this general form. Inserting the explicit forms of the
propagators (2.35) and the matrices Γ̃l, Γl into the general trace, we get

Tr Γ̃σ,π S+ Γσ,π S− = 4NfNc

p̃+
µ p̃µ

− ± m̃+m̃−

(p̃2
+ − m̃2

+)(p̃2
− − m̃2

−)
. (3.33)

In the numerator, the upper sign refers to the σ and the lower sign to the π case,
respectively. We find the same result for all pions (0,±) in isospin symmetric matter,
thus Γπ is used here as a shorthand notation for Γ0,±. Note that the numerator would
take the simpler form p2 − 1

4
k2 ±m∗2 in the Hartree approximation, cf. (B.1), where

Σret,av
s (k) = Σmf and Σret,av

0,v = 0.
We can rewrite the denominator of Eq. (3.33) in terms of partial fractions,

1

(p̃2
+ − m̃2

+)(p̃2
− − m̃2

−)
=

[
1

p̃2
+ − m̃2

+

+
1

p̃2
− − m̃2

−

]
(p̃2

+ + p̃2
− − m̃2

+ − m̃2
−)−1 . (3.34)

The inverse of the second factor on the rhs. can also be isolated in the numerator of
(3.33),

p̃+
µ p̃µ

− ± m̃+m̃− =
1

2
[p̃2

+ + p̃2
− − m̃2

+ − m̃2
−] − 1

2
[(p̃+ − p̃−)2 − (m̃+ ± m̃−)2] . (3.35)

Combining the two expressions (3.34) and (3.35) we obtain for the general trace:

Tr Γ̃σ,π S+ Γσ,π S−

=
1

2
NfNc tr

[
S+

m̃+
+

S−

m̃−

]
− 2NfNc

(p̃+ − p̃−)2 − (m̃+ ± m̃−)2

(p̃2
+ − m̃2

+)(p̃2
− − m̃2

−)
, (3.36)

where we have used Eq. (2.35) to rewrite the first term on the rhs.,

1

p̃2 − m̃2
=

1

4m̃
tr

/̃p + m̃

p̃2 − m̃2
=

1

4m̃
tr S(p) .

3.6.3 The non-dispersive part of the RPA polarizations

The first part of the rhs. of Eq. (3.36) corresponds to a constant contribution to the
real parts of the meson polarizations. It has the same value for all RPA mesons. It
can generate a pion mass and thus may spoil the Goldstone boson character of the
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3 Calculation of self-energies and polarizations

RPA pions. The second part of the rhs. of Eq. (3.36) is complex. The real part can
in principle be calculated from a dispersion integral. Energy independent shifts that
might arise from this term – depending on how the dispersion integral is calculated
– will be discussed later.

Inserting the first term on the rhs. of (3.36) into the retarded polarizations (3.31),
i.e., identifying the propagators S± with the different combinations of retarded and
advanced propagators, yields for the non-dispersive, constant part of the meson po-
larizations

Πn = − i

2
NfNc

∫
d4p

(2π)4
tr

[
Sav

+

m̃av
+

n+
F − Sret

+

m̃ret
+

n+
F +

Sav
−

m̃av
−

n−
F − Sret

−
m̃ret

−
n−

F

]
.

In the integrand, four of the initial eight terms have canceled each other. The same
result would be found by inserting the first term on the rhs. of (3.36) into the integral
for Πc

l (k), with the help of (D.5). After splitting up the integrand into a “+” and a
“−” part and applying the substitutions p → p ± 1

2
k, we get

Πn = −iNfNc

∫
d4p

(2π)4
tr

[
Sav(p)

m̃av
− Sret(p)

m̃ret

]
nF(p0) .

Note that Sav − Sret = −2Im Sret = A. In contrast to the mean-field case, this
relation cannot be used directly here, cf. Eq. (B.4), since the effective masses m̃ret

and m̃av are not equal. Replacing the propagators by the explicit expressions (2.35)
again and using p̃∗ret = p̃av, m̃∗

ret = m̃av leads to

Πn = −4iNfNc

∫
d4p

(2π)4
(−2i)Im

1

p̃2
ret − m̃2

ret

nF(p0) . (3.37)

In a pure mean-field calculation, this integral would closely resemble the Hartree
self-energy ΣH and could be replaced accordingly, cf. (B.4,B.5). A similar approach
is possible in the full calculation. The mean-field self-energy – that is identical to
the Hartree self-energy here – is given by Eq. (3.2). Using A(k) = −2Im Sret(k) and
working out the trace yields

Σmf = −2G

∫
d4p

(2π)4
TrA(p)nF(p0) = 16GNfNc

∫
d4p

(2π)4
Im

m̃2
ret

p̃2
ret − m̃2

ret

nF(p0) .

Introducing Σs
const., the sum of all constant contributions to Σc,ret

s , we can split up the
integral

Σmf = 16GNfNc(m0 + Σs
const.)

∫
d4p

(2π)4
Im

1

p̃2
ret − m̃2

ret

nF(p0)

+16GNfNc

∫
d4p

(2π)4
Im

Σret
s (p) − Σs

const.

p̃2
ret − m̃2

ret

nF(p0) . (3.38)
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3.6 Real parts of the RPA meson polarizations

The mean-field self-energy Σmf is the largest constant contribution to Σc,ret
s when chiral

symmetry is spontaneously broken. We will show in Section 3.8 how to calculate the
other components of Σs

const..
The first integral in (3.38) is equivalent to the one in Eq. (3.37). Thus we get for

the non-dispersive part of the RPA polarizations

Πn = − 1

2G

Σmf

m0 + Σs
const.

+
8NfNc

m0 + Σs
const.

∫
d4p

(2π)4
Im

Σret
s (p) − Σs

const.

p̃2
ret − m̃2

ret

nF(p0) . (3.39)

The second term results from using full propagators. In the Hartree(–Fock) approx-
imation, where Σret

s (k) = ΣH(+ ΣF), this term will vanish. Note that the value of
Σs

const. can in principle be freely chosen. The first term of (3.39) corresponds to the
result of the Hartree(–Fock) approximation (B.5) when Σs

const. is set to ΣH(+ ΣF).

3.6.4 The dispersive part of the RPA polarizations

We turn now to the second part of Eq. (3.36). Inserting this expression into Eq. (3.31),
i.e. identifying the S± with the different combinations of retarded and advanced prop-
agators, we find for the dispersive part of the retarded polarizations

Πret
d,l(k) = 2iNfNc

∫
d4p

(2π)4

[
−(p̃ret

+ − p̃ret
− )2 − (m̃ret

+ ± m̃ret
− )2

(p̃ret
+

2 − m̃ret
+

2
)(p̃ret

−
2 − m̃ret

−
2
)

n−
F

+
(p̃av

+ − p̃av
− )2 − (m̃av

+ ± m̃av
− )2

(p̃av
+

2 − m̃av
+

2)(p̃av
−

2 − m̃av
−

2)
n+

F

+
(p̃ret

+ − p̃av
− )2 − (m̃ret

+ ± m̃av
− )2

(p̃ret
+

2 − m̃ret
+

2
)(p̃av

−
2 − m̃av

−
2)

(n−
F − n+

F )

]
,

(3.40)

and in the same way for the time-ordered polarizations

Πc
d,l(k) = 2iNfNc

∫
d4p

(2π)4

[
(p̃ret

+ − p̃ret
− )2 − (m̃ret

+ ± m̃ret
− )2

(p̃ret
+

2 − m̃ret
+

2
)(p̃ret

−
2 − m̃ret

−
2
)

(1 − n+
F )(1 − n−

F )

+
(p̃av

+ − p̃av
− )2 − (m̃av

+ ± m̃av
− )2

(p̃av
+

2 − m̃av
+

2)(p̃av
−

2 − m̃av
−

2)
n+

Fn−
F

+
(p̃ret

+ − p̃av
− )2 − (m̃ret

+ ± m̃av
− )2

(p̃ret
+

2 − m̃ret
+

2
)(p̃av

−
2 − m̃av

−
2)

(1 − n+
F )n−

F

+
(p̃av

+ − p̃ret
− )2 − (m̃av

+ ± m̃ret
− )2

(p̃av
+

2 − m̃av
+

2)(p̃ret
−

2 − m̃ret
−

2
)

n+
F (1 − n−

F )

]
.

(3.41)

Due to the mixture of retarded and advanced quantities and the Fermi distributions,
a simplification of these integrals seems rather complicated. However, at least for
T = 0 it is possible to bring the integrand in Eq. (3.41) into a much simpler form.
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3 Calculation of self-energies and polarizations

Besides the distribution functions, the four terms in the integrand differ only in the
retarded and advanced quark self-energies that are part of the effective masses and
momenta. Using (3.25) and Σ∗

ret(k) = Σav(k) we find

Im Σc(k) = [1 − 2nF(k0)]Im Σret(k) = −[1 − 2nF(k0)]Im Σav(k) .

For T = 0, the factor 1 − 2nF(k0) reduces to a simple sign function sgn(k0 − µ).
This means that the time-ordered imaginary parts are identical to the retarded ones
for k0 > µ and identical to the advanced ones for k0 < µ. Since the real parts of
Σc,ret,av are identical (3.25) for all k0 we get

Σc(k)nF(k0)
T=0
= Σav(k)nF(k0) ,

Σc(k)[1 − nF(k0)]
T=0
= Σret(k)[1 − nF(k0)] .

(3.42)

In the integrand of Eq. (3.41) every retarded quantity is connected to a factor
(1− nF) while every advanced quantity comes with a factor nF. In combination with
(3.42) it follows that all retarded and advanced quantities can be replaced by time-
ordered ones – at T = 0 the Fermi distributions ensure that only the energy ranges in
which those quantities are identical contribute to the integral. Each of the four terms
in the integrand covers a distinct energy range. After the replacement ret, av → c,
those terms can be added up and we find

Πc
d,l(k)

T=0
= 2iNfNc

∫
d4p

(2π)4

(p̃c
+ − p̃c

−)2 − (m̃c
+ ± m̃c

−)2

(p̃c
+

2 − m̃c
+

2)(p̃c
−

2 − m̃c
−

2)
. (3.43)

Before we continue, it is important to recall that the constant (i.e., energy inde-
pendent) terms which are not covered by dispersive integrals can be isolated in the
k0 → ±∞ limit, cf. Appendix F. The numerator of the integrand in (3.43) hides some
of its features in the present form. By inserting the effective masses and momenta
explicitly, we find for the σ and the π case

(p̃+ − p̃−)2 − (m̃+ + m̃−)2 = k2 − 4M2 − 2kµ∆ Σµ +∆ Σµ ∆ Σµ ,

(p̃+ − p̃−)2 − (m̃+ − m̃−)2 = k2 − ∆ Σ2
s −2kµ∆ Σµ +∆ Σµ ∆ Σµ ,

(3.44)

with ∆ Σs,µ = Σs,µ
+ −Σs,µ

− and M = m0 + 1
2
(Σs

+ + Σs
−). It can be seen that the

numerators depend on the integration variables p0 and �p only in the arguments of the
self-energies. Up to the ∆ Σ terms, the expressions in (3.44) have a structure similar
to the mean-field results k2 − 4m∗2 and k2, cf. (B.2).

At large k2
0, the imaginary parts as well as the four-momentum dependent disper-

sive real parts of the self-energies will vanish due to the cutoff of the model. Only
the mean-field self-energy and the three-momentum dependent, real shifts to the dis-
persion integrals remain finite, i.e., Σs

± → Σmf + ΣF
eff,s(|�p±|) and Σµ

± → ΣF
eff,µ(|�p±|).

Here ΣF
eff is the effective Fock self-energy that is defined below in Eq. (3.60). It will

be discussed in detail in Section 3.8.
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3.6 Real parts of the RPA meson polarizations

Thus, the p0 dependence of (3.44) is completely lost in the high-energy limit k2
0 →

∞. The k0 dependent part of the numerators reduces to k2 − 2kµ∆ Σµ. The term
2kµ∆ Σµ – that is not present in the mean-field approach – does not contribute to
the integral in Eq. (3.43) as can be seen as follows: When k2

0 becomes large, the
�p dependence of the denominators in (3.43) can be ignored. The three-momentum
integrals can then be applied to the numerator alone. Since ∆ Σµ → ΣF

eff,µ(|�p+|) −
ΣF

eff,µ(|�p−|) we find

k0

[∫
d3p ΣF

eff,0(|�p+|) −
∫

d3p ΣF
eff,0(|�p−|)

]
= 0 ,

�k·
[∫

d3p ΣF
eff,v(|�p+|)�e+ −

∫
d3p ΣF

eff,v(|�p−|)�e−
]

= 0 ,

(3.45)

by a shift of the integration variables in the first (�p → �p+) and the second integral
(�p → �p−) of each line. Hence, the energy dependence of the numerators in (3.44) is –
as in the mean-field case – given by

(p̃+ − p̃−)2 − (m̃+ ± m̃−)2 k2
0→∞−−−−→ k2

0 + O(k0
0) . (3.46)

Note that the second term, O(k0
0), is still �p± dependent. We will come back to that

point in Section 3.8.
Exactly the same result (3.46) is found for the two more general expressions in

Eqs. (3.40,3.41). The various numerators in those integrals can also be brought into
the form (3.44). At large k2

0, where the self-energies are purely real, the distinction
between retarded and advanced self-energies becomes irrelevant in the numerators.
Thus, shifts like in (3.45) can be applied and the energy dependence (3.46) is found
for the numerators of (3.40,3.41), too.

At large energies it is also possible to reduce the number of terms in the integrals
(3.40,3.41). For k2

0 → ∞ we have either p̃− < µ < p̃+ (k0 → +∞) or p̃+ < µ < p̃−
(k0 → −∞). Hence, the distribution functions become

n+
F = 0, n−

F = 1 for k0 → +∞ ,

n+
F = 1, n−

F = 0 for k0 → −∞ .

This means that only the term ∼ (1−n+
F )n−

F or the term ∼ n+
F (1−n−

F ) can contribute
to the integral in (3.41). In (3.40) either the terms ∼ n+

F or the terms ∼ n−
F must be

zero. Eq. (D.7) provides an argument why the remaining one of the first two terms in
Eq. (3.40) should be zero, too: The denominators of these terms correspond to those
of two retarded or two advanced propagators. Thus all poles of each term are located
in the same half plane. For n∓

F → 1 in the k0 → ±∞ limit, it is possible to close the
p0 integral in the opposite half plane, cf. Fig. D.1. Consequently, only the third term
yields finite contributions to the integral of Eq. (3.40) at high energies.

Before we study the denominators in Eqs. (3.40,3.41) and (3.43) in more detail,
we briefly comment on the k → 0 behavior of the numerators. It should be noted
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3 Calculation of self-energies and polarizations

that the integrand of Eq. (3.43) vanishes for k → 0 in the pion case. This can easily
be seen in (3.43) since p̃c

+ = p̃c
− and m̃c

+ = m̃c
− for k → 0. In Eqs. (3.40,3.41) the

terms that contain either only retarded or only advanced self-energies will vanish in
the same way. The remaining mixed terms become zero already for k0 = 0, due to
the distribution functions: When p+

0 = p−0 = p0, the distributions (n−
F − n+

F ) in the
third term of (3.40) cancel each other. In (3.41), the factors (1−n±

F )n∓
F could only be

finite for p0 < µ and p0 > µ at the same time. The k → 0 behavior will be important
below when we discuss the pion mass.

We turn our attention now to the denominator of (3.43) and introduce the integral

I(k) =

∫
d4p

(2π)4

1

(p̃c
+

2 − m̃c
+

2)(p̃c
−

2 − m̃c
−

2)
. (3.47)

Note that the imaginary part of I corresponds to the real part of Πc,ret. In the
mean-field approximation, the real and the imaginary part of I(k) can be calculated
analytically when a simple cutoff scheme is used. In Appendix B a retarded version of
I(k) is introduced by ReIret(k) = ReI(k)[1 + 2nB(k0)], ImIret(k) = ImI(k). It is shown
that ImIret(k) calculated from a dispersion integral is identical to the imaginary part
of I(k) obtained from the direct calculation. No constant shifts must be added to the
dispersion integral.

The complex self-energies that enter the denominator of (3.47) in the full calculation
do not introduce additional poles to the integrand of I(k). They remain small and
vanish or become real and energy independent for energies a few times larger than
the cutoff Λ. Thus, the full calculation does not introduce additional shifts to the
dispersion relation and – like in the mean-field case – the relation

ImI(ret)(k0, �k ) =
1

π

∞

P

∫
0

dp2
0

ReIret(p0, �k )

k2
0 − p2

0

(3.48)

should hold. The complex integral Iret(k) of the full calculation can be found by
replacing the numerators of all terms in the integrand of Eq. (3.40) by 1

Iret(k) =

∫
d4p

(2π)4

[
− 1

(p̃ret
+

2 − m̃ret
+

2
)(p̃ret

−
2 − m̃ret

−
2
)
n−

F

+
1

(p̃av
+

2 − m̃av
+

2)(p̃av
−

2 − m̃av
−

2)
n+

F

+
1

(p̃ret
+

2 − m̃ret
+

2
)(p̃av

−
2 − m̃av

−
2)

(n−
F − n+

F )

]
.

(3.49)

In Eqs. (2.36,2.37) the symbols P and W for the real and the imaginary parts of the
propagators have been introduced. Using these symbols we find for the real part of
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3.6 Real parts of the RPA meson polarizations

Iret explicitly

ReIret(k) =

∫
d4p

(2π)4

2 W+ W−

(P2
+ + W2

+)(P2
− + W2

−)
(n−

F − n+
F ) .

It can be checked that the same result is found by replacing the numerator in
Eq. (3.43) by 1 to get I(k) and using ReIret(k) = ReI(k)[1+2nB(k0)] to find ReIret(k).

Eq. (3.48) does not translate directly to the polarizations. The numerators (3.44)
in the integral for Πret

d,l(k) are more complicated than the trivial ones in (3.49). In
particular, a factor k2 occurs which, of course, changes the k2 → ∞ behavior. This
factor will generate a k0 independent shift if it is included in the dispersion integral
(cf. Appendix B):

k2ImI(ret)(k0, �k ) =
k2

π

∞

P

∫
0

dp2
0

ReIret(p0, �k )

k2
0 − p2

0

(3.50)

=
1

π

∞∫
0

dp2
0ReIret(p0, �k ) +

1

π

∞

P

∫
0

dp2
0

(p2
0 − �k2)ReIret(p0, �k )

k2
0 − p2

0

.

Note that the numerator in the last term of (3.50) is just p2ReIret(p) for �p = �k, i.e., it
is a dispersion for k2I(k) instead of I(k) alone. On account of (3.44) this is just one
of the terms which appear in (3.43).

The other terms in the numerators of (3.43) should not generate additional shifts:
They are either constant or – as we have discussed earlier – well behaved functions
that vanish for large k0. Hence, the integrals, cf. (3.44),

Jσ(k) =

∫
d4p

(2π)4

4M2 + 2kµ∆ Σµ −∆ Σµ ∆ Σµ

(p̃c
+

2 − m̃c
+

2)(p̃c
−

2 − m̃c
−

2)
,

Jπ(k) =

∫
d4p

(2π)4

∆ Σ2
s +2kµ∆ Σµ −∆ Σµ ∆ Σµ

(p̃c
+

2 − m̃c
+

2)(p̃c
−

2 − m̃c
−

2)
,

(3.51)

will satisfy corresponding dispersion relations without shifts (3.48) as I(k). The inte-
grals Jret

σ,π(k) are constructed in analogy to Iret(k) (3.49) by inserting (3.44) into the
numerators of Eq. (3.40) and removing the k2 terms.

Πret
d,l can be decomposed into

Πret
dσ,π(k) = 2iNfNc[k

2Iret(k) − Jret
σ,π(k)] . (3.52)

The dispersion relation for Πret
d,l is then given by the dispersion relations for k2Iret(k)

and Jret
σ,π(k) that have already been discussed. A shift proportional to the one found

in (3.50) will be the only correction to the dispersion integral over Im Πret
d,l . Using

Γl(k) = −Im Πret
l (k)/k0 we find

Re Πret
d,l(k) =

1

π

∞

P

∫
0

dp2
0

p0Γl(p0, �k )

k2
0 − p2

0

− 2NfNc

π

∞∫
0

dp2
0ReIret(p0, �k ) . (3.53)
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3 Calculation of self-energies and polarizations

Figure 3.4: The functions −2NfNck
2ImI(k) and −2NfNc(k

2 − 4M̄2)ImI(k), cf. (3.48)
and (3.52), in comparison to Re Πret

d,π and ReΠret
d,σ (3.53), respectively, as cuts at

two different three-momenta. The results have been obtained in a full O(1/Nc)
calculation in the chirally broken phase (ρ = 0.06ρ0, ρ0 = 0.17 fm−3), using
parameter set 0 of Table 5.1.

Eventually, the dispersion relation for the retarded RPA polarizations – including
all k0 independent shifts – is found by combining the results from Eqs. (3.39) and
(3.53):

Re Πret
l (k) = Πn +ReΠret

d,l(k) . (3.54)

These are the real parts which enter our numerical calculations.
To study the influence of the functions Jret

σ,π on ReΠret
l , we show the result of a full

O(1/Nc) calculation in Fig. 3.4. In the left panel we compare −2NfNck
2ImI(k) to

the real part of Πret
d,π(k) for two constant three-momenta. The difference between the

curves is given by Jret
π , cf. Eq. (3.52). It can be clearly seen that k2ImI dominates the

structure of Πret
d,π, in particular at the lower three-momentum. This is not surprising

since Jret
π would be zero in a mean-field calculation. As we have discussed before, the

functions −2NfNck
2ImI(k) and Re Πret

d,π(k) approach the same limits for k2
0 → ∞.

Note that the minima and the maxima of the functions correspond to the thresholds
where phase space opens and – due to the quark cutoff Λ – closes for the states of
the qq̄ continuum. See Section 5.3 for details.

In the right panel of Fig. 3.4 we compare the function −2NfNc(k
2 − 4M̄2)ImI(k)

to the real part of Πret
d,σ(k), cf. (3.47,3.51) and (3.52). The real and constant mass M̄
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3.7 Masses of the RPA mesons

is defined here as M̄ = m0 + Re Σret
os,s(

�k = 0), i.e., in terms of the on-shell self-energy
(2.51) of a quark at rest. The expression −2NfNc(k

2 − 4M̄2)ImI(k) resembles the
mean-field result for Re Πret

d,σ(k) in (B.4). As we can see, the differences between the
curves in Fig. 3.4 are – like in the pion case – small. The terms in Jret

σ that go beyond
the mean-field approximation do not become very large. For k2

0 → ∞, −2NfNc(k
2 −

4M̄2)ImI(k) and Re Πret
d,σ(k) approach the same limits. They are identical to the limits

of −2NfNck
2ImI(k) and Re Πret

d,π(k).

3.7 Masses of the RPA mesons

As discussed in Sections 2.2 and 2.5, we use the RPA mesons mainly as a tool to gener-
ate the next-to-leading order quark–quark interactions. Nonetheless, it is interesting
to explore the properties of the mesons in the O(1/Nc) approach. Quasiparticle ap-
proaches [DSTL95, NBC+96, OBW00] have shown that the RPA pions, i.e. the bound
qq̄ states, may loose their Goldstone boson character in 1/Nc extensions of the NJL
model, see the discussion in Sections 2.3.2 and 2.5 for details. In Appendix B, that
is briefly summarized below, we demonstrate how this effect arises on the mean-field
level.

The poles of the retarded RPA propagators are given by the zeros of 1+2GReΠret
l ,

cf. (2.46). In the Hartree+RPA approximation (see (B.6) and (B.11) in Appendix B
below), the term 1+2GΠn = (m∗−Σmf)/m∗ becomes zero in the chiral limit (m0 = 0),
cf. (B.7). The poles are then determined by Re Πret

d,π ∼ k2ImI(k) and Re Πret
d,σ ∼

(k2 − 4m∗2)ImI(k). Hence, the RPA pions are massless and the RPA sigma has a
mass of 2m∗. For finite m0, 1 + 2G Πn will become finite, too. Only a small shift will
be generated, however, so that the pion remains light. This can be seen in Fig. 2.15.

Let us turn now from the Hartree+RPA approximation to our full calculation. We
will discuss the terms Πret

d,l and 1 + 2G Πn, cf. (3.39) and (3.53), separately. The
properties of Πret

d,l should not change too much in the O(1/Nc) approach. The de-
composition Πret

dσ,π(k) = 2iNfNc[k
2Iret(k) − Jret

σ,π(k)] shows that the dominant part of
Πret

dπ vanishes for k2 = 0 – it can be seen in Eq. (3.50) that this still holds when
the real part is calculated from a dispersion relation. Due to the self-energies in the
numerators it is difficult to check the behavior of Jret

π (k) for k2 = 0 analytically. The
numerical result in Fig. 3.4 confirms our observation that Jret

π (k) vanishes for k → 0.

A closer inspection of the |�k | = 600 MeV cut shows, that the curves for k2ImI and
Πret

d,π(k) are not equal at k0 = 600 MeV. We can conclude that Jret
π (k2 = 0) does – in

general – not vanish. Nonetheless, the numerical result indicates that it remains very
small.

The most important term in the numerator of Jret
σ (k) is M2 = [m0 + 1

2
(Σs

+ + Σs
−)]2.

The largest contribution to the real part of Σs
± is the constant O(1) Hartree self-

energy Σmf. The contributions from the meson exchange diagram are suppressed
in 1/Nc. This is confirmed by our numerical calculation, cf. Fig. 5.13. We find
that Σmf ≈ 0.8 ReΣret

s on the mass shell. Splitting up M2 and moving the constant
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3 Calculation of self-energies and polarizations

term M̄2 = (m0 + Re Σret
os,s(

�k = 0))2 in front of the integral in Jret
σ yields a term

∼ [k2 − 4M̄2] Iret(k) in Πret
dσ (k). This term resembles the mean-field result. Its zero at

k2 = 4M̄2 should determine the RPA sigma mass roughly. The remaining terms in
the numerator of Jret

σ are small in comparison to 4M̄2 and should provide only small
corrections.

In our O(1/Nc) approach – as in the Hartree–Fock+RPA approximation4 of Fig. 2.9
(see Appendix B for details) – the term 1+2GΠn will not vanish for m0 = 0. Eq. (3.39)
yields

1 + 2G Πn =
m0 + Σs

const. −Σmf

m0 + Σs
const.

+
16GNfNc

m0 + Σs
const.

∫
d4p

(2π)4
Im

Σret
s (p) − Σs

const.

p̃2
ret − m̃2

ret

nF(p0) . (3.55)

The first term corresponds to the mean-field result (B.8). Since this term is easier to
handle, it is reasonable to chose the value of Σs

const. as large as possible. The role of the
second term is then minimized. When Σs

const. is chosen so that it contains all constant
contributions to the real part of Σret

s , it will not be equal to Σmf. Next-to-leading
order terms like ΣF will also contribute on a 20 − 25% level, cf. Fig. 5.13. Using the
numerical result 0.75 Σs

const. ≈ Σmf leads to a value of 0.15 − 0.2 for the first term
of (3.55). Thus, this shift is larger than in the Hartree–Fock+RPA approximation
(B.8), where it has a value of 1/(2NfNc + 1) ≈ 0.08 in the chiral limit.

The second term of (3.55) appears only in the full calculation, where the self-
energy becomes complex and four-momentum dependent. This term cannot be easily
estimated. The importance of the term clearly depends on the structure of Σret

s . A
closer analysis of the collisional self-energies can be found in Chapter 4. Note that
the term will not vanish at zero chemical potential. Decay processes like q → qqq̄ and
q̄ → q̄q̄q (cf. Fig. 4.3) can occur even in the vacuum (for |k0| � 3m∗). This will not lead
to large quark widths in the vicinity of the on-shell peaks. The dispersion integrals,
however, pick up those off-shell contributions so that they have some influence on the
real part of Σret

s in the on-shell region.
The exact size of 1 + 2G Πn can only be determined in a numerical calculation.

As we will see in Section 5.3, a value of ≈ 0.2 is found numerically in our approach
(cf. Fig. 5.9). The second term of (3.55) remains small for the suggested choice of
Σs

const.. A cancellation of the two terms in (3.55) does not occur. Therefore, the
RPA pion remains massive even in the chiral limit – this resembles qualitatively the
Hartree–Fock+RPA approximation discussed in Appendix B. Quantitatively, the
effect even exceeds the Hartree–Fock+RPA result.

The large shift raises the question which influence the RPA pion mass has on the
quark properties in our self-consistent calculation – recall the discussion in Section 2.5.

4The reason for the breakdown of the chiral properties of the present RPA pions – that are not
expected in a regular random phase approximation on the Hartree–Fock level [RS80, BR86,
DVN05] – is the incomplete 1/Nc expansion of the meson polarization in higher orders of 1/Nc

that we have discussed in Section 2.5.
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3.8 Real parts of the quark self-energy

We will address this problem in Section 4. There, it will be found that the off-shell
states of the pion spectral function – and not the bound qq̄ states – have the largest
influence on the quark self-energy. The qq̄ continuum states in the timelike region
are not generated by poles of the pion propagator but by large decay widths. They
are largely independent of the RPA pion mass and differ within reasonable limits
in the O(1/Nc) and the Hartree+RPA approaches, cf. Figs. 4.4 and 5.8. The large
RPA pion mass will, however, lead to a suppression of the contributions from the
spacelike region to the quark width. Our analysis in Section 4 indicates that the
differences to a calculation with a more realistic pion mass range below one order
of magnitude for those contributions. We can conclude that our approach will – on
average – underestimate the short-range effects in the chirally broken phase.

3.8 Real parts of the quark self-energy

Like the meson polarizations, the quark self-energy may contain k0 independent con-
tributions to the real part that cannot be calculated dispersively. For the quarks, the
search for such components is not as important as for the mesons. The quark mass is
determined predominantly by the O(1) mean-field self-energy Σmf that we calculate
separately. The constant terms that arise from the O(1/Nc) meson exchange diagram
in Fig. 3.3 as shifts to the dispersion integral should be significantly smaller than Σmf

– the numerical confirmation can be found in Fig. 5.13.

In this section we will use the relations between the different kinds of propaga-
tors (Sc, Sret, S≷ and ∆c, ∆ret, ∆≷) that are summarized in Eqs. (2.32) and (2.45)
without further reference. Using the Feynman rules of the real-time formalism (see
Appendix C), we find for the time-ordered self-energy of the quarks (cf. Fig. 3.3)

−i Σc(k) = −i Σmf +
∑

l

∫
d4p

(2π)4
Γl S

c(p)Γ̃l ∆
c
l (p − k) . (3.56)

The structure of the integrand is similar to the integrand of the RPA polarizations in
Eq. (3.26). An investigation of (3.56) in the same way as in Section 3.6 is, however,
not possible as we will show now.

In Section 3.6 the explicit structure of the quark propagator in momentum space
was utilized to decompose and simplify the integrand. The effective propagator ∆c

l (k)
of the RPA mesons is defined in terms of the polarizations and the NJL coupling
constant,

∆c
l (k) = − 2G

1 + 2G Πc
l (k)

. (3.57)

The structure of this propagator is completely different from the quark propagator.
Thus most of the methods that were used in Section 3.6 are not applicable here. It
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3 Calculation of self-energies and polarizations

is not feasible to replace the RPA propagator ∆c
l by a standard meson propagator

Dc
l (k) =

1

k2 − m2 − Πc
l (k)

in Eq. (3.56) since the properties of ∆c
l and Dc

l differ – especially in the high-energy
properties. However, in the following we will use one of the differences to identify a
constant contribution to the quark self-energy.

3.8.1 Decomposition of the self-energy

In the limit of k2
0 → ∞ a standard meson propagator Dc would obviously vanish.

In our effective propagators, the polarization should be – up to constant terms –
suppressed by the cutoff. Therefore, the effective propagator will approach a finite
value. This can be seen in Eq. (3.57). If we assumed that the meson polarizations
would become zero at large k2

0, ∆c would approach a value of −2G. However, the
results of Section 3.6 suggest that the real parts of the polarizations do not necessarily
vanish since a constant contribution Πn (3.39) exists. It is also possible that Πc

d,l

remains finite. The k2
0 → ∞ limit of this term can even be |�k | dependent.

We split up the RPA propagator into an energy independent part ∆∞(|�k |) that
corresponds to the limit at high k2

0 and an effective propagator ∆ c
l that will vanish

for k2
0 → ∞,

∆c
l (k) = ∆∞(|�k |) + ∆ c

l (k) . (3.58)

The same decomposition can be done for the retarded and advanced propagators.
Since ∆∞ is real, the imaginary parts of the propagators are not affected by the
decomposition. Consequently, we find for the spectral functions ξl(k) = −2Im ∆ ret

l (k)

and – using Eqs. (2.43,2.44) – for the non-ordered propagators ∆≷
l (k) = ∆ ≷

l (k).

Inserting the decomposed RPA propagator into the time-ordered quark self-energy
(3.56) yields

Σc(k) − Σmf =
∑

l

∫
d4p

(2π)4
iΓl S

c(p)Γl ∆
∞(|�p − �k |)

+
∑

l

∫
d4p

(2π)4
iΓl S

c(p)Γ̃l ∆
c
l (p − k) . (3.59)

The first integral is a k0 independent contribution to the real part of the self-energy.
Thus, it is not covered by the dispersion integral and must be calculated separately.
In the simplest case, ∆∞ = −2G, this term becomes just the constant Fock self-
energy, cf. Eq. (3.3). This is not surprising since the – purely real – Fock diagram is
part of the effective meson exchange shown in Fig. 2.4. Because of its structure, we
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3.8 Real parts of the quark self-energy

will refer to the first term of (3.59) as an effective Fock self-energy in the following,

ΣF
eff(|�k |) =

∑
l

∫
d4p

(2π)4
iΓl S

c(p)Γl ∆
∞(|�p − �k |) . (3.60)

Some properties of the real Fock self-energy ΣF have been discussed in Section 3.1.
The Lorentz structure of ΣF

eff can be determined with the help of Eq. (3.4) from that
section,

ΣF
eff,s(|�k |) = 2

∫
d4p

(2π)4
∆∞(|�p − �k |)As(p)nF(p0) ,

ΣF
eff,0(|�k |) = 2

∫
d4p

(2π)4
∆∞(|�p − �k |)A0(p)[1 − 2nF(p0)] ,

ΣF
eff,v(|�k |) = −4

∫
d4p

(2π)4
∆∞(|�p − �k |) cosϑAv(p)nF(p0) ,

(3.61)

where we have used the normalization of the spectral function (D.6). In contrast to
the component ΣF

v of the real Fock self-energy, the Lorentz component ΣF
eff,v does not

necessarily vanish. Only when ∆∞ is a constant, the symmetry of the integrand can
be used to get rid of the integral. The arguments concerning the µ dependence of ΣF

at the end of Section 3.1, however, hold also for the Lorentz components of ΣF
eff.

3.8.2 Dispersion relation

As discussed before, a search for constant shifts to the dispersion integral in the second
term on the rhs. of Eq. (3.59) is complicated. We just give a plausibility argument
here, why such shifts should not occur. In general, the existence of constant shifts is
related to the level of divergence of the integrand in the dispersion integral. The RPA
polarizations (3.56) include two quark propagators ∼ p±/p2

± (for large k2). This gives
rise to a term ∼ k2 in the numerator of the integrand. We have shown in Eq. (3.50)
how the inclusion of the factor k2 in the dispersion integral for ReΠret

l generates a
constant term. The other terms in the numerator of (3.56) are of lower order in k and
do not generate such shifts. In contrast to the polarizations, the self-energy integral
in (3.59) contains only one quark propagator and one effective meson propagator ∆ c

l .
Assuming that ∆ c

l (p±k) ∼ 1/(p±k)2 for large k2 – like for the standard propagator
Dc

l – the last integrand of (3.59) does not contain a factor k2 in the numerator. The
denominator, on the other hand, resembles that of the polarizations. Consequently,
the imaginary part of the quark self-energy (3.59) is of lower order in k than the
imaginary parts of the RPA polarizations. We can expect that the dispersion integral
for Re Σret does not include a shift similar to the one in (3.50)5.

5If any shifts exist that we overlook by applying this argument, they should be small compared
to the Hartree self-energy. They would arise from the collisional self-energies that are of higher
order in 1/Nc.
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3 Calculation of self-energies and polarizations

The complete dispersion relation for the real part of the retarded quark self-energy
is then given by

Re Σret(k0, �k ) = Σmf + ΣF
eff(

�k ) +
1

2π

+∞

P

∫
−∞

dp0
Γ(p0, �k )

k0 − p0

. (3.62)

The Lorentz components ReΣret
s , Re Σret

0 , and Re Σret
v can be found in the usual way

(2.53). Note that all components depend on |�k | only, not on the full three-momentum
�k.

A remarkable interplay between the quark and the meson properties can be ob-
served here. For k2

0 → ∞, where the dispersion integral vanishes, Re Σret approaches

the |�k | dependent, finite value of Σmf + ΣF
eff(

�k ). The momentum dependence is intro-
duced by the high-energy limit of the effective meson propagator, cf. (3.58,3.60). The
momentum dependent limit of the meson propagator, on the other hand, is gener-
ated by the effective Fock self-energy that enters Eqs. (3.44,3.46). This self-consistent
effect is not present in the Hartree(–Fock)+RPA approximations since the meson po-
larizations are not fed back into the quark self-energy. There, the k2

0 → ∞ limits of

ReΣret and Re Πret are both constant in �k, cf. Eqs. (3.2,3.4) and (B.17).

In Fig. 3.5 we show the results of a full O(1/Nc) calculation in the chirally broken
phase. The solid lines correspond to Re Σret(k)−Σmf, cf. (3.62). The full structure of
those curves will become clearer when the quark width is discussed, see Section 5.2
(Fig. 5.3). We will not discuss the details here. As we can see, the real parts approach
the effective Fock self-energy at large |k0|. In other words, the dispersive contributions
to the real part of Σret vanish – as desired – for k2

0 → ∞. Note that the scalar and the
γ0-component are of similar size in the chirally broken phase while the �γ-component
is much smaller. The scalar component shrinks considerably in the chirally restored
phase – it would be zero if we had chosen a parameter set in the chiral limit (m0 = 0)
– while the other components keep their magnitude.

The results for the Lorentz components of ΣF
eff are in agreement with the consider-

ations in this section and in Section 3.1. The scalar component drops by a factor of
3 due to the restoration of chiral symmetry. The γ0-component is very small at the
lower density and increases at higher ρ. It grows by a factor of 5 in Fig. 3.5. In con-
trast to the regular Fock self-energy of Section 3.1, ΣF

eff,v has a small, finite value since

∆∞ is not a constant. The value of ΣF
eff,v is, however, almost density independent.

3.8.3 Quark width

At the end of this section, we check that the imaginary part of Σret that can be
calculated from Eq. (3.59) corresponds to the quark width that we have found in
Eq. (3.16): Replacing the time-ordered propagators in Eq. (3.59) by Sc(k) = Sret(k)+
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3.8 Real parts of the quark self-energy

Figure 3.5: The Lorentz components of the real part of the retarded quark self-energy
Σret at a fixed three-momentum of 100 MeV (solid lines). The dashed lines
indicate the Lorentz components of the effective Fock self-energy ΣF

eff (3.61).
The O(1/Nc) results have been obtained for a quark density of ρ0 = 0.17 fm−3

(chirally broken phase, µ = 325 MeV) in the left and of 4.5ρ0 (chirally restored
phase, µ = 332 MeV) in the right panel. Parameter set I of Table 5.1 has been
used in the calculations.

iA(k)nF(k0) and ∆ c(k) = ∆ ret(k) − iξ(k)nB(k0) yields

ReΣc(k) − ΣF
eff(|�k |) =

∑
l

∫
d4p

(2π)4

[
ΓlReSret(p)Γ̃lξ(p − k)nB(p0 − k0)

−ΓlA(p)Γ̃lRe ∆ ret
l (p − k)nF(p0)

]
(3.63)

and

Im Σc(k) = −1

2

∑
l

∫
d4p

(2π)4
[nF(p0) + nB(p0 − k0)][1 − 2nF(k0)]

× ΓlA(p)Γ̃lξl(p − k) , (3.64)

where we have used

2nF(p)nB(p − k) + nF(p) − nB(p − k) = −[nF(p) + nB(p − k)][1 − 2nF(k)] .
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3 Calculation of self-energies and polarizations

A proof for the this relation is given in Appendix G. We can directly read off the
imaginary part of Σret from Eq. (3.64) with the help of (3.25), Im Σc(k) = [1 −
2nF(k0)]Im Σret(k). After working out the Lorentz structure as shown in Section 3.3,
we can see that this expression is in fact identical to the width (3.16).

Taking the real and the imaginary part of Σret that we obtain from Eqs. (3.63,3.64)
and combining them, it is also possible to find a compact form for the complex self-
energy Σret,

Σret(k) − ΣF
eff(|�k |) =

∑
l

∫
d4p

(2π)4
iΓl

[
S<(p) ∆ av

l (p − k) + Sret(p) ∆<(p − k)
]
Γ̃l .

(3.65)
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4 Quark and meson scattering

The quark width Γ = i Σ> −i Σ< is generated by the next-to-leading order interactions
of the quarks in the medium. When the width has been introduced in Section 2.8,
we have discussed that the collisional self-energies i Σ> and −i Σ< are identical to
the total collision rates for scattering out of and into of a quark state with four-
momentum k = (k0, �k ) [KB62]. Due to the variety of contributing scattering and
decay processes, the collision rates – and thus the width – have a complicated structure
and a non-trivial energy dependence [Wel83]. For each of the contributing scattering
and decay processes, phase space opens and closes at a certain energy k0. Finding
those thresholds will lead to a qualitative understanding of the structure of the quark
width. Therefore, we will investigate the collision rates in this chapter on the level of
the Hartree+RPA approximation at zero temperature – the quarks are quasiparticles
and the Fermi and Bose distributions are simple step functions in this case.

We will also discuss the density dependence of the individual processes and check
which of the processes contribute to the width of the on-shell states. For completeness,
we will investigate the – much simpler – structure of the RPA meson widths in the
last section of this chapter. The results of this chapter will be helpful later when the
results of the full calculation are discussed. In addition, they allow us to estimate the
influence of a too large RPA pion mass on the quark properties.

4.1 Mean-field spectral functions

4.1.1 Quark spectral function

We begin our analysis with a short discussion of the spectral functions. In the Hartree
approximation, the quark spectral function A consists of two quasiparticle peaks, one
at positive and one at negative energies k0 (see the schematic plot in Fig. 2.17),

A(k) = 2π(/k + m∗)
1

2Ek

[δ(k0 − Ek) − δ(k0 + Ek)] , (4.1)

where1 Ek = (�k2 + m∗2)1/2 and m∗ = m0 + ΣH. Note that the Lorentz component
A0(k) is symmetric in k0 while As(k) and Av(k) are antisymmetric. The Lorentz
structure has no influence on the thresholds of the scattering processes. On the

1In the Hartree–Fock approximation, the definition of m∗ changes to m∗ = m0 + ΣH + ΣF
s and k0

has to be replaced by k̃0 = k0 − ΣF
0 on the rhs. of (4.1). �k remains unchanged since ΣF

v = 0,
cf. (3.6).
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4 Quark and meson scattering

mean-field level, the contributions to the collision rates differ only in sign. Hence, we
will mostly ignore the Lorentz structure and restrict ourselves to the γ0-components
of A and Σ≷, Γ here.

In the following, we will interpret the quark states k = (k0, �k ) at negative k0 as

antiquark states k̄ = (k̄0, �k ) = (−k0, �k ) that have a positive energy k̄0 = |k0|. The two
peaks of the spectral function can then be identified with a quark peak at k0 = Ek and
an antiquark peak at k̄0 = Ek. An antiquark corresponds to a hole in the populated
quark states. Since the chemical potential is always positive in our calculations, all
quark states at negative energies are populated – there are no holes in the Dirac sea.
Consequently, there are no antiquarks in the medium at T = 0. Note that we discuss
the distinction between quarks and antiquarks in more detail in Appendix E – in the
context of the correct definition of the quark density. In the presence of short-range
correlations, the border between the quark and the antiquark states will be slightly
shifted (see Fig. E.1).

4.1.2 RPA meson spectral functions

Each of the meson spectral functions ξσ,π (2.48) consists of two components – see
Fig. 2.5 – that we will treat separately. The actual RPA mesons are generated by
bound qq̄ states. They correspond to poles of the RPA propagators and show up as
peaks (at positive and negative energies) in the σ and π spectral functions. Since the
mesons are their own antiparticles, we will not refer to the peaks at negative energies
as antiparticle peaks. However, we will refer to a meson with negative energy k0

as a meson with positive energy k̄0 = |k0| in the following. The RPA propagators
have been constructed from qq̄ scattering processes (2.7). Thus, the spectral functions
include also broad ranges of – unbound – qq̄ continuum states, cf. Sections 2.2 and 4.5.
The so-called qq̄ continuum is located at |k0| > µ+m∗, i.e., above the threshold for the
decay of a meson into a quark–antiquark pair. Landau damping2 [KG06] generates

further contributions at spacelike four-momenta (k2
0 < �k2). In those regions, the

spectral functions are characterized by large meson widths Γσ,π and not by poles of
the propagators.

The RPA pion peaks are located below the qq̄ decay threshold – even in the Hartree–
Fock+RPA approximation where the RPA pions are not the Goldstone modes. Hence,
they will generate pronounced contributions to the collision rates that can be easily
distinguished from the qq̄ continuum contributions. The RPA sigma peaks are – due
to the large mass of the bound state – located above the qq̄ decay threshold. Thus,
the peaks are rather broad. For our qualitative investigation of the collision rates,
we will not disentangle the peak and the continuum component of the σ spectral
function. It is sufficient to investigate the continuum contributions in this case.

For the quasiparticle component of the RPA pion spectral function we can use an

2At spacelike four-momenta, scattering processes of the structure πq → q contribute to the RPA
polarizations, see Section 4.5 for details.
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4.2 Thresholds

expression similar to (4.1),

ξπ(k) ∼ δ(k0 − Eπ
k ) − δ(k0 + Eπ

k ) , (4.2)

where Eπ
k = (�k2 + m2

π)1/2. mπ is the effective RPA pion mass that is determined by
the poles of the RPA propagator. Since we are presently only interested in energy
thresholds and not in the absolute magnitude of the contributions, it is not necessary
to specify ξπ in more detail. We also do not specify the off-shell components of the
RPA spectral functions here. To investigate the off-shell contributions to the collision
rates, we will rewrite the self-energies Σ≷ in Section 4.2.2 so that the incoming and
outgoing mesons are replaced by qq̄ pairs.

4.2 Thresholds

We turn now to the collisional self-energies. After slightly rearranging the rhs. of
Eq. (3.11) we find

−i Σ≷(k) =
∑

l

∫
d4p

(2π)4

d4r

(2π)4
(2π)4δ4(k − p + r)Γl S

≷(p)Γ̃l ∆
≶
l (r) . (4.3)

In this form, the self-energies can be immediately identified with total collision rates:
The δ-function in the integrand ensures energy and momentum conservation in the
processes kr � p. Recall that the non-ordered propagators −i S<(p) = A(p)nF(p0)
and i S>(p) = A(p)[1 − nF(p0)] are just the densities of the populated and the free
quark states (2.25). The meson propagators i ∆>(r) and i ∆<(r) can be interpreted
accordingly, cf. (2.43,2.44). Hence, the loss rate i Σ>(k) corresponds to a quark
with four-momentum k that is added to the system and scatters off a meson with
four-momentum r into a free quark state p. The gain rate −i Σ<(k), on the other
hand, corresponds to decays of a quark p from the medium into a quark with four-
momentum k and a meson with four-momentum r. Total collision rates are found by
integrating over the four-momenta p and r of the scattering partners and the available
final states.

It is important to note that incoming quarks with negative energy correspond to
outgoing antiquarks – and vice versa – in the scattering processes [Wel83]. This can
be seen in the argument of the energy conserving δ-function δ(k0 − p0 + r0) that
yields the condition k0 + r0 = p0. When all energies are positive, this corresponds
to the processes kr � p. Since the energy of an antiquark is not given by k0 but by
k̄0 = −k0, the condition from the δ-function should be reinterpreted as r0 = k̄0 + p0

when k0 is negative. This corresponds to the processes r � k̄p, where the incoming k
has been turned into an outgoing k̄. Using the same argument as for the quarks, an
incoming meson with negative energy r0 is reinterpreted as an outgoing meson with
positive energy r̄0 = −r0.
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4 Quark and meson scattering

4.2.1 Processes with bound qq̄ states

To investigate the contributions from the RPA pion peaks to the collision rates, we
replace the quark and meson propagators in (4.3) by the spectral functions (4.1,4.2)
and the appropriate distribution functions, cf. (3.14,3.15). This generates four terms
with different combinations of the quasiparticle peaks for each of the two self-energies
Σ≷. At zero temperature, some of those terms are ruled out by the combination of
δ- and step functions in the propagators. Since nB(q0) = −Θ(−q0), only the negative
energy peak of ∆< can contribute to Σ> and only the positive energy peak of ∆> can
contribute3 to Σ<. Correspondingly, the antiquark peak in S> cannot contribute to
Σ> since the factor [1 − nF(p0)] = Θ(p0 − µ) allows only positive energies p0 > µ. In
total we find

i Σ>
0 (k) ∼

∫
Λ

d3p δ(k0 − Ep − Eπ
p−k) [1 − nF(Ep)] nB(Ep − k0) (4.4)

and

−i Σ<
0 (k) ∼

∫
Λ

d3p δ(k0 − Ep + Eπ
p−k) nF(Ep) [1 + nB(Ep − k0)]

+

∫
Λ

d3p δ(k0 + Ep + Eπ
p−k) [1 + nB(−Ep − k0)] . (4.5)

There is one process that contributes to i Σ> and – taking into account that k0 can
be positive or negative in the first term of (4.5) – three processes that contribute to
−i Σ<. In the last term of (4.5), the Bose distribution demands k0 < −Ep. Hence,
the integral will only be finite for negative k0.

All four processes are shown diagrammatically in Fig. 4.1. The first line shows the
only process that contributes to the loss rate i Σ> (4.4). The processes that contribute
to the gain rate −i Σ< (4.5) can be found in the second line. Process (b) contributes
to the gain rate at positive k0. The processes (c) and (d) are the contributions at
negative k0, −i Σ< is then an antiquark loss rate. Note that (b) and (c) differ only
by the sign of k0, both are represented by the first line of (4.5).

With the help of Eqs. (4.4) and (4.5), we can determine the energy thresholds of the
processes in Fig. 4.1. Besides energy and momentum conservation, the integrands of
(4.4) and (4.5) include the following constraints: Incoming quarks from the medium
must have a positive energy below the chemical potential. Outgoing quarks, on the
other hand, must have an energy higher than µ – due to Pauli blocking. Outgoing
antiquarks and mesons must have a positive energy, but are not Pauli blocked. We
also have to consider that the (anti-)quark three-momentum �p is regularized by the
cutoff Λ of the model. Since the quasiparticle spectral function A provides a sharp

3Since only the negative energy peak of ∆< and only the positive energy peak of ∆> contribute,
both propagators can be identified with outgoing RPA mesons in the collision rates. This corre-
sponds to the fact that there are no mesons in the medium for T = 0.
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Figure 4.1: Scattering processes corresponding to the collisional self-energies Σ≷(k)
in the form of Eq. (4.3). The thick lines carry the external four-momentum k.

k, p denote quarks with four-momenta (k0, �k ), etc. (with k0, p0 > 0), and k̄, p̄

antiquarks with four-momentum (−k0, �k ), etc. (with k0, p0 < 0). r̄ denotes a
meson with four-momentum (−r0, �r ), where r0 < 0. See the text for details.

relation between the energy and the momentum of a quark or antiquark, the energies
p0 and p̄0 are restricted to values below EΛ =

√
Λ2 + m∗2.

In Table 4.1 we summarize the energy thresholds that have been found for the
processes of Fig. 4.1. We will now review how these thresholds have been determined.
Note that the thresholds in Table 4.1 are not always the strictest limits that can be
found. However, for our purpose – to understand the structure of the quark width
and to identify the contributions from individual scattering and decay processes –
they are perfectly suitable.

Processes (a) and (d)

The lowest limit for k0 in the quark decay (a) is obviously µ + mπ. An RPA pion
must be created and the outgoing quark needs – due to Pauli blocking – an energy p0

above the Fermi energy. Our implementation of the NJL cutoff induces an upper limit
for the process. Phase space closes at kmax

0 = EΛ + Eπ
Λ−k, where we have introduced

Eπ
Λ−k = [(Λ + |�k |)2 + m2

π]1/2.

The lower limit µ+mπ is rather loose since it does not take the three-momenta of the
outgoing states into account. Using the condition for four-momentum conservation
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4 Quark and meson scattering

Table 4.1: Energy thresholds of the processes shown in Fig. 4.1, see the text for details.
The thresholds in the two lower rows are given for k̄0 = −k0. Note that mπ is
the pion mass that is determined by the poles of the RPA propagator.

Process Thresholds

(a)

µ + mπ√
�k2 + (m∗ + mπ)2

⎫⎬
⎭ < k0 < EΛ + Eπ

Λ−k

(b),(c)

(m∗ > mπ)
µ −

√
(|�k | + kF )2 + m2

π < k0 <

⎧⎨
⎩

µ − mπ√
�k2 + (m∗ − mπ)2

(b),(c)

(m∗ < mπ)

√
(|�k | − kF )2 + m2

π − µ < k̄0 <

⎧⎨
⎩

Eπ
Λ+kF

− µ√
�k2 + (m∗ − mπ)2

(d)

√
�k2 + (m∗ + mπ)2 < k0 < EΛ + Eπ

Λ−k

from the δ-function in Eq. (4.4),

k0 = Ep + Eπ
p−k =

√
�p 2 + m∗2 +

√
(�p − �k )2 + m2

π , (4.6)

we can find a more rigorous limit. Note that k0 will drop for increasing cosϑp,k when
|�p | is kept fixed. Our search for minima of k0 can thus be restricted to the case
cos ϑp,k = 1. We find the extrema of k0|cos ϑ=1 by solving

dk0

d|�p |

∣∣∣∣
cos ϑ=1

= 0 .

A short calculation yields a single solution that corresponds to a minimum of k0,

|�p |min =
m∗

m∗ + mπ

|�k | ⇒ kmin
0 =

√
�k2 + (m∗ + mπ)2 . (4.7)

Eq. (4.7) constitutes a purely kinematical threshold that must be satisfied for all �k.

It does not take Pauli blocking into account. For small �k, the value of |�p |min will
drop below the Fermi momentum kF = [µ2 − m∗2]1/2. This is, of course, forbidden
by Pauli blocking for the outgoing quark in process (a). We note that the function
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4.2 Thresholds

k0|cos ϑ=1 has only one minimum (4.7) and increases monotonously for |�p | > |�p |min.
Thus, for |�p |min < kF the effective minimum of k0 is located at the lowest allowed
three-momentum, |�p | = kF ,

kmin
0

∣∣
|�p |min<kF

= µ +

√
(|�k | − kF )2 + m2

π > µ + mπ . (4.8)

This expression can be easily interpreted. The outgoing quark has the lowest possible
four-momentum p = (µ, kF ) while the outgoing RPA pion has a three-momentum of

|�r | = |�k | − kF and the corresponding on-shell energy.

The two conditions (4.7) and (4.8) complement each other. The kinematical con-

straint (4.7) must hold for all �k. The Pauli blocking related condition (4.8) must

hold only for certain values of �k in its |�k | dependent form. In the simpler form

k0 > m∗ + mπ, however, it must hold for all �k, too. Therefore, we replace the full
expression of (4.8) by its |�k | independent form in Table 4.1. Note that (4.8) ensures
that process (a) can occur only at energies k0 above the chemical potential µ. The
limit (4.7) includes the condition k0 > Ek + mπ. Thus, process (a) is not allowed
when the incoming quark k is on-shell. The larger mπ becomes, the further away k0

must be from the on-shell region.

The thresholds for the antiquark decay (d) are very similar to those of the quark
decay (a). The upper limit is given by k̄0 < EΛ +Eπ

Λ−k. The lower limit is equivalent

to (4.7), i.e., k̄0 > [�k2 + (m∗ + mπ)2]1/2. Since the outgoing antiquark is not Pauli
blocked, there are no further restrictions. Like in process (a), the incoming antiquark
k̄ cannot be on-shell. Note that the lower limit reduces to the total mass of the
outgoing states, m∗ + mπ, for �k = 0.

Processes (b) and (c)
The two processes (b) and (c) correspond both to the integral in the first line of
Eq. (4.5). They differ only by the sign of k0 (outgoing quark or incoming anti-
quark). Hence, we determine common thresholds for both processes from (4.5). When
the lower limit for k0 is negative and the upper limit is positive, one process turns
smoothly into the other one. The collision rate does not drop to zero at the transition
from (b) to (c) at k0 = 0. Note that it is also possible that both thresholds have the
same sign. For example, energy conservation demands that the condition k0 < µ−mπ

is always satisfied. This means that the integral in (4.5) is only finite for negative
energies k0 when mπ becomes larger than µ. Process (b) is then forbidden.

For a thorough investigation of the thresholds we turn again to the condition for
four-momentum conservation. For the two processes (b) and (c) it is given by the
argument of the δ-function in the first line of Eq. (4.5),

k0 = Ep + Eπ
p−k =

√
�p 2 + m∗2 −

√
(�p − �k )2 + m2

π . (4.9)

For fixed |�p |, k0 increases with increasing cosϑp,k. Hence, the upper limit of k0
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4 Quark and meson scattering

corresponds to the maximum of k0|cos ϑ=1. A short calculation yields

dk0

d|�p |

∣∣∣∣
cos ϑ=1

= 0 ⇒ |�p |ext =
m∗

m∗ − mπ
|�k | . (4.10)

This result needs some comment: First, |�p |ext is only positive for m∗ > mπ. Since we
demand |�p | ≥ 0, |�p |ext is (physically) not a reasonable solution for m∗ < mπ. Second,
|�p |ext corresponds not necessarily to a maximum of k0 – note the relative minus sign
between the two terms on the rhs. of Eq. (4.9). A closer inspection shows that k0 has
in fact a maximum at |�p |ext for m∗ > mπ but a minimum for m∗ < mπ.

Inserting |�p |ext into (4.9) yields the maximum of k0 for m∗ > mπ,

kmax
0 |m∗>mπ

=

√
�k2 + (m∗ − mπ)2 . (4.11)

As we can see in (4.10), the value of |�p |ext may exceed the Fermi momentum kF

for large �k . However, in a medium of quasiparticles there are only populated states
up to the Fermi momentum. Since k0|cos ϑ=1 has only one maximum, it will drop
monotonously for decreasing |�p | < |�p |ext. The effective maximum of k0 is then located
at the largest allowed three-momentum, |�p | = kF ,

kmax
0 ||�p |ext>kF

m∗>mπ
= µ −

√
(|�k | − kF )2 + m2

π < µ − mπ . (4.12)

Like for process (a), we have found two complementary conditions, (4.11) and
(4.12), for the case m∗ > mπ. Both are listed in Table 4.1, (4.12) in the more general

form k0 < µ − mπ that is |�k | independent. Note that the value of kmax
0 from (4.11)

is always positive. The kinematical constraint includes the condition k0 < Ek and
forbids that the incoming quark of process (b) is on-shell. The threshold from (4.12)

is always smaller than the chemical potential µ. It may become negative for large �k.
Process (b) is then forbidden. It follows from the rhs. of (4.12) that the condition√

k2
F + m∗ = µ <

√
(|�k | − kF )2 + m2

π (4.13)

must be satisfied to obtain a negative kmax
0 . This means that |�k | must be larger than

2kF .
Let us now turn to the maximum of k0 for m∗ < mπ. The three-momentum

|�p |ext from (4.10) corresponds to a minimum of k0 at negative |�p | in this case. For
|�p | > |�p |ext, k0 will rise monotonously since |�p |ext is the only extremum. Thus, we
find the effective maximum of k0|m∗<mπ at the largest allowed value for |�p |. This is
again |�p | = kF . We obtain

kmax
0 |m∗<mπ

= µ −
√

(|�k | − kF )2 + m2
π .

kmax
0 must be negative for all |�k | when mπ > µ, cf. (4.13). Process (b) is then

completely suppressed. For m∗ < mπ < µ, kmax
0 will be positive only in a small range
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of three-momenta |�k | in the vicinity of the Fermi momentum. Therefore, we list kmax
0

for m∗ < mπ in Table 4.1 not as a maximum of the quark energy k0 but as a minimum
of the antiquark energy k̄0 = −k0.

After we have determined the upper thresholds (in k0) for the processes (b) and (c),
we have to find the lower thresholds. This can be done in an analogous way. Since k0

of (4.9) drops for fixed |�p | when cos ϑp,k decreases, the lower limit of k0 corresponds
to the minimum of k0|cos ϑ=−1. We find

dk0

d|�p |

∣∣∣∣
cos ϑ=−1

= 0 ⇒ |�p |ext = − m∗

m∗ − mπ

|�k | . (4.14)

Recall our comments below Eq. (4.10). |�p |ext is now only positive for m∗ < mπ. It
corresponds to a minimum of k0 in this case but to a maximum of k0 for m∗ > mπ.
When |�p |ext is inserted into (4.9), the minimum of k0 for m∗ < mπ is obtained,

kmin
0

∣∣
m∗<mπ

= −
√

�k2 + (m∗ − mπ)2 . (4.15)

The value of |�p |ext in (4.14) may become larger than kF . Thus, we have to consider
again that the maximum momentum of an incoming quark from the medium is the
Fermi momentum. |�p |ext denotes the position of the only minimum of k0|cos ϑ=−1,
hence k0 must rise for decreasing |�p | < |�p |ext. We find the effective minimum of k0

at |�p | = kF , the largest allowed value of |�p |,

kmin
0

∣∣|�p |ext>kF

m∗<mπ
= µ −

√
(|�k | + kF )2 + m2

π > µ − Eπ
Λ+kF

, (4.16)

with Eπ
Λ+kF

= [(Λ + kF )2 + m2
π]1/2. The rhs. of (4.16) is – like the rhs. of (4.15)

– negative for all |�k | as long as m∗ < mπ. In Table 4.1, the two complementary
conditions of (4.15) and (4.16) are listed as upper limits of the antiquark energy k̄0,

using the |�k | independent form k̄0 < Eπ
Λ+kF

− µ for (4.16).

Finally, we have to determine the lower limit of k0 for m∗ > mπ. The negative
|�p |ext corresponds to a maximum of k0 in this case. Since this is the only maximum
of k0|cos ϑ=−1, k0 will drop monotonously for increasing |�p | > |�p |ext. We find the
effective minimum of k0 – once again – at the largest allowed value for |�p |, i.e., the
Fermi momentum,

kmin
0

∣∣
m∗>mπ

= µ −
√

(|�k | + kF )2 + m2
π .

The sign of this limit is not fixed. When mπ is almost as large as m∗, kmin
0 |m∗>mπ

will be positive only for small �k and negative otherwise – cf. (4.13) and replace kF

by −kF . However, if mπ is much smaller than m∗, the limit kmin
0 |m∗>mπ will be only

negative for large |�k | – for massless pions, the condition is |�k | > µ − kF .
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Figure 4.2: Self-energy diagrams corresponding to −i Σ> (left) and −i Σ< (right) in
the rewritten form of Eq. (4.17).

4.2.2 Quark–quark scattering and decay processes

The continuum of off-shell states in the RPA spectral functions can, of course, not
be represented by quasiparticles. To investigate the contributions from the time- and
spacelike off-shell states to the collision rates Σ≷ in a similar way as the contributions
from the bound qq̄ states, we will rewrite the integrals. Thereby we replace the
outgoing mesons by – quasiparticle – quark–antiquark pairs. Using the relation ∆≷

l =

∆ret
l Π≷

l ∆av
l [ZW92, GL98, CSHY85] in Eq. (4.3) we find

−i Σ≷(k) = −i
∑

l

∫
d4p

(2π)4

d4q

(2π)4

d4r

(2π)4
(2π)4δ4(k + p − q − r) (4.17)

× Γl S
≷(r)Γ̃l ∆

ret
l (r − k) Tr

[
Γ̃l S

≶(p)Γl S
≷(q)

]
∆av

l (r − k) .

Diagrammatically, the self-energies have then the form that is shown in Fig. 4.2.
Cutting those diagrams yields scattering and decay processes of the structure qq → qq,
q → qqq̄, etc. The energy thresholds of these processes are generated by the incoming
and outgoing (anti-)quarks that are explicitly given by the propagators S≷. Hence,
we can ignore the off-shell structure of the meson propagators in (4.17). It is also
not necessary to distinguish between σ and π contributions at this point – they differ
only in magnitude but not in the k0 thresholds.

Note that (4.17) and the diagrams in Fig. 4.2 resemble the approach of [FLM03b],
where we have calculated the collisional self-energies from the Born diagrams that
are shown in Fig. 2.2. Here, however, the bare NJL coupling G2 is replaced by
the propagators of the dynamically generated RPA mesons, ∆ret ∆av = |∆ret |2. To
recover the direct Born diagram of [FLM03b], we can use the expansion of the meson
propagator that is shown in (2.7).

Replacing the quark propagators in (4.17) by the mean-field spectral functions (4.1)
and Fermi distributions, we find

i Σ>
0 (k) ∼

∫
Λ

d3pd3q δ(k0 + Ep − Eq − Ek+p−q) nF(Ep) [1 − nF(Eq)] [1 − nF(Ek+p−q)]

+

∫
Λ

d3pd3q δ(k0 − Ep − Eq − Ek+p−q) [1 − nF(Eq)] [1 − nF(Ek+p−q)]

(4.18)
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Figure 4.3: Scattering processes corresponding to the collisional self-energies Σ≷(k)
in the form of Eq. (4.17). The thick lines carry the external four-momentum k.

k, p, q, r denote quarks with four-momenta (k0, �k ), etc. (with k0, p0, q0, r0 > 0),

and k̄, p̄, q̄, r̄ antiquarks with four-momentum (−k0, �k ), etc. (with k0, p0, q0, r0 <
0). See the text for details.

and

−i Σ<
0 (k) ∼

∫
Λ

d3pd3q δ(k0 + Ep − Eq − Ek+p−q) [1 − nF(Ep)] nF(Eq)] nF(Ek+p−q)

+

∫
Λ

d3pd3q δ(k0 + Ep − Eq + Ek+p−q) [1 − nF(Ep)] nF(Eq)]

+

∫
Λ

d3pd3q δ(k0 + Ep + Eq − Ek+p−q) [1 − nF(Ep)] nF(Ek+p−q)

+

∫
Λ

d3pd3q δ(k0 + Ep + Eq + Ek+p−q) [1 − nF(Ep)] . (4.19)

The corresponding processes are shown in Fig. 4.3. Again, many of the formally pos-
sible processes are ruled out by the distribution functions (no incoming antiquarks).
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4 Quark and meson scattering

Table 4.2: Energy thresholds of the processes shown in Fig. 4.3, see the text for
details. The thresholds of the antiquark processes (e), (f), and (g) are given for
k̄0 = −k0.

Process Thresholds

(a) µ < k0 < 2EΛ − m∗

(b)

2µ + m∗

√
�k2 + (3m∗)2

⎫⎬
⎭ < k0 < 3EΛ

(c),(d) 2µ −
√

(|�k | + 2kF )2 + m∗2 < k0 < µ

(e),(f) m∗ < k̄0 < 2EΛ − m∗

(g)

µ + 2m∗

√
�k2 + (3m∗)2

⎫⎬
⎭ < k̄0 < 3EΛ

For simplicity, we do not display u-channel processes in Fig. 4.3. They have the same
energy thresholds as the shown t-channel processes and thus do not provide addi-
tional information. Of course, both channels are included in the full calculation of
the quark width.

The processes in Fig. 4.3 are arranged in the same order as the integrals in (4.18)
and (4.19). The first line of Fig. 4.3 shows the two contributions to the loss rate
i Σ>(k). In the second line of Fig. 4.3 we find the only process that contributes to the
gain rate −i Σ< for positive k0 and one of the contributions for negative k0. Note that
the processes (c) and (d) both correspond to the first line of (4.19). The processes
in the third line of Fig. 4.3 are the remaining contributions to −i Σ< for negative k0

(antiquark loss rate).

The thresholds for the processes can be found by applying the same constraints to
the incoming and outgoing quarks as in the analysis of the processes in Fig. 4.1. We
have summarized all thresholds in Table 4.2. In the following, we will briefly describe
how they have been determined. We will not do this on the same level of detail as
in the previous section. Instead, we refer to [Frö01] where a thorough analysis of the
processes from Fig. 4.3 can be found for massless quarks.
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4.2 Thresholds

Processes (a), (e), and (f)
Phase space opens for process (a) at k0 = µ since each of the outgoing quarks q and
r needs a minimum energy of µ while the incoming quark p of the medium can only
provide a maximum energy of µ. Note that this threshold is independent of |�k |, see
[Frö01]. Due to the cutoff, phase space closes again at an energy of k0 = 2EΛ − m∗.

Since we ignore the existence of bound qq̄ states in the meson spectral functions
at this point, the t-channel process (e) and the s-channel process (f) have identical
limits. The allowed energy range for the two processes, m∗ < k̄0 < 2EΛ − m∗, is
similar to that for process (a). Only µ is replaced by m∗ in the lower limit, since one
of the outgoing states is now an antiquark.

Processes (b) and (g)
The quark decay (b) involves two outgoing quarks and one antiquark. Hence, this
process is only allowed for energies k0 > 2µ + m∗. The upper threshold is given by
k0 = 3EΛ. We can derive a second condition for the minimum of k0 by noting the
similarity of process (b) to process (a) of Fig. 4.1. When we identify the outgoing
states q and p̄ with a single state that has a mass of at least 2m∗, we find – in analogy
to (4.7) – the kinematical condition

k0 >

√
�k2 + (3m∗)2 . (4.20)

The expression in (4.20) and the condition k0 > 2µ+m∗ complement each other since
(4.20) does not respect Pauli blocking. Note that we will not go through the tedious
exercise of finding a condition similar Eq. (4.8) here. For our purposes this will not
be necessary.

The antiquark decay (g) has limits that are very similar to those of process (b). The
upper threshold is identical, k̄0 = 3EΛ. The lower threshold is given by a combination
of Pauli blocking and energy conservation, k̄0 > µ + 2m∗ (two antiquarks and one

quark are produced), and the kinematical constraint k̄0 > [�k2 + (3m∗)2]1/2.

Processes (c) and (d)
We turn now to the processes (c) and (d). Like the processes (b) and (c) of Fig. 4.1,
those processes turn seamlessly into each other at k0 = 0. Hence, we find common
thresholds for both processes. The upper threshold is easily found. Since the two
incoming quarks from the medium can provide a maximum total energy of 2µ and
the outgoing quark p requires a minimum energy of µ, the upper k0 limit is given –
independently of |�k | – by the chemical potential µ.

Finding the lower limit of the two processes is more complicated. Energy conser-
vation demands

k0 = Eq + Er − Ep =
√

�q 2 + m∗2 +
√

�r 2 + m∗2 −
√

(�q + �r − �k )2 + m∗2 , (4.21)

where we have used �p = �q +�r−�k. The minimum of k0 surely corresponds to the case
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where cos ϑq,k = cos ϑr,k = −1, i.e.,

k0 >
√

�q 2 + m∗2 +
√

�r 2 + m∗2 −
√

(|�q | + |�r | + |�k |)2 + m∗2 . (4.22)

We will now search for a miminum of k0 at fixed |�r | and |�k |. The second term on
the rhs. of (4.22) is then just a constant that has no influence on the location of the
minimum. A short calculation yields

dk0

d|�q |

∣∣∣∣
cos ϑ=−1

=
|�q |√

|�q |2 + m∗2
− |�q | + s√

(|�q | + s)2 + m∗2
, (4.23)

where s = |�r | + |�k |. The derivative has no zeros for finite values of |�q |. This is
not surprising: At fixed |�r |, the properties of (4.21) should be similar to those of
Eq. (4.9). As we have seen in (4.14), the minimum of the rhs. of (4.9) is located at

|�p |ext = −m∗/(m∗ − mπ)|�k |. Since we consider the case mπ → m∗ here, the value of
|�p |ext diverges. Nonetheless, we can show that the derivative of k0 is negative for all
(positive) values of |�q |. Rewriting the rhs. of (4.23) yields

dk0

d|�q |

∣∣∣∣
cos ϑ=−1

=
|�q |
[√

(|�q | + s)2 + m∗2 −
√

(|�q | + s)2 + m∗2 (|�q |+s)2

|�q |2

]
√

|�q |2 + m∗2
√

(|�q | + s)2 + m∗2
. (4.24)

Since (|�q | + s)2/|�q |2 ≥ 1 (for positive |�q |), we find that the numerator of (4.24) is in
fact negative. We come back to the special case m∗ = 0 below.

It follows from (4.24) that k0 must drop monotonously for increasing |�q |. Due to
the symmetry of the rhs. of (4.22) in |�q | and |�r |, we find the same result for the |�r |
dependence when |�q | is kept fixed. Consequently, the minimum of k0 is located where
|�q | and |�r | both reach the largest allowed values. In the processes (c) and (d), q and
r are quarks from the medium. The upper limit for their momentum is the Fermi
momentum kF = [µ2 − m∗2]1/2. For the minimum of k0 this means

kmin
0 = 2µ −

√
(|�k | + 2kF )2 + m∗2 . (4.25)

The sign of kmin
0 is not fixed. In the chirally broken phase, where µ is much larger

than kF , kmin
0 will become only negative when |�k | is large. For moderate values of

|�k | it will be positive. Process (d) is then forbidden. For massless quarks, (4.22) and

(4.25) turn into kmin
0 = −|�k |. The derivative of k0 vanishes in this case, cf. (4.24).

Note that the condition k0 > −|�k | is included in (4.25) for finite m∗, too.
To conclude this section, we list some typical values for the thresholds of all pro-

cesses in Table 4.3. This should provide a better feeling for the (numerical) position
of the thresholds. The values in Table 4.3 are based on the results for m∗ and mπ

of two calculations in the Hartree+RPA approximation. Since a parameter set with
a finite current quark mass has been used, the RPA pions are not massless in the
chirally broken phase and the quarks are not massless in the chirally restored phase.
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4.3 Density dependence

Table 4.3: Typical values for the energy thresholds of the processes from Figs. 4.1 and

4.3 at |�k | = 100 MeV in the Hartree+RPA approximation, using parameter set
I from Table 2.1. The left column corresponds to µ = 352 MeV (ρ = 0.44ρ0)
in the chirally broken phase (m∗ = 320 MeV, mπ = 142 MeV, EΛ = 707 MeV).
The right column corresponds to µ = 355 MeV (ρ = 5.8ρ0) in the chirally
restored phase (m∗ = 121 MeV, mπ = 211 MeV, EΛ = 642 MeV).

Process Thresholds [MeV]

ch. broken phase ch. restored phase

(a) 494 < k0 < 1452 566 < k0 < 1403
Fig. 4.1 (b),(c) 67 < k0 < 210 −135 < k0 < 40

(d) 472 < k̄0 < 1452 347 < k̄0 < 1403

(a) 352 < k0 < 1095 355 < k0 < 1164
(b) 1024 < k0 < 2122 831 < k0 < 1928

Fig. 4.3 (c),(d) 196 < k0 < 352 −67 < k0 < 355
(e),(f) 320 < k̄0 < 1095 121 < k̄0 < 1164
(g) 991 < k̄0 < 2122 597 < k̄0 < 1928

4.3 Density dependence

The self-energy integrals in Eqs. (4.3) and (4.17) allow us to make some estimates on
the density dependence of the scattering processes in Figs. 4.1 and 4.3. Therefore, we
have to consider two effects: Each incoming quark from the medium can be identified
with a four-momentum integral over S< for positive energies. This is of course nothing
but the quark density (3.9). Hence, every incoming quark from the medium introduces
a linear density dependence into the corresponding collision rate – at least as long as
µ < EΛ. The incoming quark states are, however, linked to the density of the outgoing
states by energy and momentum conservation. This counteracts the increase of the
correlations. Each outgoing quark – not counting the quark with the external four-
momentum k – corresponds to an integral over S>, i.e., the density of the free quark
states that are located at µ < k0 < EΛ. Pauli blocking forbids scattering into the
populated quark states at 0 < k0 < µ. The cutoff of the model, on the other hand,
suppresses scattering into quark states with energies above EΛ. Thus, the density of
the free quark states decreases when the chemical potential rises. Outgoing antiquarks
and mesons are not Pauli blocked. The antiquarks, however, are also regularized by
the cutoff.
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4.3.1 Saturation effects

It follows from these considerations that we will not observe an unlimited growth
of the collision rates – and of the short-range correlations. Processes that have a
total incoming energy that is too small or too large to be absorbed by the available
final states, cannot contribute to the collision rates. We will investigate this effect
in a similar calculation for nucleons in nuclear matter in Chapter 6. There, we will
observe a saturation of the correlations at a density of 2 − 3 times normal nuclear
matter density, see Figs. 6.16 and 6.18. We have also performed nuclear matter
calculations without Pauli blocking to verify its responsibility for the saturation. In
fact, the collision rates show no saturation in that case. This is illustrated in Fig. 6.20.

There is an important difference between the effects of Pauli blocking and the
cutoff. Pauli blocking becomes effective as soon as a medium is present. Even if the
chemical potential is low, some final states that could – kinematically – be reached
by the incoming quarks will be suppressed. The influence of Pauli blocking remains
small at low quark densities but it increases continuously when the chemical potential
rises. The cutoff, on the other hand, acts only on outgoing states with a large energy.
As long as the total energy of the initial states is too low to reach such final states, the
cutoff has no influence on the collision rates. Depending on the considered process,
the cutoff may be only relevant if µ – the maximum energy of the quarks from the
medium – and/or k0 are large.

To illustrate the difference between Pauli blocking and the cutoff, we use the scat-
tering process in Fig. 4.3(c) as an example. Pauli blocking sets a lower limit for
the energy of the outgoing quark with four-momentum p. If the total energy of the
incoming quarks q0 + r0 is lower than µ + k0, the process is forbidden and does not
contribute to the total collision rate, i.e., the width. If we put the external four-
momentum on-shell, we find the threshold q0 + r0 > µ + m∗. The minimum total
energy of the two incoming quarks is just 2m∗. The chemical potential µ is larger
than m∗ at finite densities. Thus, the minimum total energy that can be absorbed
by the final states is higher than the minimum total energy that the incoming states
provide. The Pauli blocking effect sets in at µ = m∗, i.e., at vanishing quark density.
The cutoff effect becomes relevant when the total energy of the incoming quarks in
Fig. 4.3(c) exceeds EΛ +k0. The maximum total energy of the incoming quarks is 2µ.
Hence, the cutoff will suppress contributions to the collision rates for 2µ > EΛ + k0.
Since k0 > 0 for the given process, we find the condition µ > EΛ/2. If the chemical
potential stays below this threshold, the cutoff is irrelevant since the final states with
energies beyond the cutoff cannot be reached kinematically. The suppression effect
sets in above this limit.

It should be noted that EΛ = [Λ2+m∗2]1/2 is – due to the density dependence of the
effective quark mass – density dependent itself. The value does not change too much
within the chirally broken or the restored phase. At the phase transition, however,
it drops significantly while µ increases smoothly4. In the Hartree approximation,

4In terms of the three-momentum, the limits exchange their behavior. The cutoff remains fixed
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cf. Fig. 2.8, we find values of EΛ = 703 MeV and EΛ = 642 MeV right below and
above the phase transition at µ = 355 MeV, using parameter set I from Table 2.1.
The smaller EΛ may enhance the saturation effect instantaneously. Coming back to
the example from above we find that the chemical potential is very close to EΛ/2
in the chirally broken phase. Hence, the cutoff effect should not be too important.
Above the phase transition, however, the chemical potential is clearly beyond this
limit. Therefore, we can expect that the density dependence of this and of some of
the other scattering processes changes significantly at the phase transition.

4.3.2 Density dependence of the individual processes

The density dependence of the processes in Fig. 4.1 can be readily understood from
the considerations above. The decays (a) and (d) do not involve incoming quarks
from the medium. Hence, there is no density dependent increase of the decay rates.
Due to Pauli blocking, the decay rate of (a) should slowly decrease while the decay
rate of (d) remains constant until the cutoff effect sets in. The processes (b) and
(c) should show a linear density dependence because of the incoming quark from the
medium. Pauli blocking and the cutoff have no direct influence on these processes –
unless µ exceeds EΛ, then the density of the incoming quarks becomes constant.

The analysis of the processes in Fig. 4.3 is a little more complicated since more
states are involved. The decay processes (b) and (g) are both subject to Pauli block-
ing. Since there are no incoming quarks from the medium, their collision rates will
decrease when the density increases. The collision rates of the processes (a) and (e,f)
will increase linearly at low quark densities5. When the density becomes larger, the
increase will slow down since the importance of Pauli blocking rises – for (a) even
stronger than for (e,f) since two outgoing quarks are involved. When the cutoff effect
becomes relevant, too, it may even be possible that the collision rates decrease again.
The processes (c,d) of Fig. 4.3 include two incoming quarks from the medium. Hence,
the corresponding collision rates should rise quadratically at low densities. Since only
one outgoing quark state is involved, the saturation effect should turn out to be much
weaker than in the case of processes (a) and (e,f). We will come back to these points
below in Chapter 5.

at the phase transition while the Fermi momentum kF =
√

µ2 − m∗2 increases when the mass
drops.

5From nuclear matter, we know the relation Γ = ρσv (σ is the total cross section and v the relative
velocity of the collision partners). This is a low-density approximation for the width generated
by collisions with the structure of process (a). When we discuss our results, we will check up to
which densities this approximation can be used in the present approach.
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4.4 On-shell width

In the previous sections, we have identified the thresholds and the density dependence
of all processes that contribute to the quark width. Now we will take a closer look
at the processes that contribute to the on-shell width of the quarks and antiquarks.
Since the on-shell peaks dominate the structure of the quark spectral function, these
processes have the largest influence on the properties of the medium. This investi-
gation is of particular interest for the present O(1/Nc) approach. The thresholds of
the processes that involve bound qq̄ states (Fig. 4.1) depend on the RPA pion mass,
cf. Table 4.1. As we already know, the RPA pion mass of our approach will be larger
than that of the physical pions in the chirally broken phase. Hence, the processes
of Fig. 4.1 will in our approach contribute to the width in other regions than in a
calculation with a more reasonable pion mass. Furthermore, we will see below that
the magnitude of the contributions from some of the processes in Fig. 4.3 depends
on the pion mass. This will have some impact on the on-shell width and thus on the
properties of the medium.

4.4.1 Relevant processes

The momentum dependent on-shell energy is given by Ek = [�k2+m∗2]1/2. A scattering
or decay process may contribute to the on-shell width if Ek is located within its
thresholds. Due to the cutoff, we restrict ourselves here to |�k | < Λ. We begin our
investigation with the processes of Fig. 4.3. As Table 4.2 shows, the processes (a), (c),
and (e,f) will contribute to the on-shell width of all free quark states, all populated
quark states, and all antiquark states, respectively. The processes (b), (d), and (g),
on the other hand, do not reach the on-shell regions when the (anti-)quarks have a

finite mass. The lower kinematical limit [�k2 + (3m∗)2]1/2 of the processes (b) and (g)
will be significantly larger than Ek when the (anti-)quarks are massive. Process (d)

is only allowed for k̄0 < |�k |. Hence, it cannot contribute to the on-shell width of the
antiquarks.

For massless quarks, the upper threshold of process (d) and the lower kinematical
limits of (b) and (g) will be located exactly at the on-shell energy Ek. However, phase
space for the decay processes just opens at this point. Contributions to the on-shell
width will thus not be generated. The phase space volume that is available for the
decays will be large only at some distance from the on-shell regions. For processes
(b) and (g) we have also to consider the additional conditions from Pauli blocking,
k0 > 2µ + m∗ and k̄0 > µ + 2m∗. Those thresholds will – at least for moderate
|�k | – prevent the processes from reaching the on-shell regions when the quark mass
vanishes.

We note that this picture will not change substantially when the collisional broad-
ening of the quark spectral function is taken into account. The thresholds of Table 4.2
will then be softened and phase space opens already below the given limits. However,
this is only a small effect. If the (on-shell) width of the quarks does not become too
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large – and this will be the result of our full calculation, see Fig. 5.17 – the thresholds
are still rather strict. The phase space volume that is available for decays may not be
zero at the on-shell position, but it remains small in comparison to off-shell regions
where the main contributions from the processes can be found.

We turn now to the processes of Fig. 4.1 that involve bound qq̄ states. The processes
(a), (b), and (d) behave similar to (b) and (g) of Fig. 4.3. When mπ is finite, the

lower threshold [�k2 + (m∗ + mπ)]1/2 (> Ek) of (a) and (d) and the upper threshold

[�k2 + (m∗ − mπ)]1/2 (< Ek) of process (b) – the m∗ < mπ limit is even stricter – will
keep these processes away from the on-shell regions. Note that this holds for all values
of m∗. The complementary conditions from Pauli blocking prevent the processes (a)
and (b) even from entering the off-shell regions in the vicinity of the Fermi energy µ.

When the RPA pion mass vanishes, the processes (a), (b), and (d) will reach
the on-shell regions. Their thresholds are then located at k0 = Ek and k̄0 = Ek.
Due to the same arguments as before, there will be no contributions to the on-shell
width on the quasiparticle level – phase space just opens at Ek. Small contributions
are possible when the collisional broadening of the spectral functions is taken into
account. These contributions could play a role at very low densities. The three decay
processes can occur in vacuum and are not very density dependent. Thus, their
(small) contributions to the on-shell width may exceed those of the strongly density
dependent on-shell processes (a), (c), and (e,f) of Fig. 4.3. We will come back to that
point in Section 4.4.3.

Process (c) of Fig. 4.1 is the only process including a bound qq̄ state that may
contribute to the (antiquark) on-shell width. When the RPA pion mass is larger than

the quark mass, the upper limit k̄0 < [�k2+(m∗−mπ)2]1/2, may become larger than the

on-shell energy Ek = [�k2 + m∗2]1/2. As we can see, the exact condition is mπ ≥ 2m∗.
In the chirally restored phase, mπ will easily exceed this limit. The incoming quark
and the incoming antiquark of process (c) can then form an RPA pion when they are

both on-shell. Note that the condition of Eq. (4.16) – in the |�k | dependent form –

is stricter than the kinematical constraint at large �k. Above a certain value of |�k |,
on-shell contributions are forbidden. In the chirally broken phase, the physical pions
are significantly lighter than the quarks. In this case – where m∗ > mπ/2 – process (c)
is not allowed when k is on-shell. The RPA pions of our approach are much heavier
than the physical pions in the chirally broken phase. Nonetheless, their mass stays
well below 2m∗. They are not heavy enough to generate contributions to the on-shell
width of the antiquarks.

Let us summarize what we have found so far: The on-shell width of the quarks is
generated by the processes (a) and (c) of Fig. 4.3 while the antiquark on-shell width is
mainly generated by the processes (e,f). All those processes do not involve bound qq̄
states. In the chirally restored phase, there may also be contributions from process (c)
of Fig. 4.1 to the antiquark on-shell width at low momenta. The remaining processes
may come close to the on-shell regions when either mπ (Fig. 4.1) or m∗ (Fig. 4.3)
drops to zero. But even in these cases, the processes will not be able to generate
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considerable contributions to the on-shell width.
As we have seen in Section 4.3, the processes (a), (c), and (e,f) of Fig. 4.3 are

strongly density dependent. All four processes need a scattering partner from the
medium and can only occur at finite quark densities. Thus, we can expect that the
on-shell width remains small in the chirally broken phase where the density is low.
The on-shell width of the antiquarks (e,f) and of the quark states above the chemical
potential (a) should show a linear density dependence. For the on-shell width of the
populated quark states – generated by the scattering process (c) of Fig. 4.3 – even a
quadratic density dependence can be expected. At the higher densities of the chirally
restored phase, the saturation effects that we have discussed in Section 4.3.1 will limit
the growth of the on-shell width. Only the contributions from process (c) of Fig. 4.1
should keep their linear density dependence at high densities.

4.4.2 Role of the RPA pion mass

The analysis of the thresholds has shown that the on-shell quark width in the chirally
broken phase is determined by the processes of Fig. 4.3. The thresholds of these
processes – involving only the off-shell components of the RPA pion propagator – are
independent of the RPA pion mass, cf. Table 4.2. The scattering and decay processes
involving bound qq̄ states do not contribute to the collision rates in the on-shell
region, even when the pions have a reasonable mass. As the kinematical thresholds
in Table 4.1 show, the gap between the on-shell energy and the thresholds of the
processes involving bound qq̄ states is on the order of mπ. Considering a realistic
pion mass of 140 MeV, this gap is much larger than the typical width of the on-shell
peaks that we will find in our calculations.

In the chirally broken phase, the on-shell width of the antiquarks is also free of
contributions from processes with bound qq̄ states – no matter if the pions have a
realistic mass or are heavier. As we have seen in Section 4.4.1, process (c) of Fig. 4.1
generates contributions to the antiquark on-shell width when mπ > 2m∗. The RPA
pions of the O(1/Nc) approach as well as the physical pions will exceed this limit
only in the chirally restored phase. Since the masses of O(1/Nc) RPA pions and
Hartree+RPA pions are much closer to each other in the chirally restored phase (see
Section 5.3), such on-shell contributions are no artifact of the present approach.

Another interesting observation holds for all populated on- and off-shell quark
states: The processes that may contribute to the quark width in the region 0 < k0 < µ
– process (b) of Fig. 4.1 and (c) of Fig. 4.3 – do not include incoming or outgoing
antiquark states. Even when process (c) of Fig. 4.1 contributes to the antiquark on-
shell width, this will have no direct influence on the quark states. The properties
of the antiquarks are only fed back indirectly into properties of the quarks in this
region via the components of the RPA spectral function. The processes that generate
the width of the antiquark states, on the other hand, involve incoming and outgoing
quark states.

So far, we have not considered the influence of the pion mass on the magnitude of
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the various contributions to the on-shell width. In the processes of Fig. 4.3, we do
not probe the on-shell region of the RPA pion propagator (i.e., the bound qq̄ states).
However, the propagator may also depend on the pion mass in its off-shell regions.
Thus, it is not unlikely that the pion mass has influence on the on-shell quark width
even though the width is generated by the “correct” processes.

As we have seen above, the collision rates (4.17) involve a factor Sret(kπ) Sav(kπ) =
|∆ret(kπ)|2, where kπ = r − k is the four-momentum of the exchanged meson. Work-
ing out the trace in Eq. (4.17) for quasiparticle propagators (see Appendix B) yields
an additional factor (r−k)2. Hence, we can relate the magnitude of the contributions
from the individual processes6 in Fig. 4.3 to the quark width to a factor k2

π|∆ret(kπ)|2.
Comparing the result for this factor from our calculations to the result of the Har-
tree+RPA approximation – where the dynamically generated pions have a reasonable
mass in the chirally broken phase – will allow us to estimate the mπ dependence of
the quark width in our approach.

For a more detailed investigation, we have to split up the processes in Fig. 4.3 into
the t-channel processes (a,c,e) and the s-channel process (f). In the s-channel process
– like in the decays (b,d,g) that do not contribute to the on-shell width – the meson
carries a timelike four-momentum that must exceed k2

π > (m∗ + µ)2 > (2m∗)2. In
other words, the magnitude of the scattering rate is sensitive to the qq̄ continuum of
the RPA spectral functions. Instead of the full term k2

π|∆ret(kπ)|2, we show numerical
results for the qq̄ continuum of the RPA pion spectral function in the Hartree+RPA
approximation and in the O(1/Nc) approach in Fig. 4.4 (see also Fig. 5.8 where the
widths are compared). Note that |∆π |2 = ξπ/(k0Γπ). The differences in size and
shape of the continuum are within reasonable limits – we are comparing a leading
order to a next-to-leading order scheme here. A significant mπ dependence of the qq̄
continuum cannot be observed. This means that the magnitude of the contributions
from process (f) to the on-shell quark width is – like the thresholds – independent of
the large RPA pion mass (in the chirally broken phase) of our O(1/Nc) approach. We
note that the same is true for the contributions of the decays (b,d,g) to the off-shell
quark width.

We turn now to t-channel processes (a,c,e) where the mesons must carry a spacelike
four-momentum (see [Y+06] for the kinematics). Typically, one would expect that
the range of the meson-exchange interaction in these processes scales with the inverse
mass of the exchanged meson, i.e. R ∼ 1/mπ. The simple estimate Γ ∼ ρσv,
σ ∼ πR2 suggests a quadratic mπ dependence of the quark width, Γ ∼ 1/m2

π. Since
the RPA pions of our O(1/Nc) approach are approximately three times heavier than
physical pions in the chirally broken phase, this means that the contributions from
the processes (a,c,e) to the on-shell quark width could be suppressed by one order
of magnitude. The off-shell properties of the dynamically generated mesons in our

6Recall that the RPA mesons enter the Lagrangian (2.4) without an explicit quark–meson coupling.
In contrast to regular mesons, the coupling strength is part of the “normalization” of the RPA
meson spectral functions.
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Figure 4.4: The RPA pion spectral function at a constant three-momentum of 50 MeV.
The solid line shows the result of the Hartree+RPA approximation in vacuum
(m∗ = 336 MeV), the dashed line the result of the O(1/Nc) approach at a
density of 0.05ρ0 (m∗ = 326 MeV). Parameter set I of Tables 2.1 and 5.1 has
been used.

approach differ, however, from those of regular mesons (recall the discussion from
Section 3.8). Thus, we cannot directly transfer this estimate to our approach.

To check the real mπ dependence of the collision rates, we compare numerical re-
sults for k2

π|∆ret(kπ)|2 from our O(1/Nc) approach to results from the Hartree+RPA
approximation in Fig. 4.5. As we can see, the curves differ in fact by approximately
one order of magnitude at low values of −k2

π. At higher −k2
π, the differences be-

come smaller and, eventually, our approach yields larger results than the Hartree–
Fock+RPA approximation.

In the collision rates corresponding to the processes (a,c,e), we integrate over the
four-momentum r – and thus over the four-momentum of the exchanged meson kπ =
r − k. In those integrals, we are not sensitive to the full k2

π range shown in Fig. 4.5.
The limits of the relevant k2

π region are fixed by kinematics [Y+06]. The lower limit
is determined by the maximum three-momenta (and energies) of the two incoming
particles in the collision,

k2
π,min = −2

(
E1E2 − �p1 · �p2 − m∗2

)
, (4.26)

with E1,2 =
√

�p 2
1,2 + m∗2. The upper limit is always k2

π,min = 0 since we consider

scattering partners of equal mass.
In process (c), we integrate over the three-momenta �r and �q of the incoming par-

ticles. Using their upper limits kF in (4.26), we obtain values of k2
π,min = −0.14 GeV2

and k2
π,min = −0.18 GeV2 at densities of ρ0 and 1.8ρ0, respectively7. Hence, we can

7Note that the chiral phase transition is located slightly above 1.8ρ0 in our approach.
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Figure 4.5: The function −|∆π(kπ)|2k2
π for spacelike values of the four-momentum

kπ. The solid line shows the result of the Hartree+RPA approximation in
vacuum (m∗ = 336 MeV), the dashed and dotted lines the result of the O(1/Nc)
approach at a density of 0.05ρ0 (m∗ = 326 MeV). Parameter set I of Tables 2.1
and 5.1 has been used. The function −|∆π(kπ)|2k2

π depends not purely on k2
π in

our approach since we work in a finite medium and consider a three-momentum
cutoff in the calculations. Thus, we show two curves for spacelike k2

π at different
(fixed) kπ

0 .

conclude that the on-shell width of the populated quark states – that is solely gen-
erate by process (c) – is suppressed by approximately one order of magnitude in the
chirally broken phase.

In processes (a) and (e), one of the incoming three-momenta is given by the external

three-momentum |�k |. The second three-momentum is again limited to kF . Thus, the

limit k2
π,min for these processes is |�k | dependent. For |�k | = kF , we obtain the same

limits as for process (c). For |�k | = Λ, the value of k2
π,min drops to −0.54 GeV2 at

a density of ρ0 and to −0.59 GeV2 at a density of 1.8ρ0. These results show that
the on-shell quark width of the free quark states and the antiquark states is also
suppressed by the large RPA pion mass. At higher momenta |�k | – when the scattering
processes almost reach the k2

π region where our approach yields larger values than the
Hartree+RPA approximation – the suppression will range well below one order of
magnitude.

Recall that the t-channel process (e) and the s-channel process (f) contribute to
the on-shell width in the same energy region. The contributions of process (f) are
not suppressed by the pion mass. However, the factor |∆π(kπ)|2k2

π has a value of
≈ 100 GeV2 near the lower threshold of the qq̄ continuum and drops to ≈ 10 GeV2

at the upper threshold. Comparing these values to the curves in Fig. 4.5 shows that
process (e) yields larger contributions to the quark width even though it is suppressed

97



4 Quark and meson scattering

by mπ. Only when the external four-momentum k is small, the contributions from
process (f) may be larger.

This brings us to the end of our analysis of the mπ dependence of the on-shell quark
width. We have obtained two important results in this section. First, we have found
that our approach generates the on-shell quark width from the “correct” processes,
i.e. from the same processes as an approach with a more reasonable pion mass (in the
chirally broken phase) – this is important for the structure of the width and its density
dependence. However, the contributions from most of these processes are suppressed
by the too large RPA pion mass. The naive estimate that the collision rates scale with
1/m2

π yields an upper limit for this suppression. On average, the influence of the pion
mass on the on-shell width ranges below one order of magnitude. In summary, this
means that our approach represents a conservative approximation of the short-range
effects in quark matter. A calculation with a more realistic pion mass should lead to
stronger short-range correlations.

Let us clarify once again that all these considerations affect only our results in
the chirally broken phase. Above the phase transition, the RPA pion mass of our
approach will be close to the pion mass of the Hartree+RPA approximation. Thus,
there will be no suppression of the quark width in the chirally restored phase. We also
note that the decays of Fig. 4.3 contribute to the (off-shell) quark width at the correct
energies and with the correct strength in the chirally broken phase. The contributions
from the processes in Fig. 4.1 are shifted due to the large pion mass but should also
have the correct size. In other words, not all contributions to the quark width are
suppressed by the RPA pion mass.

4.4.3 Effects of higher order corrections

For completeness, we will discuss the influence of the correctional diagrams (c,d) of
Fig. 2.14. A self-consistent inclusion of these diagrams in the calculation would fix
the pion mass in next-to-leading-order and shift the limits of the processes in Fig. 4.1
closer to the Hartree+RPA values. More important than this shift, the contributions
from the t-channel processes of Fig. 4.3 to the on-shell width will rise. Since the chiral
properties of the pions remain disturbed in higher orders, the RPA pion will still be
heavier than physical pions. Thus, the influence on the on-shell width will be weaker
than suggested by Fig. 4.5 for the Hartree+RPA approximation.

In addition to the above effects, the polarization of Fig. 2.14 will yield an extended
set of self-energy diagrams similar to those in Fig. 4.2 – recall that we have used the
relation ∆≷

l = ∆ret
l Π≷

l ∆av
l to rewrite the collisional self-energies. The diagrams can

be cut and identified with scattering rates. The rates that are constructed from the
correctional diagrams (c)-(d), however, are suppressed in 1/Nc in comparison to the
ones in Fig. 4.3. They represent only next-to-leading order contributions to the quark
width.

We note that the mπ dependence of the thresholds in Table 4.1 may lead to some
differences between calculations with massive and with massless RPA pions in the
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chirally broken phase. For those differences it is irrelevant if the massive pions have
a mass of 140 MeV or are heavier. As the estimates of Section 4.3 indicate – and
the results of the full O(1/Nc) calculation will show (see Section 5.2.2) – the decay
processes (a) and (d) of Fig. 4.1 generate much larger contributions to the collision
rates at low densities than the (on-shell) processes (a), (c) and (e,f) of Fig. 4.3. We
have seen in the previous section that the decay processes (a) and (d) of Fig. 4.1
may generate small contributions to the on-shell width when mπ = 0. Even though
the contributions are small in comparison to the off-shell contributions of the same
processes, they may be larger than the contributions of the (true) on-shell processes.

When they move closer to the on-shell region, the large contributions of the decay
processes to the off-shell width may also have some influence on the results – even
when the on-shell width itself does not change too much. To illustrate the possible
consequences, we refer to the left panel of Fig. 5.3 that shows a similar effect. In
the O(1/Nc) approach, the contributions from process (c) of Fig. 4.1 come already
rather close to the on-shell region of the antiquarks in the chirally broken phase. They
generate the small peak in the width at low negative k0. This peak is reflected in the
spectral function by a significant structure, right next to the antiquark on-shell peak.

The decay processes (a) and (d) of Fig. 4.1 are less density dependent than process
(c). Thus, they generate larger off-shell contributions at low densities – they can
be identified with the shoulders on the large bumps in the left panel of Fig. 5.3.
When those processes move closer to the on-shell regions – which happens when mπ

becomes small compared to the quark width – the impact will surely be more extreme
than that of process (c) in Fig. 5.3. It is important to stress that the pions must be
(almost) massless to observe the just discussed effect. The mass of the physical pions,
mπ ≈ 140 MeV, is considerably larger than the typical on-shell quark width in our
approach, cf. Fig. 5.15.

We come to the end of our quasiparticle analysis of the contributions to the quark
width. The investigation of the thresholds and the density dependence of the in-
dividual processes in Sections 4.2 and 4.3, respectively, will be very helpful for the
understanding of the results of our full O(1/Nc) calculations.

4.5 RPA meson width

In the previous sections of this chapter, we have discussed the various contributions
to the quark width in much detail. The structure of the RPA meson width is much
simpler. We know already from Section 3.4 that the width is antisymmetric in k0.
There are only two processes at positive energies and two equivalent processes at
negative energies that generate the RPA meson widths. For completeness, we will
identify these processes and determine their thresholds in this section. Since the
processes involve no incoming or outgoing RPA meson states from the medium, it
will not be necessary to split them up into contributions from bound qq̄ states and
the off-shell regions.
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The starting point of our analysis are the collisional polarizations. In analogy to
(4.3), we rearrange the rhs. of Eq. (3.18),

−i Π≷
l (k) = −

∫
d4p

(2π)4

d4q

(2π)4
(2π)4δ4(k − p + q) Tr

[
iΓ̃li S≶(p)iΓli S≷(q)

]
.

Replacing the quark propagators by the quasiparticle spectral function of (4.1) and
the appropriate distribution functions yields

i Π>
l (k) ∼

∫
Λ

d3p δ(k0 − Ep − Ep−k) [1 − nF(Ep)] (4.27)

+

∫
Λ

d3p δ(k0 − Ep + Ep−k) [1 − nF(Ep)] nF(Ep − k0)

and

−i Π<
l (k) ∼

∫
Λ

d3p δ(k0 + Ep + Ep−k) [1 − nF(−Ep − k0)] (4.28)

+

∫
Λ

d3p δ(k0 − Ep + Ep−k) nF(Ep) [1 − nF(Ep − k0)] .

We note that i Π>
l (k) is only finite for k0 > 0: In the first line of (4.27), the δ-

function sets the condition k0 = Ep + Ep−k, where Ep ≥ 0 and Ep−k ≥ 0. In the
second line, the distribution functions demand Ep > µ and Ep − k0 < µ. The
collisional polarization −i Π<

l (k), on the other hand, is finite only for negative k0.
The processes that correspond to the integrals in Eqs. (4.27) and (4.28) are shown in
Fig. 4.6. In the first line we find the two contributions to i Π>

l and in the second line
the two contributions to −i Π<

l .
Table 4.4 summarizes the thresholds that are found for the processes of Fig. 4.6.

Obviously, the processes (a) and (b) are very similar to the processes (c) and (d),
respectively. Therefore, the thresholds are symmetric in k0 (k̄0). Processes (a) and
(c) describe the decay of an RPA meson into a quark–antiquark pair. They generate
the qq̄ continuum at energies k0 and k̄0 above µ + m∗. Since the two processes do
not involve incoming quarks, they may occur in vacuum (where µ must be replaced
by m∗). The processes (b) and (d) contribute to the RPA meson widths at spacelike
four-momenta. These processes – that are only possible at finite quark densities –
can be identified with Landau damping [KG06].

We will now discuss how the thresholds of Table 4.4 have been determined. This
is a rather simple task. The processes of Fig. 4.4 are variations of the processes of
Figs. 4.1 and 4.3 that we have already investigated in the Sections 4.2.1 and 4.2.2.

Processes (a) and (c)
Kinematically, process (a) of Fig. 4.6 is similar to process (a) of Fig. 4.1. The processes
differ only in the mass of the outgoing state that turns from a bound qq̄ state into a
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Figure 4.6: Scattering processes corresponding to the collisional RPA polarizations

Σ≷(k) of Eqs. (4.27) and (4.28). (a), (b) contribute to i Π>(k) and (c), (d) to
−i Π<(k). The dashed meson lines carry the external four-momentum k (k̄).
See the text for details.

quark or antiquark. In process (a), four-momentum conservation is given by, cf. (4.6),

k0 = Ep + Ep−k =
√

�p 2 + m∗2 +

√
(�p − �k )2 + m∗2 . (4.29)

In analogy to (4.7), we find

|�p |min =
1

2
|�k | ⇒ kmin

0 =

√
�k2 + 4m∗2 . (4.30)

This is the lower kinematical limit for this process. For |�k | < 2kF , the value of |�p |min

will drop below the Fermi momentum. This is forbidden by Pauli blocking for the
outgoing quark state in process (a). In this case, the effective minimum of k0 is – like
in (4.8) – located at the lowest allowed value for |�p |,

kmin
0

∣∣
|�p |min<kF

= µ +

√
(|�k | − kF )2 + m∗2 > µ + m∗ . (4.31)

The conditions in (4.30) and (4.31) complement each other. Hence, we list them both
in Table 4.4. Due to the NJL cutoff, there exists also an upper threshold for process
(a). The three-momentum of the outgoing quark and the outgoing antiquark must
not exceed the cutoff Λ. Hence, phase space closes for this process at k0 = EΛ +EΛ−k.

The upper and lower energy limits for process (c) of Fig. 4.6 can be obtained
completely analogously. We find thresholds in terms of k̄0 instead of k0 that are
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Table 4.4: Energy thresholds of the processes shown in Fig. 4.6, see the text for details.
The thresholds in the two lower rows are given for k̄0 = −k0.

Process Thresholds

(a)
µ + m∗

√
�k2 + 4m∗2

⎫⎬
⎭ < k0 < EΛ + EΛ−k

(b) 0 < k0 <

√
(|�k | + kF )2 + m∗2 − µ

(c)
µ + m∗

√
�k2 + 4m∗2

⎫⎬
⎭ < k̄0 < EΛ + EΛ−k

(d) 0 < k̄0 <

√
(|�k | + kF )2 + m∗2 − µ

equivalent to (4.30) and (4.31). In contrast to processes (a) and (d) of Fig. 4.1, Pauli
blocking has the same influence on the two processes (a) and (c) of Fig. 4.6.

Processes (b) and (d)
In process (b) of Fig. 4.6, four-momentum conservation is given by

k0 =
√

�p 2 + m∗2 −
√

(�p − �k)2 − m∗2 . (4.32)

Pauli blocking demands that the three-momentum of the outgoing quark exceeds the
Fermi momentum, i.e., |�p | > kF . The three-momentum of the incoming quark, on

the other hand, must be smaller than the Fermi momentum, |�p−�k | < kF . This yields
immediately that the minimum of k0 in process (b) must be positive for all values of
�k.

There exists also a stricter condition for kmin
0 that depends on |�k |. We will not

determine it here since it is not of relevance for our further studies. We just note that
for |�k | > 2kF , the three-momentum |�p−�k | will exceed the Fermi momentum for any
value of cos ϑp,k. In this case, the processes (b) and (d) will be completely suppressed
by Pauli blocking.

As we can see in (4.32), k0 will be increasing with increasing cos ϑp,k at fixed |�p |.
Thus, we have to search for the upper threshold of processes (b) for cosϑp,k = 1.
Kinematically, process (b) is very similar to process (c) of Fig. 4.1. Up to the mass
of the outgoing state – the meson turns into a quark – Eq. (4.32) is identical to (4.9).
It follows from Eqs. (4.10) and (4.14) that k0 (k̄0) has no minima or maxima at finite
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|�p |, when the masses of the incoming and outgoing states p and r are equal.
Like in Section 4.2.2, where the |�q | dependence of process (d) from Fig. 4.3 has

been discussed, we will show now that k0|cos ϑ=1 rises monotonously for increasing |�p |.
A short calculation yields, cf. (4.23),

dk0

d|�p |

∣∣∣∣
cos ϑ=1

=
|�p |√

|�p |2 + m∗2
− |�p | − |�k |√

(|�p | − |�k |)2 + m∗2

. (4.33)

To determine the sign of the derivative, we rewrite the rhs. of (4.33) in analogy to
(4.24),

dk0

d|�p |

∣∣∣∣
cos ϑ=1

=
|�p |
[√

r2 + m∗2 − sgn(r)
√

r2 + m∗2 r2

|�p |2

]
√
|�p |2 + m∗2

√
r2 + m∗2

, (4.34)

where r = |�p | − |�k |. In this form we can easily see that the derivative of k0 is

positive for all values of |�p | and |�k |. Thus, k0|cos ϑ=1 must – as predicted – increase
monotonously when |�p | increases.

To find the effective maximum of k0, we have to determine the largest value of
|�p | that is allowed by Pauli blocking in process (b). The outgoing quark must have
a three-momentum that exceeds the Fermi momentum, i.e., |�p | > kF . The three-
momentum of the incoming quark from the medium, on the other hand, must be
smaller than the Fermi momentum. For cosϑp,k = 1 this means |�p |−|�k | < kF . Thus,

the maximum value of |�p | is limited to kF + |�k |. Inserting this result into (4.32) yields

kmax
0 =

√
(|�k | + kF )2 + m∗2 − µ .

For massless quarks, this condition reduces to k0 < |�k |. When m∗ is finite, the
condition is even stricter. Thus, process (a) may only contribute to the RPA meson
width at spacelike four-momenta.

The lower and the upper threshold of process (d) can be found completely analo-
gously. They are – in terms of k̄0 instead of k0 – identical to those of process (b). We
note that the RPA meson widths drops to zero at k0 = 0. In contrast to the processes
(b) and (c) of Fig. 4.1, the two processes (b) and (d) do not turn seamlessly into each
other.
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5 Numerics and results

5.1 Details of the calculation

Using the present O(1/Nc) approach, we have performed numerical calculations for
flavor symmetric quark matter in thermodynamical equilibrium. We have investigated
a wide range of chemical potentials µ, allowing for quark matter both, in the chirally
broken and restored phase. The calculations have been restricted to zero temperature.

5.1.1 NJL parameter sets

In the calculations, we use two different NJL parameter sets – one that breaks chiral
symmetry explicitly with a small current quark mass m0 and one in the chiral limit
(m0 = 0). The two parameter sets are similar to those in Table 2.1, but not identical.
Using the Hartree–Fock parameter sets 0 and I from Table 2.1 would lead, e.g., to
results for the quark condensate that are too large. Hence, we had to readjust the
parameters.

In the Hartree approximation, the coupling constant G and the cutoff Λ are fitted to
the quark condensate and the pion decay constant – if a finite current quark mass m0

is desired, its value is used to adjust the pion mass in vacuum. Presently, we do not
calculate the 1/Nc corrected physical pions (Goldstone modes) and have no access to
their mass and the pion decay constant. Therefore, we proceeded in a way analogous
to the transition from the Hartree to the Hartree–Fock approximation in [Kle92]: We
kept the values of the parameters Λ and m0 in Table 2.1 fixed and readjusted only
the coupling G so that a reasonable value for the quark condensate 〈ūu〉, cf. Eq. (3.8),
was obtained.

We have found that lowering the couplings of the Hartree parameter sets 0 and I
from Table 2.1 by 22% leads to appropriate results for the quark condensate. Let
us point out that the attempt to fix the too large RPA pion mass of the O(1/Nc)
approach by adjusting m0 would be futile. As we can see in Appendix B, the mass is
generated – largely independent of m0 – by ΣF (or ΣF

eff), cf. Eq. (B.8).
The readjusted NJL parameters for the O(1/Nc) approach and the corresponding

vacuum results for the effective quark mass and the quark condensate are shown in
Table 5.1. See Eq. (5.1) for the definition of m∗ in the O(1/Nc) approach. Note that
G enters the definition of the Hartree self-energy (3.2) explicitly as a linear factor.
Lowering the coupling by 22% should lead to a comparable reduction of ΣH – the G
dependence is not strictly linear due to the self-consistent nature of the definition.
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Table 5.1: Parameter sets for the self-consistent O(1/Nc) approach. Λ is a three-
momentum cutoff. The parametrizations are based on the Hartree parameter
sets in Table 2.1. In comparison to Table 2.1 the couplings were reduced by
22% to readjust the quark condensate. m∗ and 〈ūu〉1/3 are the vacuum results
for the effective mass (5.1) and the quark condensate (3.8) that are found with
those parameters.

m0 GΛ2 Λ m∗ 〈ūu〉1/3

[MeV] [MeV] [MeV] [MeV]

Set 0 - 1.68 653 308 -248
Set I 5.5 1.72 631 326 -244

The effective masses of Tables 2.1 and 5.1, however, differ by only 3%. The real part
of the collisional self-energy replaces most of the missing contributions from ΣH.

5.1.2 Iterative procedure

The coupled Dyson–Schwinger equations from Fig. 2.11 are solved in an iterative
procedure. To initialize the calculations, we use a Hartree propagator that is modi-
fied by adding a small width. The effective quark mass that enters this propagator
can either be chosen by hand or calculated by solving the simpler Dyson–Schwinger
equation of the Hartree(+RPA) approximation in the first line of Fig. 2.6. With
this propagator, a first approximation to the RPA propagators is calculated from the
Dyson–Schwinger equation in the second line of Fig. 2.11. Using again the modified
Hartree propagator and the just found RPA propagators, the rhs. of the first line of
Fig. 2.11 can be calculated to find an improved solution for the quark propagator.
From this point on we calculate the Dyson–Schwinger equations of Fig. 2.11 consecu-
tively until the results for the propagators converge. In the calculations we keep the
chemical potential of the system fixed. The effective quark mass and the density are
free to change in every iteration.

The speed of convergence depends on several factors like the choice of the initial-
ization (i.e., quark width and effective mass) and the structure of the self-consistent
result. Usually, full convergence is achieved after 5 − 10 iterations. In the vicinity of
the chiral phase transition, where the gap equation may have several solutions, more
iterations can be necessary. We will discuss this aspect later in more detail.

To demonstrate the effect of the iterative procedure, we show in Figs. 5.1 and
5.2 how the quark width converges to the self-consistent result in two representative
calculations. We have chosen a chemical potential below and a chemical potential
right above the chiral phase transition (µ ≈ 327 MeV) where the effective quark
mass m∗ and the density ρ jump discontinuously (cf. Fig. 5.10). In both cases, the
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Figure 5.1: The quark width in an iterative calculation at a chemical potential of µ =
323 MeV (chirally broken phase, ρ = 0.5ρ0), using parameter set I from Table
5.1. The calculation has been initialized with a constant width of Γ0 = 5 MeV,
Γs,v = 0 and m∗ = 325 MeV.

Figure 5.2: The quark width in an iterative calculation at a chemical potential of µ =
328 MeV (chirally restored phase, ρ = 4ρ0), using parameter set I from Table
5.1. The calculation has been initialized with a constant width of Γ0 = 5 MeV,
Γs,v = 0 and m∗ = 143 MeV.

calculations were initialized with a constant width of Γ0 = 5 MeV (Γs,v = 0) and an
effective mass close to the final result.

The system is in the chirally broken phase in the calculation that is shown in
Fig. 5.1. As we can see in the left panel, it takes a couple of iterations for the
collisional width – i.e., the short-range correlations – to build up. The appropriate
shape is assumed rather quickly, however, the magnitude of the width changes from
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Table 5.2: The fluctuation of the effective quark mass m∗ in the iterative calculation
shown in Fig. 5.1 (µ = 323 MeV, chirally broken phase). The mass and the
density of each iteration are obtained from a calculation where the mass from
the previous iteration enters.

Iteration # m∗ [MeV] ρ [ρ0]

0 325 —
1 433 0.0002
2 282 0.0012
3 318 0.16
4 327 0.15
5 316 0.29
6 310 0.38
7 308 0.43
8 306 0.48
9 304 0.49
10 304 0.5

iteration to iteration. Those fluctuations are directly related to the fluctuating results
for the effective quark mass in the iterations. In Table 5.2, we show how m∗ and the
quark density ρ change in the iterative calculation. Recalling the quasiparticle relation
ρ ∼ (µ2 − m∗2)3/2, cf. (3.10), we can see that small changes of m∗ have significant
impact on the density when m∗ and µ are of comparable size. On the other hand, we
have found in Section 4.3 that the quark width is strongly density dependent (and
likewise the real part of the self-energy that is calculated dispersively from the width).
After 7 − 8 iterations, the results stabilize. The right panel of Fig. 5.1 confirms that
self-consistency is reached after 10 iterations.

Fig. 5.2 shows the results of a calculation in the chirally restored phase. The self-
consistent result is found much faster in this case, 4 − 5 iterations are sufficient. In
the chirally restored phase, the effective quark mass is significantly smaller than the
chemical potential. Consequently, the fluctuations of m∗ have much less influence on
the quark density and the short-range correlations can stabilize much faster than in
the chirally broken phase.

We have to calculate the real and imaginary parts of the quark self-energy and the
RPA polarizations to solve the Dyson–Schwinger equations. The analytical analysis
of the real parts of Σret and Πret in Sections 3.6 and 3.8 has been rather involved.
The integrals for the quark and meson widths (3.16,3.22), on the other hand, were
derived directly from the Feynman rules (Appendix C) and did not require much
analytical effort. Considering the numerical efforts, it is the other way around. The
calculation of the dispersion integrals and the energy independent shifts that are
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given in Eqs. (3.39,3.53,3.61,3.62) is a straightforward exercise. The integrands of
the multidimensional width integrals, however, consist of products of two spectral
functions with pronounced on-shell peaks and thus have a complicated structure.
The numerical solution of these integrals is technically challenging and the most time
consuming part of the iterative calculation. We use the package CUBPACK [CH03]
for this task since it is able to solve the integrals reliably. For a detailed discussion
of the numerical implementation of the integrals we refer to Appendix H.

5.1.3 Numerical grid

The quark self-energy and the meson polarizations depend separately on the energy
and the modulus of the three-momentum. Hence, it is necessary to solve the Dyson–
Schwinger equations on numerical grids in energy and momentum space. For the
quarks we cover a range of |k0| ≤ 3.5 GeV, |�k | ≤ Λ and for the mesons a range of

|k0| ≤ 3 GeV, |�k | ≤ 2Λ. Using grids with 300 × 100 mesh points for the quarks
and 300 × 200 mesh points for the mesons we achieve a resolution of dk0 ≈ 20 MeV
and d|�k | ≈ 6 MeV in both cases. This choice is justified by the results – the energy
and momentum dependence of the self-energy and the RPA polarizations (real parts
and widths) is smooth with respect to the mesh size. As we will see later, the grid
resolution is on the order of the on-shell quark width. Thus, the spectral functions
cannot be discretized on the grid – in contrast to the self-energy and the polarizations.
The on-shell peaks of the quark spectral function would be lost. In the width integrals,
the spectral functions are always calculated from Eqs. (2.40,2.48) – using interpolated
grid data for self-energy and polarizations.

Note that the upper limits for the three-momenta of the quarks and mesons on
the grid are fixed by the cutoff scheme that we use in our approach, see Section 2.4
for details. In comparison to these limits, the energy limits are chosen rather high.
This is necessary since we want to calculate the real parts of Σret and Πret from the
dispersion integrals in (3.24). The limits of those integrals are located at infinitely
high energies. Hence, we must make sure that the quark and meson widths Γs,µ and
Γσ,π vanish at the borders of the grids. In Chapter 4 we have determined the cutoff
induced thresholds above which the quark and antiquark widths must vanish in the
Hartree+RPA approximation. We must go beyond this threshold here, since the finite
width of the quarks generates small but finite contributions above the threshold.

It is important to note that the quark spectral function at such high energies will
not sizably influence the integrals for the quark and meson widths (3.16,3.22). At
higher energies, the on-shell peaks are located at three-momenta above the cutoff Λ.
Only the – much smaller – off-shell contributions at momenta below the cutoff enter
the integrals.
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5.1.4 Quarks, antiquarks and effective masses

As discussed in Chapter 4, we identify the quark states k = (k0, �k ) at negative

energies k0 with antiquark states k̄ = (−k0, �k ) = (k̄0, �k ) that have a positive energy
k̄0. Populated antiquark states correspond to holes in the Dirac sea. Note that,
strictly speaking, the border between quarks and antiquarks is not located at k0 = 0
in our approach. The real part of Σret

0 (k) – that is not necessarily zero at k0 = 0
– induces a shift of the energy scale. Thus, the border is located closer to Rek̃0 =
k0 − Re Σret

0 (k0, �k ) = 0 (see Fig. E.1). More details and the exact definition of the
border can be found in Appendix E.

The momentum dependent shift of the border between the quarks and antiquarks
is smaller than 5 MeV in the chirally broken and smaller than 50 MeV in the chirally
restored phase. In the numerical calculations we use the appropriate border, i.e.,
k0 = Re Σret

0 (k). This is important when determining the quark density and the
momentum distribution. In the discussion of the results, however, we will just refer
to positive and negative energy states to denote quarks and antiquarks, respectively.

For the discussion of the results (not for the numerics) we introduce an effective
quark mass m∗ that is easier to handle than the complex m̃ret,av(k) of Eq. (2.34). Like
in [DBM93, DM94], we define the real and constant mass m∗ in terms of the real part

of the on-shell self-energy Σret
s,os(

�k ), cf. Eqs. (2.51) and (2.39), for a quark at rest:

m∗ = m0 + Re Σret
s,os(

�k = 0) = Rem̃ret,av(kos
0 (0), 0) . (5.1)

The numerical results show that the momentum dependence of Rem̃(k) ranges below
5% for the on-shell states. Hence, m∗ yields a good classification for the states in the
vicinity of the on-shell peak at all momenta.

5.2 Collisional broadening

5.2.1 General structure

To give a qualitative overview of the short-range effects in quark matter, the quark
spectral function A0, the corresponding width Γ0, and the real part of the self-energy
ReΣret

0 are shown in Fig. 5.3 as cuts at a constant three-momentum. We have selected
the γ0-components for closer inspection here since they show all relevant features
and correspond to the non-relativistic limits of spectral function and self-energy. In
addition, Γ0 yields the largest contribution to the width of the spectral function and
the quark density is determined by an integral over A0, cf. Eq. (3.9).

Fig. 5.3 shows results of calculations in the chirally broken (ρ ≈ 0.17 fm−3 = ρ0)
and restored phases (ρ ≈ 0.765 fm−3 = 4.5ρ0), using the parameter sets 0 and I from
Table 5.1. Note that we use ρ0 = 0.17 fm−3 to normalize the quark density. The
numerical value of ρ0 corresponds to the nucleon density in normal nuclear matter
ρnm. Nonetheless, ρ is here a quark density and not a nucleon density. Assuming that
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5.2 Collisional broadening

Figure 5.3: Cuts of the quark spectral function A0, the real part Re Σret
0 , and the width

Γ0 at a constant three-momentum in the chirally broken (left) and restored
(right) phases. The two parameter sets of Table 5.1 have been used. The
results on the left correspond to a quark density of ρ = ρ0 (µ = 308.5 MeV for
parameter set 0, µ = 325 MeV for set I), the results on the right to ρ = 4.5ρ0

(µ = 318 MeV for parameter set 0, µ = 332 MeV for set I). Since the quark
mass drops in the chirally restored phase, the on-shell peaks are located at
lower energies |k0| in the right panel.

each nucleon consists of three constituent quarks, quark matter with a density of ρ0

should be compared to nuclear matter at ρnm/3.

The spectral functions in Fig. 5.3 are dominated by the on-shell peaks. In the upper
left panel of Fig. 5.3, we find the antiquark peak at k0 ≈ −290 MeV and the quark
peak at k0 ≈ 290 MeV, cf. (2.39). In the right panel, the peaks are located at lower
energies since the mass of the quarks drops significantly in the chirally restored phase.
The peak-like structure right next to the antiquark peak (k0 ≈ −180 MeV) in the left
panel (it turns into the shoulder of the antiquark peak in the right panel) is generated
by a pronounced contribution to the quark width – see the lower panel. In contrast
to the on-shell peaks, it does not correspond to a pole of the quark propagator. We
will come back to this structure in Section 5.2.2.

The peaks sit on a broad underground of off-shell states. Most of the strength
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of the spectral functions, however, is still located close to the on-shell peaks. Note
the log scale for A0 in Fig. 5.3. Both, A0 and Γ0 vanish at k0 = µ. As we have
already seen in Section 3.3, the quarks at the Fermi energy are stable quasiparticles
for T = 0. The quark peak is located close to the chemical potential in the left panel
of Fig. 5.3. Thus, the spectral function drops to zero very sharply. This zero should
not be confused with the off-shell region between the quark and the antiquark peak
where the spectral function becomes very small.

The influence of the width on the structure of the spectral function and the real
part of the self-energy is clearly visible. The width is strongly energy dependent and
becomes as large as 400 MeV in certain energy ranges. Those regions are far off-shell,
hence this result should not be overestimated. When we later discuss the on-shell
width we will find that much smaller values are relevant for the properties of the
medium. Concerning the density dependence of the width, it should be noted that
the width becomes larger at low |k0| while it becomes smaller at large |k0| when the
density increases. As we will see in the next section, this is in agreement with the
estimates from Section 4.3.

The impact of the cutoff at large |k0| can also be observed in Fig. 5.3. As expected,
Γ0 and A0 become rapidly smaller at high energies and will eventually vanish. The
real part of the self-energy approaches the value of ΣF

eff,0, as we have already seen
in Section 3.8, cf. Fig. 3.5. The influence of the cutoff on the results is not entirely
unphysical. Originally, we have introduced the cutoff for technical reasons. Since the
NJL coupling constant G is really constant it has been necessary to regularize the
divergent self-energy and polarization integrals. The combination of a constant cou-
pling G with a momentum cutoff Λ roughly resembles the running coupling constant
of QCD [PS95]. Quarks with large momenta are free and do not participate in the
interactions that generate the self-energy. Hence, the cutoff can be understood as
a crude approximation of asymptotic freedom. In the results of Fig. 5.3, the quark
width breaks down and the off-shell states of the spectral function vanish for the
asymptotically free states at large |k0|.

In vacuum, A0 and Γ0 would be symmetric in k0 while Re Σret
0 would be antisym-

metric. This symmetry is induced by the invariance of the vacuum ground state under
charge conjugation, see Appendix E in [Pos04] for details. We can observe in Fig. 5.3
that the existence of a medium with finite density breaks the symmetry between the
quark and antiquark states. In the case of the lower density (ρ = ρ0) the symmetry
still holds approximately. Only the structure at small negative energies breaks it. For
the higher density of 4.5ρ0 the symmetry is lost – in particular for energies |k0| on the
order of the cutoff Λ and below. Only at higher energies, the symmetry is partially
recovered.

The differences between the results for the parameter sets 0 and I are rather small.
This is not surprising in the chirally broken phase. The couplings G as well as the
cutoffs Λ are of similar size in both sets. The different values for the current quark
mass should be negligible when the constituent quark mass is large. In the chirally
restored phase, the differences between the results are slightly larger since the effective
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quark masses differ significantly there: The quarks become massless when parameter
set 0 is used. The finite current quark mass m0 of parameter set I, on the other
hand, breaks chiral symmetry explicitly. At a density of 4.5ρ0, the quarks still have
an effective mass of m∗ = 100 MeV (see also Fig. 5.10 below).

In Figs. 5.4 and 5.5 we show A0 and Γ0 in more detail for the energy range
|k0| < EΛ = kos

0 (Λ) ≈
√

Λ2 + m∗2. This is the region where the on-shell peak is
not suppressed by the cutoff in the integrands of the width integrals (3.16,3.22) –
recall our discussion of the regularization scheme in Section 2.4.2. Several cuts for
different three-momenta are shown, again at the densities of ρ0 and 4.5ρ0 for both
parameter sets of Table 5.1.

Significant differences between the results for the different parameter sets can be
observed only in Fig. 5.5 (chirally restored phase) for the cuts of A0 at low momenta.
The locations of the on-shell peaks differ due to the different effective masses. The
position of the peaks is determined approximately by k2

0 = �k2−m∗2 (Hartree approx-
imation) – the exact relation is given by P(k) = 0, cf. (2.39). Since we compare the
results at the same density – and not at the same chemical potential – the zero at
k0 = µ is also slightly shifted. Recall that the (quasiparticle) density is proportional
to (µ2 −m∗2)3/2, cf. (3.10). Since the effective quark masses differ in both cases, this
leads to smaller chemical potentials for parameter set 0 than for parameter set I.

Figs. 5.4 and 5.5 show very clearly that even a small quark density breaks the
symmetry between the quarks and antiquarks. The antiquark width has no zeros and
on average increases with −k0 (k̄0), phase space opens for the relevant scattering and
decay processes shown in Figs. 4.1 and 4.3 (we will discuss these processes in detail
in the next section). Thus, the antiquark peak of the spectral function broadens with
increasing momentum. At the lower density (Fig. 5.4), the on-shell width of the peak
rises up to 20 − 30 MeV. At the higher density, the correlations have increased and
the on-shell width rises even up to 100− 200 MeV. In the quark sector, we see a very
different picture. At energies below the chemical potential the width stays small.
Thus, the on-shell peaks that correspond to the populated states of the medium
remain narrow. Above the Fermi energy, where the width increases again, the peaks
become broader.

5.2.2 Correspondence to scattering and decay processes

We have seen that the position of the on-shell peaks can be easily understood. To
explain the full (off-shell) structure of A0 in Figs. 5.3, 5.4, and 5.5 we have to inves-
tigate the structure of the width that is reflected in the spectral function. Therefore,
we have to recall our discussion of the scattering and decay processes that contribute
to the total collision rates and self-energies Σ≷ from Chapter 4. All processes that
contribute to the quark width are shown in Figs. 4.1 and 4.3. We will refer to these
processes as 4.1(a), 4.3(a), etc. in the following. As discussed in Chapter 4, we inter-
pret the outgoing meson lines in Fig. 4.1 as bound qq̄ states (on-shell peaks) while
the intermediate mesons in Fig. 4.3 may be off-shell.
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Figure 5.4: Cuts of the quark spectral function A0 and the width Γ0 in the chirally
broken phase (ρ = ρ0) at several constant three-momenta, using parameter sets
0 (dashed lines, µ = 308.5 MeV, m∗ = 263 MeV, kF = 188 MeV) and I (solid
lines, µ = 325 MeV, m∗ = 284 MeV, kF = 186 MeV). Note the different scale in
k0 as compared to Fig. 5.3.
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Figure 5.5: Cuts of the quark spectral function A0 and the width Γ0 in the chirally
restored phase (ρ = 4.5ρ0) at several constant three-momenta, using parameter
sets 0 (dashed lines, µ = 318 MeV, m∗ = 0, kF = 312 MeV) and I (solid lines,
µ = 332 MeV, m∗ = 100 MeV, kF = 315 MeV).
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Table 5.3: The energy thresholds of Tables 4.1 and 4.2, adjusted to the results for

|�k | = 100 MeV and parameter set I that are shown in Figs. 5.3 and 5.4, 5.5. The
quark and meson masses from the O(1/Nc) calculations have been inserted into
the analytical (Hartree+RPA) expressions, ignoring shifts due to the collisional
self-energies. The left column corresponds to µ = 325 MeV (m∗ = 284 MeV,
mπ = 444 MeV), the right column to µ = 332 MeV (m∗ = 100 MeV, mπ =
416 MeV).

Process Thresholds [MeV]

ch. broken phase ch. restored phase

(a) 769 < k0 < 1547 748 < k0 < 1480
Fig. 4.1 (b),(c) 127 < k̄0 < 189 136 < k̄0 < 331

(d) 735 < k̄0 < 1547 526 < k̄0 < 1480

(a) 325 < k0 < 1100 332 < k0 < 1178
(b) 934 < k0 < 2076 764 < k0 < 1917

Fig. 4.3 (c),(d) 99 < k0 < 325 −73 < k0 < 332
(e),(f) 284 < k̄0 < 1100 100 < k̄0 < 1178
(g) 893 < k̄0 < 2076 532 < k̄0 < 1917

The upper and lower energy thresholds for each of the processes are given in terms
of the effective quark and RPA pion masses in Tables 4.1 and 4.2. In Table 5.3 we
list numerical values that are found by inserting the masses of the present approach.
The real parts of Σret

µ have not been taken into account. Hence, the thresholds should
be slightly shifted with respect to the numerical results. The thresholds are strict
limits in the Hartree+RPA approximation. In the full O(1/Nc) approach, the limits
are softened since we deal with quarks that have a finite width. Nonetheless, the
thresholds of Table 5.3 allow us to fully understand the structure of the quark width
in Figs. 5.3, 5.4, and 5.5.

A noticeable feature that can be found in both, the width and the spectral function,
are the zeros at k0 = µ for all three-momenta. Due to Pauli blocking it is not possible
to scatter into or out of the states at the Fermi energy. The states are stable for
T = 0. As we have already observed in Section 3.3, the integral for the quark width
(3.17) vanishes for k0 = µ at zero temperature – none of the processes in Figs. 4.1 and
4.3 yields finite contributions to the width. It follows directly from the definitions
(2.37,2.40) that the spectral function has to vanish then, too. When the on-shell peak
of A0 comes close to the chemical potential, it turns almost into a sharp quasiparticle
peak – see the |�k | = 200 MeV cut of Fig. 5.4 (kF = 188 MeV) and the |�k | = 300 MeV
cut of Fig. 5.5 (kF = 312 MeV). This underlines the stability of the states in this
region. At finite temperatures, the width at the Fermi energy would become finite.
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Then, the states could participate in scattering processes.

The quark and antiquark decay processes 4.3(b) and 4.3(g) are responsible for the
huge bumps that dominate the structure of Γ0 at large |k0| in Fig. 5.3. Such decays
can occur at zero density since no partner from the medium is required. The outgoing
quarks of the decays are subject to Pauli blocking. Thus, the bumps decrease in the
chirally restored phase where the density is large.

The smaller bump at low negative energies (k0 ≈ −180 MeV in the chirally broken
phase) is generated by process 4.1(c). Since the RPA pion is rather heavy in our
approach, the common k0 limits for 4.1(b,c) are negative. Hence, the quark scattering
process 4.1(b) is suppressed in the results. The bump that is generated by process
4.1(c) has significant influence on the spectral function. In the chirally restored
phase it contributes to the collisional broadening of the antiquark peak at moderate
momenta. In the chirally broken phase it generates a structure at low momenta
that almost looks like a second on-shell peak in the antiquark sector. This is clearly
an artifact of the too large RPA pion mass in the chirally broken phase. For a
more reasonable pion mass, the bump would be located at small positive energies –
then generated by process 4.1(b), cf. Section 4.2. Note that there exists no process
comparable to 4.1(c) in the quark sector (i.e., kq̄ → π). Such a process would require
an incoming antiquark from the medium. Thus, the spectral function at positive
energies is free from similar artifacts.

In the chirally broken phase, we can identify the contributions to the width Γ0 from
the processes 4.1(a) and 4.1(d) as the shoulders on the inner slopes of the big bumps
in Fig. 5.3. Process 4.1(a) remains visible in the chirally restored phase while process
4.1(d) is hidden beneath the increased contributions from the processes 4.3(e,f). As
we have already discussed in Section 4.3, those processes – like 4.3(a) and 4.3(c,d)
– rely on incoming quarks from the medium as scattering partners. Hence, their
contributions to the width remain comparably small in the chirally broken phase
where the quark density is low. The contributions from processes 4.3(e,f) are found
between the large and the small bump in the antiquark sector, the contributions
from 4.3(a) and 4.3(c,d) right above and below the Fermi energy, respectively. In
the chirally restored phase, where much more quarks become available as scattering
partners, the importance of the processes increases. The contributions of 4.3(e,f)
reach almost the same size as those of the antiquark decay 4.3(g), the contributions
of 4.3(a) at least half the size of the quark decay 4.3(b). We will come back to the
density dependence of the width later on a more quantitative level.

Recall that the quarks of the medium occupy all states at positive energies below
the chemical potential. The Fermi momentum kF is determined by P(µ, kF ) = 0,

cf. (2.36,2.39). In Fig. 5.4, the cuts for |�k | ≤ 100 MeV and in Fig. 5.5 the cuts

for |�k | ≤ 300 MeV correspond to momenta below the Fermi momentum. Thus, the
quark on-shell peaks are located below the chemical potential, in the region of the
populated states. In the cuts at momenta above kF , the spectral functions do not
entirely vanish in the energy range 0 < k0 < µ. Off-shell states exist due to the
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width that is generated by process 4.3(c). Those states are populated by quarks
and generate a so-called high-momentum tail in the momentum distribution of the
medium. Later, when we investigate the momentum distribution in more detail, we
will use the high-momentum tail as a measure for the short-range correlations. In the
case of quasiparticles, the momentum distribution would drop to zero at kF where
the on-shell states cross the Fermi energy.

We close the discussion on the structure of the quark width with an important
observation: Most of the processes that involve bound qq̄ states (Fig. 4.1) have no
influence on the width in the energy range |k0| < EΛ (≈ 630 − 700 MeV) that is
shown in Figs. 5.4 and 5.5. Process 4.1(b) is completely forbidden and the thresholds
for the processes 4.1(a,d) are located at very large |k0|. Only process 4.1(c) yields a
considerable contribution to the width in the antiquark sector. Most of the quark and
antiquark width is generated – as expected from our quasiparticle considerations of
Chapter 4 – by the processes of Fig. 4.3. It is interesting to note that the contributions
of the collisional processes to the overall width in the chirally broken phase are small
in comparison to the huge off-shell contributions from decays. This can be readily
explained by the strong density dependence of the collisions with partners from the
medium. In addition, we have found in Section 4.4.2 that the contributions from the
t-channel processes of Fig. 4.3 depend – in contrast to the decays – on the RPA pion
mass. Thus, we may underestimate these processes below the chiral phase transition.

We have already discussed the influence of process 4.1(c) on the antiquark width.
We note here that this process generates a structure that is located close to – but not
within – the on-shell region of the antiquark spectral function in the chirally broken
phase, cf. Fig. 5.4. Thus, the influence of process 4.1(c) does not become too large in
this phase. As we can see in Fig. 5.5, the process has considerable influence on the
on-shell width in the chirally restored phase. There, however, the Hartree+RPA pions
aquire a considerable mass, too. Thus, the contributions of process 4.1(c) should be
located approximately in the right position.

5.2.3 Comparison to the loop-expansion

In Fig. 5.6 we compare the results of the present work to our earlier approach in
[FLM03b]. In the loop-expansion of [FLM03b] we have used the Born diagrams that
are shown in Fig. 2.2(c) and (d) to calculate the collisional quark width. We did not
perform a 1/Nc expansion with dynamically generated RPA mesons there. In both
calculations, the system is in the chirally restored phase at densities of 3ρ0 and 9ρ0,
using a parameter set for the chiral limit. Since the quark widths that were found in
[FLM03b] have been rather small, it was justified to use the Hartree parameter set
0 of Table 2.1 there. For the calculations with the present model, we have used the
comparable parameter set 0 from Table 5.1. Recall that the couplings G differ by a
total factor of 0.78. We have chosen a density of 3ρ0 in [FLM03b] since the system
should then be comparable to nuclear matter at normal density (three quarks per
nucleon). As we will see later, quark matter at 3ρ0 corresponds to a stable solution
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Figure 5.6: Cuts of the quark width Γ0 in the chirally restored phase at constant
three-momentum. The solid lines show the results of a full O(1/Nc) calculation
using parameter set 0 from Table 5.1, the dashed lines show the corresponding
results from [FLM03b] using parameter set 0 (Hartree) from Table 2.1.

of the Dyson–Schwinger equations in Fig. 2.11 for m∗ = 0. However, it might not be
realized in nature since an energetically favored solution exists in the chirally broken
phase – for the same chemical potential and a lower density.

The density of 3ρ0 is reached in both approaches at a chemical potential of µ ≈
270 MeV. The chemical potentials that correspond to 9ρ0 differ significantly. Values
of µ = 415 MeV and µ = 387 MeV are found for the O(1/Nc) and the Born approach,
respectively. The difference is induced by the γ0-component of Re Σret that shifts the
energy scale. The real part of the quark self-energy has been neglected in [FLM03b].
In the O(1/Nc) calculation, however, Re Σret

0 is included and becomes larger when the
density increases.

Qualitatively, there is some agreement between the results in Fig. 5.6. The curves
have a similar shape. Since we did not introduce RPA mesons in [FLM03b], the
processes of Fig. 4.1 – involving bound qq̄ states – did not contribute to the width
there. Hence, the bump that is generated by process 4.1(c) is only found in the
O(1/Nc) results. Quantitatively, the results differ by one order of magnitude. The
simple expansion in terms of the coupling constant clearly misses large contributions
to the short-range correlations by ignoring the terms that also are of next-to-leading
order in the number of colors but of higher orders in the coupling.

5.3 RPA mesons in the O(1/Nc) approach

We have discussed earlier that the RPA mesons must not be identified with the
physical sigma and pion, see Section 2.5 for details. The corrections to the RPA
polarizations that are needed to find the Goldstone modes, i.e. the physical pion, are
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Figure 5.7: Cuts of the RPA meson spectral functions and widths at two constant
three-momenta. The left panel shows the results for the RPA sigma, the right
panel the results for the RPA pion. The calculation was performed below the
chiral phase transition at a chemical potential of µ = 308.5 MeV (ρ = ρ0,
m∗ = 263 MeV), using parameter set 0 from Table 5.1 (chiral limit).

presently not calculated. Nonetheless, we briefly discuss the properties of the RPA
mesons before we investigate the quarks in more detail.

5.3.1 Structure of width and spectral function

The spectral functions and widths of the RPA sigma and pion are shown in Fig. 5.7.
The results have been obtained from a calculation with parameter set 0 from Table
5.1 in the chirally broken phase. Since the parameter set does not include a finite
current quark mass, the physical pion should be massless. In the O(1/Nc) calculation,
however, we find masses of 603 MeV for the RPA sigma and 424 MeV for the RPA
pion at the given density. As expected, the RPA pion is not a Goldstone boson.

The meson widths are generated by the processes that we have discussed in Sec-
tion 4.5. The structure is dominated by the qq̄ continuum that is generated by
unbound qq̄ states from decay processes. In other words: the RPA mesons de-
cay into qq̄ pairs when the energy is high enough. In the Hartree+RPA approach,
the lower threshold for qq̄ decays is located at k0 = µ + m∗. For energies above
k0 = 2EΛ = 2

√
Λ2 + m∗2, the decays are suppressed by the cutoff. As for the quark

width, those limits are not strict in the full O(1/Nc) calculation. Small but finite
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meson widths are found below the lower and above the upper threshold. We can also
see in Fig. 5.7 that the qq̄ continuum shrinks in magnitude for larger three-momenta.
Here, the cutoff provides a sharp limit. At least one of the quark propagators in the
integral of (3.18) must have a momentum above the cutoff for |�k | > 2Λ. Consequently,
the integral becomes zero and the qq̄ continuum vanishes at this point.

At spacelike four-momenta – i.e., k0 < 50, 400 MeV for the given cuts – Landau
damping [KG06] generates another structure in Fig. 5.7: The scattering processes
qπ → q, qσ → q (cf. Fig. 4.6(b)) that are only allowed when the four-momentum of
the mesons is spacelike yield considerable contributions to the widths in this region.
Since the widths are defined as Γσ,π(k) = −Im Πret

σ,π(k)/k0 (2.54), they can become
rather large at small k0 – in particular for the lower three-momentum. However, the
widths do not diverge for k0 → 0.

The features of the widths can also be identified in the spectral functions. In
addition to the continuum effects, we see the on-shell peaks from the bound qq̄ states.
Their positions are determined by the zeros of 1+2GRe Πret

σ,π, cf. Section 3.7. The RPA
pion peak is located – due to the large mass – close to but still below the threshold
of the qq̄ continuum where the width is small. Thus the peak is rather sharp. The
RPA sigma peak, however, sits on top of the continuum and is very broad.

5.3.2 Comparison to mean-field results and chiral properties

In Fig. 5.8 we show a direct comparison of the polarizations in the O(1/Nc) approach
at low densities and the Hartree+RPA approximation in vacuum, using parameter
sets I from Tables 2.1 and 5.1. The results for the widths are in good agreement. The
qq̄ continuum is located at the same position and is of similar size in the O(1/Nc)
and the mean-field approach – the observable shifts are due to the slightly different
effective masses of the quarks. Landau damping is suppressed at the lower density
and in the vacuum because it depends on quarks from the medium. We can conclude
that the qq̄ continuum parts of the RPA spectral functions generate reasonable con-
tributions to the quark width when the diagrams of Fig. 3.1 are calculated (see also
Fig. 4.4).

The results for the real parts of the polarizations are at least in qualitative agree-
ment. The sharp spike at k0 = 2EΛ in the Hartree result becomes smeared out in
the O(1/Nc) calculation where the qq̄ continuum does not drop to zero but remains
finite above the threshold.

In spite of the seemingly good agreement of the results at moderate energies, the
real part of Πret

π generates a much larger pion mass in the O(1/Nc) approach. In
Fig. 5.9 we take a closer look at the zeros of 1 + 2GRe Πret

σ,π in the O(1/Nc) approach
and the Hartree+RPA approximation at low energies. At small k0, the O(1/Nc) pion
curves are shifted by ≈ 0.2 to higher values in comparison to the Hartree+RPA result.
This is in agreement with the estimate from Section 3.7. About 50% of this shift can
be attributed to the Fock self-energy, cf. Eq. (B.8). The dispersive contributions
to ReΠret that exist only beyond the mean-field approximation, see Section 3.7, are
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Figure 5.8: The RPA meson widths and the real parts of the RPA polarizations in
the chirally broken phase at a three-momentum of 50 MeV. The solid line
corresponds to the Hartree+RPA result at zero density, the dashed and the
dotted lines correspond to results from full O(1/Nc) calculations at densities of
ρ = 0.05ρ0 and ρ = ρ0, respectively. In the calculations, the parameter sets I
from Tables 2.1 and 5.1 have been used.

responsible for the remaining 50% of the shift. The mass of the RPA pion increases
from 142 MeV (Hartree+RPA) to 460 MeV (ρ = 0.05ρ0) in the O(1/Nc) calculation.
The small shift that is barely visible in Fig. 5.8 has large consequences.

It should be noted that the RPA pion is not only heavier than the physical pion
but also broader. Due to the higher mass, the on-shell peak is shifted closer to the
qq̄ continuum, where the width becomes larger. In the case of the RPA sigma, the
shift of the real parts is smaller. Furthermore, the zero is located in a region where
the shift has – due to the slope of the curve – less influence on the mass, cf. Fig. 5.9,
left panel. The effect is on the order of 10%. We can see in Fig. 5.9 that the density
dependence of the RPA sigma mass is stronger than that of the RPA pion. It drops
from 731 to 667 MeV between the two shown densities.
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Figure 5.9: The real parts of the denominators of the retarded RPA meson propagators
at a constant three-momentum of 50 MeV in the chirally broken phase. The
RPA meson masses are determined by the zeros of 1 + 2ReG Πret. See Fig. 5.8
for more details.

5.4 Chiral phase transition

5.4.1 The Hartree+RPA approximation

To examine the influence of the short-range correlations on the chiral phase transition,
we have to investigate the effective quark mass m∗ (5.1) as a function of the chemical
potential µ. Before we discuss the results of the O(1/Nc) calculation, we first take a
closer look at the results for the Hartree(–Fock) gap equation (2.11) that are shown
in Fig. 1.3 (solid line) and Fig. 2.8 and the schematic plot of the thermodynamical
potential (free energy) from Fig. 1.4.

In the quasiparticle calculation, a chiral phase transition of first order is found. At
small µ and at large µ, the gap equation has only one solution m∗(µ) for each value
of µ – the mass m∗ is large at small µ (chirally broken phase) and small at large µ
(chirally restored phase). The solutions correspond to minima of the thermodynami-
cal potential [SKP99, Kle92] and thus are stable. As we can see in Fig. 1.4, lines (a)
and (e), the thermodynamical potential has only one minimum in those regions.

In the region that has been shaded in Fig. 1.3, the gap equation has three solutions
m∗(µ) for a given value of µ. This behavior is characteristic for a first-order phase
transition [PB94]. The upper and the lower solution of the gap equation correspond
again to minima of the thermodynamical potential. The intermediate solution, on
the other hand, corresponds to a maximum of the potential, see line (c) of Fig. 1.4.
Hence, this solution is only metastable.

The energetically favored solution of the gap equation – that is realized in nature
at a certain chemical potential – is given by the absolute minimum of the thermody-
namical potential. We can see in Fig. 1.4 that this minimum corresponds either to
the upper (line (b)) or to the lower solution (line (d)) of the gap equation, depend-
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ing on the value of µ. The chiral phase transition is located where the two minima
of the thermodynamical potential have the same value, cf. line (c) of Fig. 1.4. At
this point, the quark mass m∗ drops discontinuously from a large to a small value.
Consequently, the quark density, cf. (3.10), increases significantly. The intermediate
range of (metastable) masses and densities is not realized. It should be noted that
the quark density ρ = 3ρ0 – corresponding to nuclear matter at normal density – lies
within this gap in Fig. 1.3. This is a known shortcoming of the NJL model on the
quasiparticle level [Kle92].

In Fig. 1.3, the quark mass remains finite in the chirally restored phase since chiral
symmetry is explicitly broken by a small current quark mass (parameter set I from
Table 2.1). In the chiral limit, m∗ would drop to zero at the chiral phase transition.
The (inverted) “S” shape of Fig. 1.3 would then turn into a ’2’ shape. Note that the
solution m∗ = 0 of the gap equation exists for all chemical potentials in the chiral
limit.

The dashed line in Fig. 1.3 shows an alternative scenario to a first-order phase
transition: It is possible that short-range correlations modify the system so that
only one unique solution of the gap equation exists for all values of µ. For the
thermodynamical potential this means that only one minimum exists at all chemical
potentials. The phase transition is then turned into a smooth crossover where the
system moves continuously from a large to a small quark mass. In Fig. 1.3 we have
simulated this effect by adding a constant width of Γ0 = 28 MeV to the Hartree–
Fock propagator. This is, of course, a rather crude approximation – in particular,
since neither the energy nor the density dependence of the correlations are taken into
account. It is not clear in advance if the O(1/Nc) approach will generate short-range
effects that are large enough to modify the phase transition in the same way.

5.4.2 Phase transition in the O(1/Nc) approach

Fig. 5.10 shows the effective masses of quarks and RPA mesons and the corresponding
quark density that were found in the O(1/Nc) calculation using parameter set I from
Table 5.1. The corresponding result for the quark condensate 〈ūu〉 can be found in
Fig. 5.12. It will be discussed later when the results from different parameter sets are
compared. The phase transition is still of first order. Note that we have, in principle,
access to all solutions of the gap equation (2.13) in the full O(1/Nc) calculation.
However, the iterative calculations will not converge for the metastable intermediate
solutions that exist in the vicinity of a first-order phase transition. Only the stable
solutions for large or small m∗ can be found numerically. Thus, the “S” shape in
Fig. 5.10 is interrupted.

The gap between the upper and the lower solutions of the gap equation has de-
creased in the O(1/Nc) calculation – the phase transition has moved towards a
crossover (compare Fig. 2.8 with Fig. 5.10). The region of chemical potentials µ
for which several solutions to the gap equation exist is only 2 MeV wide. In the
Hartree–Fock approximation, this region has a size of ∆µ = 4 MeV. We will not
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Figure 5.10: The effective quark mass and the masses of the RPA sigma and pion as
functions of the chemical potential are shown in the left plot. The right plot
shows the corresponding quark density in units of ρ0 = 0.17fm−3. In the range
326 MeV < µ < 328 MeV the chiral phase transition occurs. The calculation
was performed with parameter set I from Table 5.1.

Table 5.4: Solutions to the gap equation in the vicinity of the chiral phase transition.
See Fig. 5.10 and text for details.

upper solution lower solution

µ [MeV] m∗ [MeV] ρ [ρ0] m∗ [MeV] ρ [ρ0]

326 273 1.2 162 3.4
327 264 1.5 147 3.7
328 248 1.8 134 3.9

calculate the thermodynamical potential here to determine the exact location of the
phase transition. To investigate the impact of the short-range correlations on the
phase transition it is sufficient to check the differences between the upper and the
lower solutions of the gap equation at fixed µ. In Table 5.4 we have summarized
the results for the quark mass and density in the region of the phase transition. We
find the mass and density gaps ∆m∗ = 111 − 116 MeV and ∆ρ = 2.1 − 2.2 ρ0, re-
spectively, in the O(1/Nc) approach. The Hartree–Fock approximation, on the other
hand, yields the gaps ∆m∗ = 188 MeV and ∆ρ = 4.4ρ0 [Kle92].

We can conclude that the short-range correlations are not strong enough to change
the type of the phase transition at zero temperature. However, the mass and density
gaps at the phase transition have decreased significantly by 40% (∆m∗) and 50%
(∆ρ), respectively. The quark density of 3ρ0 is still located within the gap. Recall
that we consider a conservative estimate of the short-range effects below the phase
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transition here, cf. Section 4.4.2. A calculation with a more realistic pion mass in the
chirally broken phase should yield even smaller gaps or turn the phase transition into
a crossover. We will come back to this point in Section 5.6.3.

Note that the position of the phase transition is shifted to a lower chemical poten-
tial in the O(1/Nc) calculation. This can be explained by the fact that the rescaled
coupling generates smaller effective masses (m∗ = 320 MeV in vacuum) than the
Hartree–Fock coupling (m∗ = 336 MeV). An additional shift of the energy scale is in-
duced by the γ0-component of the effective Fock self-energy, ΣF

eff,0, cf. Eqs. (3.61,3.62),

that is larger than the mean-field Fock self-energy ΣF
0 .

Fig. 5.10 shows that the quark density depends strongly on the chemical potential.
Its behavior is linked to the effective mass m∗. Recall the quasiparticle relation for
the density (3.10), ρ ∼ k3

F = (µ2 − m∗2)3/2. Since m∗ is a function of the chemical
potential, the explicit cubic µ dependence of ρ is enhanced where the quark mass
changes rapidly, i.e., in the region of the chiral phase transition. The short-range
effects are strongly density dependent since they are generated by interactions with
the medium. At low densities, the correlations remain weak. Consequently, they have
little influence on the gap equation. Only when the chemical potential – and thus the
density – increases, the short-range effects become relevant and deviations from the
mean-field models can be observed in Fig. 5.10.

The density dependence of the short-range effects also explains the difference be-
tween the O(1/Nc) approach and the naive calculation with a constant width in
Fig. 1.3. There, a value of Γ0 = 28 MeV has been chosen since that is just large
enough to turn the first-order phase transition into a crossover. As we will see later
in Section 5.6, a width of 28 MeV might be realistic for quarks in the chirally restored
phase. In the chirally broken phase, however, the same width overestimates the ef-
fects of the short-range correlations. Thus, only the low mass solutions of the gap
equation change strongly enough in the present approach. The large mass solutions
stay closer to the quasiparticle result so that we do not find a crossover.

The relations between the quark mass, the density and the short-range correlations
have considerable influence on the iterative calculations. When a calculation at µ =
329−330 MeV – that ends up in the chirally restored phase eventually – is initialized
with a large quark mass of 250− 330 MeV and a small width, the system will stay in
the chirally broken phase for a few iterations. For quasiparticles a stable solution is
nearby. This solution does not exist for quarks with a finite width. Nonetheless, the
thermodynamical potential will be rather flat when the width is small – the system
still “feels” the quasiparticle solution. Hence, the mass will drop only slowly in the
first iterations and the width does not grow very fast. Only when the effective mass
has dropped below 200 MeV after a couple of iterations, the calculation will quickly
converge on the solution in the chirally restored phase that is shown in Fig. 5.10.
Note that the existence of several solutions will also slow down the convergence of the
iterative approach. The thermodynamical potential may become almost constant in
the region of the intermediate solution. When the numerical calculation is initialized
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Figure 5.11: The effective quark mass and the masses of the RPA sigma and pion
as functions of the chemical potential are shown in the left plot. The right
plot shows the corresponding quark density in units of ρ0 = 0.17fm−3. Note
that the results for the RPA sigma and pion lie on top of each other in the
chirally restored phase. The calculation was performed with parameter set 0
from Table 5.1.

in this region, the system is driven only slowly towards one of the stable solutions.

Fig. 5.10 shows not only the quark masses but also the masses of the RPA mesons.
In the Hartree+RPA approximation [Kle92] that is shown in Fig. 2.8, the RPA mesons
have masses of mπ ≈ 140 MeV and mσ ≈ 600− 700 MeV, respectively, in the chirally
broken phase. The sigma mass jumps to ≈ 300 MeV while the pion mass rises to
≈ 200 MeV at the chiral phase transition. At higher µ, the two meson masses increase
and converge (chiral partners). Technically, this effect can be easily explained by the
fact that the difference between the Hartree+RPA sigma and pion is determined by
the effective quark mass, cf. Eqs. (B.6,B.11), which decreases with increasing µ.

The RPA pion of the O(1/Nc) approach has a considerable mass in the chirally
broken phase. The mass of the RPA sigma is rather close to the Hartree+RPA re-
sult. It shows a stronger density dependence than the pion mass. At the chiral phase
transition, the sigma mass does not drop as far as in the mean-field calculation. The
pion mass drops instead of increasing, thus moving towards the mean-field result. At
higher µ, the results resemble the Hartree+RPA result qualitatively and quantita-
tively. The RPA pion and sigma masses come close to each other, and reach a value
of ≈ 460 MeV at a chemical potential of µ = 360 MeV which is 30 MeV above the
phase transition.

Fig. 5.11 shows the results for quark and meson masses and the density that are
found in the chiral limit (m0 = 0) with parameter set 0 from Table 5.1. Again, a
first-order phase transition is found. The results for the chirally broken phase are
rather close to the results that are found using parameter set I – the value of m0

becomes almost irrelevant when the constituent quark mass is large. Working in the
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chiral limit has little influence on the large RPA pion mass in the chirally broken
phase. It is of similar size as in Fig. 5.10. In the Hartree+RPA approximation, the
RPA pion would be massless in the chiral limit. The small differences in the results
for the parameter sets 0 and I can be explained by the different values for the coupling
G and the cutoff Λ. The position of the phase transition is shifted to lower µ since
the two parameter sets generate different effective quark masses, cf. Table 5.1.

Huge differences between the calculations with parameters sets 0 and I exist, of
course, in the chirally restored phase. Chiral symmetry is not explicitly broken by
a finite current quark mass in the results of Fig 5.11. Thus, the symmetry is fully
restored above the phase transition. The Lorentz scalar component of the self-energy
and thus the effective quark mass drop to zero, Σret

s = m̃ = 0. Like in the mean-
field models (2.11), the solution m̃ = 0 for the gap equation exists at all chemical
potentials. This is an important result of the present work. Restored chiral symmetry
is still a good symmetry in the O(1/Nc) approach.

The masses of the RPA sigma and pion are equal in the chirally restored phase.
In the chiral limit, the differences between the RPA polarizations are determined
solely by the Lorentz scalar component of the quark self-energy that vanishes in the
chirally restored phase, cf. Eqs. (3.51,3.52). Note that the Lorentz components Σret

0,v

remain finite when chiral symmetry is restored. This means, in particular, that the
collisional width of the quarks remains finite. At higher µ, when the effective quark
mass becomes very small in Fig. 5.10, the results for the parameter sets 0 and I are
comparable again. The quark density as well as the RPA meson masses have similar
values. Partly, the different values of G and Λ are again responsible for the differences
in the results.

At the end of this section, we take a look at the results for the quark condensate
〈ūu〉 that are shown in Fig. 5.12. The behavior of the quark condensate resembles
that of the effective mass m∗. It has a considerable size at low densities (see Table
5.1 for the vacuum results) and decreases when the density grows. As we can see, the
results in the chirally broken phase are almost equal for both parameter sets. When
parameter set 0 (chiral limit) is used, the quark condensate drops to zero above the
phase transition. The condensate remains finite, when chiral symmetry is explicitly
broken. At a quark density of 8ρ0 it is still on the order of −100 MeV.

5.5 On-shell self-energy

In Section 5.2 we have investigated the collisional broadening of the quark spectral
function qualitatively. In this section we will analyze the short-range correlations
of the quarks on a more quantitative level. The next-to-leading order effects enter
the quark spectral function via the collisional part of the retarded self-energy, i.e.,
Σret(k) − ΣH. For a quantitative investigation of the collisional self-energy we will
restrict ourselves to the on-shell states (2.39). As we have seen in Fig. 5.3, strength is
shifted away from the quasiparticle peaks of the spectral function due to the collisional
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Figure 5.12: The quark condensate 〈ūu〉1/3 as a function of the quark density for
both parameter sets of Table 5.1. The gap in the curves corresponds to the
intermediate range of densities that is skipped at the chiral phase transition,
cf. Fig. 5.10.

broadening. Most of this strength, however, remains in the vicinity of the peaks.
While the self-energy has an interesting structure far off-shell, the influence on the
properties of the medium is limited.

5.5.1 Real part of Σret
s

Fig. 5.13 shows Rem̃os, the real part of the effective mass m̃ret(k) (2.34) on the mass
shell, at five different densities, two below and three above the chiral phase transition.
The curves begin at the on-shell energies that correspond to a quark at rest, kos

0 (0),
for each given density. Since we do not consider quarks with momenta above the
cutoff, the curves end at the on-shell energies kos

0 (Λ) that corresponds to �k = Λ. The
results for the antiquark states are not shown explicitly in Fig. 5.13. They are very
close to the results for the quark states.

The energy and momentum dependence of the on-shell mass is obviously weak. The
curves have a simple structure, the mass just increases slightly towards higher energies
and momenta. For all shown densities, the effective mass of a quark at rest differs by
only 4 − 5% from the mass of a quark with |�k | = Λ. The weak energy dependence
of Rem̃os is due to the large constant contribution from the Hartree self-energy. The
values of m0 + ΣH are indicated in Fig. 5.13 by the thin lines. These contributions
account for 76 − 84% of the total effective masses. The Fock self-energy ΣF

s that
is included in the meson exchange diagram provides another constant contribution
to m̃ret(k). It is related to the Hartree self-energy by ΣF

s = 1
2Nf Nc

ΣH ≈ 0.1 ΣH,

cf. Eq. (3.7). Adding up m0+Σmf + ΣF, we find that 80−90% of Rem̃os are determined
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Figure 5.13: The on-shell real part of the effective quark mass m̃ret (thick lines), i.e.

Rem̃ret(k0, |�kos(k0)|), shown for the quark states at five different densities in the
chirally broken (0.5ρ0, ρ0) and restored phase (4ρ0, 5ρ0, 6ρ0). Parameter set I
from Table 5.1 was used in the calculations. The thin lines indicate the constant
contributions from m0 + ΣH.

by constant contributions on the mean-field level (to be more precise: 82 − 86% in
the chirally broken phase and 83 − 90% in the chirally restored phase).

The remaining 10 − 20% of the total on-shell mass are generated by short-range
correlations. Recall that the O(1/Nc) coupling – and thus the Hartree self-energy
– has been lowered by 22% in comparison to the Hartree coupling. Hence, we can
conclude that the collisional self-energy Re Σret

s just replaces the missing mean-field
contributions without generating new effects.

5.5.2 Real part of Σret
0

The γµ-components of ReΣret
os readjust the position of the on-shell peaks in the spec-

tral function, cf. Eq. (2.36). We will not discuss Re Σret
v,os explicitly here since it

remains small in comparison to the other components and to �k (Re Σret
v,os /|�k | < 0.03

for quarks and < 0.07 for antiquarks at all densities). ReΣret
0,os is shown in Fig. 5.14

for the quark and antiquark states. In the chirally broken phase, ReΣret
0,os is almost

density independent. The energy dependence of Re Σret
0,os is moderate. It is approxi-

mately antisymmetric in k0 – up to a small positive shift1 – and has opposite signs for
the quark and antiquark states. Thus, it cannot be absorbed into a redefined chemical
potential like the constant Re Σret

0 = ΣF
0 of the Hartree–Fock approach. The overall

influence of Re Σret
0,os on the spectral function remains limited in the chirally broken

1ΣF
0 and ΣF

eff,0 vanish in the vacuum and remain small at low µ as discussed in Sections 3.1 and
3.8.
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5.5 On-shell self-energy

Figure 5.14: On-shell real parts of Σret
0 for the quark and antiquark states. See Fig. 5.13

for details.

phase. It is one order of magnitude smaller than the effective mass. In addition, we
find |Re Σret

0,os /k0| < 0.07.

In contrast to the decreasing effective mass, ReΣret
0,os becomes larger in the chirally

restored phase. When parameter set I is used, Re Σret
0,os will be on the order of Rem̃os.

The overall energy dependence increases and the approximate antisymmetry is com-
pletely lost. Note that the density dependence has enhanced for the quark states but
is still moderate in the antiquark sector. ΣF

eff,0, the non-dispersive contribution to
Re Σret

0,os is on the order of 10 − 25 MeV. At low energies, Re Σret
0,os is of similar size

and has the same sign for quarks and antiquarks. Thus, both peaks of the spectral
functions are shifted to higher energies. This shift can be clearly observed in the cuts
for small three-momenta in Fig. 5.5.

The bump in the antiquark sector at k̄0 ≈ 120 MeV (right panel of Fig. 5.14) is gen-
erated by the contributions to the self-energy from process 4.1(c), i.e., the generation
of a bound qq̄ state. In the chirally restored phase, this process moves into the region
of the on-shell peak of the antiquarks. Due to the higher quark mass, this was not the
case in the chirally broken phase. As we have already observed in Section 5.2.2, the
processes involving bound qq̄ states (see Fig. 4.1) have no influence on the on-shell
self-energy in the quark sector (this also holds for the width, cf. Fig. 5.15). The results
for the on-shell self-energy of the quarks are independent of the RPA pion mass.

The considerable size and the strong energy dependence of Re Σret
0,os in the quark

sector lead to the conclusion that the properties of the medium are modified in com-
parison to the Hartree and Hartree–Fock+RPA approximations. There, Re Σret

0,os is
zero or has a constant value. Shifting the quark on-shell peaks with respect to the
(fixed) chemical potential µ has influence on the quark mass and density. Conse-
quently, the properties of the chiral phase transition are modified. Since ReΣret

0,os

has larger values and a stronger energy dependence at high densities, the impact on
the solutions of the gap equation is stronger in the chirally restored phase. In other
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Figure 5.15: On-shell width Γ0 of the quark and antiquark states. See Fig. 5.13 for
details.

words, the changes of the lower part of the (inverted) “S” shaped curve in Fig. 1.3
are larger than those of the upper part. This is agreement with our observations in
Section 5.4.

5.5.3 On-shell width

We turn now to the imaginary part of the self-energy. To check how much strength
is shifted away from the quasiparticle peaks in the spectral function, we have to
investigate the on-shell width of the quarks. We restrict ourselves here to Γ0 since
it is much larger than the two other Lorentz components of the width. In Fig. 5.15,
the on-shell width Γos

0 is shown for the same five densities as the real parts of the
self-energy in Figs. 5.13 and 5.14.

Like in the cuts for constant three-momenta, the width vanishes at k0 = µ. Phase
space opens for scattering processes above and below the chemical potential – in the
vicinity of µ we find an approximately quadratic energy dependence. The width of the
populated quark states can be found below k0 = µ. It is generated by process 4.3(c).
Below the chiral phase transition – at low densities – the few populated states are
close to the Fermi energy. Consequently, the width of those states does not become
much larger than 1 MeV. The states above the Fermi energy as well as the antiquark
states can acquire much larger width of 10 − 20 MeV. We find an approximately
linear density dependence of the width for those states. This is not surprising since
the relevant processes 4.3(a) and 4.3(e) both involve one quark from the medium as
scattering partner.

Above the chiral phase transition, i.e. for the densities ≥ 4ρ0 in Fig. 5.15, the region
of populated states is much larger than below the phase transition. The width of those
states increases up to 10 − 20 MeV. It drops at low k0 since the lower threshold for
process 4.3(c) is approached, cf. Chapter 4. Like in the chirally broken phase, the
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Figure 5.16: The density dependence of the on-shell quark width Γ0 at two fixed
energies k0 − µ above the chemical potential.

width of the free quark states and the antiquark states is even larger.

The density dependence of the width becomes rather weak in the chirally restored
phase. The curves for 5ρ0 and 6ρ0 are almost identical in the proximity of the chemical
potential. We can interpret that as a saturation of the short-range effects at high
densities. This is agreement with our estimates for the density dependence of the
scattering diagrams in Section 4.3. At higher densities, the effects of Pauli blocking
and the cutoff become more important. We can observe the same effect for nucleons
in nuclear matter at nucleon densities of a few times ρ0, see Figs. 6.16 and 6.18 in
Chapter 6. There, we will also discuss calculations without Pauli blocking to verify its
connection to the saturation. As Fig. 6.20 shows, the correlations in nuclear matter
do not saturate when Pauli blocking is switched off in the calculations.

At low densities, the density dependence of the quark–quark collision process 4.1(a)
should be given by the relation Γ = ρσv, where σ is the total cross section and v is the
relative velocity of the two scattering partners. As we have seen in Section 4.4, the
on-shell width above the chemical potential is solely determined by process 4.1(a).
Thus, we can use the on-shell width at energies above the chemical potential for a
check up to which densities this approximation is valid. In Fig. 5.16, we show the
density dependence of the on-sell width at two fixed energies (relative to the chemical
potential). In agreement with the results from Fig. 5.15, we observe an approximately
linear density dependence of the width in the chirally broken phase and a saturation
of the width above the phase transition for both energies. This leads to the conclusion
that the approximation Γ = ρσv works well for densities up to (at least) 2ρ0.

It is difficult to relate the velocity dependence of the on-shell width to the ap-
proximation Γ = ρσv. This has two reasons. First, the quark width drops to zero
at the chemical potential where the quarks have a finite velocity kF/µ. Second, the
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cross-section is velocity dependent (recall that the scattering amplitude of process
4.1(a) corresponds to the four-momentum dependent |∆ret

l |2). Thus, we find – even
at low densities – only very small regions where the width shows a linear velocity
dependence. To get a feeling for the typical strength of the quark–quark interactions,
we can determine average values for σv from the slope of the curves in Fig. 5.16. For
k0 − µ = 100 MeV, we obtain a value of 〈σv〉 = 1.2 mb and for k0 − µ = 200 MeV
a value of 〈σv〉 = 2.5 mb. Those values appear reasonable for processes governed by
the strong interaction.

5.6 Average quark width

For a better understanding of the density dependence of the width, we will now
investigate the average width of the populated quark states 〈Γpop

0 〉 and the average
width of all quark states 〈Γall

0 〉 (excluding antiquarks, see Appendix E.2.1). We define
the average width of the populated states as

〈Γpop
0 〉 =

∫ Λ

0
dkk2

∫∞
Rek̃0=0

dk0Γ0(k)A0(k)nF(k0)∫ Λ

0
dkk2

∫∞
Rek̃0=0

dk0A0(k)nF(k0)
. (5.2)

In the numerator we weight the width with the spectral function and integrate over
all populated states. The result is normalized by the quark density (3.9) in the
denominator. As usual, the three-momentum is regularized by the cutoff Λ. The
average width of all quark states is found by removing the distribution functions
from the integrands in (5.2),

〈Γall
0 〉 =

∫ Λ

0
dkk2

∫∞
Rek̃0=0

dk0Γ0(k)A0(k)∫ Λ

0
dkk2

∫∞
Rek̃0=0

dk0A0(k)
. (5.3)

Due to the weighting with the spectral function, the contributions from the on-shell
width will dominate the integrals in the numerators of (5.2,5.3). Nonetheless, the
off-shell states are also taken into account. If the width becomes large in an off-shell
region – recall the huge bumps in Fig. 5.3 – this has also influence on the average
width.

5.6.1 Average width of the populated states

In Fig. 5.17 the average widths 〈Γpop
0 〉 and 〈Γall

0 〉 from calculations with both parameter
sets of Table 5.1 are shown. The gap at ρ ≈ 2 − 4ρ0 corresponds to the chiral phase
transition where the quark mass drops and the density increases discontinuously.
The intermediate solutions of the gap equation are numerically not accessible in
our approach since the iterative procedure does not converge on those solutions,
cf. Section 5.4.
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5.6 Average quark width

Figure 5.17: The average width of the populated quark states (left panel) and of all
quark states (right panel). The solid lines show the results for parameter set I,
the dashed lines the results for parameter set 0 from Table 5.1.

We find that 〈Γpop
0 〉 remains smaller than 2 MeV in the chirally restored phase. The

results for the two parameter sets do not differ significantly. In the present approach,
the width in the region 0 < k0 < µ is generated solely by the scattering process 4.3(c),
see Sections 4.4 and 5.2 for details. This process depends on two scattering partners
from the medium. Each incoming quark from the medium introduces a linear density
dependence into the total collision rate. As we have already estimated in Section 4.3,
we find an approximately quadratic density dependence of 〈Γpop

0 〉 below the phase
transition. In this region the quark density is low and the damping effect of Pauli
blocking remains weak. At zero density the average width vanishes due to the lack
of scattering partners.

At the chiral phase transition, both, the density and the average width increase
by a factor of 2 − 3. The density dependence of 〈Γpop

0 〉 weakens significantly in the
chirally broken phase, it is not even linear at high densities. The average width does
not exceed 10 MeV at a density of 8ρ0. This is just the saturation effect that we have
expected from the results for the on-shell width in Fig. 5.15.

The weakened density dependence of 〈Γpop
0 〉 in the chirally restored phase is the

consequence of Pauli blocking and the cutoff. We have discussed in Section 4.3 that
– in the Hartree approximation – the cutoff becomes relevant for process 4.3(c) only
above the chiral phase transition, where µ > EΛ/2. Using parameter set I in the
present approach, we find a value of EΛ ≈ 653 MeV in the chirally broken phase
(ρ = 1.5ρ0) and a value of EΛ ≈ 628 MeV in the chirally restored phase (ρ = 3.7ρ0)
at a chemical potential of 327 MeV. Note that EΛ = kos

0 (Λ) has been determined
numerically from (2.39), not using the simple expression

√
Λ2 + m∗2 but including

also the shifts from the real parts Re Σret
µ . As we can see, the chemical potential

crosses the threshold µ = EΛ/2 at the phase transition. The results for the chirally
restored phase differ in size and shape for the two parameter sets. The differences
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can be attributed to the effective quark masses in this phase. While the quarks are
massless in the chiral limit (parameter set 0), they still have mass of a few tens of
MeV when parameter set I is used.

5.6.2 Average width of all quark states

When we calculate the average width of all states 〈Γall
0 〉, we find significantly larger

values than for 〈Γpop
0 〉. The contributing processes are 4.3(a) and 4.3(c) in the region

of the on-shell states below EΛ and 4.1(a), 4.3(b) at higher energies close to and
above EΛ, cf. Chapter 4. Due to the (off-shell) decay processes 4.3(b) and 4.1(a),
the average width 〈Γall

0 〉 does not vanish at zero density. These processes require
no scattering partners from the medium. They provide a constant contribution to
the width as long as the density is low and Pauli blocking not too important. The
main contributions to 〈Γall

0 〉 are generated by the width of the on-shell states that are
favored in the integral (5.3). In the chirally broken phase there exist substantially
more free than populated on-shell states. Thus, process 4.3(a) will yield the largest
contributions to 〈Γall

0 〉. This process involves only one scattering partner from the
medium. Consequently, we find an approximately linear density dependence of 〈Γall

0 〉
for the chirally broken phase in Fig. 5.17. The width grows up to 20 MeV.

In the chirally restored phase, 〈Γall
0 〉 shows a very interesting behavior. This can

best been seen in the result for parameter set I. Right above the phase transition, the
linear increase of 〈Γall

0 〉 turns smoothly into a decrease. We cannot see the turnover
region for parameter set 0. Due to the larger and less smooth change of the quark
mass at the phase transition, it has most likely the shape of a sharp bend. As we have
suspected in Section 4.3, the effects of Pauli blocking and the cutoff in the scattering
process 4.3(a) yield a decrease of the collision rate. The almost instant change of the
density dependence can be attributed to the dropping of EΛ at the phase transition.

At first glance, the behavior of 〈Γall
0 〉 seems to contradict the results from Fig. 5.15.

However, this is not the case. To understand the decrease, we have to recall the
definition of the average width. The factor k2 in the integrals of Eq. (5.2) gives the
width at large three-momenta a higher weight than at low momenta. The density of
states increases with �k2 and not with |�k |. When the chemical potential – and thus the

Fermi momentum – rises, the range of free states (kF < |�k | < Λ) decreases. This is,
however, the region where the width has the largest values. To illustrate this effect,
we show k2Γ0(k) as a function of the three-momentum in Fig. 5.18. The curve for 5ρ0

clearly provides larger contributions to the average width 〈Γall
0 〉 than the curves for

6ρ0 and 8ρ0. The width may become larger than the 5ρ0 result at higher momenta
beyond the cutoff. However, this region is not covered by the integrals in (5.3). It is
of little importance here that the on-shell width in the region below kF is larger at
higher densities.
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Figure 5.18: On-shell width Γ0 of the quark states multiplied with k2 at three differ-
ent densities above the chiral phase transition. The curves end at the three-
momentum cutoff Λ. Parameter set I from Table 5.1 was used in the calcula-
tions.

5.6.3 Further remarks

The results for the average width appear rather small in comparison to Figs. 5.4,
5.5, and 5.15. They are, however, not too different from the nuclear matter results
in Chapter 6. At zero temperature and normal nuclear matter density, we find an
average width of the populated nucleon states of 6 MeV, cf. Fig. 6.18. For a three
times higher density, a width of 16 MeV is found. Of course, nucleon and quark widths
should not be compared directly – in particular since the masses differ significantly.
The quantitative agreement, however, indicates, that the short-range correlations are
of similar importance for quarks in quark matter as they are for nucleons in nuclear
matter.

At this point, we come back to the results of Section 5.4. We have found there that
the chiral phase transition does not turn into a smooth crossover like in the naive
Hartree–Fock calculation with a finite width that is shown in Fig. 1.3. In the simple
extension of the mean-field model, we have used a constant width of Γ0 = 28 MeV.
That is the minimum value to turn the first-order phase transition into a crossover in
this approach. As we see in Fig. 5.17, the realistic value for 〈Γpop

0 〉 is more than one
order of magnitude smaller in the chirally broken phase near the phase transition.
Hence, it is not very surprising that we do not find a crossover but only a first-order
phase transition with a gap that is smaller than in a pure mean-field calculation.

In Section 4.4.2, we have found that the on-shell quark width in the chirally broken
phase is suppressed by the too large pion mass of our approach. We have estimated
that the upper limit for this suppression is one order of magnitude. However, the
real suppression should be smaller. We can conclude that a calculation with a more
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realistic pion mass could still yield a first-order phase transition, however, with a very
small mass gap.

We note that the average width is strongly temperature dependent in nuclear mat-
ter, see Fig. 6.17 in Chapter 6. A similar behavior can be expected for quark matter.
This should lead to a stronger influence of the short-range correlations on the chiral
phase transition at finite temperatures. Such a study is, however, beyond the scope
of the present work.

5.7 Momentum distribution

The short-range correlations manifest themselves in the spectral functions by the
broadening of the on-shell peaks and the existence of off-shell states even far away
from the peaks. Those states can be easily identified in the cuts of the spectral
function in Figs. 5.4 and 5.5. To estimate the importance of the off-shell states,
we will investigate the momentum distribution of the quarks in the medium. The
momentum distribution n(|�k |) is closely related to the density (3.9). It is found by
integrating the quark spectral function over the region of the populated states at fixed
three-momentum,

n(|�k |) =
1

π

∞∫
Rek̃0=0

dk0A0(k)nF(k0) . (5.4)

The factor 1/π has been chosen to normalize the momentum distribution, cf. (D.6).
Note that the above definition is – like the definition of the density (3.9) – only an
approximation that is introduced for numerical reasons. We show in Appendix E that
the exact definition (E.15) yields strong numerical fluctuations, in particular above
the Fermi momentum (see Figs. E.3 and E.4).

In a mean-field approach, the spectral function is determined by sharp quasiparticle
peaks (4.1). The momentum distribution corresponds then to that of a free Fermi gas,

n(|�k |) = nF(|�k |): At zero temperature, the (quasiparticle) momentum distribution is

given by a step function Θ(kF −|�k |) that drops from 1 to 0 at the Fermi momentum.
The finite width of the quarks modifies the simple mean-field picture. At momenta

below the Fermi momentum kF , the off-shell states shift some strength of the –
normalized – spectral function away from the peaks to energies above the chemical
potential. This leads to a depletion of the momentum distribution below kF since
the off-shell states above the chemical potential are not populated. Above the Fermi
momentum, on the other hand, the off-shell states shift some strength back into the
region below the chemical potential. Those states are populated and yield – even
at zero temperature – finite contributions to the momentum distribution above kF ,
the so-called high-momentum tail. The depletion below kF and the high-momentum
tail can be interpreted as a universal measure for the short-range correlations in the
medium. We can use them not only to estimate the importance of the short-range
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Figure 5.19: The momentum distribution of quarks in quark matter, using parameter
set I from Table 5.1. The solid and the dashed line correspond to quark matter
at densities below the chiral phase transition, the other lines to quark matter
above the phase transition.

effects in quark matter at different densities, but also to compare the short-range
effects in quark matter to those in nuclear matter.

In Fig. 5.19 we show the momentum distribution in quark matter at two densities
below and three densities above the chiral phase transition. As expected for an
infinite system at zero temperature, we find a sharp step at the Fermi momentum2

[DVN05]. The density dependent high-momentum tail is located at momenta above
kF . Recall that the quark width in the range 0 < k0 < µ is generated by process (c) of
Fig. 4.3. As we have already discussed before, the density dependence of this process
is quadratic in the chirally broken phase and weakens above the phase transition due
to Pauli blocking, cf. Fig. 5.17. This behavior is reflected in the density dependence
of the momentum distribution. While the high-momentum tails at the two lower
densities differ significantly in size, the results for the higher densities in the chirally
restored phase are very close to each other.

At low momenta, the momentum distribution has values of approximately 0.94
below and 0.89 above the chiral phase transition. The values do not differ significantly
for the individual densities in both phases. The discontinuity at the Fermi momentum,
n(k−

F )−n(k+
F ), has a value of 0.82−0.85 for the two lower densities and a value of 0.72−

0.75 for the three higher densities. These results can be readily compared to the well
established values for nucleons in nuclear matter [DVN05]. At zero temperature and
normal nuclear matter density, the depletion of the nucleon momentum distribution
is on the order of 15−18%, see e.g. [VDPR93, BBG+92, CdAS96]. The discontinuity

2The quarks are quasiparticles at the Fermi energy, cf. Figs. 5.4 and 5.5. Since the on-shell peak of
the spectral function has no width there, the full strength of the peak crosses the Fermi energy
at kF instantaneously.
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Figure 5.20: Momentum distribution for calculations at two different densities above
the chiral phase transition. Results from [FLM03b], using the parameter set 0
from Table 2.1 (mean-field parametrization) and restoring chiral symmetry by
hand.

at the Fermi momentum has a size of approximately 0.7−0.75 [Bȯz02, BFF92, DB04].
We can conclude that the short-range effects in quark matter in the chirally restored
phase are of similar size as in normal nuclear matter. In the chirally broken phase,
where the quarks reach the same particle number density ρ0 as the nucleons at normal
density, the correlations are slightly smaller for the quarks.

It is also interesting to compare the results of the present O(1/Nc) approach to
our previous calculations [FLM03b] using only the Born diagrams in the calculation
of the self-energies. Fig. 5.20 shows the momentum distributions from [FLM03b] for
massless quarks at two different densities. The high-momentum tails are significantly
smaller than in the O(1/Nc) approach. The 3ρ0 result of Fig. 5.20 is more than
one order of magnitude smaller than the 4ρ0 result in Fig. 5.19. This finding is in
agreement with the observations that we have made for the quark width in Section 5.2.
A density of 9ρ0 in the Born approach is needed to generate short-range effects on the
same level as in the O(1/Nc) approach at the much lower densities of 0.5ρ0−1ρ0. This
confirms again that the Born approximation, an expansion in terms of the coupling,
is not well suited for calculations with the NJL model. In comparison to a consistent
expansion in the number of colors, we have missed significant contributions to the
collisional self-energies in [FLM03b].
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and finite temperatures

An interesting but only partially explored problem of nuclear many-body theory are
the contributions from short-range correlations to the binding properties of nuclear
matter and finite nuclei. The long-range correlations that determine the bulk proper-
ties – like the binding energies – of nucleons in nuclei and nuclear matter, are usually
treated on the mean-field level. The nucleon–nucleon interaction, generated by meson
exchange, is attractive at long ranges. At short distances, however, the interaction
becomes strongly repulsive and may induce effects that can not be described in the
framework of a mean-field model.

Short-range effects in finite nuclei can be observed experimentally, for example,
in nucleon knockout reactions (see, e.g., [DdWH90, CdAPS91]). To illustrate the
role of the short-range correlations, we show the excitation energy spectrum of the
reaction 12C(e, e′p)11Be in Fig. 6.1 [dWH90]. The three peaks at the lowest energies
correspond to proton knockouts from the 1p shell of 12C. This is in agreement with the
(mean-field) shell model that predicts that those states are populated. The additional
peaks that can be found at higher energies (EX > 6 MeV) correspond to the knockout
of protons populating 2s1/2 (1/2+) and 2d (5/2+, 3/2+) states in the residual 11Be

Figure 6.1: The spectral function found in the 12C(e, e′p)11Be nucleon knockout reac-
tion as function of the excitation energy. (Figure taken from [dWH90].)
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nucleus. According to the single-particle shell model, these shells are not populated
in 12C, cf. [DdWH90]. The observation of the spectral lines in the experiment is thus
a clear sign of short-range effects that go beyond the mean-field picture of the shell
model.

Of particular interest for various regions of nuclear physics ranging from heavy ion
collisions to astrophysical processes is the density and temperature dependence of the
short-range correlations in nuclear matter. In heavy ion collisions like those planned
at the Compressed Baryonic Matter facility at GSI [GGHM01], temperatures of sev-
eral tens of MeV and densities of several times the nuclear matter saturation density
ρ0 are reached. Very similar conditions are encountered in the formation of neutron
stars in supernova explosions, where nucleon correlations may have considerable in-
fluence on the emitted neutrino spectra [Saw95, RPLP99]. So far, there has been no
consistent investigation of the properties of the nucleon spectral function that covers
the full temperature and density range of those scenarios. Only a few studies exist for
densities from half to twice ρ0 and temperatures up to 20 MeV [ARFdCO96, Bȯz99].

Below, we will extend the approach to short-range correlations in nuclear matter
presented initially in [LEL+00, LLLM02] to the more general cases of arbitrary tem-
peratures and densities. The self-consistent calculation of Lehr et al. is based on
the two-particle–one-hole (2p1h) and one-particle–two-hole (1p2h) sunset diagrams.
The short-range part of the NN interactions is approximated by an averaged matrix
element. The previously obtained results at zero temperature and saturation density
have turned out to be in surprisingly good agreement with much more sophisticated
and numerically extremely involved, “state-of-the-art” calculations utilizing the full
machinery of modern nuclear many-body theory [BFF92, BBG+92].

Different from [LEL+00, LLLM02], we require a reliable description of the static
mean-field self-energy, i.e. the long-range correlations, in our approach. This is essen-
tial to obtain consistent results at all T and ρ. Calculations for the equation of state
for dense matter and finite temperatures have been made using microscopic Hamil-
tonians, see e.g. [Wir88, FP81]. In our model, however, we incorporate the static
properties of the mean-field by an empirical, Skyrme-type energy density functional
[Sky59, BFvGQ75, VB72].

It is important to point out that our approach becomes unphysical at higher tem-
peratures and densities. In the scattering processes that generate the nucleon width,
we consider only nucleons in the incoming and outgoing channels. We do not take
into account that it becomes possible to excite nucleon resonances at higher temper-
atures. Such resonances, however, may reach final states that are Pauli blocked for
nucleons when the density is large – and thus enhance the width. We will come back
to this point at the end of the chapter. There, we will show that the influence of
resonance does not become too large in the temperature and density range that we
cover in this work.

In the following, we will present our approach to the short-range correlations in hot
and dense nuclear matter. After introducing the self-consistent calculation scheme
and discussing the structure of the employed short-range interaction, we will show how
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the mean-field self-energy is introduced into our model. We will also comment on the
short-range behavior of realistic NN potentials (at zero temperature) in comparison to
our averaged matrix element. The results of our numerical calculations will show that
the short-range correlations have an interesting temperature and density dependence
that can be explained – to a large extent – by Pauli blocking. Note that a shorter
version of this chapter can be found in [FLM03a].

6.1 The model

6.1.1 Self-consistent approach

The basis of our approach to short-range correlations in hot and dense nuclear matter
are the direct relations between the nucleon self-energies and the full in-medium
propagators that can be used for a self-consistent, i.e. iterative, calculation. We
use – like in the quark case – the real-time formalism [Dan84, BM90, Das97] in
our calculations. Hence, the nucleon propagators (Sc, Sret, S≷, . . .) and self-energies
(Σc, Σret, Σ≷, . . .) have formally the same structure (in terms of the fields) and are
related in the same ways as the quark propagators and self-energies introduced in
Sections 2.6 and 2.8, respectively. Because they are of equal validity for fermions,
we can reinterpret the quark relations of those sections as nucleon relations here.
Below, we will also come back to the results of Chapter 4, where the correspondence
of the collisional quark self-energies to collision and decay rates is investigated on the
quasiparticle level. Some of the thresholds that were determined in Section 4.2.2 can
be readily mapped to the nucleon self-energies.

The much larger mass of the nucleons in comparison to the quarks allows us to
perform the investigation of nuclear matter in a non-relativistic scheme. This sim-
plifies the calculations considerably: The nucleon spectral function and self-energy
become scalar functions of energy and momentum without a complicated Lorentz
structure (in the non-relativistic limit, the expressions in Eqs. (2.23,2.52) reduce to
their γ0-components). Antiparticles do not contribute. Note that we consider only
symmetric nuclear matter in thermodynamical equilibrium here and work in the rest
frame of the medium.

We will now discuss the individual components of our approach – in the same order
as they occur in the calculations. Let us begin with the non-relativistic, retarded
nucleon propagator (2.18). The full in-medium propagator is explicitly given by,
cf. (2.33),

Sret(ω, k) =
1

ω − k2

2m
− Σret(ω, k)

. (6.1)

Using this propagator, we find for the single-particle spectral function (2.26)

A(ω, k) = −2Im Sret(ω, k) =
Γ(ω, k)

(ω − k2

2m
− Re Σret(ω, k))2 + 1

4
Γ2(ω, k)

, (6.2)
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where Γ(ω, k) = −2Im Σret(ω, k) is the width of the spectral function. As shown in
Appendix D, the spectral function is normalized, see Eq. (D.6) for A0 (non-relativistic
limit). The correlation functions S> and S<, cf. (2.17), are closely related to the
spectral function. They are essential components of our approach since they enter
into the collisional self-energies. Introducing the fermionic phase space distribution
function nF(ω, k), we find the relations

S<(ω, k) = iA(ω, k)nF(ω, k) ,

S>(ω, k) = −iA(ω, k)[1 − nF(ω, k)] .
(6.3)

Recall that we have identified −i S<(ω, k) and i S>(ω, k) with the density of occupied
(particle) and free (hole) states at a given energy and momentum in Section 2.6.3.

In thermal equilibrium, nF will not depend on the momentum but only on the
energy, the temperature, and – through the chemical potential ωF – on the density
of the system,

nF(ω) =
1

e(ω−ωF )/T + 1
. (6.4)

The previous calculations in [LEL+00, LLLM02] were – like our approach to quark
matter, cf. (3.17,3.23) – greatly simplified by the fact that the Fermi distribution re-
duces to a step function at zero temperature (2.29). This is, of course, not the case in
the present approach. Here, we have to take into account that the distribution func-
tion does not drop discontinuously at the chemical potential but turns into a smooth
transition for finite temperatures. This affects mainly the numerical calculations.
They become more involved because the limits of integrals over the propagators S≷

(6.3) cannot be shifted from +∞ of −∞ to ωF .
We turn now to the self-energy that enters the propagator in Eq. (6.1) and the

spectral function in (6.2). It follows from the considerations in Section 2.8.1 that
the nucleon self-energy can be split up into a time-local mean-field part Σmf(1, 2) ∼
Σ(1)δ(t1 − t2) and a collisional part that is generated by the (non-time ordered)
self-energies Σ≷,

Σret(1, 2) = Σmf(1, 2) + Θ(t1 − t2) [Σ>(1, 2) − Σ<(1, 2)] .

The purely real Σmf contains the contributions to the self-energy arising from ground
state tadpole diagrams which describe mainly the static Hartree–Fock mean-field. In
a perturbative expansion, the leading order contributions are the Hartree and the
Fock diagram that are shown in the first line of Fig. 6.2.

The short-range correlations – in which we are mainly interested here – are gener-
ated by the collisional self-energies Σ≷ that yield non-hermitian contributions to Σret.
In leading order, i.e. on the two-particle–one-hole (2p1h) and one-particle–two-hole
(1p2h) level, the collisional self-energies Σ≷ correspond the Born diagrams shown
in the second line of Fig. 6.2. Like in [LEL+00, LLLM02], we will determine the
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6.1 The model

Figure 6.2: First and second order contributions to the nucleon self-energy. The time-
local Hartree and Fock self-energy diagrams in the first line are the leading
order contributions to the mean-field self-energy. The direct and the exchange
Born diagram in the second line yield complex contributions to the self-energy
and generate the short-range correlations in our approach.

short-range effects from those diagrams – using full in-medium propagators – in our
approach.

For the calculation of the collisional self-energies, a direction has to be assigned to
each of the nucleon lines in the Born diagrams. This has been shown in Fig. 4.2 for
the quark self-energies (4.17). Using the Feynman rules of the real-time formalism
(see Appendix C), we find

Σ≷(ω, k) = g

∫
d3pdωp

(2π)4

d3qdωq

(2π)4

d3rdωr

(2π)4
(2π)4δ4(k + p − q − r)

× |M|2 S≶(ωp, p) S≷(ωq, q) S≷(ωr, r) , (6.5)

with the short-hand notation

δ4(k + p − q − r) = δ(ω + ωp − ωq − ωr)δ
3(�k + �p − �q − �r )

for energy and momentum conservation. g = 4 is the nucleonic spin-isospin degen-
eracy factor. |M|2 denotes the square of the nucleon–nucleon scattering amplitude
averaged over spin and isospin of the incoming and summed over spin and isospin
of the outgoing nucleons (see [Leh03, KLM05] for details). |M|2 combines the con-
tributions from the direct and the exchange diagram in the second line of Fig. 6.2.
Note that the self-energies and propagators in Eq. (6.5) depend only on the modulus
of the three-momenta and not on their direction since an infinite medium in thermal
equilibrium is considered.

From the collisional self-energies we obtain immediately, cf. (2.50), the imaginary
part of the retarded self-energy and the width that enters the spectral function (6.2),

Γ(ω, k) = −2Im Σret(ω, k) = i [Σ>(ω, k) − Σ<(ω, k)] . (6.6)
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i Σ>(ω, k) ∼

ωp, �p

ω,�k

ωq, �q

ωr, �r

−i Σ<(ω, k) ∼

ωp, �p

ω,�k

ωq, �q

ωr, �r

(a) (b)

Figure 6.3: Scattering processes corresponding to the collisional self-energies i Σ> (loss
rate) and −i Σ< (gain rate). Total collision rates are found by integrating over
the energies ωp, ωq, ωr and momenta �p, �q, �r, cf. Eq. (6.5).

Let us briefly comment on the structure of the nucleon width before we continue to
present our approach. As we have discussed in Section 4.2, the self-energies i Σ>(ω, k)
and −i Σ<(ω, k) can be identified with total collision rates for scattering out of (loss
rate) and into (gain rate) the configuration (ω, k), respectively. The scattering pro-
cesses that contribute to the collision rates are shown in Fig. 6.3, where each incoming
line corresponds to a propagator S< (density of particles) and each outgoing line to a
propagator S> (density of holes) in Eq. (6.5). Note that the expressions in (6.5) resem-
ble those for the quark self-energies in Eq. (4.17) when |M|2 is replaced by ∆ret ∆av.
Particle–hole excitations take over the role of the quark–antiquark excitations, cf.
Fig. 4.2, in the present, non-relativistic approach.

At zero temperature, it follows from simple kinematical considerations (each incom-
ing nucleon from the medium must have an energy lower than ωF and each outgoing
nucleon must have an energy higher than ωF ) that the phase space for both processes
of Fig. 6.3 closes at the chemical potential ωF . Process (a) may only contribute to
Σ> for energies above ωF and process (b) only to Σ< for energies below ωF – this is
a sufficient and necessary condition for a stable ground state. In other words, it is
not possible to scatter into or out of the states at the Fermi energy. Thus, the width
drops to zero and the nucleons at the chemical potential are stable quasiparticles
in cold nuclear matter. (At finite temperatures, the kinematical constraints are less
strict. The width will then be finite at ωF .)

We return now to the presentation of our approach. The real part of the retarded
self-energy and the nucleon width are related by a dispersion relation, cf. (3.24),

ReΣret(ω, k) = Σmf(k) +

+∞

P

∫
−∞

dω′

2π

Γ(ω′, k)

ω − ω′ + const. (6.7)

As we have discussed in Section 3.5, the dispersive calculation of ReΣret should be
favored over the direct calculation from the Feynman diagrams since it ensures that
analyticity is preserved. The energy independent mean-field self-energy cannot be
found dispersively and must be added explicitly. Note that the width will – due
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to our choice of the short-range interaction – not vanish at large energies. This
interferes with the convergence of the dispersion integral in (6.7). Thus, we will drop
the dispersive part of Re Σret, but not Σmf, in Section 6.1.2 to simplify the calculations.

Following the approach of Lehr et al. [LEL+00], we will use a constant scatter-
ing amplitude in the integrals of Eq. (6.5). The details will be discussed in Sec-
tion 6.1.2. While a (repulsive) constant coupling is a sensible approximation to the
short-range part of the NN interaction, it cannot be used to describe the (attractive)
long-range interactions. This means that the diagrams in the first line of Fig. 6.2
cannot be calculated using the same (simple) interaction as those in the second line.
In [LEL+00, LLLM02], this problem could be mostly ignored since calculations were
performed only at T = 0 and ρ = ρ0. Σmf was set to a constant value and absorbed
into a redefined chemical potential. Here, however, we want to determine the tem-
perature and density dependence of the short-range correlations to which long-range
correlations contribute. To obtain consistent results at all T and ρ, we need a reliable
description of the temperature, density, and momentum dependence of the mean-field.

A fully self-consistent (microscopic) approach that deals with the long-range and
the short-range interactions in nuclear matter simultaneously requires the use of a
more realistic – and more complicated – interaction model in the self-consistent calcu-
lation, see e.g. [Bȯz02, FM03]. This would, however, spoil the simple structure of our
approach – which is its most appealing feature. On the other hand, the properties of
nuclear matter have been investigated on the mean-field level in a variety of effective
models that were adjusted to experimental and empirical data. The results of such
an approach can be readily incorporated into our model.

The above considerations lead to the following two-step procedure: We determine
Σmf(k, ρ, T ) from a Skyrme-type energy-density functional (see [SR07] for a recent
review) in the first step. This corresponds to a self-consistent calculation on the
Hartree–Fock level. The details will be discussed below in Section 6.1.3. The short-
range correlations are determined self-consistently in the second step, using a constant
matrix element for the short-range interactions. The mean-field self-energy Σmf – that
has been adjusted to experimental data – is kept fixed in this part of the calculation
and is not be modified by short-range effects.

Our approach can be summarized by the two Dyson–Schwinger equations that are
shown in Fig. 6.4: The equation in the first line generates the self-consistent (Hartree–
Fock) mean-field propagator using a Skyrme-type interaction. In the second equation,
this propagator is used as starting point to determine the full in-medium propagator –
including the short-range correlations – from the Born diagrams. Note that we do not
have to solve the first Dyson–Schwinger equation explicitly. This has already been
done in the derivation of the Skyrme-type energy-density functional. The functional
provides us with an effective mass m∗(ρ) and an effective potential Ueff(ρ, T ) that can
be inserted into the full in-medium propagator (see Section 6.1.3).

The actual self-consistency problem, i.e. the second Dyson–Schwinger equation in
Fig. 6.4, is given by the relations in Eqs. (6.2)–(6.7). Like in the quark case, this
problem cannot be solved directly. Iterative procedures are the appropriate methods
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= × + × + ×

= +

Figure 6.4: The Dyson–Schwinger equations corresponding to our approach. Free
nucleons are denoted by lines marked with ×. Plain single lines denote the
(Hartree–Fock) mean-field propagators, double lines denote the full in-medium
propagators including the short-range effects. The dotted lines represent an
effective long-range NN interaction while the solid dots stand for the constant
scattering amplitude that is used to generate the short-range effects. Note that
the sunset diagram in the second line combines the direct and the exchange
Born diagram.

of solution. Hence, the spectral function is obtained by the following procedure:
Starting with an initial guess for the width in the spectral function A(ω, k), the
integrals of Eq. (6.5) are solved (numerically) to find an improved approximation for
the width Γ. Inserting this Γ(ω, k) into Eq. (6.2) yields an improved expression for the
spectral function that is inserted into (6.5) again. This procedure can be repeated
until convergence is achieved. In the language of Feynman diagrams, the solution
of this self-consistency problem corresponds to the non-perturbative summation of
a whole class of diagrams by reinserting the full in-medium Green’s functions into
the self-energies in the second line of Fig. 6.2. We conclude the presentation of the
self-consistent procedure by illustrating this effect. Fig. 6.5 shows some examples of
diagrams that are automatically resummed by our approach.

6.1.2 Short-range interactions

For a complete definition of our approach, we have to specify the scattering amplitude
M in the collision integrals (6.5). Taking into account the observation of Lehr et
al. [LEL+00, LLLM02] that the short-range correlations primarily depend on global
properties of the interactions on ranges of the (repulsive) vector meson masses and the
available phase space, we will also use a constant matrix element in our calculations,
corresponding to an effective zero-range contact interaction.

The value of M will be chosen independent of temperature and density of the
system. It is noteworthy that until now a description of short-range correlations
– including a fully self-consistent description of the interactions – is still pending,
although first attempts in that direction have been made. In such calculations, e.g. by
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Figure 6.5: Some examples of diagrams that we sum up in our self-consistent cal-
culation. This is neither a systematic not a complete compilation. The lines
correspond to propagators that are dressed with the static mean-field self-energy
only (cf. Fig. 6.4). When full in-medium propagators are used to calculate the
elementary sunset diagram (left diagram in the first line), the other diagrams
are resummed automatically.

the Rostock group [ARS+96] or, more recently, by Bożek [Bȯz99, Bȯz02] significant
variations of the interactions with temperature are not obtained.

When a constant coupling is used, the integrals in (6.5) essentially sum up the
phase space that is available for the collisions shown in Fig. 6.3. In Section 4.2.2,
we have analyzed in detail where phase space opens and closes for the corresponding
quark processes. The results of this analysis, that are summarized in Table 4.2, can be
readily transfered to the present case. While process (b), corresponding to the quark
process in Fig. 4.3(c), is – on the quasiparticle level at zero temperature – restricted
to a finite energy range1, there is no upper threshold for process (a), corresponding
to the quark process in Fig. 4.3(a) (the threshold in Table 4.2 refers to the NJL cutoff
that is not relevant here). This means that the nucleon width will not vanish at large
energies but – due to the increasing phase space volume that becomes available for
scattering – grows when the energy rises.

By physical reasons [Mac89] and in order to enforce the convergence of integrations
involving M and extending over the space of 2p1h and 1p2h configurations, we will
introduce a form factor into the collision integrals in Eq. (6.5). Lehr et al. had
introduced a form factor in [LLLM02] that acts on the total energies and momenta
of the collisions corresponding to Eq. (6.5),

Ftot(ωtot, �ktot) =
Λ4

Λ4 +
(
ωtot +

k2
tot

4mN

)4 , (6.8)

with ωtot = ω + ωp and �ktot = �k + �p. Setting the value of Λ to the free nucleon mass

1The non-relativistic limit of the lower threshold for the process in Fig. 4.3(c) is given by 2ωF −
(2kF + k)2/(2m) < ω.
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6 Nuclear matter at high densities and finite temperatures

Figure 6.6: The influence of form factors on the nucleon width at T = 0 and ρ = ρ0.
The left panel shows results of Lehr et al. [LLLM02] for the nucleon width, cal-
culated with (solid line) and without (dashed line) the form factor of Eq. (6.8),
using Λ = mN = 938 MeV. The right panel shows results of our calcula-
tions with (solid line) and without (dashed line) the t-channel form factor of
Eq. (6.9), using Λ = 1.2 GeV, mµ = 600 MeV, and the constant scattering am-

plitude (|M|2)1/2 = 309 MeV fm3. In all calculations, the dispersive real part of
the retarded self-energy has been neglected.

mN , this form factor did only affect the results for the nucleon width at energies
considerably above the chemical potential (at T = 0 and ρ = ρ0). For the occupied
states below ωF , the results remained unchanged in comparison to [LEL+00] where
no form factor was used.

The effect of the form factor Ftot on the results in [LLLM02] is shown in the left
panel of Fig. 6.6. At large energies, the form factor (6.8) stops the increase of the
width and turns it into a decrease. Due to the strong density dependence of the
chemical potential (see Fig. 6.8), however, this form factor is not a sensible choice
for our calculations. Let us briefly outline the problem (for T = 0): The chemical
potential sets the lower energy limit for the (free) outgoing states that may contribute
to collisions. The form factor Ftot, on the other hand, sets an upper energy limit.
This limit is determined – independent of the chemical potential – by the choice of
Λ. When raising the chemical potential in our calculations, the number of outgoing
states (i.e., phase space) would shrink due to the (fixed) form factor. Consequently,
we would observe a density dependent decrease of the short-range correlations. Note
that we have investigated a similar effect for the quark width – induced by the cutoff
of the NJL model2 – in Section 4.3.1. Since such a density dependence is rather

2In the NJL model, the fixed cutoff also induces the chiral phase transition at higher densities.
Such an effect is, however, out of question here. The form factor affects only the short-range
correlations and not the long-range correlations that determine the bulk properties – like the
effective mass – of the nucleons in the medium.
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artificial, we must not use the form factor Ftot here.
Different to [LLLM02], we follow the common approach and use a form factor

that acts in the t-channel and suppresses processes with large energy and momentum
transfers:

Ft(ωt, �kt) =
Λ4

Λ4 +
(
m2

µ − ω2
t + k2

t

)2 , (6.9)

where ωt = ω−ωq and �kt = �k− �q. The mass mµ ∼ O(mρ) corresponds to the typical
mass of a vector meson exchange in nucleon scattering processes and Λ defines the
scale of the cutoff. Ft has been adapted from one of the form factors that have been
introduced for K-matrix calculations in [FM98]. Note that this form factor has no
poles on the real axis. Unlike the form factor in (6.8), Ft will not lead to a breakdown
of the width at higher energies. It only stops the unlimited growth of Γ(ω, k). This
effect is shown in the right panel3 of Fig. 6.6.

The behavior of the form factor has consequences for the calculation of the disper-
sive real part of the self-energy Re Σret

disp = Re Σret −Σmf. The integral in (6.7) can
only be solved numerically when Γ vanishes at large energies. The convergence of
the dispersion integral may be improved in a subtracted dispersion relation [BD65].
We are presently not interested in contributions of the dispersive real part to the
on-shell condition, i.e., the position of the on-shell peak should not be shifted by the
collisional self-energies. Hence, it is possible to use a subtracted dispersion relation,

Re Σret(ω, k) = Σmf(k) (6.10)

+

(
k2

2m
+ Σmf(k) − ω

) +∞

P

∫
−∞

dω′

2π

Γ(ω′, k)

(ω − ω′)( k2

2m
+ Σmf(k) − ω′)

,

with the on-shell energy k2/2m + Σmf as subtraction point.
Due to the additional factor ∼ 1/ω′, the integral on the rhs. of (6.10) has an im-

proved convergence behavior. Checks have shown, however, that it would still be
necessary to calculate the width up to very high energies – in comparison to the rel-
evant contributions to the collisional self-energies in (6.5) – to obtain a stable result
from the subtracted dispersion relation. In [LLLM02], the importance of the dis-
persive contributions was investigated by performing calculations with and without
Re Σret

disp. Although analyticity is not conserved when Re Σret
disp is neglected [LEL+00],

it was found that overall the results for the spectral functions did not change sig-
nificantly. Taking advantage of this finding, we will ignore the dispersive part for
the present investigations, thus simplifying the calculations considerably. For a full
treatment of Re Σret

disp we refer to [LLLM02] and [Leh03].

3Note that our results are not exactly equal to the results of Lehr et al., even when no form factor is
used. For example, the width rises more slowly at large energies in our calculations. In contrast
to the approach in [LEL+00, LLLM02], we take the momentum dependence of the static mean-
field into account by replacing the vacuum nucleon mass m with an effective mass m∗ in the
spectral function (6.2), see Eq. (6.11) and Fig. 6.8. This leads to the observed discrepancies.
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6.1.3 Mean-field self-energy

In this section we will show how the static mean-field is obtained from a Skyrme-type
energy-density functional. We begin our discussion by rewriting the first term in the
denominator of the spectral function (6.2). Expanding the temperature, density, and
momentum dependent mean-field self-energy up to O(k2) yields

Σmf(k, ρ, T ) ≈ Σmf(kF , ρ, T ) + (k2 − k2
F )Σmf′(kF , ρ, T ) + . . . ,

where kF is the Fermi momentum. The momentum dependent part of Σmf can then
be absorbed into the kinetic energy term in the denominator of (6.2) by introducing

a density dependent effective mass 1
m∗ = 1

m
(1 + 2mΣmf′), as successfully used, e.g., in

Skyrme density functionals [SCM76, BFvGQ75, VB72]. We get

k2

2m
+ Σmf(k, ρ, T ) + Re Σret

disp(ω, k) ∼= k2

2m∗ + Ueff(ρ, T ) + Re Σret
disp(ω, k) , (6.11)

where the effective potential Ueff is the momentum independent part of Σmf and
ReΣret

disp denotes the dispersive real part of the retarded self-energy that can be ob-
tained from the integral on the rhs. of Eq. (6.10).

The net effect of the potential Ueff is a temperature and density dependent energy
shift of the pole structure of the single-particle propagator and hence the spectral
function. The on-shell energy of the nucleons in the medium is determined by the
rhs. of (6.11), cf. (6.2). When a subtracted dispersion relation (6.10) is used or the
dispersive real part is neglected, as discussed in Section 6.1.2, we find

ωos(k) =
k2

2m∗ + Ueff(ρ, T ) , (6.12)

even when short-range correlations are present. For the single-particle spectral func-
tion on the quasiparticle level, Eq. (6.11) yields

Aqp(ω, k) = 2πδ

(
ω − k2

2m∗ − Ueff(ρ, T )

)
. (6.13)

The temperature and density dependence of the single-particle potential in nuclear
matter has been studied before microscopically, ranging from self-consistent Brueck-
ner and Brueckner Hartree–Fock approaches e.g. in [ARS+96, dJL97] to the varia-
tional calculations with 2- and 3-body forces by the Urbana group [Wir88, FP81]. In
a different context, the density and momentum dependence of the variational mean-
field was studied in [Wir88]. A reanalysis of these rather involved mean-field results
by a second order polynomial in k2 − k2

F leads to an almost perfect description of the
momentum dependence with an effective mass of m∗/m = 0.69. This confirms the
effective mass approach utilized in Eq. (6.11). These findings also confirm the use
of a schematic description of the mean-field part, in particular so because the static
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parts of the self-energy are canceled to a large extent in dynamical quantities like
propagators. Hence, we have decided to describe the mean-field in a Skyrme model
[Sky59, VB72, BFvGQ75] for the sake of a most transparent and simple approach. By
this choice thermodynamical consistency is ensured by fulfilling the Hugenholtz-van
Hove theorem [HvH58] at mean-field level.

Effective Skyrme-type interactions are typically used for the investigation of nuclei
in self-consistent Hartree–Fock calculations. The interactions are constructed from
central, non-local, density dependent and spin–orbit terms that incorporate a set of
6−10 free parameters [CBH+97]. When infinite (isospin) symmetric nuclear matter is
considered, the spin and isospin dependent parts as well as the non-local parts of the
interaction can be dropped. Thus, we find for the Skyrme energy-density functional
in standard notation [VB72, BFvGQ75]:

H(ρ, τ) =
τ

2m
+

3

8
t0ρ

2 +
1

16
(3t1 + 5t2)ρτ +

1

16
t3ρ

3 , (6.14)

where t0, t1, t2, and t3 are parameters of the Skyrme interaction. ρ and τ are the
(quasiparticle) nucleon density and the kinetic energy density, respectively. At finite
temperatures they are given by

ρ(ωF , T ) = g

+∞∫
−∞

dωd3k

(2π)4
A(ω, k)nF(ω, T ) ,

τ(ωF , T ) = g

+∞∫
−∞

dωd3k

(2π)4
k2A(ω, k)nF(ω, T ) .

Inserting the quasiparticle spectral function from Eq. (6.13) yields

ρ(ωF , T ) =
g

2π2

∞∫
0

dkk2 1

e(k2−k2
F )/2m∗T + 1

(
T=0−−→ 2

3π2
k3

F

)
,

τ(ωF , T ) =
g

2π2

∞∫
0

dkk2 k2

e(k2−k2
F )/2m∗T + 1

(
T=0−−→ 2

5π2
k5

F

)
,

(6.15)

with the Fermi momentum k2
F = 2m∗(ωF −Ueff ). Note that we do not consider a tem-

perature dependence of the Skyrme parameters [SCM76]. Thus, H is not explicitly
temperature dependent. An indirect temperature dependence is, however, introduced
by the densities ρ and τ .

From the energy-density functional H in (6.14), we readily obtain the effective
potential and the effective nucleon mass in infinite symmetric nuclear matter [SCM76],

Ueff(ρ, T ) =
∂ H

∂ρ
=

3

4
t0ρ +

1

16
(3t1 + 5t2)τ +

3

16
t3ρ

2 ,

1

2m∗(ρ)
=

∂ H

∂τ
=

1

2m
+

1

16
(3t1 + 5t2)ρ .

(6.16)
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Table 6.1: The parameters of the Skyrme force SIII’ [SCM76, BFvGQ75] used in
the calculations. For completeness this table also contains the spin-interaction
parameter x0 and the spin-orbit parameter W0.

t0 t1 t2 t3 x0 W0

[MeV fm3] [MeV fm5] [MeV fm5] [MeV fm6] [MeV fm5]

-1133.4 395 -95 14000 0.49 120

Figure 6.7: The nuclear equation of state for cold (T = 0) symmetric matter as a
function of the total density, based on the set of parameters given in Table 6.1
(solid line). Results obtained with the Lyon-4 Skyrme energy-density functional
[CBH+98] and the variational many-body approach of Akmal et al. [APR98] are
compared.

The effective mass m∗ depends only on ρ and not on τ . Thus, m∗ is temperature
independent when the density is fixed. Furthermore, we find for the energy per
nucleon

E

A
=

H

ρ
=

1

2m

τ

ρ
+

3

8
t0ρ +

1

16
t3ρ

2 +
1

16
(3t1 + 5t2)τ . (6.17)

In our calculations, we will use the parameter set SIII’ from [SCM76, BFvGQ75]. The
parameters are listed Table 6.1. The resulting equation of state for cold symmetric
nuclear matter is displayed in Fig. 6.7. For comparison, we also show the Lyon-4
parametrization [CBH+98] and variational calculations of the Urbana group [APR98].

From Fig. 6.7 it is seen that nuclear matter ceases to be bound beyond a critical
density ρc(T ) > ρ0 where the repulsive kinetic energy term overrules the nuclear
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attraction. For the processes in heavy ion collisions and supernova explosions this is,
however, not a crucial problem. The core collapse of a supernova is not driven by
nuclear, but by gravitational forces. Eventually, the repulsive nuclear potential even
stops the collapse when several times nuclear matter density is reached.

At the end of this section, we take a brief look at the last term of the Skyrme energy-
density functional H in Eq. (6.14). This term corresponds to a density dependent
interaction ∼ t3ρδ(�r − �r ′) and provides saturation [SR07]. In other words, this term
represents a repulsive short-range interaction. Thus, it is interesting to compare the
scattering amplitude of our approach to the scattering amplitude that is generated
by this interaction. Calculating ∂2 H /∂ρ2 and multiplying with 1/4 (our scattering
amplitude has been averaged over spin and isospin, cf. [KLM05]) yields M = 3t3

32
ρ.

For a density of ρ0, we obtain the numerical value M = 223 MeV fm3. This result
supports the choice of the scattering amplitude in our calculation: By comparison
to other calculations, we will obtain a – density independent – value of 309 MeV fm3

that differs by less than 30% from the Skyrme result.

6.2 Numerical Details and Results

6.2.1 Details of the calculation

We have investigated the nucleon spectral function in nuclear matter at temperatures
from 0 to 70 MeV and at densities from the saturation density ρ0 up to 3ρ0 (ρ0 =
0.16 fm−3) in our self-consistent approach. The numerical calculations have been
performed on a grid in energy and momentum space, where we store the results for
the nucleon width. This grid covers an energy range of −0.5 GeV < ω−ωF < 0.5 GeV
and a momentum range of |�k| < 1.25 GeV. With 130 × 120 grid points we achieve a
resolution of dω = 8 MeV and dk = 10.5 MeV for energy and momentum, respectively.
A variation of the grid borders and the mesh size has shown that the chosen setup
of the grid has no influence on the results at energies in the vicinity of the chemical
potential and below (i.e., the populated states). The convergence of the iterative
calculations – that are initialized with a constant width of 10 MeV – can be compared
to that of the quark calculations that is shown in Fig. 5.2. Self-consistency is typically
reached after 4-5 iterations.

We have used the Skyrme force SIII’ [SCM76, BFvGQ75] to generate a mean-field
potential Ueff and an effective mass m∗, cf. (6.11,6.16). The corresponding set of
parameters is given in Table 6.1. In infinite nuclear matter at zero temperature, we
find for this choice of parameters a binding energy of −16.1 MeV and a mass ratio
of m∗/m = 0.76 at a Fermi momentum of kF = 254 MeV (ρ = ρ0). For the mean-
field potential, a value of Ueff = −61.6 MeV is found. Compared to the variational
results of Wiringa [Wir88], the saturation properties are slightly different with an
equilibrium point shifted to a somewhat lower density. The larger effective mass
indicates a weaker momentum dependence of the SIII’ interaction.
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6 Nuclear matter at high densities and finite temperatures

Figure 6.8: The effective potential Ueff , the mass ratio m∗/m, and the chemical po-
tential ωF as functions of the (quasiparticle) density at several temperatures.
The Skyrme SIII’ interaction, cf. Table 6.1, has been used in the calculation.
For comparison, we also show the chemical potential of a free Fermi gas at zero
temperature in the lowest panel (for a constant mass of 600 MeV).

In Fig. 6.8, we show the temperatures and density dependence of Ueff , m∗/m, and
the chemical potential ωF . The effective mass is not temperature dependent since
it depends only on ρ but not on τ , cf. (6.16). The temperature dependence of Ueff

remains weak in comparison to the density dependence. This reflects the fact that
the temperature does not enter the Skyrme energy-density functional explicitly. Ueff

vanishes – as expected – at zero density while the effective mass approaches the
vacuum nucleon mass. The chemical potential drops significantly at low densities
when the temperature becomes larger. This behavior is connected to the fact that
an increasing number of states above ωF is populated when the temperature rises.
Consequently, at higher temperatures the same nucleon density is reached at lower
chemical potentials. We note that the Skyrme mean-field strongly modifies the density
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dependence of the chemical potential in comparison to a free Fermi gas (Ueff = 0,
m∗ = const.), where ρ ∼ k3

F and thus ωF ∼ ρ2/3 (for T = 0, cf. Eqs. (6.15,6.12)).
For technical reasons, we keep the chemical potential (and Ueff ,m∗) and not the

density fixed in our calculations4. Off-shell contributions will shift strength away
from the on-shell peaks of the (normalized) spectral function. In part, this strength
will be shifted across the chemical potential. Thus, it is likely that the quasiparticle
density (6.15) and the density that is calculated from the full in-medium spectral
function of our approach,

ρ(ωF , T ) = g

+∞∫
−∞

dωd3k

(2π)4
A(ω, k)nF(ω) , (6.18)

are not exactly equal for the same chemical potential. Our numerical results show,
however, that the discrepancies do not become too large. The densities differ by
less than 15% at low T and by less than 3% at higher temperatures. Thus, we
determine Ueff(ρ, T ), m∗(ρ) and ωF (ρ, T ) such that the desired density is obtained on
the quasiparticle level (6.15). We do not readjust them to correct the density in the
full calculation.

The averaged scattering amplitude in Eq. (6.5) has been adjusted to a value of
(|M|2)1/2 = 309 MeV fm3, so that the results of the many-body calculations of Benhar
et al. [BFF89, BFF92] and Baldo et al. [BBG+92] for T = 0 are reproduced. Note
that this value differs from the one used in [LEL+00, LLLM02] – where no effective
mass was introduced – by a factor m/m∗ ≈ 1.4. The cutoff parameter Λ of the form
factor (6.9) was set to 1.2 GeV and the mass mµ to 600 MeV.

To verify that our choice for the parameters is reasonable, we compare the on-shell
width

Γos(ω) = Γ(ω, kos(ω)) , (6.19)

where kos(ω) = [2m∗(ω − Ueff(kos))]
1/2, and the momentum distribution

n(k, T ) =

+∞∫
−∞

dω

2π
A(ω, k)nF(ω) (6.20)

from our calculation to the results of Benhar et al. and Baldo et al. In Fig. 6.9, the
on-shell widths and momentum distributions are shown for normal nuclear matter
density and T = 0. As we can see, our result for the on-shell width is in good
agreement with the result of Baldo and in qualitative agreement with the sophisticated
many-body calculation of Benhar. Our result for the momentum distribution5 is

4The numerical calculations are more stable and converge faster when the chemical potential does
not change during the iterations.

5The high-momentum tail that sums up the off-shell strength of the spectral function above the
Fermi momentum can be interpreted as a universal measure for the short-range correlations,
recall the discussion in Section 5.7
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Figure 6.9: The on-shell width Γos(ω) as a function of ω − ωF (left panel) and the
momentum distribution in nuclear matter (right panel). Both panels show
results for T = 0 and normal nuclear matter density. Solid lines show the results
of our calculation, dashed lines the results of Benhar et al. [BFF89, BFF92].
The dotted line shows the result for the on-shell width of Baldo et al. [BBG+92].

even in quantitative agreement with the Benhar result. Note that the considerable
discrepancies between the results of Baldo and Benhar have been explained in [BFF89,
BFF92] by the differences in the Argonne and the Urbana NN interactions that are
employed in the calculations (the Argonne v14 potential has a much stronger tensor
force).

6.2.2 Comparison to phenomenological NN potentials at T = 0

Before we discuss the results of our calculations at finite temperatures and high den-
sities, let us briefly comment on the quality of phenomenological NN potentials at
short interaction ranges in comparison to an averaged matrix element. The many-
body results in Fig. 6.9 indicate that the use of a (so-called) realistic NN potential
does not automatically lead to an unambiguous result for the short-range correlations.
Phenomenological potentials have recently been used in fully microscopic approaches
to nuclear matter, where they generate both, the long- and the short-range correla-
tions. Fig. 6.10 shows cuts of the nucleon width at constant momenta that have been
obtained by Bożek and collaborators [Bȯz02, BC03, BDM06] using several realistic
potentials in self-consistent T-matrix approaches. The results of our approach are
shown for comparison.

As expected at zero temperature (see the comment below Eq. (6.6)), the curves in
Fig. 6.10 drop to zero at the Fermi energy (ωF ≈ 0). This is a kinematical constraint
that must be satisfied in all calculations. We can see that the NN potentials lead
to results that are in qualitative agreement at energies below and slightly above the
chemical potential. At higher energies, the results differ qualitatively. While the
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Figure 6.10: Results for the nucleon width at T = 0 and ρ = ρ0, using different
NN potentials in the calculation. The solid lines indicate the results of our
approach that is described in the text. The other lines show results of the fully
self-consistent T-matrix approaches found in [Bȯz02, BC03, BDM06], using the
Paris (dotted lines), the CD-Bonn (dashed lines), the Nijmegen (dash-dotted
lines, not in all panels), and a Vlow k potential [BKS03] (dash-dot-dotted lines).

width drops for the Vlow k potential at all momenta and seems at least to saturate
for the CD-Bonn potential at the lowest momentum, it grows for the other potentials
when the energy rises. The quantitative differences that can be observed are of
considerable size at all energies. It should also be noted that the discrepancies between
the potentials are momentum dependent. For example, the CD-Bonn potential yields
a smaller width than the Paris potential for k = 170 MeV but a larger width for
k = 540 MeV.

The reason for the deviations of the results in Fig. 6.10 is readily found. The
empirical nucleon–nucleon interactions are adjusted to experimental NN data. This
ensures that they agree in their predictions of on-shell quantities, as e.g. free space
NN scattering phase shifts. Due to the lack of experimental data, however, the
interactions may differ in the off-shell regions that are relevant for the short-range
correlations.

The fact that the short-range components of phenomenological nucleon–nucleon
interactions are poorly constrained has also been observed in a completely different
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context: In [FJDR05], the possibility of bound deuteron-like states of nucleons and
heavy flavor hyperons – like the recently discovered Ξcc [M+02, O+05] – has been
explored. For that purpose, several NN potentials were rescaled on the quark level
(using their representation in terms of spin and isospin operators that have well
defined expectation values in the quark model), so that only the light flavor quarks
participate in the interaction of the two-baryon system. Due to the larger mass,
the double charm hyperons in a deuteron-like state come much closer to each other
than nucleons in the deuteron. Thus, the calculations in [FJDR05] did mainly probe
the short-range part of the NN interactions. It was found that the results are only
of qualitative value. The large variations in the short-range interactions led to a
considerable scattering of the obtained binding energies.

Fig. 6.10 shows that the results of our simple approach (constant matrix element
with form factor on the 2p1h and 1p2h level plus effective Skyrme-type mean-field) are
qualitatively in good agreement with the other results at all energies and momenta.
In particular, the Paris potential yields a very similar nucleon width. This agreement
confirms the observation in [LEL+00, LLLM02] that the short-range correlations in
nuclear matter are mainly determined by the overall strength of the interaction and
the collisional phase space. Most of the fluctuations in the off-shell structure of the
width in Fig. 6.10 should disappear when integrated quantities – like the momentum
distribution or the averaged width (6.21) that we will consider below – are inves-
tigated. For a qualitative study of the temperature and density dependence of the
short-range correlations, it is thus perfectly justified to approximate the short-range
interactions by an averaged (constant) matrix element as long as the static mean-field
is taken into account separately.

6.2.3 Spectral function and width

In the following, we will show the results of our calculations and investigate the density
and temperature dependence of the short-range correlations. First, we present cuts of
the nucleon spectral function and the corresponding width at constant momenta. This
illustrates the general role of temperature and density. Fig. 6.11 shows the spectral
function for temperatures of 0, 10 and 50 MeV at normal nuclear matter density. The
broadened quasiparticle peak is the most prominent feature of the spectral function.
At the lower momentum it is located below and at the higher momentum above the
chemical potential. We can also see that the width becomes very large at high energies
due to the opening of phase space that has been discussed in Section 6.1.2.

The spectral function as well as the width drop to zero at the chemical potential
when the temperature is zero. The states at the Fermi energy are stable in cold
nuclear matter since it is – due to kinematical constraints – not possible to scatter
into or out of those states. The effect of rising the temperature is clearly visible.
The gap at the Fermi energy gets smeared out for T = 10 MeV and has almost
vanished at T = 50 MeV. This phenomenon is directly related to the fact that for non-
vanishing T – in contrast to a system at zero temperature – states at energies above
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Figure 6.11: The nucleon spectral function at T = 0 MeV (solid line), T = 10 MeV
(dashed line) and T = 50 MeV (dotted line) for normal nuclear matter density.
All cuts were made at constant momenta.

ωF are populated. The states at the Fermi surface cease to be stable quasiparticles.
Concerning the temperature dependence of the width we note that Γ rises only in the
vicinity of the Fermi energy while it drops in the other regions at higher temperatures.

In Fig. 6.12, the spectral function and the width are shown for three different
densities at a constant temperature of 10 MeV. Since the chemical potential and the
effective mass depend on the density (cf. Fig. 6.8), the three curves are shifted along
the energy axis. One should not get confused by the observation that the on-shell
peak at the highest density is broader than the peaks at the lower densities in the
left panel and narrower than those peaks in the right panel. We can understand this
effect from the width that is shown in the lower panels of Fig. 6.12: At the higher
momentum, the on-shell peak lies closer to the Fermi energy for the highest density.
This induces a stronger suppression of the on-shell peak than in the other cases. We
note that the overall result suggests that the width is strongly density dependent and
rises at higher densities.

6.2.4 On-shell width

Figs. 6.11 and 6.12 give a first impression of the spectral functions and the collisional
widths. To investigate the temperature and density dependence of the short-range
correlations on a qualitative level, however, we use the better suited on-shell width
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Figure 6.12: The nucleon spectral function for normal nuclear matter density (solid
line), a two times higher density (dashed line), and a three times higher den-
sity (dotted line) at T = 10 MeV. All cuts were made at constant momenta.
(The curves end at the border of the numerical grid that has been used in the
calculation.)
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Figure 6.13: The on-shell width Γos(ω) as a function of ω − ωF for two temperatures
and densities. The solid lines show the results of our calculations, the dashed
lines show the results of Alvarez-Ruso et al. [ARFdCO96].

of the spectral function, Γos(ω), that has been introduced in Eq. (6.19). This allows
us also to compare our results to other calculations that have been performed at
temperatures up to 20 MeV and densities up to 2ρ0 [ARFdCO96, Bȯz99].

In Fig. 6.13 we show our results for Γos(ω) at temperatures of 10 and 20 MeV and
densities of ρ0 and 2 ρ0. Also shown are results of Alvarez-Ruso et al. [ARFdCO96]. In
their “semi-phenomenological” approach they have – similar to our model – evaluated
second order diagrams, taking the magnitude of the NN interaction from experiment.
However, they did not perform their calculations self-consistently and did not consider
long-range contributions from the mean-field. As we have already seen in Figs. 6.11
and 6.12, the width of the states at the Fermi surface does not drop to zero for finite
temperatures. Increasing the temperature leads to larger values of Γos in the vicinity
of the Fermi surface while the size and the shape of Γos do not change significantly at
higher energies. Increasing the density shows the opposite effect. Γos is left unchanged
in the vicinity of the Fermi surface while the slope at high energies increases.

Compared to [ARFdCO96], our results seem to be shifted by a few MeV to higher
values of Γos. The shift can be explained by the differences in the NN interactions
that were used in both calculations6. The shape of the curves is in good agreement

6Using the low-density approximation Γ = ρσv, Alvarez-Ruso et al. have related their scattering

163



6 Nuclear matter at high densities and finite temperatures

Figure 6.14: On-shell (left panel) and off-shell (right panel) results for the nucleon
width at saturation density ρ0 in the fully self-consistent T-matrix approach of
Bȯzek [Bȯz99] (dashed lines) in comparison to the results of our approach (solid
lines).

for ω − ωF < 150 MeV. At higher energies the form factor that was used in our
calculations affects the shape of Γos, e.g. leading to the observed curvature in our
results.

In Fig. 6.14, we compare our results for the nucleon width at T = 10, 20 MeV and
ρ = ρ0 to the results of Bożek in [Bȯz99]. Qualitatively, our results are similar to
those obtained in the self-consistent T-matrix approach (using a first-rank Yamaguchi
potential [Yam54]) below and not too far above the chemical potential where the
populated states are located. The curves differ mainly by factor of 2 in this region.
At higher energies, however, significant differences are found. The deviations range
within the uncertainties introduced by using different nucleon-nucleon interactions
in fully microscopic calculations that we have discussed in Section 6.1.2. Similar
observations can be found in [Bȯz02] where results of different approaches – including
[LEL+00] and [Bȯz99] – are compared.

amplitude to the elastic NN cross-section σNN, i.e. |M|2 = 4πσNN/m2. Inserting the empirical
value σNN = 20 mb [CMV81, Eff99] and m = 938 MeV yields |M| = 207 MeVfm3. This value
is close to the one used in [LEL+00], where – like in [ARFdCO96] – no effective mass has been
introduced. Replacing the vacuum nucleon mass m by the effective nucleon mass m∗ of our
approach, we obtain |M| ≈ 270 MeV fm3 at a density of ρ0, i.e. a scattering amplitude that is
10% smaller than the one in our calculation. Since m∗ drops, the difference becomes smaller at
higher densities.
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Figure 6.15: The on-shell width Γos(ω) as a function of ω − ωF for different tempera-
tures and densities.

We can conclude from the comparison to the results of Alvarez-Ruso et al. and
Bożek that our calculations yield a reasonable temperature and density dependence
of the nucleon width and thus the short-range correlations at moderate T and ρ.
This should still be the case at higher temperatures and densities. The quantitative
deviations observed in Figs. 6.13 and 6.14 (and in Fig. 6.10) show that an investigation
of the density and temperature dependence of the short-range correlations must be
performed consistently within a single approach. The combination of the results from
different approaches (at different temperature and densities) will not necessarily lead
to meaningful results.

In Fig. 6.15, we illustrate the temperature and the density dependence of the on-
shell width in our approach. The shown results cover the full T and ρ range of our
calculations7 . The most significant effect that can be observed in the left panel
of Fig. 6.15 is the filling of the gap at the Fermi energy when the temperature rises.
Since most of the populated states are located in the vicinity of the chemical potential
(we will come back to that point below), this effect suggests a strong temperature

7For the lowest density at the highest temperature, Ueff exceeds ωF . Hence, all on-shell states are
located above the chemical potential (recall the discussion in Section 6.2.1).
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dependence of the short-range correlations in nuclear matter.

The magnitude of the on-shell width at very low energies does not change too much
at higher temperatures. At the highest energies that are shown, the temperature
induced changes are also moderate. We observe a leveling off in the energy dependence
of Γos(ω) at the highest temperatures indicating the gradual changes in the available
phase space in a heated system. This is the same effect that we have observed earlier,
when discussing the cuts of the width at constant momenta in Fig. 6.11.

The right panel of Fig. 6.15 allows us to investigate the density dependence of
Γos(ω). Let us note first that the parabola shaped structures become larger at higher
densities since an increasing amount of states below the chemical potential is pop-
ulated. Naively, one could expect a linear density dependence for the state above
the chemical potential. The simple low-density approximation Γ ∼ ρσv does, how-
ever, not hold anymore at densities of ρ0 and higher where Pauli blocking becomes
increasingly important. We can see that the density dependence in the vicinity of
the Fermi energy is strongly temperature dependent. While the lowest density yields
the largest result for Γos in this region at T = 10 MeV, it yields the smallest result
at T = 70 MeV. For very high energies, the results for 2ρ0 and 3ρ0 do not differ too
much (at all T ) while we find considerably smaller values for ρ0.

The most interesting observation in the right panel of Fig. 6.15 can be made for the
density dependence of Γos at the highest temperature. At T = 70 MeV, the results for
ρ = 2ρ0 and ρ = 3ρ0 are almost exactly equal in a wide region around the chemical
potential. Noting again that this is the region where most of the populated states
are located, we can conclude that a saturation of the short-range correlations occurs
at high temperatures and densities.

The T and ρ dependent behavior seen in Fig. 6.15 deserves a closer inspection.
Before doing so, we should recall that the chemical potential ωF depends strongly on
the nucleon density, as was shown in Fig. 6.12. Thus, one has to be careful at which
energy ω or momentum k(ω) the widths for different temperatures and densities are
compared. Clearly, a comparison of the on-shell widths at the chemical potential
will lead to results that differ not only quantitatively but also qualitatively from a
comparison at zero momentum (the lowest energies shown in Fig. 6.15). We will solve
this problem in the next section by averaging the width over the populated states.

6.2.5 Average width

To determine the temperature and density dependence of the short-range correlations,
it would be convenient to have a single quantity that determines the magnitude of
the correlations at each value of T and ρ. For that purpose, we introduce the average
width of the populated states,

〈Γpop〉 (ρ, T ) =

∫∞
0

dkk2
∫ +∞
−∞ dωΓ(ω, k)A(ω, k)nF(ω)∫∞

0
dkk2

∫ +∞
−∞ dωA(ω, k)nF(ω)

, (6.21)
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Figure 6.16: The average width of the populated states 〈Γpop〉 in the (T, ρ)-plane (Γ
in MeV).

that is not energy or momentum dependent. This definition is equivalent to the
one in Eq. (5.2) that has been used to investigate the density dependence of the
quark width in Section 5.6. In the integral in the numerator, the nucleon width is
weighted with the spectral function. When the on-shell peak of the spectral function
is rather sharp, we will mainly average over the on-shell states. When the peak is
broad, however, the off-shell states will also contribute to the average width. The
integral in the denominator is just the nucleon density that normalizes the result.
At low temperatures, the average width 〈Γpop〉 will be – due to the factor k2nF –
most sensitive to the on-shell states right below the chemical potential. At higher
temperatures, where the distribution nF softens, the influence of on-shell states above
the chemical potential will become increasingly important. We will come back to this
aspect below (see Fig. 6.19).

The contour plot in Fig. 6.16 shows the overall behavior of 〈Γpop〉 for the full
temperature and density range that was covered in our calculations. We can see
that the average width ranges from 6 − 8 MeV at low T and ρ up to 40 MeV at
high temperatures and densities. Note that one gets a very similar picture when the
averaged on-shell width of the populated states or the on-shell width at the average
momentum of the populated states is displayed instead. The general features of this
figure are thus universal.

More details on the T and ρ dependence of 〈Γpop〉 can be found in Figs. 6.17 and
6.18, where cuts at fixed densities and temperatures, respectively, are shown. Fig. 6.17
shows that 〈Γpop〉 rises approximately quadratically at temperatures below 20 MeV.
At higher temperatures, the T dependence becomes linearly – at least for medium
and high densities. At normal nuclear matter density, the T dependence weakens
above 40−50 MeV. The main observation that can be made in Fig. 6.17 is the linear
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Figure 6.17: The average width of the populated states 〈Γpop〉 as a function of the

temperature for various densities (�= ρ0, �= 1.5ρ0, �= 2ρ0, �= 2.5ρ0,

�= 3ρ0).

Figure 6.18: The average width of the populated states 〈Γpop〉 as function a function

of the density for various temperatures (�= 0 MeV,�= 10 MeV,�= 20 MeV,

�= 30 MeV, �= 40 MeV, �= 50 MeV, �= 60 MeV, �= 70 MeV).
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T dependence of the short-range correlation over a wide range of temperatures and
densities. We will come back to this result below.

The density dependence of the average width that can be derived from Fig. 6.18
has also a rather simple structure. At low ρ, 〈Γpop〉 increases with the density just as
one would expect naively. At higher densities, however, we can observe a saturation
of the average width and thus of the short-range correlations. This effect – that
becomes relevant approximately above 2ρ0 – is weak at low T and strongly increases
when the temperature rises.

The observations that we have made here, confirm the estimates from Section 6.2.4.
For a qualitative understanding of the behavior of 〈Γpop〉, we have to determine how
the two scattering processes shown in Fig. 6.3 contribute to the average width. Let us
first discuss the density dependence of these processes (see also Section 4.3): At low
densities, the ρ dependence should be determined by the incoming nucleons from the
medium. Since process (a) of Fig. 6.3 involves one incoming nucleon (not counting the
nucleon that carries the external energy and momentum since we do not integrate over
ω and k), a linear density dependence is expected. For process (b) with two incoming
nucleons from the medium, we expect a quadratic density dependence. Note that
this estimate has been confirmed in the quark calculations. In can be nicely observed
in Fig. 5.17 (left panel for process (b), right panel for process (a) of 6.3) for the
densities below the chiral phase transition.

The density dependence of the processes has to change at higher densities. In fact,
we do not observe a quadratic ρ dependence in our results for ρ ≥ ρ0. Pauli blocking
suppresses nucleon collisions (the source of the correlations) with final states below the
Fermi surface. Since the chemical potential depends strongly on the nucleon density,
more (kinematically allowed) final states are blocked at higher ρ. The contributions
from process (b) to the width may still rise at higher densities: There are two initial
states from the medium but only one final state that is subject to Pauli blocking.
Process (a), on the other hand, involves only one initial state from the medium but
two final states. Thus, the effect of increased Pauli blocking is more important than
the gain of collision partners in that case.

We come now to the relevance of the individual processes for the average width
of the populated states. At zero temperature, where the Fermi distribution is a
sharp step function, all populated states are located below the chemical potential.
The width of those states is solely generated by process (b) for T = 0. When the
distributions in (6.5) soften at finite temperatures, the contributions of process (a)
and (b) will mix. Process (a) will, however, remain the dominant process at energies
above ωF while process (b) remains dominant below ωF .

Even more important than this mixing, populated states will be located at en-
ergies above the Fermi energy. Since the number of states increases with k2, most
of the populated states will be found in the vicinity of the Fermi momentum (note
that the width is weighted with a factor k2nF(ω, k) in the numerator of Eq. (6.21)).
At high temperatures, where the Fermi distribution drops only slowly, most of the
states may even be located above the Fermi momentum. We illustrate this effect in
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6 Nuclear matter at high densities and finite temperatures

Figure 6.19: The density of the populated on-shell states, given by k2nF(k), as a
function of momentum at a density of 2ρ0. The solid, dashed, and dotted
lines correspond to temperatures of 10 MeV (kF = 335 MeV), 30 MeV (kF =
323 MeV), and 50 MeV (kF = 294 MeV), respectively. The small arrows denote
the position of the Fermi momentum at each of the temperatures.

Fig. 6.19 for the on-shell states: While the Fermi momentum drops at higher tem-
peratures, the maximum of the function k2nF(k) moves to higher momenta. For the
highest temperature that is shown, the maximum of the curve is located above the
corresponding Fermi momentum. Thus, we can conclude that process (a) becomes
increasingly important for the properties of the average width while the influence of
process (b) drops when T rises.

The above considerations allow us to understand the density dependence of 〈Γpop〉:
At low temperatures, the width of the populated states is mainly determined by
process (b). The Pauli blocking in one final state damps the quadratic density de-
pendence of the incoming states. However, we still observe an almost linear density
dependence at 0 − 10 MeV in Fig. 6.18. At higher temperatures, most of the popu-
lated states are located in the vicinity of the chemical potential and above. Hence,
the influence of process (a) becomes visible. This process is much stronger affected
by Pauli blocking. Consequently, we observe a saturation of the average width.

The fact that most of the populated states are located near the chemical potential
explains also the temperature dependence of 〈Γpop〉. When we determine the average
width, we are most sensitive to those states. At low temperatures, where all populated
states are located below the chemical potential and Pauli blocking is a strict condition,
the width is very small (zero at T = 0) in the vicinity of the chemical potential. When
the temperature rises and both scattering processes (a) and (b) are allowed in this
region, the gap closes and the average width rises. As we can directly see in the left
panel of Fig. 6.15, the filling of the gap at ωF is a strongly T dependent effect.

We are sensitive to two effects here: First, the population of states above the
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Figure 6.20: The average width of the populated states 〈Γpop〉 in the (T, ρ)-plane (Γ
in MeV) when Pauli blocking is switched off in the calculations.

Fermi energy allow allows scattering into states with higher energies and momenta
that are not Pauli blocked. Second, the softening of Pauli blocking allows scattering
into states below the chemical potential. An analytical understanding of the exact
temperature dependence of the two scattering processes – that are mixed here – is
complicated, even though it is striking that we observe a linear rise over a wide
region of temperatures. We note that the linear dependence can most likely not
be extrapolated to much higher temperatures. The behavior of the width at higher
energies in Fig. 6.15 indicates that the width levels off at very large T . This is
supported by the fact that the value of the on-shell width at the lowest energies
(k = 0) is almost T independent.

To verify that Pauli blocking is in fact the explanation for the saturation of the
short-range correlations at large densities, we have performed additional calculations
in which Pauli blocking was artificially switched off. Therefore, all factors (1 − nF)
were removed from the integrands in (6.5). The result is shown in Fig. 6.20. It can
be clearly seen that 〈Γpop〉 depends now linearly on both, temperature and density,
over the full range covered by our calculations when Pauli blocking is disabled. This
is exactly the picture we would naively expect (for process (a) of Fig. 6.3) when
Pauli blocking is not taken into account. Thus Pauli blocking is in fact the correct
explanation for the saturation of the short-range correlations at high densities.

6.2.6 Influence of nucleon resonances

In our calculations, we have worked with a model that considers only nucleons as
degrees of freedom. Thus, Pauli blocking plays an important role in the scattering
processes of Fig. 6.3 and we have observed saturation effects at higher densities. At
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6 Nuclear matter at high densities and finite temperatures

Figure 6.21: The density of nucleons and ∆ resonances in thermal equilibrium as
fractions of the total density. The solid, dashed, and dotted lines correspond
to temperatures of 10 MeV, 50 MeV, and 70 MeV, respectively. The curves
have been obtained in a calculation that demands equal chemical potentials for
nucleons and ∆ resonances [KL07].

higher temperatures, our results represent an idealization of the physical situation
since it should become possible to excite nucleon resonances. Provided that there are
only few resonances in the thermally equilibrated medium, the possibility to excite
resonances in the outgoing states will weaken the effects of Pauli blocking and thus
the saturation of the width that we have discussed above.

Reinterpreting the outgoing nucleons as resonances, we can use our calculation
without Pauli blocking to illustrate the upper limit of the possible effects. The results
in Fig. 6.20 indicate that the width does not saturate but rises linearly with the density
at high temperatures. While the width does not change to much at T = 70 MeV
and ρ = ρ0, it doubles at ρ = 3ρ0 in comparison to Fig. 6.16. However, Fig. 6.20
represents an unrealistic scenario: Outgoing states are never Pauli blocked. This
means that we excite resonances in all collisions (concerning process (a) of Fig. 6.3
even two resonances per collision). On the other hand, we do not consider that some
resonances exist in the thermally equilibrated medium. Thus, we neglect the (weak)
effects of Pauli blocking for resonances. Finally, the different masses of the nucleons
and the resonances (the ∆ resonance is 300 MeV heavier than a nucleon) are ignored
in this calculation.

Let us consider a more realistic estimate. In Fig. 6.21, we show the density fractions
of nucleons and ∆ resonances in a medium that is in thermodynamical equilibrium.
We can see immediately that there are no resonances in the medium at a temperature
of 10 MeV and densities below 3ρ0. At T = 50 MeV, we find that 2 − 9% of the
populated states are resonances in the density range covered by our calculations. At
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the highest temperature that we consider in this work, i.e. T = 70 MeV, the fraction
of resonances rises from 10% at ρ0 to 18% at 3ρ0.

We can identify these fractions with the probability to excite a resonance in a
collision. Hence, we will never generate a resonance at low temperatures and our
results of Fig. 6.16 remain unchanged. The chance to excite a resonance is still low at
T = 50 MeV and can be ignored at ρ = ρ0. At higher densities, resonances are excited
in 10% of the collisions. Using the estimate that such a collision yields – at most –
a two times larger contribution to the width at ρ = 3ρ0 (cf. Figs. 6.16 and 6.20), the
total width may rise by 10% in comparison to our result in Fig. 6.16. Likewise, we
can expect an increase of the width by 20% at T = 70 MeV and ρ = 3ρ0. We do
not expect a significant increase at ρ0 since the calculations with and without Pauli
blocking yield very similar results in this region.

Our estimate shows that the possibility to excite nucleon resonances in the collisions
will not change the results of our calculations too much. In the temperature and
density range that we cover in the present work, observable changes are only expected
at the highest temperatures and densities. The 10 − 20% effects may weaken the
– Pauli blocking incuded – saturation of the width, cf. Fig. 6.17. However, the
saturation effects will not vanish entirely, even at higher temperatures. Recall that
the present estimate is – like our regular calculation – an idealization. It does not
take into account the increasing number of populated resonance states in the medium
at higher temperatures and densities, cf. Fig. 6.21. When a considerable number
of resonance states is populated, the resonances that are excited in collisions will
also be subject to Pauli blocking. Thus, we will again observe a saturation effect (a
combination of the saturation effects for nucleons and for the resonances) at higher
densities.

We conclude this section by pointing out the large conceptual similarities between
the present approach and our quark approach that has been discussed in the previous
chapters. In both cases, a constant matrix element has been used and the short-
range correlations (in the on-shell regions for the quarks) have been calculated from
self-energy diagrams that have the structure of Born diagrams, cf. Figs. 4.2 and 6.2.
Hence, we can expect that the temperature dependence of the short-range correlations
in quark matter – that has not been investigated so far – will be similar to the
temperature dependence in nuclear matter that has been studied here. This states
an interesting, scale independent universality of dynamical correlations in fermionic
systems of any kind.
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7 Summary and Outlook

In the first part of this work we have explored the possibility of short-range cor-
relations in cold and dense quark matter within the framework of the SU(2) NJL
model. Employing a next-to-leading order expansion in 1/Nc for the quark self-energy,
we have constructed a fully self-consistent model that is based on the relations be-
tween spectral functions and self-energies. In calculations at finite chemical potentials
and zero temperature we have investigated the (off-shell) structure of the collisional
quark width, the size of the short-range correlations, and their influence on the chiral
phase transition. The results have been compared to the loop-expansion approach of
[Frö01, FLM03b] and the results from nuclear matter calculations.

Our approach is based on techniques that have proven to be very successful in the
investigation of nuclear matter. Self-consistent calculations have shown that pointlike
interactions are well suited to explore the short-range correlations in nuclear matter.
The overall strength of the interactions is more important than the detailed structure
in this case. Assuming that this also holds for the short-range correlations in quark
matter, we have used the NJL interaction as the starting point for our approach.

The NJL model in its SU(2) version has been introduced in Chapter 2. It is based
on a pointlike interaction that resembles all relevant symmetries of QCD. Due to the
large coupling of the QCD inspired theory, the validity of a loop-expansion in terms
of the coupling constant is unclear in this model. We have discussed the concept of
an expansion in the inverse number of colors and demonstrated the difference to the
loop expansion. The classification of self-energy diagrams in terms of their order in
1/Nc has led us to the concept of dynamically generated mesons. Quark–antiquark
scattering processes are summed up in a random phase approximation to construct
effective meson propagators. The RPA mesons consist of bound qq̄ states – the actual
mesons – and a continuum of unbound qq̄ states. As we have seen, the dynamically
generated mesons can be used to merge the next-to-leading order contributions to the
quark self-energy – like the Fock diagram and the direct Born diagram – in a single
meson exchange diagram of order O(1/Nc).

When such a diagram is included in the Dyson–Schwinger equation for the quark
self-energy, this leads to a feedback of the RPA meson properties into the proper-
ties of the quarks. Such a connection is not present in the standard leading-order
approach to the NJL model, namely the Hartree+RPA approximation. In the cou-
pled set of Dyson–Schwinger equations that we have constructed in Chapter 2, all
quark propagators in the quark self-energy and RPA polarization diagrams are full
in-medium propagators. Due to the non-local structure of the meson exchange dia-
gram, the propagators acquire a finite width. We take this consistently into account
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in our approach. In contrast to the Hartree+RPA approach that is briefly reviewed
in Appendix B, we do not work with quasiparticles. Thus, the self-consistent solu-
tion of the Dyson–Schwinger equations can only be found numerically in an iterative
procedure.

It has turned out that the RPA pions of our O(1/Nc) approach cannot be identified
with the Goldstone bosons of the theory. The bound qq̄ states have a considerable
mass. This is a problem that arises already on the mean-field level for the Hartree–
Fock+RPA approximation. The fulfillment of the chiral theorems in a diagrammatic
expansion depends on delicate cancellation effects. A careful choice of the diagrams
is necessary to leave the chiral theorems intact. Our approach has been constructed
from a consistent next-to-leading order expansion of the quark self-energy. Due the
self-consistent nature, however, it automatically generates higher order contributions
to the RPA polarizations. Those contributions are only part of the complete sets of
diagrams that are needed to restore the chiral properties in higher orders.

In Section 2.5 we have discussed a chirally invariant 1/Nc extension to the Har-
tree+RPA approximation on the quasiparticle level. This approach is based on a
set of next-to-leading order polarization diagrams that have the character of vertex
corrections for the quark–meson interaction. The diagrams are not calculated during
the self-consistent calculation, but only afterwards – using the self-consistently ob-
tained quark propagator and the (massive) RPA propagators – to determine a 1/Nc

improved pion propagator. The correctional diagrams could, in principle, also be
used to fix the chiral theorems in next-to-leading order in our approach. Calculating
the polarization corrections after solving our Dyson–Schwinger equations would have
no influence on the quarks. Their properties were still determined by a calculation
with massive RPA pions. Hence, such an approach is of little use for us since we are
primarily interested in the quark properties. On the other hand, including the vertex
corrections in our self-consistent approach would also yield corrections for the quark
self-energies. Such an approach is, however, technically very challenging. Since the
qq̄ continuum states are not affected by the cancellation problems, we postpone the
vertex corrections to future studies.

Finding expressions from which the quark and RPA meson widths can be calcu-
lated is a straightforward exercise. As we have shown in Chapter 3, the integrals
for the collisional self-energy and polarizations can be readily expressed in terms of
spectral functions and fermionic and bosonic distribution functions. The numerical
evaluation of the integrals is, however, technically challenging. We have discussed the
main issues in Appendix H. To preserve analyticity, the real parts of the self-energy
and the polarizations are calculated from dispersion relations in our approach. This
has required a careful inspection of the analytical expressions to identify all energy
independent terms that are not included in the actual dispersion integrals. We have
shown that the RPA polarizations in terms of full in-medium propagators can be de-
composed in a similar way as in the Hartree+RPA approximation. After identifying
the term that leads to the violation of the Goldstone theorem we have estimated the
size of the RPA pion mass. At the inspection of the quark self-energy we have found
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a non-dispersive term that resembles the Fock self-energy – only the constant NJL
coupling has been replaced by the k2

0 → ∞ limit of the RPA propagators. This is not
surprising since the Fock self-energy has been part of the meson exchange self-energy
diagram.

To gain a better understanding of the structure of the quark width, we have identi-
fied the decay and scattering processes that contribute to the collisional self-energies
in Chapter 4. In the decomposition of the collision rates, the contributions from the
bound qq̄ states and the off-shell states of the RPA propagators have been treated
separately. Using quasiparticle approximations and simple phase space arguments,
we have determined the energy thresholds for which phase space opens and closes
for each of the processes. Furthermore, we have estimated the density dependence
of each process and investigated which processes yield contributions to the on-shell
width of the quarks and antiquarks. It follows from theses considerations that the
quark width has a complex structure and a non-uniform density dependence which
can be understood in terms of the various processes shown in Figs. 4.1 and 4.3.

The analysis of the on-shell width has shown that the large RPA pion mass of our
approach has some influence on the properties of the occupied quark states in the
chirally broken phase. When the RPA pions have a finite mass – no matter if it
is 100 MeV or 400 MeV – processes involving the bound qq̄ state component of the
RPA pion propagator do not generate contributions to the quark width in this region.
However, the spacelike off-shell components of the RPA propagators, that are most
important for the generation of the on-shell quark width, also depend on the RPA
pion mass. We have found that the large mass in the chirally broken phase suppresses
the contributions to the on-shell width by less than one order of magnitude. Thus,
our results below the chiral phase transition represent a conservative estimate of the
short-range effects in quark matter. The analysis has also shown that the bound qq̄
states will contribute to the width of the occupied quark states when the pions are
really massless (chiral limit). This may lead to considerably different results for the
quark width between calculations with massless pions and calculations with pions
that have a mass – close to the physical pion mass or heavier – in the chirally broken
phase.

In our numerical calculations we have investigated quark matter at zero temper-
ature. The results have been presented in Chapter 5. We have solved the coupled
set of Dyson–Schwinger equations of our approach in an iterative procedure for a
wide range of chemical potentials. Due to the influence of the short-range effects,
we had to readjust the mean-field parameter sets of the NJL model. We have found
that a reduction of the (Hartree) coupling constant by 22% is sufficient to obtain a
reasonable result for the quark condensate.

The quark width can become very large at high energies but remains small at mod-
erate energies – its qualitative structure is in good agreement with the quasiparticle
considerations of Chapter 4. The on-shell peaks of the quark spectral function show
clear signs of collisional broadening. In the off-shell regions, the structure of the width
is reflected. Due to the presence of a medium with a finite chemical potential, the
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symmetry between the quark and the antiquark states is broken. A comparison to the
calculations in the loop-expansion has shown that the consistent O(1/Nc) expansion
generates quark widths that are similar in shape but one order of magnitude larger.
The qq̄ continuum components of the RPA width and the spectral function are of
similar shape and size as in the mean-field results. A small shift in the real part of
the RPA polarizations leads to the predicted large mass of the bound qq̄ state in the
RPA pion spectral function – even when an NJL parameter set in the chiral limit
is used. The shift has not so much influence on the mass of the RPA sigma that
becomes only slightly heavier.

Our investigation of the chiral phase transition in the O(1/Nc) approach has shown
that the short-range correlations are not strong enough to turn the first-order phase
transition of the mean-field approximations into a smooth crossover at zero temper-
ature. Nonetheless, the mass and density gaps at the chiral phase transition have
dropped by 40 − 50%. Below the chiral phase transition, the quark density depends
strongly on the chemical potential. Due to the density dependence of the short-
range correlations, the quantitative differences between the O(1/Nc) approach and
the mean-field models increase at higher chemical potentials. Qualitatively, the quark
and the RPA sigma mass show the same behavior as in the Hartree+RPA approach.
In the chirally restored phase this holds also for the RPA pion. When a parameter set
in the chiral limit (m0 = 0) is used in the calculations, the Lorentz scalar component
of the quark self-energy vanishes above the phase transition. Chiral symmetry is fully
restored and the quarks become massless. In contrast to the chiral properties of the
pions, this behavior is not disturbed by the next-to-leading-order approach.

A closer inspection of the on-shell self-energy has provided some interesting insights.
The effective quark mass keeps a very simple structure and remains almost energy
and momentum independent in the O(1/Nc) approach. The real part of the collisional
self-energy merely replaces the contributions from the mean-field self-energy that have
been lost by reducing the coupling. The γ0-component of the real part of the self-
energy has a considerable size in the chirally restored phase. It shifts the on-shell
peaks of the spectral function with respect to the chemical potential.

The on-shell width shows a strong density dependence in the chirally broken phase
and seems to saturate in the chirally restored phase. For a better understanding
of the density dependence of the width, we have investigated the average width of
the populated and the average width of all quark states. Below the chiral phase
transition, the average widths show a density dependence that is closely related to
the density of the scattering partners from the medium. Above the phase transition,
however, the average width of the populated states saturates and the width of all
quarks even starts to decrease. These effects are due to Pauli blocking and due to the
cutoff in the scattering processes that contribute to the quark width. The same effect
is observed in the nuclear matter calculations of Chapter 6. We have also found that
the results for the average width of the populated states are numerically very close
to the results for nucleons in nuclear matter. However, such a comparison should be
taken with care.
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Finally, we have determined the momentum distribution of the quarks to investi-
gate the role of the states that are far off-shell. We have found a depletion of the
momentum distribution below the Fermi momentum that is on the order of 10%.
Off-shell states above the Fermi momentum generate a high-momentum tail in the
momentum distribution. The size of the effects in the chirally restored phase is com-
parable to nuclear matter. The short-range effects are one order of magnitude larger
than in the loop-expansion.

We can conclude that our initial calculation in the loop-approximation [Frö01,
FLM03b] has clearly missed important contributions to the quark self-energy and thus
generated only very small short-range correlations. The larger results of the present
work are more reasonable since they are the product of a consistent expansion in the
inverse number of colors. Apart from the problem of the RPA pion mass – that also
has influence on the short-range effects – our O(1/Nc) approach is a natural extension
of the standard Hartree+RPA approximation. The comparison of the quark matter
results to nuclear matter calculations shows that the short-range correlations are of
similar magnitude in both systems. In nuclear matter, the short-range effects play a
very important role. A complete description of nuclear systems is only possible when
those effects are taken into account. Therefore, the effects of short-range correlations
on the properties of the quarks (and the dynamically generated mesons) should also
not be ignored.

Let us consider the QCD phase diagram to stress this point: It is not feasible
to investigate the chiral phase transition at arbitrary temperatures and densities
within (Lattice) QCD. Therefore, phenomenological models are used to determine
the properties of the phase transition. Many of these models suggest that the chiral
phase transition turns from a first-order phase transition into a crossover at a critical
point, see Fig. 1.2. As we have seen in this work, short-range correlations change the
properties of the chiral phase transition with respect to the results of quasiparticle
calculations. Nuclear matter calculations suggest that the short-range correlations
will be even larger at finite temperatures, see Fig. 6.17. This suggests that mean-field
models will most likely predict a wrong position for the critical point (at a too large
temperature). We note that calculations with a more realistic pion mass should differ
even more from the quasiparticle approaches.

The present O(1/Nc) approach can be improved in many ways. Most of them have
already been discussed before in more or less detail. We will review the improvements
here and discuss the possible consequences of including them in the model.

So far, we have only considered one regularization scheme. A different type of
regularization might have some influence on the properties of the quarks and RPA
mesons. It is, however, unlikely that the resulting changes will be too large. As we
have discussed above, it is even possible to implement the three-momentum cutoff in
different ways. Our version (regularizing the quark propagators) differs only from a
regularization of the integration variables when the integrand contains two or more
quark propagators. This is only the case for the RPA polarization integrals in our
approach. The implementations are equivalent for the quark self-energy integrals.
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Consequently, the differences between the resulting quark masses and widths should
be limited.

The most interesting but also most complicated extension of our model would
be to fix the chiral properties of the RPA pions. A first step into that direction
would be to include the next-to-leading order corrections to the RPA polarization in
the self-consistent calculation. Technically, that corresponds to the transition from
one-loop to two- and three-loop integrals. This yields not only a significant compli-
cation of the numerical calculations. As the 1/Nc enhanced quasiparticle approaches
[DSTL95, NBC+96, OBW00] have shown, it requires also considerable analytical ef-
forts to incorporate these diagrams into the model.

Such an approach would improve the chiral properties of the RPA pions only in
next-to-leading order but not in the higher orders. Nonetheless, it would be very
interesting to take a closer look at dynamically generated pions with more reasonable
masses and the chiral theorems in the presence of short-range correlations. As our
investigations from Chapter 4 indicate, the on-shell width of the quarks could even be
much larger than determined here. It would also be interesting to investigate a system
in the chiral limit with such an approach. If the pions become really massless in the
chirally broken phase, the thresholds of some decay processes that involve bound qq̄
states move very close to the on-shell regions of the quark spectral function. It is
possible that this has noticeable influence on the properties of the quarks.

In nuclear matter, the short-range correlations are strongly temperature dependent.
Since the nuclear matter calculations of Chapter 6 are technically rather similar to
the present approach, it is likely that the short-range correlations in quark matter
will also increase when the temperature rises. This should be checked in an explicit
calculation. We have already discussed that this may have serious consequences for
the structure of the chiral phase transition. The temperature at which the first-order
phase transition turns into a crossover presumably will be lower than in the mean-
field approximations. Performing calculations at finite temperatures should not be
too complicated. The formalism that has been presented here was already derived
in a form that allows for finite temperatures. Hence, it is mainly the numerical
implementation that has to be modified.

In the present approach, we have completely ignored the phenomenon of color
superconductivity [RW02, Bub05]. This should have little influence on the results in
the chirally broken phase. The existence of a diquark condensate above the chiral
phase transition, however, may have influence on the short-range effects in the chirally
restored phase [CD99]. It is also likely that the short-range effects have some influence
on the diquark condensate. Note that diquark states can be dynamically generated
in our approach in the same fashion as the RPA mesons. Hence, the inclusion of color
superconductivity should not complicate the present formalism too much.

For the investigation of systems like neutron stars and hypernuclear matter, it
would also be interesting to extend our model to asymmetric quark matter and flavor
SU(3). Similar approaches exist already for nuclear matter. See, e.g., [KLM05] for
a calculation in flavor asymmetric nuclear matter. In such an approach, the quarks
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of different flavor – and the three pions π0,± – must be treated separately. In an
SU(3) approach, we would also encounter additional dynamically generated mesons,
i.e., kaons and η, η′ [Kle92]. In principle, however, the extension of our framework to
such systems is straightforward.

In the second part of this work, we have presented an approach to short-range
correlations in nuclear matter at finite temperatures and high densities. As an ex-
tension of the work of Lehr et al. [LEL+00, LLLM02] we have constructed a simple
but self-consistent model in Section 6. The interactions between the nucleons were
described by a constant matrix element in combination with a form factor that limits
the energy and momentum transfer in the collisions. In [LEL+00, LLLM02] the aver-
aged coupling constant has led to excellent results for a system at zero temperature.
We have calculated the mean-field contributions by a Skyrme-type interaction model
in order to assure a realistic thermodynamical behavior of the chemical potential.

We have calculated the spectral function of nucleons in symmetric nuclear matter
at temperatures from 0 to 70 MeV and densities from ρ0 to 3ρ0. This is just the region
that is expected to be relevant in supernova explosions and heavy ion collisions like
those planned at the CBM facility at GSI. For the first time, such a large range
of temperatures and densities has been investigated consistently within the same
model. Our results are in good agreement with other calculations at temperatures
up to 20 MeV and densities up to 2 ρ0 – outside this range, data for comparison
are not available. The averaged on-shell width of the spectral function was used to
determine the temperature and energy dependence of the short-range correlations.
We have found that the correlations scale approximately linear with temperature. At
densities above 2ρ0, however, the correlations saturate. This behavior is not expected
in a naive picture, however, it can be easily explained by Pauli blocking which is a
genuine quantum mechanical effect.

The model we have presented here is open for further improvements. First of all,
it should be investigated whether the choice of Skyrme parametrization has influence
on the short-range correlations. It may be also possible to calculate the real part
dispersively when a suitable approximation scheme for the nucleon width at high
energies is introduced. In [KLM05], the same approach has been extended to cold
isospin asymmetric nuclear matter. A combination with our approach should be
straightforward – we would have to consider separate spectral functions for protons
and neutrons and to introduce an isospin dependent coupling. Such an extension
would be desirable, in particular, for the investigation of short-range correlations
in astrophysical scenarios. The typical result of a supernova explosion (hot) and
the following core collapse (dense) – i.e., a neutron star – is clearly not an isospin
symmetric object.
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A Notation and conventions

The notation and the conventions in this work correspond mainly to those in the book
of Peskin and Schroeder [PS95] (field theory and relativity), the review of Danielewicz
[Dan84] (real-time formalism), and the article of Rehberg (NJL model) [Reh98]. Be-
low, we briefly review the most important aspects.

Units
We work in natural units, i.e.,

� = c = 1 .

This yields the relations

[length] = [time] = [energy]−1 = [mass]−1 .

The only unit conversion that will be needed throughout this work is given by

197.327 MeV = 1 fm−1 .

Metric tensor and four-vectors
We use the metric tensor in the “west coast” form,

gµν = gµν =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ .

Four-vectors are denoted by italic letters (x), three-vectors are marked by arrows (�x).
Unit vectors that point into the same direction as a vector �x are denoted by �ex.

Greek indices denote the components of a four-vector and run from 0 to 3 (where
the zeroth component is the time or energy component of the four-vector). Latin
indices denote the three-vector components only. They run from 1 to 3. Following
the Einstein summation convention, we sum over all indices that appear twice in a
term.

We distinguish between four-vectors with upper (contravariant) and lower (covari-
ant) indices,

xµ = (x0, �x) (contravariant) ,

xµ = gµνx
ν = (x0,−�x) (covariant) .

183



A Notation and conventions

The scalar product of two four-vectors is defined by

x · p = xµxµ = gµνx
µpν = x0p0 − �x · �p .

Fourier transforms
In Fourier transformations, we attribute the usual factors 2π fully to the momentum
integrals. Hence, the transformation integrals in four dimensions are given by

f(x) =

∫
d4k

(2π)4
e−ik·xf̃(k) ,

f̃(k) =

∫
d4xeik·xf(x) .

The tilde that is used here to denote functions in momentum space will be omitted
throughout this work. It will always be clear from the arguments of a function whether
its coordinate space or the momentum space form is meant.

Traces
Unless indicated otherwise, we use the following convention for traces: “tr” denotes
a trace in spinor space only while the symbol “Tr” is used for a full trace in color,
flavor, and spinor space,

tr(1) = 4 , Tr(1) = 4NfNc .

Pauli matrices
The (iso-)spin Pauli matrices are given by

τ 1 =

(
0 1
1 0

)
, τ 2 =

(
0 −i
i 0

)
, τ 3 =

(
1 0
0 −1

)
.

The Pauli matrices obey the (anti-)commutation relations

{τi, τj} = 2δij and [τi, τj ] = 2iεijkτk ,

where δij is the Kronecker delta and εijk is the totally antisymmetric tensor (Levi-
Civita symbol) in three dimensions. From the (anti-)commutation relations follows
the helpful relation

τ iτ j = δij + iεijkτk .

For further reference, we introduce the matrices τ± = (τ 1 ± iτ 2)/
√

2:

τ+ =

(
0 1
0 0

)
, τ− =

(
0 0
1 0

)
.
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Dirac matrices
The Dirac matrices (or γ matrices) satisfy – independently of the chosen representa-
tion – the anticommutation relations

{γµ, γν} = 2gµν .

Products of γ matrices and four-vectors are denoted in the Feynman slash notation,

p · γ = pµγµ = /p .

Two frequently occurring combinations of the Dirac matrices are

γ5 = iγ0γ1γ2γ3 ,

σµν =
i

2
[γµ, γν] .

By construction, the matrix γ5 has the following properties,

(γ5)2 = 14×4 , (γ5)† = γ5 , {γ5, γµ} = 0 .

There exist several explicit representations of the Dirac matrices. We will use
the so-called chiral (or Weyl) representation that can be constructed from the Pauli
matrices in a 2 × 2 block form:

γ0 =

(
0 12×2

12×2 0

)
, γi =

(
0 τ i

−τ i 0

)
, γ5 =

(
−12×2 0

0 12×2

)
.

Traces of γ matrices
In this work we will frequently encounter traces of γ matrices. For further reference,
we list some helpful relations below:

tr(14×4) = 4

tr(γµγν) = 4gµν

tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ)

tr(γ5) = 0

tr(γµγνγ5) = 0

tr(γµγνγργσγ5) = −4iεµνρσ.

Note that the trace of an odd number of γ matrices is always zero. From the trace
in the second line follows immediately

tr(/p/k) = pµkν tr(γµγν) = 4pµkµ .
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A Notation and conventions

Real and imaginary parts of Dirac matrices
We use the hermitian conjugate γ0F

†γ0 to define the real and the imaginary part
of functions that have a matrix structure in spinor space (Lorentz structure) [BD65,
FLM03b],

ReF =
1

2
(F + γ0F

†γ0) ,

ImF =
1

2i
(F − γ0F

†γ0) .

For Lorentz scalar functions there is no difference to the normal definition. Note
that [BD65]

γ0(γµ)†γ0 = γµ ,

and thus γµ = Reγµ in this formalism. In other words, the γ matrices are treated –
independently of the explicit representation – as real quantities. This ensures that,
cf. (2.23),

Re S = (Re Ss)14×4 + (ReSµ) γµ ,

Im S = (Im Ss)14×4 + (Im Sµ) γµ ,

and likewise for the quark self-energy.
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B RPA on the Hartree(–Fock) level

For the understanding of the RPA in the full O(1/Nc) approach it is helpful to
investigate the RPA on the quasiparticle level, i.e., in the Hartree+RPA and in the
Hartree–Fock+RPA approximation, first. An investigation at T = µ = 0 is sufficient
to provide insights about the Goldstone boson character of the RPA pions and the
proper use of dispersion integrals. The results of [Kle92] are summarized in this
section. Special attention is paid to the aspects that are relevant for the transition
to the O(1/Nc) approach. In particular, it will become clear that the RPA pions in
the Hartree–Fock+RPA approximation that we have introduced in Section 2.3.2 – a
precursor to the full O(1/Nc) approach – do not have the properties of Goldstone
bosons.

For µ = 0 the (time-ordered) quark propagator in the mean-field approximation is
given by

Sc(k) =
/k + m∗

k2 − m∗2
,

with the effective mass m∗ that is constant and real. In the Hartree approximation
we have m∗ = m0 + ΣH and in the Hartree–Fock approximation m∗ = m0 + ΣH + ΣF

s .
Inserting Sc(k) into the time-ordered RPA meson polarizations yields

−i Πc
l (k

2) = −
∫

d4p

(2π)4
Tr
[
Γ̃l S

c(p + 1
2
k)Γl S

c(p − 1
2
k)
]

.

The isospin matrices in Γl and Γ̃l (2.3) commute with the quark propagator in flavor
symmetric matter or vacuum. Thus we find the same result for all pions (π0,±) when
working out the trace,

−i Πc
σ,π(k2) = 4NfNc

∫
d4p

(2π)4

1
4
k2 − p2 ∓ m∗2

[(p + 1
2
k)2 − m∗2][(p − 1

2
k)2 − m∗2]

, (B.1)

where the upper sign of ∓m∗2 refers to the σ and the lower sign to the π polarization,
respectively.

The numerator of the integrand in (B.1) can be written as −(p2 + 1
4
k2 − m∗2) +

(1
2
k2 − m∗2 ∓ m∗2). Partial fractions are used to decompose the denominator,

p2 + 1
4
k2 − m∗2

[(p + 1
2
k)2 − m∗2][(p − 1

2
k)2 − m∗2]

=
1

2

[
1

(p + 1
2
k)2 − m∗2

+
1

(p − 1
2
k)2 − m∗2

]
.
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B RPA on the Hartree(–Fock) level

Inserting the rewritten numerator and denominator into (B.1) we find

−i Πc
σ,π(k2) = −2NfNc

∫
d4p

(2π)4

[
1

(p + 1
2
k)2 − m∗2

+
1

(p − 1
2
k)2 − m∗2

]

+ 2NfNc

∫
d4p

(2π)4

k2 − 2(m∗2 ± m∗2)

[(p + 1
2
k)2 − m∗2][(p − 1

2
k)2 − m∗2]

. (B.2)

The two terms in the first integral can be merged by shifting the integration varia-
bles, p+ 1

2
k → p for the first term and p− 1

2
k → p for the second term, respectively. We

do not consider the influence of the momentum cutoff at this point. After introducing
the abbreviation

I(k2) =

∫
d4p

(2π)4

1

[(p + 1
2
k)2 − m∗2][(p − 1

2
k)2 − m∗2]

, (B.3)

the polarizations become

−i Πc
π(k2) = −4NfNc

∫
d4p

(2π)4

1

p2 − m∗2
+ 2NfNck

2I(k2) ,

−i Πc
σ(k

2) = −4NfNc

∫
d4p

(2π)4

1

p2 − m∗2
+ 2NfNc(k

2 − 4m∗2)I(k2) .

(B.4)

Note that the imaginary part of I corresponds to the real part of Πc.
The first term resembles the Hartree self-energy,

ΣH = 2iGNfNc

∫
d4p

(2π)4
trS(p) = 8iGNfNcm

∗
∫

d4p

(2π)4

1

p2 − m∗2
.

We can use this to eliminate the integral and to simplify the expressions. For the
RPA pion polarization we get

−i Πc
π(k2) = − 1

2iG

ΣH

m∗ + 2NfNck
2I(k2) . (B.5)

To investigate the chiral behavior of the RPA pions, the poles of the propagator have
to be found. The denominator of the RPA pion propagator is given by

1 + 2G Πc
π(k2) =

m∗ − ΣH

m∗ + 4iGNfNck
2I(k2) . (B.6)

If the pions are Goldstone modes, their mass should be small for finite m0 and
vanish in the absence of a current quark mass (chiral limit) when chiral symme-
try is spontaneously broken. The propagator should then have a pole at k2 = 0,
i.e., 1 + 2G Πc

π(0) = 0. The second term on the rhs. of (B.6) is surely zero for
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k2 = 0. The first term needs closer inspection. In the Hartree approximation we have
m∗ = m0 + ΣH,

m∗ − ΣH

m∗ =
m0

m0 + ΣH
. (B.7)

This expression will be zero in the chiral limit. For finite m0 we have m0 � ΣH and
thus m0/(m0 + ΣH) � 1 below the chiral phase transition (m0/ ΣH ≈ 0.02). This
means that the RPA pions show the behavior of Goldstone bosons.

Let us turn now to the Hartree–Fock+RPA approximation that we have introduced
in Section 2.3.2. This scheme does not represent a clean expansion of the quark self-
energy in 1/Nc. However, we can use it to estimate what effects might occur in
our O(1/Nc) approach. The effective mass on the Hartree–Fock level is given by
m∗ = m0 + ΣH + ΣF

s . Below the chiral phase transition, where m0 � ΣF
s < ΣH, the

first term of (B.6) becomes

m∗ − ΣH

m∗ =
m0 + ΣF

s

m0 + ΣH + ΣF
s

≈ ΣF
s

ΣH + ΣF
s

=
1

2NfNc + 1
, (B.8)

using ΣH = 2NfNc ΣF
s . As we can see, this term is not zero but on the order 0.1. This

is significantly larger than m0/ ΣH. Thus the RPA pions in the Hartree–Fock+RPA
approximation of Fig. 2.9 – in contrast to the Hartree+RPA approximation of Fig. 2.6
– will not behave like Goldstone bosons. They will have a finite mass, even in the
chiral limit where the current quark mass is zero.

A regular random phase approximation on the Hartree–Fock level [RS80, BR86,
DVN05] should actually yield the Goldstone modes – provided that the mean-field
part of the interaction and the residual part that generates the RPA mesons are
treated in a consistent way. The reason for the breakdown of the chiral properties
of the pions in our Hartree–Fock+RPA approximation are discussed in detail in Sec-
tion 2.5: In a 1/Nc expansion, the generation of massless pions (in the chiral limit)
depends on a delicate balance [DSTL95] – in each order of 1/Nc, the contributions
from different diagrams must cancel each other. The Hartree–Fock propagator is –
in contrast to the Hartree propagator – not purely O(1) (since the O(1/Nc) Fock di-
agram is iterated self-consistently, the propagator contributes in all orders of 1/Nc).
When it is inserted into the RPA polarization loops, it automatically generates higher
order contributions to the polarizations in an incomplete way. Since some of the di-
agrams that would be needed for the cancellation effect are missing, the RPA pions
become massive.

It is interesting to note that we could fix the chiral properties of the pions by
adjusting the mean-field interaction of the quarks and the residual interaction that
generates the RPA mesons separately (instead of using the NJL coupling G in both
cases). Introducing a residual interaction G in the second line of Fig. 2.9 – while
keeping the NJL coupling G for the mean-field in the first line – has no influence on

189



B RPA on the Hartree(–Fock) level

the result for the polarization in Eq. (B.5). However, the denominator of the RPA
pion propagator at k2 = 0 is then given by

1 + 2G Πc
π(k2 = 0) =

m∗ − G
G

ΣH

m∗ . (B.9)

Demanding that the rhs. of (B.9) vanishes in the chiral limit yields the condition
m∗ = ΣH + ΣF

s = G
G

ΣH. Hence, massless pions (Goldstone bosons) would be obtained
for

G =
ΣH + ΣF

s

ΣH
=

2NfNc + 1

2NfNc

G , (B.10)

where we have again used ΣH = 2NfNc ΣF
s , cf. (3.7). Not too surprising, the correction

ΣF / ΣH is on the order of O(1/Nc).
We will not pursue the idea of a readjusted residual interaction any further. In the

present work, we use the Hartree–Fock+RPA approximation of Fig. 2.9 as a simple
framework to illustrate higher order effects that are relevant for our O(1/Nc) approach
(the construction of a fully self-consistent 1/Nc extension that yields massless pions
is still an unsolved problem, see Section 2.5 for details). The finite term in (B.8) –
that violates the Goldstone theorem and should not be present in a regular random
phase approximation – is exactly such an effect. Fig. 2.15 shows 1 + 2GRe Πret

l from
a Hartree+RPA and a Hartree–Fock+RPA calculation. The shift of the Hartree–
Fock+RPA curve raises the RPA pion mass by 150 MeV. The full O(1/Nc) approach
includes the Fock self-energy and further contributions to the effective mass that arise
from the collisional self-energy. If no cancellation effect occurs it should be expected
that the RPA pions behave even less like Goldstone bosons in that case.

So far, we have not considered the dynamically generated sigma. The denominator
of the RPA sigma propagator is found in the same way as (B.6),

1 + 2G Πc
σ(k2) =

m∗ − ΣH

m∗ + 4iGNfNc

(
k2 − 4m∗2

)
I(k2) . (B.11)

The first term is only of minor importance here. As long as it is small, the pole of
the propagator should be approximately determined by the zero of the second term
at k2 = 4m∗2. The mass of the RPA sigma is then on the order of 2m∗.

In the full O(1/Nc) approach it is necessary to calculate the real parts of the
retarded quark self-energy and the retarded RPA polarizations from dispersion in-
tegrals. Constant terms that occur in an explicit calculation of the real part must
be identified and added to the dispersion integral, cf. Appendix F. We can use the
Hartree(–Fock)+RPA approximation as a guideline to study how such constant terms
arise.

At T = 0 the retarded and the time-ordered self-energies are related in a simple
way, ReΠret

l (k2) = Re Πc
l (k

2) and Im Πret
l (k0, �k ) = Im Πc

l (k0, �k ) sgn(k0), cf. (3.25).
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Inserting the explicit imaginary parts of the time-ordered polarizations (B.4) yields

Im Πret
π (k0, �k ) = 2NfNck

2ReI(k2) sgn(k0) ,

Im Πret
σ (k0, �k ) = 2NfNc(k

2 − 4m∗2)ReI(k2) sgn(k0) .

The real and the imaginary part of the integral I(k2) (B.3) can be calculated ex-
plicitly using either the residue theorem or Cutkosky rules [PS95] when a three-
momentum cutoff Λ is used to regularize the integrals. We find

ReI(k2) =

⎧⎪⎨
⎪⎩

− 1
16π

√
1 − 4m∗2

k2 for 4m∗2 < k2 < 4(Λ2 + m∗2)

0 for k2 < 4m∗2 or k2 > 4(Λ2 + m∗2)

(B.12)

and

ImI(k2) =
1

16π2

Λ2+m∗2

P

∫
m∗2

dE2
k

√
1 − m∗2/E2

k

E2
k − 1

4
k2

. (B.13)

Note that ReI – and thus Im Πret – becomes finite for four-momenta
√

k2 > 2m∗.
In vacuum, this is the threshold for the decay of a RPA meson into a quark and an
antiquark. At k2 = 4(Λ2 + m∗2) the decay width breaks down again since the cutoff
limits the momenta of the outgoing quark and antiquark.

The result (B.12,B.13) suggests that ReI(k2) sgn(k0) – the main contribution to
Im Πret

σ,π – and ImI(k2) are related by a dispersion integral without the need for addi-

tional constant terms. We will use the abbreviation ReIret(k0, �k ) = ReI(k2) sgn(k0)

in the following (ImIret(k2) = ImI(k2)). ReIret(k0, �k ) is surely antisymmetric in k0.
Thus the dispersion relation for ImI(ret) and ReIret is in general given by

ImI(k0, �k ) = −1

π

∞

P

∫
0

dq2
0

ReIret(q0, �k )

q2
0 − k2

0

+ const. (B.14)

Inserting 0 = �k2 − �k2 in the denominator of the integrand and introducing E2
k =

1
4
(q2

0 − �k2) yields

ImI(k0, �k ) = −1

π

∞

P

∫
− 1

4
�k2

dE2
k

ReIret(

√
4E2

k + �k2, �k )

E2
k − 1

4
k2

+ const.

Note that the arguments of ReIret correspond to a four-momentum with the square
value 4E2

k . Due to the limits of the integration, the energy argument of ReIret will
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B RPA on the Hartree(–Fock) level

always be positive. Thus ReIret((4E2
k + �k2)1/2, �k ) is equivalent to ReI(4E2

k) in the
integrand. Inserting the analytical result for ReI from Eq. (B.12) we get

ImI(k0, �k ) =
1

16π2

Λ2+m∗2∫
m∗2

dE2
k

√
1 − m∗/E2

p

E2
p − 1

4
k2

+ const.

This result from the dispersion relation is identical to the result of the analytical
calculation (B.13) for const. = 0.

When the real part of the polarization Πret
σ,π(k2) shall be calculated from a disper-

sion integral it must be taken into account that the k0 dependence of Im Πret
σ and

Im Πret
π is not given by ReIret alone but by the products (k2 − 4m∗2)ReIret(k0, �k

2) and

k2ReIret(k0, �k
2), respectively. Calculating the dispersion integral over ReIret and mul-

tiplying the result with a factor k2 – i.e., inserting the dispersive result for ImI into
ReΠret

σ,π – is not equivalent to calculating a dispersion integral over k2ReIret ∼ Im Πret
σ,π.

The difference of both calculations is a k0 independent term,

k2ImI(k0, �k ) = −1

π
k2

∞

P

∫
0

dq2
0

ReIret(q0, �k )

q2
0 − k2

0

(B.15)

=
1

π

∞∫
0

dq2
0ReIret(q0, �k ) − 1

π

∞

P

∫
0

dq2
0

(q2
0 − �k2)ReIret(q0, �k )

q2
0 − k2

0

=
1

π

∞∫
0

dq2
0ReIret(q0, �k )

︸ ︷︷ ︸
const. in k0

− 1

2NfNcπ

∞

P

∫
0

dq2
0

Im Πret
π (q0, �k )

q2
0 − k2

0

,

and likewise for the σ case. We have shown that the first approach, using the dis-
persion integral over ReIret and multiplying with k2 afterwards, is equivalent to the
direct calculation of Re Πret

σ,π. This means that the constant term in the last line of
Eq. (B.15) must be calculated explicitly when Re Πret

σ,π is calculated from a dispersion
integral over Im Πret

σ,π,

Re Πret
σ,π(k) =

1

π

∞

P

∫
0

dq2
0

Im Πret
σ,π(q0, �k )

q2
0 − k2

0

− 1

2G

ΣH

m∗ − 2NfNc

π

∞∫
0

dq2
0ReIret(q0, �k ) . (B.16)

The first term of the expression on the rhs. is the regular dispersion integral. The
two other terms are k0 independent terms that cannot be calculated dispersively from
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Im Πret
σ,π. They are important and must not be neglected. For example, the second

term on the rhs. of (B.16) is relevant for the chiral behavior of the RPA pion, as
discussed earlier.

A decomposition similar to (B.16) is found for the full O(1/Nc) approach, see
Section 3.6 for details. Note that Πn in Eq. (3.54) corresponds to the second term of
(B.16) and Πret

d in (3.54) corresponds to the sum of the first and the third term of
(B.16).

Finally we note that Re Πret
σ,π(k) does not reduce to − 1

2G
ΣH

m∗ in the limit k2 → ∞.
Instead, we find using (B.12,B.14):

ReΠret
σ,π(k)

k2→∞−−−−→ − 1

2G

ΣH

m∗ +
NfNc

2π2

Λ2+m∗2∫
m∗2

dE2
k

√
1 − m∗2/E2

k . (B.17)
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C Feynman rules of the
real-time formalism

We use the real-time formalism (see Section 2.6 and [Dan84, BM90, Das97]) for
the calculation of self-energies and polarizations at finite quark densities. In this
formalism, the time arguments of operators are placed on the closed time-path shown
in Fig. C.1 and the time ordering along the real time axis is replaced by a path
ordering along the contour. The path-ordered (quark) Green’s function SP(1, 2) is
given by

SP(1, 2) = −i
〈
P[ψ(1)ψ̄(2)]

〉
= ΘC(t1, t2) S>(1, 2) − ΘC(t2, t1) S<(1, 2)

where S≷ are the usual non-ordered propagators, cf. (2.17), and ΘC is the generalized
step function on the time-path (2.16). This scheme allows the derivation of Feynman
rules for systems with finite chemical potentials and temperatures [Dan84]. The main
difference of these rules to the Feynman rules of standard (ground state) perturbation
theory is that all time integrals are replaced by integrals along the contour C.

In the following, we will first introduce the Feynman rules for the evaluation of
path-ordered self-energies and polarizations. Then, we will turn to their time-ordered
and non-ordered counterparts. For those quantities – that are more relevant for the
present work – a simplified set of Feynman rules in coordinate space and momentum
space will be presented.

Figure C.1: The closed time-path of the real-time formalism in the complex plane.
Points on the upper branch are always considered to be earlier than points on
the lower branch.
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C Feynman rules of the real-time formalism

1, iγ5τi1, iγ5τi −→ 1, iγ5τi 1, iγ5τi

x x′

Figure C.2: The four-point vertices of the NJL Lagrangian (2.1) must be replaced by
finite interaction lines ∼ δ4(x − x′) so that all topologically distinct diagrams
can be found, cf. Fig.2.2.

C.1 Feynman rules on a closed time-path

The Feynman rules that can be found in [Dan84] have been derived for a non-
relativistic system of particles (fermions or bosons) that interact via a potential V (�x ).
Those rules can be adopted to the NJL interaction that is given in Eq. (2.1) and in
Eq. (2.4) as a quark–quark and a quark–meson interaction, respectively. Note that
the Feynman rules for a relativistic fermion–meson interaction that is very similar to
(2.4) can be found in [Gre92].

C.1.1 Rules for the quark–quark interaction

Before we introduce the Feynman rules, it is important to note that all topologically
distinct diagrams must be found. This is difficult when the four-point vertices of the
local interaction in Eq. (2.1) are represented by the simple dots shown in Fig. 2.1(a).
Hence, we will replace the pointlike vertices – like in Fig. 2.2 – by finite interaction
lines. This is illustrated in Fig. C.2. To avoid confusion, we will not refer to the
points, where two quark lines and an interaction line meet, as vertices. Instead, we
will call these points endpoints of an interaction line. A full (NJL) vertex is given by
the interaction line and the two corresponding endpoints.

The following (coordinate space) Feynman rules for the evaluation of the path-
ordered self-energy −i ΣP(1, 2) are obtained for the quark–quark interaction given by
the NJL Lagrangian in Eq. (2.1), cf. [Dan84]:

1. Draw all directed diagrams that are topologically distinct and connected, using
the vertices of Fig. C.2 (right side).

2. A quark line that runs from (�x′, t′) to (�x, t) stands for a non-interacting Green’s
function i SP

0 (1, 1′). When the two arguments are equal, the line is interpreted
as i S<

0 (1, 1).

3. Each interaction line represents a factor

2iG × δC(t, t′)δ3(�x − �x′) ,
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C.1 Feynman rules on a closed time-path

where δC is the generalized δ-function on the contour,

δC(t, t′)

⎧⎪⎨
⎪⎩

+δ(t − t′) for t, t′ ∈ C1,

−δ(t − t′) for t, t′ ∈ C2,

0 for t ∈ C1, t
′ ∈ C2 or t ∈ C2, t

′ ∈ C1.

4. A spin- and isospin factor 14×412×2 or iγ5τi is assigned to each endpoint of an
interaction line (identical factors at both ends).

5. Each closed fermion loop generates a factor (−1).

6. Integrate all internal variables over space and – along the contour C – over time
from t0 to t0.

Note that the time integrals along C1 and C2 run into opposite directions. This is
compensated by the different signs of δC(t, t′) on C1 and C2.

C.1.2 Rules for the quark–meson interaction

Let us now consider the Feynman rules for the quark–meson interaction in Eq. (2.4).
The corresponding qq̄−σ and qq̄−π vertices are shown in Fig. 2.1(b). Note that the
vertices at the ends of a π+ line are not given by two π+ vertices but by a π+ and
a π− vertex (and likewise for a π− line), cf. Eq. (2.41). This should be clear from
the construction of the RPA propagators, see Eqs. (2.2,2.7) and Fig. 2.3. To avoid
confusion, factors Γ−(Γ+) at the end of a π+(π−) line will be relabeled as Γ̃+(Γ̃−)
below, cf. (2.3).

Taking the above considerations into account, we find the following Feynman
rules for the evaluation of path-ordered self-energies −i ΣP(1, 2) and polarizations
−i ΠP

l (1, 2) (see also [Gre92]):

1. Draw all directed diagrams that are topologically distinct and connected, using
the vertices in Fig. 2.1(b).

2. A quark line that runs from (�x′, t′) to (�x, t) stands for a non-interacting Green’s
function i SP

0 (1, 1′). When the two arguments are equal, the line is interpreted
as i S<

0 (1, 1).

3. A meson line that runs from (�x′, t′) to (�x, t) stands for one of the non-interacting
Green’s functions i ∆P

0,l(1, 1
′) with l = σ, 0,±.

4. A spin- and isospin factor −iΓl or −iΓ̃l is assigned to each vertex.

5. Each closed fermion loop generates a factor (−1).
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C Feynman rules of the real-time formalism

6. Integrate all internal variables over the full space and – along the contour C –
over time from t0 to t0.

As suggested by Eq. (2.7), the dynamically generated mesons can be understood as
a generalization of the (local) interaction line shown in Fig. C.2. The Feynman rules
for the quark–quark interaction and the quark–meson interaction differ only in rules
3 and 4 – the interaction line is replaced by a meson propagator and the (iso-)spin
factors are rearranged like in the transition from (2.1) to (2.2).

C.2 Feynman rules on the divided contour

As shown in Section 2.6, the propagators Sc,a,≷ correspond to special cases of SP,
where each time argument is located on a fixed branch of the contour,

Sc(1, 2) = −i
〈
T[ψ(1)ψ̄(2)]

〉
for t1, t2 ∈ C1 ,

Sa(1, 2) = −i
〈
T̄[ψ(1)ψ̄(2)]

〉
for t1, t2 ∈ C2 ,

S>(1, 2) = −i
〈
ψ(1)ψ̄(2)

〉
for t1 ∈ C2, t2 ∈ C1 ,

S<(1, 2) = i
〈
ψ̄(2)ψ(1)

〉
for t1 ∈ C1, t2 ∈ C2 .

(C.1)

The time arguments of the self-energies Σc,a,≷ (and the polarizations Σc,a,≷
l ) have the

same structure. This allows us to use a simplified version of the Feynman rules: When
the location of the time arguments on the branches is known, it is possible to split up
the contour into its branches in the calculations [Dan84]. Thus, the integral along the
full time-path contour can be avoided and it becomes possible to introduce Feynman
rules in momentum space.

We will discuss the coordinate space Feynman rules only for the quark–quark inter-
action (2.1) here. This should be sufficient to understand the changes that arise when
the contour is separated into its branches. In our actual calculations, we use the Feyn-
man rules in momentum space. These rules will be discussed for both interactions
(2.1,2.4).

C.2.1 Coordinate space rules for the quark–quark interaction

The Feynman rules for the evaluation of a self-energy −i Σc,a,≷(1, 2), using the quark–
quark interaction of Eq. (2.1), are given by (see [Dan84]):

1. Split up the drawing plane into two parts with a vertical line. Each part cor-
responds to a branch of the contour (chronological or anti-chronological). For
each function argument, place a point on the appropriate side of the line that
divides the branches. The positions for a specific type of function are given in
(C.1).
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C.2 Feynman rules on the divided contour

2. Draw all diagrams that are topologically distinct and connected, using the ver-
tices of Fig. C.2 (right side). Assign a direction to each quark line. Diagrams
that are cut differently by the vertical line are distinct. Interaction lines may
not cross the division line.

3. Depending on the location of the start- and endpoints with respect to the di-
vision line, cf. (C.1), a quark line stands for a non-interacting Green’s function
i S>

0 , i S<
0 , i Sc

0, or i Sa
0. When the two arguments are equal, the line is interpreted

as i S<
0 .

4. An interaction line represents a factor 2iG × δ4(x − x′).

5. An additional factor (−1) corresponds to each interaction line on the anti-
chronological branch.

6. A spin- and isospin factor 14×412×2 or iγ5τi is assigned to each endpoint of an
interaction line (identical factors at both ends).

7. Each closed fermion loop generates a factor (−1).

8. Integrate all internal variables over space and time (from t0 to the largest time
argument of the evaluated function).

9. Every time integral on the anti-chronological branch generates a factor (−1).

The rules 4 and 5 replace rule 3 of Section C.1.1 – the generalized δ-function on the
contour is split up into a regular δ-function and a factor (−1) on the anti-chronological
branch. Likewise, the rules 8 and 9 replace rule 6 of Section C.1.1. The factor (−1) of
rule 9 arises since the time integrals along C1 and C2 run into opposite directions (this
is not taken into account by rule 8). Note that the combination of rules 5 and 9 yields
an overall factor (−1) for each internal NJL vertex (interaction line and endpoints)
on the anti-chronological branch.

C.2.2 Momentum space rules for the quark–quark interaction

We come now to the Feynman rules in momentum space. These are the rules that
are most suitable to work out the diagrams in the Dyson–Schwinger equations in
Fig. 2.11 since our whole approach is based on momentum space calculations. For
the quark–quark interaction (2.1), we find the following rules for the evaluation of
−i Σc,a,≷(k) [Dan84]:

1. Draw all diagrams as described by the coordinate space rules 1 and 2 of Sec-
tion C.2.1.

2. Assign a four-momentum variable to each quark line and each interaction line.
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C Feynman rules of the real-time formalism

3. Impose energy and momentum conservation at the endpoints of each interaction
line.

4. A quark line on the chronological branch stands for i Sc
0, a quark line on the

anti-chronological branch stands for i Sa
0. Quark lines that cross the division

line stand for i S≷
0 .

5. An interaction line represents a factor 2iG.

6. An additional factor (−1) corresponds to each interaction line on the anti-
chronological branch.

7. A spin- and isospin factor 14×412×2 or iγ5τi is assigned to each endpoint of an
interaction line (identical factors at both ends).

8. An additional factor (−1) corresponds to each internal endpoint of an interac-
tion line on the anti-chronological branch.

9. Each closed fermion loop generates a factor (−1).

10. Integrate over all internal energies and momenta.

Like in coordinate space, the combination of rules 6 and 8 yields an overall fac-
tor (−1) for each internal NJL vertex (interaction line and endpoints) on the anti-
chronological branch.

C.2.3 Momentum space rules for the quark–meson interaction

Finally, we present the momentum space Feynman rules for the evaluation of the
self-energies −i Σc,a,≷(k) and the polarizations −i Πc,a,≷

l (k). Using the interaction in
Eq. (2.4), we find:

1. Draw all diagrams as described by the coordinate space rules 1 and 2 of Sec-
tion C.2.1, using the vertices in Fig. 2.1(b).

2. Assign a four-momentum variable to each quark line and each meson line.

3. Impose energy and momentum conservation at each vertex.

4. A quark line on the chronological branch stands for i Sc
0, a quark line on the

anti-chronological branch stands for i Sa
0. Quark lines that cross the division

line stand for i S≷
0 .

5. A meson line on the chronological branch stands for i ∆c
0,l, a meson line on the

anti-chronological branch stands for i ∆a
0,l. Meson lines that cross the division

line stand for i ∆≷
0,l. (l = σ, 0,±)
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6. A spin- and isospin factor −iΓl or −iΓ̃l is assigned to each vertex.

7. An additional factor (−1) corresponds to each internal vertex on the anti-
chronological branch.

8. Each closed fermion loop generates a factor (−1).

9. Integrate over all internal energies and momenta.

Note that meson lines – in contrast to the (local) interaction line of the quark–
quark interaction – may cross the division line. There is no rule that assigns a factor
(−1) to meson lines on the anti-chronological branch (like rule 6 of Section C.2.2).
Such factors are implicitly in rule 5 – different meson propagators are used according
to the position of their endpoints on the contour.

C.3 Concluding remarks

In the previous sections, we have not derived Feynman rules for the evaluation of
retarded or advanced quantities. This has a simple reason: The position of the time
arguments on the two branches of the time-path contour are not well defined. We
can see that in the definition of the retarded quark propagator (2.18), where the
contributions from Sc(1, 2) with t1, t2 ∈ C1 and S<(1, 2) with t1 ∈ C1, t2 mix. As we
have discussed at the end of Section 3.5, this is not a crucial problem. For example,
the retarded self-energy can be constructed from time-ordered self-energies – for T = 0
they differ only in the sign of the imaginary part, cf. (3.25).

The Feynman rules that are presented here, identify particle lines with free, non-
interacting propagators – this is the basic idea of a perturbative approach. In the
(self-consistent) Dyson–Schwinger equations of Fig. 2.11, however, the lines corre-
spond to full in-medium propagators. Thus, we use the Feynman rules (of Sec-
tions C.2.2 and C.2.3) to obtain analytic expression from the self-energy diagrams
in the Dyson–Schwinger equations. But instead of inserting free propagators, we use
full propagators in these expressions. If this is done, one has to exclude two-particle
reducible diagrams1 to avoid double counting.

1These are diagrams which contain more than one propagator with the same momentum.
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D Energy integral over the
retarded quark propagator

The two poles of the retarded quark propagator Sret(p) are located in the same com-
plex energy half plane. Thus the contour integral along the real p0 axis that is closed
in the upper half plane as shown in Fig. D.1 is zero,

∮
dp0 Sret(p) =

+∞∫
−∞

dp0 Sret(p) +

∫
∩

dp0 Sret(p) = 0 . (D.1)

The integral
∫ +∞
−∞ dp0 Sret(p) occurs frequently in the present work. Because of

Eq. (D.1) one might suspect that this integral is zero. It will turn out, however, that
the integral along the real p0 axis and the integral along the semicircle at large p2

0 are
finite and cancel each other in (D.1).

We can calculate the integral along the semicircle rather easily. At infinitely high
energies it is safe to assume that no interactions occur. Thus the full propagator can
be replaced by the free one,

Sret
fr. (p) =

/p + m

p2 − m2
=

p0γ0 − �p · �γ + m

p2 − m2

p2
0→∞−−−−→ p0γ0 − �p · �γ + m

p2
0

.

Along the semicircle we have p2
0 � �p 2 and p2

0 � m2. Therefore �p 2 and m are negligible
in the denominator. Parametrizing the complex p0 along the semicircle,

p0 = Peiφ ,
dp0

dφ
= iP eiφ = ip0 ,

Figure D.1: The poles of the retarded quark propagator Sret are both located in the
lower complex half plane. The integral along the shown contour C vanishes.
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D Energy integral over the retarded quark propagator

we get

∫
∩

dp0 Sret(p) =

π∫
0

dφip0
p0γ0 − �p · �γ + m

p2
0

∣∣∣∣∣∣
p0=Peiφ

(D.2)

= iγ0

π∫
0

dφ + i(−�p · �γ + m)

∫
dφ

e−iφ

P︸︷︷︸
=0(P→∞)

= iπγ0 .

For the real p0 integral it follows immediately from (D.1):

+∞∫
−∞

dp0 Sret(p) = −iπγ0 . (D.3)

The integral has the same Lorentz structure as the propagator (2.23). The scalar
and the �γ-component are zero while the γ0-component has a finite value,

+∞∫
−∞

dp0Im Sret
0 (p) = −π ,

+∞∫
−∞

dp0Re Sret
0 (p) = 0 . (D.4)

Note that the integral over the trace of the retarded propagator vanishes since
tr γ0 = 0,

+∞∫
−∞

dp0 tr Sret(p) = 0 . (D.5)

Finally it should be noted that the normalization of the Lorentz components of the
quark spectral function defined in (2.26) can be directly read off from Eq. (D.3),

+∞∫
−∞

dp0

2π
A0(p) = 1 ,

+∞∫
−∞

dp0

2π
As(p) = 0 ,

+∞∫
−∞

dp0

2π
Av(p) = 0 . (D.6)

The explicit expression for the RPA meson polarizations Πc
l (k) in Eq. (3.27) includes

another interesting integral that might be zero,

+∞∫
−∞

dp0 Tr
[
Γ̃l S

ret(p)Γl S
ret(p − k)

]

∼
+∞∫

−∞

dp0

[
Sret

0 (p) Sret
0 (p − k) ± Sret

µ (p) Sµ
ret(p − k)

]
,
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where the upper sign refers to l = s and the lower sign to l = 0,±. All the poles of
both propagators – and thus of their Lorentz components – are located in the same
complex half plane. So the contour integral along the closed path C from Fig. D.1 is
again zero. The integral along the semicircle in the upper half plane can be calculated
in analogy to (D.2). Using

Sret
fr. (p − k)

p2
0→∞−−−−→ (p − k)µγµ + m

p2
0

we get ∫
∩

dp0

[
Sret

0 (p) Sret
0 (p − k) ± Sret

µ (p) Sµ
ret(p − k)

]
= ±

π∫
0

dφip0

[
p2

0 − p0k0

p4
0

− �p 2 − �p · �k ± m2

p4
0

] ∣∣∣∣∣∣
p0=Peiφ

P→∞
= 0 .

Since the integral along the closed contour is zero, too, it follows that the integral
along the real p0 axis must vanish,

+∞∫
−∞

dp0

[
Sret

0 (p) Sret
0 (p − k) ± Sret

µ (p) Sµ
ret(p − k)

]

=

+∞∫
−∞

dp0 Tr
[
Γ̃l S

ret(p)Γl S
ret(p − k)

]
= 0 . (D.7)
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E Quarks and antiquarks, density
and momentum distribution

The quark spectral function A(k) consists of states at positive and negative energies
(see the schematic plot in Fig. 2.17). For the interpretation of our results – not for
the actual calculations – it is helpful to split up the spectral function into a quark and
an antiquark part. This means that we reinterpret the quark states below a certain
energy threshold as antiquark states. Since an antiquark corresponds to a hole in
the Fermi sea, we also have to invert the occupation probability of these states. A
populated quark state is equivalent to a free antiquark state. In this appendix we will
discuss how to disentangle the quarks and the antiquarks in our O(1/Nc) approach
where the spectral function contains a broad range of off-shell states.

In the vacuum it is easy to identify the antiquark region of the spectral function.
The occupation probability of a quark state at the energy k0 is given by the Fermi
distribution function nF(k0). At zero temperature and chemical potential, all states
at negative energies are populated by quarks (Fermi sea) and all states at positive
energies are free. Since there are no quarks and no antiquarks in the vacuum, we
can identify all (populated quark) states at negative energies with (free) antiquark
states. Note that the border between the quark and the antiquark states (qq̄ border)
is not necessarily located at k0 = 0 for finite chemical potentials. The self-energy
may induce (momentum dependent) shifts.

The density and the momentum distribution of the quarks in the medium are closely
related to the distinction of quarks and antiquarks. Both quantities are determined by
integrals over A(k)nF(k0). In those integrals, contributions from the populated quark
states that are reinterpreted as free antiquark states should not be considered. Below,
we will see that the density and the momentum distribution do not only depend on
the qq̄ border but can also be used to determine its location.

E.1 Mean-field approaches

Before we discuss the O(1/Nc) case in more detail, let us first have a brief look at
the Hartree and the Hartree–Fock approximations. On the quasiparticle level it is a
straightforward exercise to distinguish between quark and antiquark states. The full
strength of the spectral function is concentrated in the on-shell peaks, off-shell states
do not exist. In the Hartree approximation, the Lorentz components of the spectral
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function are (anti-)symmetric in k0, cf. Section 4.1.1,

A(k) = 2π(/k + m∗)
1

2Ek

[δ(k0 − Ek) − δ(k0 + Ek)] , (E.1)

where Ek = [�k2 + (m0 + ΣH)]1/2. ΣH is the Lorentz scalar Hartree self-energy (3.2).
We can identify the on-shell peak at positive energies with a quark peak and the on-
shell peak at negative energies with an antiquark peak. Due to the (anti-)symmetry
of A(k), the border between quarks and antiquarks can be drawn at k0 = 0 (where

the two peaks meet for �k = 0 when the quarks are massless).
We know from (D.6) that the γ0-component of the spectral function is normalized.

In the Hartree approximation we find in addition

0∫
−∞

dk0

2π
A0(k) =

1

2
,

+∞∫
0

dk0

2π
A0(k) =

1

2
. (E.2)

I.e., the quark and the antiquark states are normalized to 1/2 separately.
In the Hartree–Fock approximation, the on-shell peaks are shifted by the γ0-

component of the Fock self-energy,

A(k) ∼ [δ(k0 − ΣF
0 −Ek) − δ(k0 − ΣF

0 +Ek)] , (E.3)

where Ek = [�k2 + (m0 + ΣH + ΣF
s )]1/2. Recall that the �γ-component of ΣF is zero,

cf. Section 3.1.2. The Lorentz components of the Hartree–Fock spectral function are
(anti-)symmetric in the effective energy k̃0 = k0 − ΣF

0 . Thus, the border between
the quark and the antiquark states is located at k̃0 = 0, i.e., k0 = ΣF

0 . For the
normalization of the spectral function we find in analogy to (E.2)

ΣF
0∫

−∞

dk0

2π
A0(k) =

1

2
,

+∞∫
ΣF

0

dk0

2π
A0(k) =

1

2
. (E.4)

Note that, in practice, one will not introduce an effective energy in the Hartree–Fock
approximation but absorb the constant ΣF

0 into a redefined chemical potential [Kle92].

E.2 O(1/Nc) approach

E.2.1 Quarks and antiquarks

The spectral function of our O(1/Nc) approach has a more complicated structure
than the quasiparticle spectral functions in (E.1,E.3). The energy and momentum
dependent, complex self-energy Σret shifts the on-shell peaks in a non-uniform way
and generates a broad continuum of off-shell states. These off-shell states blur the
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E.2 O(1/Nc) approach

Figure E.1: The border between the quark and antiquark states kqq̄
0 (|�k |) of scheme I

as defined in (E.5). Parameter set I has been used in the O(1/Nc) calculations
at densities below and above the chiral phase transition.

distinction between quarks and antiquarks. Since the spectral function does not
vanish between the on-shell peaks, the qq̄ border must be drawn in a region where
the spectral function is finite.

The mean-field approaches suggest two ways to define the qq̄ border. First, we could
draw the border – like in the Hartree–Fock approximation – where the real part of
the effective energy Rek̃0, cf. (2.34), changes its sign. States at positive effective
energies are then identified with quarks and states with negative effective energies as
antiquarks. The energy kqq̄

0 (|�k |) that determines the position of the border is found
by solving

Rek̃0

(
kqq̄

0 (|�k |), |�k |
)

= 0 . (E.5)

Second, we could demand that the quark and the antiquark part of the spectral
function are separately normalized to 1/2, cf. (E.2,E.4). The location of the qq̄ border
is then determined by the integrals

+∞∫
kqq̄
0 (|�k |)

dk0

2π
A0(k) =

1

2
,

kqq̄
0 (|�k |)∫
−∞

dk0

2π
A0(k) =

1

2
. (E.6)

In the following, we will refer to the two definitions in Eqs. (E.5) and (E.6) as scheme
I and scheme II, respectively.

To illustrate the density and momentum dependence of the qq̄ border, we show
some results for kqq̄

0 – calculated using scheme I – in Fig. E.1. At the lower density,
i.e. in the chirally broken phase, kqq̄

0 remains very small with respect to the effective
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Figure E.2: The normalizations Nq and Nq̄ of the quark and the antiquark part of
the spectral function A0,respectively, as defined in Eq. (E.7) for scheme I. Note

that Nq̄(|�k |) + Nq(|�k |) = 1, cf. (2.28). See Fig. E.1 for more details.

quark mass. Since the short-range correlations are strongly density dependent, kqq̄
0

becomes larger in the chirally restored phase. The size of kqq̄
0 is comparable to the

effective mass at the higher density. Nonetheless, kqq̄
0 remains small with respect to

the cutoff.
A numerical check shows that scheme I and scheme II are not completely equivalent

in the O(1/Nc) approach: Let us consider the normalizations of the quark and the
antiquark states of the spectral function. When scheme I is used, the normalizations
are given by

Nq(|�k |) =

+∞∫
Rek̃0=0

dk0

2π
A0(k) , Nq̄(|�k |) =

Rek̃0=0∫
−∞

dk0

2π
A0(k) . (E.7)

Numerical results for Nq and Nq̄ can be found in Fig. E.2. The spikes on the curves
are small numerical fluctuations (note the scale), we will come back to them below.
In the chirally broken phase (ρ = ρ0), no deviations of Nq and Nq̄ from 1/2, i.e. from
scheme II, are visible – within the numerical precision. In the chirally restored phase
(ρ = 5ρ0), however, we find deviations on the order of 5% at low momenta.

The discrepancies can be readily understood. The energy dependent quark width
is not symmetric in Rek̃0 at finite chemical potential. Consequently, the off-shell
states of the spectral function are also not symmetric, cf. Figs. 5.3-5.5. These states
shift spectral strength across the border defined by Rek̃0 = 0. This is an effect
that is not taken into account by scheme I. At higher densities, the width becomes
larger and less symmetric in Rek̃0. Hence, the deviations of Nq and Nq̄ from 1/2 are
larger in the right panel of Fig. E.2. Note that the relations of (2.28), in particular
Nq̄(|�p |) + Nq(|�p |) = 1, still hold. No spectral strength is lost by the shifts across the
qq̄ border.

210



E.2 O(1/Nc) approach

The results of Section 5.6 show that the short-range correlations saturate above the
chiral phase transition. Hence, the deviations of Nq and Nq̄ from 1/2 – and thus the
discrepancies between scheme I and II – do not become much larger at densities above
5ρ0. We note that the position of the on-shell peaks is well defined with respect to
the qq̄ border in both schemes (the on-shell peaks of massless quarks and antiquarks

meet at Rek̃0 = 0 for �k = 0).
To determine which of the two schemes is a more reasonable choice for our approach,

we will turn to the quark density and the momentum distribution in the next section.
A closer inspection of these quantities will show that the qq̄ border that is defined
by scheme II is analytically favorable. Numerically, however, the qq̄ border of scheme
I is easier to handle. This will lead to a compromise for the definition of the qq̄
border, the density and the momentum distribution that is discussed at the end of
Section E.2.2.

E.2.2 Density and momentum distribution

The number of quarks in the medium with a given four-momentum k is determined by
−i Tr γ0 S<(k), cf. (2.25). We can find the quark density ρ by integrating the number
of particles over energy and momentum. Using S<(k) = iA(k)nF(k0), cf. (2.31), and
Tr γ0A = 4NfNcA0 yields

I(µ, T ) = 4NfNc

∫
Λ

d3k

(2π)3

+∞∫
−∞

dk0

2π
nF(k0)A0(k) . (E.8)

This is not yet the density. The integral sums up the populated quark states at
all energies – including the states at negative energies which we interpret as free
antiquark states. To find the actual quark density of the medium, the contributions
from these states must be removed. We can easily do that by subtracting the result
for I in the vacuum,

ρ(µ, T ) = I(µ, T ) − I(µ = 0) . (E.9)

This definition of the density ensures that ρ vanishes for µ = 0. As we will see below,
the value of I(µ = 0) is independent of T .

It is possible to calculate I(µ = 0) analytically. Consider the energy integral

J(|�k |, µ, T ) =

+∞∫
−∞

dk0

2π
A0(k)nF(k0) (E.10)

that is part of (E.8). It can be split up into

J(|�k |, µ, T ) =

∫
dk0

2π
A0(k)

[
nF(k0) −

1

2

]
︸ ︷︷ ︸

=0 (µ=0)

+
1

2

∫
dk0

2π
A0(k)︸ ︷︷ ︸

=1

. (E.11)

211



E Quarks and antiquarks, density and momentum distribution

Due to the structure of the integrand, the first term vanishes for µ = 0: A0(k) is
symmetric in k0 for µ = 0 – recall the discussion in Section 5.2.1. nF(k0) − 1/2, on
the other hand, is antisymmetric,

nF(k0) −
1

2

µ=0
=

1

2
· 1 − ek0/T

ek0/T + 1
=

1

2
· e−k0/T − 1

1 + e−k0/T
=

1

2
− nF(−k0) . (E.12)

The second term on the rhs. of (E.11) corresponds to the normalization of the spec-
tral function (D.6). Like in the quasiparticle approaches (E.2,E.4), the antiquark
states yield half of the strength of the spectral function. We find the – temperature
independent – result

I(µ = 0) = 2NfNc

∫
Λ

d3k

(2π)3
=

NfNcΛ
3

3π2
, (E.13)

and thus,

ρ(µ, T ) = 4NfNc

∫
Λ

d3k

(2π)3

+∞∫
−∞

dk0

2π
nF(k0)A0(k) − NfNcΛ

3

3π2
. (E.14)

The momentum distribution of the quarks is found by integrating the number of
particles over the energy at fixed three-momentum. Thus, it corresponds to the inte-
gral J in (E.10). Like for the density, the vacuum contributions must be subtracted.
Using (E.11,E.12) yields

n(|�k |, µ, T ) = 2J(|�k |, µ, T ) − 2J(|�k |, µ = 0) =
1

π

+∞∫
−∞

dk0A0(k)nF(k0) − 1 , (E.15)

where the factors have been chosen such that the momentum distribution is normal-
ized to 1 for quasiparticles below the Fermi momentum.

Eqs. (E.14) and (E.15) allow us to calculate ρ and n without explicit knowledge of
the qq̄ border at finite chemical potentials. However, there is a price to pay for this
convenience: Instead of calculating the density and the momentum distribution from
an integral over the quark states above the qq̄ border only1, the integrals in (E.14) and
(E.15) involve the states of the spectral function at all energies. The numerical results
for these integrals are “corrected” by subtracting the analytical vacuum results. This
approach makes the calculations sensitive to numerical fluctuations in the antiquark
sector.

The problem is illustrated in Fig. E.3. The left panel shows numerical results for
the integral J (E.10) at two densities and zero temperature. We can see that the

1At finite temperatures, a few quark states at negative energies are not populated due to thermal
excitations. The corresponding populated antiquark states yield small contributions to ρ and n,
see (E.19,E.20) below.
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E.2 O(1/Nc) approach

Figure E.3: Numerical results for J(|�k |, µ, T ) of Eq. (E.10) and the momentum dis-

tribution n(|�k |, µ, T ) of the quarks in the medium, calculated using Eq. (E.15)
at several densities and T = 0. Note the break in the vertical scale of the left
panel. The uncertainties that arise from integrating over the antiquark states
numerically and subtracting the analytical result have large influence on the
high-momentum tail of the momentum distribution.

numerical uncertainties are on the order of 2% (note the scale). Above the Fermi
momentum, the quark on-shell peak is located above the chemical potential. Hence,
the results – and the (absolute) size of the numerical fluctuations – are dominated by
the integration over the antiquark on-shell peak. The contributions from the off-shell
quark states are much smaller.

When we subtract the (constant) vacuum contributions J(µ = 0) from J(|�k |, µ),
cf. (E.15), the numerical fluctuations of J transfer directly to the momentum distribu-
tion shown in the right panel of Fig. E.3. We can see that the numerical uncertainties
of J are of the same order of magnitude as the high-momentum tail of the momentum
distribution (or even larger) below the chiral phase transition (ρ = ρ0). Only in the
chirally restored phase, the contributions from the quark states become larger than
the fluctuations. Nonetheless, the curves have still an irregular structure.

Note that the momentum distribution below the Fermi momentum is – due to the
contributions from the on-shell quark states – much larger than the fluctuations. The
numerical error stays below 4% in this region. The largest contributions to the quark
density arise also from the states below kF . Thus, the numerical error of the density
should be of similar size.

The search for a better way to calculate the momentum distribution (and the
density) brings us back to the introduction of a qq̄ border. Introducing the antiquark
distribution function n̄F(k0),

n̄F(k0) = 1 − nF(k0) =
e(k0−µ)/T + 1

e(k0−µ)/T + 1
− 1

e(k0−µ)/T + 1
=

1

e(−k0+µ)/T + 1
, (E.16)
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E Quarks and antiquarks, density and momentum distribution

the integral on the rhs. of (E.15) can be split up into three parts,

J(|�k |, µ, T ) =

+∞∫
kqq̄
0

dk0

2π
A0(k)nF(k0) +

kqq̄
0∫

−∞

dk0

2π
A0(k) −

kqq̄
0∫

−∞

dk0

2π
A0(k)n̄F(k0) . (E.17)

The meaning of the three terms can be easily understood. The first term is an integral
over the populated quark states above the qq̄ border. This integral should be sufficient
to calculate the momentum distribution (and the density) of the quarks at zero tem-
perature. The second term is an integral over the antiquark states, not weighted with
a distribution function. This term should just cancel against the vacuum contribution
J(µ = 0) in (E.15) – and likewise against I(µ = 0) in (E.14).

The third term is a correction to the first two terms. When the Fermi distribution
softens at finite temperatures, some quark states below the qq̄ border will be free
due to thermal excitations. Hence, some antiquark states are populated (occupation
probability n̄F = 1 − nF). The contributions of those states (third term) must be
subtracted from the contributions of the quark states (first term) to find the momen-
tum distribution and the density of the medium. Note that this term vanishes for
T = 0 since n̄F turns into a step function, n̄F(k0) → Θ(k0 − µ), and kqq̄

0 must always
be smaller than µ.

When the rhs. of (E.17) is inserted into the definition of the momentum distribution
(E.15), the second term will only cancel against J(µ = 0) when the condition

kqq̄
0∫

−∞

dk0

2π
A0(k) =

1

2
(E.18)

is satisfied, cf. (E.11). This condition is nothing but our definition of the qq̄ border in
scheme II, see Eq. (E.6). As shown in the right panel of Fig. E.2, scheme I does not
satisfy the condition at higher densities. This leads to the conclusion that scheme II
is – at least formally – a more reasonable choice for the qq̄ border in our approach.

Using Eqs. (E.17) and (E.18), we can rewrite the definitions of the momentum
distribution (E.15),

n(|�k |, µ, T ) =
1

π

∞∫
kqq̄
0

dk0A0(k)nF(k0) −
1

π

kqq̄
0∫

−∞

dk0A0(k)n̄F(k0) , (E.19)
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E.2 O(1/Nc) approach

and of the quark density (E.14),

ρ(µ, T ) = 4NfNc

∫
Λ

d3k

(2π)3

∞∫
kqq̄
0

dk0

2π
A0(k)nF(k0)

− 4NfNc

∫
Λ

d3k

(2π)3

kqq̄
0∫

−∞

dk0

2π
A0(k)n̄F(k0) . (E.20)

In contrast to the original definitions, these expressions do not include integrals over
the antiquark states. However, these integrals have not vanished, but were only
shifted into the definition of kqq̄

0 in (E.6).
To find kqq̄

0 , at least one of the integrals in (E.6) must be calculated numerically. The
numerical fluctuations will be comparable to those of the normalizations in Fig. E.2
(scheme I). Since the spectral function is not very large near the qq̄ border, small
fluctuations of the normalizations will generate considerable shifts of kqq̄

0 in (E.6).
Consequently, the results for the momentum distribution calculated from (E.19) will
be of the same quality as those in the right panel of Fig. E.3.

Fig. E.1 shows that the qq̄ border that is defined by scheme I, i.e. Rek̃0 = 0,
can be determined numerically with very high precision. This leads to the following
compromise that we employ throughout this work: We use the expressions in (E.19)
and (E.20) to calculate the momentum distribution and the quark density. However,
the qq̄ border of scheme II (E.6) is replaced by the border of scheme I (E.5). At zero
temperature, this yields

n(|�k |, µ) ≈ 1

π

∞∫
Rek̃0=0

dk0A0(k)nF(k0) , (E.21)

ρ(µ) ≈ 4NfNc

∫
Λ

d3k

(2π)3

∞∫
Rek̃0=0

dk0

2π
A0(k)nF(k0) . (E.22)

As we have seen in Fig. E.2, the qq̄ border of scheme I will not satisfy the condition
(E.18) at high densities. Hence, the expressions in (E.21) and (E.22) are not exact
relations. They will, however, allow us to find numerically stable solutions – in
particular for the high-momentum tail of the momentum distribution. We show some
numerical results for the momentum distribution in Fig. E.4. When the qq̄ border of
scheme I is used, cf. Eq. (E.21), the results are free of numerical fluctuations at both
densities.

The systematical error that we make by using (E.21,E.22) is given by the deviations

of Nq(|�k |), cf. (E.5), from 1/2. In the left panel of Fig. E.2, such deviations are not
visible. Hence, Eqs. (E.21) and (E.22) yield exact results – within the numerical
precision – at moderate densities (chirally broken phase).
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E Quarks and antiquarks, density and momentum distribution

Figure E.4: The momentum distribution of the quarks in the medium, calculated from
the exact relation (E.19) (scheme II) and the approximation (E.21) (scheme I).
See the text for details. Note the different scales in the two panels.

The deviations of Nq from 1/2 become more relevant in the chirally restored phase,
see the right panel of Fig. E.2. Below the Fermi momentum (kF = 322 MeV), we
expect effects on the order of 5% for the momentum distribution. This is confirmed
by the results in the right panel of Fig. E.4. The influence of the deviations on the
quark density – that is found by integrating over the momentum distribution – will
be of the same size. Above kF , we find 1− 2Nq ≤ 0.02 (introducing a factor 2 like in
(E.15)). As we can see in the right panel of Fig. E.4, the influence of these deviations
on the high-momentum tail of the momentum distribution is on the order of 40%.

The rather large impact on the high-momentum tail should not be overestimated.
To compare the short-range effects in quark and nuclear matter in Section 5.7, we
do not use the high-momentum tail directly but we determine the discontinuity of
the momentum distribution at kF . The size of the discontinuity is related to the size
of the quark on-shell peak at the chemical potential [DVN05], far away from the qq̄

border. Provided that the qq̄ border is a smooth function of |�k | that does not jump
at kF – and this is ensured by using scheme I – the explicit location should have little
influence on the size of the discontinuity.

To avoid confusion, we note again that the way how the qq̄ border is drawn has
no influence on the self-consistent calculations. This border is only used to interpret
the final results, i.e., to determine the momentum distribution and the density. As
we have discussed before, the short-range correlations saturate above the chiral phase
transition. Thus, the deviations that we have found above should not increase sig-
nificantly at densities higher than 5ρ0. We can conclude that Eqs. (E.21) and (E.22)
represent a reasonable approximation scheme. All numerical problems are fixed while
the influence on the most relevant quantities, i.e. the density and the discontinuity of
the momentum distribution, remains small.

216



F Dispersive and
non-dispersive terms

In the following, a simple example [Leu06] is presented to illustrate which contribu-
tions to the real part of a complex function can be determined by a dispersion integral
over the corresponding imaginary part and which contributions cannot be determined
in that way. Basically, the statement is as follows: The dispersion fixes the real part
up to a polynomial (in the energy). For the practical application in the main part
of the present work where we study complex functions of the energy the polynomial
even reduces to a simple constant. The polynomial or constant can be determined
from the high-energy behavior of the real part of the studied complex function. In
other words, what one needs to know is the imaginary part of the function at all
energies and the real part at high energies.

To illustrate this statement we study the function

Πc(k0) = −k2
0

(√
1 − m2

k2
0

− 1

)
(F.1)

with m > 0 and we always use the positive square root. Obviously, Πc(k0) is purely
real for |k0| ≥ m and complex otherwise, i.e.,

Πc(k0) = k2
0 − ik2

0

√
m2

k2
0

− 1 for |k0| < m. (F.2)

We note that important features of the function introduced in (F.1) resemble the
properties of the self-energies which we study in the main part of the present work:
The imaginary part of Πc(k0) vanishes for high energies k0, while the real part becomes
constant. This is also true for our self-energies: The imaginary parts are caused by
scattering and decay processes. At high energies the products of these processes are
effectively cut down by the cutoff introduced in the NJL model. On the other hand,
not all real parts are cut down by the cutoff. The simplest example is the energy
independent Hartree self-energy.

The function introduced above corresponds to a Feynman self-energy. The corre-
sponding retarded self-energy (for the vacuum case) is given by (cf. (3.25))

Re Πret(k0) = ReΠc(k0) = k2
0 +

⎧⎨
⎩

0 for |k0| < m

−k2
0

√
1 − m2

k2
0

for |k0| ≥ m
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and

Im Πret(k0) = sgn(k0) ImΠc(k0) =

{
−k0

√
m2 − k2

0 for |k0| < m

0 for |k0| ≥ m

Next we define the dispersive part of Re Πret as

ReΠret
disp(k0) :=

1

π
P

+∞∫
−∞

dp0
Im Πret(p0)

p0 − k0
.

A straightforward calculation yields

Re Πret
disp(k0) = −m2

2
+ k2

0 +

⎧⎨
⎩

0 for |k0| < m

−k2
0

√
1 − m2

k2
0

for |k0| ≥ m

⎫⎬
⎭

= −m2

2
+ Re Πret(k0) .

However, the additional term −m2/2 is just the high-energy behavior of Re Πret(k0) =
ReΠc(k0). Thus we finally get

Re Πret(k0) =
m2

2
+Re Πret

disp(k0) =

[
lim

k0→∞
Re Πret(k0)

]
+

1

π
P

+∞∫
−∞

dp0
Im Πret(p0)

p0 − k0

(F.3)

which illustrates our statement made at beginning of this appendix. This result can
easily be understood: As long as Im Πret(p0) vanishes for large |p0| the dispersion
integral in (F.3) does not contribute in the limit k0 → ∞.
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G Relations between Bose and
Fermi distributions

When relating the time-ordered to the retarded meson polarizations in Section 3.6.1,
we encounter the following relation,

[nF(p − k) − nF(p)][1 + 2nB(k)] = nF(p) + nF(p − k) − 2nF(p)nF(p − k) . (G.1)

This is an interesting equation since it relates a mixture of fermionic and bosonic
distribution functions on the lhs. with a purely fermionic expression on the rhs. We
can construct Eq. (G.1) as follows. Using nB(k) = 1

eβk−1
we start from

2nB(k) + 1 =
1 + eβk

eβk − 1
=

eβ(p−k−µ) + eβ(p−µ)

eβ(p−µ) − eβ(p−k−µ)

(
= coth

βk

2

)
. (G.2)

Multiplying with eβ(p−µ) − eβ(p−k−µ) yields[
eβ(p−µ) − eβ(p−k−µ)

]
[1 + 2nB(k)] = eβ(p−µ) + eβ(p−k−µ) .

Using nF(k) = 1
eβ(k−µ)+1

,[
1

nF(p)
− 1

nF(p − k)

]
[1 + 2nB(k)] =

1

nF(p)
+

1

nF(p − k)
− 2 ,

and multiplying with nF(p)nF(p − k), we arrive at Eq. (G.1).
A similar relation is encountered when the retarded and the time-ordered quark

self-energies are calculated, cf. Section 3.8.3,

2nF(p)nB(p − k) + nF(p) − nB(p − k) = −[nF(p) + nB(p − k)][1 − 2nF(k)] . (G.3)

To construct this expression we start from nF(k) = 1
eβ(k−µ)+1

,

2nF(k) − 1 =
2 −
(
1 + eβ(k−µ)

)
1 + eβ(k−µ)

=
1 − eβ(k−µ)

1 + eβ(k−µ)

(
= tanh

β(k − µ)

2

)
. (G.4)

Multiplying with [1 + eβ(k−µ)]eβ(p−k) yields[
eβ(p−k) + eβ(p−µ)

]
[2nF(k) − 1] = eβ(p−k) − eβ(p−µ)[

eβ(p−k) − 1 + eβ(p−µ) + 1
]
[2nF(k) − 1] = 2 + eβ(p−k) − 1 − eβ(p−µ) − 1 .

Using nB(p) = 1
eβp−1

and nF(p) = 1
eβ(p−µ)+1

we get[
1

nB(p − k)
+

1

nF(p)

]
[2nF(k) − 1] = 2 +

1

nB(p − k)
− 1

nF(p)
.

Finally, we multiply with nF(p)nB(p − k) and find Eq. (G.3).
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H Numerical Implementation

Finding numerical solutions for the integrals that determine the quark width Γs,µ

(3.16) and the RPA meson widths Γσ,π (3.22) is a rather involved procedure. The
integrands of the three-dimensional integrals (after eliminating the trivial ϕ integral)
consist of quark and RPA spectral functions. The spectral functions concentrate
most of their strength in the narrow on-shell regions. Even for adaptive integration
routines – that try to analyze the structure of the integrand – it is hard to localize
those regions1 when the product of two spectral functions is considered.

This problem is enhanced by two effects: First, each spectral function consists of
two peaks that have to be localized – a particle and an antiparticle peak. Second, the
integrands include distribution functions nF and nB that correspond to step functions
at zero temperature. Typically, integration routines find steps in the integrands much
easier than peaks. If they spend too many of their (limited) nodes to analyze the
structure of these steps, they may miss the peaks.

When an integration routine overlooks the on-shell peaks in the calculation – or
does not investigate them with high enough precision – the result will be useless. In
this appendix we will discuss how the integrals (3.16,3.22) can be brought into a form
that is most suitable for the numerical integration routine. Note that we will not
consider the calculation of the nucleon width (6.5,6.6) explicitly here. However, it
involves the same problems for which similar solutions can be found. We will point
out the differences below.

H.1 Splitting up the integrals

The negative influence of the distribution functions on the numerical calculations
can be readily compensated. In fact, the distributions can be used to stabilize the
numerics at zero temperature: Instead of setting the limits of the energy integrals to
the borders of the numerical grids, cf. Section 5.1.3, we can shift them to the points
where the step functions drop to zero. We have already demonstrated this before,

1Consider the following (non-adaptive) example: When the integration routine uses 106 sampling
points (typically, we use only 2 · 105 nodes) and the points are evenly distributed over all three
dimensions, the integrand is discretized on a grid with 100×100×100 grid points. For a constant
mesh size, an energy resolution of dp0 = 70 MeV would be reached in the calculation of the quark
width (|p0| < 3.5 GeV). The width of the on-shell peaks of the (anti-)quarks in the chirally broken
phase, however, is more than a factor of 3 smaller, cf. Fig. 5.15.
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H Numerical Implementation

cf. Eqs. (3.17,3.23),

Γs,µ ∼
+∞∫

−∞

dp0[nF(p0) + nB(p0 − k0)]· · · T=0
=

µ∫
k0

dp0· · · ,

Γσ,π ∼
+∞∫

−∞

dp0[nF(p0 − k0) − nF(p0)]· · · T=0
=

µ+k0∫
µ

dp0· · · .

The shifts remove not only the unnecessary steps from the integrands, but also mini-
mize the integration volumes. This enhances the numerical accuracy without increas-
ing the computation time.

It is not possible to shift the integration limits in this way in our nuclear matter
calculations at finite temperatures. However, when the distribution functions soften
they do not distract the integration routines too much from the on-shell peaks. The
calculations have shown that the influence of the distributions on the numerical sta-
bility becomes tolerable for T ≥ 10 MeV.

Let us come back to the quark calculations, where we still have to simplify the
structure of the spectral functions (particle and antiparticle peaks) in the integrands.
For that purpose, we split up the energy integrals into several regions that can be
calculated individually: First, we separate the quark and the antiquark peak – or the
two meson peaks – of each spectral function. Additional cuts are introduced to split
up the quark spectral functions at the chemical potential where they drop to zero for
T = 0. Note that some of the regions that are found in this procedure are suppressed
by the distribution functions – recall the discussion in Section 4.2.1.

For the quark width, the shift of the borders and the separation of the peaks means
that we calculate the contributions from each of the processes in Fig. 4.1 individually
– identifying the meson lines with the full RPA propagators, i.e. bound qq̄ peaks
and qq̄ continuum. The energy integrals that have to be solved for a given external
energy k0 are listed in Table H.1. Correspondingly, we find one integral for each of
the processes shown in Fig. 4.6 that contribute to the meson width. The integrals are
listed in Table H.2. Recall that the meson width Γσ,π(k) is antisymmetric in k0, see
the discussion below Eq. (3.22). Thus, we consider only the integrals for positive k0

here. Since the process in Fig. 4.6(a) is not allowed for 0 < k0 < µ, only one integral
is found in this region.

H.2 Substitution

The on-shell peaks of the spectral functions that enter the integrals in Tables H.1
and H.2 are still narrow structures with respect to the full integration volumes. We
cannot easily compensated that by further splits of the integrals. To support the
numerical integration routine in finding the peaks – and sampling them with high
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Table H.1: The energy integral in the definition of the quark width Γ(k) (3.16) at zero
temperature – after inserting the distribution functions explicitly, cf. (3.17), and
separating the particle and antiparticle peaks of the spectral functions (drawing
the qq̄ border at k0 = 0, cf. Appendix E.2.1). The allowed range for the energy
r0 = p0 − k0 is indicated. Each integral corresponds to one of the processes
shown in Fig. 4.1.

k0 < 0 0 < k0 < µ k0 > µ

∫ 0

k0

dp0· · · +

∫ µ

0

dp0· · ·
∫ µ

k0

dp0· · · −
∫ k0

µ

dp0· · ·

(r0 > µ) (r0 > 0) (r0 > 0) (r0 < 0)

Fig. 4.1(d) Fig. 4.1(c) Fig. 4.1(b) Fig. 4.1(a)

Table H.2: The energy integral in the definition of the meson width Γ(k) (3.22) for
positive k0 at zero temperature – after inserting the distribution functions ex-
plicitly, cf. (3.23). The allowed range for the energy r0 = p0 − k0 is indicated.
The integrals correspond to the processes shown in Fig. 4.6.

0 < k0 < µ k0 > µ

∫ µ+k0

µ

dp0· · ·
∫ µ+k0

k0

dp0· · · +

∫ k0

µ

dp0· · ·

(0 < r0 < µ) (0 < r0 < µ) (r0 < 0)

Fig. 4.6(b) Fig. 4.6(b) Fig. 4.6(a)
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enough precision – we have to “reshape” the spectral functions. As we will show in
the following, this can be accomplished by a substitution in the integrals.

To illustrate the approach, let us first consider the three-momentum integral

J(p0) =

pmax∫
pmin

dpp2A(p0, �p ) =

p2
max∫

p2
min

dp2p

2
A(p0, �p )

over a simplified spectral function, i.e., a Breit–Wigner distribution with a constant
(scalar) width Γ:

A(p0, �p ) =
m2Γ

(p2 − p2
os)

2 + m2Γ2
,

where the energy dependent pos(p0) = p2
0 − m2 is the on-shell three-momentum that

determines the location of the on-shell peak. A substitution p2 → y(p) that simplifies
structure of the integral

J(p0) =
1

2

p2
max∫

p2
min

dp2p
m2Γ

(p2 − p2
os)

2 + m2Γ2
(H.1)

should either spread out the on-shell region in the new integration variable y or
generate a factor dp2/dy that compensates the peak structure of the spectral function.
In fact, we can find a substitution that has both of these features: Inspired by the
denominator of A(p0, �p ) and using the relation d arctan(x)/dx = (x2 + 1)−1, we
construct the function

y(p0) = arctan

(
p2 − p2

os(p0)

mΓ

)
/mΓ (H.2)

with

dy

dp2
=

1

(p2 − p2
os)

2 + m2Γ2
. (H.3)

When performing the substitution p2 → y(p0) on the rhs. of (H.1), the factor dp2/dy
will cancel the denominator of the (simplified) spectral function and thus entirely
remove the pole structure from the integrand:

J(p0) =
1

2

ymax(p0)∫
ymin(p0)

dy
dp2

dy
pA(p0, �p ) =

m2Γ

2

ymax(p0)∫
ymin(p0)

dyp(y) . (H.4)
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Figure H.1: Rescaling of equidistant points in the substitution p2 → y, cf. (H.2).
The (on-shell) region in the vicinity of �p 2 = �p 2

os is stretched out in the new
coordinate y while the other (off-shell) regions are compressed. See also the
upper and lower left panels of Fig. H.2.

In addition, the substitution rescales the integration variable non-linearly. This
effect is of particular interest when the cancellation of dp2/dy and A remains incom-
plete, e.g., because different widths are used in the definition of A and y (this cannot
be avoided in the full calculation where A is replaced by A). The slope of the function
arctan(�p 2 − �p 2

os) reaches its maximum for �p 2 − �p 2
os = 0 – i.e. at the position of the

on-shell peak. Hence, the on-shell region of the spectral function is stretched out in
the new coordinate y while the off-shell regions are compressed. The effect is illus-
trated in Fig. H.1 where we show the mapping of equidistant points in the original
coordinate �p 2 onto points in the new coordinate y. This rescaling will spread out the
residues of the on-shell peak in the full calculation. Note that the slope of y depends
on the size of the width. For large Γ, the slope at �p 2 = �p 2

os is smaller than for low Γ.
Thus, the stretching effect of the substitution weakens for broad peaks and increases
for narrow peaks. In other words, the substitution adjusts automatically to the level
of difficulty of the numerical integration.

After outlining the concept, we turn now to the real substitution that we use in
the numerical calculations. Our starting point is the three-momentum integral

I(p0) =

pmax∫
pmin

dpp2A(p0, p) . (H.5)

that is part of the multidimensional integrals in (3.16,3.22). The integrand p2A from
a real calculation is shown in the upper left panel of Fig. H.2 (from pmin = 0 to
pmax = Λ). We can see that the on-shell peak fills only a small part of the integration
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volume. Numerically, this structure is – as part of a multidimensional integration –
not favorable.

As a first step, we apply the simple substitution2

p → p̄2(p0) = (p − ReΣret
v,os(p0))

2,
dp̄2

dp
= 2p̄

to prepare the integral

I(p0) =

pmax∫
pmin

dpp2A(p0, p) =

p̄2
max∫

p̄2
min

dp̄2 p2

2p̄
A(p0, p) . (H.6)

for the main substitution. Note that the three-momentum p̄ is similar (but not equal)
to the real part of the effective momentum introduced in Eq. (2.34) since we use the
momentum independent on-shell self-energy here.

Next, we have to adjust the definition of the function y from Eq. (H.2): The
derivative dy/dp̄2 should now resemble the denominator of the full spectral function
A, cf. (2.40). Thus, we change the definition of pos(p0) as shown in Eq. (2.39) and
replace the constant factor mΓ with the function Wos(p0), cf. (2.37). This yields

p̄2(p0) → y(p0) = arctan

(
p̄2(p0) − p2

os(p0)

Wos(p0)

)
/ Wos(p0) , (H.7)

with

dy

dp̄ 2
=

1

(p̄ 2 − p2
os)

2 + W2
os

. (H.8)

Explicit expressions for p2
os and Wos can be readily obtained from Eqs. (2.36) and

(2.37), respectively,

p2
os(p0) = (p0 − Re Σret

0,os)
2 − (Rem̃os)

2 − 1

4

[
Γos

µ Γµ
os − Γ2

s,os

]
,

Wos(p0) = Rep̃os
µ Γµ

os + Rem̃osΓ
os
s ,

(H.9)

where Γos, Σret
os , p̃os, and m̃os are functions of p0. Note that it is not feasible to take the

momentum dependence of W into account in Eq. (H.7) – it would spoil the structure
of dy/dp̄2 and lead to further complications in the substitution. Consequently, the
cancellation effect that we have observed in Eq. (H.4) will be less accurate in the
off-shell regions.

2Note that this substitution is only well-defined for p > Re Σret
v,os(p0). This condition may be

violated for some p0 in the off-shell regions when p is very small. Our calculations take this into
account by splitting up the integral at p = Re Σret

v,os(p0). We will not discuss the details here.
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Before we discuss the influence of the substitution (H.7) on the structure of the
integrand in more detail, we briefly note that – for purely technical reasons – a third
substitution is used in the numerical calculations,

y → z =
y − ymin

ymax − ymin
⇒

ymax(p0)∫
ymin(p0)

dy· · · =
1∫

0

dz[ymax(p0) − ymin(p0)]· · · . (H.10)

The substitution induces just a linear rescaling of the integration variable and shifts
the integration limits to 0 and 1. This allows us to call the integration routine with
fixed, i.e. p0 independent, integration limits in our computer program.

Applying the substitutions from Eqs. (H.7,H.8) and (H.10) to the rhs. of (H.6)
yields for the three-momentum integral in (H.6)

I(p0) =

1∫
0

dz[ymax − ymin]

[
(p̄2 − p2

os)
2 + W2

os

]
2p̄

p2A(p0, p) . (H.11)

As we know, the substitutions have two effects. In Fig. H.1, we have already demon-
strated the non-linear rescaling of the integration variable that stretches the on-shell
region. The impact of the rescaling on the integrand of a real calculation is illustrated
in the left column of Fig. H.2. The original integrand p2A is shown as a function of
p in the upper panel and as a function of z, cf. (H.10), in the lower panel. We can
see that the broadened peak fills the whole integration volume in the lower left panel.
This is clearly an improvement for the numerical integration.

The second effect of the substitutions is introduced by the factor dp̄2/dy = [(p̄2 −
p2

os)
2 + W2

os]. This factor resembles the denominator of the quark spectral func-
tion when the effective momentum p̄(p0) approaches the effective on-shell momentum
pos(p0), cf. Eqs. (2.40) and (2.36,2.37). Hence, the factor will cancel the on-shell peaks
of the spectral function to a large extent. We illustrate this effect in the top panels of
Fig. H.2. The left panel shows the original integrand p2A of Eq. (H.5) in comparison
to the full integrand of Eq. (H.11) in the right panel – both integrands are shown as
functions of p. The peak structure has almost vanished in the right panel3. Most of
the strength has been redistributed over the integration volume.

The full impact of the substitutions, i.e. the combination of the rescaling with the
cancellation effect, can be seen in the lower right panel of H.2. There, we show the
integrand of (H.11) as a function of the new integration variable z. The final result of
our substitutions is a very smooth, almost constant function of z – the wavy structure
arises from stretching out the cusp at the on-shell position (upper right panel) in the

3The small cusp at the on-shell position is the only remnant of the on-shell peak. Since the on-shell
self-energy – and not the full energy and momentum dependent self-energy – enters the factor
dp̄2/dy, the cancellation effect with the denominator of the spectral function is only exact at
the maximum of the peak. The cusp indicates small fluctuations of the (off-shell) width at the
shoulders of the peak.
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Figure H.2: The impact of the substitutions (H.7,H.10) on the quark spectral function.
The upper left panel shows p2A, the integrand of (H.5), as a function of the
three-momentum p, the lower left panel shows p2A as a function of the new
integration variable z. The upper right panel shows the integrand after applying
the substitutions, cf. (H.11), as a function of p. The lower right panel shows the
same integrand as a function of z, illustrating the full effect of the substitutions.

new coordinate z. The numerical integration of such a function is our course much
simpler than the integration of the original function shown in the upper left panel of
Fig. H.2.

At the end of this section, we note that the integral (3.22) that determines the
meson width Γσ,π contains two quark spectral functions,

Γσ,π ∼
∫

d4p

(2π)4
A(p)A(p − k)· · · .

So far, we have only discussed the treatment of the first spectral function A(p) in
the integrand. Before we can simplify the structure of the second spectral function
A(p − k) – using the substitutions that have been discussed above – we have to

convert the cos ϑ integral into an integral over the three-momentum r = |�p−�k |. The
substitution

cos ϑ → r =
√

k2 + p2 − 2kp cos ϑ ,
dr

d cosϑ
= −kp

r
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yields

+1∫
−1

d cosϑA(p − k) →
p+k∫

|p−k|

drr

kp
A(p0 − k0, r) .

The integral on the rhs. can be modified in the same way as I(p0), cf. (H.5), to smear
out the on-shell peaks of the spectral function A(p0 − k0, r) in the integrand. The
result will be very similar to (H.11).

The techniques that have been described in this section can be directly transfered
to the nucleon calculations, cf. Eqs. (6.5) and (6.6). Only the explicit expressions
in (H.9) have to be replaced by non-relativistic terms that can be derived from the
denominator of the nucleon spectral function in Eq. (6.2). Since Σret

v drops to zero
in the non-relativistic limit, the integration variable p̄ will be identical to the plain
three-momentum p.

H.3 Performance

The integrals of the present approach (3.16,3.22) are clearly much better to handle
than those of our earlier approach in [Frö01, FLM03b]. While we have to solve
two three-dimensional integrals here, it was one six-dimensional integral in the old
approach. For the lower number of integrals we had not only to pay with a higher
number of dimensions but also with a third spectral function in the integrand. Since
the computing time does not scale linearly with the dimensions but with the power of
the dimensions – when the desired precision is kept fixed – the old calculations were
much more time consuming (several days of computation time for one iteration on a
Intel Xeon processor with 800 MHz, 200 × 100 grid points).

The multidimensional integration routine CUBPACK [CH03] that we use in the
present approach, allows for an additional optimization. One of the features of CUB-
PACK is the handling of vector integrands. Hence, we can calculate all Lorentz
components of the integrands in (3.16) simultaneously. This parallel integration –
that in fact speeds up the calculations by a factor of three – does not lead to a loss
of precision: The denominator of the quark spectral function is universal, and all
Lorentz components have a very similar structure with peaks at the same positions.
A single iteration needs approximately 7 hours of computation time on an AMD
Opteron 248 processor with 2.2 GHz (3.5 hours for the quark width, 300 × 100 grid
points, 3.5 hours for the meson widths, 150 × 200 grid points).

Note that we also have to deal with six-dimensional integrals over products of three
spectral functions in the nucleon calculations that are presented in this work. This,
however, is a non-relativistic approach where the spectral function is a scalar function
that has only one peak. A computation time of approximately 2.5 hours is required
for a single iteration (Opteron 248, 130 × 120 grid points).
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We conclude our discussion of the numerical implementation by pointing out that
the complicated multidimensional integrations of the present quark and nucleon ap-
proaches are numerically under control. Splitting up the energy integrals and using an
elaborate substitution scheme in the three-momentum integrals smoothens the sharp
peaks of the spectral functions and yields expressions that can be well handled in
numerical calculations. There is no need for (analytical) approximations in the peak
regions. The computation time that is needed to obtain self-consistent results ranges
on the order of 1 − 2 days (on computers that represent the state-of-the-art of the
year 2005/06). This has allowed us to perform a variety of calculations at different
densities and temperatures (in the nucleon case).
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[BC03] P. Bȯzek and P. Czerski, In medium T-matrix with realistic nuclear
interactions, Acta Phys. Polon. B34 (2003) 2759, nucl-th/0212035.

[BCS57] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of superconduc-
tivity, Phys. Rev. 108 (1957) 1175.

[BD65] J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields, McGraw-
Hill, New York, 1965.
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Deutsche Zusammenfassung

Wir wissen aus unserer täglichen Erfahrung, dass die Eigenschaften eines Gegen-
standes durch seine Umgebung beeinflusst werden. Ein typisches Beispiel dafür ist
das unterschiedliche Gewicht eines Objekts in Luft oder in Wasser. Auch der Wider-
stand, den Luft und Wasser der Bewegung des Objekts entgegensetzen, lassen das
Objekt unterschiedlich schwer erscheinen. Solche Effekte entstehen durch die Wech-
selwirkung mit dem Medium und spielen auch in mikroskopischen Vielteilchensyste-
men eine wichtige Rolle. In dieser Arbeit untersuchen wir den Einfluss dynamischer
Korrelationen auf die Eigenschaften von Quarks in Quarkmaterie und Nukleonen in
Kernmaterie. Wir konzentrieren uns dabei auf die Effekte, die durch kurzreichweitige
Wechselwirkungen entstehen. Im Vergleich zu den – gut verstandenen – langreichwei-
tigen Korrelationen, die globale Eigenschaften wie effektive Massen und Bindungs-
energien festlegen, haben diese Wechselwirkungen einen subtileren Einfluss auf die
In-Medium-Eigenschaften der Teilchen.

Den Unterschied zwischen lang- und kurzreichweitigen Korrelationen können wir
an einem einfachen Beispiel verdeutlichen (Abb. 1.1): ein Spaziergänger, der an ei-
nem normalen Wochentag durch eine Fußgängerzone läuft, sieht andere Personen
schon von weitem. Er kann diesen Personen durch kleine Richtungsänderungen aus-
weichen, ohne dass er seine Geschwindigkeit verändern muss. Im dichten Gedränge
an einem Samstag kurz vor Weihnachten ändert sich die Situation. Die Bewegung der
anderen Personen ist nicht immer vorhersehbar. Der Spaziergänger muss sich daher
auf einer unregelmäßigen Bahn bewegen und immer wieder seine Geschwindigkeit
anpassen (gelegentliche Zusammenstöße sind nicht ausgeschlossen). Die Wahrschein-
lichkeit, dass der Spaziergänger sich zu einer bestimmten Zeit mit einer bestimmten
Geschwindigkeit bewegt, ist nun nicht mehr durch einen scharfen Peak bei einer festen
Geschwindigkeit, sondern durch eine breite Verteilung gegeben.

Die Wechselwirkungen zwischen Fußgängern lassen sich natürlich nicht direkt mit
denen zwischen Quarks oder Nukleonen vergleichen. Die beobachteten Effekte dage-
gen schon. In Quark- und Kernmaterie beschreiben wir die Eigenschaften der Teilchen
durch Spektralfunktionen. Diese Spektralfunktionen geben die Wahrscheinlichkeit an,
dass ein Teilchen mit einer bestimmten Energie einen bestimmten Impuls hat. Da-
her sind sie sind eng mit der Geschwindigkeitsverteilung der Fußgänger verwandt.
Solange wir nur langreichweitige Korrelationen zwischen den Quarks oder Nukleonen
betrachten, finden wir in der Spektralfunktion einen scharfen Peak ohne Breite, den
sogenannten Quasiteilchenpeak. Kurzreichweitige Wechselwirkungen, bei denen die
Teilchen Energie und Impuls austauschen, führen dagegen – wie in Abb. 1.1 gezeigt
– zu einer Verbreiterung der Peaks. Die Existenz von (Off-Shell-)Zuständen, die weit
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vom Maximum des Peaks entfernt sind, führt zu interessanten Effekten, die in dieser
Arbeit diskutiert werden.

Quarks in Quarkmaterie

Der erste Teil dieser Arbeit geht der Frage nach, welche Rolle kurzreichweitige Kor-
relationen in kalter und dichter Quarkmaterie spielen. Unser Ansatz beruht auf Me-
thoden, die sich bei der Untersuchung von Kernmaterie als sehr erfolgreich erwiesen
haben. Selbstkonsistente Rechnungen haben gezeigt, dass sich Punktwechselwirkun-
gen gut für die Beschreibung von kurzreichweitigen Korrelationen in Kernmaterie
eignen. Die mittlere Stärke der Wechselwirkung ist in diesem Fall wichtiger als ihre
genaue Struktur. Unter der Annahme, dass ähnliche Bedingungen für die kurzreich-
weitigen Korrelationen in Quarkmaterie gelten, haben wir die Nambu–Jona-Lasinio-
Wechselwirkung (NJL-Wechselwirkung) [NJL61b, Kle92] als Ausgangspunkt für unser
Modell gewählt.

Ausgehend von einer Entwicklung bis zur zweiten Ordnung in der inversen Zahl der
Quarkfarben (1/Nc), konstruieren wir ein vollständig selbstkonsistentes Modell, das
die engen Beziehungen zwischen Spektralfunktionen und Selbstenergien ausnutzt. In
Rechnungen bei endlichem chemischen Potential und Temperatur Null untersuchen
wir die Off-Shell-Struktur der Kollisionsbreite, die Stärke der kurzreichweitigen Kor-
relationen und ihren Einfluss auf den chiralen Phasenübergang. Wir vergleichen die
Ergebnisse mit der Loop-Entwicklung aus [FLM03b, FLM03c] und den Ergebnissen
aus Rechnungen für Kernmaterie [FLM03a].

In Kapitel 2 stellen wir das NJL-Modell in seiner SU(2)-Version vor. Das Modell
basiert auf einer Punktwechselwirkung, die alle relevanten Symmetrien der Quanten-
chromodynamik (QCD) berücksichtigt. Aufgrund der – wie in der QCD bei niedrigen
Energien – großen Kopplungskonstanten ist nicht klar, ob eine diagrammatische Ent-
wicklung in der Kopplungskonstanten (Loop-Entwicklung) in diesem Modell zulässig
ist. Daher führen wir das Konzept der Entwicklung in der inversen Zahl der Quark-
farben ein und diskutieren die Unterschiede zur Loop-Entwicklung. Die Sortierung
von Selbstenergiediagrammen nach ihrer Ordnung in 1/Nc motiviert die Einführung
von dynamisch generierten Mesonen: Quark–Antiquark-Streuprozesse werden in ei-
ner

”
Random-Phase-Approximation“ (RPA) aufsummiert und generieren effektive

Mesonpropagatoren. Die effektiven RPA-Mesonen setzten sich aus gebundenen qq̄-
Zuständen – den eigentlichen Mesonen – und einem Kontinuum aus ungebundenen
qq̄-Zuständen zusammen. Die dynamisch generierten Mesonen erlauben es uns, alle
Beiträge zur Quarkselbstenergie der Ordnung O(1/Nc) – beispielsweise das Fock-
Diagramm und das direkte Born-Diagramm – in einem einzigen Meson-Austausch-
Diagramm zusammenzufassen.

Der Mesonaustausch führt zu einer Rückkopplung der RPA-Meson-Eigenschaften
an die Eigenschaften der Quarks. In der Hartree+RPA-Näherung, dem Standard-
zugang zum NJL-Modell, existiert diese Verbingung nicht, da dort nur Selbstener-
giediagramme in führender Ordnung in 1/Nc, d.h. O(1), berücksichtigt werden. Die
Quarkpropagatoren in den gekoppelten Dyson–Schwinger-Gleichungen, die wir in Ka-
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pitel 2 konstruieren (Abb. 2.11), sind volle In-Medium-Propagatoren. Der nichtlokale
Mesonaustausch führt zu einer endlichen Breite in den Propagatoren. Diese Kollisions-
und Zerfallsbreite wird in unseren Rechnungen konsequent berücksichtigt. Im Gegen-
satz zur Hartree+RPA-Näherung, die wir im Anhang B kurz diskutieren, sind die
Quarks in unserem Ansatz keine Quasiteilchen. Eine selbstkonsistente Lösung der
Dyson–Schwinger-Gleichungen kann deshalb nur numerisch bestimmt werden.

Wir können die RPA-Pionen unseres O(1/Nc)-Ansatzes nicht mit Goldstone-Bo-
sonen identifizieren. Die gebundenen qq̄-Zustände haben eine erhebliche Masse – ein
Problem, das wir bereits in Mean-Field-Modellen beobachten können. In einer dia-
grammatischen Entwicklung werden die chiralen Theoreme (Goldstone, Goldberger–
Treiman, Gell-Mann–Oakes–Renner) nur dann erfüllt, wenn sich die Beiträge verschie-
dener Diagramme gegenseitig aufheben. Um die chiralen Theoreme nicht zu stören,
ist daher nötig, die Diagramme sorgfältig auszuwählen. Unser Ansatz basiert auf einer
Entwicklung der Quarkselbstenergie bis zur zweiten Ordnung. Durch die selbstkon-
sistente Rechnung mit vollen Propagatoren werden automatisch Beträge in beliebig
hohen Ordnungen zu den RPA-Polarisationen erzeugt. Dabei handelt es sich aber
nur um einen Teil der Diagramme, die nötig wären, um die chiralen Eigenschaften in
höheren Ordnungen zu erhalten.

In Abschnitt 2.5 diskutieren wir eine chiral invariante 1/Nc-Erweiterung des Hart-
ree+RPA-Schemas für Quasiteilchen [DSTL95]. Dieser Ansatz basiert auf einem Satz
von Polarisationsdiagrammen mit der Struktur von Vertexkorrekturen für die Quark–
Meson-Wechselwirkung (Abb. 2.14). Diese Diagramme werden nur genutzt, um nach
der selbstkonsistenten Rechnung, die 1/Nc-korrigierte Quarkpropagatoren und (mas-
sive) RPA-Propagatoren liefert, 1/Nc-korrigierte Mesonpropagatoren zu bestimmen.
Im Prinzip könnten wir die Polarisationskorrekturen auch in unserem Modell zur Ver-
besserung der Mesoneigenschaften nutzen.Dieses Vorgehen hätte aber keinen Einfluss
auf die Eigenschaften der Quarks, die nach wie vor in einer Rechnung mit massi-
ven RPA-Pionen bestimmt werden. Erst wenn die Vertexkorrekturen in die Dyson–
Schwinger-Gleichungen aufgenommen würden, hätte das Einfluss auf die Quarkei-
genschaften. Ein solcher Ansatz, der aber auch nicht die chiralen Eigenschaften der
Pionen (gebundene qq̄-Zustände) in allen Ordnungen von 1/Nc wiederherstellt, ist
technisch äußerst anspruchsvoll. Daher diskutieren wir in dieser Arbeit zwar die Aus-
wirkungen der Vertexkorrekturen, ignorieren sie aber in unseren Rechnungen.

Wir zeigen in Kapitel 3, wie sich die Kollisionsselbstenergie und -polarisationen
durch Integrale über Spektralfunktionen sowie Bose- und Fermiverteilungen beschrei-
ben lassen. Aus diesen Integralen berechnen wir die Quark- und Mesonbreiten. Die
wichtigsten Probleme, die bei der numerischen Rechnung auftreten, diskutieren wir
in Anhang H. Um die Analytizität von Quarkselbstergie und Mesonpolarisationen
zu erhalten, berechnen wir deren Realteile nicht direkt, sondern über Dispersion-
relationen aus den Breiten. Dieses Vorgehen erfordert eine gründliche Auswertung
der analytischen Ausdrücke, um alle energieunabhängigen Terme zu isolieren, die
nicht von Dispersionsintegralen erfasst werden können. Wir zeigen, dass die RPA-
Polarisationen in unserem Modell (Polarisationsdiagramm mit vollen Quarkpropaga-
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toren) sich (fast) genauso zerlegen lassen wie in der Hartree+RPA-Näherung. Den
Term, der zur Verletzung des Goldstone-Theorems führt, können wir nutzen, um die
RPA-Pion-Masse abzuschätzen. Die Zerlegung der Quarkselbstenergie liefert einen
nichtdispersiven Term, der der Fock-Selbstenergie ähnelt – lediglich die konstante
NJL-Kopplung wird durch den k2

0 → ∞ Grenzwert des RPA-Propagators ersetzt.
Dieses Ergebnis ist nicht überraschend, da die Fock-Selbstenergie Bestandteil des
Meson-Austausch-Selbstenergiediagramms ist.

Um die Struktur der Quarkbreite besser zu verstehen, bestimmen wir in Kapitel
4 alle Zerfalls- und Streuprozesse, die zur Kollisionsselbstenergie beitragen. Die Bei-
träge der gebundenen qq̄-Zustände und des Off-Shell-Kontinuums zu den Zerfalls-
und Streuraten betrachten wir in dieser Untersuchung getrennt. Auf der Basis einer
Quasiteilchennäherung bestimmen wir die Energieschwellen, an denen sich der Pha-
senraum für jeden der gefundenen Prozesse öffnet und schließt. Außerdem schätzen
wir die Dichteabhängigkeit der Prozesse ab und bestimmen die Prozesse, die Beiträge
zur On-Shell-Breite der Quarks und Antiquarks liefern. Aus diesen Überlegungen er-
gibt sich, dass die Quarkbreite eine komplizierte Struktur hat, die wir anhand der
Eigenschaften der verschiedenen Prozesse in den Abbildungen 4.1 und 4.3 verstehen
können.

Die Analyse der On-Shell-Breite zeigt, dass die relativ hohe Masse der RPA-Pionen
unseres Modells eingeschränkten Einfluss auf die Eigenschaften der besetzten Quark-
zustände hat. Die Prozesse, in denen die gebundenen qq̄-Zustände der RPA-Propaga-
toren auftreten, können nicht zur Quarkbreite in den On-Shell-Bereichen beitragen,
wenn die RPA-Pionen eine endliche Masse haben – unabhängig davon, ob es sich um
eine Masse von 100 oder 400 MeV handelt. Die raumartigen Off-Shell-Komponenten
der RPA-Propagatoren, die für die größten Beiträge zur On-Shell-Quarkbreite verant-
wortlich sind, sind allerdings nicht unabhängig von der Pion-Masse. In einer genaueren
Untersuchung haben wir herausgefunden, dass es durch die zu große Masse in der chi-
ral gebrochenen Phase zu einer Unterdrückung von Beiträgen zur On-Shell-Breite der
Quarks kommt. Im Durchschnitt werden die Beiträge um deutlich weniger als eine
Größenordnung unterdrückt. Das bedeutet, dass unsere Ergebnisse nur eine konser-
vative Abschätzung der kurzreichweitigen Korrelationen (in der chiral gebrochenen
Phase) repräsentieren.

In unseren numerischen Rechnungen untersuchen wir die Eigenschaften von kalter
Quarkmaterie (Temperatur Null) für verschiedene chemische Potentiale. Die Ergeb-
nisse sind in Kapitel 5 dargestellt. Die gekoppelten Dyson–Schwinger-Gleichungen
lösen wir in einem iterativen Verfahren. Der Einfluss der kurzreichweitigen Korrelatio-
nen macht es erforderlich, die üblichen Mean-Field-Parametersätze des NJL-Modells
neu zu justieren. Um in unseren Rechnungen ein vernünftiges Ergebnis für das Quark-
kondensat zu erhalten, genügt es, bei festem Cutoff die Kopplungskonstante für Rech-
nungen in der Hartree-Näherung um 22 Prozent zu reduzieren (dieses Vorgehen ent-
spricht dem Übergang von der Hartree- zur Hartree–Fock-Näherung).

Die Quarkbreite kann bei höheren Energien beachtliche Werte annehmen. Bei nied-
rigen und mittleren Energien bleibt sie aber klein. Die qualitative Struktur der Breite,
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die wir in Kapitel 5 diskutieren, passt sehr gut zu den Quasiteilchenabschätzungen
aus Kapitel 4. Die On-Shell-Peaks der Quarkspektralfunktion zeigen eine deutliche
Kollisionsverbreiterung. In den Off-Shell-Bereichen spiegelt die Spektralfunktion die
Struktur der Breite wider. Aufgrund der Anwesenheit eines Mediums mit endlichem
chemischen Potential ist die Symmetrie zwischen den Quark- und den Antiquark-
zuständen gebrochen. Ein Vergleich mit unseren älteren Rechnungen zeigt, dass eine
konsistente Entwicklung in 1/Nc zu Breiten führt, die eine ähnliche Struktur ha-
ben, aber um eine Größenordnung höher ausfallen als in einer Loop-Entwicklung. Die
qq̄-Komponenten der RPA-Breiten und Spektralfunktionen sind den Ergebnissen aus
Mean-Field-Rechnungen in Form und Stärke sehr ähnlich. Ein kleiner, konstanter Bei-
trag zum Realteil der RPA-Polarisationen, der in Mean-Field-Rechnungen (Hartree-
Näherung) nicht auftritt, führt zum erwarteten Anstieg der Masse des gebundenen
qq̄-Zustands in der RPA-Pion-Spektralfunktion. Auf die Masse des RPA-Sigmas hat
der konstante Betrag kaum Einfluss. Das RPA-Sigma wird nur geringfügig schwerer.

Die Untersuchung des chiralen Phasenübergangs zeigt, dass die kurzreichweitigen
Korrelationen in unserem O(1/Nc)-Ansatz bei Temperatur Null nicht stark genug
sind, um den Phasenübergang erster Ordnung in einen kontinuierlichen Übergang
(
”
Crossover“) umzuwandeln. Im Vergleich zu Rechnungen mit Quasiteilchen fallen

die Sprünge der Masse und der Dichte am Phasenübergang allerdings um 40−50 Pro-
zent kleiner aus. Unterhalb des Phasenübergangs hängt die Quarkdichte stark vom
chemischen Potential ab. Qualitativ zeigen die Quark- und die RPA-Sigma-Massen
in unseren Rechnungen das gleiche Verhalten wie in der Hartree+RPA-Näherung.
In der chiral restaurierten Phase gilt das auch für die Masse des RPA-Pions. Wenn
wir einen Parametersatz im chiralen Limes (m0 = 0) verwenden, dann verschwin-
det die Lorentz-skalare Komponente der Quarkselbstenergie oberhalb des chiralen
Phasenübergangs. Die chirale Symmetrie wird vollständig wiederhergestellt und die
Quarks werden masselos. Im Gegensatz zu den chiralen Eigenschaften des Pions wird
dieses Verhalten nicht durch die 1/Nc-Erweiterungen unseres Ansatzes gestört.

Eine genauere Untersuchung der On-Shell-Quarkselbstenergie führt zu interessan-
ten Erkenntnissen. Die effektive Quarkmasse behält in unserem O(1/Nc)-Modell eine
einfache Struktur, sie bleibt nahezu energie- und impulsunabhängig. Der Realteil der
Kollisionsselbstenergie ersetzt lediglich die Beiträge der Mean-Field-Selbstenergie, die
durch die Reduktion der Kopplung – im Vergleich zur Hartree-Näherung – verloren
gehen.

Die On-Shell-Breite zeigt in der chiral gebrochenen Phase eine starke Dichteab-
hängigkeit. Oberhalb des Phasenübergangs, in der chiral restaurierten Phase, beob-
achten wir eine Sättigung der Korrelationen. Um die Dichteabhängigkeit der Breite
besser zu verstehen, haben wir die mittlere Breite der besetzten Quarkzustände und
die mittlere Breite aller Quarkzustände (ohne die Antiquarkzustände bei negativen
Energien, siehe Anhang E) untersucht. Unterhalb des Phasenübergangs ist die Dich-
teabhängigkeit direkt mit der Dichte der verfügbaren Streupartner aus dem Medium
verknüpft. Oberhalb des Phasenübergangs nähert sich die mittlere Breite der be-
setzten Zustände einem konstanten Wert, während die Breite aller Quarkzustände
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– nach dem Überschreiten eines Maximums – abnimmt. Die beobachteten Effekte
sind Konsequenzen des Pauli-Prinzips (

”
Pauli-Blocking“) und des Impuls-Cutoffs der

NJL-Wechselwirkung, der in die Streuprozesse eingeht. Vergleichbare Effekte beob-
achten wir in der Untersuchung von Kernmaterie in Kapitel 6. Unsere Rechnungen
zeigen, dass die mittlere Breite der besetzten Quarkzustände auch quantitativ mit der
mittleren Breite von Nukleonen in Kernmaterie vergleichbar ist. Dieses Ergebnis soll-
te allerdings schon wegen der unterschiedlichen Massen von Quarks und Nukleonen
nicht überbewertet werden.

Wir schließen unsere Untersuchung der Quarks mit der Bestimmung ihrer Impuls-
verteilung im Medium ab. Die Impulsverteilung erlaubt es uns, die Bedeutung der
Off-Shell-Zustände abzuschätzen, die einen Teil der Stärke der (normierten) Spektral-
funktion weg von den On-Shell-Peaks verlagern. Im Vergleich zur Impulsverteilung
eines freien Fermigases (Quasiteilchen), die am Fermiimpuls von 1 auf 0 abfällt, tre-
ten zwei Effekte auf, die auf kurzreichweitige Korrelationen zurückzuführen sind: bei
Impulsen unterhalb des Fermiimpulses beobachten wir eine Reduktion der Impuls-
verteilung um ca. 10 Prozent. Oberhalb des Fermiimpulses verschwindet die Impuls-
verteilung nicht, stattdessen erzeugen besetzte Off-Shell-Zustände einen sogenannten
Hochimpulsschwanz. In der chiral restaurierten Phase sind die Effekte quantitativ
vergleichbar mit den Ergebnissen für Nukleonen in Kernmaterie. Genau wie bei der
Untersuchung der Breite stellen wir fest, dass die kurzreichweitigen Effekte in unserer
Entwicklung in 1/Nc um eine Größenordnung größer ausfallen als in einer Entwicklung
in der Kopplung (Loop-Entwicklung).

Zusammenfassend können wir feststellen, dass unsere ursprüngliche Loop-Entwick-
lung [Frö01, FLM03b] wichtige Beiträge zur Quarkselbstenergie ignoriert hat. Die
Effekte, die sich aus den kurzreichweitigen Korrelationen ergeben, sind daher klein
ausgefallen. Die wesentlich größeren Effekte, die wir der vorliegenden Arbeit beobach-
ten, sind realistischer, da sie sich aus einer konsistenten Entwicklung in 1/Nc ergeben.
Abgesehen von den Problemen mit der Masse des RPA-Pions repräsentiert unser
O(1/Nc)-Ansatz eine natürliche Weiterentwicklung des etablierten Hartree+RPA-
Schemas. Der Vergleich der Ergebnisse für Quarkmaterie mit den Ergebnissen für
Kernmaterie zeigt, dass die kurzreichweitigen Korrelationen in beiden Systemen von
ähnlicher Bedeutung sind. In Kernmaterie spielen kurzreichweitige Effekte eine wichti-
ge Rolle – eine vollständige Beschreibung, auch von endlichen Kernen, ist nur möglich,
wenn diese Effekte berücksichtigt werden. Daher sollte der Einfluss der kurzreichweiti-
gen Korrelationen auf die Quarks (und die dynamisch generierten Mesonen) ebenfalls
nicht ignoriert werden.

Um diese Aussage zu verdeutlichen, betrachten wir das QCD-Phasendiagramm
(Abb. 1.2): Es ist nicht möglich, den chiralen Phasenübergang bei beliebigen Dichten
und Temperaturen in einer exakten Rechnung im Rahmen der QCD zu untersuchen.
Eine numerische Untersuchung im Rahmen der Gitter-QCD ist gegenwärtig ebenfalls
nicht realisierbar. Daher kommen effektive Modelle zum Einsatz, um die Eigenschaf-
ten des Phasenübergangs zu bestimmen. Die meisten dieser Modelle deuten darauf
hin, dass der chirale Phasenübergang an einem kritischen Punkt von einem Übergang
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erster Ordnung zu einem kontinuierlichen Übergang (
”
Crossover“) wechselt. Wie wir

in dieser Arbeit sehen, ändern die kurzreichweitigen Korrelationen die Eigenschaften
des Phasenübergangs im Vergleich zu den Ergebnissen einer Quasiteilchenrechnung.
Rechnungen für Kernmaterie deuten an, dass die kurzreichweitigen Korrelationen bei
endlichen Temperaturen an Stärke zunehmen (vgl. Abb. 6.17). Daraus folgt, dass
Mean-Field-Modelle mit hoher Wahrscheinlichkeit eine falsche Position des kritischen
Punktes vorhersagen (bei einer zu hohen Temperatur). Rechnungen mit einer reali-
stischeren Pion-Masse sollten sogar noch deutlicher von den Mean-Field-Rechnungen
abweichen.

Nukleonen in Kernmaterie
Im zweiten Teil dieser Arbeit stellen wir ein Modell zur Untersuchung kurzreichwei-
tiger Korrelationen in Kernmaterie bei endlichen Temperaturen und hohen Dichten
vor. Ausgehend von dem Modell von Lehr et al. [LEL+00, LLLM02] konstruieren
wir in Kapitel 6 ein einfaches, aber selbstkonsistentes Modell. Die kurzreichweiti-
gen Wechselwirkungen zwischen den Nukleonen beschreiben wir durch ein konstantes
Matrixelement in Verbindung mit einem Formfaktor, der den Energie- und Impuls-
transfer in Stößen begrenzt. In [LEL+00, LLLM02] haben Rechnungen mit einer ge-
mittelten Kopplungskonstanten bei Temperatur Null zu hervorragenden Ergebnissen
geführt. Die dichte- und temperaturabhängigen Beiträge des Mean-Fields zur Nu-
kleonselbstenergie bestimmen wir mit Hilfe eines Skyrme-Modells für Quasiteilchen.
Dieses Vorgehen garantiert uns ein realistisches, thermodynamisches Verhalten des
chemischen Potentials.

Wir berechnen die Nukleonspektralfunktion in Kernmaterie für Temperaturen von
0 bis 70 MeV und für Dichten von ρ0 (Sättigungsdichte) bis 3ρ0. Das ist gerade der
Temperatur- und Dichtebereich, der in Supernovaexplosionen und in Schwerionen-
kollisionen, wie sie für das CBM-Experiment bei der GSI geplant werden, relevant
ist. Zum ersten Mal wird damit ein so großer Bereich konsistent im Rahmen eines
einheitlichen Modells untersucht.

Unsere Ergebnisse befinden sich in guter Übereinstimmung mit den Ergebnissen an-
derer Rechnungen [ARFdCO96, Bȯz99], die für Temperaturen bis 20 MeV und Dich-
ten bis 2ρ0 vorliegen. Wir nutzen die mittlere Breite der Spektralfunktion, um die
Dichte- und Temperaturabhängigkeit der kurzreichweitigen Korrelationen zu bestim-
men. Es zeigt sich, dass die Korrelationen nahezu linear mit der Temperatur skalieren.
Bei Dichten oberhalb von 2ρ0 tritt allerdings eine Sättigung der Korrelationen auf.
In einem naiven Bild würde man diese Sättigung in Abhängigkeit von der Dichte
nicht erwarten. Wir können dieses Verhalten jedoch einfach erklären. Pauli-Blocking,
ein rein quantenmechanischer Effekt, reduziert die Zahl der freien Endzustände in
Streuprozessen und führt so zur beobachteten Sättigung.
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sind am Center for Scientific Computing (CSC) in Frankfurt durchgeführt worden.
The package CUBPACK by R. Cools and A. Haegemans [CH03] has been used for
the numerical calculation of multidimensional integrals.

250


	Introduction
	The formalism
	The NJL interaction
	1/Nc expansion in the NJL model
	Order counting in 1/Nc
	Classification of self-energy diagrams
	The Random Phase Approximation

	Mean-field approaches
	The O(1) Hartree+RPA approach
	Hartree--Fock, RPA, and Goldstone modes

	The O(1/Nc) approach
	Coupled set of Dyson--Schwinger equations
	Regularization scheme
	Further remarks

	1/Nc corrections and chiral symmetry
	Chirally invariant 1/Nc extensions
	Consequences for the O(1/Nc) approach

	Quark fields and propagators
	Green's functions on a closed time-path
	Lorentz structure
	Quark spectral function
	Real and imaginary parts of the propagators
	Spectral function in the energy--momentum plane

	Meson propagators and spectral functions
	Self-energy, polarizations and widths
	Quark self-energy
	RPA meson polarization


	Calculation of self-energies and polarizations
	Mean-field self-energy
	Hartree self-energy
	Fock self-energy

	Quark condensate and quark density
	Collisional self-energies and quark widths
	Collisional polarizations and RPA meson widths
	Dispersion integrals
	Real parts of the RPA meson polarizations
	Time-ordered and retarded polarizations
	Decomposition of the RPA polarizations
	The non-dispersive part of the RPA polarizations
	The dispersive part of the RPA polarizations

	Masses of the RPA mesons
	Real parts of the quark self-energy
	Decomposition of the self-energy
	Dispersion relation
	Quark width


	Quark and meson scattering
	Mean-field spectral functions
	Quark spectral function
	RPA meson spectral functions

	Thresholds
	Processes with bound q states
	Quark--quark scattering and decay processes

	Density dependence
	Saturation effects 
	Density dependence of the individual processes

	On-shell width
	Relevant processes
	Role of the RPA pion mass
	Effects of higher order corrections

	RPA meson width

	Numerics and results
	Details of the calculation
	NJL parameter sets
	Iterative procedure
	Numerical grid
	Quarks, antiquarks and effective masses

	Collisional broadening
	General structure
	Correspondence to scattering and decay processes
	Comparison to the loop-expansion

	RPA mesons in the O(1/Nc) approach
	Structure of width and spectral function
	Comparison to mean-field results and chiral properties

	Chiral phase transition
	The Hartree+RPA approximation
	Phase transition in the O(1/Nc) approach

	On-shell self-energy
	Real part of `39`42`"613A``45`47`"603Arets
	Real part of `39`42`"613A``45`47`"603Aret0
	On-shell width

	Average quark width
	Average width of the populated states
	Average width of all quark states
	Further remarks

	Momentum distribution

	Nuclear matter at high densities and finite temperatures
	The model
	Self-consistent approach
	Short-range interactions
	Mean-field self-energy

	Numerical Details and Results
	Details of the calculation
	Comparison to phenomenological NN potentials at T=0
	Spectral function and width
	On-shell width
	Average width
	Influence of nucleon resonances


	Summary and Outlook
	Notation and conventions
	RPA on the Hartree(--Fock) level
	Feynman rules of the real-time formalism
	Energy integral over the retarded quark propagator
	Quarks and antiquarks, density and momentum distribution
	Dispersive and non-dispersive terms
	Relations between Bose and Fermi distributions
	Numerical Implementation
	Bibliography
	Deutsche Zusammenfassung
	Danksagung

