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1 Introduction

The Standard Model (SM) of elementary particles is among the greatest achievements of
twentieth century physics. It is by far the best founded theoretical description of our universe
at the microscopic level. The huge number of experimental tests that it has passed have led
to the confidence that physicists put in this framework. A famous example is the prediction
of the magnetic moment of the electron g. to an experimentally confirmed precision of one
part in a billion.

The Standard Model incorporates three different fundamental interactions of nature: the
electromagnetic, the weak and the strong force. An observable that is sensitive to all of these
is the anomalous magnetic moment of the muon (a,). As the anomalous magnetic moment
of the electron it has been measured and predicted to a high degree of accuracy. Contrary
to the latter one, however, a comparable precision is harder to achieve, both for theory and
experiment. On the theoretical side this is due to the fact that the strong force yields sizable
contributions to the muon magnetic moment, whereas in the electron case it is not relevant
at the current precision. Contrary to the electromagnetic force that is responsible for the
current value of a. alone, the strong force is not accessible withing perturbation theory at
the scales relevant to the problem.

One reason for the great interest in the anomalous magnetic moment of the muon lies in
the deviation between the Standard Model prediction and experiment. This might be taken as
a hint towards new physics beyond the SM, however confirmation requires a further reduction
of the uncertainty of both theory and experiment. This reduction requires non-perturbative
methods on the theoretical side, since the major uncertainty lies in hadronic contributions to
a, caused by the strong interaction.

In this work the framework of Dyson-Schwinger equations (DSE's) is utilized to obtain
theoretical predictions for the hadronic contributions to a,. Several features of the DSE's
make them very suited for this calculations. First of all they are applicable to non-perturbative
quantum field theoretical processes in general. In particular they provide a description of the
relevant Greens functions that is valid on all scales such that no scale-matching procedure is
needed like in effective theories. This feature is especially important for one of the hadronic
contributions, the so called hadronic light-by-light scattering.

This thesis is organized as follows. In the chapter 2 we give an overview over the main
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topic, that is the anomalous magnetic moment of the muon. The reader will find a short
historical overview, a short account of the main experimental techniques, the introduction of
some elementary concepts and an overview over the different Standard Model contributions
to a,. Furthermore we compare the experimental results to theoretical predictions.

This is followed by an introduction of the theoretical body in chapter 3 that underlies the
work presented later on. There we shortly introduce the concept of quantum field theory
(QFT) in general and define the tower of Dyson-Schwinger equations that are the main theo-
retical tool. We also discuss some Green's functions of the theory and highlight some of their
properties that are relevant in order to understand steps we undertake in later chapters. Finally
we discuss chiral symmetries of QCD and the local gauge symmetry of QED in a manner that
is relevant to the truncation that is used for the numerical calculations. In addition this chap-
ter establishes our notation, some conventions and the definition of certain Green's functions.
Going from the general to the particular we discuss the specific truncation of QCD (and QED)
that we use in some detail in chapter 4. We explain the model assumptions made, discuss the
equations that have to be solved numerically more explicitly and comment on the properties of
the applied truncation and highlight some descriptions and predictions of physical observables.

The main results of this work are the numerical treatment of the two most relevant hadronic
contributions to the muon anomaly. These are the hadronic vacuum polarisaion (HVP) which
is presented in chapter 5 and the hadronic light-by-light scattering contribution (LBL) to be
discussed in chapter 6.

Finally we give a concluding discussion in the last chapter 7, followed by the appendix.



2 The anomalous magnetic moment—an
overview

In the current chapter we give a short overview over the basic ideas, the current status as
well as a quick account of the historical development of the subject.

2.1 The history of the leptonic g — 2

The present section is to a large extend based on Refs. [1, 2, 3] where more details can be
found. Not all original sources will be cited here explicitly in particular those which are easily
available online. Instead we refer to the just mentioned overviews .

The history of leptonic magnetic moments is closely tight to the dawn of Quantum Elec-
tro Dynamics (QED) and to the development of the Standard Model in general. The early
history of QED and the réle of the electron g — 2 is explained in Ref. [4] in detail. In order
to explain the observed anomalous Zeeman effect an intrinsic electron spin of two times the
expected value (¢ = 2) was postulated in 1925 [5]. On the theoretical side it was Dirac who
predicted the same number from the equation that bears now his name in 1928 [6, 7]. It
comes out naturally in the relativistic description of spin 1/2 particles there. The fact that
the magnetic moment has an anomalous part which is the deviation from this result (g — 2)
was only realized much later in 1947. For the first time the result g — 2 # 0 was confirmed
experimentally by the authors of Ref. [8]. The first theoretical understanding came from
Schwinger in 1948 [9] who calculated the leading contribution (¢ — 2)/2 ~ o/27 ~ 0.00116
with « the fine structure constant. Intriguingly the true value deviated about 0.12% from
the Dirac result. This was (together with the understanding of the Lamb shift) an important
milestone on the way that lead to the establishment of QED and the foundation of modern
elementary particle physics [4]. The anomalous magnetic moment of the electron has been an
interesting observable that played a prominent réle ever since. Today this quantity has been
calculated up to order a® [10] and agrees with experiment on the order of 107!2 in terms of

g [11].

It was realized in 1956 by Berestetskii (see e.g. [1, 3]) that the sensitivity of the anomaly
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da/a for a certain lepton [ scales as

(5(1[ le
o Ve (2.1)
where m; is the lepton mass and A is a scale that characterises a given contribution. That is
either a heavy particle or a hypothetical cutoff of the theory. We will see later that A repre-
sents the scale of the strong interaction Aqcp, the scale of the weak interaction Myy or even
a scale of physics beyond the SM. It was realized that due to the dependence of (2.1) on the
lepton mass, that the muon anomaly a,, is much more sensitive than a.. Since m,/m. >~ 200
we get a factor of 40000! Back then it was, however, unclear how to measure a,, because no-
body knew how to produce polarized muons. Soon after, the occurrence of parity violation in
the Weak Interaction was noted [12]. This led to the remarkable idea that the decay of pions
m — 1+ v would produce muons with positive helicity on the one hand. In the same work
also the subsequent muon decay i — e + v + v (almost 100% branching ratio) was analysed
and found to produce electrons (or positrons) with final momentum highly correlated to the
muon spin. These two observations are key to the measurement of the muon g-factor since
one can produce polarized muons that can interact with a magnetic field in a definite way,
and the second observation allows for a determination of the muon spin via a measurement
of the momentum of the decay electron. In fact first observations soon confirmed g, ~ 2.
The sensitivity to so far unknown physics, expressed via Eq. (2.1) generated big interest in
a,, so that further measurements were conducted. Theorists apparently expected deviations
from QED to be found.

Several experimental investigations were performed at CERN. This started with the CERN
cyclotron (1958-1962), followed by a muon storage ring (1962-1968) reaching a precision of
270 ppm. A deviation from the SM of 1.7 o was found which resulted in a deepening and
rethinking of the theoretical investigations. Higher order loop calculations ware undertaken
and triggered the development of algebraic computer systems. A second muon storage ring
at CERN started operation (1969-1976) which finally reached a precision of 7 ppm. Here the
hadronic vacuum polarisation contribution became important for the first time. The strategy
of using the heavy muon as a probe for high scales paid off. The up-to-date experiment is
the E821 at Brookhaven that operated until 2003 and reached 0.54 ppm accuracy. At this
precision the leading hadronic diagram is a highly significant contribution. In addition the
significance of the weak contributions is now established. In this way the anomalous magnetic
moment of the muon is an observable that tests the whole SM resulting in a sustained signifi-
cant deviation between theory and experiment. On the theoretical side two different hadronic
contributions are the limiting factors. Since the corresponding calculations are outside the
realm of the otherwise remarkably successful perturbation theory, non-perturbative methods
are needed.
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A new experiment at Fermilab is on the way [13] which aims at a precision of 0.14 ppm.
On the side of theory the availability of finally mature non-perturbative techniques such as
lattice QCD [14, 15, 16, 17, 18] and the functional methods used in this work [19, 20, 21]
rise hope that the QCD contribution to the muon g — 2 can be brought under control with
the necessary precision.

2.2 Experimental techniques

In the present section we give a short overview over the basic experimental ideas that have been
applied in the muon g — 2 experiments as for example the most recent E821 at Brookhaven.
The experimental principles are explained in detail in [1, 3].

As already said before parity violation in the weak interaction is a key element in these
experiments. The muons are produced from decaying pions. Due to P violation the muons
appear mainly in one helicity and are thus highly polarised. They are injected into a storage
ring, where they circulate subject to a magnetic field that is oriented perpendicular to the
plane of the ring. The frequency of that circular motion is

B
e = — (2.2)
mucy

where B is the magnetic field strength, ¢ the speed of light and ~ is the Lorentz factor. Due
to the magnetic field the spin of the muons that is initially parallel to direction of flight starts
precessing with frequency

Ws = we + ﬁau. (2.3)

myc
It happens to be the case that the precession frequency differs from the cyclotron frequency
we by a term that is proportional to the anomalous magnetic moment a,,. This makes this
experimental techniques a smoking gun for this observable. In reality it happens that also
an electric field E is needed to keep the muons inside the ring, so that Eq. (2.3) receives
additional terms. These terms, however, cancel at the 'magic energy’ of ym,c ~ 3.098 GeV .

The muons now decay into positrons after many circulations in the storage ring, where the
weak force causes a correlation between the spin of the ™ and the positron momentum. The
e’ is thus a probe of the muon spin. Several detecting devices along the ring measure the
decay positrons and an oscillating signal can be extracted. The oscillation frequency is just
the desired

eB

myc

Wq =

ay, (2.4)
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from which the anomaly a, can be extracted. The recent result is [22, 23]

a;, = 116592 089(63) x 10~ ', (2.5)

2.3 Basic concepts

In this subsection we give basic ideas and definitions relevant to the subject of g — 2. The
g-factor is part of the definition of the magnetic moment ji of a particle. It is proportional
to the particles spin S

e

f=7vS=-—g4S, (2.6)

2m
with the proportionality constant v called the gyromagnetic ratio. The latter is in addition
given in terms of the charge e and the mass m of that particle. For a magnetic moment
caused by orbital motion g = 1 and for the case of a spin 1/2 particle g = 2 as can be seen
from the Dirac-equation [6] when quantum corrections are neglected.

In a relativistic quantum field theory the magnetic moment is part of the lepton-photon-
vertex which is the basic quantity describing the interaction in e.g. Quantum Electrodynamics
(QED) the theory of the electromagnetic interaction. Following [24] we define

Uaﬁqﬂ

o u(p) = u(p/)Lau(p), (2.7)

= a(p) |F1(a*)va +iFa(q?)

where ¢ is the photon momentum, m,, is the muon mass and 0,5 = i/2[V4,v5]. The spinor of
the incoming/outgoing on-shell muon is denoted as u(p). In addition we have the Dirac form
factor F} and the Pauli form factor F5. In order to obtain the anomalous magnetic moment
we consider the matrix element M with a classical background gauge field Aff (z) = (0, A(Z))

M = eu(p')Tpulp) A (@), (2.8)
which represents a purely magnetic interaction with magnetic field strength B*(7) = —ie*%

inZl(cj). The matrix element can be interpreted as originating from an effective potential

— —

V(@) = (i) - B(@).

Using now the decomposition from Eq. (2.7) in the expression for the matrix element (2.8)
and taking the non-relativistic limit

u<p>~m<§}‘ﬁ"?/2m)f>,

+p-d/2m)€
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as well as ¢ — 0, the identification

o

F1(0) 4+ F»(0)] <;> , (2.9)

can be made as is detailed in Ref. [24]. Here & is a three-vector of Pauli matrices and &/2
corresponds to the spin operator. Comparison with Eq. (2.6) yields

g = 2[F1(0) + Fy(0)] = 2 + 2F5(0), (2.10)

(=

where the last line holds since F7(0) = 1 is demanded by charge renormalisation. We thus
have

a, = F(0) = 2=, (2.11)

Any contribution to a, can thus be obtained by the following procedure

e Write down the Feynman-diagram corresponding to a certain contribution to the vertex
(2.7)

e Project onto the Pauli form-factor F5(q?)

e Take the limit ¢ — 0

A possible projection method is [25]

0
= T —T 2.12
= o [ ) B + ) 5T . (212)
where the derivative of the vertex I3 appears. Instead the naive Projector for Eq. (2.7)
m? my(2m? — ¢°)
Po = - —ig / 2.13
(P +4mi)%‘ ! q%(q* + m?2)? (b +7)a (2.13)

can be used

a, = lim Tr[P T4 (q)]. (2.14)
q—0

This procedure has the disadvantage of being singular in the limit ¢ — 0. Furthermore it is
numerically more demanding since more independent variables have to be taken into account
in the numerical integration. This can be easily understood by recognising the fact that in
the case of (2.13,2.14) the photon momentum is never exactly ¢ = 0 and so has to be treated
properly as an external scale. This leaves certain scalar products with internal loop variables
non-zero which vanish in the case ¢ = 0 as is the case with procedure (2.12). The latter is
the method we mostly apply while the naive method serves as a welcome cross check.
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2.4 Standard Model prediction for the muon g — 2

Here we give an overview over the QED, weak and hadronic contributions to a,,. The overview
is based on [1] where more details can be found.

QED and weak contributions. The dominant contribution to the muon anomalous mag-
netic moment comes from QED. These contributions have been calculated up to five-loop
order (a®). The leading contribution is the famous Schwinger result coming from

with

QED leading _ a

" - o’

which accounts for about 99% of the anomaly. This contribution is obviously universal since
it does not depend on the lepton mass m; (I = e, i, 7). At two loop order there are nine
diagrams of which three are non universal. These include lepton loops and turn out to depend
on the ratio of masses of the external flavour and the flavour in the lepton loop. Here the first
distinction between electron and muon becomes visible. The two-loop result for the muon is

ag"P21ooP = 413217.621(14) x 1071 (2.15)
The three-loop contribution incorporates already 72 diagrams giving rise to
aFPA7100P = 30141.902(1) x 107" (2.16)

This result is dominated by the electron-loop light-by-light contribution

The four-loop calculation is a formidable task since it involves more than thousand diagrams
of which most are only known by means of numerical analysis today. The result is

adPP4710op = 380.807(25) x 107, (2.17)
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which is still significant given the experimental precision obtained today. The contributions
up to order a® have been evaluated recently [26] giving rise to

5
a5 — 753.29(1.04) (£ )~ 5 x 1071, (2.18)

The precise experimental result also necessitates the knowledge of weak contributions. The
leading order contributions, which involve Z and Higgs bosons, in graphical representation
are

z z
z
Y (2.19)
The weak contributions are known up to two-loop level [27]
al®* = 153.5(1.0) x 1071, (2.20)

the result is quoted from [2].

Hadronic contributions. The leading order hadronic contributions is the hadronic vacuum
polarisation (HVP) that looks like the Schwinger diagram with an additional hadronic one-
particle irreducible photon self-energy insertion

This contributions is considered in detail in chapter 5 which is why we won't discuss it here
at length. An up to date evaluation of the leading order yields [28]

a; VPO = 6949.1(58.2) x 10711, (2.21)

This leading hadronic contribution is quite significant at the present precision. Since it involves
non-perturbative QCD its calculation from first principles is involved. Fortunately it can be
extracted from experiment via dispersion relations (see again chapter 5 as well as app. D)
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such that it is known in an essentially model independent way. Nevertheless it yields the
most dominant contribution to the overall SM uncertainty. This uncertainty is dominated by
experimental input from eTe™ — hadrons data. A systematic improvement is thus possible
by refined measurements [28, 2]. Higher order HVP corrections that contain several hadronic
photon self-energy insertions contribute [28]

a; VPHO = —98.4(1.0) x 107 (2.22)

Their contribution to the error is not that important at the moment.

The most problematic contribution finally, is the hadronic light-by-light contribution (LBL)
X

(2.23)

Contrary to the HVP contributions it can not be related to experiment in a straightforward
way so far. Existing calculations have been carried out in hadronic models such as the
Nambu—Jona-Lasinio model (NJL) [29, 30, 31] or approaches based on effective low energy
descriptions of QCD involving hadronic degrees of freedom [32, 33, 34, 35]. In addition this
quantity has been looked at from the view point of vector-meson dominance models [36, 37].
No complete calculation based on first principles is available at the moment. Different groups
having worked in the effective hadronic picture agreed recently on the result [38]

a;PPFT = 105(26) x 1071 (2.24)

This is the outcome of an effort that lasted more than a decade. This contribution is in
the long run probably the most problematic contribution since contrary to HVP a systematic
estimate of the uncertainty is so far not possible. The main purpose for the present work is
to start a detailed analysis of the LBL contribution using the method of Dyson-Schwinger
equations. We believe that this method is superior to effective field theory in at least two
ways. First of all the DSE method needs no scale separation and no separate treatment of
high-energy and low-energy contributions of QCD. The approach deals with the fundamental
degrees of freedom of QCD, which are quarks and gluons, in such a way that a unified de-
scription is possible at all scales. This is extremely useful since the LBL contribution involves
the photon four-point function, an object that depends on several external scales thus making
a unique scale separation impossible. The other advantage is that the DSE method takes
the full tensor structure and momentum dependence of all calculated n-point functions into
account, contrary to e.g. the NJL-model that works with a reduced tensor basis and simplified
momentum dependence of Green's functions in most cases.

10
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Comparison of theory and experiment. Finally we summarize the theoretical contribu-
tions and compare to experiment in table 2.1. In order to obtain the theoretical uncertainty
the uncertainties of the separate contributions are added in quadrature. It can be seen that
the QED contributions are by far dominant. The leading order hadronic contribution (the
leading order hadronic vacuum polarisation LOHVP) is one hundred times larger than the
error and is thus of high significance. In fact it is the largest non-QED contribution. The
light-by-light (LBL) contribution is significant but only slightly larger than the overall un-
certainty which shows that further improvement is mandatory here. In total the hadronic
contributions strongly dominate the error of the theoretical prediction The weak contribution
is rather small but already significant at the given precision. The error is supposed the be
well under control. The comparison with experiment reveals a deviation that corresponds to
3o here. Depending on the numbers used for the hadronic contributions and their errors the
significance varies slightly [1, 2, 28]. The uncertainty of the comparison arises from the ones
from Standard Model prediction and experiment added quadratically.

In order to keep up with the experimental development expected to take place in the current
decade [13] the theoretical treatment of the hadronic contributions has to be improved. As
already mentioned for the HVP results this depends on experimental input that was used to
obtain the contributions shown in table 2.1. For LBL more elaborate theoretical frameworks
have to be used. One obvious choice is of course lattice QCD. First promising results for
HVP are already available [14, 15, 16]. The calculation of LBL is, however, a difficult and
expensive task on the lattice. We thus believe that improved non-perturbative methods like
Dyson-Schwinger equations (DSEs) are an important tool for the systematic reduction of the
theoretical uncertainty.

In fact DSEs have been successfully used together with the lattice in different research
fields. They are complementary to each other in certain ways but they can be formulated
in the same language, that is on the level of Euclidean momentum space Green's functions.
This allows one to combine these approaches at different intermediate steps. For example
can lattice calculations of vertices be used as input for propagator DSE's and thus improve or
validate certain truncations. The DSE's can, on the other hand, be used in certain parts of
parameter space that are sometimes hard to reach on the lattice. Examples are the infinite
volume limit, the chiral limit or simply higher order Green's functions that might be numeri-
cally demanding. In addition the DSEs, through typically formulated in Euclidean space time,
can be continued back to time-like momenta. And finally there is no problem to convey DSE
studies at finite chemical quark potential.

In the case of pure Yang-Mills theory at vanishing temperature, for example, successful
truncations exist that compare quantitatively to the propagators of gluon and ghost in Lan-
dau gauge calculated from the lattice [39, 40, 41, 42, 43]. Also the properties of quarks
derived from self-consistent Yang-Mills input has been investigated [44] as well as unquench-

11
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ing effects caused by dynamical quarks that feed back into the gluon [45]. Furthermore, at
times where the lattice calculations had strong finite volume artifacts DSEs were used as a
guide to address these [46]. A similar case is the question of the precise value of the critical
number of fermion flavours in QED3, a theory that exhibits a quantum phase transition as a
function of the number of fermion flavours [47]. There DSE studies revealed that a devia-
tion between lattice and continuum results could be explained by finite volume effects [48].
Another example is the QCD phase diagram. Here lattice calculations suffer from the sign
problem that so far excludes any direct calculations at finite quark chemical potential. Here
DSE studies have been conveyed that themselves use the gluon propagator as a temperature
dependent input in the quark DSE [49]. Even a back feeding of the quarks into the gluon
degrees of freedom (unquenching) has been possible such that extrapolations of lattice re-
sults into the region of non-vanishing chemical potential is possible [50]. This nicely shows
that lattice results can be combined with functional continuum methods, such as DSEs and
functional renormalisation group equations, in a very effective and productive way.

A similar approach is possible in the case of LBL. Since the calculation of the contribution
a};BL is a very demanding task several combined methods seem worthwhile. Of course the
lattice could aim for a calculation of the hadronic four point function II,,,,3 shown as blob in
Eq. 2.23. This would be very helpful since it would allow for an essentially model independent
definition of the hadronic piece in an otherwise perturbative QED diagram. On the other hand
any lattice artifacts that could lurk in II,,,,3 would have to be brought under control. Ex-
amples might be infinite volume extrapolations and extrapolations to physical quark masses.
Here DSEs offer themselves as a tool to study these. The hadronic four-point tensor will be
described later on in terms of the quark photon vertex and the quark propagator of QCD.
As input to calculate these, assumptions about the quark gluon interactions in the form of
the quark-gluon vertex have to be made in the currently applied truncation scheme. Lattice
calculations of these correlation functions, either as truncation improvements for the case of
the quark-gluon vertex, or as comparisons to DSE results for the quark and the quark-photon
vertex would be interesting possibilities to improve our understanding of the relevant Green's
functions. The hadronic photon four-point tensor can be defined in terms of these 'lattice
improved' two and three point functions and compared to direct lattice calculations of the
whole object. There are thus several possibilities to combine the two approaches on different
hierarchies leading to non-trivial cross checks and improved understanding. In fact first ideas
in this direction have been considered.

New physics contributions. The deviation between theory and experiment seen in table
2.1 raises the question what kind of contributions could fill the gap if it is truly there. This
can be taken as a constraint for new physics beyond the Standard Model. There have been
detailed studies of possible contributions from super-symmetric extensions of the Standard

12
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Table 2.1: Here we give a list of the contributions to a,. Shown are different theoretical contri-
butions: QED (up to five loop), weak contributions up to two loops, the leading order
hadronic vacuum polarisation (LOHVP), higher orders (HOHVP), the hadronic light by
light contribution (LBL), the total Standard Model prediction, the experimental value
and finally the comparison between theory and experiment. This gives rise to a 2.9 o
deviation if these particular results for LOHVP and LBL are chosen. The error of the
SM contribution has been obtained by adding in quadrature the theoretical parts. Anal-
ogously the uncertainty of the difference between theory and experiment corresponds to
the ones of the two separate ones added in quadrature.

Contribution || ay x 101 | %
QED 116584 718.1( 0.2) | 99.994%
weak 153.2( 1.8) | 0.00013%

QCD LOHVP 6949.1 (58.2) 0.006%

QCD HOHVP —98.4( 1.0) | 0.00008%

QCD LBL 105 (' 26) | 0.00009%
Standard Model || 116 591827.0 ( 64) 100%

Experiment 116592089 ( 63)

Exp-Theo || 262 ( 89) |

Model, see for example [51, 52, 53], where it was found that these extensions have the
potential to explain a contribution of the required size.

13



3 Theoretical foundations

In the present chapter the theoretical foundation as well as the methodological prerequisites
will be laid out. Since we want to analyse hadronic contributions to an electro-magnetic (EM)
observable we introduce below Quantum Chromo Dynamics (QCD) the theory of the strong
interaction as well as Quantum Electro Dynamics (QED) which describes the EM properties
of the muon in the case of interest.

We will summarize the basics of quantization and renormalization of these theories. The
idea of Dyson-Schwinger Equations (DSE's) will be introduced afterwards, followed by a con-
sideration of the appearance of mesons as quark bound states in QCD and the corresponding
Bethe-Salpeter Equations (BSE's) for these bound states. In addition we will discuss how
electromagnetic properties of hadronic states and hadronic quantities in general can be de-
scribed via the combined action of QCD and QED. A central object in that respect is the
fully dressed quark-photon vertex that describes the coupling of quarks to photons taking
into account non-perturbative effects from QCD. In the end we will consider some aspects of
the chiral symmetry of QCD and the U(1) gauge symmetry of QED that are relevant for the
current investigations.

3.1 Generating functionals and Quantum Field Theory

In the present work two of the quantum field theories (QFT's) that constitute the Standard
Model (SM) are relevant. These are Quantum Chromo Dynamics (QCD) the theory of the
strong interaction and Quantum Electro Dynamics (QED) the theory of the electro magnetic
interaction. They are usually formulated as path integrals, for an introduction see [24, 54].
Let S[¢] be the action involving the field ¢(x) with x being a shorthand for a space time
coordinate =, 1 € {0,1,2,3}. The quantum theory of that particular theory in then defined
via the generating functional or path integral Z[J]

Z[J] = /m e S+, Io (3.1)

Here the functional integration measure is heuristically meant to be an integration over the
field variable at every spacetime point ¢(z;)

[po= i [T] dote. (3.2)
1€EN
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and [ J¢is a shorthand for [ d*zJ(x)¢(x) where J is a classical source for the field ¢. Note
that Eq. (3.1) is defined on a Euclidean space-time (R*). Throughout this work Euclidean
QFT will be used. The conventions are summarized in appendix A.

In Eq. (3.1) the field ¢ is to be considered as a placeholder for different fields. Since we
are interested in QCD and QED this will be a fermion field (denoted as v)) and a gauge field
(A,,) transforming under the U(1) or SU(3) gauge groups.

QCD Lagrangian. QCD is based on the gauge principle for the gauge group SU(3) together
with the demand for Poincaré invariance and renormalisability. The Lagrangian of QCD in
Euclidean metric reads:

Laop = B(P+m)y + S Trel Fu ), (33)

where the covariant derivative is D,, = d,, —igA, and the Lie algebra valued gauge field is
A, = Ajt®. The t* are the generators of the Lie algebra su(3) with Lie bracket [te, %) =
ifebcte. Here the £ are the totally screw symmetric structure constants. In the fundamental
representations the generators are given in terms of the Gell-Mann matrices as t* = ’\7‘1 They
fulfill Tr[t??] = 59 /2. The Field strength tensor is defined in analogy to the usual curvature
tensor as —igF),, = [D,,, D,] which results in

Fuy = 0uA, — 0,A, —ig[A,, A). (3.4)

The Lagrangian in Eq. (3.3) is invariant under local SU(3) gauge transformations generated
by an element g(x) in the fundamental representation:

Y — gy Ay _>9Aug_l — (O )9_1- (3.5)

This invariance generates a redundancy, since all gauge fields that differ only by gauge trans-
formations give the same contribution to gauge independent observables and describe the
same physics. In the path integral in Eq. (3.1) we currently integrate over all field configura-
tion, including all redundant ones. This is not a problem for gauge invariant observables. In
order to have well defined gauge dependent Green's functions (e.g. propagators), however,
we have to fix a gauge. This is done with the standard Feddeev-Popov procedure [55].

Renormalization. Since quantum field theories in four dimensions usually suffer from infini-
ties that appear in the loop integrals of many matrix elements, a renormalization prescription
has to be applied. QCD is a multiplicatively renormalisable theory that has only a finite
number of primitive divergent correlation functions. These are exactly the propagators and
vertices that appear in Eqs. (3.3) and (3.6) such that no counter terms involving new oper-
ators are needed.
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The renormalized Euclidean action of QCD fixed in the covariant gauge family is given as

) Z 1
Soop = / {2 0@ + Zump + 22 A8[-0%6,0 + (1 - £01 AL + 2 a0

—iZyag VA + gZca [0, (ASCD) (3.6)

2
+ 9Zaa FUOuADALAS + T Zaa F° fode Al Ag AL AG ),

with the renormalization constants for the quark Z;, the gluon Z4, the ghost Z., the ghost-
gluon vertex Z.4, the quark-gluon vertex Zy 4 and the three and four gluon vertices Z3/44.
By definition the vertex renormalisation constants are related to the field and charge renor-
malisation constants
3/2 1/2 1/2
Tan = 7257  Zun=Z27%  Zen= 2,2 74°  Zya=Z,Zp7Y (3.7)

Y

where Z is the charge renormalisation. To get QED we neglect the gauge boson self inter-
action in (3.6) as well as all terms containing the ghost field (of course the gauge group that
is left implicit in the remaining terms has to be chosen correct). The gauge-fixed Lagrangian
(3.6) is invariant under BRST transformations [56]. From the Slavnov-Taylor identities (STI's)
that follow from BRST symmetry the relations

ZsA _ Z3A _ ZeA _ Zya
Zsa  Za  Ze 2y

(3.8)

between the renormalization constants can be deduced [57, 58]. Furthermore in Landau gauge
(¢ = 0) the condition

Zoa =1, (3.9)

can be maintained due to the non-renormalization of the ghost-gluon vertex in the MS-scheme
[58]. This can be carried over to a momentum subtraction scheme, the miniMOM scheme
[59], which is suitable for numerical investigations.

In order to define the Green's functions of the theory we need the source terms for the
corresponding fields as indicated in Eq. (3.1)

/{JMAH+77@ZJ+1Z77+50+EJ}. (3.10)

T
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Correlation functions. The path integral shown in Eq. (3.1) is the generating functional
of correlation functions

1) 0
8J(z1) " 6J (2)

G™Mz1, ... xn) = (D1 ... o) = Z[J, (3.11)

where G are full Green's functions. The connected Green's functions are obtained from the
functional W[J] = In Z[J]. Especially relevant for the rest of this thesis are the one-particle-
irreducible (1PI) vertex functions generated by the effective action T*:

I'[®] ::sgp /J@—an[J] , (3.12)

T

which due to the Legendre transformation is now a functional of the expectation value of
the field ® = (¢). In particular on gets 0I'/6® = J.The supremum operation in Eq. (3.12)
implicitly defines the source as a functional of this field expectation value J[®]. The standard
functional formalism used here is explained in detail in [60, 54].

3.2 Functional integral equations of QCD and QED

In the present section we introduce the concept of Dyson-Schwinger equations as a method to
obtain non-perturbative definitions of 1P| n-point correlation functions. We further elaborate
on Bethe-Salpeter equations (BSE's) as descriptions of bound state amplitudes and vertex
equations. In particular we present some examples of integral equations that are relevant for
the picture underlying the employed truncation. On top of that we give precise definitions
of those equations that have to be solved for the scope of the present work. These are the
building blocks we need in order to be able to calculate the hadronic contributions to the
muon g — 2. Further details can be found in [60, 61].

The generating functional of Dyson-Schwinger Equations. We start with the obser-
vations that the integral of a total derivative vanishes

0= /Daﬁ (;;e_SJ“]d’ = [J - g‘z [5‘3” Z|J), (3.13)

which is just the second fundamental theorem of calculus, given that surface terms are zero.
Using W[J| =1n Z[J]

o [BSTo [ W 8]
0=c [5@5[&] ‘]H ‘{w[w*w] J]'
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Utilizing 6I'/6® = .J and the chain rule

W ) AN §
e = (= — = (" = 14
oJ o0J (6@) od (") 5P’ (3.14)
we arrive at
oT[®] _ &W' . (3.15)
od 5¢ ¢:<I>+(1_‘”)_1%

The expression in Eq. (3.15) is the generating functional of DSE's. Written explicitly

A A
C 09,00, \d6J,00,)

is the inverse of the full propagator of the theory. In Egs. (3.12 - 3.15) multiplication of func-
tions always means contraction of all indices (space and internal) as well as integration over
common space-time arguments. The generating functional allows for a convenient derivation
of DSE's for arbitrary n-point functions (see e.g. Ref. [62]). In order to obtain these further
derivatives §/d® have to be applied to Eq. (3.15) and the sources have to be set to zero
in the end. In this way the theory is represented as an infinite tower of equations. Since a
complete solution of those is impossible a more modest way has to be pursued. This intro-
duces the idea of truncation, meaning that only a finite number of DSE's is considered at a
time. It is a general feature, however, that the equation for an n-point function involves a
priori unknown higher order correlation functions. Thus assumptions about the latter ones
have to be made. The philosophy is to find a truncation that e.g. respects the symmetries of
the theory, is consistent with multiplicative renormalisability, incorporates phenomenological
implications and reproduces perturbative QCD (pQCD) at high energies. That the knowledge
of all Green's function is equivalent to the solution of a given theory can be seen from the
expansion of the effective action in terms of vertex functions

re] =% / %F(")(xl,...,xn)<I>(x1)...<I>(xn), (3.16)

T1...Tn

where each coefficient function I'("™) is determined by its DSE.

The quark DSE. The quark propagator is defined as

52T !
S(z—y) = (m?s?;) . (3.17)
0¥y
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The Fourier transform of the propagator S(p) is taken to be

S(@) = [ Sy e, (3.18)
where the momentum-space propagator can be parametrized via two dressing functions A
and B as

i A(p*) + B(p?)
- pPA2(p?) + B2(p?)

S(p) (3.19)

In order to obtain the DSE for the quark propagator, the generating functional of DSE’s (3.15)
has to be evaluated for the QCD action (3.6) and the field variable ® has to be replaced by
the quark field ¥ = (1)). One further derivative of this expression with respect to ¥ yields
the quark DSE given in momentum space representation

S™ p, 1) = Zy(A, 1) Sy (p, A) + E(p, ), (3.20)

where the dependences on the UV-cutoff A and the renormalization scale 1 are shown explic-
itly. Here S~1 is the full inverse quark propagator, Sgl(p, A) = —ip' + Zp (A, p)ym(p) is the
inverse bare propagator and the self energy ¥ is given as the integral expression

A

S(p, p) = g* (1) Zya(A, 1) Cy / Dy (p — ¢, )T (g, pt) S (g 1) V- (3.21)

The (colorless part of the) full quark gluon vertex I';, is herein defined as

. “ §3Tqep

igl',t* = (5‘11(5142(5@’ (3.22)
and the color algebra is already gathered in the Casimir Cy = t*t* that in the fundamental
representation evaluates to (N, — 1/N.)/2 = 4/3. Furthermore the fully dressed gluon
propagator is denoted as Dy, (k). The colorless part of the gluon looks formally like the
photon propagator introduced in the next paragraph in Eq. (3.27). The quark DSE is
represented graphically in fig. 3.1.
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Figure 3.1: The quark DSE from Eq. (3.20). White circles denote fully dressed propagators and
the blue blob represents the dressed 1PI quark gluon vertex.

The photon Dyson-Schwinger equation. Another equation that is important in the
course of this thesis is the photon DSE. This will be needed to define the hadronic pho-
ton self energy which is a vital ingredient for the leading order hadronic contribution to the
anomalous magnetic moment of the muon. Therefore we introduce the Lagrangian of QED

QED

_ _ Z
Lqep = Z2 %@ + m)y +ieZ 2P AY + A4 FuF,. (3.23)

Here A, is a U(1) gauge field and e = e(u) is the electric charge renormalized at a certain
scale. This scale y is usually taken to be on-shell. The electron and photon propagators are
chosen to be bare at the physical pole masses

iy + mpn
SYUEP(P® = mpyy) = S5 m(p® =m®) = mpngs  (3.24)
p~+ mphys
Pubv ) 1 DuDv
D%ED(pz — 0= <6W - ;2> p? & ;4 e(u® = 0) = Ephys- (3.25)

In order to obtain the photon DSE the QED action corresponding to (3.23) has to be used to
construct the generating functional of DSE’s (3.15). Here the first and the second variations
have to be with respect to the field A, owing to the definition of the full photon propagator
Dy

82T qED ) -
D, =|—>— ) 3.26
m <5AM5AZ, (3.26)
where the Fourier transform of this two-point function can be parametrized as
pupv\ 1 1 Pubv
D =0, — — 3.27
) = (G0 = P80 ) S + €0 (3:27

where the quantum corrections are described by the dressing function II and £ is the covariant
gauge fixing parameter for the U(1) symmetry of QED. The DSE for the photon is derived
in appendix B and reads in momentum space representation
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Figure 3.2: The photon DSE defined in Eq. (3.30). Full Propagators are denoted by white blobs
and the red blob marks the full 1PI fermion-photon vertex.

Ditp, ) = ZS° (A, ) (DY, (0, A)) ™ + I (p, ), (3.28)
where
_ PuPv PubPv
D (p,A) = (6#,, - 5,2 >p2 + —‘% : (3.29)

is the bare inverse photon propagator and the self energy given in terms of the vacuum
polarization tensor 11,

A
I, (p, ) = —€*(p) ZQED /Tr (g4 1) 7S (g, T (g, g4, )], (3.30)
q

where the momentum routing is chosen such that ¢+ = ¢£p/2. I';, is the full fermion-photon
vertex defined analogous to (3.22), with A,, being the Abelian gauge field and the coupling
—e instead of the strong coupling g. See also appendix E and Eq. (B-6). The photon DSE
is graphically represented in fig. 3.2.

Bethe-Salpeter equations. The starting point for a consideration of quark anti-quark
bound states it the so called T-matrix. In order to define it we start with the following
Green's function

G(z1,w2,1,52) = (0T (21)8(22)¥ ()9 (y2)]0), (3.31)

where we use the canonical formulation in Minkowski space for this particular purpose (con-
trary to the Euclidean functional formalism used in most parts of the thesis). In addition we
define the total and relative coordinates
1+ T2 Y1+ Y2

Yy =
2 2

X =

T =T — T Y =1y — Yo, (3.32)
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e e
P
_O_

Figure 3.3: The G-Matrix (shown in red) can be decomposed into a disconnected piece given by
two propagators and a connected one. The amputated connected part defines the T-
Matrix shown in grey. White blobs denote fully dressed propagators. The arrows on the
external legs of the G-matrix show the particle/anti-particle content that is omitted in
the remaining amplitudes. In addition the momentum routing is indicated in blue.

with their total and relative conjugate momenta (X,Y) <+ P, z <> k and y <+ ¢ where X and
Y have the same conjugate momentum P due to momentum conservation. The conjugate
momenta of x5 are k4 and those of y; /» are g+ which are defined to be parallel to the spin
direction of the fermion lines (see fig. 3.3)

_ Rtk _ 4+t

P=k —k_= —qg_ k
+ 9+ —4q 9 q B

(3.33)

This enables us to define the momentum space version of a general four-point function T via

(21, 29,51,Y2) = / e P XY emika Gleu D (P |, g). (3.34)

Pk,q

The T-matrix is the amputated, connected piece of (3.31). Written in a condensed notation
where matrix multiplication includes contraction of two-particle legs in all indices the relation
reads

Gij,kl = Sijskl + SiquUTuvmsSrkSsl’ (335)

where S represents the full quark propagator. This relation is diagrammatically shown in fig.
3.3. Both four-point functions (G and T) contain quark anti-quark bound states as is detailed

in Ref. [63]. This can be seen by inserting a full set of physical states into the matrix element

(3.31) under the assumption z9,x9 > 49, 49

G(21,22,91,92) ~ /dPG(PO)é(P2 — M?)(0| T4 (1)1 (x2)| P) (P T (y1)1(y2)|0),
(3.36)

where only the lowest lying state | P) has been retained. This defines the Bethe-Salpeter wave
function

xp(x1,z2) = (0T (21)(22)| P), (3.37)
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which is a strict on-shell quantity P? = M?. The behaviour of the Heisenberg-fields under
space-time translations together with the invariance of the vacuum yields

—iP-X ‘PQ

XP(l’l,xQ) = XP(x/27 _33/2)6 — M2

where P? = M? is the dispersion relation of the massive one particle state |P). Defining the
momentum space version of the wave function

(/2 -2 = [ FIPE) (3.39)
k
one obtains
P k)x(P.
G(Pk,q) ~ —iW + terms regular at P? = M?2. (3.39)

In this equation Y is the conjugate of (3.37). Furthermore the identity

d* 1 . . dBp 1

[ a6 e ) = i [ e ) B
was used which holds for z° > 0. The steps starting from (3.36) show that under the
assumption that the momentum operator has an eigenstate with mass M and that the total
momentum is not far off-shell P? ~ M? (3.39) gives rise to a bound state pole in the matrix
element. Turning this argument around, a pole in the four-point function (3.31) signals the
existence of the physical state with mass M.
The G-matrix can be shown to obey the following Bethe-Salpeter equation [64]. A deriva-
tion from the two-particle irreducible (2PI) effective action (see [65, 66]) perspective using
functional techniques con be found in [67].

G =SS+ GKSS, (3.41)

which is graphically represented in fig 3.4. The matrix multiplication in (3.41) is a condensed
form of the contractions in (3.35). The interaction kernel K contains only interactions that
are 2P| with respect to the quark lines. In the 2PI formalism this corresponds to the second
variation of the 2Pl part of the effective action with respect to the quark two-point function
§2T'3/55%. In order to find the equation for the BSE for the T-matrix we just have to insert
(3.35) in (3.41) to obtain

T =K +TSSK (3.42)

and the corresponding diagram in fig. 3.5. Regarding the definition of the T-matrix (3.35)
shown in fig. 3.3 it is obvious that the bound state pole cannot arise from the disconnected
part which can at most contain quark-states. Due to confinement even that possibility is
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Figure 3.4: The inhomogeneous BSE for the G-matrix. White blobs represent full propagators while
the interaction Kernel K is shown in blue.

Figure 3.5: The inhomogeneous BSE for the T-matrix. White blobs represent full propagators while
the interaction Kernel K is shown in blue.

excluded. Thus the bound-state pole structure must be entirely contained in the T-matrix.
In order to obtain a resonance expression for the T-matrix similar to Eq. (3.39) we start with
the Bethe-Salpeter amplitude (BSA) that is defined as the amputated version of the wave
function

D(P k) =S Yk )x(Pk)S™ (k). (3.43)

With this definition we can write down the following expansion

I'(P,k)L(P,q)

T(Pk,q) ~ —i— gy

+ regular terms. (3.44)

Finally inserting (3.44) into the BSE for the T-matrix (3.42) and equating residues at P? =
M? we arrive at an equation for the Bethe-Salpeter amplitude I'

I = I'SSK, (3.45)

which shows that the amplitude T' is basically an eigenvector of the interaction kernel K
with eigenvalue one. Since Eq. (3.45) is a homogeneous equation, the solution T' needs
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Figure 3.6: The homogeneous BSE for the bound state amplitude (green blob) defined in (3.45).
White blobs represent full propagators while the interaction Kernel K is shown in blue.

an additional normalization condition. The normalization which is originally present in the
inhomogeneous equation for the G-matrix (3.41) is lost in the process of deriving (3.45). By
writing G = SS + A\GKSS and I' = \I'SSK a normalization condition can be derived for
(3.45) that ensures the consistency for the residue implied by the pole decomposition of G in
(3.36)

AM2()) -
where Mghysical = M?(\ = 1) is the bound state mass for which the BSE (3.45) has a

solution. This is detailed in [68]. Equation (3.45) which is a homogeneous BSE allows for a
calculation of mesonic quark anti-quark bound states of QCD for different flavour quantum
numbers, spins and discrete symmetries. These quantum numbers are selected by an explicit
choice for the representation of the amplitude I". In addition higher radial excitations can be
considered [69].

The quark-photon vertex BSE. Another equation that is of high relevance for the present
thesis is the inhomogeneous BSE for the quark-photon vertex. This vertex is defined as a
variation of the effective action of the electro magnetic theory combined with QCD

§*Tqep+QED

el — 2
T TS usAsT

(3.47)
where the fermions U represent quark degrees of freedom. These represent the spinor degrees
of freedom in the QCD action (3.6) as well as in the QED action (3.23) and the gauge field
A is the U(1) gauge field (the photon) of QED. The bare Lagrangian is the sum of the bare
Lagrangians of both theories. Later on we will work partially in the approximation that the
photon field is just an external background field that does not propagate as a virtual degree of
freedom inside any loop diagram, but for the moment our statements are completely general.
The quark-photon vertex is the key object for investigations of electro-magnetic properties of
hadrons like form factors and charge radii [70]. It is the essential link between QCD and QED.
The corresponding vertex equation can be obtained from the BSE obeyed by the G-matrix
(3.41) by coupling the left two fermion lines to an electromagnetic current j, = ¢, and
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Figure 3.7: The inhomogeneous BSE for the quark-photon vertex (red blob). White blobs represent
full propagators while the interaction Kernel K is shown in blue.

removing the external quark leg dressings on the right. This results in the following form of
the equation

T, =, +T.SSK, (3.48)

while the corresponding diagrammatic representation can be found in figure 3.7. A very
important property of the vertex amplitude defined via Eq. (3.48) is that it contains dynami-
cally generated quark anti-quark bound states for time-like photon momenta which effectively
resembles the phenomenologically very successful idea of vector meson dominance (VMD)
[71]. This model assumes that the electromagnetic coupling of quarks to photons is achieved
via a mixing of the photon with the vector meson which is the p particle. This is quantum

mechanically allowed since both have the same quantum numbers JP¢ = 1=, The fact
that the vector meson pole is present can be seen by considering the amplitude
() yp) =T8S, (3.49)

which equals the quark-photon vertex with to fully dressed quark propagators attached. Now
a full set of Hilbert space states can be inserted and a bound state pole can be identified
following the procedure of Egs. (3.36) to (3.39). In this way one arrives at a homogeneous
bound state equation (3.45) with a Bethe-Salpeter amplitude carrying vector meson quantum
numbers.

It has to be emphasized that the interaction kernel K shown in fig. 3.7 in principle contains
QCD as well as QED processes. We will however neglect QED effects inside any self-consistent
equation. This is because these are suppressed by an additional factor of o ~ 1/137, the
fine-structure constant, which defines the electro magnetic interaction strength. We thus
rely on the leading perturbative order as far as QED is concerned. QCD contributions, on
the other hand, are not suppressed due to the fact that the strong coupling constant g or
correspondingly oy = g?/47 is of the order one at the scale of interest (around and below
1GeV) and perturbation theory is thus not applicable. The result is that the low-energy
electro magnetic interaction of quarks is dominated by QCD effects to more than 99%.
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3.3 Symmetries and Ward-Takahashi identities

In the present section we will discuss implications from symmetries that have been taken
into account to construct the interaction kernel used in this work. Two symmetries are of
immediate importance. On the one hand this is the chiral symmetry of QCD which is highly
relevant for dynamical mass generation and meson phenomenology. The second is the U(1)
gauge symmetry of QED which ensures the conservation of charge. Both symmetries manifest
themselves in the form of Ward-Takahashi identities (WTI's) on the level of Green's function
and thus can be used to constrain the latter ones. In addition we will discuss the role of
anomalous symmetries. The most important phenomenological consequences of anomalies
are the rather large i’ mass and the 7° — v decay.

Chiral symmetries of QCD In the chiral limit, that is if the bare quark masses in the
action of QCD (3.6) are zero, QCD exhibits a special symmetry

P — Ty ) — el (3.50)

which is a global U(Ny) rotation in the fundamental representation acting on quark-spinors
which are Ny-multiplets. The T are the N? generators of the U(Ny) Lie-group and the
0 are the parameters of the transformation and coordinates on the group manifold. The
Euclidean Dirac matrix is defined as

V5 = Y0Y17273- (3.51)

Its presence signals the rotation of left-handed and right-handed spinors with opposite phases.
In the absence of quark masses the QCD Lagrangian ((3.3) or (3.6)) is invariant under the
independent chiral rotation of left-handed and right-handed fields and thus has the symmetry
Ur(Ny) x Ur(Ny¢). This symmetry can be equally written as Uy (Ny) x Ua(Ny) where
the transformations have been split into vector symmetry (left and right spinors transform
alike 8, = 0r) and axial symmetry (left and right spinors transform with 6;, = —6g). The
symmetry (3.50) is dynamically broken in QCD which most prominently results in dynamical
generation of meson and nucleon masses. Via the Goldstone theorem this leads to the occur-
rence of (pseudo-) Nambu-Goldstone bosons, which are the most important physical degrees
of freedom at low energies [72, 73]. Since each Goldstone boson corresponds exactly to one
broken symmetry, an effective low energy theory can be derived on the grounds of symmetry
considerations alone, that is independent of the details of QCD [74, 75]. Since the masses of
the up and down quarks, while not exactly zero, are small compared to the effect of dynamical
chiral symmetry breaking (DxSB) these can be treated as perturbations in the framework of
chiral perturbation theory (xPT). At very low energies one thus has a firm ground where
considerations can rest on. It is imperative to incorporate the consequences of these insights
into any truncation of the Dyson- Schwinger equations of QCD if they are supposed to yield a
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good description of low-energy QCD and the phenomenology of bound states of light quarks
[76, 77].

This means that any model of QCD that has the correct symmetries and symmetry break-
ing patterns can reproduce many important low energy constraints such as the Gell-Mann—
Oakes—Renner relation (GMOR) as for example the Nambu—Jona-Lasinio model [78, 79]. An
important consequence of the chiral symmetry is the axial-vector-WTI [80, 77]

iP,I%%(P k) = S (k_)ysT® + vsT*S ™" (k)
—T5%(P,k)
+ CeFqep (P, k) Tr[T°Q?]
+ CyF o (P, RYTH{T E47).

(3.52)

Here k+ = k & P/2, T are the generators of the axial U4(Ny) flavour symmetry and the
t' the ones of the SU(3) gauge symmetry of QCD. The following vertices are defined: the
axial-vector vertex

r59(z,y, 2) / § 1z — u){(P(2) T (=) b)pw)) SHw—y),  (3.53)

the pseudo-scalar vertex

I2%(z,y, 2 /S z —u) (V) {M, T*}(2)) Y(u)ib(w)) S™Hw —y), (3.54)

where M is the quark-mass matrix and the quantities 7 (P, k) which are terms that are present
in (3.52) due to anomalous symmetries

Fenlzra) = [ 874 =)0V @u@d@)s w-y).  (359)

U, W

The involved operator is 0% (z) = GWQBFWFO% (the Abelian case for QED is similar) and

might be identified with the topological charge density [81]. These appear with pre-factors
Cy = 1(‘31%. The traces of these anomalous terms in (3.52) reduce them to certain flavour
channels a. The anomaly involving the non-Abelian fields F7,,, which is called the Abelian
anomaly since it involves the Abelian chiral subgroup U4(1) i.e. the singlet part, is only
present for a = 0. This is because Tr[T%] = 0 for a # 0. The non-Abelian anomaly owes
its name to the fact that it is related to the non-Abelian U4(Ny) chiral transformation. It
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3 Theoretical foundations

contains the Abelian fields F},, from QED. The flavour trace reduces its effects to the flavour
diagonal channels a = 0,3,8. For all other channels the trace evaluates to zero with the
charge matrix being defined as Q = diag(2/3,-1/3,—1,3) for Ny = 3. The derivation of
(3.52) is detailed in App. C.

The implications of (3.52) that are relevant here are threefold. First of all considering the
chiral limit M(A2?) = 0 and neglecting anomalous terms only the first line remains. This
version yields an important constraint for phenomenological models since it guarantees con-
sistency with Goldstone's theorem [77] i.e. that the pion becomes massless in the chiral limit.
This can be used to formulate a relation between the quark self-energy in (3.20) and the
Bethe-Salpeter interaction kernel defined via (3.41) [76] such that the AXWTI is fulfilled.
This will be elaborated further in chapter 4.

The last term in (3.52) has the important consequence that the 7° meson which is the
singlet pseudo-scalar particle is not a Goldstone boson, since U4(1) is not a symmetry of the
quantum theory and thus no symmetry breaking can occur. This explains the rather large
mass of the n° compared to the octet mesons [82, 83]. In the framework of DSEs the topo-
logical contribution to the 7° mass has been considered in Ref. [84] using the Kogut-Susskind
mechanism [85]. A phenomenological treatment has been examined in [86].

The anomalous term in the AXWTI involving the photon field gives rise to the 70 — v
decay. The predicted decay width agrees quite well with experimental results [87, 80].

The QED Ward-Identity. Another important WTI arises from the U(1) gauge symmetry
of QED. It yields a relation between the quark propagator and the quark-photon vertex

iP, L, (P k) =S~ (k) — S~ (ky). (3.56)

Here I, is the fully dressed quark-photon vertex and S~ is the full inverse quark propagator.
The full quark-photon vertex can be decomposed into transverse part Ff and a non-transverse
part I'%

L T
L,=T,+T,, (3.57)
where the transverse piece obeys PMFZ = 0. The vector-WTI constrains the strictly lon-
gitudinal part of the vertex (the projection onto P,). Using this constraint and imposing

regularity for P2 — 0 the non-transverse part is uniquely determined in terms of the quark
propagator as was shown in [88]. The resulting vertex construction is referred to as the
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Ball-Chiu construction
IRC(P k) = 7,34 + 2] kA a + ik Ap, (3.58)
where the symbols

EF:FwQ+F@b AF_Fw@—FwQ

2 ST R

(3.59)

have been used and A and B are the quark dressings.
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4 Working with a truncation of the
DSE’s of QCD

In the present chapter we explain the truncated versions of Dyson-Schwinger Equations and
Bethe-Salpeter Equations introduced in chapter 3 we use in order to obtain results for the
hadronic contributions to the muon g — 2. In addition we outline the philosophy of the used
approach that underlies the definition of certain Green's functions.

As explained in chapter 3 the Dyson-Schwinger equations (DSE's) are an exact represen-
tation of a given QFT. In order to provide a tractable framework, however, they have to be
truncated. One is then left with a finite number of equations. This requires the introduction
of certain assumptions concerning higher order n-point functions.

4.1 Rainbow-ladder truncation

A rather simple yet very successful truncation is the rainbow-ladder truncation (RL). Here the
Yang-Mills (YM) sector of QCD is truncated to two-point functions, all high-order functions
are ignored which makes the framework essentially Abelian as far as the topology of possible
diagrams is concerned. The YM content is combined into an effective, non-local four-fermion
interaction that corresponds to a projection of the gluon propagator together with the quark-
gluon vertex. In addition the single gauge-boson exchange character is recovered in the
high-energy regime ensuring multiplicative renormalisability and the correct limit towards
perturbative QCD including O(«) resummation. In this way certain Green's functions as e.g
the quark propagator behave quite similar to their exact, untruncated counterparts, which is
actually one condition that constraints this model of the quark-gluon interaction.

The rainbow quark DSE. The starting point is the quark DSE wich we show again graph-
ically for the convenience of the reader in fig. 4.1 The RL approximation now takes place on
the level of the gluon propagator in Landau gauge (£ = 0 in Eq. (3.6) and (3.27))

kuk,\ Z(k?
Dy (k) = (5MV— 22 > ]({2 ) (4.1)
and the quark-gluon vertex
12
Lou(p.k) = Y TN (p, k) (42)
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4 Working with a truncation of the DSE's of QCD

Figure 4.1: The quark DSE from Eq. (3.20). White circles denote fully dressed propagators and
the blue blob represents the dressed 1PI quark gluon vertex.

where the gluon dressing function is denoted as Z(k?), Tﬁi) are the twelve different possible
vertex covariants and A(?) are the corresponding dressing functions. Here p is the momentum
of the intermediate quark. A possible basis is given by

T, € {vu,p#,ku}®{]l,p’,}(, K} (4.3)

Only the perturbative leading structure out of twelve possible ones is retained in the vertex
and the dressing function of the vertex is assumed to depend on the gluon momentum & only

Tu(p, k) — TRV (k%) (4.4)

This enables an ansatz for the combined dressings of gluon and vertex put forward by Maris
and Tandy in Ref. [89]

P2 ()
ZeZy

2mym, [1 = eikQ/(‘Lm?)}

In (T + [1 + k2 /A?QCD} 2)

T
=4n EDk4exp(—k2/w2)+ , (4.5)

where the renormalization constants ensure renormalization group (RG) invariance of the
whole expression as is explained below (see [90]). Furthermore we have the parameters
my =05GeV, 7 = e2— 1, vy = 12/(33 — 2Ny), Aqep = 0.234GeV, w = 0.4GeV
and D = 0.93 GeV?2. The model interaction features logarithmic running in the perturbative
regime k% >> AéCD where it behaves as

2 2\T"RL (7.2 TYm 2
g Z (k) (k) — Ar—————— = 4mas(k®).
In (kQ/A(zQCD)
Here ~,,, = 4/bg is the anomalous dimension of the running mass in the perturbative regime
O‘S(Qz)>7m 2
m(Q?) = ( m(u®), 4.6
@)= (2rg) med) (4.6)
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Figure 4.2: A graphical representation of the Maris-Tandy interaction defined in Eq. (4.5). The
curve features an enhanced strength in the IR and perturbative running in the UV.

where a; is the strong running coupling and by = 11 — 2/3 Ny is the first coefficient of the
beta function [91, 92] . The second term in (4.5) guarantees that this form of the running
mass is recovered in the perturbative regime. The exponential term parametrised by w and D
provides enough interaction strength in the infrared for dynamical chiral symmetry breaking
to occur. This part triggers the dynamical generation of the quark mass and the formation
of a condensate (1)7)) as can be observed in the quark DSE (see below). The interaction is
shown graphically in fig. 4.2. The fact that this model interaction vanishes in the IR makes
it numerically easier to handle, the deep infra-red is, however, not important for mesonic
observables [45]. Using the introduced interaction in the quark DSE ((3.20) and (3.21)) we
find

S7Up) = 205 ) + 5 Zoag [ S @N I (07) Dy (), (1.7

q
with & = ¢—p. To make the notation more compact we define the rainbow-ladder interaction
kernel as

Krs,tu(k) = G(k2)T,ul/(k) [’Yu] rt ['71/] us’ (4.8)

where T}, (k) = (5/“, - k‘,;’;”) is the transverse projector and
G(k*) =1/(2.24)g* Z (KT (k) /K (4.9)
Graphically we represent the kernel K as

K (k*) = &00000300000). (4.10)
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4 Working with a truncation of the DSE's of QCD

The DSE (4.7) depends on the vertex renormalization constant Zy;4. In a treatment that
only models the Yang-Mills sector of QCD the vertex constant Zy 4 is not at our disposal. In
order to maintain renormalisability we use the relations

ZpA = Zgly\ Za 1l =Zea=ZygZcN Za g~1/Z, (4.11)

where the choice 1 = Z.4 is a certain scheme specific to Landau gauge [58, 59]. The first
two relations of (4.11) are the definitions of the quark-gloun and ghost-gluon vertex renor-
malisation constants in terms of field and coupling renormalisation constants, while the third
expression just defines the dependence of the renormalized coupling on its renormalisation
constant. By definition the gluon transforms as Z ~ 1/Z4 and the vertex as TRL ~ Z,, 4. A
simple manipulation using (4.11) yields

Zy o 1

Typa = 2L = .
ATz, T N2y Ze

(4.12)

which allows a replacement of the vertex renormalisation constant in in the quark self-energy
in (4.7). That is why the factor including the renormalization constants for the quark and
the ghost has been included in (4.5) and (4.9). Using (4.12) and (4.11) the RG dependence
of (4.5) vanishes

FPZEHNT(R?)  V/Z]VZaZya  Z2Za))ZaZy)Z:

1 4.13
ZoZy ZeZy ZeZy (4.13)

We thus know that the quark self-energy behaves as ~ Zi which is the left-over factor from
the replacement we have done in (4.12). We are now in the position to formulate the quark
DSE (4.7) in the form

S7p) = Zy (—iF + Zmm) + Z, g/fy“S(p)% T, (k) G(k?). (4.14)

This equation has the correct behaviour under RG transformations. The fully dressed quark
behaves as S ~ 1/Z,,. Thus the left hand side is proportional to Z,; as is the first term on the
right hand side. The full quark in the self-energy cancels one factor Z,, and the function G is
RG invariant such that also the second term goes as Z;,. The quark DSE in this truncation
exhibits multiplicative renormalisability. It can now be solved since the interaction G(k?) is
known. All that is needed is the parametrization

i A(*) + B(p?)

S0 = ) + B

(4.15)
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Figure 4.3: The quark mass functions M (p?) in the Maris-Tandy model as obtained from the quark
DSE (4.14). Shown are the functions for the flavours u/d, s, ¢ and b. The vertical line
represents the renormalization scale 12 = (19 GeV)2.

The integral equations for A and B can be obtained by the application of the projections
Tr[-] and Tr[p"] on both sides of (4.14). The numerical solution can be obtained by straight-
forward fixed-point iteration. We choose an initial guess for the functions A and B and then
perform the numerical integration until convergence is reached. The criterion is

A+ (52) — A(n) ()2
sup (p( )) - )| _ 5
p2 Al (p )
where n denotes the iteration step and e is typically of order 1072, The renormalization
conditions are

A(?) =1 M%) = my, (4.16)

where the scale is u? = (19 GeV)? and the quark mass function is just M = B/A. The pa-
rameter m, depends on the quark flavour e.g. m,, or ms. The mass function that is obtained
from the DSE (4.14) obeys the relation (4.6) for p* >> A3y, thus mimicking MS behaviour.
The solutions for the quark mass functions for different conditions M ((19 GeV)?) are shown
in figure 4.3. In table 4.1 we show the quark mass at vanishing Euclidean momentum A/ (0),
at the renormalization scale = 19 GeV and we compare the mass function at p = 2 GeV
to a mass that is scaled up to 2GeV from 19 GeV via the perturbative relation (4.6). The
mass function behaves logarithmically in the UV according to (4.6). In the IR, however, the
dynamical mass generation is clearly visible. Chiral symmetry is dynamically broken. The up
and down quarks, for example, acquire dynamical masses of a few hundred MeV consistent
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4 Working with a truncation of the DSE's of QCD

Table 4.1: From left to right we show the quark mass function at the Euclidean origin 1/(0), the
MS masses at 2 GeV m™5((2GeV)?) as well as the mass function at 2 GeV and at 19
GeV. The mass functions are solutions of the DSE (4.14). The MS masses are obtained
from M((19 GeV)?) via relation (4.6).

(GeV] || M(0) | m¥S((2GeV)?) | M(2GeV)?) | M((19GeV)?)

u/d || 0.477 0.005 0.015 0.0037
s 0.663 0.119 0.16 0.085
c 1.56 1.16 1.25 0.827
b 4.38 5.19 4.32 3.68

with the constituent quark picture. The quark propagator is nevertheless defined on all scales.

Ladder BSE. Using the kernel (4.8) the BSE's for the quark-photon vertex (3.48) and the
meson BSE (3.45) can be constructed in ladder truncation. The main constraint is to respect
the important symmetries. As already explained in chapter 3 these are the chiral symmetry
of QCD and the U(1) gauge symmetry of QED. The former one is closely related to the
strong dynamics of QCD and meson observables while the latter one is mandatory for a good
description of electro-magnetic form factors of hadrons. The SU(3) gauge symmetry of QCD
is not explicitly present in RL truncation, rather it is a global symmetry here. On top of
that constructing a quark-gluon vertex that obeys its local STl is a difficult task due to the
non-Abelian nature of the relations [44, 93].

Chiral symmetry and U(1) gauge symmetry leave their imprint on the Green's functions
in the form of Ward-Takahashi identities (WTls) as already mentioned. These are the non-
anomalous axial-vector Ward-Takahashi- idendity (AXWTI) in the chiral limit

iP LY (Pok) = 87 (k=) T + 4TS~ (k) (4.17)

and the vector WTI (3.56). These symmetries can be guaranteed by using the 2P| formulation
of the effective action [65]. In this formulation the Bethe-Salpeter kernel K can be obtained
by taking the functional derivative of the quark self-energy 3 with respect to the quark
propagator .S, schematically

0%

(4.18)

It has been shown that this construction principle respects the above mentioned symmetries
[76]. Through the AXWTI Goldstones theorem is established such that the pseudo-scalar
mesons are the true Goldstone bosons of chiral symmetry breaking (xSB) while being ¢g
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4 Working with a truncation of the DSE's of QCD

Figure 4.4: The momentum routing for the QED vertex I',(P, k) from Eq. (4.19). The same
routing is used for the meson BSE (4.20).

bound states at the same time. This is further elaborated in [77].

For completeness we give the ladder BSE's for the QED-vertex

[Culrs(Po) = 22 = 233 [ 1SR @S utKiurall = 0), (419
and the meson bound-state
94
(OhalP,0) = =233 [ 180 )D(P, SO uKeura (b= 0), (420
q

explicitly. The momentum routing of the vertices I'(P, k) (QED vertex or meson BSE) is
depicted in fig. 4.4. The incoming total momentum is labeled P the relative momentum k.
The momenta of the outgoing and incoming quark legs are ky = k = P/2. The WTI (3.56)
ensures Z&ED = Zy and Z is determined by the quark DSE.

Numerical solution methods. Numerical solution techniques for truncated DSEs are well
known. For the truncation used here we refer to [92, 89]. In order to solve the Bethe-Salpeter
equations for the vertex (4.19) and the meson amplitude (4.20) we have to construct the basis
decomposition for both amplitudes. In addition we need the projectors that single out the
corresponding dressings given a certain vertex amplitude. Using these techniques we can
decompose the vertex BSE into twelve coupled integral equations for the dressing functions
while four are needed for e.g. the pseudo-scalar mesons. In order to solve the vertex BSEs
we make and initial guess for the amplitudes which is just the bare vertex. After that we
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4 Working with a truncation of the DSE's of QCD

Table 4.2: Feynman rules corresponding to the generating functional (4.21, 4.22).

propagator | ——»———

interaction W@W

perform the integral defined in the equation over and over again using a Gaussian quadrature
integration rule. This iteration is performed until convergence is reached. For the QED
vertex this procedure is detailed in appendix E. The procedure is related but different for
the meson amplitudes. There the BSE is formulated as an eigenvalue equation in which the
amplitude is the eigenvector. The interaction kernel is basically the matrix who's eigenvalues
are to be found. The definition of that matrix is analogous to Eq. (E-11) where it is the
usage of numerical integration techniques that make the integration discrete and offer the
interpretation as matrix operation.

Rainbow-ladder diagrams. In chapter 5 and 6 we will present our truncation of the relevant
hadronic contributions to the muon g—2 from the diagrammatic point of view. Therefore it is
helpful to have an efficient way to generate the diagrams of rainbow-ladder QCD. The tool we
will use is presented in [94]. If the Yang-Mills sector of QCD is truncated to an effective two-
point function and only the quarks are treated as dynamical variables the effective generating
functional can be cast into the form

Zew= [ Dlw) 5, (4:21)
with the rainbow-ladder action
St = [ 6@ +myw+ 5 [ @Dl 0)is ). (122
T z,Y

Here the quark current is defined as jj; = Ytay,1) and the effective YM-two-point function

D,,, represents the rainbow-ladder interaction D,,, = T},,G from Eq. (4.8). The Feynman-
rules of (4.21) and (4.22) are now easy to obtain. Vertices always come in pairs and are
connected by an effective gluon as well as joined by bare quark propagators. These rules are
graphically represented in fig. 4.2. Furthermore it can be shown that the rainbow quark DSE
(4.14) and the ladder meson BSE can be obtained from (4.21) if only planar effective gluon
exchanges are taken into account [94].

The truncation just presented is extremely successful phenomenologically. The long list of

observables include meson properties like masses and decay constants of light pseudo-scalar
mesons [92], light vector mesons [89]. In addition form factors and transition form factors
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Figure 4.5: The pion form factor F,(Q?) calculated in the framework used in the present work. It
was first calculated in [70]. The version shown here is taken from a talk of A. Krassnigg
[109]. It can be seen that the form factor nicely incorporates the p-pole. The result is
compared to experimental data [110, 111, 112, 113, 114, 115] and to a VMD estimate.

have been calculated [70, 95]. Also heavier mesons have been considered [96]. In addition
baryons have also been treated very successfully. Included is the nucleon [97, 98], the Delta
and the Omega baryon [99], various baryonic form factors [100] as well as transition form
factors [101]. An overview over the approach is given in [102]. A collection of observables
calculated withing this framework is presented in table 4.3.

Another example that is highly relevant for the results that will be presented later on is
the calculation of the pion form factor F,(Q?). In the present framework this was first
done in [70]. We present and updated version taken from a talk of A. Krassnigg [109] in
figure 4.5. The form factor is reproduced at all scales from space-like to time-like. The
slope at the Euclidean origin, which determines the pion charge radius, agrees also quite well.
Furthermore the p-pole in the time-like region is clearly visible. This is a result of the fact
that self-consistent quark-photon vertex that is used in this calculation has this bound state
dynamically included. Vector meson dominance is thus automatically included, at least for
this observable. The p pole is at the correct position, since this bound state has vanishing
decay width in this truncation, however, the form factor diverges stronger than in reality.
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4 Working with a truncation of the DSE's of QCD

4.2 Beyond rainbow-ladder truncation

Of course it is desirable to establish a truncation that goes beyond the treatment introduced
in the last section. Much work has already been devoted to this task. We will give a short
account of the main ideas and developments in this direction.

Yang-Mills sector. One of the most desirable features of a beyond the rainbow treatment
consists of replacing the completely modelled Yang-Mills sector in (4.5) by a self-consistent
dynamical treatment. The two-point functions in that sector, the gluon and ghost propa-
gators, are in fact nicely described by existing Dyson-Schwinger truncations [116, 60, 61].
Taking into account two-loop diagrams [41] or combining the DSE framework with functional
renormalisation group techniques [42] the Landau gauge gluon and ghost propagators com-
pare to the lattice propagators on the quantitative level. One ingredient (the Z(p?) dressing)
needed for the interaction kernel (4.9) is thus precisely known.

Matter sector and quark-gluon vertex. Also the coupled equations of the YM sector and
the quark sector have been solved self-consistently on the level of propagators [44]. One needs
however in addition the quark gluon vertex. The back coupling of matter into that object has
been investigated for example in Refs. [45, 117] where the effect of unquenching onto the
quark propagator and on pion observables has been studied. The quark gluon vertex has also
been investigated from the view-point of its DSE in [93] yielding improved truncation that
includes non-Abelien gluon interactions explicitly [118] and furnishes a solution of the U4(1)
problem and the 7’ mass [84]. Another line of thought makes intensified use of WTls in order
to obtain meson observables in channels that are beyond the scope of the RL truncation [119].

In the present work we stick, however, to the simple but phenomenologically well established
model of the quark gluon interaction given through (4.5). One reason is of course its simplicity
which facilitates the rather complex calculations. In addition, as will be explained in chapter
6 and appendix F, it allows for an unambiguous definition of the light-by-light scattering
contribution that is much more complicated in more advanced truncations. Another reason is
the long list of observables that have been calculated in rainbow ladder truncation using the
model (4.5) which includes the degrees of freedom and properties we gauge as most important
in the present work. These are the mesons in the pseudo scalar and vector channels. In fact
it has been shown that beyond rainbow-ladder effects are small in these channels [120]. It is
fair to say that no beyond rainbow-ladder truncation has yet superseded the RL treatment in
this phenomenological respect.
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Pseudoscalar Mesons [92]

Vector Mesons [89)

exp. calc. exp. calc.
—(W)) 1 (0.236GeV)?  (0.241GeV)? My 0.770GeV  0.742GeV
0.1385GeV 0.138 GeV fof 0.216 GeV  0.207 GeV
fr 0.0924 GeV 0.093 GeV M 0.892GeV  0.936 GeV
0.496 GeV 0.497 GeV free 0.225GeV  0.241 GeV
fx 0.113GeV 0.109 GeV me 1.020GeV  1.072GeV
fo 0.236 GeV  0.259 GeV
Charge Radii [70] Strong Decays [103]
r2 0.44 fm? 0.45 fm? Gprr 6.02 5.4
ri. 0.34 fm? 0.38 fm? 96K K 4.64 4.3
%0 —0.054 fm?  —0.086 fm? I Kr 4.64 4.1
~7y Transition [95] Radiative Decays [104]
Gy 0.50 0.50 Gpry /M 0.74 0.69
2., 0.42 fm? 0.41 fm? Geomy T 2.31 2.07
(g k)M )T 0.83 0.99
(grc iy /MK )° 1.28 1.19
Weak Kj3 Decay [105] Scattering Length [106]
Ay (e3) 0.028 0.027 ad 0.220 0.170
['(Ke) | 7.6-106s7t 73810057t a? 0.044 0.045
[(Ku | 52-10% ' 4.90-10%! aj 0.038 0.036
Nucleon Properties [107, 99| Nucleon Form Factors [108, 100]
M, 0.938 GeV 0.94GeV ga 1.27 0.99
Ly 2.79 2.21 r 0.89 0.75
fn, —1.91 —-1.33 rh 0.86 0.75

Table 4.3: Examples of the meson and baryon observables calculated in the DSE approach in exactly
the truncation used in this work. The Observables in red are used to fix the model
parameters in 4.2 ((1¢) and f,) while the pion and kaon masses fix the quark masses
of the flavours u/d and s at the renormalisation point (see table 4.1). The remaining
parameters are predictions.
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5 Hadronic vacuum-polarisation

In the present chapter we apply the method of Dyson-Schwinger equations (DSE) detailed in
chapter 3 to the hadronic vacuum-polarisation (HVP) contribution to the anomalous mag-
netic moment of the muon a,,.

5.1 Basic definitions

First of all we detail our calculational scheme and provide some definitions that will become
relevant for the discussion of the results.

The hadronic polarisation tensor. The first step is to utilize the representation of the self-
energy expression (3.30) of the photon-DSE (3.28). The representation is shown in fig. 5.1.
There we see that the self energy I1,,, can be traced back to the quark propagator S and the
quark-photon vertex I';,. The non-Abelian nature of these quantities is not visible explicitly
but hidden in the defining equations for the quark and the vertex. For the convenience of the
reader we state the definition of the self-energy tensor again

M (p) = —¢*Z, / Tr[S(q4 )75 (a=) T, 0)], (5.1)

where p is the photon momentum, ¢ the loop momentum and ¢4 are the quark momenta.
The quark propagators S are defined via their rainbow DSE (4.14) and the quark-photon
vertex via its ladder BSE (4.19) and the momentum flow in the vertex is as shown in fig. 4.4.
The factor Zy, is the quark renormalisation constant and is obtained via the renormalisation
of the quark DSE (4.14). It has to be noted that the hadronic tensor obtained from a Dyson-
Schwinger Equation is one-particle irreducible (1PI).

The self-energy tensor is puerely transverse by the WTI p,II,,, = 0 and can thus be decom-
posed as

Mo (p) = (8 = P25 ) P*TIG?). (52)
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WD -

Figure 5.1: The hadronic vacuum-polarisation represented as dressed quark loop with one dressed
quark-photon vertex

which serves as a definition of the dimensionless scalar vacuum polarisation function TI(p?).
In order to calculate this function numerically we use the transverse projector which has the

property

1 Pubv
3 (6 - ;)T)Hw(p) = p’1I(p?).

Acting with this projector on Eq. (5.1) and performing the integration numerically we ob-
tain the function pII(p?). The integration is done with straight-forward Gauss-Legendre
quadrature in Euclidean spherical coordinates such that only the radial and one angular inte-
gration remain nontrivial. This resulting function is however cut-off dependent and has to be
renormalised. The divergent terms schematically read

P II(p*) ~ c1A” + cop® In(A), (5.3)

where A is the UV cut-off and ¢; /5 are momentum- and cutoff-independent constants. The
logarithmic divergence is the one usually seen when dimensional regularisation is used [24,
54]. This is taken care of by the renormalization of the electric charge e and the photon
renormalisation constant Z?ED. On top of that there is an additional quadratic cut-off
dependence. This appears since the hard cut-off used in the numerical treatment of the self-
energy is a regulator that does not preserve gauge symmetry. This is however not a problem
since a non symmetry-preserving regulator can be used in combination with a non symmetry-
preserving counter term to maintain the Ward ldentities on the level of Green's functions
[121]. In other words the non-preservation of gauge invariance is signaled by a photon mass
stemming from the term II(p?) ~ A%/p? in Eq. (5.3). The Euclidean photon propagator has
the dressing

1 1 1
PA+IEY)  p2(1+47) PP+ A

(5.4)

and thus acquires a mass of the order of the cut-off scale A. This mass can, however, be
renormalised to zero by a non-invariant counter term that would show up as a bare mass
in the inverse bare propagator in the photon DSE (3.28) and can be used to subtract the
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divergent part. The scheme applied here works excellent as is detailed below. We take care
of the quadratic divergences by the prescription

[P1L(")] g == [PPI(P*)] = [P ] oy - (5.5)

In this way the logarithmic part in (5.3) remains unaffected. Afterwards we obtain the (still
A-dependent) function

P*11(p*)]

I(p%) := 2

~ coIn(A). (5.6)

The remaining cut-off dependence can now be removed via
Mg (p?) := I(p*) — I1(0). (5.7)

This prescription entails ZEED =1and e(p? =0) = ephys and thus corresponds to the
physical QED on-shell prescription. In order to test the prescription defined above we calculate
the perturbative one fermion-loop contribution in QED, which can be found in QFT textbooks
(e.g. [54]). In particular we take Eq. (5.1) with bare fermion propagators and two bare
vertices. The result is shown in fig. 5.2. It can be seen that the result is cut-off independent
for any external momentum sufficiently below the UV-scale. Furthermore the agreement
between our numerical prescription and the analytic result is very good. At momenta that are
sufficiently below the cutoff the agreement is typically on the order of 0.02%. In the deep
infrared, where II ~ 0, the deviation can become large in relative terms. This would become
visible if figure 5.2 was shown on a logarithmic scale. The numerical precision in the deep IR
is controlled by the quality of the subtraction of the quadratic divergences. We will comment
on that in a moment.

Muon g — 2 and Adler function. In order to obtain the HVP contribution to the muon
g — 2 the tensor II,,,, has to be folded into the corresponding correction to the muon-photon
vertex diagram. This is straightforward since this embedding is perturbative. The resulting
expression

1

2
HVP i/dw (1—2x) [—eZHR<1$_$mi>], (5.8)

0

can be used once the renormalized function Iy is known [122]. This quantity can also be
obtained in a model independent way from experimental data via dispersion relations (DR)
[1] which serves as a reference to our calculation. In order to further test our numerics we
calculate the well known contribution to g-2 from leading order QED vacuum polarisation
[2]. This is obtained by using bare vertices, bare electron propagators and Z, = 1 in the
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Figure 5.2: Comparison of the numerical definition of the leading QED contribution to the photon
vacuum polarisation from a bare fermion loop to the analytic textbook result. The
agreement is perfect and the cut-off independence clearly visible. The quantity II is the
renormalised polarisation function and m is the mass of the bare fermion in the loop
diagram that defines II.

definition of II,, in Eq. (5.1). We reproduce this contribution with a precision of 0.1 %.
This indicates that the subtraction of the quadratic divergences and the stability in the deep
IR are sufficiently under control.

Another quantity that is a very useful monitoring tool is the Adler function

2 dIIg (p*)

D(p®) = _dsz' (5.9)
This function can be extracted from experiment in an essentially model independent way too
[1], so that a detailed comparison to 'experiment’ is possible that is sensitive to the involved
scales, contains non-perturbative, mixed and perturbative regions and allows for an analysis
of the contribution of different quark flavours in different momentum regions. The model
independent definition of IIR® is obtained via the dispersive representation (D-5). From this
the corresponding results for the anomaly aEVP’DR and for the Adler function DPR(p?) can
be obtained.

Flavour structure of HVP. Next we want to make some statements about the flavour
structure of HVP and the physical degrees of freedom that are important for this object (e.g
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mesons in the 17~ channel) with regard to the truncation that we work with. As already
mentioned before in section 3.2, the fully dressed quark-photon vertex I',,, defined via Eq.
(4.19), that appears in (5.1) contains 1~ ~-gq bound states for time-like total momenta. Sim-
ply speaking this is the case because there is a homogeneous meson Bethe-Salpeter equation
that corresponds to any inhomogeneous vertex BSE (the 1~ channel in our case). Since
this equation has solutions, bound states will automatically occur once a quark anti-quark
correlation in the correct channel is part of the Green's function under consideration. The
details of how such bound state poles arise have been discussed in section 4.19. This dy-
namical 'vector meson dominance’ in the quark-photon interaction is also a key element for a
correct description of the pion form factor, shown in fig. 4.5, as is discussed in [70]. Without
this feature the form factor would be very far away from the data for time-like momenta and
also much worse in the low-momentum space-like region (e.g. the pion charge radius depends
strongly on this feature).

For the calculation of the hadronic tensor I, we take into account five flavours, that is
u, d, s, ¢ and b quarks. We work in the isospin limit of degenerate u and d flavours. The
renormalised masses at ;2 = (19GeV)? are identical and electro magnetic isospin breaking
effects are not present in the truncation. The other, heavier flavours are distinguished by
their mass renormalisation condition as shown in table 4.1. Mixing between different flavours
does not occur since the interaction kernel (4.5) used in the quark DSE and the BSE's for
mesons and for the quark-photon vertex does not depend on flavour. Since the photon
does not change flavour quantum numbers, only the flavour-diagonal mesons will appear as
intermediate states in II,,,. These are the vector mesons p, w and ¢. In our treatment the
p and w are completely degenerate as far as their strong properties are concerned. Their
admixture of wu and dd states are fixed by assigning the correct charge factors. The ¢ is
treated as pure Ss state. In fact we will calculate each contribution to the dressed quark
loop separately for every flavour such that the vector states included will be @u, dd, s and
so on. Since the present truncation is able to describe the vector meson properties with an
accuracy on the less than ten percent level (table 4.3) we assume that this will be a reasonable
approximation.

5.2 Results

In the present section we show our results for the HVP contribution to anomalous magnetic
moment a/I;WP and the Adler function D(p?). In particular we take into account five quark
flavours u, d, s, ¢ and b. For each flavour the quark DSE (4.14) and the quark-photon
vertex-BSE (4.19) are solved and the results are used for the vacuum polarisation (5.1). The
charge e is here the charge of the respective quark. The Adler function is obtained via (5.9)
and the anomalous magnetic moment via (5.8).
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Figure 5.3: The results for the Adler function D calculated withing the DSE/BSE framework in
this work including five quark flavours (black line) compared to results obtained via
dispersion relations in [123, 1] (grey band).

Adler function. In figure 5.3 we show results for the Adler function D calculated in this
work within the DSE/BSE approach as well as model independent 'experimental’ results that
have been obtained via dispersion relations [123, 1]. The DSE/BSE framework in the ap-
plied truncation provides a very reasonable description at all scales. The agreement at large
momenta is due to the fact that one-loop resummed perturbation theory is included in the
effective quark-gluon interaction (4.5) that is used. Also the deeply non-perturbative region
is well reproduced. At intermediate scales (around 1 GeV) the DSE result overshoots the DR
curve slightly. This is nevertheless a quite reassuring result since all model parameters are
fixed previously to meson observables (see table 4.3).

The muon anomaly. In the following we present our result for the muon g — 2 from the
HVP contribution. This is obtained from the polarisation scalar IIy via equation (5.8). The
integration is performed with straight Gauss-Legendre quadrature. The results for different
flavours are summarized in table 5.1. The error quoted for our results is purely numerical and
obtained via a variation of the renormalisation prescription from Eq. (5.7). Since we never
subtract at exactly zero momentum numerically but at some small scale of ¢ = 1077 GeV?
the condition IIg(e) = 0 could be changed to IIg(¢) = 0 for some small constant § such
that still IIg(0) = 0. In fact IIg exhibits power low behaviour below the mass scale set by
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Table 5.1: Results for the anomalous magnetic moment from HVP. Shown are results for different
quark flavours as well as their sum as well as the result from dispersion relations (DR)
[28]. The parameter set is standard and fixed previously by meson phenomenology. The
quark mass definitions used are shown in table 4.1. The error we give for our results is
purely numerical is obtained by a variation of the renormalisation condition in the IR,
see text.

contribution H ud ‘ s ‘ c ‘ b ‘ udsch H DR
ap VT x 10 || 6740(16) | 540(5) | 160(34) | 3(2) | 7440(77) || 6949(6)

the internal hadronic degrees of freedom I1(Q?) ~ I1(0) + II'(0)Q?, if I1(0) = 0. We adjust
0 such that the power law behaviour continues up to the smallest scales that are accessible
to us. The results from this procedure are the ones we quote while the difference to the
IIg (¢) = O result are taken as numerical error. Furthermore we perform this analysis for each

flavour separately but the summed result is renormalised only once Hgf:5(e) = 6. This is
the reason why the mean values of table 5.1 do not add up exactly. Furthermore the errors
are not quite uniform, neither in absolute nor in relative size. But they stay below the 1.1 %
level which we take to be our numerical error. The error of all numerical ingredients that are
used in the calculation (see Eq. (5.1)) does not exceed that level.

The dominant contribution comes from the up and down quarks which are identical in the
isospin limit up to the charge factor. The bottom quark can be completely neglected on the
current level of precision. In the Adler function it is, however, important in the perturbative
tail at momenta above 6 GeV. The five flavour result is compared to an evaluation using
dispersion relations [28]. The deviation is well below ten percent, a systematic uncertainty
that is expected given the quality of the model interaction in the vector meson sector that
is believed to be closely related to aEVP [124]. In fact the p-mass is m, = 740 GeV, which
is roughly four percent too light. We interpret this as follows: The p is slightly too dynamic
and can be excited from the vacuum too easily. The contribution the g — 2 is thus too large.

The rhéle of vector meson dominance. In the following we investigate the rhéle of the
lowest vector meson states in HVP. As already stated in chapter 3 the quark-photon vertex
defined via the BSE shown in Eq. (4.19) has a pole for time-like photon momenta which
corresponds to a vector meson bound state. This bound state that appears in the transverse
part of the vertex is an important structure of high phenomenological relevance since vector-
meson dominance is dynamically included. In particular the vertex can be decomposed into

T (P k) =TR°(P, k) + T (P,k), (5.10)
where FEC is the Ball-Chiu construction [88] that is dictated by the WTI and regularity. This

vertex is thus given in terms of the quark dressing-function only as can be seen in Eq. (3.58).
The full basis decomposition used in this work is shown in Eq. (E-4). The transverse part

48



5 Hadronic vacuum-polarisation

D(Q)
0.03 i
//// _"_,_——"_ o
0.02 t - 1
s P bare vertex - ----
// BC vertex — — -
;0 transverse vertex
0.01 | A full vertex —— |
/.
/-
/
Nz
0 2 4 6 8 10
Q [GeV]

Figure 5.4: The Adler function for different vertices used in the definition of the hadronic tensor
(5.1).

obeys PMFE = 0. This is the part where the p-pole is located. In fact the quark-photon
vertex (QPV) can be approximated as

foPETL(P -k, k?)| P2
mpy(P? +m?2)

T (P k) ~TEC(P, k) — : (5.11)
which is a reasonable approximation in the vicinity of the pole —0.4GeV? < P? < 0.2GeV?
[70]. Here I, is the Bethe-Salpeter amplitude for the respective vector meson, f, the leptonic
decay constant and m,, the mass of the p meson. The relevance of this p-pole for the pion
charge radius has been investigated in [70] where it was found that it contributes as much
as the BC part. A similar analysis has been made for the 7° — ~~ transition form-factor in
[95] reaching identical conclusions. In particular this reveals that the quality of the VMD-
approximation depends on the relevance of certain kinematic regions.

Now we look into similar matters for the HVP contribution to ¢ — 2. In particular we are
interested in how different parts of the 'full’ vertex from the BSE solution contribute. There-
fore we use in the equation for the HVP tensor (5.1) respectively a bare vertex, the Ball-Chiu
construction and the transverse vertex. The corresponding Adler functions are shown in fig.
5.4. Obviously neither the bare vertex nor the BC construction are able to reproduce the DR
result at low momenta. Instead it is in particular the transverse Vertex I‘E that contributes
dominantly in this regime. Since the vector-meson pole is a dominant feature of the trans-
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Table 5.2: Two choices for the light bare quark masses at y? = (19 GeV)? and the resulting meson
masses (in MeV) in the pseudoscalar and vector meson sector. For the heavy quarks
we always take m, = 827 MeV and m; = 3680 MeV which lead to good results for
charmonia and bottomonia in the pseudoscalar and vector channel [96]. Note that the
parameters that are changed are the bare quark masses from the Lagrangian of QCD
my q and mg. All observables like meson masses follow immeadiately from that since
the true model paraters of the quark-gluon interaction (4.5) are left unchanged.

[MeV] ‘ Moy, d ‘ M H My ‘ Mg ‘ Mp ‘ Mg
set 1 3.7 | 8 || 138 | 495 | 740 | 1080
set 11 11 72 || 240 | 477 | 770 | 1020

Table 5.3: The leading order HVP contribution to a, as obtained by our two sets of bare quark
masses for different truncations of the quark-photon vertex.

afvp x 1011 H bare ‘ BC ‘ transverse ‘ full
set I 760 | 1280 6160 7440(77)
set 11 720 | 1120 5640 6760(74)

verse part this result makes a case for VMD since it is the low momentum region that is most
relevant for aEVP. In fact the integral (5.8) is already completely saturated below 0.5 GeV.
This is further confirmed by the fact that the Adler function from the transverse part has a
characteristic bump at a scale close to the p-mass at around 800 MeV. It seems natural to

assume that this scale is set by the vector meson pole.

Now we look into the contribution of the different vertex parts to a;.¥*. In addition we
consider a second parameter set where we fix the u/d quark mass to obtain the physical
p-mass of 770 MeV instead of fixing to the pseudo-scalar mass. The s quark mass is fixed
to the ¢-mass. The two parameter sets are for the convenience of the reader summarized in
table 5.2. Note that the parameters that are changed are the bare quark masses from the
Lagrangian of QCD (renormalised at 19 GeV/, shown in red in table 5.2). All observables like
meson masses follow immediately through the dynamics of self-consistent equations.

HVP
“w

The alI;IVP results for these two sets are presented in tab. 5.3 where different vertex parts
are compared in their importance for this observable. First of all the transverse vertex con-
tributes around 82% to the total result in both cases. Second the result from set Il with
physical p-, w- and ¢-masses is closer to the model-independent result from DR (tab. 5.1).
Set | deviates about seven percent while Set Il has a three percent difference to the DR value.
We take this as further evidence for the strong relevance of the vector meson contribution.
This is opposite to the conclusion reached within the non-local chiral quark-model (NLYQM)
where the bulk of the contribution was seen in the non-resonant part and the p-contribution
was found to be negligible [125]. It has to be said, however, that a reasonable result of the
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aEVP—contribution there goes at the expense of surprisingly small constituent quark masses.

Our result is instead in good agreement with the picture emerging from dispersion relations,
since there the p and w resonances are the dominant low-energy features of the cross section
o(ete” — hadrons). In fact already a simple ansatz for the p-part of the cross section
gives a result of aEVP’p = 5400(300) x 10~* and aEVP”M(b = 6500(500) x 10~ for the
three vector mesons [124]. This is in harmony with our results from the transverse vertex
calculation shown in tab. 5.3.

Fitting IIr(Q?). Furthermore we find that the renormalised scalar polarisation function
(taking e.g. up and down flavours only) is very well fitted by I (Q?) = I1(0)+Q? (a/(b+ Q%))
in the region below ~ 10 GeV yielding v/b ~ 880 MeV for parameter set II. This result is
different from the actual mass m, = 770 MeV. A fit formula of this type is often used
in lattice determination of a}fvp where sometimes also b? = m,, is used explicitly. This
procedure has been investigated critically in [126] where is was argued that this kind of
fitting procedure introduces a model dependence into a calculation that is meant to be ab
initio. Our findings also suggest that at least taking b*> = m,, could be a source of uncertainty.

Changing the light quark masses. Next we take the idea of changing the bare quark
masses in the Lagrangian of QCD a step further and calculate the HVP contribution to the
muon anomaly for various quark masses. In particular we change the up/down quark masses
leaving the strange quark mass constant and consider the two and three flavour cases only.
The motivation is that there is lattice data available for these particular cases [14, 15, 16]. In
lattice calculations observables are typically shown as functions of m, since an extrapolation
to the physical point is desired and m, is typically the smallest physical scale. We show
a comparison of our results for aEVP’NfZZ’g as function of m2 compared to lattice data in
fig. 5.5. Our two curves differ in a constant contribution of 540 x 10~!! coming from the
strange quark loop contribution of set | (see table 5.1). It can be seen that there is quite
some tension between the data. At least the trajectories towards the physical point seem to
be non-universal. In the spirit of what was just said about the importance of vector mesons
this can be explained by regarding the dependence of m, on m2, shown in fig. 5.6. This
plot reveals that the relation between vector and pseudoscalar masses is not the same in all
approaches. In our interpretation the reason for the fact that some lattice results shown in
fig. 5.5 seem to approach the physical point on trajectories that lie quite low is that for these
calculations the p mass is rather high for certain pion masses (see fig. 5.6). The p is thus
rather heavy and less dynamical and yields a smaller contribution to aEVP.

Assuming that the vector meson is the important degree of freedom here and that its mass
sets the physical scale we investigate the p-mass dependence of aEVP. These result are shown

in fig. 5.7 and correspond exactly to the data shown before in figure 5.5. That is fig. 5.5 is
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Figure 5.5: The anomaly a}; V" as a function of m2. We compare our DSE results to results from
lattice calculations [14, 15, 16]. The physical point (m2 = 0.018,a, " ™ => = 6949)
is indicated by the dashed lines. The data is divided into the cases Ny = 2 and

Ny =2+ 1. The grey band represents the numerical error.

translated into figure 5.7 via fig. 5.6. All calculations are done in the isospin-limit of identical
up and down masses. Both of our DSE curves (N = 2 and Ny = 2+ 1) are compatible with
the corresponding lattice data within error bars. We believe that this nice agreement shows
that the DSE approach in the approximation we use captures the dynamics that are relevant
for the hadronic contributions to the muon g — 2.

In summary we are able to reproduce the dispersion relation result on the less then ten
percent level just using the standard parameters of the model that were fixed beforehand to
meson phenomenology (see tables 4.3 and 5.2). That is the level of accuracy that is expected
by comparison to results in the vector meson sector [89]. We are thus prepared to look into
the problem of light-by-light scattering. We expect to be able to reach a similar level of
accuracy in this case since we use exactly the same truncation, the same methods, the same
objects and the same philosophy there.
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Figure 5.6: The mass of the p meson compared to m?2. We compare our DSE results to results from
lattice calculations [14, 15, 16]. The physical point is indicated by the dashed lines.
The intersection of the DSE curve with the dashed lines defines our two parameter sets
(table 5.2), e.g. either choosing m, or m, to be at its physical value. In the case that
we would hit the physical point exactly, the two sets would be identical.

Our final results for the hadronic vacuum polarisation contributions to g — 2 are

allVP! = 7440(77) x 10711 (5.12)
alVPIT = 6760(74) x 10711, (5.13)
where the error is purely numerical. In set | the u, d and s quark masses are fixed to
the pseudo-scalar meson sector while in set Il the vector-meson sector is considered. Set |

corresponds to the standard parameters of the model (see Eq. (4.5) table 4.3). We take this
as evidence that the overall model error can be expected to be on the order of ten per cent.
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Figure 5.7: The anomaly a}; V"' is shown for the two flavour and the three flavour case as a function
of m, and compared to lattice data from [14, 15, 16]. The N; = 2 date are shown
in black and Ny =2+ 1 in red. For the DSE results only the u/d quark masses are
changed, the s mass is left constant on M ((19 GeV)?) = 85MeV. The vertical and
horizontal lines represents the physical point (0.77 GeV,6949 x 10~11). The curves
for the DSE results correspond to a fit through the DSE data points. The grey bands
represent the numerical uncertainty .
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6 Hadronic light-by-light scattering

In the present chapter we discuss hadronic light-by-light scattering. In particular we elaborate
our calculational scheme in detail, discuss further approximations made and present our re-
sults. This will be followed by a discussion of our achievement so far, a comparison to results
obtained in effective field theory approaches and an outline of future prospects.

The photon four-point function. The central object in the calculation of the hadronic
light-by-light (LBL) contribution to the anomalous magnetic moment of the muon is the
hadronic photon four-point function II,,,.3 (see fig. 6.1). This function is a rather com-
plicated object depending on three independent momenta ¢1, g2 and g3 with the remaining
photon momentum k£ = g1 + g2 + g3. The general tensor decomposition can be summarized
as [29]

91592, 93) 9w 9o + (2) (01, 42, 43) Gpagus
41,492,943 g gl/a

H,as(q1, g2, Q3) 1 )
3)( )

+H (1562, 83) 90050 + T (a1, 42, 93) 9t 4
) )
2( )

(6.1)

I (a1, 42, 93) 9,908 + 11 (a1, 42, 43) 9uad) @5

+ILE) (a1, 92, 43) 9w}t + 11 (a1, 42. 03)9apd,al

+IT2 (a1, 42, 93) 4,4} ab -

There are three different types of structures in (6.1) depending on whether no, two or four
momentum vectors are involved. The indices i, j, k, | take the values 1,2, 3 so that in the end
a total of 138 tensor structures is possible.

The canonical dimension of 11,43 is D = 0. On the grounds of naive counting one thus
would expect logarithmic divergences in loop contributions. The true degree of divergence
is, however, lowered by the correct implementation of the consequences of gauge symmetry.
In the case of the perturbative electron-loop contribution to the photon four-point function
this can be seen by using dimensional regularisation [24]. Numerically we are bound to use
a hard cutoff. This regulator does not preserve gauge symmetry in a similar manner as we
already discussed for the case of hadronic vacuum polarisation in section 5 for the photon
two-point function II,,, (see Eq. (5.3) and following). There the naive dimension D = 2,
that is lowered to D = 0 for a gauge invariant regulator, resulted in A? divergences that
we had to subtract in order to maintain consistency of gauge symmetry. In the same way a
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symmetry-preserving regulator would effectively cause D = —4 in the case of LBL [24]. Since
all our vertices and propagators approach perturbation theory at high momenta we have the
same kind of divergences as in the perturbative QED case just mentioned above. Using a
hard cutoff we thus find In A divergences, at least in each of the six possible permutations of
diagrams seperately. There is however another way in which the finiteness of II,,,,3 can be
deduced from gauge symmetry. Due to Ward-Takahashi identities (WTls)

qgl)H;waB =0 Q&Q)Huuaﬁ =0 Qf(g?))nuuaﬁ =0 kuH/waﬂ =0, (6'2)

which are a consequence of gauge symmetry, the 138 dressings in Eq. (6.1) are not inde-
pendent. One can, for example, define all amplitudes as linear combinations of the class (7)
amplitudes [29]. Regarding the canonical dimension of D = 0 and taking into account the
fact that the class (7) amplitudes are accompanied by four momenta ¢() one finds that these
must have D = —4. Since all other amplitudes follow from these, a finite result can be
obtained by a restriction to these tensor structures. This is just another way of understanding
how gauge symmetry lowers the naive divergence. This problem will be dealt with in a way
laid out in [25, 127] by using the last WTI of Eq. (6.2). This procedure has been already
discussed for general contriutions in section 2.3 and will be briefly summarized for the case
of LBL again below. Further more an exact diagrammatic representation of the four-point
function in rainbow-ladder truncation is derived in appendix F.

The muon-photon vertex. For the convenience of the reader we will recapitulate the pro-
cedure for projecting the muon-photon vertex onto the anomalous magnetic moment already
outlined in section 2.3. In order to obtain the contribution to g — 2 we have to consider the
corresponding dressing of the muon-photon vertex ', (k). That diagram is shown in fig. 6.1.
On the muon mass-shell the muon-photon vertex can be decomposed as

o kB
a(py T (B)u(pi) = (o) | Fi (%) + B0 22 | (), (63

where u is the muon spinor, p;/; are the incoming/outgoing muon momenta and £ is the
photon momentum. The muon mass and charge are denoted as m and e. The anomalous
magnetic moment corresponds to the form factor F5(k?) at zero photon momentum k2 = 0.
This can be shown by taking the non-relativistic limit of (6.3) [128, 24]. The result is

a, = % = F5(0). (6.4)

The expression for I, corresponding to fig. 6.1 with on-shell muons (momentum p;/; = p)
and k=0s

iely = / / Dev(91)Dsa(g2) Dyp(g3) < (ie7y)S(p1)(ie75)S (p2) (iee)

q1 g3
X [(ie)4ﬂuuaﬁ(QI) q2, Q3)} ; (65)
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Pt

A

Figure 6.1: The hadronic light-by-light scattering contribution to the anomalous magnetic moment
of the muon.

where S are perturbative muon propagators, D,, perturbative photon propagators and the
muon momenta are p; = p + g1 and pa = p — g3. The photon propagators will be taken to
be defined in either Feynman gauge or Landau gauge. Following refs. [25, 127] we use the
WTI k11,03 = 0 to obtain

0 ~
pra[-} = _kN%H#VaB = _kMHP,,lLVOZﬁ7 (66)

by taking a derivative of the WTI with respect to k,. The fact that II,,3 is now replaced
by its derivative has the advantage of reducing the primitive divergence thus making any
contribution explicitly finite. Using the form (6.6) in the expression for the vertex (6.5) one
obtains

Ty = [ [ Dalan)Dsalaa)Daslas) x (ie,)S(00)iers) S ) i)

q1 g3
< | (0) p s (a1, 43)] (6.7)
This construction entails that the relation

Ly ==kl pp,

holds. Finally taking the spin sum for unpolarized muons the desired projection can be shown
to be [25]

o7



6 Hadronic light-by-light scattering

: (6.8)

Tr [ + mi), ) 2+ my)T )
k=0

W= 48m,,

which is already written in Euclidean metric here. The relation (6.8) in addition with (6.7) is
the one we use in practical calculations.

The content of II,,,,3. As detailed in appendix F the photon four-point function can be
represented in rainbow-ladder truncation of QCD as a sum of two contributions

X XL LY. -

The pre-factors denote the number of permutations that have to be taken into account.
These appear automatically during the derivation of the equation though functional deriva-
tives. Later on we will explicitly show the permutations we take into account in the final
diagrams that we have to evaluate. The first part is a quark loop that includes dressed quark
propagators defined via their Dyson-Schwinger equation (4.14) and quark-photon vertices
that are obtained from the vertex-BSE shown in (4.19). Then there is a second class of
topologically distinct diagrams that contain additional interactions between opposing quark
lines in form of the T-matrix, an object that is defined via its own BSE (3.42). The T-
matrix is the connected amputated part of the full (¢qgqq) Green's function as is explained in
section 3.2 and explicitly shown in Eq. (3.35). We wish to emphasize once more that the
presentation of the hadronic photon four-point function shown in equation (6.9) is not only
consistent with our definition of the hadronic two-point function (5.1) but can be shown to be
exactly analogous on the level of truncation that we are considering. This is detailed in app. F.

The essential approximation we will apply to (6.9) and that will be the basis of all con-
siderations and results in the remainder of this chapter is the following: the T-matrix shown
in the second diagram in Eq. (6.9) will be approximated via its resonances along the lines
of equation (3.44). The fact that this four-point function does contain quark anti-quark
bound-state poles can be used to construct an approximation. As is shown in chapter 3 the
residues of these poles are given in terms of meson Bethe-Salpeter amplitudes which can
be obtained via their Bethe-Salpeter equations. This approximation is much simpler than a
calculation of the full T-matrix and makes furthermore contact to previously used approaches
such as the ENJL model [29], the chiral constituent quark model (xyCQM) [129],the non-local
chiral quark model (NLxQM) [130, 131], hidden local symmetry models (HLS) [33], effective
field theory approaches [36, 37] and holographic models [132]. But it has to be emphasized
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at this point that this meson exchange picture in the case of ENJL and NLYQM is not a
pole approximation. This structure emerges there due to the simplicity of the effective quark
four-fermion coupling. Nevertheless the off-shellness of the intermediate mesons is taken into
account in full consistency with approximations that are the basis of these models. In our
case that is a true approximation that we will overcome in the future. In the meantime we
can nevertheless draw some conclusions from a similar case that is known in the literature.
Within the same truncation of DSE's a calculation of 77 scattering has been done [133].
There a representation of the four-pion function similar in topology to Eq. (6.9) was found
to reproduce Weinberg's low energy results [134]. Furthermore, a resonance approximation
of mm-scattering was carried out [106] where reasonable agreement in the vicinity of the poles
was found.

The pole approximation of the T-matrix is exact on the respective meson mass-shell. These
poles are of course very dominant features of the function such that a pole-approximation
is reasonable in their vicinity. Our assumption here is that especially the pion-pole is close
enough to the Euclidean origin that it will be a dominant feature of the T-matrix in the
Euclidean domain at low momenta In particular we denote the poles as in equation (3.44).
Graphically this reduces Eq. (

WL Ty

The next step is to take the definition of the 7%y~ form factor in impulse approximation,
consistent with rainbow-ladder truncation [95],

Fuu(%,@)"‘d = 2 ----@ (6.11)

where two permutations of external photon-legs are included. In this way we arrive at

KL e

The second term includes meson-photon-photon transition form factors as well as me-
son propagators. In principle all mesons that have the correct quantum numbers, including
excitations, have to be included. We limit our selfs to the pseudo-scalar channel.
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Figure 6.2: Meson loop contributions to LBL as usually considered in hadronic models (see text).
On the right side is a corresponding topology given in terms QCD Green's functions.
When we approximate the quark-anti-quark T-matrices (grey ovals) on the right side
via meson poles (in the same way as described in the text) we arrive at a picture similar
to the left side, e.g. similar to hadronic models. The quarks are fully dressed, the
graphical representation of the dressing is omitted.

Figure 6.3: Beyond rainbow-ladder QED vertex contribution that gives the p meson a finite width
self-consistently. The quarks are fully dressed, the graphical representation of the dress-
ing is omitted.

Meson loop topologies. Another class of topologies, that is not included in this truncation,
is shown in figure 6.2. The topologies that are generated in the present treatment include
infinite, planar gluon ladders. These correspond to the quark loop and the T-matrix diagrams
in Eq. (6.9). Internal quark loops are, however, absent. The properties of rainbow-ladder
truncation are already built into the decomposition we use (see appendix F). The diagrams
corresponding to fig. 6.2 would be generated by a prescription that lies beyond rainbow-
ladder. They would show up in an extended interaction kernel that entered e.g. the BSE's
for the meson amplitude (fig. 3.6) and the QED vertex (fig. 3.7). The representation of
the photon self-energy (5.1) is exact. And the photon four-point function derives from this
object (for constant photon background field). The additional diagrammatic ingredients thus
have to be hidden in the definition of the quark-photon vertex. The additional interaction
kernels would describe a self-consistent decay of the p into two pions (see fig. 6.3). On the
self-consistent level, the meson loop contributions to LBL would therefore come with vector
mesons that have a finite width. This feature is not built in self-consistent in rainbow-ladder
truncation.

Using the Feynman rules of rainbow-ladder truncation from table 4.2 we can give example-
topologies included in the classes shown above. They are shown in Eq. (6.13), where the
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6 Hadronic light-by-light scattering

gluons represent effective model gluons, the quarks are bare and the gray dots represent either
partial or full summations of gluon ladders.

(6.13)

Note that only planar gluon ladders are considered in all these diagrams. In terms of an anal-
ysis in orders of 1/N,, with N, the number of colours, the upper two classes are of leading
order. That is because they contain neither non-planar gluon insertions nor internal quark
loops. The third class does contain a quark loop and is therefore 1/N, suppressed. Diagrams
with non-planar gluon contributions would be suppressed by 1/N? according to the counting
scheme [135, 136].

The contribution of pion and kaon loops has been calculated within the ENJL model and
was found to be [31]

abBL,ﬂ'/Kfloops,ENJL — _19(13) % 10*11. (614)

We will use this result as an estimate of systematic uncertainties from pieces we are missing
in our calculation.

6.1 The PS-exchange contribution.

The nY-exachange contribution has been identified as the potentially leading contribution
in many studies within the framework of effective field theory [122, 29, 36, 32, 130, 132].
In addition also the 1 and 7’ exchange is not negligible [29, 33, 36]. A recent result sees,
however, rather tiny contributions of 1 and 7’ [131], a reduction that is related to meson off-
shell effects. We will discuss this issue later in this chapter. Taken together this contribution
will be called the pseudo-scalar (PS) exchange contribution. In general other channels than
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Figure 6.4: Meson pole contributions to light-by-light scattering.

PS do of course contribute. Within the ENJL model scalar and axial-vector meson exchanges
have been studies resulting in strongly suppressed contributions [31]. We will not consider
them in this work but we will add existing results of the contributions to our systematic
uncertainty. In the non-local chiral quark model (NLxQM) the contribution from scalars was
also found to be rather small [137].

The resonant four-point function. The relevant diagrams for meson-exchange, including
permutations are shown in figure 6.4 The only object that is needed here is the PS+yy form
factor

APV (ky, ko) = e maphkhy FPSV (ki ko) (6.15)
The pion form factor is normalised according to

F 0 (ke k) = %F“Ovv(kl, ka) | (6.16)

UwEs

where « is the fine structure constant, k;/, are the two photon momenta and f; the pion
decay constant. The normalisation condition holds in the chiral limit for k:f/z = 0 such that
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Fr0,,(0,0) =1 [80, 87, 138, 139]. The three diagrams from figure 6.4 have to be evaluated

in the form of the five point function II, ;g in the limit of vanishing photon momentum
k — 0. This result is given in Eq. (6.30) after the introduction of our form factors and a
corresponding meson off-shell prescription below.

The 7%y~ form factor. In order to keep the overview objects that are matrices in flavour-
space will be shown with a hat in this section. Within the Dyson-Schwinger approach in
rainbow-ladder truncation the 7%y~ form factor is defined in impulse approximation. It is
given as a non-perturbatively dressed quark-triangle (see Eq. (6.11)) [140, 95]

APSYI(ky, ky) =262, / Tr[i0.T, (k2. p12) S(p2)
q
T8 (pas, P)S(p3)iQelyu(k1, p31)S(ps)] | (6.17)

where k1 and ko are the outgoing photon momenta, p1 = ¢, po = g — ko and p3 = ¢+ k7 are
the quark momenta and p;; = (p; + p;) /2. The factor two stems from exchange of the two
photon vertices and Q = diag[2/3, —1/3, —1/3] is the quark charge matrix, i.e. represents
the flavour structure of the quark-photon vertex. Furthermore I',, is the quark-photon vertex
obtained from Eq. (4.19) and ['PS the Bethe-Salpeter amplitude for pseudo-scalar mesons.
For the relevant flavour diagonal mesons we have the structure

0 fr0 1 . [ua dd i|
T I' = —diag |I'", -, 0
V2 &l
8 i I [twi dd s§:|
: I'" = —diag |I""*, "%, —2T" 6.18
n g | (6.18)
0 rn0 I [twi dd s§:|
: ' = —diag |["%, 1'%, 1% ,
! V3 &l

where the pure quark anti-quark amplitudes T'%7 are the solutions of the meson-BSE (4.20).
In the pseudo scalar channel (0~) they have the decomposition

qu(P, k) =75 [qu(Pv k) - i/PFQqq(Pv k)
— i (k- P)FS"(P, k) — [P J| F{" (P, k)].

Since we work in the isospin-limit we have T'“% = I'% in addition. In order to rotate the
singlet-octet basis to the physical one we apply

I = cos§ T — sing "’
I = sin @17 + cos f”o,
where we take § = —15.4° [141, 142].

(6.19)

(6.20)
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Off-shell prescription. Another fact has to be taken into account. The meson-exchange
diagrams in fig. 6.4 clearly show that the momentum that flows through the meson line is
in general not on the mass-shell. This is for simple kinematic reasons. The very definition
of a meson-exchange thus becomes ambiguous since an off-shell meson does not exist if the
underlying theory does not contain mesons as fundamental fields. This is, however, not a con-
ceptual problem in the current framework. The T-matrix is approximated using its dominant
pole structure. The residue of theses poles happen to correspond to meson Bethe-Salpeter
amplitudes. But we don’t need to have physical on-shell mesons, rather just branches of
poles that reach into Euclidean regime. In order to maintain consistent kinematics we use
an off-shell prescription for the meson amplitude. This off-shell prescription is, however, not
unique. This fact was already noted in effective mesonic models for LBL [143].

Our reasoning starts with the axial-vector Wart-Takahashi-identity (AXWTI) in the chiral
limit that is shown in Eq. (4.17). For the convenience of the reader we show the hereafter
needed version in the pion channel (I =1, I, =0, a = 3) again

iPI03(Pok) = 8 k)T + 4TS (ky), (6.21)

where T3 = A\3/2 is the third flavour generator and )\ are the Gell-Mann matrices. It
is obvious that this establishes a relation between the axial-vector vertex and the quark
propagator. The axial-vector vertex can be decomposed as [77]

D3P, k) =75)\° [, Fa(P, k) + J kG a(P, k)
— ok Ha(P, k)]

(6.22)
+ﬂfﬂ(13 k)+ ...
P2 _"_ m72r ) )
where the involved pion amplitude is the only non-regular term at P2 = —m2. The pion
amplitude can be decomposed as
U (P, k) =\3y5[FT (P, k) — iPFT (P k
7r(7) ’75[1(7) I/PQ(7) (623)

— i) (k- P)FS (P, k) — [P, K] (P, k)]

Note that in the iso-spin limit of degenerate up and down quarks the flavour valued pion
amplitude (see (6.18)) is just

N A
I',= EF“U, (6.24)

such that the w amplitude is easily obtained from the pure @wu amplitude, which is actually
defined through the BSE (4.20), via multiplication by a trivial factor. Actually it is the physical
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pion amplitude that is normalized according to Eq. (3.44) to reproduce the residue of the
pole in the T-matrix. The normalisation of I'““ follows via

3\ 2
(%) ] T 2 = || 2 (6.25)

Using now the decomposition of the vertex in the chiral limit (m2 = 0) with explicit pion
amplitude in the AXWTI (6.21) together with the parametrisation of the quark

S(p)~' = - A(p®) + B(p®),

IT|* = Tr

one obtains

B(k?) + B(k%)
2fx '

Here the leading pion amplitude F[" is defined also for momenta away from the mass shell

P? £ m2. We extend relation (6.26) by applying it also away from the chiral limit and using
it for the sub leading components of the pion (see (6.23)), or rather directly the gg amplitudes

F] (P k) =

(6.26)

FM(ky,ky - P)+ FM(k_,k_-P)

FY(k,P) = 5

(6.27)

Here the amplitudes Fiqq(k+,k+ - P) are evaluated on the mass-shell P? = —mgq. Similar
considerations can be made for the (pseudo) Nambu-Golstone bosons in the other channels.
Of course this treatment is less accurate for the 178, which is heavier than the 7, and even
wrong in principle for the n° which is no Nambu-Golstone boson in the chiral limit. Since,
however, the 7 is supposed to be dominant, and further the amplitude F is the dominant
piece of the 7¥ itself, this approximation seems a reasonable candidate for an off-shell ex-
trapolation. In addition we introduce a damping factor for the three non-leading amplitudes,
thus taking note of the mass dimension of these terms. Otherwise the momentum depen-
dent tensor-structure of these amplitudes would cause an unnatural enhancement at high
virtualities. The final off-shell meson-amplitude reads

£PS =5 [EPS(p: P) + f(P?){ — iPEFS (s P)

. . (6.28)
— i/ (p- P) FfS(0; P) — [Py EYS (5 P) }
where the function f is defined as
2 Mg
f(P7) = Pt omd, (6.29)
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thus leaving the on-shell definition of the meson amplitude unaltered. The meson off-shell
behaviour is now encoded in the scalar function FP57(P2 k2 k3) that depends on three
kinematic variables if the on-shell condition for the meson is not demanded. The flavour
structure is encoded in the amplitudes FS and is given in Eq. (6.18). We are now in the
position to define the corresponding five-point function [36]

ﬁp,ul/)\a(qla o, _q12) _ fPSwv(Q%% Q%;qg)}-l)gw(‘ﬁ% Q%27 0)
qi2 + Mpg
Frsyy (a3, 4, 0) Frsyy (af. 63, 43s)
qi + mig
Frs14(45, 41, 4i2) Frs14 (45, 43, 0)
g5 + mig

B
€uvap q(l)[QQ Exopr qIQ

+ GuUTpQIﬁuAaﬁQ?QQB

+ €uraBdT 05 vaprds  (6.30)
evaluated in the limit of vanishing external photon momentum & — 0. This function can now

be directly used in Eq. (6.7). The momentum ¢12 = q1 + ¢2. The final integration is done
with the Monte-Carlo integrator VEGAS [144].

6.2 The quark loop contribution

In the present section we define the non-resonant part of the photon four-point function
shown in Eq. (6.12). The corresponding contributions to the muon-photon vertex are shown
in fig. 6.5. In addition to these three permutations there are another three, each related to
one of the explicitly shown ones by reversion of the spin line. The calculation is conceptually
straightforward. The objects that are needed are already to our disposal. These are the same
quark-photon vertex (4.19) and the same quark propagator (4.14) as in the hadronic vacuum
polarisation (5.1) and in the meson-photon-photon vertex (6.17) above. On the technical side
the problem is rather challenging since we have to do a three loop calculation that involves
complicated objects that have many tensor structures and non-trivial dressing functions that
have been obtained numerically and finally a derivative of that four-point function has to be
performed.

In particular the four-point function for the first permutation is defined as

Hilgaﬁ(q17 q2, q3) = /

l
Tr[Lp(k L+ k/2) ST (= a1, 1+ q1/2)S(L+ a1)
XTo(—qo,l+ (k+q —q3)/2)S(L+k—q3)Tp( — g3, 1 +k —q3/3)S(L+ k)],
(6.31)
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Figure 6.5: Quark loop contributions to light-by-light scattering. In addition to the three permu-
tations shown there is one diagram with reversed fermion spin line for each of the
topologies.

where [ is the loop momentum, S is the quark propagator and I';, the quark-photon vertex.
The other permutations are performed in a similar way by changing the momentum flow and
the Lorentz indices. We collect all permutations according to

Oas(q1,q2,q3) ZHWQB q1,92,43)-

In particular we chose the loop momenta ¢; and g3, defined via Eq. (6.7), and [, defined via

(6.31) to be
0 0 \/1—nl21/1—£fcos¢>l

o =l " 5 | »a3 = las| VIZmyV1 =& 1= M\/@Sin@
L V-3 J1 -k
m 72 1

Yl

(6.32)
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Here |q; /3| and |I| are further chosen on a logarithmic grid and the angular variables 7;, &;
€ [~1,1]. The cutoffs are |g;|/|l| € [1073 GeV, 103 GeV]. The Monte Carlo routine accepts
a D-dimensional array z; with z; € [0, 1] as functional dependence such that a corresponding
coordinate transformation has to be used

1| = pe®™ |q2| = pe”* 1| = pe®™
m=2xy—1 ne =2x4 —1 m=2x7—1
&g =2x5—1 n =2xg—1

¢ = 2mxg.

Here b = In A/u with p the infrared cutoff and A the ultraviolet cutoff. The final integration
measure is

diq1d*qzd?l
= Q' = Qs Pl UP T\ g1
(6.33)

<Wlanlalli2r

where the first line comes from the hyperspherical coordinate choice and the second line is due
to the transformation to the x; variables. Futhermore () is the quark charge (i.e. Q = 2/3,
1/3,...). Note that three trivial angles have been integrated out already that are neglected
n (6.32). The quark propagators (4.15) and the quark photon vertices (see app. E ) are
explicitly defined as Dirac-matrix valued objects in the numerical code. Therefore we make
a standard choice of the representation of the gamma-matrices. Objects like ¥ = 7,1, are
constructed from that using explicit four vectors like to ones in (6.32). For each momentum
configuration the dressings functions are interpolated from a numerical table calculated in
advance. We use cubic splines for the quark dressings A and B and trilinear interpolation
for the quark photon vertex dressings A} (P2 k2 k- P). Furthermore the Lorentz indices of
the vertices I', (P, k) are treated explicitly. The contraction of these indices and the Dirac
traces are performed numerically inside the code. The same is true for the part that involves
the muon and photon lines where we take the photons to be in Landau gauge (£ = 0 in
(A-12)). The projector (6.8) is applied to the complete integrand (that is the integrand of
(6.7)) before the integration.

The 9 dimensional integrand is then given to the Monte Carlo routine and the integration
is performed until convergence on the percent level is obtained. Further more we have to
take the derivate of the four point function according to (6.6) and (6.7). Here we perform
the derivate numerically on the level of the integrand and integrate numerically afterwards.
Writing the hadronic four point function as

Huuaﬁ(‘]lvcpyq{%) - /quaﬂ(l7Q1aq27QB)a (634)
l
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we perform the derivate as

~ 7 Lqr,ee’ —q1 —q3,q3) — 1, Lqi,—q1 —q3,q3
Lpwas(l a1 a3)|, _ = was{ ) = Lyvapl ), (6.35)

=0 €

where e” is the unit vector in p direction and € ~ 107> typically. Furthermore ¢o = k—q; — g3
was used. The five point function thus becomes

ﬁp,uuaﬁ (Qb CI3) = /fp,umxﬂ (l, q1, Q3)7 (636)
l

where the [ integration is carried out together with the g;/3 integration as explained above.
To be explicit the final integrand is

1
48m

I(l,q1,q3) = Tr [(ip + m) [V Yl (i + M)y, (1, a1, 03)] (6.37)

with

Ip,u(lv q1,q3) = M x Deu(%)Déa(‘D)Dvﬁ(QS) 6.38

X (iB’Y’Y)S(pl)(ieyd)s(pﬂ(ie’ﬁ) X (ie)4zp,,ul/aﬁ(l7Q17Q3)] ’ ( )
where g = —q1 — q3, p1 = ¢+ ¢1 and ps = p — q3. The external momentum is defined as
p = (0,0,0,im) with m the muon mass. The integrand Z(l(x;), q1(x;),q3(x;)) is used by
the Monte Carlo routine VEGAS [144] as a function depending on the z; . The discretized
derivative works fine as long as the IR cutoff used in the final integration routine is at least
two orders of magnitude larger than € in (6.35), such that the derivative is effectively smooth
on all scales that are tested. We have checked the procedure in the case of bare quantities
where the derivative can be performed analytically [25] and we were able to reproduce these
perturbative results on the permille level. We also compared several cross sections of the nine-
dimensional integrands for both cases and found those to agree. Furthermore we compared
the numerical derivative technique to analytic derivatives for several cases involving dressed
quarks and different vertex dressings. In particular we used either a bare vertex, the first part
of the BC vertex or the full BC vertex (3.58). We also found agreement there.

6.3 Results: meson-exchange contribution

Here we present our results for the meson-exchange LBL contribution to the anomalous mag-
netic moment as obtained in rainbow-ladder truncation of QCD.

First of all we take a look at the off-shell 79y~ form factor defined via Eq. (6.17). In
particular we plot the function Fro..(0,k7,k3) (see Eq. 6.16) as a function of k:f/2 and
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Figure 6.6: On the left are the results obtained in this work for the off-shell 79~ form factor (6.17)
compared to a VMD ansatz.

compare to a vector-meson dominance ansatz from Ref. [36]. This comparison is shown in
figure 6.6. It can be seen that the general shape is quite similar although there are differences
in the details. It has to be noted that Fi0,,(0,0,0) = 1.044 # 1. This is the case since
the Euclidean origin P2 = 0 is not the pion on-shell point. The pion on-shell normalization
is given by Fo.(—mZ,0,0) = 1.004 [95]. The form factor is thus normalized (on-shell) as
expected from considerations stemming from the anomaly [80, 87, 138, 139]. Note that in
[131] a suppression of the meson-exchange contribution was found due to off-shell effects.
We can not determine these effects consistently in our approach so far. This is because our
mesons are not uniquely defined off the mass-shell. In order to answer these issues from the
DSE perspective we have to explicitly calculate the T-matrix contribution as shown in Eq.
(6.9). This calculation is planned for the future.

The scalar form factor (6.15) can now be used in the representation of the five-point
function I, .0 (6.30) which is than folded into the surrounding QED part as in Eq. (6.7)
and projected onto a;"" via (6.8).

The systematic error is determined by the validity of the Maris-Tandy model of the quark-
gluon interaction (4.5) as well as the employed off-shell prescription given through (6.27)
and (6.29). Since there is no small expansion parameter that could serve as an estimator
like in perturbation theory we take the observables that have been calculated successfully as
a reference point [94, 102]. In general the model works very well in the Goldstone sector
where the numerical error is on the few percent level [92] and quite reasonable in the vector
meson sector [89] where the error is typically on the five to ten percent level. In general the
masses and decay constants are also well reproduced for the heavier flavours [96]. Note that
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the topological contribution to the 17 and 1’ masses are not included in the approach in the
present truncation. Ways to account for this have, however, already been pursued. In Ref.
[84] the UA(1) problem has been approached from a fairly fundamental point of view. More
phenomenological descriptions have been also been presented [86, 81]. The Uy (1) problem is
taken into account for in this work by simply taking the experimentally known meson masses
in the meson propagators in (6.30).

In addition the flavour decomposition in the meson amplitudes that enter the form factor
are phenomenological (see (6.18) and (6.20)). From these considerations we estimate a
ten percent systematic error for 7° contributions and twenty percent for the n and 1. The
numerical error has been determined via a variation of the precision of the integration routines
and is below the two percent level in the final integration. We take two percent as an estimate.
We thus arrive at the following results

alBU™ = (575 +6.9) x 1071 (6.39)
aP" = (13.6£3.0) x 107! (6.40)
alBE = (9.6 +2.1) x 107 (6.41)
a;PUPS = (80.7 £12.0) x 1071 (6.42)

These result are essentially in good agreement with other approaches. A comparison will be
presented below in table. 7.1.

6.4 Quark loop: comparing DSE to NJL

In principal we have all ingredients at our disposal to calculate the quark-loop contribution
to LBL in the manner shown in Eq. (6.9). In practice, however, this is quite a difficult task
since the numerics are involved. In fact we don't have the full calculation under sufficient
control yet and the identification of the sources of numerical error is complicated. Thus we
discuss our present understanding of the numerics in detail in order to give the reader an
understanding of the technical and physical mechanisms that are associated with the various
different propagator and vertex dressings that are part of the non-perturbative three-loop
calculation defined through the diagrams of fig. 6.5. In particular the second and third com-
ponents of the full quark-photon vertex in the basis shown in Eq. (E-4) seem to be the most
troublesome. In [20] we showed results for a calculation where these vertex structures have
been included. These were results for the Ball-Chiu vertex construction (Eq. (3.58)) which
accurately represents the first three structures of the vertex in (E-4). Two independent nu-
merical routines reproduced this result. The contribution was rather large compared to most
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estimates. In the meantime we found that in both calculations different sign mistakes have
been made that led to the same number in the end. Fixing this sign error, however, yields
even negative contributions which seems very unnatural. This indicates that, irrespective of
the sign, the contribution from these two vertex structures is not well under control and its
size is not determined yet. In addition we found that especially the version with the corrected
sign showed unnatural instability under a moderate variation of inputs in form of quark and
vertex dressings, which is unexpected. Ultimately we expect the results (for the BC vertex)
to be rather stable against variations of the photon gauge parameter and the quark dressing.
We thus choose to set this problem aside for the moment and concentrate on the transverse
vertex structures (components 5-12 in (E-4)), that we have not analysed in our recent work,
in order to get an understanding of what their influence is and from which kinematic regions
different contributions come from. In the end we are able to use ten out of twelve vertex
structures and we show that their influence can be understood by a detailed comparison to
results obtained within the ENJL model and vertex dressings that are inspired by the ENJL
model. This is the subject of what follows.

In the following we analyse the influence of different components in the quark propagator
as well as the vertex separately and try to give some insight into the different mechanisms
that might give important contributions to g — 2. In addition we will compare our numerical
solutions for the quark propagator and the quark-photon vertex to results obtained withing the
ENJL model. In combination with the corresponding results for a}LBL this provides additional

physical and technical inside into the quark-loop contribution to LBL.

NJL model perspective. A central result obtained withing the ENJL approach [29] is that
the vertex dressing of the quark-photon vertex that is associated with transverse vector-meson
dominance like form factors gives a rather strong suppression of the quark loop compared to
the case of bare vertices. This raises the question whether this mechanism is also found in the
DSE approach since, as explained in chp. 4, the vector-meson pole is an important feature
in the DSE-vertex. We already saw its influence in the results for HVP in section 5.2.

In the ENJL model the quark propagator is just bare

w+m

= 6.43
p2 + mQ’ ( )

SniL(p)

for Euclidean momenta p and m the constituent quark mass. The quark-photon vertex is
given by a bare vertex and a typical bubble-sum

«N\< . m O( 6.41)
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where diagrams with any number of loops contribute. The following considerations concerning
NJL type models is based on [29, 145]. Thanks to the simple structure of the effective four-
quark vertices in that model the bubble-sum does only depend on the Euclidean photon
momentum () and can thus be separated from the left-over bare vertex

Q) = v — gnonLuw (@), (6.45)

where g1, is a coupling derived from the standard NJL couplings and can be found in [145].
The precise form of that coupling won't matter in what follows. The bubble-sum II,,,, has
the structure

Quly
QQ

The longitudinal piece TI*(Q?) vanishes in the limit of identical quark masses [145] and we
choose to neglect it for the present purpose. This is essentially what has been done in [29]
where the longitudinal pieces have been neglected since 11, will be contracted with the full
photon four-point function which is transverse. The transverse part QIIT(Q?) in the VMD
limit (see [145]) has the form

I1,,(Q%) = <5W —~ ) QI (Q?) + Q.Q,ITH(Q?). (6.46)

2 2V My
My + Q2

where we neglect also the momentum dependence of the mass function My and the decay
constant fy,. This VMD limit is a rather good approximation to the momentum dependent
case [145]. As far as we can see this is what has been done in the original ENJL work [29].
The expression 2f‘2,M3 happens to be equal to 1/gnyr in the limit we consider. Taking
everything together the dressed ENJL vertex reads

QI (Q*) = Q (6.47)

2

PNIL T 7
u mQ2+ M2

T (6.48)

where the vector meson mass is identified with the p mass and VE is the transversely projected
bare vertex. Under the assumption that the final hadronic photon four-point function is
transverse, such that any longitudinal contraction vanishes, the two dressings in Eq. (6.48)
can be combined as

M

e

(6.49)

which leads to a VMD like suppression that can also be combined with the photon propagator
that couples to the four-point function. It is clear that the VMD form factor in Eq. (6.49)
gives a suppression compared to the case of using just a bare vertex. This suppression turns
out to be quite strong [29]. Corresponding results will be given below. It should be noted
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that the bare vertex satisfies the vector Ward-Takahashi Identity (WTI) (3.56) if the quark
propagator is a bare constituent propagator with momentum independent mass and trivial
wave-function like in the ENJL model. In the following we thus think of (6.48) as a vertex
decomposition of a part that follows from the WTI plus a transverse part that has the vector
meson pole as a dominant feature. That is exactly what we find in the DSE approach.

While in the work [29] the version (6.49) was taken, we will use (6.48) since it is easier
compared with the DSE vertex. These two are identical as long as transversality of the pho-
ton four-point function is guaranteed. For a bare vertex (with arbitrary transverse parts in
addition) this is the case for bare quarks only. Using dressed quarks does thus violate the
WTI if used together with a bare vertex. Only the full BC-vertex (3.58) (the transverse pieces
don’t matter here) can maintain the WTI if the quarks are fully momentum dependent. The
full consistent treatment is of course our goal but, as explained above, not within in reach at
the moment. We will nevertheless use several quark and vertex dressings in order to gain an
understanding of what their influence is.

Dyson-Schwinger perspective Now we want to compare the DSE solutions to the ENJL
case just discussed and see what modifications can be expected. The quark propagator has
the covariant decomposition

i+ M)

= () Z(p?), (6.50)

S(p)
with momentum dependent mass function M and the wave function Z. By comparison with
Eq. (3.19) we have M = B/A and Z = 1/A. It should be noted that the DSE results for
the quark propagator are in qualitative agreement with lattice results for the Landau gauge
quark propagator [146]. For more advanced truncations even quantitative agreement has been
reached [147].

In the truncation used in this work the quark-photon vertex is dressed by a ladder-sum of

effective gluons
M/\( + f\/\/\(

If the gluon-exchange interactions are contracted to contact interactions we are back at the
NJL picture from Eq. (6.44). Keeping the gluon-exchange character of the interaction makes
calculation much more involved. In the NJL case the bubble-sum can be literally resummed
as a geometric series of one-loop amplitudes >, Bubble™ = 1/(1 — Bubble). This does not
work in the DSE case. On the other hand a contact interaction effectively reduces the quark
anti-quark T-matrix (see fig. 3.5) effectively to a two-point function. It will look like the
bubble-sum in (6.44) but with two quark legs on the left instead of the photon. This NJL

(6.51)
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T-matrix depends only on one momentum and is also often called a meson propagator. It
is in this sense that the T-matrix contribution (6.9) is described as meson-exchange in this
model.

The full quark-photon vertex can be written as

8
L@, k) =TE9Q, k) + ) TN Q% K, Q - k), (6.52)

=1

where FEC is the Ball-Chiu construction (3.58) that follows from the WTI. In addition we
have eight transverse pieces that contain the vector meson bound state pole as a dominant
feature. An approximation of the quark-photon vertex has been suggested that incorporates
the idea of vector-meson dominance (VMD) in Ref. [70]. There the transverse part was
approximated by a simple pole term similar to the NJL case (6.47). In the DSE case we
have a vector meson Bethe-Salpeter amplitude multiplying the pole such that the relative
momentum k of the two quark legs enters the expression. Keeping only the leading part of
the meson amplitude (that is fyg) a fit to the transverse part of the quark-photon vertex has
been suggested [70]

N fv Q2 (0242
Tit(Q, k) = TBC — AT v e~ QM) 6.53
#(Q ) 12 7“1+k4/w4MvQ2+M‘2/ ( )

Here w =~ 0.66 GeV is a scale that describes the suppression of the amplitude at higher
relative momenta, o describes additional suppression at high total momenta and Ny can be
extracted by comparison to the vector meson BSA. This formula can be considered to be
the VMD limit of the DSE vertex. Nevertheless, as will be seen below, it gives a reasonable
representation to the exact self-consistent solution of the function A(}) that is associated with
T;(Ll) = WE in Eq. (6.52). Comparing (6.53) to the NJL case (6.48) we see a very similar
structure. That is a part that is dictated by the WTI and a part that models the transverse
structure as a VMD approximation. The difference is that the WTI part is momentum de-
pendent in the DSE case simply due to the momentum dependence of the quark propagator.
In addition mesons are bi-local fields in the DSE case [94] such that the relative momentum
dependence is taken into account for both the WTI part and the transverse part.

How will the DSE results differ from the NJL results? Already at this stage we can
formulate some expectations that will be tested against numerical calculations below. First
of all comparing the quark propagators (6.43) and (6.50) we see some differences. The quark
mass function M (p?) in the DSE case saturates around M (0) =~ 450 MeV such that a
constituent like mass could be dominant in the integration. But possibly the mass function
is tested in different regimes where it is smaller. Actually this will turn out to be the case.
In addition Z(0) < 1 such that a suppression caused by the wave function is expected,
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Figure 6.7: Comparison of the mass function M and the wave function Z for DSE and NJL quarks.

depending of course on the momentum regime tested since Z(p? >> AéCD) ~ 1 in Landau
gauge. The functions Z and M are shown in figure 6.7. We compare them to NJL type quark
dressings which are just constant. That is Znj, = 1 and the mass changes from a 300 MeV
constituent mass to a bare current mass at the NJL cutoff. In accordance with Ref. [29] we
choose this cutoff to be at 0.5 GeV'.

For the vertices in the VMD limit (6.48) and (6.53) we discuss the 'gauge’ part and
the 'VMD' part separately. The FEC part of the DSE vertex contains additional dressings
compared to the bare vertex. The v, structure for example is dressed as

A(K2) + A(K2)
5 :

TPNQ k) = (6.54)
with kx = k£ @Q/2. Since Z = 1/A so that A(0) > 1 this vertex is supposed to give
enhanced contributions to a, compared to the bare 7,. Since furthermore k. are precisely
the quark momenta that connect to the vertex a cancellation between the Z-factor of the
quark and A-factors of the vertex seems possible (on average). We will argue below that this
mechanism is actually observed. The behaviour of the ~, part of the quark-photon vertex is
also shown in figure 6.8.

For the transverse VMD like parts first of all a suppression is expected also in the DSE
case just by comparison to the similar structure of the transverse NJL vertex. In terms of
the total momentum @ they look very similar despite the exponential in the DSE part. A
comparison is shown in figure 6.9. As can be seen the behaviour as a function of the photon
momentum is very similar in the Euclidean low and mid momentum region. The dominant
structure arises at the scale My = 0.77 GeV. The exponential suppression of the fit function
(6.53) is too fast and the NJL dressing (6.48) has no fall off at all. It will turn out however
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Figure 6.8: Shown is the first dressing (6.54) of the BC vertex (3.58) L1(Q, k) = 1/2(A(ky) +
A(k_)) as a function of the photon momentum @Q? and the relative momentum k2. To
guide the eye we show in addition the constant 'dressing’ of the bare vertex used in the
NJL model.

that the high momentum behaviour has no strong impact on a,, such that all three versions
are expected to have a similar effect as far as the Q2 dependence is concerned. A clear
difference is marked by the fact that the DSE function depends on the relative momentum
as indicated in (6.53). This means that at momenta k2 > w? ~ A?QCD a suppression of any
VMD like effects will take place. In particular this implies the following. Since within the
NJL model a suppression due to the transverse structures arise, as is most clearly seen in Eq.
(6.49), and since the transverse DSE-vertex parts are supposed to have similar effects (as
just explained), we expect a smaller suppression here due to the dependence on the relative
momentum. At least if this region (k2 large) would contribute to the integral significantly
otherwise. Just to be explicit we expect less suppression from transverse vertex structures
as has been seen in the ENJL model. Of course we can just neglect the k-dependence e.g.
AD(Q%, k2, k- Q) — AX1(Q?,0,0) and thus make the DSE vertex as much NJL-like as pos-
sible for the sake of comparison. Also these effects will be studied below.

In order to get an understanding of the regions where the dominant contributions arise
we calculate alBL with various vertex constructions. These include the bare vertex -, the
first part of the BC construction (called 1BC) (3.58) as well as the 1BC part together with
the transverse piece of the self consistent vertex calculated from its Bethe- Salpeter equation
(BSE) (4.19). In other words to most sophisticated vertex we will use differs from the fully
self-consistent vertex in that components two and three (the second and third BC parts) are
neglected. In addition we analyze the several components and combinations of them. We are
interested in the effects the 'gauge’ part determined by the WTI has and what the influence of
the transverse parts are. Furthermore we consider the running quark dressings. We calculate
the momenta and dressings for quark and vertex that the Monte-Carlo routine VEGAS tests
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Figure 6.9: Shown is the solution to the dominant transverse dressing A(!) of the quark-photon
vertex (6.52) obtained from its BSE (4.19) together with a fit corresponding to (6.53)
and the transverse part of the NJL vertex (6.48). Shown is the dependence on the
photon momentum Q2.

on average. We simply take the mean of these contributions over the Monte-Carlo steps
assuming that on average the routine tests the important regions more frequently. Then we
repeat the calculations with the dressings replaced by the constant value that turned out to
be the mean value in the corresponding case before. If this procedure is able to reproduce the
original momentum dependent version this shows that it is reasonable to speak of averaged
quantities at all. That is effective quark masses and effective vertex dressings. In addition we
can test whether averaged momenta and averaged dressings lie close to the original functions.
This would be a useful consistency in the sense that dressings might be not relevant because
they are mainly tested in kinematic regions where they are small. In addition it strengthens
the trust in our numerics since constant functions are supposed to be numerically more stable.
In particular we are able to reproduce for example the perturbative muon- and electron-loop
contributions to the muon anomaly with satisfactory precision. This calculation has trivial
dressings only.

This method of replacing dressings by their averages has of course some drawbacks. First
of all the probability measures for the averaging processes are not known. These are set by
the MC routine by looking at the integrand in total. The measures are also not unique. For
example we can average the momenta on a linear scale or on e.g. a log-scale. In turns out
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that a log-scale is a better choice. This can be seen by the much better correlation between
log-averaged momenta and the corresponding dressings. That is we find e.g.

(M(p?)) ~ M (10%8P*)) (6.55)
(M(p?)) % M((p*)), (6.56)

which seems reasonable since all dressings show characteristic behaviour on log-scales not
on linear scales. Furthermore an inconsistency might arise due to the fact that an averaged
dressing changes the integrand such that the integration routine feels forced to look in dif-
ferent regimes than in the case of momentum dependent dressings. In order to make sure
that a sensible interpretation of the results is possible from that averaged perspective we will
carefully look at all the different results discussed below.

To be precise we illustrate the averaging a little more explicit. In the case of the quark
propagator we will work with the expression

i + (M)

Sav(p) = 22 + (M)2

(Z), (6.57)

where the averaging is always done under appropriate conditions. That is if we do the aver-
aging for M and Z with 1BC vertex dressing than these averages (M)ipc and (Z)1pc are
only used together with the 1BC vertex dressing in a calculation. If another vertex is used
together with an averaged quark we do the averaging with this other vertex. Furthermore if
we do calculations with M = (M) and Z =1 in Eq. (6.57) then the averaging for the mass
function M is also done with Z =1, that is (M) = (M) z—;.

Note that the averaging is only used as a tool to obtain information about the influence
of certain dressings. It helps to "project’ complicated problems onto simpler ones. We try to
answer certain questions in this way, for example, whether our momentum dependent quark
can be considered to be related to a constituent quark with a certain mass in an approximate
sense. In this way statements about e.g. the quark being tested mainly in certain kinematic
regimes become more precise. For our final calculations we take of course all momentum
dependence into account.

6.5 Results: Quark loop contribution

Now we come finally to the presentation of our LBL quark-loop results which we discuss
along the lines developed in the preceding section. We will consider the contribution of up
and down quarks only here since these typically yield the major contribution of about 90%
[20] and we are interested in the qualitative and semi-quantitative behaviour of the different
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Table 6.1: Results for the quark loop LBL contribution using a bare vertex and various dynamical
and averaged or constant quark dressings. In the case of dynamical Z and M we always
took the solutions of the quark DSE for up/down quarks. The averaged quantities are
then calculated on the fly.

Dressing (p) [GeV] | (Z) | (M)[GeV] | \/(M?)[GeV] | a, x 10!
1| Z and M dynamical 2.9 0.83 0.072 0.14 53
2| Z=1, M dynamical 1.5 1 0.12 0.18 102
3| Z=1, M =0.477 1.9 1 0.477 22
4 Z =1, M=0.21 0.9 1 0.21 91
5 Z=1,M=03 1.2 1 0.3 51

vertex components. We assume that for each case that will be considered the heavier flavours
will increase the result by about 10%.

Bare vertex. We first of all consider bare vertices in order to analyze the influence of the
quark propagator. In particular we are interested in the separate behaviours of the dressings
Z and M defined in Eq. (6.50). The results for various averaged and dynamical dressings are
shown in table 6.1. Note that the dynamical Z and M functions are always the solution of the
quark DSE (4.14) where the mass function renormalisation condition corresponds to the light
up/down quarks. We first consider the case Z = 1 and perform the Monte-Carlo integration.
The result (second line of table 6.1) is a,, ~ 100 x 10~ 1. This does not correspond to an ef-
fective mass close to the infrared limit M (0) = 0.477 GeV, as one might have thought given
the behaviour of the mass function. This effective mass yields a much smaller number (third
line in the table). Instead the result corresponds to a mass of Mg ~ 0.2 GeV (compare
to line 4). Thus it seems that the momentum dependent mass is tested at momenta above
the infrared plateau (see fig. 6.7). This is in rough agreement with the quadratic average
of /(M?) = 0.18 in line 2. Also the averaged quark momentum seen in table 6.1 points
in that direction. It should be noted, however, that the averaged mass for the Z = 1 case
is (M) ~ 0.12GeV which is clearly not compatible with the effective mass being 0.2 GeV'.
The quadratic averaging thus seems to be preferable here. Now we look into the influence
of the wave function Z. The result for fully dynamical quarks is found in line one and yields
ay ~ 50 x 107'1. The wave function apparently leads to a suppression by a factor 1/2.
This seems reasonable since (Z) = 0.83. There are four quarks in the loop and thus the
wave function enters the calculation four times, resulting in 0.83* ~ 0.5. This explains the
difference to the case of Z = 1 shown in the second line.

We thus note two things. The result with bare vertices and dressed quarks reproduces the
result expected for bare constituent quarks of mass M = 0.3 GeV (last line of table 6.1)
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Table 6.2: Results for the quark loop LBL contribution using the 1BC vertex dressing (6.54) and
various dynamical and averaged or constant quark dressings. In the case of dynamical
Z and M we always took the solutions of the quark DSE for up/down quarks.

Dressing (p) [GeV] | (Z) | (M)[GeV] | a, x 1011
1| Z and M dynamical 1.55 0.76 0.13 104
Z =1, M dynamical 1.04 1 0.17 206
3 Z =1 M=0.21 1.55 1 0.21 196

which seems reasonable at first sight [148]. This agreement is, however, a non-trivial one.
The dynamical quark mass is tested in a region where M (p?) ~ 0.2 GeV which is considerably
smaller. This results in a contributions that is larger by a factor two. The non-trivial wave
function Z on the other hand counteracts that effect and leads to a reduction by roughly the
same factor again. It is thus the interplay between mass function and wave function that
determines the result in the end.

Comparing this now to the ENJL calculations [29] the question arises how this effect would
be seen there. In this calculation they consider the low-energy and the high-energy contribu-
tion separately, where the VMD vertex dressing is used for the low-energy part only. Since we
are not interested in the VMD influence right now we will discuss these results later and in-
stead only consider the effective quark masses that are tested in these two contributions. For
the low-energy part a constituent mass of M ~ 0.3 GeV is used together with a momentum
cutoff of 0.5 GeV in the photon legs. For the high-energy part a bare perturbative quark-loop
is taken. Instead of a small current quark mass, however, they use a mass of 1.5 GeV which
is supposed to be an effective infrared cutoff for the integral. Taking now into account that
our quark, that is defined on all scales and looks very similar to lattice results, is tested mainly
at masses of 0.2 GeV it seems clear that the NJL model is missing some contribution since
effectively their mass is always M > 0.3 GeV'. That is it seems that increasing the cutoff for
the low-energy part beyond 0.5 GeV while at the same time allowing M < 0.3 GeV opens
new important integration regions.

Gauge part of the vertex. Now we look into the gauge part of the vertex that is de-
manded by the WTI. We restrict ourselves to the 1BC dressing (6.54) of the 7, term for
reasons explained already above. All the results we discuss in this paragraph can be found in
table 6.2. First of all we look into the influence of the vertex dressing. Therefore we compare
bare and 1BC dressings as well as trivial and an non-trivial wave function Z, but use only full
dynamical masses M. The result for fixed Z = 1 and dynamical mass (second line of the
table) is roughly twice as big as the corresponding bare vertex result we just presented in the
second line of table 6.1. Here the enhancing influence of the 1BC vertex dressing is clearly
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visible. The same is true for the cases with dynamical Z function (first lines of both tables).

Next we look into the effective quark mass that is seen in this contribution. In particular
we take the case with Z = 1 in the second line of table 6.2 as a reference since there the
dynamical mass only interacts with the vertex dressing. Again we find that a bare mass of
M =~ 0.2 GeV does the same job as shown in the table in the third line. This seems in rough
agreement with the averaged mass (M) = 0.17 GeV from the dynamical case in line two.
A bare mass corresponding to the infrared plateau of the mass function M (0) = 0.477 GeV
fails completely and even gives negative results (not shown). This could indicate some incon-
sistency since the 1BC vertex is only strictly valid for one particular mass function which has
only one particular averaged value (0.2 GeV in our case).

Finally we answer the questioned posted in the last section whether the effects of the 1BC
vertex dressing and the quark wave function do compensate to some extend. Quarks with
Z =1 and bare vertices yield (second line of table 6.1) a,, ~ 100 x 10~ 1. Taking the dynam-
ical wave function into account (first line of the same table) reduces this two a,, ~ 50 x 107!
while the 1BC dressing increases a,, to ~ 100 x 10~ again as can be seen in the first line of
table 6.2. Alternatively we can take into account the 1BC dressing before employing the dy-
namical wave function which brings us to the second line of table 6.2 with a,, ~ 200 x 10711
Then the non-trivial wave function in addition yields again the result of the first line in that
table. The compensation of momentum dependent wave function Z(p?) and the 1BC vertex
dressing thus happens quite accurately.

The suppression due to the wave function can be explained via an average effect at least
qualitatively in the case of 1BC dressing. The average (Z) = 0.76 in the first line one of
table 6.2 yields a suppression of 0.76* ~ 0.33 whereas the actual suppression compared to
the second line with Z = 1 is 0.5. The suppression from the averaged Z would thus be too
strong. Comparing the averaged masses in the first and second line of that same table seems
to suggest that the suppression of 0.33 is softened by by a smaller effective mass (M) = 0.13
in the case of dynamical Z. Clearly the different dynamical dressings interact in a non-linear
way and the interpretation of averaged dressing effects has to be made careful. Nevertheless
the simplified viewpoint gives insight into the dynamics at work.

The full Ball-Chiu vertex. We do not give final results for vertex constructions concerning
the second and third BC vertex components (3.58) in this work. In fact it turned out that
there was a sign mistake in our results published in [20] despite the fact that two independent
numerical evaluations have been done. In both numerical programs different mistakes have
been made that effectively changed the signs of the second and third terms of the BC vertex.
This happened since there was a misunderstanding in terms of the conventions used for the
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propagator and the vertex basis (e.g. (E-4)) used. From the corresponding WTI (3.56) it is
clear that a convention for the quark (6.50) fixes the gauge part of the vertex (3.58) including
pre factors. This relation was violated in both numerical treatments.

Furthermore, one might expect some stability of the results under (at least mild) variations
of the quark dressing functions used. As an example take our results for the compensation of
wave function and 1BC dressings just studied above. Another example is the 7wy~ transition
form factor. In a simple truncation, where the BC Vertex is used as approximation for the
quark photon vertex, the (correct) infrared normalisation Fr,(0,0) = 1 (see Eq. (6.16) is
even independent of the details of the quark dressing, as can be shown analytically [149].
For this reason one might expect some stability of the contribution a,I;BL with respect to
the quark dressing, which we found for the BC Vertex with wrong sign by using a quark
propagator from a different, even much more sophisticated truncation. Correcting the sign
mistake in the second and third BC dressings, however, resulted in negative contributions to
alI;BL which is rather unexpected. Furthermore the result is quite sensitive to the quark input
used. We take this as a sign that numerical stability is not reached for this case. We were
not yet able the locate the source of the problem. Unfortunately the three-loop integrand is
very complicated and thus very difficult to search for problematic regions.

On the other hand we started a calculation of the quark loop LBL contribution a};BL using
the naive projector (2.14). This technique seems to be inferior. First of all more integration
variables are needed since there is one more external scale (that is the external photon mo-
mentum k) such that the convergence of the Monte Carlo routine is much slower. Further
more the singularity of the projector (2.14, 2.13) as a function of k has to be cancelled nu-
merically against the full photon four-point function II,,,,5(q1, —q1 — g2 — k, ¢2) in the limit
k — 0. After all we were not able to reliably perform this limit numerically yet in a satisfac-
tory way. We did this calculation for the bare muon loop LBL contribution and for various
dressed quark loop contributions. We found rather strong dependence on k and were able
to reproduce the corresponding results (using the projector (2.12)) at best on the 20 — 30%
level. Since these results are not under control and since we have not performed a detailed
study of them yet we do not cite any numbers here. We found a hierarchy of quark loop
results very similar to the results quoted in this section. But surprisingly the result for the
BC Vertex was different there. In fact it was very similar to the 1BC result shown in line
one of table 6.2 probably slightly larger. Now since this numerical treat is very premature
it would be wrong to jump to conclusions here. But if this were to be the case this could
be an indication were to look for the numerical problem. In fact the two projection methods
pronounce different momentum regions. Both methods differ in the dimension of the integral
of the quark loop. The naive projection (2.14, 2.13) calculates I, directly, in which case
the integral is log A divergent with the cut off. The divergence cancels, however, in the final
integration [25] between the six different diagrams. The other method (2.12) takes instead
the momentum derivative of the four-point function (6.6) which is manifestly convergent.
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6 Hadronic light-by-light scattering

The former method thus pronounces the UV, while the latter focuses more on the IR. This
can in fact be observed by plotting the momentum range mapped out by the Monte Carlo
routine. It might thus be possible that the numerical problem with the BC vertex dressing
is located in the IR. In fact the integrand becomes constant in the IR, as function of the
radial Euclidean loop momenta, for fixed angular coordinates. A cancellation of the angular
integral thus seems to be necessary. Furthermore we carried the derivative of the quark loop
diagrams also analytically for the case of BC vertices. The results were similar and did not
provide additional inside besides that the numerical derivative we use (6.35) works as expected.

In fact we find results 1BC and BC in the calculation to HVP that differ by about 5% (not
shown in the corresponding chapter). There seems thus to be the possibility that our BC
results in [20] are just a numerical fluke and the result should be close to the 1BC result. We
emphasize, however, that any conclusion on this subject is premature at the moment. For
this reason we proceed step by step with the transverse vertex dressings in the following and
give simple arguments in favour of the different results we obtain.

Transverse vertex components. We now look into the transverse vertex components.
As discussed above a suppression of the LBL contribution to g — 2 is expected due to the
transverse structures in analogy to the ENJL case [29]

alPLALENIL — 91(3) % 10711, (6.58)

In the following we compare our results to (6.58). In order to proceed slowly and carefully
we look into the potentially leading transverse structure 73 first. We combine this structure
with a bare vertex and the 1BC dressing. In addition we use the NJL-like dressing (transverse
piece of (6.48)) for the transverse vertex and look into the dependence on the relative mo-
mentum. To make the comparison to the NJL case as good as possible we approach the NJL
case from the DSE side by neglecting the relative momentum dependence in the transverse
dressing. In addition we introduce a relative momentum suppression like the one in Eq. (6.53)
~ 1/(1 + k*/w*) in the NJL dressing to make sure we understand its effect. The results to
be discussed can be found in table 6.3. All calculations are done with fully dynamical quarks
that is mass function and wave function momentum dependent.

Bare vertex and transverse structures. First of all we see in line five of table 6.3 that using
the NJL-VMD transverse dressing from Eq. (6.48) gives the desired suppression. This result
is close to what was found in the NJL model (6.3). Adding ten percent as a rule of thumb to
take into account the heavier flavours (strange and charm) we get aleBL ~ 19 x 107, Ob-
viously we can reproduce the ENJL results numerically. Taking instead the leading transverse
structure A(Y) from the BSE solution of the vertex (4.19) yields a,, = 47 x 1071, as shown in
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6 Hadronic light-by-light scattering

Table 6.3: Bare and leading transverse vertex as well as bare and full transverse vertex compared
to NJL dressings. Quarks are always fully dynamical. A(Y) is the dressing of the V;f
part obtained from the vertex BSE and Anyi, = —P?/(P? + MZ). In addition f(k?) =
1/(1+k*/0.66%). P and k are the total and relative momenta of the vertices, L; is the
dressing of the bare vertex (one is this case) and T} is the leading transverse dressings
corresponding to . (either A®) or AnjyL). P, k and M are given in units of GeV.

‘ Dressing ‘ (M) ‘ (P) ‘ (k) ‘ (L1) ‘ (T1) ‘ a, x 101
1] v +yIA0 (%2 =0) [0.029]0.022]257] 1 —0.1 16
2 Y+ AL 0.062 [ 0.029 | 33 [ 1 |—-0.029 47
3] 7 +TFT(k*=0) [0.029]0023]256] 1 [—0.106 13
4 Yu+TF 0.077 | 0.03 [268] 1 | —0.03 46
5 Y + VR ANIL 0.035 [ 0.022 [19.9 [ 1 [—0.098 17
6 | 7.+ oL x f(k?) | 0.067 [ 0.031 [ 3.05| 1 |—0.013 51

line two of that table. This is only marginally smaller than the pure bare vertex result from line
one of table 6.1. In addition we also show a calculation that takes the full transverse vertex
with eight tensor structures into account, shown in line four of table 6.3. This gives only a
small correction to the leading transverse terms such that the 73 part seems to be leading in
this case. In order to get an understanding of the difference to the NJL case we simply neglect
the relative momentum dependence of the transverse terms. They are evaluated at k2 = 0
and k- P = 0. No matter whether the leading (line one) or the full transverse structure (line
three) is used we get a result that is close and even below the NJL case. A strong suppression
is observed. To approach the same idea from the opposite side we attach the suppression
factor to the NJL dressing as already mentioned above. The result, shown in line six, again
brings us very close to the picture obtained from DSE’s with a result that is only marginally
smaller than the bare vertex case. The dependence on the relative momentum is thus crucial
for the amount of suppression that is to be expected from the transverse vertex parts or in
other words from VMD-like influences. In fact the results of table 6.3 can be nicely split into
two groups, those with, and those without relative momentum dependence in the transverse
dressings.

The reason for the effect in more technical terms can also be seen in table 6.3. For trans-
verse terms that are not suppressed in the relative momentum it is beneficial to accumulate
integration strength at high relative momenta. As can bee seen in the table the average
relative momenta (k) are quite high for all cases without suppression. The same is true for
the quark momentum which is of course coupled to k. In the cases where the k% damping
is included, that is the DSE dressings with full kinematics or the 'improved’ NJL version, the
relative momenta are clearly smaller on average. This seems plausible since the integrand is
damped in these regions such that no integration strength can be found there. If we wanted
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6 Hadronic light-by-light scattering

to be quirky we could say that the suppression expected on the grounds of the NJL results
is strongly suppressed in more realistic cases. The picture is completed by looking at the
average of the leading transverse dressing (1) that is tested in the integration. It is always
negative but larger in magnitude for the cases without relative momentum dependence. And
the magnitude seems always to be explained by exactly that k& dependence. That is all results
in table 6.3 fall basically in one of two groups. Either with or without k-dependence.

It has to be noted, however, that the average masses (M) found in all cases are quite small
compared to the mass of M = 0.3GeV used in ENJL model calculations. The relations
between the quark masses, momentum regimes, vertex dressings and phase space are thus
quite non-trivial.

1BC vertex and transverse structures. Now we analyze the same situation with the
transverse structures combined with a 1BC vertex instead of a bare one. The corresponding
results are shown in table 6.4. Again the NJL dressing provides significant suppression whereas
the leading transverse DSE structure does not. Neglecting the k-suppression in the transverse
DSE vertex components is able to reproduce the NJL result also in combination with a 1BC
dressing. Introducing the k-suppression in the NJL vertex on the other hand comes close to
the DSE case again. The reasoning of the k-suppression does apply once more as in the case
of a bare vertex for the 'gauge’ part. One important difference is however present for the case
of the full transverse vertex structure including the full kinematics (that is no k-suppression).
In this case the additional transverse components beyond the VE part are important. They
give a suppression the 'leading’ part cannot manage on its own. The leading part does not
reduce the 1BC contribution at all whereas the full transverse vertex seems to do.

Summary of LBL results so far. In the following we summarize our LBL quark loop results
obtained so far. We formulated some expectations we had of the influence of the different
vertex dressing present in the self-consistent solution of the quark-photon vertex as well as
the self consistently dressed quark propagator. Our findings are most easily summarized in
bullet points
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6 Hadronic light-by-light scattering

Both the NJL model and the DSE/BSE approach have to some extend similar structures.
Both have a quark photon vertex that has a part that is dictated by the WTI and a part
that is reminiscent of vector-meson dominance. They differ in that mesons-amplitudes
and the quark-photon vertex are functions of one kinematic variable in the NJL case
whereas the DSE/BSE approach has the full kinematic dependence on three degrees
of freedom in the vertices. The vertex has a very simple structure in the NJL model
whereas the functional point of view takes into account all structures that are present
in full QCD.

The momentum dependent quark mass is not tested at its infrared plateau M (0) =
0.477 GeV but rather in the mid-momentum regime where M ~ 0.2 GeV'.

This results in an enhancement of the LBL contribution precisely due to the rather
small effective mass

The non-trivial wave function of the quark causes a suppression that together with
the dynamical mass cause the dressed quark/bare vertex result to be close to what is
expected for bare constituent quarks of M = 0.3 GeV.

The suppression due to the wave function can be reasonably explained by taking
Z(p*) = (Z) = const.

The 1BC dressing causes enhancement that has roughly the opposite effect than the
quark wave function. It can also be approximately explained as an averaged effect. The
1BC vertex dressing and the non-trivial quark wave function Z cancel to quite some
extend.

The transverse parts of the vertex have the tendency reduce the overall result

This reduction is supposed to be smaller than in the NJL case due to the fact that the
DSE/BSE vertex is suppressed for high relative momenta — k-suppression.

The difference of the influence of the transverse vertex parts can be explained by the
k-suppression on the quantitative level

In the end the reasons for our larger LBL contribution to g — 2 are twofold:

— The quark mass function is tested on scales where it is considerably smaller
(0.2GeV) than a naive constituent mass of 0.3 GeV (The vertex dressing from
the 1BC part is important but partially cancelled by the wave function)

— The reduction from VMD-like effects hidden in the transverse vertex structure are
smaller than in the NJL case due to suppression of the subtractive contributions
at high relative momenta.
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6 Hadronic light-by-light scattering

The vertex
Iy=vL1+T, (6.59)

is the closest we can come to the full vertex at the moment. It yields

a}I:BL,lBC-i-T,Nf:Q — 64 x 10711, (6.60)

as quark-loop LBL-contribution to the muon g-2 for the two lightest flavours. This is our
best estimate for the not yet obtained full result.

Table 6.4: 1BC and leading transverse vertex as well as 1BC and full transverse vertex compared
to NJL dressings. Quarks are always fully dynamical. A(Y) is the dressing of the T
part obtained from the vertex BSE and Ay, = —P?/(P? + M2). In addition f(k?) =
1/(1+k*/0.66%). P and k are the total and relative momenta of the vertices, L; is the
dressing of the bare vertex and T} is the leading transverse dressings corresponding to
Y, (either AD) or Angr). P, k and M are given in units of GeV.

‘ Dressing ‘ (M) ‘ (P) ‘ (k) ‘ (Ly) ‘ (Th) ‘ au x 101
1| L1+ AP (k> =0) | 008 |0.021 | 7.4 [ 1.19 | —0.105 41
2 VL1 +7p AW 0.12 [ 0.026 | 1.67 | 1.29 | —0.046 96
3] yuLi+TF(k*=0) [0.079]0.021 ] 7.3 | 1.19 [ —0.106 45
4 YuLl1 + T} 0.13 [ 0.028 [ 1.53 | 1.32 | —0.051 64
5 YuL1 + 7E AuL 0.092 [ 0.021 | 5.5 [ 1.22 | —0.095 43
5| YLt +v4 ANgL x f(K%) | 0.11 | 0.027 | 1.65 | 1.3 | —0.022 103
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7 Discussion

In this chapter we summarize our results for the hadronic vacuum polarisation (HVP, chapter
5) and the light-by-light scattering (LBL, chapter 6) contributions to the anomalous magnetic
moment of the muon a,. Furthermore we discuss these results and compare them to other
approaches.

Hadronic vacuum polarisation. In chapter 5 we presented details about our calculational
scheme for HVP as well as the results obtained for this contribution within the rainbow-ladder
truncation of QCD. We used a model for the quark-gluon interaction that has been successfully
applied to hadronic physics for more than a decade. Besides masses and decay constants for
the mesonic states that are most relevant for the problem at hand (e.g. pseudo-scalar mesons
and vector mesons) it gives satisfying results for form factors and charge radii. Although not
directly related to the present work it is worth noting that also nucleons, including their form
factors, are part of the impressive list of the observables that have been calculated (see the
overview in table 4.3). The HVP calculation adds another two observables to this list. The
Adler function that is a non-trivial observable since it allows for a detailed diagnoses of the
interplay of high- and low-energy QCD effects is one of them. The other is the contribution
to the muon g — 2. Using among others a parameter set that is completely fixed by meson
phenomenology (the standard parameter set for this approach) we are able to reproduce the
HVP contribution on the less than ten percent level. In that way this result is dynamically
linked to many other observables which in our view adds lots of credibility to this result.
This deviation is clearly to be expected within this relatively simple truncation of QCD. We
believe to have presented plausible arguments that this should be closely related to the fact
that the p meson in this model, which plays a dominant réle here, is about four percent too
light. In fact fixing our parameters to the physical p mass improved our results significantly
(5.13). The results for the standard parameter set | and the set Il with optimized p mass are

alVP! = 7440(77) x 1071 (7.1)
aff VP = 6760(74) x 107 (7.2)

Light-by-light scattering. Given the fact that the employed truncation worked well for
HVP we are confident that light-by-light scattering can be dealt with in a comparable sat-
isfying way. As shown in app. F the definition of the photon four-point function follows
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unambiguously from the (truncated) photon two-point function. This derivation rests upon
the rainbow-ladder truncation and on the photon field being a non-dynamical background as
far as the hadronic two- and four-photon correlators are concerned. As already argued above
the usefulness of the first assumption is strengthened by the successful application of the
DSE method in the HVP case and many other meson and baryon observables. The second
assumption only neglects contributions which are O(aqrp) suppressed. Our prescription for
the photon four-point function (6.9) thus rests on the same ground as the hadronic photon
self-energy (5.1) shown in fig. 5.1.

Instead of the representation (6.9) that is fully comparable to HVP we use an approximation
for the time being. This is the resonance expansion shown in Eq. (6.12), a picture compa-
rable to many calculations done within the framework of effective theories (see tab. 7.1).
For the pseudo-scalar meson-exchange contribution we find results that are comparable to
these model calculations (6.42). A comparison can be found in table 7.1. For the quark-loop
contribution we find potentially strong influence of momentum dependent quark propagators
as well as enhancement due to certain vertex dressings. This is explained in great detail in sec-
tion 6.4. On the one hand we see that the momentum dependent quark mass function is not
dominantly tested in the infrared where M (0) ~ 450 M eV but rather in the mid-momentum
range where M (p?) ~ 200 MeV. This leads to an enhancement of the contribution which
increases simply for decreasing quark mass. On the other hand the non-trivial wave function
leads to a suppression of 50% taking all four quarks into account. Furthermore we have the
'gauge’ part of the quark-photon vertex that is dictated by the Ward-Takahashi identity. In
this work we considered only the leading one of the three components since the other two are
numerically delicate and our results for those are not trustworthy at the moment. This lead-
ing part causes an enhancement that basically cancels the suppression caused by the quark
wave function. Furthermore we analysed the transverse vertex components that are supposed
to yield a suppression on the grounds of results within the NJL model. Indeed we find this
suppression, but it is much less dramatic, than in the NJL case. The reason is that mesons
are bilocal fields in the DSE/BSE approach and the full momentum dependence of vertices is
taken into account. This simply reduces the contributions from kinematic regions where the
NJL dressings collect the contributions that make the quark-loop contribution so small. All
this is discussed in detail in section 6.4.

In order to obtain the complete LBL result we add the contributions of meson exchange and
quark loop

aLBL — aquarkloop + aES—exchange + az/K—loop,scalar,axml—vector

W 3

7.3
= 64(30) x 10711 4 81(12) x 10~ +0(20) x 107, (7.3)

where the systematic uncertainty of the quark-loop result is taken to be 50 percent, due to
the fact that potentially important contributions have been neglected. The error estimate for
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Table 7.1: A comparison of the DSE results for the LBL contributions to the muon anomaly with
various other approaches. Details can be found in the text.

Group ‘ Model ‘ aﬁBL (70) ahBL (7%, n and 7/) abBL (quark-loop) ‘ alI;BL
BPP [29, 31] ENJL | 59(11) 85(13) 21(3) 83(32)
HKS [33, 34, 35] | HLS 57(4) 83(6) 9.7(11.1) 89(16)
KN [36] LMDV | 58(10) 83(12) - 83(12)
MV [37] LMD+V | 77(5) 114(10) t 114(10)
N [143] LMDV | 72(12) 99(16) f 99(16)
PdRV [3§] LMD-+V 114(10) T 105(26)
DB [130] NLYQM |  65(2) - - -
DRZ [131] NLYQM | 50.1(3.7) 58.5 - -
GdR [129] CxQM 68(3) - 82(4) 150(5)
This work DSE 58(7) 81(12) 64(30) 145(62)

the meson-exchange is based on the quality of the meson phenomenology of the truncation
used and on the off-shell prescription for the meson amplitudes (6.27). Furthermore we infer
the estimate of the contribution of higher mesons from results obtained within the ENJL
model. In [31] the pion and kaon loop contribution as well as scalar and axial-vector meson
exchange contributions amount in sum to

a:r/Kfloop,scalar,a)ﬂalfvector,NJL — _9233 % 107117

which we use as a base for our estimate of the contributions we did calculate explicitly so far.
All uncertainties within LBL are added linearly. Our final result obtained through the addition
of the meson-exchange (6.42) and the quark-loop result (6.60) is

a;P" = 145(62) x 10" (7.4)

We think that our estimate is rather conservative but can be improved once a full calculation
along the lines of Eq. (6.9) is performed. Ultimately an uncertainty on the sub ten percent
level like in the case of HVP seems reasonable. A comparison to other approaches is given in
table 7.1.

The different approaches used are the Extended-NJL model, the Hidden Local Symmetry
approach (HLS), the non-local chiral quark model (NLYQM), the constituent chiral quark
model (CxyQM) and various approaches based on vector meson dominance (VMD) together
with lowest meson dominance (LMD+V). In general the agreement in the pion or PS-meson
exchange contributions is rather good. Some of the VMD models have larger contributions
here, which to some extend can be traced back to the fact that off-shell constraints are
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imposed on the m — ~ transition form factor that cause an enhancement [150, 37]. It has
been argued [38] that these additional contributions which correspond to high-energy can be
found e.g. in the quark-loop contribution in other approaches. The VMD approaches typically
restrict the consideration to purely mesonic degrees of freedom such that no quark-loop is
present such as in the case of the other approaches. The comparison of the meson exchange
contribution is thus to some extend comparing apples with oranges as far as the contribution
coming from high-energy regions is concerned. Another interesting observation is the fact that
in the NLYQM [131] the contribution of the 17 and 1’ mesons is much reduced. This suppres-
sion comes from a consistent treatment of meson off-shell effects. These are much stronger
for the n and 1’ mesons than for the pion. This is due to the fact that the decay width, which
defines the normalisation of the corresponding form factor, is defined in the time-like region.
Often form factors are used that are defined to reproduce the physical decay width of mesons
at the Euclidean origin. This seems to be a reasonable approximation for the 7% but might
fail in the case of 1 and 7. For the quark loop contribution we see quite some difference of
the DSE approach to the HLS and ENJL results. This discrepancy has been discussed already.
For the summed up results we see quite some spread. Most approaches give consistently lower
numbers than the result we obtained. It has to be noted, however, that there is agreement
withing error bars. It is interesting to note that recently obtained result within the CYQM
also give rise to an enhanced LBL contribution, including a rather large quark loop result [129].

Finally we think that the DSE approach holds the promise to yield a description that
ultimately makes the usually applied distinction into high- and low-energy regions super fluent.
In fact our results indicate that it might even be crucial to have the transition region between
these two regimes tightly under control. Our treatment is not yet at the final stage such that
no last conclusion can be drawn. We think, however, that our approach can be combined
with efforts that are currently undertaken withing lattice calculations. In fact there are good
examples where a combination of DSE and lattice methods yield an improved understanding.
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A Euclidean conventions

In Euclidean field theory the conventions are far less established then in the Minkowski space
formulation and tend to differ a lot from author to author. We thus find it useful to lay out
the conventions used in this thesis in every detail. The basic idea of Euclidean quantum field
theory is to take the well known Wick rotation a step further and perform it on the level of
the generating functional in order to avoid the continuation of every single loop integral. In
the end one can come up with solutions of Euclidean Green's functions that are considered to
be analytically continued versions of functions at space-like Minkowski momenta. Formally
the back-rotation is then possible since the functions are usually decomposable into a sum
over known covariants and scalar dressing functions e.g. S(p) = ig'ov(p?) + os(p?). The
back rotation of the covariants like p” can be worked out while for the functions that contain
the dynamics one just has to identify the Euclidean momentum with a space-like Minkowski
momentum: o(p; < 0) := o(p}) with p24 = —p3;. The question of whether the back
rotation is possible is governed by the Osterwalder-Schrader axioms of Euclidean field theory
[151]. The conventions are chosen such as to correspond to those of Ref. [24] as closely as
possible.

In particular the following analytical continuation is adopted:

ox0—>—i$0E f—>fE
0 E i E
eV — Y — iy
N ) d E
o 0y — i0; 0; = 37— BE =0,

o 7 =0"" =0 — (i05g) + 0 (i) = 1™

o 7 =100+ =" =0y — (i) — (—p)(0F) = i = ™
o atp, = a%po +a'p; = 2'p" — 2ty — (i) (h) —2F (-pF) =Pl Ay
o f(x)= [, f(k) e o —s f(a®) =1 i f(K=) e 0Pk,

Ap(z) — iAOE(:cE)

Ai(x) — AE(2®)

o Fy F'" — FLFY
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o OMA, — —OPAP

° A“A“ — —AE‘AE

o N —ix®

where E labels Euclidean quantities. In this way the algebra of gamma-matrices is

{'Vua MW} = 20, (A-2)
We take the Minkowski space generating functional now to be

Z = /Du e (A-3)
with Lagrangian Ly

- 1
Ly =Y(EP —m)y — §Tr(FWFW). (A-4)

Here D, = 0, —igA,, A, = AZt“ Fp = Fﬁyt“, F = 0,A, —0,A, —ig[A,, A)]. So we
have

Fl, = 0,A% — 0,A% + g f*" A} A (A-5)
written explicitly the Lagrangian is
- 1 5 y _
Ly =97 —m)y + 5 Aulg" 0> — MOV A, + g At (A-6)
2
abc ,a\ oAb pc 9~ rabc rade ga 7b ,d Av.e
—gf@c(oH A* )AMAV — Zf f AMAVA“ AYe, (A-7)

We now apply the rules shown in Eq. (A-1) to the action corresponding to Egs. (A-7,A-4)
to obtain 1Sy — —Skg:
. 1 o
So = [ {60+ m)w + SA-0%5,, +0"0")A, ~ igv i)
@ (A-8)
2
aoc a C g aoc paae C e
(D A AL AL + T e e AL AT AT A )
Applying in addition the standard Feddeev-Popov gauge fixing procedure for covariant gauges
[24] we get
_ 1 1 _
Sp = / (D@ +m)p+ 54,026+ (1 - VOIA, e —igi
x (A-9)

2
abc-a c abc a c 9~ rabe pade c e
+ gf b c 8#("4#6!)) +gf b (auAu)AZAV + Zf b f d AZAVA(ZLAV}
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From this we obtain the quark and gluon propagators as

528k 1
D Nx,y) = ———— = [—0%0,, + (1 — 2)9,0,]+0(z —
H ( y) 5AV(.’13)5AM(3/) =0 [ w ( 6) © ] ( y)
= /[kQ(S;W - (1 - 2)]{:#]{:11] e—ik-(w—y)’
k
so that
-1 2 1 2 1
D, (k) == [k"0u — (1 - g)k#ky] = kT + Ekuky, (A-10)
and
5 = 2| — (g, s — )
T S0,y T
= /(—iﬁ + m)efip-(z*y)j
p
which yields
S7(p) = —ip + m. (A-11)

The propagators itself then read

iy tm (A4-12)

T 2t m2
Renormalization The renormalized form of the Lagrangian is
_ Z 1
L=Zy @ + Zmm)b + TAAM[—W(SW +(1- E)aﬂa”]Ay + 7, ed%c
—19Zya VAV + gZea [0, (AG) (A-13)

2
+ 973 F(D,A%) AL AT + %ZM fabe pade Ab A A2 AC.
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B Derivation of the photon DSE

In order to give a specific example of how to use the generating functional of Dyson-Schwinger
equations (3.15) we derive the photon DSE explicitly in this appendix. We write the action
of QCD and QED in the form

7QED B . B
A /A}L,I[DO 1(377 y)]uVA,u,y + SQCD [¢» ZZ)],

S = Z¢/¢x501(:c,y)¢y +ieZ$ED/1/11Ax¢x +=5
Yy X xT

' (B-1)

where the term SQ};D is just the QCD action (A-13) excluding the kinetic energy of the
quarks. The dependence on the gluon and ghost fields is not shown explicitly. They are
assumed to be present implicitly in e.g. the quark propagator. But on the formal level they
do not concern us in this appendix. In addition we neglected the source terms in Eq. (B-1)
to be more compact but we will assume them to be present.

In order to proceed we need

5s . . _
= ieZ 3 Vayutbe + / Dy (2, 9)] Ay (B-2)
Yy

o,z

In order to get the corresponding derivative of the effective action I" we have to make the
replacement ¢ — 1 + (I'")~15/6v. Here again ¢ is a placeholder for any field. The only
realization that will contribute in our case is

- - )
Ve — Yy + /S(:c,u)(w, (B-3)

where S is the full quark propagator e.g.

52T \ !
s = (5iss)
y 0Py

This is actually the expression where the dynamical content of QCD enters implicitly since the
full quark propagator does involve the gluon fields. In the spirit of the generating functional
for DSE's (3.15) we use (B-3) in (B-2) to obtain
or
0A, .

= ieZ 2 beytls +ieZF T[S (2, 2)y) + 23 / Dy (2, 9)]wA,y.  (B-4)
Yy
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Taking an additional derivative with respect to the photon field we get

D) (w,y) = ij{;w = Z3P Dy (@, )] — 1e 2,250 / Tr[S(x, u) (—iel, (u, y, w)) S(w, z)y,],
o (B-5)
which is already the photon DSE in coordinate space. We used the relation
M~ = MY OM)M ™,
as well as
51#“5511;1,51#11; = —iel'y (u, y, w). (B-6)

The propagators are straightforwardly transformed into momentum space. For the self energy
we have

I, (x,0) = -7 /Tr[SMFM(u,O,w)wa%]

uw

— _¢2 / / TI‘[Sp efip-(a:fu)l-\u(kh ]{72) efikyu efikg-wsq efiq-(vf:r),yy]

uw p,q,k1,k2

= —¢? / / e~ iwP gt (=p=h) efiw'(q+k2)Tr[SpFM(k:1, k2)Sqvv

uw p,q,k1,k2

S / e~ 0= OTR(S, 1 (p, 0) Sy
p,q

+ —ip-x
PP q/e P —6221/Tr[S(pﬂ)Fu(p"’_q’q)Sq%] ’
» q

.0 (p)
(B-7)

such that the self energy in momentum space is defined and the DSE in momentum space
reads

_ 1
Dt (p) = Z3P (0* T + £Puby) + Z 3 T, (p). (B-8)
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B Derivation of the photon DSE

This DSE looks formally the same for pure QED. The effects of QCD are hidden in the precise
form of the quark propagator S and the quark photon vertex I';, (B-6). Their DSE's include
the effects of QCD explicitly (3.20,3.48). The truncated DSE's used in the present approach
are (4.14, 4.19).

98



C Derivation of Ward-Takahashi
identities

In this appendix we derive the WTI shown in Eq. (3.52). We consider the global Uj4(3) ~
Ua(1) x SU4(3) transformations which are generated in the fundamental representation by
the eight Gell-Mann matrices A% and the three dimensional unit matrix. That is the Lie
algebra given through

[T, T = ifebeTe a,bc=1,....8 (C-1)
1 1 1

TaTb — géab + §(ifabc + dabC)Tc TI‘(TaTb) — 5 (C_z)

(T =17 TrT® = 0, (C-3)

where £ are the totally skew symmetric structure constants and the d®* are symmetric in
the indices. The generators are T'* = \%/2. In addition we call the generator of the of the
Ua(1) symmetry TY.

The transformations in the fundamental representation are now generated by the elements
g of Ua(3)
g(0) = T, (C-4)

where 00 parametrize the element g and the Dirac matrix v, (3.51) ensures that left-handed
and right-handed spinors are transformed with opposite angles

b — 0Ty, b — 0T (C-5)
1/1L — 6ieTle/}L @DR N efiGT“wR (C—G)
1+ - -1F
Yr/L = 2751# Yr/p =1 275- -

In order to derive WTI's we start with the observation that the path integral is invariant
under the transformation 1) — 1)’

[pives = [puitges, (C-s)

where J is the Jacobian of the transformation. This must be the case since U(N) acts as
an automorphism on the space of the quark spinors such that the integration variables are
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C Derivation of Ward-Takahashi identities

just labeled in a different way in (C-8). Now we explicitly carry out the infinitesimal version
of (C-7) dvp = 10%(2)T %51 using a space time dependent 6%(z) for the moment. It can be
shown that the Jacobian J evaluates to [24]

2 2

. e ) o
J = exp |i / 0% (2) 16— THT" Q) ey i Fyus + / 0% (2) 1gﬁ2Tr[T%@tJ]engWng :

z z

(C-9)

where the Abelian photon field is represented by F},, and FZ is the non-Abelian gluon
field tensor. The matrices ¢ are the generators of the SU(3) gauge group of QCD, @ =
diag(2/3,—1/3,—1/3) is the charge matrix of the quarks ! and e and g are the electromag-
netic and strong couplings. The traces are defined in flavour and colour space. These do
contribute only to selective channels a. The anomaly term involving the gluons does only
contribute if @ = 0 since for all other channels Tr[7%] = 0. This term plays a réle in the
Ua(1) problem that concerns the properties of the 1’ meson [82, 83, 84]. The other term
evaluates to non-zero exactly for the diagonal flavour generators a = 0,3,8. This concerns
the 7°, 17 and 1’ mesons and is linked to their decay into photons [80, 87]. These origin of
these traces is easily understandable if one thinks of the one-loop triangle diagrams which
correspond to matrix elements of these operators. Attaching the bi-local quark currents that
function as interpolating operators for the corresponding mesons fields as well as the currents
coupling to the gauge fields to the quark triangle, the matrices inside the traces in (C-9) just
come automatically from the definition of these currents, or alternatively from the structure
of the corresponding vertices which is the same.

Now we have to care about the remaining change of the action S’ in Eq. (C-8) under the
infinitesimal local variation, which evaluates to

/ 0% (2) 0, (D305 T) + / 0° (=) b5 { M, T, (C-10)
where M is the quark mass matrix. Taking the infinitesimal version of (C-8), that is || small
we get

= (=05 +1logJ).

In addition we approach the limit of a global symmetry transformation again (0% = const.)

2 2

. . (& g ..
<6M]Z,5>Z = _<]g>z + @Tr[TaQQ]euuaﬁ <F,u,l/FuV>z + WTY[Tatlt]]ew/aﬁ <F/“,Fw,>
(C-11)

'Here we only take the three light quarks
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C Derivation of Ward-Takahashi identities

with

jZ,5,z = 71_}2'7#75Tawz

. (C-12)
.]g,z = 17[}275{M7 Ta}@bz-

Next we insert an operator O into Eq. (C-8) and carry out the infinitesimal variation as
before

0 = (50) + (~O3S) + (Olog T). (C-13)

If we take O = 1,1, we get

o . . - “
50a = 175T 5zzwx¢y + lw:vaéyz’YST s (0'14)

while the remaining terms of Eq. (C-13) are just obtained by the insertion of this operator
into (C-11)

<8ujz,5,z¢x1z}y> = 'YSTaézx <¢x¢y> + <7/Jx7vzy>5yz'75Ta - <]§¢%Z>

2
e _
—i-@Tr[TaQ?}e#ya5<(FWFW)Z¢x¢y> (C-15)
2
g - o _
+ 162 TF[T“tZtJ]EWaﬁ<(F,inﬂy)zwx@/}y>,
where ¢ = 1, ¥ = 1, and the currents and anomalous operators are evaluated at a

different point z. Next we note that (17)) is the full quark propagator and that all three
point functions that are involved in Eq. (C-15) have external leg dressing on their quark legs
as shown in (3.53,3.54,3.55). We contract by appropriate inverse quark propagators S~! two
times exactly such that all external quark legs become amputated and Fourier transform to
momentum space in order to arrive at Eq. (3.52). The derivation of the vector WTI (3.56)
proceeds very similar. There instead of the U4(Ny), a U(1) symmetry is used and since it is
a gauge symmetry the current is truly conserved.
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D Dispersion relations

The method of dispersion relations is an analytic tool that allows for example the determi-
nations of certain correlation functions in the Euclidean region from experimental input that
is obtained (of course) for time-like momenta. Unitarity of the S-Matrix entails the optical
theorem which relates the imaginary part of a correlation function to a matrix element of a
physical process. An object that is not a well-defined observable in the sense of quantum
mechanics thus becomes directly measurable. For the case of the hadronic photon vacuum
polarisation the optical theorem states

ImII(p?) ~ o(v* — hadrons)(p?), (D-1)

where o is the total cross-section of an electron- positron pair annihilation into hadrons and
p? is a time-like momentum. Since this cross section is measurable, ImII can be obtained in

the time-like region.

Causality on the other hand implies that the momentum-space representation the hadronic
photon two-point correlation- function II(p?) is analytic in the complex p2-plane up to a
line segment on the positive real axis extending from 4m2 to co. Thus the Cauchy integral

formula
1 d¢ Tl
) = 5 [ 555 (D-2)

[

for a closed contour ¢ can be applied. Deforming ¢ to a large circle that avoids the non-
analytic region following the real axis for & > 4m?2 closely, only the integration along the
non-analyticity contributes

) - - [ S (D-3)
4m?2

™

In addition
II(€ +ie) — II(€ — ie) = 2i ImII(¢),

for £ € R™, has been used. Furthermore the subtracted dispersion relation reads

2 7 -
MR (p?) = (p?) — T1(0) = % w. (D-4)

2
4mz
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D Dispersion relations

Now the optical theorem in the version of Eq. (D-1) is used to define ImII in terms
of measurable quantities. The exact identification of these quantities is subtle since the
process eTe~ — v* — hadrons is the experimentally available one and the cross section for
~v* — hadrons has to be deduced. This is elaborated for in example in [1]. The result is

2y 9 [ e Bua(©) _
IIn () = %4/2 dezr o (D-5)
where Fom s had
Rnaa(§) = olee 47%(5)& rons)
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E Quark-photon vertex

The quark photon can be defined as the connected part of the matrix element
[ Stwier,(w w 2S(w.5) = (@0)-025) (E-1)
The basis for the quark-photon vertex I',(P, k) consists of twelve independent basis elements

12

Tu(Pk)=> N(P?k*,P-k)V, (E-2)
. These are generated by
{’YM,PM,]{:M}(X){]L,P,}{/, LP’}{]} (E_S)
In particular we use
Vul =Y
Vi =2k )
V= 2ik,
Vit = il wlky
5_ T
Vi =Y

Vi =kl PP k/(KP?)
VE = —(7L P T + 2k P) /2K
V/? = ikf/q
VIO =iyl kTP Kk
11 _ .. T (P ) k)Q 12
Vul =iy, 7] <1 T p2 ) 2V,

12 _ 1.7 1,T 2
V2 =ik kT P/k

as basis.
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E Quark-photon vertex

In order to be able to project any contribution to the vertex onto the basis elements we
have to construct the corresponding projectors. Considering the V), as linearly independent
elements spanning a vector space, the projectors P, are just the dual basis

3t = (PO, V) = Te[POV,). (E-5)

Here (-,-) is the scalar product that is defined as contraction of Lorentz indices and trace in
Dirac space. The metric tensor M of this space is then

which can be used to construct the projectors via its inverse M% = [M~1];;
PO = MUV, (E-7)
The projectors constructed via (E-7) do obey relation (E-5).

In the course of the numerical solution of Eq. (4.19) we use direct numerical iteration. We
use the bare vertex as an initial guess and then perform the numerical integration procedure
defined by the right hand side of the equation and add the bare vertex. This gives the result
corresponding to the next iteration step. Symbolically we have

I =, +T{VSSK, (E-8)

where the index ¢ counts the iteration step. The symbols denote the quark propagator S
and the interaction kernel K. In order to perform the calculation efficiently the numerical
integration is cast into a matrix multiplication. This is straight forward with a standard
Gaussian quadrature. The vertex is is then written as one dimensional array

Te[POTE (K% k - P)) = Tge gopay. (E-9)

that is labelled via the super index {k‘Q, k - P,z'}. It depends on the relative momentum %2,
the angle k - P and the index labelling the basis component 7. The total momentum P can
be kept fixed and is considered to be an external parameter for the time being. The kernel
SSK can be cast into a similar form. Starting from the vertex-BSE (4.19) we project onto
component ;) via the projector P just constructed

Aiy(K2 k- P) = (P9 y,) + /<P<">, YaS1 > AiVij)uS-78) Dag, (E-10)

where the momentum dependence of most parts is not shown explicitly. The effective in-
teraction including all prefactors is just called D,g. The matrix kernel K is then defined

105



E Quark-photon vertex

as

K2 qPjy. (k2 6Py = /<P(i)(kaP)7VaS(kJr)V(j)(%P)S(k—)’Yﬁ>Da5(q — k)wewg.p.
k-q
(B-11)

Here we show explicitly the momentum dependence of all parts including the basis elements
V() and the projectors P® . All momenta are now taken on a fixed grid defined by the Gaus-
sian quadrature rule and the kinematic dependence it organized into a super index together
with the label i of the basis element. The ¢ integration is trivial in one angle. The angle ¢k
can also be integrated beforehand since it enters only in the effective interaction Dyg(k — q)
which is known in this approach. The remaining two integration variables ¢ and ¢ - P are
now open indices in (E-11) and can be performed by matrix multiplication (see below). The
w's are the weights of the quadrature rule used. The vertex BSE can now be written as

A1 =0i1 + A K, (E-12)

where the inhomogeneous part arises from <P,Ei),’yﬂ> = ;1 and the super indices are labelled
as I = {k* k-P,i} and J = {q¢? q- P,j}. The kinematics that have been chosen are

0 0 sin ¢ sin 0 cos ¢

5 |0 = 0 o sin 1) sin 6 sin ¢

P= 0 =k sin o 1= sin 1) cos 6 ’ (E-13)
P COos & cos Y

where ¢ is the trivial angle, 6 is the one that only appears in ¢ - k and can be integrated
before iteration in (E-11), @ — k- P and ¢» — ¢ - P. Equation (E-12) can now be solved

efficiently via iteration with the bare vertex as initial guess )\§0) = ;1.
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F Photon four-point function

In the present chapter we present the derivation of the photon four-point function that is
needed in the light-by-light scattering contribution to the muon g—2. The four-point function
is obtained by taking two derivatives of the full inverse photon propagator

- 54T A]
wol = 5 A,5A,6A,0A5
A A
T 0AL0A, 6AL0As  AL0A,

II

(F-1)

(Daﬁ)il'

In order to proceed we consider again the photon DSE (3.28) that is presented again in fig.
F.1 for the convenience of the reader. We now take two further derivatives of the photon
DSE. By the virtue of the approximation we consider, namely rainbow-ladder truncation of
QCD, the photon is not a dynamical field in our formalism. The photon self-energy that we
calculate is performed using quark and quark-photon vertex equations that do not take into
account the photon as a dynamical object, but rather as an external background field. Inter-
nally all objects just include dynamical quarks and model-gluons. This is why the application
of further derivatives on the photon DSE is consistent within our approximation. Furthermore
this operation leaves the internal consistency of the truncation intact. In particular the con-
sistency with chiral symmetry and electro-magnetic current-conservation in form of WTI's is
not destroyed.

An object that will be needed on several occasions is the quark anti-quark photon-photon
vertex. Within rainbow-ladder approximation this object can be exactly written in terms of

1 ~1
NNONVW = VVWWW 4

Figure F.1: The photon DSE defined in Eq. (3.30). Full Propagators are denoted by white blobs
and the red blob marks the full 1PI fermion-photon vertex.

107



F Photon four-point function

quark-photon vertices and the T-matrix

(F-2)

Il
N

where the factor of two is not a symmetry factor but rather a convenient way to denote
that the two possible photon permutations are included. Application of one derivative to the
photon DSE in fig. F.1 gives

i O

The bare inverse photon does not contribute. The derivative has to be applied to the quark-
photon vertex and the two dressed quarks of the photon self energy. Since there are two
quarks in the loop the second diagram comes again with two permutations that correspond
to one diagram with straight photon legs and one with crossed ones. This is signaled by the
factor 2. Now the application of the relation shown in Eq. (F-2) results in

R UF S

Next we take into account the relation between the T-matrix and the G-matrix shown graph-
ically in fig. 3.3. The inhomogeneous part that involves just two propagators cancels the
second diagram on the right side of the last equation above and we are left with

Now the final step is to remember that the bare quark-photon vertex together with the
G-matrix corresponds to a dressed quark-photon vertex and to external quark-leg dressings.
Finally we obtain the consistent representation of the hadronic part of the three-photon vertex
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F Photon four-point function

which is not zero as long as the external photon background-field is present. The factor 2
can also interpreted as representing the two possible orientations of the quark loop.

Now the four-point function is obtained by taking a further derivative with respect to the
external photon field. Again the derivative can act on quark-photon vertices and the quark
propagators. The result is

T AT,

where the additional factor three is caused by the three possible vertices and three propagators
respectively. Using again relation (F-2) we arrive at

R R A O A

Up to this point no approximations on top of rainbow-ladder truncation of QCD have been
made. The last two representations of the four-point function are thus truly consistent with
the rainbow-ladder photon self-energy shown in fig. F.1.

Now we approximate the T-matrix by its pole-structure. This approximation is exact on the

respective meson mass-shell. If the poles of the lightest mesons are dominant features of the
function even in the low-momentum Euclidean domain, this approximation is also reasonable

there
LY

Taking now the two quark triangles as 7wy~ form factors we arrive at

AL e -

where the form factor definition is

<
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F Photon four-point function

The two permutations that are included in each form factor reduce the permutations of meson
insertion in the photon four-point function to three. These are the three meson permutations

that are usually considered in this kind of approximation. The representation (F-3) is well
known from effective field theory approaches.
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