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1. INTRODUCTION  

1.1 Inflammation 

Inflammation has been recognized in the field of medicine from the period as early 

as 30AD when Celsius first described the four basic markers of it: Rubor 

(redness), Calor (heat), Tumor (swelling) and Dolor (pain), to which Virchow in 1870 

added  the fifth element, Functio laesa (loss of function). The term inflammation  can  

be  defined  as  a  stereotypical  reaction  of  the  body  against  invading pathogens 

including viruses, bacteria, fungi, protozoa, cell injury or any toxic substance. 

Inflammation can be acute or short-lived which is rather non-specific and chronic or 

persistent where the process is more specific and is dominated by a specific cell 

type (e.g. neutrophils in chronic airway inflammation). 

 

1.2 Heme-Heme oxygenase System 

Heme oxygenase (HO) was first described by Tenhunen et al in 1968 as a distinct 

enzyme which degrades heme in hepatic microsomes. To date, HOs are the only 

known enzymes which are responsible for catalyzing the first and rate-limiting 

step of oxidative breakdown of heme into iron (Fe), carbon monoxide (CO) and 

biliverdin (Tenhunen et al. 1968).  Biliverdin is consecutively converted to bilirubin 

by the enzyme biliverdin reductase (Kapitulnik and Maines 2009). HO enzymatic 

activity requires three moles of molecular oxygen (O2) and NADPH. HOs are 

ubiquitously expressed in higher eukaryotes. Heme degrading systems similar to the 

HO system have also been described in lower entities such as bacteria, algae and 

flies (Ryter et al. 2006). 

 
The heme molecule is a double-edged sword, which on the one hand is required for 

the biological functions of many heme apoproteins such as hemoglobin, myoglobin 

and cytochrome c oxidase (Padmanaban et al. 1989; Wijayanti et al. 2004). On the 
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other hand free heme catalyzes the formation of reactive oxygen species (ROS) 

through Fenton chemistry and thus leads to oxidative-stress-induced tissue and 

cellular damage. Therefore, intracellular generation of heme is tightly regulated 

(Sassa 1996; Ponka 1999; Sassa 2004). Moreover, heme has recently been shown 

to have potent pro-inflammatory properties (Wagener et al. 2003; Soares et al. 

2009). Intravenous administration of heme has been shown to cause experimental 

inflammation with high leukocyte infiltration. Moreover, Jeney et al have shown that 

heme-dependent oxidation of low-density lipoproteins is involved in inflammation-

mediated tissue damage (Jeney et al. 2002). Hence, the HO system plays a crucial 

role in regulating the intracellular heme homeostasis. 

 
 

 
 
 
Fig 1: Heme is enzymatically degraded to yield carbon monoxide (CO), iron and 

biliverdin, which is converted into bilirubin in a coupled reaction (Vijayan et al. 2010). 

 

1.3 Heme oxygenase isoforms 

 
Two isoforms of HO have been characterized: HO-1, which is an inducible isoform of 

HO and HO-2, which is constitutively expressed. Both enzymes are genetically 
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distinct; the human HO-1 and HO-2 are localized on chromosomes 22q12 and 

16p13.3, respectively. Human HO-1 contains 288 amino acids and has a molecular 

weight of 32 kDa, whereas HO-2 consists of 316 amino acids with a total molecular 

weight of 36 kDa. Rat HO-1 and HO-2 share 43% amino acid homology and between 

species HO-1 in humans and rats have 80% similarity and HO-2 shares 88% 

similarity. The mouse HO-1 protein contains one cysteine while the other species do 

not. HO-1 and HO-2 also vary in their tissue expression pattern where HO-1 is found 

highly expressed in spleen and tissues that degrade senescent red blood cells, 

including specialized reticulo-endothelial cells of the liver and bone marrow (Maines 

et al. 1986; Ryter et al. 2006; Abraham and Kappas 2008). HO-2 in turn is highly 

expressed in the testes and brain (Trakshel et al. 1986). Both HO-1 and-2 contain a 

COOH-terminal hydrophobic domain, which allows attachment to membranes and 

has been predominantly found to be localised in the endoplasmic reticulum. Recent 

studies have, however, reported the localisation of HO-1 in the plasma membrane, 

mitochondria and nucleus (Kim et al. 2004; Converso et al. 2006; Sacca et al. 

2007). 

1.4 Heme oxygenase-1 

 
Why do we need two isoforms of an enzyme with the same property if its role is the 

same? In contrast to HO-2, HO-1 as aforementioned has an inducible gene 

expression. Strikingly, HO-1 gene expression can be induced not only by its 

substrate heme, but also by a wide variety of stress-inducing stimuli such as UV, 

heavy metals, quinones and LPS (Choi and Alam 1996; Immenschuh and Ramadori 

2000; Alam et al. 2004). The high inducibility of HO-1 gene expression raised the 

speculation that this enzyme might be involved in cytoprotection but experimental 

evidence was lacking. HO-1 was first linked to inflammation by Willis et al in an 

animal model of carragenin-induced pleurisy, in which specific upregulation of HO 
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enzyme activity attenuated a complement-dependent inflammation (Willis et al. 

1996). In 1997 the first report on a knockout mouse model of HO-1 (Poss and 

Tonegawa. 1997) marked a new era in the field of HO-1 with a rapid increase in 

interest for this protein leading to over 4000 publications. To date, only one case of 

human HO deficiency is reported in the literature (Yachie et al. 1999). Molecular 

alterations in both the patient and the knockout mouse with HO-1 deficiency will be 

discussed in the following chapters.  

1.5 HO-1 knockout mouse model studies 

Poss and Tonegawa (1997) analysed the iron reutilisation properties and observed 

an increased amount of oxidized proteins and lipid peroxidation levels in the HO-1 

knockout mouse with values of 51% and 95% in comparison to normal or 

heterozygous mice. HO-1 knockout mice showed signs of chronic inflammation with 

typical histological changes such as fibrosis, high peripheral leukocyte count and 

elevated infiltration of leukocytes into hepatic and renal tissue.  Moreover, cells from 

these knockout mice were highly sensitive to oxidative-stress induced by heme and 

H202. Furthermore, the production of ROS and other free radicals upon heme or H202 

stimulation was significantly higher in mouse embryonic fibroblasts (MEFs) of HO-1 

knockout animals in comparison to wild type cells. Moreover, both heterozygous as 

well as the wild type mice were more resistant to an endotoxin challenge as 

compared to knockout mice (Poss and Tonegawa 1997). Hence, HO-1 appeared to 

have an important function in protecting against LPS-induced toxicity. Similarly, 

when haemoglobin was administered, HO-1 knockout mice suffered from irreversible 

renal damage with a 100% mortality rate (Poss and Tonegawa 1997). It is 

noteworthy that HO-2 the constitutive isoform does not compensate for the loss of 

HO-1.  
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Furthermore, Kapturczak and colleagues (2004) explored the immune modulatory 

properties of HO-1 in HO-1 knockout mice and reported that the regulation of 

cytokine and chemokine expression was impaired in HO-1 knockout mice. High 

amounts of pro-inflammatory cytokines such as TNF-α, IL-6 and IL-1 were observed 

in these knock out animals. Although many in vitro studies have linked HO-1 with 

cytokine regulation this study was the first to show direct immunomodulatory 

functions of HO-1 (Kapturczak et al. 2004). Similarly, other studies have shown that 

adaptive immune responses are also impaired in these knockout mice (George et al. 

2008; Soares et al. 2009). In contrast, HO-2 knockout mice appear to have an intact 

immune regulation but exhibit defects in their central and autonomous nervous 

system (Burnett et al. 1998).  

 
 

 
 
 
 

 

 

 

 

 

 

Fig 2: Wild type mice, heterozygous mice and HO-1 knockout mice 6-9 weeks old were 

challenged with endotoxin. HO-1 knockout mice exhibited high mortality rates (Toss and 

Ponegawa 1997). 

 

1.6 Human deficiency of HO-1 

Only one case of human deficiency of HO-1 has been reported so far (Yachie et al. 

1999). Nevertheless studies on this patient contribute to and validate most of the 

phenotype observed in the HO-1 knockout mouse model. The patient was a 6 

year old Japanese boy with growth retardation and delayed motor development. 
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From the time he was 2 years old he developed hepatomegaly and 

lymphadenopathy. His peripheral blood exhibited a high concentration of fragmented 

erythrocytes and showed increased levels of white blood cells with dysmorphic 

monocytes. One of the clinical features, which led to the diagnosis of a HO-1 gene 

defect, was the complete absence of the HO-1 enzyme in Kupffer cells in an 

immunohistochemical staining of hepatic biopsy specimens. Examination of lungs 

and heart revealed no significant abnormalities, whereas the deficiency of HO-1 led 

to a heavy damage of the kidney. E lectron microscopic analysis of the renal biopsy 

specimen revealed marked endothelial damage with an unknown deposition in renal 

glomerular capillary loops. Moreover, the endothelium was found to be detached 

widely. Infiltration of leukocytes, iron deposition and an increase in adhesion 

molecules such as ICAM, selectins and other inflammatory markers like von 

Willebrand factor were observed. Furthermore, absence of HO-1 rendered the 

lymphoblastoid cell line (LCL) (EBV transformed B cells) from the patient more 

sensitive to heme-induced oxidative stress.  In summary the absence of HO-1 led to 

an increased pro-inflammatory state in the patient (Yachie et al. 1999; Kawashima et 

al. 2002). 

 

 

 

 

Fig 3: High magnification of the kidney 

cortex in the human HO-1 deficient patient 

showing heavy infiltration of leukocytes 

(Yachie et al. 1999). 
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Fig 4: In comparison to the normal 

intraglomerular endothelium (bottom 

panel), the endothelium of the HO-1 

deficient patient (upper panel) was highly 

detached (arrow) and exhibited an unknown 

precipitate between the endothelium and 

the common basement membrane (Yachie 

et al. 1999) 

 

 

 

 

 

1.7 How does HO-1 regulate inflammation? 

 
The mechanism by which HO-1 confers its cytoprotective effects is widely 

discussed but still not clearly understood. A heavy body of literature suggests a 

pivotal role for CO and bilirubin, the two enzymatic by-products of HO-1 

reaction, in the cytoprotective effects. 

1.7.1 Biliverdin and Bilirubin (BR) 

Antioxidant properties of bilirubin have been described in the 1980s, before 

which it was considered only to be a toxic waste product excreted in bile. The 

antioxidant potential of bilirubin is comparable to the efficacy of alpha-

tocopherol, the most efficient antioxidant acting against lipid peroxidation 

(Kapitulnik 2004; Stocker 2004). Later, an anti-inflammatory function for 

bilirubin was shown in a microvessel model in which the leukocyte 

transmigration rate was observed to correlate with the amount of bilirubin 

produced from HO-1 activity (Hayashi et al. 1999). In a murine asthma model, 

it was shown that administration of bilirubin significantly reduced the VCAM-1-

dependent transmigration of leukocytes which is a mechanism also implicated in 

the pathogenesis of inflammatory bowel disease (Keshavan et al. 2005). In 
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another study on a rat model of endotoxemia it was noted that bilirubin 

treatment significantly blocked the hepatotoxicity seen after endotoxin 

exposure. Hepatic iNOS expression, serum levels of NO, TNF-α and 

aminotransferases, the profound markers of endotoxemia were significantly 

reduced (Wang et al. 2004). Similarly, another independent study reported 

analogous observations in a mouse model of endotoxemia, in which a single 

bolus addition of bilirubin rescued the mice from endotoxemia (Kadl et al. 

2007). Thus, the protective or anti-inflammatory functions of HO-1 can be in 

part attributed to bilirubin.  However, how exactly bilirubin brings about these 

anti-inflammatory effects remains an open question.  

1.7.2 Carbon monoxide 

The last decade has seen a rapid interest in understanding the physiological 

functions of CO. HO-1-generated CO has been implicated in a variety of 

physiological functions such as anti-apoptosis, neurotransmission, anti-

coagulation, vasodilation and most importantly protection against inflammation. 

The anti-inflammatory functions of CO have been reviewed in the following 

references (Ryter et al. 2002; Kim et al. 2006). An initial finding in this context 

was its ability to downregulate the inflammatory cytokines TNF-α, IL-1 beta, 

MIP-1 both in vitro in cell lines and in vivo in mice models challenged with 

LPS (Otterbe in et  a l.  2000) . Similar to bilirubin, CO also blocks the iNOS 

activity or production of NO but unlike the former does not regulate the protein 

expression of iNOS (Sawle et al. 2005). Abrogation of TNF-α, IL-6 and IL-1β 

production by CO is mediated by modulating the MAPKs of which p38 is 

required for most of its functions. More recently it was shown in a RAW 

264.7 murine macrophage cell line and in vivo in a mouse model for acute lung 

injury that CO via production of ROS induces the expression of PPAR-gamma 
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which is responsible for the downstream blockage of pro-inflammatory genes 

such as Egr-1 (Bilban et al. 2006). Apart from this, CO also induces the 

production of cGMP via activating the soluble guanyl cyclase (sGC). CO and 

bilirubin share similarities in their anti-inflammatory functions. Interestingly, CO 

and bilirubin appear to form an autocrine loop by which they induce the activity 

and expression of endogenous HO-1. The possibility that both CO and bilirubin 

exerts its anti-inflammatory function by inducing the endogenous HO-1 

enzymatic activity or a yet undefined function of HO-1 protein cannot be ruled 

out. 

1.7.3 HO-derived iron 

The third product of HO enzymatic reaction, iron is an important compound 

involved in redox-dependent enzyme reactions and bioenergetics. However, 

presence of free iron inside the cell may lead to the formation of toxic ROS, and 

therefore specific intracellular protective mechanisms exist to prevent 

intracellular toxicity. As an example, HO-1-derived iron bind to the intracellular 

iron storage protein ferritin and is transported outside the cell, thereby protecting 

the cell from oxidative damage (Ponka 1997). Interestingly, it has been shown in 

various models that upregulation of ferrittin correlated with the synthesis of HO-

1 (Balla et al. 1992; Ryter and Tyrrell 2000). Of note, deficiency of HO-1 in 

mice (Poss and Tonegawa 1997) and humans (Yachie et al. 1999; Kawashima 

et al. 2002) has been shown to be related with an increase iron deposition in 

the liver and kidney. 

1.8 How does HO-1 modulate an inflammatory response? 

Studies on the role of HO-1 in different cell types have revealed that HO-1 

exhibits cell-specific anti-inflammatory roles of which some are discussed in the 

following. 
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1.8.1 Role of HO-1 in endothelial cells 

Activation of endothelial cells is a crucial step in the process of inflammation 

because it regulates the influx of leukocyte population, especially that of 

polymorphonuclear neutrophils.  Pro-inflammatory  cytokines  modulate the 

gene expression of adhesion molecules such as E-selectin, P-selectin, ICAM-

1  and  VCAM-1  on  endothelial  cells,  thus  facilitating  the  adhesion  and 

transmigration of leukocytes into the site of injury (Muller 2003; Cook-Mills and 

Deem 2005; Immenschuh and Schroder 2006). In an in vivo rat model it was 

observed by intravital microscopy that induction of HO-1 in microvessel 

endothelial cells downregulates the adhesion of leukocytes to these cells during 

oxidative stress (Hayashi et al. 1999). In another study it was shown that 

inhibition of HO activity potentiated the heme-induced leukocyte infiltration into 

the tissues (Wagener et al. 2001). Recently, it was shown that the TNF-α-

mediated upregulat ion of  the adhesion molecules E-selectin and V-CAM1 

was downregulated by overexpressed HO-1 through inhibiting the activation of 

NF-B (Seldon et al. 2007). Thus, the major role for HO-1 in endothelial cells for 

counteracting inflammation seems to be achieved by regulating the expression 

of adhesion molecules on these cells and maintaining them in a less active 

state. Additionally, HO-1 also protects the endothelial cells from inflammatory 

damage by turning on an anti-apoptotic signaling cascade. This mechanism 

involves the degradation of the p38-alpha isoform of the p38 MAPK (Soares et 

al. 2002; Silva et al. 2006). 

 
 
1.8.2 Modulation of immunologically active cells by HO-1 
 
Among immunologically active cells, the most prominent model  of  study  for  

heme  oxygenase  functions  has  been  the  macrophages  or monocyte 

population. Studies in macrophages from HO-1 knockout mice suggested an 
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important functional role of HO-1 in these cells. HO-1 knock out cells produced 

high levels of the pro-inflammatory cytokines TNF-α, IL-6 and IL-1beta 

(Kapturczak et al. 2004).  Several independent  studies  have also reported  

the negative regulation of HO-1 on the proinflammatory genes 

cyclooxygenase 2 ( COX-2) and inducible nitric oxide ( iNOS) in macrophages, 

in which    induction  of  HO-1  has  been  shown  to  block  the production of 

prostaglandins as well as NO after LPS challenge (Lee et al. 2011; Park et al. 

2011). Similarly HO-1 has been shown to have an antioxidant  role in  

macrophages (Schulz-Geske et al. 2009).  

 
Another important function of HO-1 containing antigen presenting cells (APCs) 

seems to be the regulation of regulatory T-cells (Tregs). In a recent study it was 

shown that Treg cells require the presence of a functional HO-1 in the antigen 

presenting cells to execute their function of suppressing the effector T cell 

proliferation. Interestingly absence of HO-1 in Treg cells itself does not affect its 

suppressive activity in vitro (George et al. 2008) 

 
Dendritic cells (DCs) occupy the major population of antigen presenting cells 

and play an important role in adaptive immune responses by presenting the 

antigen to the B cells and T cells. A study on HO-1 functions in DCs revealed 

that immature human and rat DCs express HO-1 significantly which, upon 

receiving a maturation signal is downregulated. HO-1 if induced by co-treatment 

of a maturation signal which in this case was LPS with Cobalt protoporphyrin 

significantly blocked the expression of DC cell surface maturation markers such 

as MHC class II, CD86 and ICAM-1. Moreover their capacity to stimulate mixed 

lymphocyte reactions was abrogated. Hence, in DCs HO-1 seems to be one of 

the critical factors maintaining the balance between immature and mature DCs.  
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This function of HO-1 as proposed by the authors could be used to modulate 

functions of DCs in inflammatory disorders (Chauveau et al. 2005). 

1.9 Signaling mechanisms that regulate HO-1 
 
HO-1 is primarily regulated at the transcriptional level by multiple cis-acting 

regulatory elements (REs) present in the HO-1 gene promoter. The most 

studied of these REs are the two upstream enhancer regions termed E1 and E2 

(Alam 1994; Alam et al. 1994). E1 and E2 contain multiple copies of anti-

oxidant response elements (AREs) which have been shown to be involved in 

the specific upregulation of HO-1 in response to various stimuli (Nguyen et 

al. 2003). Interestingly, the human HO-1 gene contains a GT-microsatellite 

polymorphism in the proximal promoter region, which has been shown to be of 

major biological significance. Individuals carrying HO-1 gene allele with lower 

number of GT repeats have been associated with higher inducibility of HO-1 

gene and seem to be protected against various diseases such as cardiovascular 

disorders (Yamada et al. 2000). NF-E2 related factor 2 (Nrf2), AP-1 and NF-B 

are thought to be the key transcriptional factors involved in the regulation of 

HO-1 gene expression and the findings are briefly discussed below. 

1.9.1 Keap1/ Nrf2 system 
 
Nrf2 is a redox-dependent transcription factor which belongs to Cap’n’Collar 

(CNC) family of leucine-rich zipper proteins. Under basal conditions Nrf2 is 

bound to the cytoplasmic protein Kelch-like ECH-associated protein1 (Keap1) 

which mediates the proteosomal degradation of Nrf2. Under stress conditions, 

Keap1 is modified leading to the release of Nrf2, which translocates to the 

nucleus (Itoh et al. 1999; Kobayashi and Yamamoto 2005; Kimura et al. 2007; 

Kaspar et al. 2009). Once in the nucleus Nrf2 forms heterodimers with small 

maf proteins and binds to anti-oxidant response elements  in  the  promoter  of  
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various  phase II  detoxifying  enzymes,  such  as glutathione transferases and 

NADPH: oxidoreductase (Motohashi et al. 2002). 

 
A noteworthy feature of Nrf2 signaling with respect to the specific up-

regulation of HO-1 gene is the interplay between Nrf2 and the transcriptional 

repressor Bach1. Under basal conditions Bach1 is bound to ARE-elements on 

HO-1 promoter. But when stimulated with heme, Bach1 dissociates from HO-1 

promoter and is rapidly transported to the cytoplasm allowing the incoming Nrf2 

to bind to the Bach1-free anti-oxidant response element and thus activate the 

transcription of HO-1 gene (Ogawa et al. 2001). Similar mechanisms have been 

reported for other stimuli, such as sodium arsenite (Reichard et al. 2008). 

 

 
 

(Paine et al. 2010) 
 
Fig 4: Regulatory interplay between the transcription factors Nrf2 and Bach1 on the gene 

expression of HO-1. Under normal conditions Bach1 acts as a repressor of the HO-1 gene 

by binding to the AREs of the HO-1 promoter. When cellular heme levels are high Bach1 

dissociates from the promoter and translocate to the cytoplasm. At the same time Nrf2 

translocate to the nucleus and bind to AREs and activate the transcription of HO-1 gene 

(Paine et al. 2010) 

 

Normal conditions Prooxidant conditions 
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1.9.2 NF-B 
 
The NF-B/Rel family of transcription factors consist of many proteins factors 

which form homodimers and heterodimers among themselves to drive the gene 

expression of a plethora of pro-inflammatory genes such as cytokines, 

adhesion molecules and anti-oxidant proteins (Gilmore 2006; Perkins and 

Gilmore 2006). The classical activation pathway of NF-B has been studied 

extensively. Under basal conditions NF-B is maintained in the cytoplasm by 

the NF-B inhibitor protein, IB.  Upon  receiving  an  activation  signal  IB  is  

phosphorylated  and undergoes  degradation  whereby  NF-B  is  released.  

NF-B translocates to the nucleus where it binds to the NF-B binding elements 

on the gene promoter and induces the gene expression (Ghosh and Hayden 

2008). 

 
The role for NF-B in regulating HO-1 gene expression has been discussed 

controversially. Although NF-B inhibitors have been shown to block HO-1 

induction by various stimuli  such  as  LPS,  only  two  studies  have  so  far  

reported  the  presence  of functional NF-B binding elements in the HO-1 

promoter. In one study it was shown that TPA-induction of HO-1 is regulated 

by a proximal NF-B site in the rat HO-1 promoter. Another independent study 

reported that nitric oxide synthase upregulates HO-1 via a NF-B-dependent 

pathway and is regulated by a NF-B element in the mouse HO-1 promoter 

(Naidu et al. 2008; Li et al. 2009). 

 
1.9.3 AP-1 

 
Alam and colleagues have reported that the transcription factor AP-1 is 

important for the induction of mouse HO-1 (Alam and Den 1992; Alam et al. 

1995). AP-1 belongs to a family of transcription factors which is involved in 

various cellular processes including stress responses (Karin 1995; Hess et al. 
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2004). Elucidating the role of AP-1 in HO-1 gene expression is highly complex 

due to the fact that the AP-1 binding site (TGATGCA) is a part of the HO-1 

ARE sequence (TGCTGAGTCA). Most likely there is a cross-talk between Nrf2 

and AP-1 family of transcription factors and this notion has been supported by 

the recent finding that c-jun in association with Nrf2 induce the expression of 

the ARE-regulated genes NADPH:quinone oxido reductase and glutamate-

cysteine ligase (Alam et al. 1999; Levy et al. 2009). 

 
In summary, multiple transcription factors may act co-ordinately to upregulate 

HO-1 gene expression during stress conditions. 

1.10 Role of kinases in HO-1 signaling 

Generally, transcription factors are regulated by intracellular signaling cascades, 

which are controlled by the activation of various kinase and phosphatase 

modules and the redox state of the cell. Due to space limitations in this thesis 

the role of these kinases are not described in detail. Hence, only the mitogen 

activated protein kinases (MAPK), which have been explored in my work, 

specifically the role of p38 MAPK for the regulation of HO-1 gene expression are 

highlighted. 

1.10.1 The MAPK pathway 

Activation of MAPKs has been shown to play a central role in the regulation of 

HO-1 gene expression (Alam and Cook 2007). There are three major 

subfamilies of MAPKs: p38 MAPK, extracellular signal-regulated kinase (ERK) 

and c-Jun N-terminal kinase (JNK) (Kyriakis and Avruch 2001). ERK is shown 

to be mainly involved in the activation of signaling pathways induced by growth 

factors and hormones, whereas JNK and p38 MAPK are considered to be 

activated under stress conditions (Kyriakis and Avruch 2001; Wagner and 

Nebreda 2009). 
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Activation of p38 MAPK has been shown to be assoc iated with  antioxidant 

and anti-inflammatory responses. Several studies indicate that blocking the 

activity of p38 MAPK either by chemical inhibitors or by gene silencing blocks 

the protein induction of HO-1 in response to various stress-stimuli (Cook-Mills 

and Deem 2005; Alam and Cook 2007). It is noteworthy that the different 

isoforms of p38 MAPK have opposing roles in the regulation of HO-1, which 

has been demonstrated for sodium arsenite and LPS induced expression of HO-

1 (Kietzmann et al. 2003; Wijayanti et al. 2004). 

 
Apart from MAPKs other kinases such as JAK kinase (Zhang et al. 2006) and 

PI3 kinase (Martin et al. 2004) also have a role in the regulation of HO-1. It is 

important to note that the regulation of HO-1 by kinases is stimuli-specific and 

in some cases cell-type specific (Paine et al. 2010). 

 

(Paine et al. 2010) 

Fig 5: Signaling cascades that lead to the activation of Nrf2 regulating HO-1 gene 

expression (Paine et al. 2010). 
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1.11 LPS signaling of HO-1 

 
LPS, a cell wall component of gram negative bacteria is a potent inducer of 

inflammation and has been extensively used to induce and study sepsis 

in mouse models. LPS signaling in cells is mediated by the CD14 receptor 

in association with the TLR4 receptor present on the cell surface. TLR4 

activation is followed  by  activation  of  a  series  of  adaptor  molecules  

that  lead to the phosphorylation and degradation of IB and subsequently 

to the release of the transcription factor NF-B (Zhu and Mohan 2010). LPS 

has been previously shown to induce the expression of HO-1 in various 

cell types. Camhi and co-workers (1995) described that LPS-induced HO-1 

upregulation in murine macrophages is primarily mediated by the 

transcription factor AP-1 (Camhi et al. 1995). Independently, others have 

demonstrated tha t  the transcription factor Ets2 is crucial for the 

promoter regulation of mouse HO-1 (Chung et al. 2005). Previous studies 

from the Immenschuh laboratory have indicated a role for NO, NF-B and 

p38 MAPK in the LPS-induced upregulation of HO-1 in macrophages 

(Immenschuh et al. 1999; Wijayanti et al. 2004). The signaling 

mechanisms that lead to the induction of HO-1 are regulated by multiple 

factors and are highly complex. 

 Noteworthy, increased HO-1 activity has been shown to exert inhibitory 

effects on the intracellular signaling initiated by TLR4 activation (Nakahira 

et al. 2006). This regulatory interplay between TLR4 and HO-1 seems to 

form a negative feedback loop, in which HO-1 activation controls the 

excessive activation of macrophages by LPS. This feedback circuit might be 
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of major significance for the regulation of inflammatory responses.  

Understanding this complex mechanism in detail will help us develop new 

therapeutical strategies to treat inflammatory conditions such as sepsis. 

1.12 Bruton’s Tyrosine kinase 

 
Bruton’s tyrosine  kinase  (Btk)  is  a member  of  the Tec  family  of  

non-receptor tyrosine kinases and is found to be expressed in all cells 

of the hematopoietic lineage except for plasma cells and T cells. The 

defining feature of this kinase is the presence of a pleckstrin homology 

(PH) domain at the N-terminus. Naturally occurring mutations on this 

kinase, that make it non-functional were identified initially in humans in a 

rare genetic disorder called X-linked agammaglobulinemia (XLA) (Vetrie et 

al. 1993), which is characterized by a deficiency of mature circulating B-

cells and immunoglobulins. In murine models, a single point mutation 

(R28C) in the mouse Btk gene or targeted disruption of the Btk gene is 

associated with a similar phenotype and is termed XID syndrome (Rawlings 

et al. 1993; Khan et al. 1995). 

 
In addition to the PH domain Btk also contains three Src homology domains 

(SH1, SH2 and SH3) and the Tec homology domain (TH) that is conserved 

in all the members of the Tec family except for Etk/Bmx. Btk is versatile in 

its interaction with other proteins. Moreover, the presence of these 

domains makes it possible for Btk to form protein-protein as well as 

protein-lipid interactions. Under basal conditions, the SH3 domain and the 

TH domain form an intramolecular interaction which folds Btk in a “closed” 

inactivated form. Upon receiving an activation signal, the protein undergoes 
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a conformational change and is then translocated to the membrane via its 

PH domain (Mano 1999). 

 
Initial studies mainly focused on the role of this kinase in B cells which 

indicated that Btk is crucial for their function and development 

(Satterthwaite and Witte 2000). Recently, it has been shown that Btk 

plays a major role in TLR-induced innate immune responses evoked in 

macrophages (Jefferies and O'Neill. 2004). Specifically, inhibition of Btk in 

macrophages caused an impaired TLR4-induced gene expression of central 

pro- and anti-inflammatory cytokines such as TNF-, IL-1 and IL-10 

(Horwood et al. 2003; Doyle et al. 2005; Horwood et al. 2006; Koprulu and 

Ellmeier 2009). Moreover, Btk is required for appropriate phagocytic 

function and for the survival of mononuclear phagocytes (Schmidt et al. 

2006; Jongstra-Bilen et al. 2008).  

1.12.1 Regulation of HO-1 gene expression in mononuclear 

phagocytes 

Mononuclear phagocytes (monocytes, macrophages) are immune cells which 

play an important role in modulating an inflammatory response. On the one 

hand they play a crucial role in the initiation of an inflammatory response via 

secretion of pro-inflammatory cytokines, such as IL-1, IL-6 and TNF-α and by 

the intracellular generation of ROS, which aids in killing the phagocytosed 

pathogen. On the other hand mononuclear phagocytes promote resolution of 

inflammation by phagocytosing apoptotic cells and by the secretion of the 

anti-inflammatory cytokines IL-10 and TGF-β. Recent evidence suggests that 

the immunomodulatory functions of HO-1 in mononuclear phagocytes may be 



20 
 

involved in the regulation of an inflammatory immune response. The 

prototypical inflammatory stimulus LPS, which initiates signaling by binding 

to TLR4, has been shown to induce HO-1 in macrophages.  

1.13 Aims of the study 

1.13.1 Part A 

TLR-induced signaling mechanisms activate diverse signaling molecules. 

Recently it was shown that Btk, a kinase which is crucial for the development 

and effector functions of B-cells, is involved in the TLR-induced signaling of 

cytokines. Signaling pathways are highly complex and many signaling 

molecules that have been shown to be involved in cytokine regulation have 

also been implicated in the regulation of HO-1 gene.  In the first part of this 

thesis, therefore it should be analyzed whether Btk would also be involved in 

the TLR-induced regulation of the HO-1 gene. Furthermore, downstream 

signaling events to the HO-1 promoter should be analyzed and the role of 

ROS and Nrf2 should be evaluated in this regulatory process.  

1.13.2 Part B 

In the second part of this thesis the role of p38 MAPK in the regulation of 

HO-1 should be analyzed. Activation of p38 MAPK has been shown to be 

crucial for the induction of HO-1 gene expression in response to various 

stimuli including LPS. Furthermore, our group noticed an opposing effect of 

p38 MAPK on HO-1 gene expression during conditions when under the 

absence of an external stimulus, chemical inhibitors of p38 MAPK were used. 

Therefore, in this thesis it should be analyzed which functional role p38 MAPK 
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exerts on the regulation of the HO-1 gene. Moreover, the role of p38 MAPK in 

the presence and absence of external stimuli should be compared and the 

downstream signaling pathways explored. Finally, the cross-talk between p38 

MAPK and the other MAPKs such as JNK and ERK should be evaluated. 
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2 Materials and Methods 

2.1 Materials 

2.1.1 Experimental animals 

Specific pathogen free (SPF) C57Bl/6J mice 8-12 weeks old were purchased 

for experimental purposes from Charles River Laboratories (Sulzfeld, 

Germany). Btk knockout mice and their wildtype littermates were a generous 

gift from Dr. Cornelia Brunner (Dept. of Biochemistry, Ulm University Medical 

School). They had free access to food and water and were kept under 

standardized environmental conditions (12h light/dark cycle, 23°C ± 1°C and 

55% ± 1% relative humidity).     

2.1.2 Laboratory instruments 

Table 1. All laboratory instruments used for experiments in this thesis are listed with notice of 

corresponding suppliers: 

Instruments Company name 

AGFA Horizon Ultra Colour Scanner  AGFA, Mortsel, Belgium 

Biocell A10 water system Milli Q-Millipore, Schwalbach, Germany 

Biofuge Fresco Heraeus, Hanau, Germany 

Biofuge Pico Heraeus, Hanau, Germany 

Bio-Rad electrophoresis apparatus Bio-Rad, Heidelberg, Germany 

Dish washing machine  Miele, Gütersloh, Germany 

Cary 50 Bio-UV-visible spectrophotometer Varian, Darmstadt, Germany 

Gel-Doc 2000 gel documentation system Bio-Rad, Heidelberg, Germany 

Hera cell 240 incubator Heraeus, Hanau, Germany 

Hera safe, clean bench Heraeus, Hanau, Germany 

Ice machine, Scotsman AF-100 Scotsman Ice Systems, Vernon Hills, IL, USA 
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Leica DMRD fluorescence microscope Leica, Bensheim, Germany 

Leica DC 480 camera   Leica, Bensheim, Germany 

Microwave oven LG, Willich, Germany 

Mini-Protean 3 cell gel chamber Bio-Rad, Heidelberg, Germany 

Multifuge 3 SR centrifuge Heraeus, Hanau, Germany 

pH meter IKA, Weilheim, Germany 

Pipettes 2.5 µl, 10 µl, 20 µl, 100 µl, 200 µl and 

1000 µl. 

Eppendorf, Hamburg, Germany 

Power supply - 200, 300 and 3000 Xi Bio-Rad, Heidelberg, Germany 

Pressure/Vacuum Autoclave FVA/3 Fedegari, Albuzzano, Italy 

Pump Drive PD 5001 Heidolph Instruments, Schwabach, Germany 

Sorvall Evolution RC centrifuge Kendro, NC, USA  

SmartspecTM 3000 spectrophotometer Bio-Rad, Heidelberg, Germany 

Thermo plate Medax, Kiel, Germany 

Trans-Blot SD semidry transfer cell Bio-Rad, Heidelberg, Germany 

Trimmer TM60 Reichert, Wolfratshausen, Germany 

TRIO-thermoblock  Biometra, Göttingen, Germany 

Ultra balance LA120 S Sartorius, Göttingen, Germany 

Vortex M10 VWR International, Darmstadt, Germany 

Water bath shaker GFL 1083  GFL, Burgwedel, Germany 

 

2.1.3 General materials and culture media 

Table 2. General materials and culture media used in this thesis are listed with notice of corresponding 

suppliers: 

General materials and culture media Company name 

BioMax MR-films Kodak, Stuttgart, Germany 

Cover slips 12mm diameter Menzel-Gläser, Braunschweig, Germany 
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Culture dish (35mmx10mm) BD Biosciences, Heidelberg, Germany 

Culture dish (100mmx20mm) BD Biosciences, Heidelberg, Germany 

Filter tips and canules Braun, Melsungen, Germany 

Dulbecco’s modified Eagle’s medium (DMEM) PAA, Pasching, Austria 

Molecular weight markers (DNA, RNA) Fermentas, St.Leon-Rot, Germany 

RPMI medium PAA, Pasching, Austria 

Multi-well cell culture plates (12 wells) BD Biosciences, Heidelberg, Germany 

Oligo(dT)12-18 primer Invitrogen, Heidelberg, Germany 

PVDF membranes Millipore, Schwalbach, Germany 

qRT-PCR primers (see table 14) Operon, Cologne, Germany  

 

2.1.4 Proteins and enzymes  

Table 3. Proteins and enzymes used in this thesis here are listed with notice of corresponding suppliers: 

Proteins and enzymes Company name 

Bovine serum albumin (BSA) Roth, Karlsruhe, Germany 

Fetal calf serum (FCS Gold Heat Inactivated) PAA, Pasching, Austria 

Immunostar-alkaline phosphatase Bio-Rad, Heidelberg, Germany 

Milk powder Roth, Karlsruhe, Germany 

Precision Plus protein standards, dual color  Bio-Rad, Heidelberg, Germany     

Precision Plus protein standards, unstained Bio-Rad, Heidelberg, Germany 

Primary antibodies (see table 15) Various companies see table 15 

Secondary antibodies (see table 16) Various companies see table 16 

SuperScript II reverse transcriptase Invitrogen, Karlsruhe, Germany 

Taq DNA polymerase  Eppendorf, Hamburg, Germany 

Accutase PAA, Pasching, Austria 

 



25 
 

2.1.5 Chemicals 

Table 4. List of chemicals and drugs used in this study with notice of corresponding suppliers: 

Chemicals  Company name 

Acrylamide Roth, Karlsruhe, Germany 

Agarose LE Roche, Grenzach-Wyhlen, Germany 

Ampicillin Difco, Detroit, MI, USA 

Bradford reagent Sigma, Steinheim, Germany 

Bromophenol blue Riedel-de-Haën, Seelze, Germany 

Cell culture lysis reagent 5X (CCLR) Promega, Madison, WI, USA 

Dimethylsulfoxide (DMSO) Sigma, Steinheim, Germany 

Ethanol Riedel-de-Haën, Seelze, Germany 

Ethidium bromide Fluka, Neu-Ulm, Germany 

Ethylene diamine tetraacetic acid (EDTA) Fluka, Neu-Ulm, Germany 

Glycine Roth, Karlsruhe, Germany 

Glycerol Sigma, Steinheim, Germany 

β-Glycerolphosphate Sigma, Steinheim, Germany 

H2-dichlorofuorescein-diacetate (H2-DCFDA) Invitrogen, Karlsruhe, Germany 

Luciferase assay systems Promega, Madison, WI, USA 

Mowiol 4-88 Polysciences, Eppelheim, Germany 

N-Propyl-gallate Sigma, Steinheim, Germany 

Paraformaldehyde (PFA) Sigma, Steinheim, Germany 

Penicillin/Streptomycin  PAN Biotech, Aidenbach, Germany 

Phenylmethanesulfonyl fluoride (PMSF) Serva, Heidelberg, Germany 

Ponceau S Serva, Heidelberg, Germany 

Rotiphorese Gel 30 Roth, Karlsruhe, Germany 

RNaseZap Sigma, Steinheim, Germany 

Sodium carbonate Merck, Darmstadt, Germany 
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Sodium chloride Roth, Karlsruhe, Germany 

Sodium hydrogen carbonate Merck, Darmstadt, Germany 

Sodium hydroxide Merck, Darmstadt, Germany 

Sucrose Merck, Darmstadt, Germany 

Sodium dodecyl sulphate (SDS) Sigma, Steinheim, Germany 

Tetramethylethylenediamine (TEMED) Roth, Karlsruhe, Germany 

TransIT-LT1 transfection reagent Mirus Bio LLC 

Trishydroxymethylaminomethane (Tris) Merck, Darmstadt, Germany 

Triton X-100 Sigma, Steinheim, Germany 

Trypan blue Sigma, Steinheim, Germany 

Tween 20 Fluka, Steinheim, Germany 

All other standard reagents if not indicated were purchased from Sigma. 

2.1.6 Kits 

Table 5. List of kits used in this study with notice of corresponding suppliers: 

Kits Company name 

Dual luciferase kit Promega, Madison, WI, USA 

Nitrite detection kit Promega, Madison, WI, USA 

PCR kit Qiagen, Hilden, Germany 

QIAGEN Plasmid midi kits Qiagen, Hilden, Germany 

RNeasy kit Qiagen, Hilden, Germany 

RT-PCR kit Invitrogen, Karlsruhe, Germany 

2.1.7 Inhibitors and Ligands 

Table 6. List of used kits in this study with notice of corresponding suppliers: 

Ligands, Inhibitors Company name 

Flagellin (TLR5 ligand) Qiagen, Hilden, Germany 

LFM-A13 (Btk inhibitor) Calbiochem, La Jolla, CA, USA 
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Lipotechoic acid (TLR2 ligand) Invivogen, San Diego, CA, USA 

LPS (B14: E.coli) Invivogen, San Diego, CA, USA 

LPS (pure) (TLR4 ligand) Invivogen, San Diego, CA, USA 

N-acetylcysteine (ROS scavenger) Roth, Karlstuhe, Germany 

ODN2395 (TLR9  ligand) Invivogen, San Diego, CA, USA 

PD98059 (ERK MAPK inhibitor) Calbiochem, La Jolla, CA, USA 

PMA (PKC activator) Invitrogen, Karlsruhe, Germany 

Poly I:C (TLR3 ligand) Invivogen, San Diego, CA, USA 

R837 (TLR7 ligand) Invivogen, San Diego, CA, USA 

SB202190 (p38 MAPK inhibitor) Calbiochem, La Jolla, CA, USA 

SB203580 (p38 MAPK inhibitor) Calbiochem, La Jolla, CA, USA 

SP600125 (JNK MAPK inhibitor) Calbiochem, La Jolla, CA, USA 

 

2.1.8 Bacterial strains, cell lines and plasmid constructs 

Table 7. List of cell lines and bacterial strains used in this study with notice of corresponding suppliers: 

E.coli strains and cell lines 

 

Company name 

Nrf2 MEF mouse embryonic fibroblasts Dr. Larry Higgins (University of Dundee, UK) 

p38 MEF mouse embryonic fibroblasts Dr. Angel R. Nebreda (Spanish National Cancer 

Center, Madrid, Spain) 

RapidTransTM competent E.coli Active Motive, Rixensart, Belgium 

RAW 264.7 mouse macrophage cell line ATCC, Manassas, VA, USA 

 

Table 8. List of plasmids used in this study with notice of corresponding suppliers: 

Plasmids 

 

Company name 

BtkDNK430R, BtkDNR28C Dr. Sarah Doyle (Trinity College, Dublin, 

Ireland) 
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pAP-1-luc Dr. Craig A. Hauser (The Burnham Institute, La 

Jolla, CA) 

pARE-luc Dr. William E. Fahl (University of Wisconsin, 

Madison, WI, USA) 

pcDNA3.1 Stratagene, La Jolla, CA, USA 

pE2-luc Dr. Jawed Alam (Alton Ochsner Medical Center, 

New Orleans, LS) 

pGL3 basic, pGL2 basic Promega, Madison, WI, USA 

pHO-4045-luc Dr. Mark A. Perrella (Harvard Medical School, 

Boston, MS, USA) 

pTNF-585-luc Dr. Gordon Duff (University of Sheffield, 

Sheffield, UK) 

Gal4 plasmid system (pFR-luc, pFA-CHOP, 

pFC2-dbd) PathDetect CHOP trans-Reporting 

system) 

Stratagene, La Jolla, CA, USA 

 

2.1.9 Buffers and solutions 

Table 9. Solutions for immunofluorescence: 

Fixative solution  4% PFA in 1X PBS (150mM NaCl, 13.1mM K2HPO4 , 5mM KH2PO4 ), 

pH 7.4 

Glycine (1%) 1g Glycine in 100 ml of 1X PBS buffer 

Glycine (1%) + Trition X-

100 (0.3%) 

1g Glycine in 100 ml of 1X PBS buffer + 0.3 ml Triton X-100 

Blocking buffer- 1% PBSA 

+ 0,05% Tween 20 

To 2g BSA add 200 ml of 1X PBS and 100 µl of Tween 20 

Mowiol 4-88 solution Overnight stirring of 16.7 % Mowiol 4-88 (w/v) + 80 ml of 1X PBS, 

add 40 ml of glycerol, stir again overnight; centrifuge at 15,000 g for 

1h and take off the supernatant and store at -20°C 

Anti-fading agent (2.5%)  2.5g N-propyl-gallate in 50 ml of PBS and add 50 ml of glycerol 

Mounting medium 3 parts of Mowiol 4-88 + 1 part of anti-fading agent 
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Table 10. Solutions for isolation of proteins for SDS PAGE and Western blotting: 

Cell lysis buffer (1X) 50mM Tris +150mM Nacl +1% Triton-X-100 (pH 7.4). Before use 

10% protease inhibitor cocktail was added 

Resolving gel buffer A 1.5M Tris-HCl, pH 8.8 + 0.4% SDS  

Stacking gel buffer B 0.5M Tris-HCl, pH 6.8 + 0.4% SDS  

Resolving gel (12%) 

(for 4 SDS-PAGE gels)  

8 ml of 30% acrylamide + 10 ml of buffer A + 2 ml of ddH2O + 15 µl 

of TEMED + 130 µl of 10% APS 

Stacking gel 

(for 4 SDS-PAGE gels) 

1.25 ml of 30% acrylamide + 5 ml of buffer B + 5 ml of DH2O + 15 µl 

of TEMED + 130 µl of 10% APS 

10X Sample buffer 3.55 ml ddH2O + 1.25 ml 0.5M Tris-HCl, pH 6.8 + 2.5 ml 50% (w/v) 

glycerol + 2.0 ml 10% (w/v) SDS + 0.05% bromophenol blue. Before 

use, add 50 ml β-mercaptoethanol 

10X Electrophoresis buffer 250mM Tris + 2M glycin + 1% SDS  

20X Transfer buffer Bis-Tris-HCl buffered (pH 6.4) for transfer of proteins from 

polyacrylamide gel to PVDF membrane; NuPAGE transfer buffer, 

Invitrogen, Heidelberg, Germany 

10X TBS 0.1M Tris + 0.15M NaCl in 1000 ml of ddH2O, adjust to pH 8.0 

10% Blocking buffer 10g fat free milk powder in 100 ml of ddH2O 

5% BSA 5g BSA in 100 ml 1X TBST +0.05% Tween 20, pH 8.0 

1X Washing buffer (TBST) 10mM Tris/HCl, 0.15M NaCl, 0.05% Tween 20,  pH 8.0 

Ponceau S solution 0.1% (w/v) Ponceau S in 5% (v/v) acetic acid 

 

Table 11.  Solutions for molecular biology: 

Transfer buffer 10X (TAE) 40mM Tris base + 20mM acetic acid + 1mM EDTA, pH 7.6 

RNA-loading dye (10 ml) 16 µl saturated aqueous bromophenol blue, 80 µl 500mM EDTA 

(pH8.0), 720 µl 37% formaldehyde, 4 ml 10X gel buffer, then fill up 

to 10 ml with ddH20 

10X RNA transfer buffer 200mM MOPS, 50mM  sodium acetate, 10mM EDTA, pH 7.0 

1X Formaldehyde gel  100 ml 10X RNA transfer buffer + 20 ml 37% formaldehyde + 880 ml 

ddH20 

LB medium 0.17 M sodium chloride + 1% Trypton + 0.5% Yeast extract, pH 7.0 
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LB-Agar LB medium + 1 g/50 ml Agar + 100 µg/ml Ampicillin 

Plasmid mini-prep-

Solution 1 

50mM glucose + 25mM Tris-Cl (pH-8.0)+ 10mM EDTA + fresh 0.33 

µg/µl RNAse A 

Plasmid mini-prep-

Solution 2 

1% SDS in 0.2 N NaOH 

Plasmid mini-prep-

Solution 3 

3M potassium acetate + 11.5% glacial acetic acid 

6X-Agarose loading dye 0.025% (w/v) bromophenol blue without xylene cyanol + 30% (v/v) 
glycerol 

 

2.1.10 Primers 

The inventoried realtime rtPCR primers were ordered from Applied Biosystems. 

The catalogue numbers and the company provided names of the primers used 

are mentioned in the Table below. 

Table 12.  List of Primers used in this study 

Gene symbols Catalogue number Company provided primer name 

Gene of Interest  

Cycloxygenase 2 (COX-2) Cat. # 4331182 Mm03294838_g1 

Heme oxygenase-1 (HO-1) Cat. # 4331182 Mm00516005_m1 

NADPH quinone oxidoreductase 

1 (NQO1) 

Cat. # 4331182 Mm01253561_m1 

Loading control  

Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) 

Cat. # 4331182 Mm99999915_g1 

28s ribosomal rna (28SrRNA) Cat. # 4331182 Mm03682676_s1 

2.1.11 Antibodies 

Table 13 and 14 depict the list of primary and secondary antibodies, which were 

used for immunofluorescence and for Western blots.  
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2.2 Methods 

2.2.1 Cell culture 

RAW264.7 cells, MEF from p38α
-/- mice and MEF from Nrf2-/- mice were grown in 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal calf 

serum, 100 U/ml penicillin and 100 µg/ml streptomycin. All cell cultures were 

kept under air/CO2 (19:1) at 100% humidity. 

2.2.2 Transformation and preparation of plasmid DNA 

The reaction tube containing the competent E.coli cells were removed from -80o 

C storage and placed on ice to thaw. 1 µg of the plasmid DNA was mixed with 

the thawed cells by gently tapping the tube and was incubated on ice 

immediately for 30 min. The cells in the transformation reaction tube were 

subjected to a heatshock at 42 oC in a waterbath for exactly 30 s and the tube 

was placed thereafter quickly on ice for 2 min. 250 µl of LB medium were added 

to the tube and the cells were incubated at 37 oC for 1 h with shaking at 225-

250rpm. Using a sterile spreader, 20-200 µl of transformation mixture was 

plated out on a pre-warmed LB agar plate. Plates were inverted and incubated 

overnight at 37 oC. 

2.2.3 Mini and midi preparation of plasmid DNA 

A single bacterial colony was inoculated into 3 ml of selective LB medium and 

was grown for 12 h with vigorous shaking. 700 µl of culture bacteria were mixed 

with 300 µl of 50% glycerol and stored at -80oC as frozen stock. The plasmid 

preparation was done with a modified alkaline lysis protocol of Qiagen (Qiagen 

Miniprep plasmid kit). Shortly, 1 ml of the bacterial suspension was centrifuged 

at 13,000 rpm for 30 s. The pellet was resuspended in 150 µl of solution 1 and 

incubated at room temperature (RT) for 5 min after which 150 µl of solution 2 
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was added to the mixture and incubated further for 5 min. To this mixture 150 µl 

of solution 3 was added, incubated for 5 min at RT and then centrifuged for 5 

min. 1 ml cold ethanol (100%) was added to the supernatant, vortexed and 

incubated for 10 min at RT and centrifuged for 10 min. The pellet was washed 

with 1 ml ethanol (70%) and centrifuged at maximum speed for 2 min. The 

pellet obtained was air-dried. 20-30 µl of 10mM Tris-Cl (pH-8.0) was added to 

the pellet and incubated for 2 min at RT. 

For amplification of plasmids, plasmid preparations were performed with Qiagen 

plasmid Midi or Maxi kits according to the manufacturer’s instructions. The 

concentration of plasmid DNA was calculated by measuring the absorbance at 

260 nm and 280 nm. 

Agarose gels (1-2%) were used for analyzing the isolated plasmid DNA. Briefly, 

the agarose (10 mg/ml) was melted in 1X TAE buffer using a microwave oven at 

500W. Ethidium bromide was added to the solution at a dilution of 1:10,000 and 

then poured into a casting platform and the gel was allowed to set. DNA samples 

were mixed with 5 µl of 6x loading buffer before loading into the wells. The 

voltage of electrophoresis was set to 10 V/cm. The intercalated ethidium 

bromide in the DNA was visualized by placing the gel on a UV light source. 

2.2.4 Transfection and luciferase assay 

Cells were seeded in 6-well plates 24 h prior to transfection at a density of 5x105 

cells/well. The lipofection solution was prepared by adding 2 µl of Trans IT® LT-1 

transfection reagent to 110 µl of DMEM serum free medium (per well) and 

incubated for 15min at RT. To this mixture 1 µg of the reporter plasmid was 

added mixed gently and further incubated for another 15min at RT. The medium 

in the wells were replaced by adding fresh medium (2ml/well). 100 µl of the 
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DNA-lipid complex was added drop by drop to each well containing cells in the 

presence of medium with 10% FBS. The plates were swirled gently to ensure 

even dispersal of the complex and the plates were cultured for 24 h before cell 

harvest or treated with various stimuli as indicated. 

For co-transfection experiments 1 µg of expression vector plasmid was added 

together along with the reporter plasmid. For these experiments the amount of 

Trans IT transfection reagent used per well was increased to 4 µl. 

2.2.4.1 Luciferase activity assay 

2.2.4.1.1 Preparation of cell lysates 

1 volume of the luciferase cell culture lysis reagent (CCLR) (5X) was mixed with 

4 volumes of sterile water to prepare the working concentration 1X. The growth 

medium from the transfected culture cells was removed carefully and rinsed with 

1X PBS. 100-200 µl of 1X CCLR reagent was added to each well and the plate 

was shaked several times to ensure complete coverage of cells with lysis buffer. 

Cells were scrapped from the culture dishes and transferred to an eppendorf 

tube. The tube was placed on ice vortexes for a short period of 15 s and then 

centrifuged at 13,000 g for 30 s at RT. The cell lists were used for the luciferase 

assay directly. 

2.2.4.1.2 Luciferase assay 

Prepared luciferase assay reagent was mixed well and equilibrated at RT before 

use. The illuminometer was first primed with luciferase assay reagent. The 

illuminometer was programmed to perform a 2s measurement delay followed by 

a 10s measurement read for luciferase enzyme activity. 50 µl of the sample was 

dispensed into illuminometer tubes. The reading time was adjusted to work in a 

linear range in the respective experiment. Relative light units of luciferase 

activity were normalised to mg protein values of the samples. 
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2.2.5 Isolation and culture of primary alveolar macrophages 

Alveolar macrophages were isolated as previously described (Zhang et al. 2008). 

Briefly, after cervical dislocation of the mice, skin of the cervical region was cut 

open and the trachea exposed surgically. A canula was inserted into the trachea 

and with a 1 ml syringe, 0.5 ml of prewarmed DPBS saline containing 0.5mM 

EDTA were instillated into the trachea, withdrawn and the lavage was collected 

in a 5 ml conical centrifuge tube. The instillation and lavage steps were repeated 

10 times and the collected lavages thereafter centrifuged for 10 min at 400g. 

The cells were counted and 1x105 cells were plated in each well of a 24 well 

plates containing coverslips. After 4 h the medium was removed to get pure 

macrophage cultures and replaced with fresh medium. 

 

 

 

 

 

 

 

 

 

Fig6. Primary alveolar macrophages were labelled with the macrophage marker CD68 to examine the 

purity of the macrophage culture. More than 95% of cells were positive for CD68 suggesting a high 

purity of the alveolar macrophage preparation.  

 

2.2.6 Indirect immunofluorescence 

Cells were plated on coverslips and allowed to grow overnight. 12 h after 

treatment with LPS or LPS+LFMA13, the coverslips were rinsed with PBS (pH 
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7.4) and fixed with 4% paraformaldehyde (PFA) in PBS for 20min at RT. 

Thereafter, the cells were washed three times with PBS. Then the coverslips 

containing the cells were incubated for 10min in PBS containing 1% glycine and 

for an additional 10min in PBS containing 1% glycine and 0.3% Triton X-100 for 

permeabilization. After washing with PBS, the blocking step to block nonspecific 

protein binding sites was performed by incubating the cells for 30min in PBS 

containing 1% BSA and 0.05% Tween 20. After blocking, the coverslips were 

incubated with primary antibodies overnight at 4°C in a moist chamber, followed 

by extensive washing with PBS (3α5min) and incubation with secondary 

antibodies for 1h at RT. Nuclei were counterstained with Hoechst 33342 (2 

µg/ml) (Vijayan et al. 2011).  

2.2.7 Flowcytometric Analysis of ROS 

MEFs: dihydroethidium (DHE) dye (Invitrogen) was used to detect the 

generation of intracellular ROS. Upon accumulation of ROS, DHE is cleaved to 

form the fluorescent byproduct ethidium, which was detected with a flow 

cytometer. Cells were first incubated in the presence or absence of SB 202190 

(10 µM) for 1 h, followed by further incubation with 5 µM DHE for 20 min. After 

washing, the levels of ROS were determined with a FACScalibur flow cytometer. 

DHE-detectable (FL2-H) fluorescent signals were displayed as histograms (Naidu 

et al. 2009).  

RAW264.7 cells: intracellular generation of ROS was detected with 

dichlorodihydrofluorescein diacetate (H2-DCFDA) dye (Invitrogen). Fluorescent 

ROS-modified H2DCFDA byproduct dichlorofluorescein, which is produced after 

oxidation and cleavage by cellular esterases, was detected with a flow 

cytometer. After pre-incubation with LFM-A13 for 1 h followed by addition of LPS 
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for another 9 h, 1x106 cells were incubated at 37°C for 30 min in medium 

containing 15 M H2-DCFDA. Cells were thereafter washed with PBS and the 

levels of ROS-oxidized DCFDA were determined with a FACSCalibur flow 

cytometer. In NAC experiments, cells were first treated with LPS for 9 h followed 

by 1h NAC treatment. DCF-detectable (FL1-H) fluorescent signals were displayed 

as histograms (not shown). Ratios of signals versus control data were calculated 

using mean fluorescence intensity (Vijayan et al. 2011). 

2.2.8 Nitrite Assay  

Griess reagent assay kit from Promega was used to detect nitrite levels in the 

samples. Briefly, the medium from treated and untreated cells were collected 

and centrifuged. 50l of sulfinilamide solution was added to 50 l of the sample 

medium in a 96 well plate and incubated for 10 min followed by addition of 50l 

of N-(1-naphthyl)-ethylenediamine dihydrochloride. The plate was further 

incubated for 10 min and the absorbance was read at 550nm. The nitrite level in 

each sample was calculated from a standard generated with sodium nitrite (0-

300 M) (Vijayan et al. 2011). 

2.2.9 Methylthiazole tetrazolium (MTT) assay 

The effect of heme treatment on the viability of RAW264.7 macrophages was 

evaluated by the MTT assay (Sigma). Briefly, after pretreatment with LFM-A13 

for 1 h cells were incubated with heme for additional 14 h. Cells were then 

washed, incubated with 0.5 mg/ml MTT in Dulbecco’s modified Eagle’s medium 

(without phenol red) for 2 h. The MTT-transformed formazan crystals formed in 

viable metabolic cells were dissolved in dimethyl sulfoxide and absorbance read 

at 570 nm using a spectrophotometer. The percentage of cell viability was 
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calculated by the following formula: A570 of treated cell/A570 of non-treated cells 

x 100 (Vijayan et al. 2011). 

2.2.10 RNA expression analysis by realtime-RT-PCR 

2.2.10.1 RNA isolation 

Total RNA isolation from cells was performed using the RNeasy Mini Kit from 

Qiagen. Homogenization of cells in RLT buffer was performed by passing the 

lysate through a 22G needle attached to a 1 ml syringe several times. RNA 

extraction was carried out with the Qiagen RNeasy Mini kit according to the 

manufacturer’s protocol. The isolated RNA was redissolved in RNase free water 

and stored at -80°C till used. The quantity of the isolated RNA was measured by 

optical density measurements using a Bio-Rad spectrophotometer. The integrity 

of the RNA was analyzed by visualization of ethidium bromide-stained intact 28S, 

18S and 5S ribosomal RNA bands in 1% denaturing formaldehyde agarose gels.  

2.2.10.2 DNase I digestion 

Before the samples were used for reverse transcription, a DNase I digestion step 

was performed to remove residual genomic DNA in the RNA preparation. To the 

prepared DNase digestion mixture, 1 µg of the RNA sample was added and 

incubated for 15min at RT after which the DNase I was inactivated by the 

addition of 1 µl of 25mM EDTA followed by heating for 10min at 65°C.  

    DNase digestion of RNA samples 

 

 

 

RNA sample 1 µg 

10X DNase I reaction buffer 1 µl 

DNase I, amplification grade, 1U/µl 1 µl 

DEPC-treated water to 10 µl 
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2.2.10.3 Reverse transcription  

 0.5 µg oligo (dT) 12-18 primers and 10mM dNTP mixtures were used along with 

total RNA (0.5 - 1 µg) for reverse-transcription into cDNA as described below.  

Oligo(dT)12-18 (500 µg/ml) 1 µl 

RNA (1 µg) ~ 10 µl 

dNTP mixture (10mM each) 1 µl 

Sterile distilled water to 12 µl 

 

The denaturation step was done by heating the RNA mixture to 65°C for 5min 

followed by immediate incubation on ice. Thereafter, 4 µl of 5X first strand 

buffer, 2 µl of 0.1M DTT and 1 µl of RNaseOUTTM (40U/µl) were added to the 

reaction mixture.The reaction mixture was mixed thoroughly and incubated at 

42°C for 2min. 1 µl of SuperScriptTM II Reverse Transcriptase (200U) was added 

to the mixture and the reaction tubes were incubated at 42°C for 50min for 

reverse transcription. Finally, the samples were heated at 70°C for 15min for 

inactivation of the reaction. 

Amplification was performed using TaqMan Gene Expression Master Mix on a 

StepOnePlus™ Real-Time PCR System (Applied Biosystems) according to the 

manufacturer’s instructions. Thermal cycling was performed at 95°C for 10 min 

followed by 40 cycles at 95°C for 15 sec and 60°C for 1 min. The constitutively 

expressed gene, 28srRNA was used as a control for normalization of cDNA 

levels. The ΔΔCT method was used to semiquantify mRNA levels, according to 

the manufacturer's protocol. 
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2.2.11 Western Blot analysis 

2.2.11.1 Isolation of whole cell lysates  

After washing cell cultures twice with 1XPBS, 150 µl of cell lysis buffer was 

added to each well. Cells were scraped thoroughly using a rubber policeman and 

transferred to eppendorff tubes. The tubes were kept on ice for 30 min with 

vortexing at intervals. The tubes were then centrifuged for 30 min at maximum 

speed for 30 min at 4oc after which supernatant was collected and stored at -20 

oc. 

2.2.11.2 Preparation of Western blots 

Concentration of the protein samples were determined by the Bradford method 

using BSA as a standard (Bradford 1976). The protein samples (30-50 µg) were 

separated on 12% SDS polyacrylamide gels and then transferred onto 

polyvinylidene fluoride (PVDF) membranes. The membranes were incubated at 

RT with shaking in Tris-buffered saline (TBS) containing 10% nonfat milk powder 

and 0.05% Tween-20 for 1h to block nonspecific protein-binding sites. 

Thereafter, the membranes were incubated with the primary antibody overnight 

at 4°C or for 1h at RT. Following the primary antibody incubation, the 

membranes were washed 3 times and then incubated with alkaline phosphatase-

conjugated secondary antibody for 1h at RT. Immun-StarTM AP substrate from 

Bio-Rad (Munchen, Germany) was used to detect the alkaline phosphatase 

activity and the blots were exposed to Kodak Biomax MR Films. Blots were 

scanned using an AGFA scanner. All Western blot experiments were performed 

and analyzed at least three times. 
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2.2.12 Statistical Analysis 

Each result is a representative of at least three experiments. Student's paired t 

test was done to compare the control cells with the treated cells and the data is 

represented as average +/- standard mean error (SEM). P values of 0.05 or less 

were considered significant. 
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3 RESULTS 

The results of this thesis are divided into two parts (Chapter I and Chapter II) that were 

published in the Journal of Immunology and the pubmed Ids of the following are (I) 

PMID: 21677132 and (II) PMID: 19454702 

(I) Vijayan, V., E. Baumgart-Vogt, S. Naidu, G. Qian and S. Immenschuh (2011). 

"Bruton's tyrosine kinase is required for TLR-dependent heme oxygenase-1 gene 

activation via Nrf2 in macrophages." J Immunol 187(2): 817-27. 

 

(II) Naidu, S., V. Vijayan, S. Santoso, T. Kietzmann and S. Immenschuh (2009). 

"Inhibition and genetic deficiency of p38 MAPK up-regulates heme oxygenase-1 gene 

expression via Nrf2." J Immunol 182(11): 7048-57 

 

PART-I: Btk-mediated regulation of the HO-1 gene 

3.1 LPS-dependent HO-1 gene induction is reduced by the 

pharmacological Btk inhibitor LFM-A13 

LPS, a proinflammatory mediator induce signaling in macrophages by binding to 

TLR4. It has been shown earlier that LPS upregulates HO-1 gene expression in 

mononuclear phagocytes such as monocytes and macrophages (Camhi et al. 

1995; Immenschuh et al. 1999; Horwood et al. 2003; Wijayanti et al. 2004; 

Rushworth et al. 2005; Schmidt et al. 2006). Herein, we determined the effect of 

LFM-A13, an inhibitor of Btk which belongs to the tec family of kinases, on LPS-

dependent HO-1 induction in the mouse macrophage cell line RAW264.7. Btk has 

previously been shown to differentially regulate gene expression in 

myeloid/macrophage cells (for a review see (Koprulu and Ellmeier 2009). 

RAW264.7 cells are known to express Btk (Jongstra-Bilen et al. 2008) and 

pretreatment with LFM-A13 blocked the LPS-induced protein expression of HO-1.  

LPS-dependent COX-2 induction which is another early-induced proinflammatory 

gene in macrophages was not significantly affected by LFM-A13 (Fig. 7A) 

treatment. Real-time RT-PCR studies revealed that pretreatment of RAW264.7 

cells with LFM-A13 markedly downregulated the LPS-induced HO-1 mRNA 

expression (Fig. 7B). In a previous study LFM-A13 was shown to inhibit JAK2 
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which belongs to the family of Janus kinases. To rule out the possibility that, the 

observed effect of LFM-A13 on LPS-dependent HO-1 induction is due to JAK2 

inhibition, we used a specific JAK2 inhibitor AG490 in RAW264.7 cells. However, 

addition of AG490 already, led to a significant upregulation of HO-1 gene 

expression in dose-dependent manner (Fig. 7C). 

  

 

 

 

 

 

 

 

 

Figure 7: Effect of LFM-A13 on LPS-dependent induction of HO-1 gene expression in cell 

cultures of RAW264.7 cells and mouse alveolar macrophages 

RAW264.7 cells and mouse alveolar macrophages were cultured as described under Materials and 
Methods. A: RAW264.7 cells were pretreated with LFM-A13 (100 µM) for 1 h, after which incubation 
was continued with or without LPS (1 µg/ml) for another 18 h, as indicated. Total protein (30 
µg) was subjected to Western blot analysis and sequentially probed with Antibodies against HO-1, 
COX-2 and GAPDH. Autoradiographic signals were visualized and quantified as described under 
Materials and Methods. Values  SEM represent the fold induction of HO-1 normalized to GAPDH 

from three independent experiments. B: RAW264.7 cells were treated with LFM-A13 (100 µM) for 1 h, 
after which treatment was continued with or without LPS (1 µg/ml) for another 12 h, as indicated. 
One µg of RNA was used for real-time RT-PCR analysis with HO-1 and GAPDH primers as described 
in Materials and Methods. C: RAW264.7 cells were treated with AG490 at the indicated concentrations 
for 12 h (result not shown in Vijayan et al, 2011). Total protein (30 µg) was subjected to Western 
blot analysis and sequentially probed with antibodies against HO-1 and GAPDH. Statistics: Student’s t-
test for paired values:  *: significant differences treatment versus control; **: LPS versus LPS+LFM-
A13, p ≤ 0.05. [published as Figure number 1 A and 1 B in Vijayan et al, 2011] 
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Figure 8: Effect of LFM-A13 on LPS-mediated induction of HO-1 gene expression in cell 

cultures of mouse alveolar macrophages. 

A-H: mouse alveolar macrophages were pretreated with LFM-A13 (100 µM) for 1 h, after which 
treatment was continued with or without LPS (1 µg/ml) for another 12 h, as indicated. Cells were then 
subjected to IF staining using a HO-1 antibody at a dilution of 1:4,000 and nuclei were visualized with 
Hoechst 33342 dye as described in Materials and Methods. LFM: LFM-A13; H33342: Hoechst 33342. 
Bar = 560 m. [Published as figure number 1 C-J in Vijayan et al, 2011 ] 
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In the following, we investigated the effect of LFM-A13 on LPS-mediated HO-1 

induction in cell cultures of primary mouse alveolar macrophages. As determined 

by immunofluorescence (IF) studies, LPS stimulation of alveolar macrophages 

caused a significant increase of HO-1 protein expression. The upregulation of 

HO-1 by LPS was attenuated when cells were pretreated with LFM-A13 (Fig. 8A-

H). In conclusion, the data indicate that specific inhibition of Btk with LFM-A13 

markedly reduces LPS-dependent induction of HO-1 

3.2 Induction of HO-1 upregulation is blocked in alveolar macrophages 

from Btk-/- mice 

To further investigate the role of Btk, we compared the effect of LPS on HO-1 

induction in cell cultures of alveolar macrophages from Btk-/- mice and thier 

wildtype littermates. In contrast to a pronounced induction of HO-1 gene 

expression in LPS-treated macrophages from wild type mice, only a weak 

staining for HO-1 protein was observed in cells from Btk knockout mice in 

response to LPS (Fig. 9A-H). In addition, studies with real time rtPCR studies 

showed a marked upregulation of HO-1 mRNA levels upon LPS stimulation in cell 

cultures of alveolar macrophages from wild type mice, but not in those from Btk 

deficient mice (Fig. 10). The data confirm that Btk plays a major regulatory role 

in LPS-dependent induction of HO-1 gene expression in primary murine 

macrophages. 
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Figure 9: LPS-dependent induction of HO-1 is blocked in alveolar macrophages from 

Btk-/- mice. 

A-H: cell cultures of alveolar macrophages from Btk-/- mice and from their wild-type littermates were 
incubated with or without LPS (1 µg/ml) for 12 h. Cells were then subjected to IF staining with a 

HO-1 antibody at a dilution of 1:4,000 and nuclei were visualized with Hoechst 33342 dye. Btk ko: 
Btk knockout; H33342: Hoechst 33342; WT, wild-type. Bar = 560 m.  [Published as figure number 2 

A-H in Vijayan et al, 2011] 
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Figure 10: LPS-dependent induction of HO-1 is blocked in alveolar macrophages from 

Btk-/- mice. 

Mouse alveolar macrophages were treated with LPS (1 µg/ml) for 12 h and the RNA was isolated for 
real-time RT-PCR analysis using the primers for HO-1 and GAPDH as described in Materials and 
Methods. Statistics: Student’s t-test for paired values: *: significant differences treatment versus 
control, **: LPS treatment in Btk+/+ versus LPS treatment in Btk-/- p ≤ 0.05. [Published as figure 
number 2I in Vijayan et al, 2011] 

 

3.3 Btk-dependent induction of HO-1 by LPS is mediated via a 

transcriptional mechanism 

HO-1 expression by most stimuli is mainly regulated at the transcriptional level 

(Choi and Alam 1996; Paine et al. 2010). Luciferase gene reporter studies were 

performed to further elucidate the mechanisms by which Btk mediate LPS-

dependent induction of HO-1. RAW264.7 cells were transiently transfected with a 

reporter gene construct containing the proximal 4,045 bp of the mouse HO-1 

gene promoter (pHO-4045-luc) and then treated with LFM-A13 prior to LPS 

exposure. Luciferase activity of pHO-4045-luc was induced in response to LPS 

and pretreatment with LFM-A13 significantly reduced the luciferase activity of 

the pHO-4045-luc (Fig. 11A). By contrast, LPS-dependent upregulation of the 

luciferase activity of pTNF-585-luc, a plasmid containing the proximal 585 bp of 

the TNF-α gene promoter region, was not affected by LFM-A13 treatment (Fig. 

11A). 
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A major target of Btk-mediated TLR4 signaling is the transcription factor NF-B 

(Jefferies and O'Neill 2004). Since NF-B has previously been shown to regulate 

HO-1 gene expression (Wijayanti et al. 2004; Naidu et al. 2008), we compared 

the effect of LFM-A13 on the classical pathway of NF-B activation, that occurs 

via the phosphorylation of the NF-Binhibitory protein IB subunit, followed by 

the degradation of IB. LPS treatment led to phosphorylation and degradation of 

IB in RAW264.7 cells and pretreatment with LFM-A13 did not affect the 

phosphorylation and degradation of IB (Fig. 11B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Btk is required for LPS-dependent induction of mouse HO-1 promoter 

activity. 

A: RAW264.7 cells were transfected with the indicated luciferase reporter gene vectors as described in 
Materials and Methods. 24 h after transfection, cells were treated with LFM-A13 (100 µM) for 1 h 

before incubation was continued with or without LPS (1 µg/ml) for 18 h. Cell extracts were 
collected and assayed for luciferase activity. Statistics: Student’s t-test for paired values: *: 
significant differences treatment versus control; **: LPS versus LPS+LFM-A13, p ≤ 0.05. B: 
RAW264.7 cells were treated with or without LFM-A13 (100 µM) for 1 h followed by treatment with 
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LPS (1 µg/ml) for the indicated times. Western  blot  analysis  was  performed  with  antibodies  to  

phospho-IB-alpha,  total  IB  and  GAPDH  as described in Fig. 7. [Published as figure number 3A 

and 3B in Vijayan et al, 2011] 

In the following, we cotransfected the pHO-4045-luc construct and an expression 

vector with the dominant negative Btk mutant BtkDN-K430R into RAW264.7 

cells (Doyle et al. 2005). As shown in Fig. 12, overexpression of dominant 

negative Btk downregulated the LPS-induced luciferase activity of the pHO-

4045-luc construct in comparison to cells, which have been co-transfected with 

an empty control vector (Fig. 12). A similar inhibitory effect was also observed in 

cotransfection studies with the dominant-negative mutant BtkDN-R28C (data not 

shown). Taken together, the data indicate that Btk regulates HO-1 induction via 

a transcriptional mechanism that is independent of NF-B.   

 

 

 

 

 

 

 

 

 

 

Figure 12: The dominant negative form of Btk blocked LPS-dependent induction of 

the mouse HO-1 promoter activity. 

RAW264.7 cells were co-transfected with the mouse HO-1 luciferase reporter vector pHO-4045-luc 
or pGL2-basic together with the expression vector BtkDN-K430R or empty control vector 
(pcDNA3.1), as indicated. 24 h after transfection cells were treated with or without LPS (1 µg/ml) for 
another 18 h. Cell extracts were collected and assayed for luciferase activity. Statistics: Student’s t-
test for paired values: *: significant differences treatment versus control; **: LPS versus LPS+LFM-
A13, p ≤ 0.05. LFM: LFM-A13, Btkdn: Btk-DNK430R. [Published as figure number 3C in Vijayan et al, 
2011] 
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3.4 Nrf2 plays a role in Btk-mediated induction of HO-1 by LPS 

Nrf2, is a key transcriptional regulator of the antioxidant response and mediates 

the inducible expression of HO-1 and also that of other phase II detoxification 

and antioxidant genes such as NADPH quinone oxidoreducatse (NQO1) and 

glutathione S-transferase (GST) (Kobayashi and Yamamoto 2005; Kensler et al. 

2007). Nrf2, once activated, translocates to the nucleus and binds to the 

promoter of target genes. Therefore, we performed immunofluorescence studies 

to monitor Nrf2 translocation. As shown in Fig. 13, upon treatment with LPS, the 

immunofluorescence signal in the nuclear areas markedly increased, indicating 

significant translocation of Nrf2 from the cytoplasm into the nucleus of 

RAW264.7 cells (Fig. 13A-D). However, pretreatment of RAW264.7 cell with 

LFM-A13 strongly inhibited the LPS-induced nuclear accumulation of Nrf2 (Fig. 

13E-H).  

To examine the functional relevance of the nuclear translocation of Nrf2, we also 

performed luciferase gene reporter assays with a reporter vector containing the 

antioxidant response element (ARE) (pARE-luc), which is the target sequence of 

Nrf2.  Treatment with LPS caused a marked increase in the luciferase activity of 

this construct and pretreatment with LFM-A13 significantly blocked this induction 

(Fig. 14A). This impaired activation of Nrf2 might not only be relevant to HO-1, 

because LFM-A13 also reduced the LPS-induced mRNA levels of the Nrf2 target 

gene NADPH quinone oxidoreductase (NQO1) (Fig. 14B). Taken together, these 

results indicate that activation of Nrf2 is involved in Btk-dependent upregulation 

of HO-1 by LPS and this Btk-Nrf2-mediated signaling pathway might also 

regulate other LPS-induced antioxidant genes. 
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Figure 13: Nuclear translocation of Nrf2 in response to LPS is downregulated by LFM-

A13. 

A-H: RAW264.7 cells were pretreated with LFM-A13 (100 µM) for 1 h, after which incubation was 
continued with or without LPS (1 µg/ml) for another 9 h, as indicated. Cells were then subjected to 
immunofluorescence staining using an Nrf2 antibody at a dilution of 1:500, and nuclei were visualized 
with Hoechst 33342 dye as described in Materials and Methods. LFM: LFM-A13; H33342: Hoechst 
33342. Bar = 560 m. [Published as figure number 4 A-H in Vijayan et al, 2011] 
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Figure 14: LPS-dependent induction of an ARE-regulated reporter gene construct is 

inhibited by LFM-A13. 

A: RAW264.7 cells were transfected with the indicated luciferase reporter gene vectors as described in 
Materials and Methods. 24 h after transfection, cells were pretreated with LFM-A13 (100 µM) for 1 
h, after which incubation was continued with or without LPS (1 µg/ml) for another 18 h, as indicated. 
Cell extracts were collected and assayed for luciferase activity. B: RAW264.7 cells were pretreated 
with LFM- A13 (100 µM) for 1 h, after which treatment was continued with or without LPS (1 µg/ml) 
for another 12 h, as indicated. One µg of RNA was used for real-time RT-PCR analysis with NQO1 
and GAPDH primers as described in Materials and Methods. Statistics: Student’s t-test for paired 
values: *: significant differences treatment versus control; **: LPS versus LPS+LFM-A13, p ≤ 0.05. 

LFM: LFM-A13. [Published as figure number 5A and 5B in Vijayan et al, 2011] 
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3.5 LPS-dependent production of ROS is involved in Btk-mediated 

upregulation of HO-1 in macrophages 

The lack of Btk has previously been shown to cause an attenuated production of 

ROS and NO in immunostimulated mononuclear phagocytes from Btk-deficient 

mice (Mangla et al. 2004). Since Nrf2-dependent induction of HO-1 is known to 

be regulated by prooxidant cellular conditions, we investigated the possibility 

that cellular levels of ROS might be affected by the activation of Btk. To this end 

we determined cellular levels of ROS in response to LPS in RAW264.7 cells with 

and without pharmacological inhibition of Btk by LFM-A13. As determined with a 

flow cytometry-based assay, LPS upregulated the production of ROS and 

pretreatment with LFM-A13 blocked the LPS-induced production of ROS and 

addition of the anti-oxidant N-Acetyl cysteine (NAC) attenuated the production of 

LPS-induced ROS (Fig. 15A). We also examined the LPS-induced levels of NO in 

RAW264.7 cells after pre-treatment with the Btk inhibitor LFM-A13 by measuring 

the amount of nitrite levels in the cell culture media. As expected, LPS markedly 

induced the amount of nitrite in the supernatant, which was blocked by 

pretreatment with LFM-A13. Addition of the specific iNOS inhibitor 1,400W 

abolished the LPS-induced production of NO (Fig. 15B). Moreover, LFM-A13 also 

blocked the LPS-induced gene expression of iNOS (Fig. 15C). Taken together 

these results indicate that inhibition of Btk impairs the LPS-induced production of 

ROS and that of NO in RAW264.7 cells. Finally, to evaluate the role of ROS and 

NO in LPS-induced activation of Nrf2, RAW264.7 cells were transfected with 

pARE-luc and were pretreated with NAC or 1,400W before exposure to LPS. LPS-

induced luciferase activity of pARE-luc was markedly reduced in these cells by 

(NAC), but not by pretreatment with 1400W (Fig. 15D). Furthermore, LPS-

dependent induction of HO-1 was blocked when the cells were pretreated with 
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NAC. In summary, Btk-dependent HO-1 activation via Nrf2 is mediated via the 

production of ROS in LPS-stimulated macrophages. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Role of ROS in Btk-mediated induction of HO-1 by LPS. 

A: RAW264.7 cells were treated for 9 h with LFM-A13 (100 µM) and LPS (1 µg/ml) alone or in 
combination, as indicated. After 9 h of incubation NAC (25 mM) was added and treatment was 
continued for 1 h, as indicated. Cells were washed, incubated with H2DCFDA dye for 30 min and 
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analyzed by flow cytometry as described in Materials and Methods. Numbers indicated represent mean 
fluorescence intensity relative to control cells from at least three independent experiments SEM. 
Statistics: Student’s t-test for paired values: *: significant differences treatment versus control; 
**: LPS versus LPS+LFM-A13; ***: LPS versus LPS+NAC, p ≤ 0.05. B: RAW264.7 cells were 
pretreated with or without LFM-A13 (100 µM) for 1 h or 1400W (500 µM) for 30 min, after which 
incubation was continued with LPS (1 µg/ml) for 18 h, as indicated. The supernatant was collected 

and assayed for nitrite as described in Materials and Methods.  Statistics: Student’s t-test for paired 
values:  *: significant differences treatment versus control; **: LPS versus LPS+LFM-A13; ***: LPS 
versus LPS+1400W, p ≤ 0.05. C: RAW264.7 cells were pretreated with LFM-A13 (100 µM) for 1 h 
followed by treatment with LPS (1 µg/ml) for another 12 h. Total protein (30 µg) was subjected to 
Western blot analysis and was sequentially probed with antibodies against iNOS and GAPDH. D: 
RAW264.7 cells were transfected with the indicated luciferase reporter gene vectors as described 
before. 24 h after transfection, cells were pretreated with NAC (25 mM) or 1400W (500 µM) for 30 

min followed by incubation with or without LPS (1 µg/ml) for another 18 h. Cell extracts were 

collected and assayed for luciferase activity. Statistics: Student’s t-test for paired values: *: 
significant differences treatment versus control; **: LPS versus LPS+NAC, p ≤ 0.05. LFM: LFM-A13. 
[Published as figure number 6A-D in Vijayan et al, 2011] 

3.6 Btk mediates HO-1 induction in macrophages upon stimulation with 

various TLR ligands 

Btk has previously been shown to be involved in signaling by other TLRs, such as 

TLR3, TLR7 and TLR9 in myeloid cells (Doyle et al. 2007; Taneichi et al. 2008). 

As shown in Fig. 16, treatment with both TLR7 and TLR9 ligands (R837 and 

ODN2395) upregulated HO-1 expression. However, pretreatment with LFM-A13 

largely reduced this induction (Fig. 16). Next, we also examined whether TLR7 

and TLR9 ligands (R837 and ODN2395) would activate pARE-luc construct in 

transiently transfected RAW264.7 cells. Both TLR7 and TLR9 ligands up-

regulated reporter gene activity of pARE-luc, but the level of induction was lower 

as compared to TLR4 activation by LPS (Fig. 17A). Similar to the regulation of 

HO-1 protein, pretreatment with LFM-A13 reduced the induction of pARE-luc 

activity in response to TLR7 and TLR9 ligands, respectively.  

In the following, we also investigated whether gene expression of HO-1 by other 

TLRs such as TLR2, TLR3, TLR5 and TLR6 is also mediated via Btk. RAW264.7 

cells were treated with the TLR-ligands LTA (TLR2/6), polyI:C (TLR3) and 

flagellin (TLR5) in the presence or absence of treatment with LFM-A13 and HO-1 

expression was determined by real-time RT-PCR. As shown in Figure 17B, only 

the TLR2 ligand LTA upregulated HO-1 mRNA expression and the level of 
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induction was similar to that of treatment with LPS. Pretreatment with LFM-A13 

completely blocked this induction. By contrast, both polyI:C and flagellin failed 

to induce HO-1 gene expression (Fig. 17B). In summary, our findings suggest 

that HO-1 upregulation by activation of TLRs 2, 4, 6, 7 and 9 is mediated via Btk 

in macrophages. 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: LFM-A13 inhibits HO-1 induction RAW264.7 cells that are stimulated by different 

TLR ligands. 

RAW 264.7 cells were pretreated with LFM-A13 (100 µM) for 1 h and incubation was continued with or 

without R848 (3 µg/ml) or ODN2395 (3 µg/ml) for another 18 h, as indicated. Total protein (30 µg) was 

subjected to Western blot analysis and was sequentially probed with antibodies against HO-1 and 

GAPDH. Autoradiographic signals were visualized and quantified as described in Materials and Methods. 

Statistics, Student’s t-test for paired values: *: significant differences treatment versus control; **: 

LPS/R848/ODN2395 versus LPS/R848/ODN2395+LFM-A13, p ≤ 0.05. LFM: LFM-A13; ODN: ODN 2395. 

[Published as figure number 7A in Vijayan et al, 2011] 
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Figure 17: LFM-A13 inhibits HO-1 induction RAW264.7 cells that are stimulated by various 

TLR ligands. 

A: RAW 264.7 cells were transfected with the luciferase reporter vector p-ARE-luc as described in 
Materials and Methods. 24 h after transfection, cells were treated with (grey bars) or without (black 
bars) LFM-A13 (100 µM) for 1 h followed by incubation with LPS (1 µg/ml), R848 (3 µg/ml) or ODN2395 
(3 µg/ml) for another 18 h, as indicated. Cell extracts were collected and assayed for luciferase activity. 
Statistics, Student’s t-test for paired values: *: significant differences treatment versus control; **: 
LPS/R848/ODN2395 versus LPS/R848/ODN2395+LFM-A13, p ≤ 0.05. LFM: LFM-A13; ODN: ODN 2395. 

B: RAW264.7 cells were treated with LFM-A13 (100 µM) for 1 h, after which treatment was continued 
with or without LPS (1 µg/ml), LTA (5 µg/ml), flagellin (10 nM) or poly I:C (25 µg/ml)  for another 12 h, 
as indicated. One µg of RNA was used for real-time RT-PCR analysis as described in Materials and 
Methods. Statistics, Student’s t-test for paired values: *: significant differences treatment versus 
control; **: LPS/ LTA/ poly I:C/ flagellin versus LPS/ LTA/ poly I:C/ flagellin +LFM-A13, p ≤ 0.05. LFM: 
LFM-A13. [Published as figure number 7B and 7C in Vijayan et al, 2011] 
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3.7 Increased sensitivity to heme-induced toxicity after treatment with 

LFM-A13 

Free heme has been shown to be a TLR4 ligand and to play an important role in 

sepsis-induced inflammatory damage and induction of HO-1 provides protection 

against heme-mediated toxicity. Hence, we chose to examine the protective 

effects of Btk mediated HO-1 regulation against heme in our cell culture model. 

RAW264.7 cells were treated with high concentration of heme in the presence or 

absence of LFM-A13 and cytotoxicity was measured with an MTT assay. 

Treatment with high concentration of heme reduced the viability of cells by 30%. 

Interestingly cells pretreated with LFM-A13 were drastically sensitive to heme 

treatment with almost 75% increase in the number of dead cells in comparison 

to the control untreated cells (Fig. 18). The data indicate that specific inhibition 

of Btk in macrophages renders these cells highly sensitive to heme-induced 

oxidative stress. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Increased sensitivity to heme-dependent 

toxicity in LFM-A13-treated RAW264.7 cells 

 RAW 264.7 cells were pretreated with LFM-A13 (100 µM) 
for 1 h and incubation was continued with or without heme 
(30µM) for another 16 h, as indicated. Samples were 
subjected to MTT assay as described in Materials and 
Methods. Statistics: Student’s t-test for paired values: *: 
significant differences treatment versus control; **: heme 
control versus heme +LFM-A13, p ≤ 0.05. LFM: LFM-A13. 
[Published as figure number 8 in Vijayan et al, 2011] 
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PART-II: p38 MAPK-mediated regulation of the HO-1 gene 

3.8 Pharmacological inhibition and genetic deficiency of p38 MAPK lead 

to upregulation of HO-1 

As reported earlier (Wijayanti et al. 2004; Naidu et al. 2008) treatment with the 

phorbol ester PMA induced the expression of HO-1 and COX-2 in cell cultures of 

RAW264.7 macrophages (Fig. 19). 

 

 

 

 

 

Figure 19:  Upregulation of COX-2 and HO-1 gene expression in RAW264.7 cells treated 

with LPS and PMA. 

RAW264.7 cells were treated with or without PMA (0.5 µM) or LPS (1 µg / ml) for 18 h. Total 
protein (50 µg) was subjected to Western blot analysis and probed sequentially with antibodies 
against HO-1, Cox-2 and GAPDH. [Published as Figure 1A in Naidu et al, 2009]  

 

 Previously, it was reported that p38 MAPK mediate the PMA-dependent 

induction of HO-1 and COX-2 (Schuette and LaPointe 2000; Chen et al. 2003; 

Wijayanti et al. 2004; Naidu et al. 2008). As expected, pretreatment of 

RAW264.7 cells with SB 202190, a specific inhibitor of p38α and p38β MAPK 

activity, blocked the PMA-dependent induction of HO-1. However, interestingly 

treatment with this compound alone markedly induced HO-1 (Fig. 20A). Indeed, 

the following experiments showed that SB202190 upregulated HO-1 in a time 

dependent manner (Fig. 20B). Similarly a strong induction of HO-1 was also 

observed when a second p38 inhibitor SB203580 was used (Fig. 20B).  
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To confirm this unexpected finding we compared PMA-dependent induction of 

HO-1 and Cox-2 gene expression in cell cultures of MEF, that were genetically 

deficient for p38α (p38α
-/- MEF) in comparison to that in wild-type MEF (p38α

+/+ 

MEF). As observed in RAW264.7 macrophages, treatment with PMA upregulated 

HO-1 and Cox-2 expression in p38α
+/+ MEF. Whereas in p38α

-/- MEF treatment 

with PMA had little effect on HO-1 and COX-2 expression. It is also noteworthy 

that the basal level of HO-1 protein expression was markedly higher in p38α
-/- 

MEF in comparison to that of p38α
+/+ MEF (Fig. 20C). The results indicate that 

the loss of p38 function causes an increased expression of the HO-1 gene. 
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Figure 20: Pharmacological inhibition and genetic deficiency of p38 induce HO-1 gene 

expression 

A: RAW264.7 cells were pretreated for 30 min with SB 202190 (5 and 10 µM), after which treatment 
was continued for another 6 h with or without PMA (0.5 µM), as indicated. B: RAW264.7 cells were 

treated with SB 202190 (10 µM), SB 203580 (20 µM) for the times indicated. C: p38+/+ and p38-/- 

MEF were treated for 18 h with or without PMA (0.5 µM), as indicated. Total protein (50 µg) was 
subjected to Western blot analysis and probed sequentially with antibodies against HO-1, Cox-2 and 
GAPDH. Autoradiographic signals were visualized and quantified as described under Materials 
and Methods. (A) Values  SEM represent the fold induction of HO-1 normalized to GAPDH from 

three independent experiments. (C) Numbers represent the protein expression levels relative to 

p38+/+ MEF normalized to GAPDH from at least three independent experiments  SEM. Statistics: 

Student’s t-test for paired values: *: significant differences treatment versus control; **: p38+/+ 

control versus p38-/- control, p ≤ 0.05. RAW: RAW264.7 cells. [Published as figure 1B, 1C and 1F in 
Naidu et al, 2009] 
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3.9 Constitutive activation of p38 MAPK in RAW264.7 cells 

The findings that p38α
-/- MEF  possesses an increased expression of HO-1 and 

pharmacological inhibition of p38 in RAW264.7 cells leads to the upregulation of 

HO-1 indicate that in the basal state in RAW264.7 cells p38 MAPK may already 

be active. To test this hypothesis, we determined p38 activity in untreated 

RAW264.7 cells. As expected, p38 phosphorylation, which is a sign for 

activation, was detected under basal conditions and treatment with SB 202190 

and SB 203580 abrogated this phosphorylation (Fig. 21A). To verify the 

functionality of p38 MAPK in detail, we performed a cotransfection assay in 

RAW264.7 cells, in which a luciferase reporter construct containing five binding 

sites for the yeast transcription factor Gal4 was used along with a construct 

which express a fusion protein consisting of the Gal4 DNA-binding domain and 

the transactivation domain of the transcription factor CHOP (pFA-CHOP). 

Transactivation of CHOP is regulated by p38-dependent phosphorylation (Wang 

and Ron 1996). The luciferase activity of pFA-CHOP was significantly high in 

RAW264.7 under basal conditions and treatment with p38 inhibitors blocked this 

effect (Fig. 21B). Similarly, the luciferase activity of pFA CHOP was higher in 

p38+/+ MEF in comparison to p38α
 -/- MEF. As observed in RAW264.7 cells, 

treatement with SB 202190 and SB 203580  significantly blocked the high 

luciferase activity observed in p38α
 +/+ MEF (Figure 21C). The data demonstrate 

that p38 MAPK is constitutively active in RAW264.7 monocytic cells. 
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Figure 21:  p38 MAPK activity in RAW264.7 and MEF cell cultures 

A: RAW264.7 cells were treated with or without SB 202190 and SB 203580 for the times indicated. 
Total protein (50 µg) was used for Western blot analysis and sequentially probed with antibodies 
against phospho-specific p38 and total p38 MAPK. The results were reproduced at least three times in 

independent experiments. B-C: RAW264.7 cells and p38+/+, p38-/- MEF were cotransfected with 

luciferase reporter gene construct pGal4-luc, pFC2-dbd, and pFA-CHOP, as indicated. 24 h after 
transfection cells were treated with SB 202190 (10 µM) and SB 203580 (20 µM) for 18 h. Cell extracts 
were assayed for luciferase activity, and the fold-induction relative to the control was determined. 
Values are means ± SEM from at least three independent experiments with duplicates of each point. 
Statistics: Student's t-test for paired values: *: significant differences pFC2-dbd versus pFA- CHOP; 
**: treatment versus control, p < 0.05. [Published as figure 2A-C in Naidu et al, 2009] 
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3.10 The HO-1 gene expression is not affected by inhibitors of JNK and 

ERK  

To evaluate the role of MAP Kinases JNK and ERK in the regulation of HO-1 

expression under basal conditions, RAW264.7 cells were treated with the JNK 

specific inhibitor SP 600125, and the ERK specific inhibitor, PD 98059, 

respectively. Unlike p38 inhibitors, treatment with neither the JNK inhibitor SP 

600125 nor the ERK inhibitor PD 98059 induced the expression of the HO-1 gene 

(Fig. 22).  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: HO-1 gene expression on treatment with JNK and ERK inhibitors 

RAW264.7 cells were treated with or without SB 202190, SP 600125, PD 98059 and PMA at the 
indicated concentrations (µM). Western blot analysis and quantitation was performed as 
previously described. Values ± SEM represent the fold-induction of HO-1 normalized to GAPDH 
from three independent experiments. Statistics: Student’s t-test for paired values: *: significant 
differences treatment versus control, p < 0.05. [Published as figure 3 in Naidu et al, 2009] 
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3.11 Pharmacological inhibition and genetic deficiency of p38 

upregulates HO-1 gene promoter activity 

Nrf2, as mentioned earlier is a member of the cap’n’collar family of basic leucine 

zipper proteins (Motohashi and Yamamoto 2004; Kensler et al. 2007) and plays 

a major role in the regulation of HO-1 expression by various stimuli (Alam et al. 

1999; Ishii et al. 2000). Previously, p38 was reported to be involved in the 

regulation of Nrf2 activation. However, the precise signaling mechanism is not 

well understood (Nguyen et al. 2003). The luciferase reporter gene constructs 

pHO-4045-luc and pE2-luc, both carry the proximal (E1) and distal (E2) 

enhancer sequences of the mouse HO-1 promoter that have been demonstrated 

to be the target sites for Nrf2 on the HO-1 promoter (Alam et al. 1999). To 

further evaluate the relationship between p38 activity and Nrf2 activation, these 

contructs were tranfected into p38-/- and p38+/+ MEF.  Since AP-1 is primarily 

regulated via JNK MAPK, we also transfected p38-/- and p38+/+ MEF with the pAP-

1-luc construct, which carries three copies of the consensus recognition 

sequence of AP-1 (Galang et al. 1994), and this was used as a negative control. 

Basal luciferase activity of the reporter gene construct pHO-4045-luc and pE2-

luc was significantly higher in p38-/- MEF in comparison to that in p38+/+ MEF. As 

expected, no difference was observed in the luciferase activity of pAP-1 luc 

between p38-/- and p38+/+ MEF (Fig. 23A). Moreover, luciferase activity of these 

constructs markedly increased when treated with the p38 inhibitor SB 202190 in 

RAW264.7 cells (Fig. 23B). Taken together, the data indicates that the 

transcription factor Nrf2 is involved in p38-mediated regulation of the HO-1 

gene. 
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Figure 23: Role of p38 MAPK activity in the regulation of the HO-1 promoter. 

A: p38-/- and p38+/+ MEF transfected with the indicated reporter gene constructs were assayed for 

luciferase activity 24 h after transfection. The fold-induction relative to p38+/+ was determined. Values 

are means ± SEM from at least three independent experiments. Student’s t-test for paired values was 

used. *: significant differences p38+/+ versus p38-/-, p < 0.05. B: RAW264.7 cells transfected with the 
indicated reporter gene constructs were assayed for luciferase acitivity 42 h after transfection. 24 h 
after transfection cells were treated with or without SB 202190 (10 µM) as indicated for 18 h. The 
fold- induction relative to the control was determined. Values are means ± SEM from at least three 
independent experiments. Statistics: Student's t-test for paired values: *: significant differences 
treatment versus control, p < 0.05. [Published as figure 4 in Naidu et al, 2009] 

 

3.12 Inhibitors of p38 do not induce HO-1 gene expression in  

Nrf2-/- MEF 

As another independent strategy to analyze the role of p38 in Nrf2-dependent 

HO-1 gene regulation, we treated Nrf2-/- and Nrf2+/+ MEF with p38 inhibitors. 

Treatment with either SB 202190 or SB 203580 markedly upregulated HO-1 

gene expression in Nrf2+/+ MEF but not in Nrf2-/- MEF (Fig. 24).  
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Figure 24: Regulation of the HO-1 gene expression in Nrf2-/- and Nrf2+/+ MEF 

Nrf2-/- and Nrf2+/+ MEF were cultured as described under Materials and Methods, and were treated for 

18 h with or without SB 202190 (10 µM) , SB 203580 (20 µM) and PMA (0.5 µM). Western blotting and 
quantitation was performed as described previously in this thesis. Values ± SEM represent the fold- 
induction of HO-1 normalized to GAPDH from three independent experiments. Statistics: Student’s t-
test for paired values: *: significant differences treatment versus control, p < 0.05. [Published as figure 
6A in Naidu et al, 2009] 

 

Similarly, when these cells were transfected with the pHO-4045-luc and pE2-luc 

constructs, the luciferase activity was significantly higher in Nrf2+/+ MEF when 

compared to that in Nrf2-/- MEF (Fig. 25). Moreover, upon treatment with SB 

202190 luciferase activity of two HO-1 gene constructs increased in Nrf2+/+ MEF 

whereas no difference was observed in Nrf2-/- MEF (Fig. 25). As expected, the 

reporter gene activity of the pAP-1-luc construct was not affected by p38 

inhibitors (Fig. 25). Taken together, the results suggest that inhibition of p38-

dependent regulation of the HO-1 gene expression occurs via an Nrf2-dependent 
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manner. Taken together, the results suggest that inhibition of p38-dependent 

regulation of the HO-1 gene expression occurs via an Nrf2-dependent manner. 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: HO-1 promoter activity in Nrf2-/- and Nrf2+/+ MEF 

 Nrf2-/- and Nrf2+/+ MEF were transfected with the indicated reporter gene constructs. 24 h after 
transfection cells were treated with or without SB 202190 (10 µM) and PMA (0.5 µM) for 18 h. The 

luciferase activity of the different constructs were assayed and determined relative to Nrf2-/- MEF. 

Values are means ± SEM from at least three independent experiments with duplicates of each point. 
Statistics: Student's t-test for paired values: *: significant differences treatment versus control; **: 

activity of pHO-4045 or pE2-luc in Nrf2-/- MEF versus Nrf2+/+ MEF, p < 0.05. [Published as figure 6B in 
Naidu et al, 2009] 

 

3.13 ERK is involved in HO-1 gene activation via p38 inhibition 

Independent studies have reported a role for ERK MAPK in the regulation of the 

HO-1 gene by numerous stimuli (Immenschuh and Ramadori 2000; Ryter et al. 

2006). Signaling pathways induced via MAPKs have been shown to involve 

cross-talks (Porras et al. 2004) and so we evaluated the effect of p38 MAPK 

inhibition on the phosphorylation of ERK and whether it plays a role in the 

regulation of HO-1 gene expression in p38-/- and p38+/+ MEF. In comparison to 

p38+/+ MEF, an increased phosphorylation of ERK was observed in p38-/- MEF and 
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presence or absence of serum did not alter this effect (Fig. 26A). Furthermore, 

treatment with the specific ERK inhibitor PD 98059 reduced the increase in the 

protein expression of HO-1 in p38-/- MEF (Fig. 26B). In a second series of 

experiments, the effects of p38 inhibition on the phosphorylation of ERK in 

RAW264.7 cells were examined. Addition of p38 inhibitors to cell cultures of 

RAW264.7 induced the phosphorylation of ERK in these cells (Fig. 26C).  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 26:  Role of ERK activity in p38-dependent regulation of HO-1 gene expression 

A: p38-/- and p38+/+ MEF were cultured in the presence or absence of FCS as indicated B: p38-/- and 

p38+/+ MEF were treated for 6 h in the presence or absence of PD98059. C: RAW 264.7 cells were 
treated with SB 202190 (10 µM), SB 203580 (20 µM) and PMA (0.5 µM), as indicated. Western blot 
analysis was performed as described previously and sequentially probed with antibodies (A, C) against 
phosphorylated ERK and total ERK, (B) HO-1 and GAPDH. [Published as figure 8A-C in Naidu et al, 
2009] 

 

Subsequent transient transfection studies with the luciferase reporter gene 

construct pFA-Elk which is specifically regulated via ERK revealed that the 
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luciferase activity was strongly upregulated in those cells treated with the p38 

inhibitors. Similarly, treatment with PMA which is known to induce the acitivity of 

ERK MAPK also induced the luciferase activity of pFA-Elk (Fig. 27). In summary, 

the results suggest that deficiency of p38 activity leads to the activation of ERK 

and may be involved in the regulation of the HO-1 gene expression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27:  ERK activity in RAW264.7 cells treated with p38 inhibitors 

RAW264.7 cells were cotransfected with the luciferase reporter gene constructs pGal4-luc, pFC2-dbd, 
and pFA-Elk. 24 h after transfection, the cells were treated for 18 h with or without SB 202190 (10 
µM), SB 203580 (20 µM) and PMA (0.5 µM). Luciferase activity in the cell extracts was determined. 
Values are means ± SEM from at least three independent experiments. Statistics: Student's t-test for 
paired values: *: significant differences treatment versus control, p < 0.05. [Published as figure 8D in 

Naidu et al, 2009] 

 

3.14 Genetic deficiency and pharmacological inhibition of p38 MAPK lead 

to increased accumulation of intracellular ROS 

Dolado and co-workers previously reported that genetic deficiency of p38α MAPK  

leads to an increased accumulation of ROS (Dolado et al. 2007). Hence, we 

determined the ROS levels in the p38+/+ and p38-/- MEF. In comparison to p38+/+ 

MEF, p38-/- MEF exhibited significantly higher level of intracellular ROS as 
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measured by FACS (Fig. 28A, B). Furthermore, treatment with the p38 inhibitor 

SB 202190 markedly increased the ROS levels in p38+/+ MEF in comparison to 

the control untreated group (Fig. 28A, B). To evaluate the role for ROS in this 

p38-mediated regulation of HO-1 gene expression, p38+/+ and p38-/- MEF were 

treated with the antioxidant NAC.  

 

 

 

 

 

 

 

 

 

Figure 28: p38 MAPK deficiency leads to increase in intracellular ROS 

A: p38-/- and p38+/+ MEF were treated with SB 202190 (10 µM) for 1 h. Cells were washed and loaded 

with DHE stain (5 µM) for 20 min and after further washing steps analyzed by flow cytometry. B: 

Numbers indicate quantification of the mean fluorescence intensity relative to p38+/+ MEF from at least 
three independent experiments  SEM. Statistics: Student’s t-test for paired values: *: significant 

differences treatment versus control; **: p38+/+ control versus p38-/- control, p < 0.05. [Published as 

figure 9A-B in Naidu et al, 2009] 

 

HO-1 gene expression has been shown to be induced by ROS in immunologically 

active cells (Maines 1997; Immenschuh and Ramadori 2000; Alvarez-Maqueda 

et al. 2004; Naidu et al. 2008). To evaluate the role for ROS in this p38-

mediated regulation of HO-1 gene expression, p38+/+ and p38-/- MEF were 

treated with the antioxidant NAC. The basal expression of HO-1 was significantly 
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reduced in p38-/- MEF when treated with NAC. Treatment with NAC had little 

effect in p38+/+ MEF (Fig. 29A). In the following RAW264.7 cells were treated 

with NAC prior to the addition of SB 202190. Treatment with NAC blocked the SB 

202190-mediated induction of the HO-1 gene expression. Similarly, upregulation 

of HO-1 by PMA which is a known inducer of ROS production in monocytes 

(Datta et al. 2000) was also attenuated by NAC (Fig. 29B). Taken together these 

results suggest that loss of p38 activity increases the intracellular generation of 

ROS and this might be involved in the induction of the HO-1 gene. 

 

 

 

 

 

 

 

 

 

 Figure 29: p38 MAPK deficiency leads to increase in intracellular ROS 

 A: p38-/- and p38+/+ MEF were treated for 6 h with or without NAC (5 and 25 mM). B: RAW264.7 cells 

were pretreated for 30 min with NAC at the indicated concentrations (mM), after which treatment was 
continued for another 6 h with or without SB 202190 (10 µM) and PMA (0.5 µM). (B) Values ± SEM 
represent the fold-induction of the HO-1 normalized to the GAPDH from three independent 
experiments. Statistics: Student’s t-test for paired values: *: significant differences treatment versus 
control; **: treatment versus NAC + treatment, p < 0.05. [Published as figure 9C-D in Naidu et al, 

2009] 
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4. Discussion 

Hemeoxygenase-1(HO-1) is the inducible isoform of the rate-limiting enzymatic 

step of heme catabolism and has major antioxidant and anti-inflammatory 

functions. The beneficial effects of this enzyme appear to be mainly mediated via 

degradation of proinflammatory heme and production of the anti-inflammatory 

compounds CO and bilirubin. More recently, myeloid/macrophage cell type 

specific effects of HO-1 have been implicated in central immunomodulatory 

functions of the innate and adaptive immune response. In this thesis 

experimental strategies were used to elucidate the signaling mechanisms 

regulating the HO-1 gene expression. Major results revealed an important role of 

the immunologically relevant kinase Bruton’s tyrosine kinase (Btk) in the 

regulation of TLR-induced signaling of the HO-1 gene and a specific role of the 

p38 MAPK as a repressor of the HO-1 gene in mouse macrophages. TLR ligands, 

specifically the TLR4 ligand LPS induced the activation of the HO-1 gene 

expression via Btk.  Moreover, inhibition of the p38 MAPK induced the HO-1 

gene in cell cultures of macrophages. As revealed in this thesis, both 

mechanisms are mediated at the transcriptional level via the transcription factor 

Nrf2, a crucial regulator of the cellular antioxidant response, and involve ROS as 

signaling molecules.  

4.1 Role of Btk in the induction of the HO-1 gene expression 

The proinflammatory mediator LPS, a ligand of the central macrophage receptor 

TLR4, has previously been shown to induce HO-1 gene expression in 

mononuclear phagocytes (Camhi et al. 1995; Immenschuh et al. 1999; 

Wijayanti et al. 2004). The results of this thesis revealed that inhibition of the 

non-receptor tyrosine kinase Btk by the chemical inhibitor LFM-A13 or genetic 

Btk deficiency blocked the LPS-dependent HO-1 up-regulation in cell cultures of 
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the mouse macrophage cell line RAW264.7 and in murine alveolar macrophages 

(Figs. 7-10). The significance of Btk as an immunologically relevant kinase is 

clearly illustrated in X-linked agammaglobulinemia, a disorder in which a 

mutation of this kinase leads to impaired development of B-cells, making them 

incompetent to produce antibodies  (Vetrie et al. 1993). Although earlier studies 

focussed on the role of this kinase in B-cell function, recent evidences indicated 

that Btk might play an important role in mediating inflammatory responses in 

other cell types, such as macrophages and mast cells (Hata et al. 1998; 

Kawakami et al. 1998; Kawakami et al. 1999; Jefferies and O'Neill 2004). 

Specifically, deficiency of Btk function leads to impaired cytokine response and 

poor nitric oxide induction in response to LPS (Horwood et al. 2003; Mangla et 

al. 2004; Horwood et al. 2006). Moreover, LPS treatment both in vivo and in 

vitro induces the HO-1 gene. Since various studies indicated that LPS-induced 

cytokine and NO production may influence the regulation of the HO-1 gene we 

hypothesized that Btk might also be an upstream candidate in LPS-dependent 

signaling of HO-1 gene up-regulation. The present findings are consistent with 

the notion that Btk might play a central role in mediating the HO-1 gene 

induction by LPS. As the Btk inhibitor LFM-A13 also inhibits the kinase JAK2, Btk 

knockout macrophages were used in this thesis to confirm that the specificity of 

Btk function in HO-1 regulation. Moreover, we have also analysed the effect of 

the JAK2 specific inhibitor AG490 on the regulation of HO-1. In contrast to LFM-

A13, treatment with AG490 alone up-regulated the HO-1 gene expression (Fig. 

7C), indicating that the blockage of the HO-1 gene induction with LFM-A13 is a 

specific effect caused by the inhibition of Btk and not JAK2. However, Btk has 

been shown to be a versatile protein that interacts with many other proteins. 
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Therefore, it is feasible that there might also exist protein-protein interactions 

between JAK2 and Btk, possibly affecting the HO-1 gene regulation. 

4.2 Role of p38 MAPK in the induction of the HO-1 gene expression 

Inhibition of p38 MAPK in monocytic cells by small molecule inhibitors and 

genetic deficiency of p38 in MEFs leads to an increased HO-1gene expression, 

in contrast to an unaltered Cox-2 gene (Fig. 20). Since chemical inhibitors of p38 

MAPK block all four isoforms of this kinase, the specificity for p38was analysed 

in MEFs deficient for p38Because, the induction of HO-1 was observed in both 

RAW264.7 cells and in p38-deficient MEFs in this thesis, it indicates that the 

observed mechanism may not be only restricted to macrophages.  With regard 

to its physiological function p38 seems to be the most important isoform 

among the four p38 family, since the targeted deletion of the p38 gene in mice 

leads to embryonic lethality in mice (Adams et al. 2000). In this respect, it was 

interesting that HO-1 levels were constitutively high in p38
-/- MEF, even though 

basal HO-1 expression is generally known to be barely detectable in most cells 

(Maines 1997; Ryter et al. 2006). Moreover, the upregulation of HO-1 by 

inhibition of p38 MAPKs was rather unexpected, since p38 MAPKs has previously 

been shown to mediate the activation of the HO-1 gene in response to various 

stimuli, such as LPS and TPA (Maines 1997; Immenschuh and Ramadori 2000; 

Ryter et al. 2006). Indeed, this has also been reproduced in our study, in which 

induction of HO-1 by TPA was partially blocked after inhibition of p38 MAPKs. 

The findings of this thesis are supported by a recent study demonstrating that 

the basal expression of many genes was increased without the presence of an 

external stress stimulus in immortalized p38-/- cardiomyocytes (Ambrosino et 

al. 2006).  The present observations may therefore suggest that p38 has a dual 

function on the regulation of the HO-1 gene. On the one hand p38 may act as a 
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repressor of HO-1 in unstimulated cells and on the other hand it may promote 

also HO-1 activation in the presence of several external stress stimuli.  

4.3 Transcriptional mode of the HO-1 gene induction  

To investigate if the Btk- and p38-mediated increase of the HO-1 expression 

occurs at the transcriptional level transient transfection experiments with 

reporter gene constructs of the mouse HO-1 gene promoter were performed in 

RAW264.7 cells. Additionally, MEFs were used that were genetically deficient for 

either p38 or Nrf2. Unfortunately, as noted by analysing the effect of LPS on 

MEFs, it was not possible to use appropriate MEFs for studies on Btk, since HO-1 

is not induced by LPS in this cell type (data not shown in Results). 

4.3.1 Transcriptional regulation of the HO-1 gene by Btk   

This is the first report to demonstrate that Btk regulates the redox regulated 

transcription factor Nrf2. Btk had only  been shown before to modulate the 

activity of other transcription factors, including TFII-I and NF-B in B cells 

(Novina et al. 1999; Bajpai et al. 2000) or also NFAT in mast cells (Iwaki et al. 

2005). The immunofluorescense studies showed a decreased nuclear 

translocation of Nrf2 in response to LPS and this indicate that Btk may play a 

role in the LPS mediated activation of Nrf2 

In earlier reports it has been demonstrated that the LPS induced induction of the 

HO-1 gene is mediated by two upstream regions localized at -4kb and -12kb 

relative to the transcription initiation site of the mouse HO-1 gene promoter 

(Camhi et al. 1998). Initially, it was thought that transcriptional regulation via 

these sequences would be regulated by the transcription factor AP-1, because 

both regions contain potential AP-1 sites (Camhi et al. 1995). Later studies, 

however, revealed that these promoter regions are major nuclear targets for the 

transcription factor Nrf2 (Alam et al. 1999). Nrf2 binds to the ARE, also referred 
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to as antioxidant response element or electrophile response element (EpRE), 

several of which are located in the 5'-flanking sequence of the HO-1 gene 

promoter. AREs have been identified in a large number of phase II detoxifying 

enzymes and antioxidant stress proteins (Nguyen et al. 2003). The results of 

this thesis are consistent with this finding and revealed an Nrf2-mediated effect 

on the mouse HO-1 promoter by using reporter gene constructs with the 

proximal 4045 bp of the mouse HO-1 promoter and with ARE. Nrf2 controls the 

HO-1 gene induction in response to various oxidative/stress stimuli and by its 

interaction with keap1 is kept in an inactive state under normal conditions. 

Binding to keap1 in addition marks Nrf2 for proteasomal degradation via 

ubiquitination (Itoh et al. 1999; Kobayashi and Yamamoto 2005; Kensler et al. 

2007). This Btk-mediated Nrf2 activation mechanism does not only regulate the 

HO-1 gene, but is also involved in the LPS-induced up-regulation of the NQO1 

gene, a prototypical Nrf2-regulated gene. Thus, it would raise the possibility that 

also other Nrf2 target genes could also be altered in macrophages. In contrast to 

Nrf2, the transcription factor NF-B, that has been shown earlier to regulate the 

HO-1 gene expression (Wijayanti et al. 2004; Naidu et al. 2008) and is one of 

the classical targets of LPS-dependent TLR4 signaling in mononuclear 

phagocytes, does not seem to play a major role in the HO-1 gene regulation via 

Btk. This assumption is supported by the observations that LPS-dependent 

induction of a NF-B-regulated reporter gene construct (pTNF-585-luc) and 

phosphorylation as well as degradation of the NF-B inhibitor IB were not 

affected by pharmacological inhibition of Btk (Fig. 11). This notion is also in 

agreement with earlier reports, in which it was shown that the Btk-mediated 

induction of TNFα and IL-1ß by LPS was independent of the classical NF-B 

pathway (Horwood et al. 2003; Doyle et al. 2005; Horwood et al. 2006). 
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However, it should be taken into consideration that other transcription factors 

such as AP-1 and USF or the transcription repressor Bach1 might in addition also 

be involved in LPS-mediated HO-1 regulation via Btk (Alam and Cook 2007). 

4.3.2 Transcriptional regulation of the HO-1 gene by p38 inhibitors 

p38 MAPKs regulate gene expression by both transcriptional and post-

transcriptional mechanisms (Ono and Han 2000). Similar to Btk-mediated 

induction of the HO-1 gene, inhibition or genetic deficiency of p38α activates the 

transcription factor Nrf2 for induction of HO-1(Fig 24-25). This conclusion is 

supported by the present finding that genetically deficient p38α MEFs possess 

higher Nrf2 levels in the nucleus. Moreover, Nrf2-deficient MEFs failed to 

upregulate the HO-1 gene after p38 inhibition. In this respect it is of interest 

that the expression of the peroxiredoxin 1 (Prdx1) gene, a gene regulated in a 

similar manner as HO-1 (Immenschuh et al. 1995) was also induced by the 

inhibition of p38. Previously Prdx1 1 has been shown to be a target of Nrf2 

supporting the finding that p38 plays a negative role on Nrf2 activation (Ishii et 

al. 2000). Previous studies have reported that blockage of p38 augments Stress 

response element (StRE)-mediated induction of phase II detoxifying enzymes 

(Yu et al. 2000) and also sulforaphane-dependent activation of HO-1 via Nrf2 in 

human hepatoma HepG2 cells (Keum et al. 2006) and our findings corroborate 

these studies. Finally, it can, however, not be excluded that additional Nrf2-

independent regulatory mechanisms may be involved in the up-regulation of the 

HO-1 gene expression via p38 MAPKs. 

4.4 Signaling pathway  

Btk- and p38α- dependent induction of HO-1 is mediated by distinct signaling 

cascades in macrophages. However, in both of these signaling pathways Nrf2 

and ROS act as downstream regulators of the HO-1 gene expression. 
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4.4.1 Btk-dependent induction of HO-1 gene expression in macrophages 

The results of this thesis indicate that Btk mediates the induction of HO-1 not 

only by stimulation of macrophages via TLR4/LPS, but also by ligands for TLR2, 

TLR7 and TLR9 (Fig. 16-17). These observations are in accordance with earlier 

reports which indicated that Btk might play a central role in macrophage 

stimulation by various TLRs (Koprulu and Ellmeier 2009). As an example, Btk 

has previously been demonstrated to be involved in TLR-dependent induction of 

pro- and anti-inflammatory cytokines (Horwood et al. 2006; Schmidt et al. 

2006). Moreover, Btk has been shown to mediate TLR8- and TLR9-dependent 

signaling in the human macrophage cell line THP-1 (Doyle et al. 2007). The 

current observations of this thesis indicate that ROS may mediate the Btk-

dependent activation of the HO-1 gene expression in TLR-stimulated 

macrophages. These results corroborate earlier findings that ROS generated 

upon TLR4 activation acts as a secondary signaling molecules and mediate 

cellular responses in mononuclear phagocytes (Asehnoune et al. 2004). 

Furthermore, direct interaction of TLR4 and NADPH oxidase 4 (NOX4), has 

previously been shown to mediate generation of ROS in phagocytes (Park et al. 

2004). A similar mechanism has also been reported in an in vivo knockout 

mouse model (Kong et al. 2010). Previously, Mangla and colleagues have 

reported that in Btk-/- mononuclear phagocytes LPS failed to induce ROS 

production (Mangla et al. 2004). Our findings are consistent with this 

observation and further studies are required to characterize the exact 

mechanism by which Btk regulates ROS production in LPS-stimulated 

macrophages. Surprisingly, the present results indicate that Btk-dependent 

induction of the HO-1 gene via Nrf2 is mainly mediated by ROS but not RNS. 

Indeed, the activity of Nrf2 was not influenced by the specific iNOS inhibitor 



80 
 

1400W, but blocked by NAC (Fig. 15). However, Nrf2 has previously been shown 

to be activated by NO and reactive nitrogen species in Hela cells (Fourquet et 

al.), human umbilical vein endothelial cells (Heiss et al. 2009) or PC12 

phaeochromocytoma cells (Li et al. 2007). Therefore, it might be feasible that 

cell type- or species-specific effects may play a role in the NO-dependent 

regulation of Nrf2. The Btk-mediated Nrf2 activation may involve direct 

modulation of the cytosolic inhibitor protein Keap1 as described in many 

scenarios (Kobayashi and Yamamoto 2005). Furthermore, ROS produced after 

LPS-induction could in addition regulate gene transcription by other mechanisms 

such as the inhibition of regulatory phosphatases as shown by others (Rhee et 

al. 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30: Model of TLR4 mediated activation of HO-1 gene expression in macrophages 

Upon stimulation with LPS Btk mediates the generation of ROS and that leads to the activation of Nrf2. 
Nrf2 translocates to the nucleus binds to the ARE elements present on HO-1 gene promoter and induce 
the transcription of the HO-1 gene. Whether Btk directly influence NOX enzymes for the generation of 
ROS is not clear and should be explored in further studies. Nrf2: nuclear factor erythroid 2-related factor 
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E2; ARE: antioxidant response element; Keap: Kelch ECH associating protein; ROS: reactive oxygen 
species; sMaf: small Maf protein. 

4.4.2 Regulatory pathways of increased HO-1 gene expression by 

inhibition and genetic deficiency of p38 MAPK 

The results of this thesis revealed that genetic deficiency of p38α causes an 

increase in ERK activity (Fig. 26-27) which is in agreement with an earlier report 

(Porras et al. 2004). Moreover, treatment with the ERK inhibitor PD 98059 in 

p38α
-/- MEF abolished the increase in expression of the HO-1 gene indicating that 

the MAPK p38α and ERK play opposing roles in the regulation of this gene. This 

assumption is corroborated by a previous study, in which pharmacological 

inhibition of p38 up-regulated the low density lipoprotein receptor gene 

expression through the activation of ERK in HepG2 cells (Singh et al. 1999). 

Moreover, another independent study has demonstrated that inhibition of p38 

augmented LPS-mediated inducible NO synthase gene expression and NO 

production via JNK activation in macrophages (Lahti et al. 2006). The role of 

MAPK signaling in the regulation of the HO-1 gene is complex and varies among 

species. Elbirt and colleagues reported that in avian hepatocytes both activation 

of ERK and p38 MAPKs were required for the arsenite-dependent induction of the 

HO-1 gene expression (Elbirt et al. 1998). In contrast, both JNK and p38 MAPK 

were important for the HO-1 gene induction by this compound in rat hepatocytes 

(Kietzmann et al. 2003). Thus, one can assume that MAPK modulate HO-1 gene 

expression in a stimulus-, cell- and species-specific manner. 

Since transformed p38α -deficient cells were reported to accumulate much larger 

amounts of ROS than wild type cells, p38α was suggested to play the role of a 

cellular oxidative stress sensor (Dolado et al. 2007). The current findings (Fig. 

28) are in line with this suggestion. Moreover, ROS might be involved in the 

activation of ERK in the absence of  p38 activity (Porras et al. 2004). This is also 
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corroborated by recent reports, which demonstrate that ROS causes a sustained 

activity of ERK in human hepatoma cells (Wu et al. 2006) as well as in a model 

of cerebral ischemia (Wu et al. 2008). Accordingly, this is in line with the results 

obtained in this thesis by treatment of p38α
-/- MEF with the antioxidant NAC, 

blocked the increase of the HO-1 gene expression (Fig. 29). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Inhibition of p38 activates HO-1 gene expression 

Inhibition or genetic deficiency of p38α MAPK mediates the generation of ROS which leads to the 

activation of Nrf2. Nrf2 translocates to the nucleus binds to the ARE elements present on HO-1 gene 

promoter and induce the transcription of the HO-1 gene. p38α MAPK inhibition also leads to an increase 

in ERK activity which may play a role in this regulatory pathway. Nrf2: nuclear factor erythroid 2-related 
factor E2; ARE: antioxidant response element; Keap: Kelch ECH associating protein; ROS: reactive 
oxygen species; sMaf: small Maf protein. 
 
 
 

4.5 Physiological significance  

4.5.1 Significance of Btk-dependent HO-1 regulation in innate and 

adaptive immune responses 

Btk mutations in humans lead to X-linked agammaglobulinemia (XLA), which is a 

rare genetic immunological disorder (Vetrie et al. 1993) in which the B-cells are 
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not capable to produce antibodies. The phenotype observed in humans can be 

simulated successfully in mice by introducing a  point mutation (R28C) in or by 

targeted disruption of the murine Btk gene (Vetrie et al. 1993; Khan et al. 1995) 

leading to X-linked immunodeficiency (XID). Thus, the blockage of the HO-1 

gene induction in LPS-stimulated Btk-/- macrophages suggests that Btk-

associated immunological defects may be partially caused by the 

immunomodulatory properties of HO-1. This assumption would correspond with 

a recent finding that a myeloid cell-specific knockout of the HO-1 gene impaired 

immunoregulatory functions (Tzima et al. 2009). The IFN-ß signaling pathways 

were severely impaired in these animals, leading to pathological inflammatory 

responses in experimental viral and bacterial infections and in an experimentally 

induced autoimmune encephalomyelitis. The assumption that decreased HO-1 

inducibility in TLR ligand-stimulated macrophages may have profound effects in 

various immune responses also corresponds with one study revealing an 

impairment of TLR-dependent signaling in antigen-presenting cells in patients 

with XLA (Sochorova et al. 2007; Taneichi et al. 2008). Finally, Btk-mediated 

induction of the HO-1 gene may help in the resolution of inflammation by 

regulating the activation of TLR-stimulated macrophages. 

This notion is supported by findings of Nakahira and colleagues who 

demonstrated that LPS-dependent production of CO, the by product of the HO-1 

enzyme reaction forms a negative feedback loop that regulates the translocation 

of TLRs to lipid rafts in macrophages (Nakahira et al. 2006). Finally, an 

interconnection between Btk and HO-1 may also be important for the regulation 

of apoptosis. As mentioned earlier, HO-1 is known to have potent anti-apoptotic 

effects, and in earlier reports it was shown that Btk knockout macrophages 

exhibited an increased rate of apoptosis (Mangla et al. 2004) which might indeed 
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partly be caused by a decreased expression of HO-1. Because of the functional 

relevance of Btk and HO-1 in inflammation, targeted modulation of the related 

signaling pathways in myeloid/macrophage cells may help to develop novel 

therapeutic strategies in the treatment of inflammatory diseases. In conclusion, 

the current study reveals that the increase in HO-1 abundance in TLR-stimulated 

macrophages needs the activation of the Tec family kinase Btk. Due to the vital 

role played by myeloid/macrophage cells in inflammation, the present findings 

provide further insight into the complex signaling pathways regulating the anti-

inflammatory HO-1 gene. 

4.5.2 Physiological significance of HO-1 upregulation mediated by 

inhibition or genetic deficiency of p38 MAPK 

HO-1 is known to have potent anti-apoptotic functions (Ryter et al. 2006),  

increased HO-1 expression levels in p38-/- MEF may partially be involved in the 

observation that p38α deficiency makes these cells more resistant to apoptosis 

via induction of anti-apoptotic genes (Porras et al. 2004). It is also noteworthy 

that degradation of p38α in endothelial cells have been connected with the anti-

apoptotic role of HO-1 (Silva et al. 2006). In summary these findings suggest an 

important relation between HO-1 and p38 regulation. The present thesis 

revealed an activation of the HO-1 gene via pharmacological inhibition or genetic 

deficiency of p38 MAPK. These findings provide new insights into the regulatory 

mechanisms of the HO-1 gene expression in macrophages before and after they 

encounter an inflammatory signal. 

Targeted over expression of HO-1 or induction by potential new drugs might 

open major potentials for the treatment of inflammatory disorders. The salutary 

effects of specific over expression of HO-1 either by pharmacological induction or 

by genetic approaches has been shown in experimental models of various 
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inflammatory disorders such as arthritis, encephalomyelitis and hepatitis (Ryter 

et al. 2006; Vijayan et al. 2010). Furthermore, targeted over expression of HO-1 

in macrophages has also been shown to protect from ischemia-reperfusion injury 

in experimental mouse models of liver and kidney transplantation (Ferenbach et 

al. 2010; Ke et al. 2010). 

4.6 Conclusion 

Unfortunately, the signaling mechanisms leading to the induction of the HO-1 

expression are highly complex, stimuli and cell-type specific. Although HO-1 is 

highly promising as a therapeutic target for intervening inflammation, our 

current knowledge on the complete properties and regulation of the gene HO-1 

still too limited and critical questions remain to be answered before new clinical 

strategies and drug-induced activation of the HO-1 gene might be available for 

severe inflammatory diseases, such as sepsis (Vijayan et al. 2010). 
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5. Summary 

Monocytes or macrophages are crucial regulators of inflammation. Intracellular 

signaling in macrophages is tightly regulated to ensure that they do not undergo 

excessive activation, which may lead to chronic inflammation accompanied with 

potential damage to the host tissue.  Induction of HO-1 in macrophages has 

been shown to have potent immunomodulatory properties. 

In this thesis two different signalling mechanisms are described which lead to 

the induction of HO-1 in macrophages. In the first part the signalling pathway 

leading to the induction of HO-1 via toll-like receptor (TLR)4 by the classical pro-

inflammatory stimulus lipopolysaccharide (LPS) is described. The second part of 

this thesis deals with the induction of HO-1 caused by the inhibition of the 

mitogen activated protein kinase (MAPK) p38. 

Induction of HO-1 by LPS in macrophages has been described earlier, but the 

exact regulatory mechanisms of this pathway are not well understood. In this 

thesis it is shown that Bruton’s tyrosine kinase (Btk) mediates the LPS-induction 

of HO-1. LPS-dependent induction of HO-1 was blocked in macrophages treated 

with the Btk inhibitor, LFM-A13 or in Btk alveolar macrophages. Promoter 

studies and quantitative real time PCR studies revealed a transcriptional 

regulatory mechanism. Btk was shown to mediate the production of ROS and 

activation of the transcription factor Nrf2. 

p38 MAPK inhibition is shown to increase the expression of HO-1. This was 

rather surprising, because activation of p38 MAPK has earlier been shown to 

mediate HO-1 induction caused by various stimuli.  This increase in HO-1 

expression was also observed in p38

mouse embryonic fibroblasts. Further 
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analysis revealed that p38 inhibition leads to an increased production of reactive 

oxygen species (ROS) and activation of Nrf2. Furthermore, ERK MAPK was also 

shown to be involved in this pathway. 

Taken together, this thesis demonstrates that signaling to HO-1 in macrophages 

is primarily mediated by the transcription factor Nrf2. Further studies to unravel 

the regulation of this gene may help to develop novel strategies for clinical 

intervention in inflammatory disorders. 
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6. Zussamenfassung 

Monozyten und Makrophagen spielen eine bedeutsame Rolle für die Regulation 

von Entzündungsreaktionen. Die intrazelluläre signaltransduktion in 

Makrophagen wird streng reguliert, um eine überschießende Aktivierung dieser 

Zellen zu vermeiden, die zu einer chronischen Entzündung mit möglicher 

Gewebeschädigung führen könnte. Für die Induktion der Hämoxygenase (HO)-1 

in Makrophagen konnte eine wirksame immunmodulatorische Wirkung gezeigt 

werden. 

In der vorliegenden Arbeit werden zwei verschiedene Signalübertragungwege 

beschrieben, die zu einer Induktion der HO-1 in Makrophagen führen. Im ersten 

Teil der Arbeit ist ein Signalweg beschrieben, der zu einer Induktion der HO-1 

über eine Aktivierung von Toll-like Rezeptor (TLR)-4 durch den klassischen pro-

inflammatorischen Stimulus Lipopolysaccharid (LPS) führt. Der zweite Teil der 

Arbeit beschäftigt sich mit der Induktion der HO-1 durch die Inhibition der 

Mitogen-aktivierten Proteinkinase (MAPK) p38. 

Die Induktion der HO-1 durch LPS wurde bereits früher erstmals beschrieben, 

aber die genauen regulatorischen Mechanismen sind nicht genau bekannt. In der 

vorliegenden Arbeit wurde gezeigt, dass die Bruton-Tyrosinkinase (Btk) die LPS-

abhängige Induktion der HO-1 vermittelt. Die HO-1 Induktion durch LPS wurde 

durch Behandlung von Makrophagen mit dem Btk Inhibitor LFM-A13 oder in Btk-/-  

Alveolarmakrophagen blockiert. Promoterstudien und quantitative real time PCR 

Studien zeigten einen zugrundeliegenden transkriptionalen Mechanismus. 

Weiterhin konnte gezeigt werden, dass die Inhibition der p38 MAPK die HO-1 

Expression heraufreguliert. Dieser Befund war unerwartet, weil in früheren 

Untersuchungen gezeigt worden war, dass p38 Aktivierung die Induktion der 
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HO-1 vermittelt hatte. Diese HO-1 Induktion konnte auch in p38-/- murinen 

embryonalen Fibroblasten beobachtet werden. Weitere Untersuchungen zeigten, 

dass die Inhibition von p38 zu einer gesteigerten Produktion von reaktiven 

Sauerstoffspezies (ROS) und einer Aktivierung von Nrf2 führte. Außerdem 

konnte gezeigt werden, dass die MAPK ERK an dieser Regulation beteiligt war. 

Zusammenfassend zeigt diese Arbeit, dass die signaltransduktion zum HO-1 Gen 

in Makrophagen in erster Linie durch den Transkriptionsfaktor Nrf2 vermittelt 

wird. Weitere Studien zur Aufklärung der genauen Regulation dieses Genes 

könnten dabei helfen, neue Behandlungsstrategien bei der entzündlichen 

Erkrankungen zu entwickeln.  
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7. Appendix 

Plasmids 

BtkDNK430R and BtkDNR28C: 

These Btk dominant negative expression vectors express Btk proteins containing 

mutations which make them non-functional. These plasmid vectors were a 

generous gift from Dr. Sarah Doyle (Trinity College, Dublin, Ireland). The point 

mutations, resulting in either the dominant negative (K430R) or the Xid (R28C) 

version of the Btk protein, were introduced and the sequence was cloned into a 

pCDNA3 expression vector (Jefferies et al. 2003). 

pAP-1 luc: 

pAP-1 luciferase construct (AP-1-Luc) was a generous gift from Dr. Craig A. 

Hauser (The Burnham Institute, La Jolla, CA). This plasmid was generated by 

cloning three AP-1 repeats into a luciferase reporter gene containing a minimal 

Fos promoter (Galang et al. 1994). 

pARE luc: 

pARE-luc contains a copy of the antioxidant response element and was a 

generous gift from Dr. William E. Fahl (University of Wisconsin, Madison, WI, 

USA). It is a TI-luciferase based plasmid which was constructed with either 

double-stranded oligonucleotide or PCR products inserted between the MluI and 

BglII sites of the TI luciferase vector (Wasserman and Fahl 1997). 

pE2 luc: 

pE2-luc was a generous gift from Dr. Jawed Alam (Alton Ochsner Medical Center, 

New Orleans, LS). This plasmid was generated by transferring the HO-1 

enhancer region containing the stress response element and minimal promoter 
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sequences from the corresponding chloramphenicol acetyltransferase reporter 

gene construct pMHO1catD-44 1 AB1 (used in an earlier study), into the 

luciferase reporter plasmid pSKluc (Alam et al. 2000). 

pHO-4045 luc: 

HO-1 luciferase reporter plasmid contains the proximal 4045bp of the mouse 

HO-1 promoter and was a generous gift from Dr. Mark A. Perrella (Harvard 

Medical School, Boston, MS, USA). It was constructed by amplification of HO-1-

(–4045/+74) from the mouse genomic DNA by PCR and then subcloned into the 

pGL2 luciferase reporter vector (Chung et al. 2005). 

pTNF-585-luc: 

This plasmid contains the proximal region of the TNF-alpha promoter which 

consists of two NF-kB elements (Wilson et al. 1997). This plasmid was a 

generous gift from Dr. Gordon Duff (University of Sheffield, Sheffield, UK) which 

was subcloned into a luciferase reporter construct in our lab. 

The other plasmids used in this thesis were purchased from companies as 

mentioned in the Materials and Methods. The details regarding the plasmids can 

be found on the respective company website. 
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9. Index of abbreviations 

AP-1  activator protein-1 

ARE  antioxidant response element 

bZIP  basic leucine zipper 

Btk   Bruton’s tyrosine kinase 

Cox-2  cyclooxygenase-2 

DCFDA dichlorofluorescein diacetate 

DHE   dihydroethidium 

DMEM  Dulbecco’s modified Eagle’s medium 

ERK   extracellular signal-regulated kinase 

FCS   fetal calf serum 

GAPDH  glyceraldehydes-3-phosphate dehydrogenase 

HO  heme oxygenase 

IB  inhibitor of NF-κB 

JNK  c-jun N-terminal kinase 

LFM-A13 α-Cyano-β-hydroxy-β-methyl-N-(2,5-dibromophenyl)propenamide 

LPS  lipopolysaccharide 

MAPKs mitogen activated protein kinases 

MEF  mouse embryonic fibroblast(s) 

MTT   3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

NF-κB  nuclear factor-κB 

NO   nitric oxide 

Nrf2   nuclear factor-erythroid-2 related factor 2 

PBS   phosphate buffered saline 

PMA   phorbol myristate acetate 

Prx   peroxiredoxin 

ROS  reactive oxygen species 

RT  room temperature 

SDS  sodium dodecyl sulfate    

StRE   stress response element 

TLR  toll-like receptor 

TNF-α  tumor necrosis factor-α 
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promoter activity was attenuated by pharmacological Btk inhibition and by an overexpressed 

dominant-negative mutant of Btk. This induction was mediated by the transcription factor 

Nrf2, which is a master regulator of the antioxidant cellular defense. Accordingly, nuclear 

translocation of Nrf2 in LPS-treated macrophages was reduced by Btk inhibition. The 

generation of reactive oxygen species, but not that of NO, was involved in this regulatory 
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antioxidant cytoprotection, but also have potent anti-inflammatory and immunomodulatory 

functions. Although HO-1 has previously been shown to be induced by various stimuli via 

activation of the p38 MAPK signaling pathway, the role of this protein kinase for HO-1 gene 

regulation is largely unknown. In the present study, it is demonstrated that pharmacological 
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luciferase reporter gene constructs indicate that increased HO-1 gene expression via 

inhibition of p38 was mediated by the transcription factor Nrf2, which is a central regulator 

of the cellular oxidative stress response. Accordingly, inhibitors of p38 induced binding of 

nuclear proteins to a Nrf2 target sequence of the HO-1 promoter, but did not affect HO-1 

protein expression and promoter activity in Nrf2(-/-) MEF. Genetic deficiency of p38 led to 

enhanced phosphorylation of ERK and increased cellular accumulation of reactive oxygen 

species. In addition, pharmacological blockage of ERK and scavenging of reactive oxygen 

species with N-acetylcysteine reduced HO-1 gene expression in p38(-/-) MEF, respectively. 

Taken together, it is demonstrated that pharmacological inhibition and genetic deficiency of 

p38 induce HO-1 gene expression via a Nrf2-dependent mechanism in monocytic cells and 

MEF. 
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