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Abstract

Background: In natural environments, bacteria must frequently cope with extremely scarce nutrients. Most studies
focus on bacterial growth in nutrient replete conditions, while less is known about the stationary phase. Here, we
are interested in global gene expression throughout all growth phases, including the adjustment to deep stationary
phase.

Results: We monitored both the transcriptome and the proteome in cultures of the alphaproteobacterium
Rhodobacter sphaeroides, beginning with the transition to stationary phase and at different points of the stationary
phase and finally during exit from stationary phase (outgrowth) following dilution with fresh medium. Correlation
between the transcriptomic and proteomic changes was very low throughout the growth phases. Surprisingly, even
in deep stationary phase, the abundance of many proteins continued to adjust, while the transcriptome analysis
revealed fewer adjustments. This pattern was reversed during the first 90 min of outgrowth, although this
depended upon the duration of the stationary phase. We provide a detailed analysis of proteomic changes based
on the clustering of orthologous groups (COGs), and compare these with the transcriptome.

Conclusions: The low correlation between transcriptome and proteome supports the view that post-transcriptional
processes play a major role in the adaptation to growth conditions. Our data revealed that many proteins with
functions in transcription, energy production and conversion and the metabolism and transport of amino acids,
carbohydrates, lipids, and secondary metabolites continually increased in deep stationary phase. Based on these
findings, we conclude that the bacterium responds to sudden changes in environmental conditions by a radical
and rapid reprogramming of the transcriptome in the first 90 min, while the proteome changes were modest. In
response to gradually deteriorating conditions, however, the transcriptome remains mostly at a steady state while
the bacterium continues to adjust its proteome. Even long after the population has entered stationary phase, cells
are still actively adjusting their proteomes.

Background
Most bacteria live in environments that do not sustain
continuous growth. Rather, natural populations are typ-
ically stationary with respect to growth, since factors re-
quired for growth are usually limiting (e.g., nutrients,
oxygen) or growth-inhibiting factors (e.g., waste prod-
ucts) have accumulated (reviewed in [1]). However,

stationary phase is not necessarily the end state. Bacter-
ial growth resumes as soon as environmental conditions
become favorable again. Presumably, stationary phase
populations are optimized to cope with either of two
possibilities. On one hand, they must withstand the chal-
lenging environmental conditions that prevent growth.
On the other hand, they should be capable of rapidly re-
suming growth in case of environmental changes that
favor growth. A goal of this study was to learn how the
bacteria cope with this situation. Transcriptomic and
proteomic data on a bacterial population as it traverses
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through the various growth states can provide some
hints. Transcriptomic approaches have been used to
study the changes between the growth phases [2, 3]. A
combined transcriptomic and proteomic approach has
the advantage of providing deeper insights into the mo-
lecular changes underlying bacterial growth adaptation
[4–7]. Generally, we expected the information flow from
DNA to RNA to correlate with the RNA to protein con-
version, i.e., changes in the transcriptome are predicted to
lead to corresponding changes in the proteome and me-
tabolome. However, evidence is emerging from a wide
spectrum of organisms that RNA abundances do not gen-
erally correlate well with protein abundances [8]. Another
goal of this study was to see if this is indeed the case.
In a previous study, we analyzed transcriptome data

from our model organism, Rhodobacter sphaeroides, in
the exponential phase and after various incubation times
in the stationary phase [9]. R. sphaeroides is a facultative
phototrophic alphaproteobacterium, mostly found in
fresh water habitats. These environments are subject to
frequent changes, and this is reflected in the flexibility of
R. sphaeroides to select from a number of metabolic
pathways to optimize growth and minimize stress. For
example, R. sphaeroides uses aerobic respiration for ATP
production in the presence of sufficient oxygen levels.
Should the oxygen tension decrease, the bacteria start to
form photosynthetic complexes. If light is available,
anoxygenic photosynthesis is performed [10]. Since the
simultaneous presence of light, oxygen and bacteriochlo-
rophyll leads to photooxidative stress by the generation
of the harmful singlet oxygen, the bacteria try to avoid
this situation by repressing photosynthesis gene expres-
sion in the presence of light and oxygen [11, 12]. Add-
itionally, they mount a response to protect against the
ensuing photooxidative stress [13, 14]. The response of
R. sphaeroides to several stresses like oxidative stress
(hydrogen peroxide), photooxidative stress (singlet oxy-
gen), and iron limitation has been intensively studied
[14–19]. This large body of knowledge on the R. sphaer-
oides response to various stresses provides us with an
opportunity to compare the transcriptome of this bacter-
ium in various stress responses with the transcriptome
at different growth phases. In particular, we are inter-
ested in common regulatory factors and expression
patterns.
The success of this approach was exemplified in a previ-

ous study on R. sphaeroides that focused on transcrip-
tomic changes during exit from stationary phase following
access to fresh nutrients (referred to hereafter as out-
growth). Our data revealed that the alternative sigma fac-
tors RpoHI and RpoHII are important players in the
outgrowth following an extended stationary phase. RpoHI
and RpoHII are also required for the response to a variety
of stresses, including heat, singlet oxygen, hydrogen

peroxide, superoxide, and CdCl2 [20]. Remarkably, there
was a significant overlap between the outgrowth transcrip-
tome and that of the photooxidative stress response [9],
suggesting that the bacterial response to the sudden
change in conditions which initiate outgrowth is similar to
the photooxidative stress response.
This study presents a comprehensive comparative ana-

lysis of changes in the transcriptome and compares this
to the proteome over the different growth phases. We
include not only transcriptomic and proteomic data dur-
ing the transition to stationary phase, but also the prote-
ome in deep stationary phase. The transcriptome data
are based on a previously published microarray analysis
[9], and the proteome data are based on quantitative
mass spectrometry.

Results
Global comparison of transcriptome and proteome
changes during growth
Data from cultures in mid-exponential phase (optical
density at 660 nm (OD660) 0.5–0.6) served as reference
for analyzing data from all other growth phases. These
included the transition phase at 10 h after inoculation
(OD660 1.2–1.3, trans), initial stationary phase at 28 h
(OD660 1.7–1.8, stat 28 h), deep stationary phase at 72 h
(OD660 1.1–1.2, stat 72 h), and the following outgrowth
from stationary phase upon dilution of stationary phase
culture with fresh medium to an OD660 of 0.2 [9]. This
dilution of stationary phase culture was performed either
after 28 h (out 28 h 20’and out 28 h 90′) or after 72 h
(out 72 h 20’and out 72 h 90′) of incubation and samples
were taken at 20 min and 90 min after dilution. Changes
in gene expression were detected by comparing expres-
sion levels at later phases to those obtained from expo-
nential phase cultures and are referred to hereafter as
log2 fold changes (log2FC). All expression changes
(log2FC) are listed in Additional file 1: Table S1.
For the transcripts, RNA of six independent cultures

was combined into two pools (three to each pool), and
then each pool was hybridized to one array. Thus, the
data for each growth phase is based on two microarray
data sets, each based on pooled RNA from three inde-
pendent bacterial cultures. For the proteome analysis,
the data for each growth phase is based upon three inde-
pendent measurements, each representing a pool of ex-
tracts from three independent cultures.
Figure 1 depicts the changes in the transcriptome over

time and Fig. 2 the changes in the proteome. Box plots
(Figs. 1a, 2a) provide a summarized overview of the dy-
namics of the transcriptome and proteome at different
growth phases, where the height of the boxes indicates
overall variation in RNA or protein levels. Figure 1a in-
dicates low interquartile distance, i.e., that most tran-
scripts with detectable change show mild changes in
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expression (log2FC < 2) over the various growth phases.
Only relatively few transcripts show strongly changed
levels. For a more precise description, Additional file 2:
Table S2 lists an eight-number summary for each of the
transcriptome samples. Additional file 2: Table S2A is
essentially a numeric representation of the graphical box
plot of Fig. 1a, plus details on the amounts of measured
transcripts in each sample. In Fig. 1a, genes detected as
having changed transcript levels are represented by cir-
cles, with the strongest changes located furthest from

zero on the Y-axis. Compared to the data points from
the transition phase (trans), where adaption from expo-
nential phase to stationary phase occurs, the following
growth phases tend to show stronger changes in tran-
script abundance. In most cases, the abundance de-
creases. The extent of most transcript changes is
relatively low for early (28 h) stationary phase and subse-
quent outgrowth as well as for late (72 h) stationary
phase. In contrast, outgrowth after 72 h showed a rela-
tively high number of transcripts with very strong

Fig. 1 Changes of RNA levels as monitored by microarrays throughout the growth phases. Levels of RNAs in later growth phases were
normalized to RNA levels in exponential phase. Box plots (a) give an overview on the transcriptome variability of the different samples. Kernel
density estimators (KDE) (b) compare the distribution of growth phase-dependent changes in gene expression. The heat map (c) gives a global
overview of the changes in RNA levels at single gene resolution. The ranking of genes is based upon the degree of log2FC observed in transition
phase, with the highest increases in transcript abundance in the transition phase appearing at the top of the heat map. Indicated underneath the
heat map is the total number of transcripts detected at each growth phase
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changes. A kernel density estimator (KDE) also shows
this pattern in Fig. 1b. The KDE models the distribution
of the underlying data and is comparable to a smooth-
ened histogram. As the area underneath the curve is al-
ways normalized to 1, a direct comparison of
distributions, even between samples with different sam-
ple sizes, is possible. In the KDE plot (Fig. 1b), a lower
peak in the center of the curve, which is always close to
zero (on the x-axis), correlates to a higher number of
genes with changed transcript levels. Additionally, the
broader the peak, the more transcripts show changed
level. Thus, the KDE plot reveals that the transcripts

from the outgrowth samples after 72 h are very similar
to one another and distinct from those of the other
growth phases. These outgrowth samples tend to have a
higher amount of changed transcripts and fewer tran-
scripts with non-changed levels. Additionally, this pat-
tern is easily observable via a heatmap (Fig. 1c).
A similar analysis was performed for the proteome

(Fig. 2 and Additional file 2: Table S2B), with the excep-
tion of an additional sample taken 144 h after inocula-
tion and another during the following outgrowth. For
protein quantification, the outgrowth samples were
taken only at the later time point of 90 min after dilution

Fig. 2 Changes of protein levels as monitored by quantitative mass spectrometry throughout the growth phases. Levels of proteins in later
growth phases were normalized to protein levels in the exponential phase. Box plots (a) give an overview on the proteome variability of the
different samples. Kernel density estimators (KDE) (b) compare the distribution of growth phase-dependent changes in protein levels. The heat
map (c) gives a global overview of the changes in protein levels for each individual gene. The ranking of genes is based upon the degree of
log2FC observed in transition phase, with the highest increases in protein abundance in the transition phase appearing at the top of the heat
map. Indicated underneath the heat map is the total number of proteins detected at each growth phase
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with fresh nutrients (not at 20 min), since a preliminary
proteome analysis revealed very little differences be-
tween 20min and 90min (data not shown). As was the
case for the transcriptome, analysis of the proteomic
data revealed that the changes in protein expression gen-
erally became more pronounced with increasing culture
age. Interquartile distance, whiskers and extremes in-
creased in the later stationary phases (72 h and 144 h)
and their respective outgrowths (Fig. 2a). However, the
samples taken 144 h after inoculation do not show larger
variability than the 72 h samples. Interestingly, the scat-
tering of strongly increased and strongly decreased pro-
teins is considerably more symmetrical than that for the
transcriptome, which showed a clear tendency towards a
higher number of decreased transcripts. Again, this ob-
servation is supported by the KDE analysis (Fig. 2b). An-
other difference to the transcriptome is the similarity
between 72 h stationary phase and following outgrowth
(see also the 144 h samples). In the proteomic data, the
72 h stationary phase KDE peak was typically close to its
respective outgrowth peak, whereas in the transcriptome
data, the 72 h stationary phase peak and its respective
outgrowth peak had moved further apart, indicating
stronger changes in the transcriptome during outgrowth.
Our data revealed that both transcriptome and prote-

ome show rising variability with increasing culture age,
which is reflected by widening box plots and KDEs.
Within the KDEs, a shift of density from high peaks in
the middle in earlier phases to broader curves in later
phases is observable. This widening dynamic reflects the
increasing amounts of transcripts or proteins with chan-
ged levels. This is further confirmed by the percentages
of transcripts/proteins with changed level as discussed in
the next section.
Overall, the proteomic data indicated higher dynamic

changes than the transcriptome, as judged by comparing
the box plots (Figs. 1a and 2a), accompanying 8-number
summaries (Additional file 2: Table S2) and heatmaps
(Figs. 1c and 2c).
The relative heights of the heatmaps reflect the numbers

of detected transcripts or proteins. The heatmap analysis is
also useful at this point, since the gray regions at the bottom
of the heatmaps represent transcripts and proteins that were
undetected in some growth phases. Sample sizes are also
provided in the 8-number summaries (Additional file 2:
Table S2A, Additional file 2: S2B). The total number of tran-
scripts detected (≈4300) was approximately double the
number of proteins (≈ 2000). In a previous study by Remes
et al. (2017), the threshold for detection of changed tran-
scripts was set at a log2FC of > 0.65 or <− 0.65. We have
used this same cutoff, both for the transcriptome and the
proteome. The data is summarized in Table 1.
Using the threshold of log2FC of > 0.65 or < − 0.65, the

number of proteins detected as changed (compared to

levels in the exponential phase) were typically higher than
the number of transcripts detected as changed. In fact, the
sum total of changed proteins over all growth phases aver-
aged at 37% of all detected proteins, while that of changed
transcripts only at 11%. This difference is illustrated in
Fig. 3. We interpret this outcome to reflect the higher dy-
namic range of changes on the proteome level. Also note-
worthy is that the percentage of proteins with changed
levels rises in the stationary phase, particularly in the ex-
tended stationary phase (72 h and 144 h) and the following
outgrowth. In contrast, the percentage of transcripts with
changed levels remains relatively low (< 10%) in all growth
phases except for the outgrowth following deep stationary
phase (72 h).

Correlation of individual growth phases
The pattern of transcripts and proteins with changed levels
within each growth phase was addressed in the previous
section. How does the pattern compare between the
growth phases? To get an in-depth view of the similarity
between all growth phases, Pearson correlation coefficients
(PCC) were generated for all possible combinations using
the microarray data as well as the proteome data and pre-
sented as dendrograms in the supplementary data Add-
itional file 5: Figure S1. The most important comparisons
are listed in Table 2A and B. As expected, high degrees of
correlation for transcriptome samples were observed be-
tween stationary phases at 28 and 72 h (PCC of 0.90). This
fits to a scenario in which the transcriptome is relatively
static upon reaching the stationary phase. Also, the out-
growth samples revealed high correlation between 20min
and 90min, regardless of whether this outgrowth followed
early (28 h, PCC of 0.92) or extended (72 h, PCC of 0.96)
stationary phase. In contrast, correlation was lower when
comparing outgrowths from early versus extended station-
ary phase (PCCs between 0.41 and 0.53). This fits with a
previous observation that the duration of the stationary
phase has a strong effect on the outgrowth transcriptome
[9]. The Remes et al. study also showed that the outgrowth
has a dramatic effect on the transcriptome. That effect is
also indicated here by the low PCC values of the micro-
array samples (stat 28 – out 28 h 20′: 0.345 and stat 28 h –
out 28 h 90′: 0.339). We observe a similar situation for the
outgrowth after deep stationary phase (stat 72 h – out 72 h
20′: 0.44 and stat 72 h – out 72 h 90′: 0.406). Hence, the
transcriptome appears static during stationary phase, and
undergoes radical remodeling during outgrowth.
The situation is strikingly different on the proteome

level. There is a high degree of correlation between sta-
tionary and outgrowth phase at 28 h (PCC of 0.83). Es-
pecially later measurements at 72 and 144 h show an
extremely high degree of correlation between the re-
spective stationary and outgrowth phase with PCCs of
0.94 and 0.98 respectively. Also in contrast to the
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transcriptome, the proteome shows more variation
throughout the stationary phase. Rather than stasis, the
proteome continues to change between early and late
stationary phase (stat 28 h-stat 72 h: 0.72), compared to
a value of 0.90 at the transcriptome level. Thus, the
proteome is more likely than the transcriptome to con-
tinue changing throughout the stationary phase, and less
likely to change during the outgrowth. Despite this dif-
ference, both the transcriptome and the proteome show
a similar trend: the length of the stationary phase has a
strong impact on not only the outgrowth transcriptome
[9] but also the outgrowth proteome. The dendrograms
(Additional file 5: Figure S1A & S1B) provide an over-
view of these findings.
For a direct comparison of each transcript with its

encoded protein at distinct growth phases, scatter plots
and accompanying heatmaps were generated (supple-
mentary data Additional file 6: Figure S2 A-K). Compari-
sons at outgrowth phases at 20 min was omitted since
the transcriptome at this time point was highly similar
to that at 90 min. The scatter plots and heatmaps clearly
reveal the generally high level of discontinuity between
transcript and protein. For example, rather than showing
that transcripts with changed levels tend to have a cor-
respondingly altered protein level, the data points appear
evenly scattered. Also noticeable is the considerably
broader distribution of data points on the ordinate com-
pared to the abscissa. As we have previously observed
from the box plot analysis (Figs. 1 and 2), this reflects
the wider dynamics of the proteome compared to the
transcriptome. The lack of correlation between RNA

and protein levels is also reflected by PCCs for the scat-
ter plots (Table 3, see also Additional file 5: Figure S1C
for a heatmap). Even the highest correlation value of
0.25 observed at outgrowth following stationary phase at
72 h (out 72 h 90′-out 72 h) can be consider uncorre-
lated. Since the PCC value did not indicate any linear
correlation, Spearman’s rank correlation coefficient (in-
dicating monotonic correlations) was also determined.
However, no monotonic correlation was observable, as
can be seen from the low values. We also considered the
possibility that changes in the transcriptome are likely to
correspond to delayed changes in the proteome, due to
the time needed for translation of transcript into protein.
Therefore, we also compared the transcriptome at tran-
sition phase to the proteome in early stationary phase
(28 h), and the early stationary phase transcriptome to
the proteome at 72 h. Again, correlation of the data sets
was very low. This result contrasts with that of an earlier
study, in which we observed a much better correlation
(Pearson correlation r = 0.64) between transcriptomic
and proteomic changes 90 min after initiating photooxi-
dative stress [14]. The significance of the higher correl-
ation during photooxidative stress is that this
demonstrates that the R. sphaeroides proteome has a po-
tential for rapid remodeling (and thus high correlation
between the transcriptome and proteome). Why this is
not the case here, during the transition from exponential
to stationary phases, is currently unknown.
The low correlation between transcriptome and prote-

ome indicate that changes in the proteome throughout
growth are mostly not solely the consequence of changes

Table 1 Comparison between overall changes in RNA transcripts and proteins using a log2FC of > 0.65 or < − 0.65

RNA transcripts (microarray)

trans stat28h out 28 h 20′ out 28 h 90’ stat 72 h out 72 h 20′ out 72 h 90’ Sum

Total number 4285 4357 4283 4290 4356 4189 4191 29,951

Total changed log2FC (<− 0.65 or > 0.65) 397 175 353 275 265 1117 910 3492

Percentage 9.26% 4.02% 8.24% 6.41% 6.08% 26.67% 21.71% 11.66%

Up (> 0.65) 84 55 56 40 92 583 415 1325

Percentage up 1.96% 1.26% 1.31% 0.93% 2.11% 13.92% 9.90% 4.42%

Down (<−0.65) 313 120 297 235 173 534 495 2167

Percentage down 7.30% 2.75% 6.93% 5.48% 3.97% 12.75% 11.81% 7.24%

Proteins

trans stat 28 h out 28 h stat 72 h out 72 stat 144 h out 144 h Sum

Total number 1986 2115 2141 2012 2056 1877 1872 14,059

Total changed log2FC (<−0.65 or > 0.65) 471 599 427 886 864 1028 947 5222

Percentage 23.72% 28.32% 19.94% 44.04% 42.02% 54.77% 50.59% 37.14%

Up (> 0.65) 346 318 212 500 436 579 544 2935

Percentage up 17.42% 15.04% 9.90% 24.85% 21.21% 30.85% 29.06% 20.88%

Down (<−0.65) 125 281 215 386 428 449 403 2287

Percentage down 6.29% 13.29% 10.04% 19.18% 20.82% 23.92% 21.53% 16.27%
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in the transcriptome. We believe that post-transcriptional
regulation likely plays a major role in determining protein
accumulation under these conditions. Important candi-
dates of post-transcriptional regulation are the small

non-coding RNAs (sRNAs). Changes in sRNA levels are
not included in the diagrams shown in this study since
they cannot be directly correlated to a protein product.
However, as already described in Remes et al. (2017) and

Fig. 3 Percentage of transcripts (a) and proteins (b) with changed levels throughout growth. For both the microarray and proteome data, the
status of changed versus not-changed were determined using thresholds of log2FC 0.65 and − 0.65. In each case, the percentage of transcripts or
proteins with levels exceeding the cutoffs were determined for each growth phase. For a direct comparison, both graphs harbor identical scales
on the ordinate

Bathke et al. BMC Genomics          (2019) 20:358 Page 7 of 13



also shown in Additional file 3: Table S3, several sRNAs
show altered levels in later stages of growth or during out-
growth. For example, 18 sRNAs showed an increase of >
0.65 log2FC (log2FC > 5 for IGR_0827) in the outgrowth
following 72 h stationary phase, while 46 sRNAs decreased
by log2FC < − 0.65 (log2FC < − 4.75 for IGR_2249)
(see Additional file 3: Table S3). Altogether more
than half of the sRNAs detected in the microarray analysis
showed changed expression in outgrowth after 72 h station-
ary phase and only 22% showed growth phase-independent
expression.

Changes of the proteome throughout growth phases
While changes in the transcriptome during growth have
already been analyzed in detail [9], this is not the case
for the proteome. The total number of proteins detected
in each growth phase, together with the subsets of

proteins with increased and decreased levels, are listed
in Table 1.
Figure 4 provides an overview of the number of pro-

teins belonging to selected clusters of orthologous
groups (COGs) whose accumulations change with the
different stages of growth relative to the total number of
proteins detected within each COG. The complete data
set for the individual proteins assigned to the different
COGs are shown in Additional file 4: Table S4. Some
COGs were not included in our analysis. For example,
none of the R. sphaeroides proteins are assigned to
COG-A (RNA processing and modification), COG-B
(chromatin structure and dynamics), COG-W (extracel-
lular structures), COG-Y (nuclear structure), or COG-Z
(cytoskeleton). Furthermore, a number of R. sphaeroides
proteins in COGs R and S have no known function,
while the total number of proteins and the number of

Table 2 Correlation of microarray data for different growth phases

Comparison PCC Comparison PCC Comparison PCC

A

trans – stat 28 h 0.503 stat 28 h – stat 72 h 0.902 stat 28 h – out 28 h 20’ 0.345

trans – out 28 h 20’ 0.518 out 28 h 20′ – out 28 h 90’ 0.915 stat 28 h – out 28 h 90’ 0.339

trans – out 28 h 90’ 0.485 out 28 h 20′ – out 72 h 20’ 0.457 stat 72 h – out 72 h 20’ 0.440

trans – stat 72 h 0.443 out 28 h 20′ – out 72 h 90’ 0.529 stat 72 h – out 72 h 90’ 0.406

trans – out 72 h 20’ 0.622 out 28 h 90′ – out 72 h 20’ 0.414

trans – out 72 h 90’ 0.642 out 28 h 90′ – out 72 h 90’ 0.487

out 72 h 20′ – out 72 h 90’ 0.958

B

trans – stat 28 h 0.760 stat 28 h – stat 72 h 0.724 stat 28 h – out 28 h 0.835

trans – out 28 h 0.650 stat 28 h – stat 144 h 0.578 stat 72 h – out 72 h 0.941

trans – stat 72 h 0.527 stat 72 h – stat 144 h 0.864 stat 144 h – out 144 h 0.977

trans – out 72 h 0.493 out 28 h – out 72 h 0.721

trans – stat 144 h 0.411 out 28 h – out 144 h 0.590

trans – out 144 h 0.412 out 72 h – out 144 h 0.841

Table 3 Correlation coefficients for comparisons of changes in RNA and protein levels

Comparison Pearson Spearman # of data points

01 trans – trans 0.025 0.084 1973

02 trans – stat 28 h 0.189 0.175 2101

03 stat 28 h – stat 28 h 0.121 0.131 2105

04 stat 28 h – stat 72 h 0.199 0.205 2002

05 stat 28 h – stat 144 h 0.162 0.140 1869

06 out 28 h 90′ – out 28 h −0.048 −0.178 2127

07 out 28 h 90′ – out 72 h −0.032 −0.231 2044

08 stat 72 h – stat 72 h 0.147 0.153 2002

09 stat 72 h – stat 144 h 0.110 0.096 1869

10 out 72 h 90′ – out 72 h 0.245 0.222 2039

11 out 72 h 90′ – out 144 h 0.182 0.163 1859
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changes in COGs-N (cell motility), U (intracellular traf-
ficking), and V (defense mechanisms) was too low for a
meaningful analysis.
Compared to the exponential proteome, the stationary

phase proteome appeared to differ significantly.
Within each COG (Fig. 4), the number of proteins

with increased levels (indicated as positive on the Y-axis)
or decreased levels (indicated as negative on the Y-axis)

changed with culture age. For example, in COG-Q (sec-
ondary metabolite synthesis, transport and metabolism),
levels of 14 proteins (from a total of 41 detected pro-
teins) increased in the stationary phase (72 h) compared
to the exponential phase. The complete data set is pro-
vided in Additional file 4: Table S4. Almost 26% of all
detected proteins in COG-C (energy production and
conversion) showed either higher (18 from 155) or lower

Fig. 4 Number of proteins with decreased levels (represented as negative values on the Y-axis) or increased levels (represented as positive values
on the Y-axis) throughout growth in selected COGs, determined using thresholds of log2FC 0.65 and − 0.65. The complete data set is provided in
Additional file 4: Table S4
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levels (22 from 155) after 144 h of incubation compared
to the exponential phase. In COG-J (translation ribo-
some structure and biogenesis), the largest change also
occurred after 144 h of incubation, but this involved only
24% of all proteins, most of which showed decreased
levels. Altogether, this data suggests a highly dynamic
proteome during the transition from exponential growth
to stationary phase, as noted above. Also noteworthy is
the observation that some COGs contained proteins that
continued to change after 72 h. Even at 144 h, protein
levels continued to change. Many of the changes be-
tween 72 h and 144 h involved protein decreases, indi-
cating protein degradation, which we expect to be
prevalent in the stationary phase. However, others, such
as COG-K (transcription), COG-M (cell wall, membrane,
envelope synthesis), COG-O (post-translational modifi-
cation and protein turn-over), COG-T (signal transduc-
tion), showed a similar number of increased and
decrease proteins in the deep stationary phase (144 h,
Fig. 4). These data indicate that signal transduction and
transcriptional regulation are still very active in the late
growth phases, that synthesis of cell material is not ne-
cessarily lower than in the exponential phase, and that
proteins involved in protein turn-over are equally in-
creased and decreased.
A generally higher number of increased proteins in the

stationary phase (compared to the exponential phase)
was observed for the categories COG-C (energy produc-
tion and conversion), COG-E (amino acid transport and
metabolism), COG-G (carbohydrate transport and me-
tabolism), COG-I (lipid transport and metabolism),
COG-P (inorganic ion transport and metabolism), and
COG-Q (secondary metabolite synthesis, transport and
metabolism) (Fig. 4). This most likely reflects the at-
tempt to guarantee the supply of nutrients and building
blocks when their availability in the surrounding
medium is dwindling. The number of increased proteins
in COG-G and COG-I is particularly higher than the
number of decreased proteins at all stages of growth.
A generally higher number of decreased proteins in

the stationary phase was observed for the categories
COG-D (cell division, chromosome partitioning),
COG-F (nucleotide transport and metabolism), COG-H
(Coenzyme transport and metabolism), and COG-L
(replication, recombination, repair). These patterns
match well to a lower demand for proteins required for
cell division upon entry into stationary phase. Also de-
creasing in the stationary phase were the proteins in
COG-J (translation, ribosome structure and biogenesis,
Fig. 4). Although most (75%) of the COG-J proteins
showed unchanged levels, of those which showed
change, the majority decreased. We are unsure of the
significance of this result. Considering that protein pro-
duction is apparently very active in the stationary phase,

it is unclear why proteins related to translation, ribo-
some structure and biogenesis show a decreasing trend.
We have provided here a COG-based overview of the

changes in the proteome throughout the growth phases.
A detailed description of specific protein changes
throughout the different stages of growth is provided in
the supplementary material.

Discussion
The goal of this study was to monitor and to compare
the adaptation of a bacterial model organism throughout
different growth phases at both the transcriptome and
proteome levels. Our data revealed a much higher dy-
namic within the proteome compared to the transcrip-
tome. We cannot exclude that this higher dynamic is at
least partly due to the different methods used for the re-
spective transcriptomic and proteomic samples. For ex-
ample, detection efficiencies and sensitivity limits for
each method are not necessarily identical. Some differ-
ence between the transcriptome and proteome might be
due to an extremely low abundance of transcripts or
proteins or, in the case of protein, poor recovery due to
low solubility or membrane attachment. Other explana-
tions for the different distribution of changed transcripts
versus changed protein levels over the different phases
of growth include the fact that a single transcript can be
translated multiple times into protein, and that proteins
are frequently more stable than transcripts, meaning that
proteins are more likely to accumulate than transcripts.
Especially during outgrowth, some transcripts may de-
crease due to rapid degradation, while proteins produced
in the stationary phase are more stable and are therefore
detectable in the following outgrowth despite the lack of
production in that phase of growth.
Another likely explanation for the transcriptome and

proteome differences is post-transcriptional regulation.
The weak correlation between the transcriptome and the
proteome implies a major role for regulation at the
post-transcription level in growth phase adaptation. Im-
portant roles for sRNAs in growth phase adaptation have
been described [21–24]. sRNAs mostly affect gene ex-
pression by altering the stability of mRNAs or by pro-
moting or inhibiting translation (reviewed in [25]). It is
also conceivable that transcript stability may change at
different growth phases [26]. Presently we know very lit-
tle about growth phase-dependent processing and deg-
radation of RNA. Variation in the translation rates of
mRNAs may also vary in different growth phases inde-
pendently of the action of sRNAs. This also applies to
proteolysis rates, and may impact the accumulation of
proteins in different growth phases [27].
The lack of correlation between transcriptome and

proteome data also implies that changes of the transcrip-
tome mostly lead to minimal or transient changes of the
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proteome that are not manifested over longer time inter-
vals. Earlier studies on growth phase-dependent changes
in RNA and protein levels have noted such weak correl-
ation between the data sets [5, 7, 28] and raised the
question of to what extent is the bacterial proteome reg-
ulated at the level of transcription [6].
Our analysis of the transcriptome and proteome has re-

vealed a number of distinct characteristics of global gene
expression in R. sphaeroides. We suggest that these differ-
ences reflect a survival strategy of R. sphaeroides in ensur-
ing a rapid and robust response to environmental
changes. Although the number of detected proteins was
only half that of the transcripts, variation in protein accu-
mulation during the transition to stationary phase was
more dynamic. Apparently, the bacterium responds to
gradually deteriorating environmental conditions mostly
at the protein level. In fact, the proteome continued to
change in the extended stationary phase, even into deep
stationary phase, while the transcriptome remained mostly
static. Possibly, further changes in the transcriptome dur-
ing stationary phase are not necessary, since the tran-
scripts that are needed to deal with suboptimal conditions
have been already produced during exponential growth.
This is not unlikely, since bacteria prepared for hostile
conditions would enjoy a significant survival advantage
over unprepared ones, given that unfavorable growth con-
ditions usually follow. Hence, post-transcriptional regula-
tion is mostly sufficient to organize the proteome as the
bacterium ceases growth and gradually enters stationary
phase. Interestingly, in stationary phase, we observed that
changes in protein levels continued. This is remarkable,
particularly for deep stationary phase (144 h), since that
environment has almost ceased to change. How are these
proteins regulated in the absence of environmental stim-
uli? We note that knowledge of gene regulation and bac-
terial behavior in deep stationary phase is generally
lacking, although some progress on the molecular basis of
bacterial longevity is being made [29].
Another finding from this study was the marked dif-

ference between the transcriptome and proteome upon
outgrowth. Changes in the transcriptome were modest
during the transition to stationary phase, and especially
throughout the extended stationary phase. Upon out-
growth, however, the transcriptome was subject to rad-
ical remodeling, most of which occurred within the first
20 min. In contrast, while proteome had the capacity for
a greater dynamic range, it was less likely to change dur-
ing the first 90 min of outgrowth. Hence, the first re-
sponse to significant changes in the environment is a
rapid remodeling of the transcriptome, analogous to the
stress response upon photooxidative stress [9]. Higher
correlation (0.64) between the proteome and transcrip-
tome was also observed upon oxidative stress [14], im-
plying that these have at least the capacity to show

correlation under specific circumstances. Why this does
not occur in the first 90 min of outgrowth is unknown.
Despite the above-mentioned differences between the

transcriptome and proteome, they show a similar trend:
both are strongly impacted by the length of the station-
ary phase. This observation supports the idea that bac-
teria continue to change and adjust their physiological
state, even well after entering the stationary phase. Pre-
sumably, the success of bacterial survival depends upon
their ability to survive suboptimal conditions on one
hand, and rapidly resume bacterial growth in the case
that environmental conditions turn favorable. Bacteria
apparently resolve this problem by using complex regu-
lation at both transcriptional and post-transcriptional
levels. Further work is needed to understand how the
bacteria organize and maintain their proteome in the
stationary phase.

Methods
Strains and growth conditions
R. sphaeroides wild type strain 2.4.1(DSMZ 158) was
grown at 32 °C in a defined minimal medium with mal-
ate as the carbon source [19]. Erlenmeyer flasks were
filled to 80% capacity with the culture medium and con-
tinuously shaken at 140 rpm, resulting in 25–30 μM dis-
solved oxygen in exponential phase. The growth curve
and oxygen concentration in the cultures are shown in
Remes et al., 2017. RNA isolation and microarray ana-
lysis are also described in Remes et al., 2017. The micro-
array data are available at the NCBI Gene Expression
Omnibus database (50) under accession number
GSE75345.

Protein sample preparation and mass spectrometry
Pelleted cells were harvested from liquid cultures, lysed
in SDS buffer (4% SDS in 0.1M Tris/HCl, pH 7.6),
heated at 70 °C for 5 min and sonicated to shear the
DNA. Cell debris was removed by centrifugation at
16000 x g for 10 min prior to estimation of protein con-
centration by the DC protein assay (BioRad). Solubilized
proteins were precipitated by 4 volumes of acetone at −
20 °C for 1 h, pelleted at 14000 x g for 10 min and
washed with 90% acetone. Samples were dried to remove
acetone completely and dissolved in urea buffer (6M
urea, 2M thiourea, 10 mM HEPES, pH 8.0). Enzymatic
fragmentation of proteins was performed by in-solution
digestion [30]. Briefly, protein disulfide bonds were re-
duced with 1mM dithiothreitol and alkylated with 5.5
mM iodoacetamide. Next, proteins were cleaved enzy-
matically by Lys-C (protein to enzyme ratio 100:1)
(Wako Chemicals GmbH) at room temperature for 3 h
prior to diluting samples to 2M urea/thiourea by adding
50mM ammonium bicarbonate. Proteins were further
digested by trypsin (protein to enzyme ratio 100:1)
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(Promega) at room temperature overnight and the
resulting mixture of peptides was desalted and concen-
trated by stop and go extraction (STAGE) tips [31].

Data analysis
Annotation of clusters of orthologous groups (COG)
was based upon the most current version available at
time of writing (2003 COGs, 2014 update, available at:
http://www.ncbi.nlm.nih.gov/COG/ [32]. To match
COG functional annotations and RSP numbers respect-
ive data were obtained from UniProt for the organism
„Rhodobacter sphaeroides (strain ATCC 17023 / 2.4.1 /
NCIB 8253 / DSM 158) “(Taxon identifier: 272943) [33].
UniProt data were adjusted to contain columns for RSP
and COG numbers. The latter were included in the egg-
NOG annotation column. Using those data a matching
of RSP numbers to COG numbers and finally COG func-
tional annotation was archived. UniProt data were obtained
on 30th of November 2017 (available as supplementary
data: uniprot-proteome%3A%28taxonomy%3A%22Rhodo
bacter + sphaeroides+%28strain +ATCC+ 17023--.tab.gz).
Data analysis was performed using R (version 3.4.3),

bash (version 3.2.57) and LibreOffice (version 5.3.7.2).
Heatmaps comparing growth phases of transcriptome
and proteome data were generated using MeV (MultiEx-
periment viewer - version 4.8.1) [34]. Heatmaps correlat-
ing multiple growth phases were generated applying the
R package pheatmap. Pearson’s and Spearman’s correl-
ation coefficients were calculated using the R function
cor. Heatmaps displaying the variability of COG func-
tional groups according to growth phase were generated
using the R package ggplot2 [35]. Further graphics were
generated using R integrated graphical functionalities,
including the boxplot function and density function
(defaulting to a Gaussian density) for drawing the kernel
density estimation.
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