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Abbreviations 
 

% (vol/vol)      Volume percent 

% (wt/vol)      Weight volume percent 

AA/BAA      Acrylamide /Bisacrylamide 

AKAP79      A-kinase anchoring protein 79 

AP       Alkaline phosphatase 

AP-1       Activator protein-1 

APS       Ammonium persulphate 

BAPTA/AM 1,2-(Bis (2-aminophenoxy) 

ethane-N,N,N´,N´-tetra acetic-

acid tetrakis (acetoxy methyl-

ester)) 

BCIP 5-Bromo-4-chloro-3-indolyl-

phosphate toluidine salt 

BDM       2,3-butanedion monoxime  

bp       Base pair 

BPB       Bromophenolblue 

BSA       Bovine serum-albumin 

C  Control 

Ca2+       Calcium 

Ci       Curie, Unit for the radioactivity 

Cyclo       Cyclosporine 

DEPC       Diethyl dicarbonate 

DNA       Deoxyribonucleic acid 

dNTP’s      deoxy nucleotide triphosphates 

DTT       Dithiothreitol 

EDTA       Ethylen diamine tetra acetic acid 

FCS       Fetal calf serum 
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Gö6850 2-(1-(3-Dimethylaminopropyl)-1H-

indol-3-yl)-3-(1H-indol-3-yl)-

maleimide 

HEPES N-2-Hydroxyethyl piperazine-N-2-

ethanesulphonic acid 

HPRT Hypoxanthin phosphoribosyl 

transferase 

Hz  Frequency in cycles per second 

ISO  Isoprenaline 

MCIP1 Modulatory calcineurin-intracting 

protein 1 

MEF2 Myocyte enhancer-binding factor-

2 

n  Numbers 

NaCl  Sodium chloride 

NaH2PO4  Sodium dihydrogen phosphate 

Na2HPO4  Disodium hydrogen phosphate 

Na-Vanadat  Sodium vanadat 

NBT Nitro blue tetrazolium chloride 

NCX  Sodium calcium exchanger 

NFAT Nuclear factor of activated T-cells   

NHE  Sodium proton exchanger 

OD  Optical density  

ODC  ornithine dicarboxylase 

p  Error probability 

PBS  Phosphate buffered saline 

PE  Phenylephrine 

PI3-kinase  Phosphatidyle inositole 3-kinase 

PKA  Protein kinase A 

PKC  Protein kinase C 

PLB  Phospholamban 
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PMSF  Phenyl methyl sulfonyl fluoride 

PVDF  Polyvinylidine difluoride 

RACK  Receptor for activated C kinase 

rDNA  Ribosomal DNA 

RNA  Ribonucleic acid 

rpm  Round per minute 

RT-PCR Reverse transcrition polymerase 

chain reaction 

SDS  Sodium dodecyl sulphate 

SEM  Standard error mean 

SERCA Sarcoplasmic reticulum calcium 

ATPase 

SR  Sarcoplasmic reticulum  

TAE  Tris-acetate/EDTA-buffer 

TE  Tris/HCl/EDTA-buffer 

TEMED N,N,N,N-Tetra methyl ethylene 

diamine 

Tm  Melting temperature 

Tris Tris (hdroxylmethyl)-amino-

methane 
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1. Introduction  
 
1.1. Myocardial hypertrophy and heart failure 
Myocardial hypertrophy represents an adaptation of cardiomyocytes to overload 

in the heart. This can be caused either by increased pressure or increased 

volume and results in an enhanced work load. To compensate this increased 

demand, wall thickness of the heart increases. This is accomplished by an 

increase in protein synthesis, so that cell volume increases and wall thickness is 

enhanced without an increase in the number of cardiomyocytes. 

Although hypertrophic growth is a physiological answer to increasing work load, it 

can finally result in heart failure. An example of a cause of increased work load is 

chronically arterial hypertonus. In this situation the heart is able to adjust the 

pressure gradient between ventricles and aorta by an increase in wall thickness. 

By the increase of the diameter of muscle fiber the wall tension can be kept 

constant. If continuous pressure overload persists, the increased myocardial 

volume reaches the critical heart weight, and the heart muscle mass exceeds the 

capacity of coronary arteries to supply the heart sufficiently with oxygen. At the 

same time a rise in wall tension as well as a structural dilation of the ventricle 

occurs which reduces efficiency of heart function. Thus, myocardial hypertrophy 

has to be regarded as a starting point for development of chronic heart failure 

with increased morbidity (Levy et al., 1990). Understanding of mechanisms 

resulting in hypertrophy and functional impairments in hypertrophic myocytes are 

therefore an important step towards therapy of heart disease. 

 

1.2. α-Adrenoceptor stimulation induces hypertrophy 

Increased plasma levels of catecholamines are commonly found under 

conditions leading to myocardial hypertrophy in vivo (Bugaisky et al., 1992; 

Morgan et al., 1991). This gave rise to the question whether induction of 

hypertrophy by adrenergic agonists represents a direct metabolic effect on 

cardiomyocytes or if it is the result of an altered mechanical response. Although 

the adaptation of the heart to pressure overload is considered as an adaptive 

process, myocardial hypertrophy is a predictor of heart failure (Levy et al., 1990). 
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Multiple stimuli are able to increase protein synthesis of cardiomyocytes (for an 

overview see ref. Schlüter & Wollert, 2004). However, in the early adaptation of 

the heart to pressure overload catecholamines seem to play a major role. In fact, 

hearts from transgenic mice deficient in β-dopamine hydroxylase do not respond 

adequately in terms of hypertrophic growth when they are challenged with 

pressure overload (Rapacciulo et al., 2001). Moreover, transgenic mice lacking 

α1-adrenoceptors and challenged with pressure overload had impaired survival 

rates (O’Connell et al., 2003). These results suggest that catecholamines via 

stimulation of α-adrenoceptors are responsible for adaptive processes of 

myocardial hypertrophy due to pressure overload. 

Isolated cardiomyocytes, which are quiescent under culture conditions, have 

been used as an experimental model to clarify this point. Stimulation of α-

adrenoceptors in isolated, cultured, non-beating cardiomyocytes from adult 

animals causes hypertrophy (Decker et al., 1993; Fuller et al., 1990; Schlüter and 

Piper, 1992). This response is characterized by an increase in protein mass of 

the cells, increase in RNA synthesis (Clark et al., 1993; Decker et al., 1993; 

Schlüter and Piper, 1992) and an increase in cell size (Clark et al., 1993). No 

marked differences occur between different species: similar results have been 

identified in cardiomyocytes obtained from adult rats (Fuller et al., 1990; Schlüter 

and Piper, 1992), adult rabbits (Decker et al., 1993) and adult cats (Clark et al., 

1993). 

From work with isolated and cultured cardiomyocytes, proteins that are 

specifically up regulated under conditions of cardiac hypertrophy can be placed 

in three categories: 

1) Expression of transcription factors. 

2) Expression of structural proteins. 

3) Extracellular signaling factors. 

Most of the signal transduction pathways of hypertrophic growth under α-

adrenoceptor stimulation are protein kinase C (PKC) dependent. Action of α-

adrenergic agonists increases protein kinase C activity (Schlüter et.al., 1995). 

PKCε activation causes a physiologic form of hypertrophy, whereas inhibition of 
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PKCε translocation with a RACK-binding peptide causes the opposite response, 

that is, thinning of the ventricular walls and lethal heart failure in the form of a 

dilated cardiomyopathy (Mochly-Rosen et al., 2000). These studies suggest that 

PKCε activation is a necessary component of normal trophic growth of 

cardiomyocytes during postnatal development.  

Under α-adrenoceptor stimulation PKC activates PI3-kinase that results in 

increased protein and RNA synthesis (Schlüter et al., 1998; Pinson et al., 1993). 

Because >90% of total RNA consists of rRNA, this finding indicates an increase 

in the capacity of cardiomyocytes to synthesize proteins. In neonatal 

cardiomyocytes it has been shown that the transcription of rDNA can be 

activated in a protein kinase C-dependent way (Allo et al., 1992). 

Protein kinase C and PI 3-kinase as well as the p70s6-kinase increase the protein 

synthesis by α-adrenoceptor stimulation in adult cardiomyocytes (Pönicke et al., 

2001). It has been reported that in neonatal cardiomyocytes activation of p70s6-

kinase is also involved in the hypertrophic growth response to α-adrenoceptor 

agonists (Boluyt et al., 1997). 

Besides the PKC-dependent signaling, also PKC-independent pathways 

contribute to hypertrophic growth (Schäfer et al., 2002), i.e. a PKC-independent 

activation of the sodium-proton-exchanger (NHE) is found after α-adrenoceptor 

stimulation of cardiomyocytes (Schäfer et al., 2002). This NHE activation is 

mediated by increases in cytosolic Ca2+ induced by the α-adrenoceptor agonist 

phenylephrine (PE). Activation of NHE by phenylephrine causes cytosolic 

alkalization (Fuller et al., 1991; Schlüter et al., 1998). This leads to an increase in 

the creatine phosphate concentration due to alterations of the creatine kinase 

equilibrium. In whole hearts and isolated cardiomyocytes a correlation between 

protein synthesis and creatine phosphate concentration has been observed 

(Fuller et al., 1989). In isolated cardiomyocytes a contribution of NHE to 

hypertrophic growth was shown, which is in part dependent on creatine 

phosphate (Schlüter et al., 1999)  
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1.2.1. Calcium-calcineurin-NFAT-AP-1 signaling 
In response to myocyte stretch or increased loads on working heart preparations, 

intracellular Ca2+ concentration increases (Marban et al., 1987; Bustamante et 

al., 1991; Hongo et al., 1995), consistent with a role of Ca2+ in coordinating 

physiologic responses with enhanced cardiac output. A variety of humoral 

factors, including phenylephrine (PE), which induce the hypertrophic response in 

cardiomyocytes (Karliner et al., 1990; Sadoshima and Izumo, 1993; Sadoshima 

et al., 1993; Leite et al., 1994), also share the ability to elevate intracellular Ca2+ 

concentrations. In addition, as stated before, hypertrophic growth of PE-induced 

cardiomyocytes is in part mediated via activation of NHE by Ca2+. Another effect 

of Ca2+ is activation of the phosphatase calcineurin, which is responsible for 

activation of the transcription factor NFAT (Rao et al., 1997). 

Molkentin et al. (1998) and De Windt et al (2000) generated several lines of 

transgenic mice expressing activated forms of either calcineurin or NFATc4 in a 

cardiac-selective manner, which developed robust hypertrophy that quickly 

transitioned to ventricular dilation and overt heart failure. Hearts from transgenic 

mice expressing MCIP1, a dominant negative calcineurin mutant, or the 

calcineurin inhibitory domains of Cain or AKAP79, were largely resistant to 

pleiotropic, hypertrophic stimuli (Zou et al., 2001; Rothermel et al., 2001; De 

Windt et al., 2001). Adenoviral-mediated gene transfer of dominant negative 

NFAT in cultured cardiomyocytes efficiently inhibited calcineurin- and agonist 

induced cardiomyocyte hypertrophy (Rooij et al., 2002). As outlined above until 

now only under the conditions of unphysiologically high expression of 

NFAT/calcineurin or their inhibitors in transgenic mice or by adenoviral over-

expression have been shown to effect myocardial hypertrophy. Therefore, it 

remains an open question whether under physiological conditions NFAT 

influences cardiomyocyte hypertrophy or contractility. 

In addition to the transcription factor NFAT, there are several studies indicating 

also involvement of the transcription factor AP-1 in hypertrophy. Correlations 

between formation of AP-1 and hypertrophic growth have been shown in several 

experimental models (Izumi et al., 2000; Yano et al., 1998; Takemoto et al., 
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1999) also including phenylephrine (PE)-stimulated neonatal cardiomyocytes 

(Omura et al., 2002). During α-adrenoceptor stimulation AP-1 is induced and 

involved in hypertrophic growth in ventricular cardiomyocytes of adult rats 

(Taimor et.al., 2004). Interestingly, NFAT and AP-1 can interact with each other 

and therefore may influence their transcriptional activity. 

In cells of the immune system, cooperative NFAT-AP-1 complexes are induced 

by stimulation of the antigen receptors of T and B cells, Fcγ receptors of 

macrophages and natural killer (NK) cells (Rao et al., 1997). These receptors are 

coupled on the one hand to calcium mobilization and on the other hand to 

activation of PKC/RAS pathways (Van Leeuwen and Samelson, 1999). Full 

response at many NFAT sites requires concomitant activation of members of the 

AP-1 transcription-factor family (Rao et al., 1997; Jain et al., 1992). Therefore, 

even in a single cell type NFAT activation can evoke two distinct biological 

programs of gene expression that depending on AP-1 absence or presence 

(Macian et al., 2000).  It remains an open question whether NFAT contributes to 

the AP-1 mediated hypertrophic growth in PE induced cardiomyocytes. 

 

1.3. Effect of β-adrenoceptor agonists in hypertrophy 

Compared with the hypertrophic action mediated by α1-adrenoceptor activation, 

the mechanism by which β-adrenoceptor stimulation may induce hypertrophy in 

isolated cardiomyocytes is more complicated. There is no evidence that 

stimulation of β-adrenoceptors directly increases the rate of protein synthesis in 

freshly isolated cardiomyocytes from adult rats (Bogoyevitch et al., 1993; Pinson 

et al., 1993; Schlüter and Piper, 1993). There are, however, reports that coupling 

of β-adrenoceptors to a hypertrophic response can be induced during cultivation 

in rat cardiomyocytes in the presence of low concentrations of isoprenaline 

(Dubus et al1990) or in the presence of 20 % fetal calf serum (Pinson et al., 

1993). In these cultures, cardiomyocytes release inactive transforming growth 

factor-β into the medium, which is activated subsequently by serum factors. 

Active transforming growth factor-β induces the hypertrophic responsiveness to 

β-adrenoceptor stimulation. This situation mimics the ability of isoprenaline to 
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induce myocardial hypertrophy in vivo (Bartlome et al., 1980, Schlüter et al., 

1995). In all these cases the rate of protein synthesis, cellular protein mass, and 

cell size increased. 

In the case of β-adrenoceptor stimulation, however, RNA elevation is not 

accompanied by increase in RNA synthesis (Pinson et al., 1993). The 

mechanism by which β-adrenoceptor stimulation elevates RNA mass seems to 

be due to a decrease of RNA degradation, which can be mediated by 

stabilization of RNA by polyamines (Igarashi et al., 1982). Ornithine 

decarboxylase (ODC) represents the rate-limiting enzyme of polyamine 

metabolism. ODC is involved in the mechanism by which β-adrenoceptor 

stimulation elevates cellular RNA mass (Cohen SS., 1998). β-Adrenoceptor- 

mediated hypertrophy in vivo is also accompanied by induction of ODC 

(Bartolome et al., 1980).  

In adult rat cardiomyocytes cAMP-dependent protein kinase-A (PKA) and PI3-

kinase as well as P70s6k increase protein synthesis by β-adrenoceptor stimulation 

in long term cultures (Schlüter et.al., 1998; Simm et.al.,1998). Involvement of the 

transcription factor AP-1 was excluded in β- adrenoceptor-mediated hypertrophy. 

(Taimor et al., 2004) Interestingly, AP-1 is induced by β-adrenoceptor stimulation 

also in freshly isolated cardiomyocytes, a condition that is not related to 

hypertrophic growth. 

 
1.4. Contractile function of cardiomyocytes 
The aforementioned studies have given us some insights how cardiomyocytes 

respond to catecholamines in regard to hypertrophic growth. However, it has not 

been investigated whether this leads to an altered contractile function of the cell. 

A regulated release and uptake of intracellular Ca2+ between sarcoplasmic 

reticulum (SR) and cytoplasm tightly controls the contraction and relaxation cycle 

of the heart. The Na+-Ca2+ exchanger (NCX) is one of the essential regulators of 

Ca2+ homeostasis in cardiac myocytes and plays an important role in Ca2+ 

handling during excitation-contraction (E-C) coupling. The exchanger is capable 

of transporting 3 Na+ for 1 Ca2+ in either direction across the sarcolemma, 
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depending on membrane potential and the transmembrane gradients of Na+ and 

Ca2+. The NCX is the primary mechanism for extruding Ca2+ that enters through 

the L-type Ca2+ channel during systole. Maintenance of the calcium 

concentration within the SR is accomplished by calcium buffers, calcium 

channels and calcium pumps.  

Muscle contraction is initiated when Ca2+ enters the cell via L-type Ca2+ channels 

in the plasmalemma and as a consequence, triggers the release of a much larger 

amount of Ca2+ from the SR via SR Ca2+ release channels (ryanodine receptor) 

(Fabiato A, 1983; Bers and Perez-Reyes 1999) (Fig: 1.4.1). Cell contraction 

occurs when calcium ions bind to the troponin/tropomyosin complex, changing its 

shape so that the binding sites on actin are exposed. The free cytosolic Ca2+ 

concentration determines the extent of the muscle activation and therefore 

regulates force development. The SR Ca2+ ATPase (SERCA) pumps the Ca2+ 

back into the SR and is therefore, responsible for muscle relaxation and for 

replenishing Ca2+ stores needed for the next contraction (MacLennan DH, 1970) 

(Fig: 4.1.1). SERCA pump activity is regulated by the small, 52-amino acid 

phosphoprotein phospholamban (PLB), which in its unphosphorylated state 

lowers the affinity of SERCA for Ca2+  (Simmermann and Jones, 1998). 
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Figure: 1.4.1. Depiction of the calcium release and storage in cardiomyocytes. 

The calcium ions are actively pumped into the SR by SERCA2a, bound in the 

lumen by calcium buffer, and released into the cytosol by ryanodine receptors. 

This movement of calcium ions across the SR membrane is necessary for 

muscle contraction and relaxation. 

 

A number of studies suggest that alterations in SR Ca2+ handling are a critical 

feature of the hypertrophied or failing myocardium. Alterations in the expression 

of different SR proteins and associated Ca2+ transport abnormalities in cardiac 

hypertrophy and heart failure have been reviewed by Houser et al. (2000). The 

SERCA2a isoform plays a central role in SR Ca2+ handling required for 

excitation-contraction coupling in the heart. Moreover, it was shown for mouse, 

rat and rabbit that the expression of SERCA pump gradually increases during 

development (Luss et al., 1999; Reed et al., 2000; Chen et al., 2000; Fisher et 

al., 1992; Gombosova et al., 1998). This increase was accompanied by a 

shortening of relaxation time in neonatal ventricle (Gombosova et al., 1998). In 

adult heart SERCA levels are not steady but influenced by aging and fluctuations 

in thyroid hormone level. A decrease in content and activity of SERCA was 

described in experimental models of senescence and in senescent human 

myocardium (Taffet et al., 1993; Cain et al., 1998). This decrease was associated 

with a prolonged contraction time and depressed myocardial function. Therefore, 

several naturally occurring variations in SERCA expression level correlate with 

the contractile status of the heart. The expression level of SERCA pump protein 

appears to be a critical determinant of cardiac contractility. 

Varying degrees of defects in the SR Ca2+ uptake have been identified in animal 

models of heart disease and have been shown to correlate with altered 

contractile function (reviewed in Arai et al., 1994). Studies from many 

laboratories have shown that the expression level of SERCA is significantly 

decreased in pressure overload-induced hypertrophy/heart failure (Nagai et al., 

1989; Feldman et al., 1993; Matsui et al., 1995; Qi et al., 1997; Aoyagi et al., 

1999). In these studies decreased SR calcium transport was observed (Arai et 
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al., 1994; Feldman et al., 1993; 1993; Matsui et al., 1995; Qi et al., 1997; Kiss et 

al., 1995). This down-regulation of SERCA2a may affect calcium handling and 

contribute to contractile dysfunction, as suggested by the improved contractility of 

hypertrophied myocardium following SERCA2a protein over expression using 

transgenic approaches (Muller et al., 2003; Meyer and Dillmann, 1998). Over 

expression of SERCA2a using an adenoviral gene transfer technique transiently 

enhances cardiac contractile function and SR Ca2+ uptake (Giordano et al., 1997; 

Miyamoto et al., 2000). Enhanced contractility has also been reported in SERCA-

over expressing transgenic mice not subjected to pathological stimuli (He et al., 

1997; Baker et al., 1998). 

The reduction of myocardial SERCA2a mRNA and protein expression in 

pathological hypertrophy was attributed to reduced SERCA2a promoter activity 

(Dumas et al., 1997). This finding was further corroborated by lower activity of a -

1800 bp SERCA2a promoter fragment when transfected in vivo in pressure-

overloaded, hypertrophic hearts (Aoyagi et al., 1999; Takizawa et al., 1999). In 

previous studies influences of calcineurin on SERCA expression were 

suggested. In myocardial hypertrophy induced by calcineurin over expression, 

both a fall in SERCA2a mRNA (Molkentin et al 1998) and a rise in SERCA2a 

protein (Chu et al., 2002) have been observed. In neonatal cardiomyocytes an 

up-regulation of SERCA2a mRNA expression was found in absence of 

contractile activity. This is likely due to calcineurin signaling and synergistic 

stimulation of the SERCA2a promoter by NFATc4 and MEF2c. Since α-

adrenoceptor signaling may activate NFAT via the calcineurin pathway, it is an 

interesting question whether α-adrenoceptor stimulation can enhance 

cardiomyocyte contractility via NFAT dependent up-regulation of SERCA. 

 

1.5. Cell culture model 
To investigate the influence of Ca2+/calcineurin /NFAT signaling on hypertrophy 

and contractility, studies should be performed on rat ventricular cardiomyocytes. 

Culture models for cardiomyocytes exist both for neonatal and for heart muscle 

cells of adult animals. Adult cardiomyocytes are more relevant for heart disease 
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since myocardial hypertrophy (heart failure) occurs particularly in adult patients. 

Therefore, in this work only cardiomyocytes of adult rat were used. 

Cultivation of isolated cardiomyocytes permits investigation of myocardial 

hypertrophy on a cellular level. In defined media the effects of selected 

neurohumoral factors in well-known active substance concentrations can be 

examined independent of their hemodynamic effects. This represents an 

advantage in relation to the conditions in vivo. Since cultivated cardiomyocytes 

are primarily mechanically inactive, cell culture offers the further advantage of 

allowing observations of cellular reactions to individual stimuli independent of 

mechanical influences. 

On the other hand, cardiomyocytes can be electrically stimulated at a specific 

contraction frequency, and thus conditions of the contracting heart can be 

simulated. Contraction function can be analysed in detail by determination of 

maximum cell contraction, and the contraction and relaxation velocity. By these 

methods effects of specific stimuli (adrenergic stimulation) on contractile function 

can be analysed independent of their hemodynamic effects on the heart. This 

can be achieved by use of a high frequency detection system with 500 Hz.  

 
1.6. Aims of the study 
The aim of this study is to analyse the effects of NFAT signaling on PE-induced 

hypertrophy in isolated rat cardiomyocytes. Furthermore, influences of long-term 

exposure (24 h) of cardiomyocytes to α−  or β-adrenergic stimulation on 

contractile function will be analysed. 

To investigate this it was determined, 

1. if NFAT inhibition by decoy oligonucleotides influences α-adrenoceptor 

agonist induced hypertrophy. 

2. if contractile function is altered in cardiomyocytes after 24 h stimulation by 

the α-adrenoceptor agonist PE or the β-adrenoceptor agonist ISO. 

3. if α- or β-adrenoceptor agonists effect SERCA expression in isolated 

cardiomyocytes. 
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4. if calcium/NFAT signaling is involved in SERCA regulation during PE or 

ISO activation. 

5. if calcium/NFAT signaling mediates altered contractile function in PE- or 

ISO-treated cardiomyocytes. 
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2. MATERIALS 
 

2.1. Chemicals 
14C-phenylalanine     Amersham, Freiburg 

Acrylamide      Roth, Karlsruhe 

Agarose      Invitrogen, Karlsruhe 

APS       Serva, Heidelberg 

Ascorbic acid      Fluka, Taufkirchen 

BCIP       AppliChem, Darmstadt 

Benzonase      Merck, Darmstadt 

Bisacrylamide     Roth, Karlsruhe 

Bromophenoleblue     Sigma, Taufkirchen 

BSA       Roche Diagnostics, Mannheim 

Calcium chloride     Merck, Darmstadt 

Carbogene      Messer Griesheim, Krefeld 

Carnitine       Sigma, Taufkirchen 

Collagenase, Type CLS II    Biochrom, Berlin 

Creatine       Sigma, Taufkirchen 

Cy3-dcTP-dye     Amersham Bioscience, Freiburg 

Cytosin-β-Arabinofuranoside   Sigma, Taufkirchen 

Dithiothreitol      Sigma, Taufkirchen 

DNAse-free RNAse     Qiagen, Hilden 

Ethanol       Merck Bioscience, Darmstadt 

Ethidium bromide     Sigma, Taufkirchen 

Fetal calf serum      PAA, Cölbe 

Gentamycin       Invitrogen, Karlsruhe 

Glacial acetic acid     Merck Bioscience, Darmstadt 

Glucose      Sigma, Taufkirchen 

HCl       Merck, Darmstadt 

HEPES       Invitrogen, Karlsruhe 

Hoechst  33258 (Hoe 33258)    Sigma, Taufkirchen 
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Human activin A      R&D systems, Wiesbaden 

Isoprenaline      Sigma, Taufkirchen 

Isopropanol      Roth, Karlsruhe  

Magnesium Chloride Hexa hydrate  Fluka, Taufkirchen 

Magnesiumsulphate     Merck, Darmstadt 

Medium 199/ Earl’s Salts    Biochrom, Berlin 

Mercaptopropandiol     Merck, Darmstadt 

Methanol      Merck, Darmstadt 

Myostatin      R&D systems, Wiesbaden 

Natrium chloride     Merck, Darmstadt 

Natriumvanadat     Merck, Darmstadt 

Nitrobluetetrazolium     AppliChem, Darmstadt 

Penicillin-Streptomycin    Invitrogen,Karlsruhe 

Phenylmethylsulfonylfluorid    Sigma, Taufkirchen 

Phenylephrine     Sigma, Taufkirchen 

poly-(dIdC)      Roche Diagnostics, Mannheim 

Potassium Chloride     Merck, Darmstadt 

Propidiumiodide      Sigma, Taufkirchen 

Proteinase K      Merk Bioscience 

Sodium dodecyl sulphate    Merck Bioscience, Darmstadt  

Sodium hydroxide     Roth, Karlsruhe 

Sucrose      Merck, Darmstadt 

Taurine      Sigma, Taufkirchen 

TEMED      Roth, Karlsruhe 

Terminal Transferase New England Biolabs, Frankfurt 

am Main 

Trichloroacetic acid     Merck Bioscience, Darmstadt 

Tris base       Roth, Karlsruhe 

Tris/HCl      Roth, Karlsruhe 

Triton X-100      Serva, Heidelberg 

TRIzol Reagent     Invitrogen, Karlsruhe 
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Tween20      AppliChem, Darmstadt 

Xylene cyanol     Sigma, Taufkirchen 

 

2.1.1. Inhibitors 
BAPTA      Calbiochem, Schwalbach 

Gö6850      Calbiochem, Schwalbach 

Cyclosporine      Fluka, Taufkirchen 

 

2.2. Decoy oligonucleotides 
NFAT       Invitrogen, Karlsruhe 

Mut-NFAT      Invitrogen, Karlsruhe 

 

2.3. Antibodies 
SERCA (C-20)     Santa Cruz Biotechnology, USA 

Bovine antigoat     Santa Cruz Biotechnology, USA 

Anti-Actin      Sigma, USA 

Anti-Rabbit      Sigma, USA 

 

2.4. RT-PCR reagents 
RNAse inhibitor     Promega, USA 

DNAse      Invitrogen, Karlsruhe 

0.1 M DTT      Invitrogen, Karlsruhe 

50mM MgCl2      Invitrogen, Karlsruhe 

MMLV-RT      Invitrogen, Karlsruhe 

5XRT-buffer      Invitrogen, Karlsruhe 

Oligo dt      Roche, Mannheim 

dNTP’s      Invitrogen, Karlsruhe 

10XPCR-buffer     Invitrogen, Karlsruhe 

Taq DNA polymerase    Invitrogen, Karlsruhe 

100 bp-DNA Ladder    New England Biolabs, Frankfurt  

   a.M. 
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2.4.1. Real-time RT-PCR Kit 
ABsolute SYBR Green Fluorescein Mix  ABgene, Hamburg 

 

2.4.2. Primers 

β-actin (forward and reverse)   Invitrogen, Karlsruhe 

HPRT (forward and reverse)   Invitrogen, Karlsruhe 

SERCA2A (forward and reverse)   Invitrogen, Karlsruhe 

All other chemicals used in this work were obtained with the best analytical 

quality by the following companies: Invitrogen (Karlsruhe), Amersham-Bioscience 

(Freiburg), Merck (Darmstadt) and Sigma (Taufkirchen). 

All chemicals were dissolved and stored regarding the manufacturers instruction. 

For the preparation of solutions, media and buffers millipore water was used, if 

not mentioned differently. 

 

 2.5. Equipments 
 
2.5.1. General objects of utility 
Gel electrophoresis chamber   Biotec Fisher, Reiskirchen 

Retardation gel chamber    Amersham Bioscience, Freiburg 

Western blot apparatus    Biotec Fisher, Reiskirchen 

Centrifuge (Type: 18)     Kendro, Hanau 

Glass ware      Schott, Mainz 

Magnetic stirrer with hot plate    Jahnke & Kunkel, Staufen 

pH meter      WTW, Weilheim 

Pipettes      Eppendorf-Netheler-Hinz,  

Hamburg 

System for the production of distilled water Millipore, Eschborn 

Thermo cycler      Techne, Wertheim-Bestenheid 

Waterbath (Julabo U3) Julabo Labortechnik GmbH, 

Seelbach 
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Gel documentation system    INTAS, Göttingen 

 
2.5.2. Special objects of utility 
 
2.5.2.1.Cell culture 
Dissection instruments     Aeskulap, Heidelberg 

Incubator (Cytoperm)    Kendro, Hanau 

Langendorff-Apparatus     University, Giessen 

Nylon net (Pore size 200 µm)   Neolab, Heidelberg 

Microscope (TMS-F)    Nikon, Japan 

Sterile bench (Lamin Air® HBB2472)   Kendro, Hanau 

Cell scraper      Becton Dickinson, Heidelberg 

Tissue chopper     Harvard Apparatus, March- 

Hugstetten 

 

2.5.2.2. Other instruments 
Liquid scintillation counter    Canberra-packard, Frankfurt a.M. 

Microtiter plate photometer    Dynatech, Denkendorf 

Photometer      Amersham, Freiburg 

Scintillation container    Canberra-packard, Frankfurt a.M. 

Fluo-imager      Bio.Rad Laboratories, München 

Icycler       Bio.Rad Laboratories, München 

 

2.5.3. System for the measurement of cell contraction parameters 
Interface INT4     Scientific Instruments GmbH, 

       Heidelberg 

Microscope      TMS-F Nikon, Japan 

Monitor      Philips 

One-dimensional camera ZK4   Scientific Instruments GmbH, 

       Heidelberg 

Oscillograph      Scientific Instruments GmbH, 
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       Heidelberg 

Stimulator      Physiology lab of institute of  

       Physiology, JLU, Giessen 

 

2.5.4. Consumables 
Culture dishes (Falcon 3001 -3004)   Becton Dickinson, Heidelberg 

Gloves       NOBA pvt. Wetter 

Pipette-Tips      Sarstedt, Nümbrecht 

Reaction tubes (0.5/ 1.5/ 2.0 ml)    Eppendorf-Netheler-Hinz, 

       Hamburg 

 

2.5.5. Software for analysis 
Image-Quant      Molecular Dynamics, Krefeld 

MUCEL      Scientific Instruments GmbH, 

       Heidelberg 

Excel       Microsoft 

SPSS       SAS software-Version 6.11 
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3. METHODS 
 
3.1. Isolation of ventricular cardiomyocytes 
 
3.1.1. Laboratory Animals 
Ventricular cardiomyocytes were isolated from two- to three- month-old male 

Wistar rats. These 300- to 350-g male rats were bred in the animal house of the 

Institute of Physiology at the Justus Liebig University, Giessen. 

 

3.1.2. Preparation of isolated ventricular cardiomyocytes from rat hearts 
(Piper et al., 1982) 
The following solutions were used for the preparation of cardiomyocytes. 

 

Calcium-stock solution: 
 

CaCl2   100 mM 

 

Powell-Medium: (Carbogen gassed): 
NaCl     110 mM 

NaHCO3      25 mM 

Glucose      11 mM 

KCl       2.6 mM 

KH2PO4      1.2 mM 

Mg2SO4 x H2O     1.2 mM 

 

Collagenase buffer: 
Powell-Medium     40 ml 

Collagenase      25 mg 

Calcium Stock solution    12.5 µl 
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3.1.3. Procedure for the preparation of cardiomyocytes 
At the beginning of the preparation, the Langendorff perfusion system was 

flushed with Powell medium and then filled bubble-free with 80 ml Powell 

medium and warmed up to 37°C. To obtain a constant pH value, Powell medium 

was gassed with carbogen throughout the whole preparation. Wistar rats (appr. 

300 g) were anaesthetized for 1-2 min with diethyl ether. The chest was opened 

and the diaphragm was dissected. The hearts together with the lungs were 

transferred into a large Petri dish containing ice-cold salt solution (0.9 % NaCl). 

Lung, esophagus, trachea and thymus were removed. The flow of perfusion was 

started with 1 drop per sec. The hearts were mounted on cannula of the 

Langendorff apparatus by slipping the aorta over the cannula. The heart was 

fixed with a clamp. The appended heart was flushed blood free with 40 ml Powell 

medium and then retrograde perfuse with 50 ml recirculating collagenase buffer. 

After perfusion aorta and atria were removed and ventricles were chopped in 

pieces with a tissue chopper (slitting width 0.7 mm). Chopped tissue was 

digested with 30 ml carbogen-gassed collagenase buffer for 5 min at 37 °C. To 

separate single cells, the suspension was pipetted up and down several times 

with a sterile 5 ml pipette. The material was filtered through a nylon mesh. The 

suspension was centrifuged at 25 x g for 3 min, and the resulting pellet was 

resuspended in Powell medium containing 200 µM calcium chloride to adapt cells 

to calcium. Thereafter, cells were centrifuged at 25 x g for 2 min, and the cell 

pellet was resuspended in Powell medium containing 400 µM calcium chloride 

solution. Test tubes were filled with 1 mM calcium chloride solution and 

resuspended cardiomyocytes were added. Intact myocytes were collected after 

centrifugation at 15 x g for 1 min. The supernatant was removed and the pellet 

resuspended in culture medium resulting in 40-60 % intact cells. 
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3.2. Culturing of cardiomyocytes 
The following solutions were used for culturing isolated cardiomyocytes. 

 
CCT Medium (sterile filtered, pH 7.4) 
M199 / HEPES      x ml 

Creatine      5 mM 

Taurine      5 mM 

Carnitine       2 mM 

Cytosin-β-Arabinofuranoside 10 µM 

 

Preincubation Medium 

M199/HEPES (sterile filtered, pH 7.4) x ml 

FCS       4 % (vol/vol) 

Penicillin      100 IE/ml 

Streptomycin      100 µg/ml 

 

CCT Culture medium 
CCT Medium (sterile filtrated, pH 7.4)  x ml 

Penicillin       100 IU/ml 

Streptomycin      100 µg/ml 

 
3.2.1. Pre-incubation of culture plates 
In order to allow cardiomyocytes to attach, culture dishes were incubated at least 

2 hours at 37°C with pre-incubation medium. The medium was removed before 

plating cells. 

 
3.2.2. Plating of cardiomyocytes 
Isolated cardiomyocytes from one heart were suspended in 24 ml of CCT culture 

medium, mixed homogeneously and plated at a density of approximately 5 x 104 

cells per 35 mm culture dish. In each culture dish the portion of rod-shaped, living 

cells ranged from 40 to 60 %. 
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3.2.3. Culturing of cardiomyocytes 
Plated cells were cultured for 2 hours at 37°C under CO2-free conditions and 

then washed two times with CCT-culture medium to remove round and non-

attached cells. This results in 90 % living, intact, rod-shaped cells. If cells should 

be incubated for 24 hours, gentamycin (10 µg/ml) was added to the CCT culture 

medium.  

 
3.2.4. Treatment of cardiomyocytes 
After washing cardiomyocytes with CCT culture medium, the cells were treated 

according to different protocols; e.g., phenylephrine was used to stimulate α-

adrenoceptors and was applied at a concentration of 10 µM. At this 

concentration, no cross-reactivity to β-adrenoceptor pathways is present. 

Isoprenaline was used to stimulate β-adrenoceptors and was applied at a 

concentration of 1 µM. NFAT (500 nM) and mut-NFAT (500 nM) were added to 

the culture medium 5 h before stimulating the cells with phenylephrine and 

isoprenaline. The calcium-chelating agent BAPTA/AM (10 µM) was added to the 

culture medium 2 h before stimulating the cells with phenylephrine. Gö6850 was 

used as an inhibitor of protein kinase C at a concentration of 1 µM. Cyclosporine 

was used at a concentration of 1 µM. These drugs were added and cells and 

were incubated according to respective protocols at 37°C, 95 % humidity. For 

controls un-treated cells were used. Afterwards, all treated and un-treated cells 

were incubated at 37°C, 95 % humidity. Added substances were left in the 

culture dishes. 

 

3.3. Transformation of cardiomyocytes 
 
3.3.1. Hybridization of decoy oligonucleotides 
For transformation of cardiomyocytes the following oligonucleotides were used. 

 

Decoy oligonucleotides 
NFAT decoy oligos 
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Forward  5´-GCCCAAAGAGGAAAATTTGTTTCATACAG-3´ 

Reverse  5´-CTGTATGAAACAAATTTTCCTCTTTGGGC-3´ 

Mut-NFAT decoy oligos 

Forward  5´-GCCCAAAGATACGAATGGACTTCATACAG-3´ 

Reverse  5´-CTGTATGAAGTCCATTGGTATCTTTGGGC-3´ 

 

Each decoy oligonucleotide was dissolved in Tris-HCl/EDTA buffer. To hybridize 

complementary strands equimolar amounts of oligos (100 µM) were mixed and 

heated in the PCR thermocycler at 95°C. The reaction was then slowly cooled 

down for several minutes to room temperature. In this time complementary 

strands passed through the melting point and hybridized as double-stranded 

DNA fragments. 

The double-stranded oligos contained consensus-binding sequences. These 

decoy oligos are capable of scavenging intracellular specific transcription factors. 

 
3.3.2. Transformation of cardiomyocytes with decoy oligonucleotides 
To increase stability of oligonucleotides against intracellular exonucleases the 

last 5 bases on each end were modified into phosphothioesters. For 

transformation of cells decoy oligonucleotides (500 nM) were added to the 

medium after washing of the cells with CCT culture medium. The cells were 

incubated 5 h at 37°C, 95 % humidity. 

 

3.4. Determination of hypertrophic growth 
 
3.4.1. Determination of the rate of protein synthesis 
 

The effect of α-adrenoceptor agonist PE (10µM) on the rate of protein synthesis 

in ventricular cardiomyocytes from adult rat was determined by incorporation of 
14C-phenylalanine during 24 h. 

 

Induction medium 
CCT culture medium    X ml 
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14C-phenylalanine     0.1 µCi/ml 

Penicillin      100 IE/ml 

Streptomycin      100 µg/ml 

Ascorbic acid      100 µM 

 

10XPBS 
NaCl       150 mM 

NaH2PO4 X H2O     4 mM 

Na2HPO4 X H2O     16 mM 

The pH was adjusted to 7.4 

 

Incorporation of phenylalanine into cells was analysed by exposing cultures to 
14C-phenylalanine for 24 hrs and determining the incorporation of radioactivity 

into the acid-insoluble cell mass. Non-radioactive phenylalanine (0.3mM) was 

added to the medium to minimize variations in the specific activity of the 

precursor pool responsible for protein synthesis.  

Experiments were terminated by removal of the medium from the cultures. Cells 

were washed three times with 1 ml of ice-cold PBS. Subsequently, 1 ml of ice-

cold 10% (wt/vol) trichloroacetic acid (TCA) was added. Protein precipitation was 

performed overnight at 4°C. The next day 500 µl of TCA were taken per dish, 

mixed with 4 ml of scintillation liquid, and decay events per minute were counted 

in a β-counter. The decay events per minute of scintillation liquid without any 

addition were determined in a β-counter as a reference value. Radioactivity in 

this acid fraction presented the intracellular precursor pool. The dishes were then 

washed twice with 1 ml of ice-cold 10% (wt/vol) trichloroacetic acid and a third 

time with 1 ml of ice-cold PBS. The remaining precipitate in the culture dishes 

was dissolved in 1 ml of 1N NaOH/0.01% (wt/vol) SDS by incubation at 37°C 

overnight. For the determination of incorporated 14C-phenylalanine 500 µl from 

cell lysate were transferred into 4 ml of scintillation liquid. Subsequently, decay 

events per minute were measured in a β-counter. Based on these 

measurements, the ratio of incorporated 14C-phenylalanine into cellular protein 
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and the precursor pool was calculated. This rate of protein synthesis was related 

to total protein content determined by the Bradford method.  

 

3.4.2. Quantification of protein by the Bradford Method 
 

Bradford reagent 
Coomassie Brillant Blue G-250   0.1 % (wt/vol) 

96 % Methanol     5 % (vol/vol) 

85 % Ortho-Phosphorus acid   10% (vol/vol) 

To make volume 1 L with distilled water.  

 

Total protein was measured using the method described by Bradford et al (1976). 

10 µl of the cell lysate (as described in 3.4.1) was transferred into a 96-well 

micro-titer plate, and 200 µl Bradford reagent were added. Immediately, a 

change in colour, with the intensity depending on the amount of protein in each 

sample, was visible. The binding of the protein to the dye led to a shift in the 

absorption maximum from 465 nm to 595 nm. The extinction value at 595 nm 

was determined using a photometer. The quantification was performed by 

creating a standard curve using BSA which was dissolved in 1N 

NaOH/0.01%SDS (wt/vol) with following concentrations: 0.0, 0.2, 0.4, 0.6, 0.8 

and 1.0 mg/ml. The unknown concentration of the protein solution was then 

extrapolated from the standard curve using their extinction values. 

 

3.4.3. Determination of cell size  

Myocyte size was determined on micrographs digitalized by a charge-coupled-

device video camera. Cardiomyocytes were stimulated for 24 h. Single cell 

images of these cardiomyocytes were taken. Five micrographs were taken 

randomly per sample, and all rod-shaped myocytes in these fields were 

measured. The diameter of myocytes was determined at the widest point of each 

myocyte, and the length of myocytes was determined at the longest point of each 

myocyte. Cell volumes were calculated by the following formula: Volume = 
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(radius) 2 x π x length, assuming a cylindrical cell shape. Cross-sectional area 

was determined by the following formula: Cross sectional area = (radius) 2 x π. 

 

3.5. Determination of cell shortening 
 
3.5.1. Sample preparation 

Cell shortening of overnight pre-incubated isolated cardiomyocytes from 

ventricles of adult rat was measured. After 24 h incubation of cardiomyocytes 

(with different reagents as described) the contraction parameters were measured 

under application of external electrical charge. 

 

3.5.2. Electrical stimulation of cardiomyocytes 
All cell-shortening experiments were performed at room temperature. At the end 

of the pre-incubation period the culture-dish was placed on a microscopic stage. 

A special cover was used for the culture dish. This cover had four holes, which 

were so arranged that they formed the points of a square, whose maximum 

diagonal width filled up the circle of the cover. One wire that was attached to the 

cathode of the electro-stimulators was passed inside the cover through one of 

these holes so that it was immersed in the medium in the culture-dish. It was 

curved and bent so that it could be immersed horizontally into the medium, from 

where it again bent and perpendicularly extended out of the medium. The second 

wire, which was attached to the anode, was positioned in the same way. The two 

wires represented cathode and anode placed horizontally into the medium. An 

electrical field was developed between the two wires by passing current over 

them. 

Biphasic electrical stimuli composed of two equal but opposite rectangular 60 V 

stimuli of 0.5 ms duration were applied at a frequency of 0.5, 1 and 2 Hz. Cells 

that did not respond to the given specific stimulation frequency were not 

considered in the experiments. 
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3.5.3. Determination of parameters of cell contraction 
Cell shortening was monitored using a cell-edge detection system from “Scientific 

Instruments GmbH” in Heidelberg. During stimulation of the cells, culture dish 

was placed on the stage of a microscope. It was possible to observe the cell 

contraction microscopically. 

Two cameras were attached to this microscope. One camera was a video 

camera for the observation of the cell picture on a monitor. The other one was a 

line camera, which was able to recognize cell borders by measuring differences 

in brightness as light and dark e.g. dark-light transition at the border between cell 

and background. For the observation of cell contraction with the line camera, the 

camera was positioned in such a way that both cell ends lay in the picture of the 

linear line. In addition to this, the culture dish was moved in such a way that the 

cell being examined was exactly in the center of the picture. The line camera was 

turned until both cell ends were covered by the line camera. 

The picture from the line camera was converted into electrical signals that were 

presented on an oscillograph. The deflection time on the horizontal amplifier was 

adjusted to 0.1 ms/cm; the vertical amplifier was regulated at 5V/div. If the line 

camera detected changes in brightness, they were represented on the 

oscillograph as varying y-deflections. Those amplitudes which represented the 

cell borders could be identified by their horizontal movement. It was thus possible 

to observe the cell contraction on the oscillograph. 

The oscillograph was operated as a bi-channel oscillograph. Against the second 

channel a strong stress or tension of the interface rested. If it was readable, the 

oscillograph presented a horizontal line at a certain height on the screen. If it was 

not readable, the oscillograph showed a horizontal line at the height of zero. The 

phase-contrast micrograph was recorded by video camera. The contractions of 

single cell were determined from consecutive frozen video frames magnifying the 

cell’s picture 500-fold on a video monitor screen. 

The software program MUCEL provided a graph on the basis of cell lengths at 

different times, which showed the cell length dependent on time. This curve 

represented the cell contraction. The computer recognized cell shortening at the 
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beginning of a contraction. In each case cells were constantly paced, and five 

contractions were recorded every 15 s. The average of these recordings was 

used as one data point. 

The following values were determined: 

1: The maximum cell length (diastolic cell length) in micrometers. 

2: The minimum cell length (systolic cell length) in micrometers. 

3: The time of beginning of the contraction up to the maximum contraction 

“time to peak” in milliseconds. 

4: The maximum contraction velocity in micrometers per second (determined 

from the first derivative of the contraction curve). 

5: The maximum relaxation velocity in micrometers per second. 

6: The time from 10% cell contraction up to the complete cell contraction in 

milliseconds (T10 to peak). 

7: The time of the maximum contraction up to the relaxation around 90% of 

the cell shortening distance (R90 value). 

From these parameters three further parameters were calculated: 

1: The quotient ∆L/L: ∆L was the difference from diastolic to systolic cell length. 

Expressed in percent, ∆L/L indicates cell shortening as percent of diastolic cell 

length. 

2: The Conmax represents the rate for maximum contraction velocity. 

The maximum contraction speed is determined as the first temporal derivative of 

cell shortening and is indicated in µm/s. 

3: The Relmax represents the rate for the maximum relaxation velocity. It is 

determined as the first temporal derivative of the relaxation and is indicated in 

µm/s. 

 
3.5.4. Measurement of cell contraction 
Each cell was stimulated at 0.5, 1 and 2 Hz for 1 min and every 15 s cell 

shortening was measured. The average of these recordings was used as one 

data point. The measurements on individual cells were repeated four times and 

the median of these four measurements at a given frequency per cell was used 



 32

as the average cell shortening of individual cells. Cell lengths were measured at 

a rate of 500 Hz via a line camera. 

 

3.6. Western blot 
 

1xPBS 
NaH2PO4 X 2H2O     0.004 M 

Na2HPO4 X2H2O     0.016 M 

NaCl       0.150 M 

Volume made 1 L by distilled water 

 
Cell lysis buffer 

Tris pH 6.7      50 mM 

SDS       2 % 

Prior to use the following reagents were added 

Na-Vanadat, 100 mM    10 % of lysis buffer 

3 Mercapto-1,2-propandiol    10 % of lysis buffer 

 

Benzonase 1:30 diluted with distilled water 

 

3.6.1. Lysis of cells 

Cells were washed with 1 ml of ice-cold 1XPBS. 100 µl of protein lysis buffer 

were added in each plate. After an incubation time of 10 minutes on shaker at 

room temperature, 10 µl of Benzonase (1:30) was added and plates were again 

shaken for 10 minutes. Proteins were scraped, transferred into fresh tube and 

stored at -20°C. 

 

3.6.2. SDS Polyacrylamide gel (7.5%) 
 
Resolving gel  
Distilled Water     9.55 ml 

30 % Acrylamide (29:1 AA/BA)   5.25 ml 
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1.5 M Tris pH 8.6     4.75 ml 

10 % SDS      200 µl 

10 % APS      200 µl 

TEMED      15µl 

 

Stacking gel 
Distilled Water     4.55 ml 

30 % Acrylamide (29:1 AA/BA)   1.25 ml 

0.5 M Tris pH 6.8     1.5 ml 

10 % SDS      62.5 µl 

10 % APS      50 µl 

TEMED      5 µl 

 

Running buffer 
Glycine      192 mM 

Tris       24.8 mM 

SDS       3.5 mM 

Distilled Water was added up to 1000 ml and pH was adjusted to 8.2-8.5 

 
Protein loading buffer 
SDS       1.0 g 

DTT       0.77g 

Glycerol (100%)     10 ml 

Bromophenol blue     1 mg 

0.5 M Tris, pH 6.8 was added to make the volume 20 ml. 

 

Preparation of samples 

Protein sample      10 µl 

Protein-loading buffer    10 µl 

Samples were incubated for 5 minutes at 95°C and then loaded on gel. 
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3.6.2.1. Preparation of gel 
The above-mentioned resolving and stacking gel reagents were for one 7x10 cm 

gel, 0.75-1.00 mm thick. Glass plates were assembled by placing a spacer at 

both sides and sealed at the bottom. APS and TEMED were added just prior to 

pouring the gel, as these reagents promote and catalyse the polymerisation of 

acrylamide. The resolving gel mix was poured between the assembled glass 

plates leaving sufficient space for the stacking gel to be added later. The gel was 

gently overlaid with distilled water and the gel was allowed to polymerise for 20 

minutes. After polymerisation, distilled water overlay was removed, the remaining 

space was filled with stacking gel and comb was inserted immediately. After the 

stacking gel was polymerised, the comb was removed and the wells were rinsed 

with running buffer to remove the un-polymerised acrylamide. At least 1 cm of 

stacking gel was present between the bottom of the loading wells and the 

resolving gel. 

The samples were prepared and loaded. In one lane 20 µl of rainbow marker was 

loaded. The gel was run at 200 volts for 2-3 hours until the bromophenol blue 

reaches the bottom of the resolving gel. Then the gel was used for western 

blotting. 

 

3.6.3. Blotting of proteins 
 
Western blot buffer A (Cathode buffer)  
25 mM Tris      3.03 g 

40 mM 6-amino-hexanoic acid    5.25 g 

Distilled water was added to a total volume of 800 ml and pH was adjusted to 

9.4, then 

20 % Methanol     200 ml 

 

Western blot buffer B (Anode buffer) 
30 mM Tris      3.63 g 
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Distilled water was added to a total volume of 1000 ml and pH was adjusted to 

10.4, then 

20 % Methanol     200 ml 

 

Western blot buffer C (10 X Anode buffer) 
300 mM Tris      36.3 g 

Distilled water was added to a total volume of 1000 ml and pH was adjusted to 

10.4, then 

20 % Methanol     200 ml 

 

3.6.3.1. Preparation of blotting chamber and transfer of protein to 
membrane  
9 pieces of whatman papers were cut to the size of gel. 3 papers were soaked 

with buffer C and placed at the bottom of chamber. Above 3 papers soaked with 

buffer B were placed. PVDF membrane of equal size as the gel was soaked in 

buffer B and placed above. Upon completion of electrophoresis, the gel was 

removed from glass plates. The gel was placed above the membrane and 3 

papers soaked with buffer A were placed at the top. Blot was run at 160 mA per 

two gels for 2 h. Gel was removed, membrane was dried between two sheets of 

paper and stored at 4°C or used immediately. 

 

3.6.4. Incubation of membrane with antibodies 
Dried membrane was soaked in 100% methanol; membrane was washed 2 times 

with washing buffer and twice with1xPBS. Each washing was for 10 minutes 

 
Blocking buffer 
PBS buffer      1x 

Tween20      0.05% 

BSA       3% 
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Washing buffer 
PBS       1X 

Tween20      0.05% 

 
3.6.5. Antibody dilutions 
SERCA2 (C-20) antibody dilution 
SERCA2 antibody     1:1000 

PBS       1X 

Tween20      0.05% 

BSA       3% 

 

Bovine anti-goat IgG-AP dilution 

Bovine anti-goat-AP-conjugated   1:1000 

PBS       1X 

Tween20      0.05% 

BSA       3% 

 

Dilution of anti-Actin antibody 
Anti-Actin antibody     1:2000 

PBS       1X 

Tween20      0.05% 

BSA       3% 

 

Dilution of anti rabbit IgG-AP conjugated antibody 
Anti rabbit antibody     1:2000 

PBS       1X 

Tween20      0.05% 

BSA       3% 

 
Membrane was incubated in blocking buffer at room temperature for 1 hour, 

washed 2 times with washing buffer and two times with 1XPBS. Membrane was 
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incubated with first antibody either SERCA2 or actin for 2 h at room temperature 

or over night at 4°C on shaker. Membrane was washed 2 times with washing 

buffer and twice with 1xPBS. Membranes for SERCA detection were incubated 

with bovine anti-goat antibody and membranes for actin with anti-rabbit IgG-AP 

conjugated antibody for 1-2 hours on shaker at room temperature. Membrane 

was washed 2 times with washing buffer and two times with 1XPBS, 10 minutes 

for each washing step. 

 

Substrate buffer 
Tris       100 mM 

MgCl2X6H2O       5 mM 

NaCl       10 mM 

pH  9,55 
 

3.6.6. Staining solution (light sensitive) 
Substrate buffer     40ml 

BCIP       10.0mg 

NBT       13.2mg 

 

The membrane was incubated in staining solution in dark place until protein 

bands were visible. Staining was stopped with tap water and the membrane was 

dried. Photograph of the membrane was taken by imaging device (BioRad) and 

bands were quantified by using Quantity One program. 

 

3.7. RNA isolation 
 
3.7.1. Harvesting of cells 

Cultured cells (35mm cell culture dishes) were scraped with a disposable cell 

scraper and collected in tubes. The cell solutions were centrifuged at 3000 rpm 

for 3 minutes at room temperature. The pellets were dissolved in 1 ml of ice-

chilled 1xPBS and transferred into fresh tubes. The cells were centrifuged at 
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2500 rpm for 3 minutes at room temperature and cell pellets were stored at -

20°C. 

  

3.7.2. RNA isolation 
Total RNA was extracted from cells using TRIzol® reagent. Each sample was 

dissolved in 1.0 ml of TRIzol® reagent by pipetting up and down, and then mixed. 

Following 5 min incubation at room temperature, 200 µl of chloroform were 

added to these samples. Samples were shaken vigorously by hand for 15 sec 

and incubated at room temperature for 2-3 min and centrifuged at 12000 rpm for 

15 min at 4°C. The RNA containing upper phase was collected in a new tube. 

The RNA was precipitated from the aqueous phase by adding 0.5 ml of 

isopropanol. RNA was incubated for 10 min at room temperature and centrifuged 

at 12000 rpm for 15 min at 4°C. The RNA pellet was washed with 1 ml of 70% 

ethanol. The samples were centrifuged at 12000 rpm for 15 min at 4°C. The RNA 

pellet was dried and dissolved in DEPC treated water. 

 

3.7.3. DNAse treatment of RNA 
 

DNAse buffer 

HEPES      80mM  

NaCl       10mM 

Volume made up by DEPC water. 

 
DNAse reaction mix 
10XDNase buffer     5µl 

MgCl2, 50mM     5µl 

DTT, 0.1M      5µl 

RNAse inhibitor     1µl 

DNAse, RNAse free     1µl 

 

Final volume      17µl 
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The RNA pellet was dissolved in 33 µl DEPC treated water and 17 µl of DNAse 

reaction mix was added. Samples were incubated for 1 h at 37°C. These 

samples were placed at -80°C overnight or used directly. 50 µl of DEPC treated 

water was added in each sample for making final volume of each sample 100 µl. 

100 µl of phenol chloroform solution (1:1) was added in each sample. Samples 

were mixed and centrifuged at 13000 rpm for 10 minutes at 4°C. The RNA 

containing upper phase was collected in fresh eppendorf tubes. The RNA was 

precipitated by adding 10 µl of NaAc (3M) and 250 µl of absolute ethanol. The 

samples were shaken gently by hand and centrifuged at 13000 rpm for 30 

minutes at 4°C. The RNA pellet was washed with 500 µl of 70% ethanol, mixed 

and centrifuged at 13000 rpm for 15 min at 4°C. The RNA pellet was dried and 

re-dissolved in 20 µl of DEPC treated water and stored at -80°C.  

RNA concentration and purity were determined photometrically. For this analysis 

3 µl of probe were mixed in 1 ml of distilled water and absorbance at 260 nm and 

280 nm was measured. For the estimation of purity, A260/A280 ratio was 

calculated. The ratio around 1.8 is considered to be good quality RNA in our 

experiment. 

 

3.8. Reverse transcription-polymerase chain reaction (RT-PCR) 
In order to determine expression of messenger RNA (mRNA), total RNA was 

converted into complementary DNA (cDNA) by reverse transcriptase. cDNA was 

then amplified by PCR, and analysed by agarose gel electrophoresis. 

 

3.8.1. cDNA synthesis 
Complementary DNA was synthesized from total RNA using reverse 

transcriptase (MMLV-RT). One µg of total RNA was combined with nuclease-free 

water for a final volume of 5 µl per reaction. This mixture was denatured at 60°C 

for 10 min, followed by rapid cooling. After a short spin, 5 µl of the reverse 

transcription reaction mix was added and incubated at 37°C for 1 h, followed by 

inactivation of enzyme at 95°C for 10 minutes. After synthesis, cDNA samples 

were either used immediately for PCR, or stored at -20˚C. 
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Reverse transcriptase reaction mix 
5XRT-buffer      2 µl 

Oligo dt      1 µl 

dNTP’s, 10 mM     1 µl 

DTT, 0.1 M      0.5 µl 

RNAsin      0.2 µl 

MMLV-RT      0.3 µl 

 

Final volume      5 µl 

 

3.8.2. Polymerase Chain Reaction (PCR) 
To analyse mRNA expression in cardiomyocytes, PCR was performed on cDNA 

samples by use of Taq polymerase. cDNA was amplified using mRNA-specific 

primers (as described below). Primers were designed from sequence data 

available in the GenBank. The primer sequence was checked using the NCBI 

BLAST search for probable similarity with unrelated genes. For PCR, 20-22 bp 

long primers were designed, AT and GC content was checked and the difference 

in the melting temperature (Tm) between the forward and reverse primers was 

kept not more then 2-4ºC. Each primer pair was tested with several annealing 

temperatures depending on the Tm of the primer pair to get a single and specific 

PCR band. 

 

PCR primers 
Beta-Actin forward   5´ GGCTCCTAGCACCATGAAGA 3´ 

Beta-Actin reverse   5´ ACTCCTGCTTGCTGATCCAC 3´ 

 

HPRT forward  5´ CCAGCGTCGTGATTAGTGAT 3´ 

HPRT reverse  5´ CAAGTCTTTCAGTCCTGTCC 3´ 

 

SERCA forward  5´ CGAGTTGAACCTTCCCACAA 3´ 

SERCA reverse  5´ AGGAGATGAGGTAGCCGATGAA 3´ 
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PCR reaction was done in 0.2 ml thin wall tubes in thermocycler. Negative 

control without template was performed to check for self-annealing of primer 

pairs and for genomic DNA contamination. 

The polymerase chain reaction (PCR) allows amplification of DNA fragments due 

to repetitive cycles of DNA synthesis. The reaction uses four dNTP’s, heat-stable 

DNA polymerase (Taq) and two specific primers, which hybridize to sense and 

antisense strand of the template DNA fragment. Each cycle consists of three 

reactions that take place under different temperatures. First the double stranded 

DNA is converted into its two single strands (denaturation at 93ºC). They function 

as templates for the synthesis of new DNA. Second, the reaction is cooled (57-

59ºC) to allow the annealing of primers to the complementary DNA strands 

(hybridization). Third, DNA polymerase extends both DNA strands at 72ºC 

starting from the primer sequence (DNA synthesis). 

 

PCR mix 
Nuclease-free water     6.3 µl 

10XPCR-buffer     1.0 µl 

β-actin forward, 100 µM    0.15 µl 

β-actin reverse, 100 µM    0.15 µl 

dNTP’s, 10mM     0.4 µl 

MgCl2, 50mM     0.3 µl 

Taq DNA polymerase    0.2 µl 

Volume of cDNA added    1.5 µl 

 

Total PCR reaction volume    10 µl 

 

The tubes were flicked to mix and microfuged briefly before placing samples in 

the thermocycler. 

The thermocycler’s program for β-actin primers was as follows: 

Activation of HotstarTaq  93ºC   5 min 

Denaturation    93ºC   30 s 
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Annealing    58ºC   30 s 

Extension    72ºC   45 s 

Final extension   72ºC   10 min 

Cycles    45 

After the amplification, PCR products (10 µl) were electrophoretically analysed in 

a 2% agarose gel. 

 

3.8.3. Agarose gel electrophoresis 
 

50XTAE buffer (1L) 
2 M Tris base     242g 

1 M Glacial acetic acid    57.1ml 

0.5 M EDTA, pH 8     100 ml 

The final pH 7.2 was adjusted. 

 

TE 
1 M Tris pH 8     10 mM 

0.5 M EDTA      1 mM 

 

10 X DNA loading buffer dye 
Glycerol      30 % 

BPB       0.25 % 

Xylene cyanol      0.25 % 

Rest of the volume made up by TE. 

 

PCR products were analysed on 2% agarose gel in 1XTAE buffer, containing 0.5 

µg/ml ethidium bromide. The DNA samples were mixed with loading buffer. Gel 

was run in 1XTAE buffer for 45-60 min at 80 V. The size of DNA fragments was 

determined by loading of 100 bp DNA ladder marker prior to electrophoresis. 

DNA bands were visualized under UV-Transilluminator; mRNA that produced 

specific DNA bands was used in real time RT-PCR. 
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3.9. Real-time RT-PCR 
For semi-quantitative estimation of mRNA expression real-time RT-PCR analysis 

was performed. 3 µl of 1/10 volume of cDNA was mixed with 17 µl of reaction 

volume containing SYBR Green PCR mix and sequence-specific oligonucleotide 

primers. 

Real time PCR mix 

ABsolute SYBR Green Fluorescein Mix   10 µl 

Nuclease-free water      6.4 µl 

Forward primer, 100 µM     0.3 µl 

Reverse primer, 100 µM     0.3 µl 

Volume of 1/10 cDNA added    3.0 µl 

 

Total real-time PCR volume    20 µl 

 

The thermocycler’s program for HPRT primers was as follows: 

 

Activation of Taq   95ºC   15 min 

Denaturation    95ºC   30 s 

Annealing    63ºC   30 s 

Extension    72ºC   30 s 

Cycles    45 

 

The thermocycler’s program for SERCA primers was as follows: 

 

Activation of Taq   95ºC   15 min 

Denaturation    95ºC   30 s 

Annealing    57ºC   30 s 

Extension    72ºC   30 s 

Cycles    45 
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All real-time reactions were done in icycler (Bio-Rad), and analysis was 

performed with the accompanying software. At the end of the PCR cycle, a 

dissociation curve was generated to ensure the amplification of a single product. 

The threshold cycle time (Ct values) for each gene was determined. Relative 

mRNA levels were calculated based on the Ct values and normalized to house 

keeping gene HPRT. 

The icycler contains a sensitive camera that monitors the fluorescence in each 

well of the 96-well plate at frequent intervals during the PCR reaction. As DNA is 

synthesized, more SYBR Green will bind and the fluorescence will increase. 

 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                                Threshold 
 
 
 

Fig.1: Amplification curves of real time PCR 

 

 

Figure: 1 shows a series of 10-fold dilution of a sample of cDNA. As the sample 

is diluted, it takes more cycles before the amplification is detectable. In real time 

PCR, cycle number at which the increase in fluorescence (and therefore cDNA) 

is logarithmic is determined. This is shown by the horizontal line in figure 1 called 

threshold. In this study the same threshold for all samples of the same 

experiment on the same plate was used. The point at which the fluorescence 
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crosses the threshold is called the Ct. More diluted samples result in greater Ct 

values. 

From such series of 10-fold dilutions of a cDNA sample a standard curve was 

calculated to check the efficiency and specificity of primers and other reagents 

(Fig 2). Standard curves for the housekeeping gene (reference gene HPRT) and 

also one for the gene of interest whose expression we thought may change 

under the experimental conditions (target gene SERCA) were done. We normally 

just did a single point for each dilution of the standard curve, since that gave a 

series of points, which fit very well to a straight line. 

 

 

 

 

 

 

 

Fig.2: PCR standard curve 

The excellent fit of the standard curve data to a straight line and a perfect fit 

should have efficiency near to 100 %, slope around -3.5 and correlation 

coefficient around 1.000. 

In real-time PCR using SYBR green binding to amplify cDNA, we are simply 

measuring the fluorescence increase as the dye binds to the increasing amount 

of DNA in the reaction tube. To check if the correct PCR product is synthesized 

in real time PCR at the end of the run melting curves were determined. 

Therefore, at the end of the amplification reactions, the temperature is raised 

continuously, and changes in fluorescence are measured. At the melting point, 

the two strands of DNA will separate and the fluorescence rapidly decreases. 

The melting temperature of a DNA double helix depends on its base composition 
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and its length. All PCR products for a particular primer pair should have the same 

melting temperature, unless there is contamination, mispriming, primer-dimer 

artifacts, or some other problem. 

The software plots the rate of change of the relative fluorescence units (RFU) 

with time (T) (-d(RFU)/dT) on the Y-axis versus the temperature on the X-axis, 

and this will peak at the melting temperature (Tm) of the fragments. In Fig.3 

melting curves are shown. 

 

 

 

 

 

 

 

 

 

 

Fig.3: Melting curve 

In this melting curve, all samples were run with the same primer pair. There are 

no signs of primer-dimer artifacts in samples. 

 

 

3.10. Retardation assay 
Retardation assay is a technique to determine protein-DNA interaction. The 

interaction of proteins with DNA is central for the control of many cellular 

processes including transcription. Retardation assay technique is based on the 

observation that protein-DNA complexes migrate slower than free DNA 

molecules when subjected to non-denaturing polyacrylamide electrophoresis. 

Therefore, the rate of DNA migration is shifted or retarded upon protein binding. 

The DNA is labeled with fluorescent dye and can be detected by scanning in a 

fluo-imager. 
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3.10.1. Fluorescence labeling of oligonucleotides 

The following double-stranded NFAT oligonucleotide was labelled with 

fluorescent dye: 

NFAT  5´-GCCCAAAGAGGAAAATTTGTTTCATACAG-3´ 

This sequences bind specifically to the transcription factor NFAT in the 

retardation assay. 

 

Fluorescence labelling mix 
NEB buffer No. 4 (10x)    5 µl 

CoCl2   (2.5 mM)     5 µl 

20ng Oligo(NFAT)     4 µl 

Cy3-dCTP (10mM)     2.5 µl 

Terminal Transferase (20 U/µl)   0.5 µl 

Deionised H2O was added to make final volume 50µl 

The oligonucleotides were purchased commercially. 

 

Procedure of fluorescence labelling of oligonucleotides 
All labeling reactions were performed in brown tubes to protect the dye against 

light. The reaction tube was incubated for 15 minutes at 37°C. The reaction was 

stopped by addition of 10 µl of 0.2 mM EDTA pH 8.0 and stored at -20°C. 

 

3.10.2. Nuclear extraction 
 
Nuclear extraction buffers 
For the nuclear extraction following buffers were used: 

1 X Swelling buffer 
Tris-hydroxymethylaminomethane  

(Tris)/HCl (pH 7.9)     10 mM 

KCl       10 mM 

MgCl2       1 mM 

Dithiothreitol      1 mM 
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1 X Homogenization buffer 
Sucrose      300 mM 

Tris (pH 7.9)      10 mM 

MgCl2       1.5 mM 

DTT       1 mM 

Triton X-100      0.3 % (vol/vol) 

 

10 x storage buffer 
NaCl       300 mM 

KCl       50 mM 

HEPES (pH 7.5)     10 mM 

EDTA       1 mM 

Dithiothreitol (DTT)     1 mM 

Phenyl methyl sulfonyl fluorid (PMSF)  1 mM 

Glycerol      20 % (vol/vol) 

 

Cardiomyocytes with different treatments were harvested with 1x PBS as 

described above (3.7.1). For generation of nuclear extracts 2 dishes of cells were 

harvested and cells dissolved in 400 µl of swelling buffer. After incubation for 30 

min on ice, nuclei were pelleted by centrifugation at 900 rpm for 10 min at 4°C. 

The upper phase was removed and pellets were suspended in 400 µl 

homogenization buffer for 5 min on ice, homogenized with 8 strokes in a glass 

homogenizer, and again centrifuged at 900 rpm for 10 min at 4°C. To the pellet 

40 µl of 1 x storage buffer was added and incubated on ice, every 5 min 

vortexes. After 30 min extracts were centrifuged at 13000 rpm for 5 min at 4°C. 

The resulting supernatants contained the nuclear extract and were stored at -

80°C.  

 
 
 
 



 49

3.10.3. Binding reaction of oligonucleotides with specific proteins 
 
Binding Buffer 
Glycerin      10 % (vol/vol) 

Tris/HCl      20 mM 

KCl       5 mM 

MgCl2       5 mM 

DTT       3 mM 

PMSF       0.2 mM 

 

10 µl of nuclear extracts were mixed with 4.5 µl binding buffer and 0.5 µl of non-

specific DNA (poly (dIdC); 1 mg/ml), and incubated at 30°C for 15 minutes. Thus 

non-specific DNA binding proteins could be intercepted. 1 µl of fluorescence 

labelled oligonucleotides together with 1.5 µl of binding buffer were added to the 

above reaction tubes and incubated at 30°C for 30 min. During this time specific 

proteins will bind to their consensus binding sites of the oligos. 

 

3.10.4. Retardation assay gel electrophoresis 

For gel electrophoresis the following solutions were used. 

 

Solutions for retardation gel electrophoresis 
Distilled water     35 ml 

Acrylamide/Bisacrylamide (80%, 79:1)  4 ml 

Glycerine      1 ml 

100 x RA-buffer     400 µl 

Ammoniumpersulphate 10 % (wt/vol)  200 µl 

TEMED      34 µl 
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100x RA-buffer, pH 7.9 
Tris/HCl      670 mM 

Sodium accetate     330 mM 

EDTA       100 mM 

 
TE 
1 M Tris pH 8     10 mM 

0.5 M EDTA      1 mM 

 

10 X marker dye 
Glycerol      30 % 

BPB       0.25 % 

Xylen cyanol      0.25 % 

Rest of the volume made up by TE. 

 

The reaction mix was loaded on 4% denaturing polyacrylamide gels. For 

preparation of these gels two glass plates were cleaned with detergent and 

degreased with alcohol (100 %). Between the plates now two spacers were 

placed. The plates were clamped in a gel-casting device and sealed at the 

bottom. Subsequently, freshly prepared retardation gel solution was poured 

bubble free into the area between the two plates. Then the comb was set. The 

gel polymerized in approximately 30 min at room temperature. 

The comb was removed; the glass plates were transferred from the gel-casting 

device into the electrophoresis chamber. The chamber was filled in such a way 

with 1xRA-buffer that the gel had both above and down a bubble free contact to 

the buffer. Now the labeled reaction samples and distance indicator bromophenol 

blue were loaded, and the electrophoresis chamber was attached to the power 

supply unit. Electrophoresis was performed at 4°C and 150 V for 2 h. Gels were 

scanned in fluo-imager and images were evaluated. 
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4.Results 
 
4.1. Analysis of NFAT involvement in hypertrophic growth of ventricular 

cardiomyocytes of rat under stimulation with α-adrenoceptor agonist PE. 

The transcription factor AP-1 induces hypertrophy in cardiomyocytes. Since 

NFAT can co-operate with AP-1 it was tested if NFAT is induced and involved in 

hypertrophic growth conditions. 

 

4.1.1. NFAT is activated under PE 
Activation of NFAT binding under PE was determined by retardation gel assays. 

Cardiomyocytes of adult rat were stimulated with PE (10 µM) for 2 h. Nuclear 

extracts of cardiomyocytes were isolated and retardation assay was performed to 

determine the induction of NFAT binding activity. Therefore, nuclear extracts 

were incubated with fluorescence labeled NFAT oligonucleotides, which contain 

NFAT binding sequences. When binding active NFAT protein is present in the 

nuclear extracts it will bind to these oligonucleotides. When run on retardation 

assay gels these binding results in band shifts. Nuclear extracts of PE induced 

cells showed a strong band shift as compared to the control (Fig.4.1.1.A). NFAT 

binding was increased by PE to 136 + 8.2 % compared to controls (Fig.4.1.1.B). 

This demonstrates that PE induces NFAT binding activity in ventricular 

cardiomyocytes of rat. 
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Fig: 4.1.1.A. NFAT activation by phenylephrine. This figure represents a 

retardation gel assay that indicates enhanced NFAT binding activity in cells 

treated with phenylephrine (PE, 10 µM) as compared to untreated controls (C). 
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Fig: 4.1.1.B. NFAT-activation by phenylephrine. Quantitative analysis of 

retardation gels indicating enhanced NFAT binding activity in cells treated with 

phenylephrine (PE, 10 µM). Data are means ± S.E.M. of n = 5 experiments, * p 

<0.05 vs. control (C). 

 
4.1.2. NFAT is inhibited by decoy oligonucleotides 
For intracellular scavenging of NFAT binding cardiomyocytes were transformed 

with 500 nM of NFAT decoy oligonucleotides (containing the specific binding 

sequences for NFAT) or Mut-NFAT decoy oligonucleotides (void of specific 

binding site). Then cells were stimulated with PE (10 µM) in the presence or 

absence of NFAT and Mut NFAT decoy oligonucleotides. After 2 h nuclear 
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extract of cardiomyocytes were isolated. The nuclear extracts were incubated 

with fluorescence labeled NFAT oligonucleotides, which have NFAT binding 

sequences. The samples were run on retardation assay gels. These experiments 

showed that NFAT was activated in cells treated with PE (136 + 8.2 %). This 

enhanced NFAT activity was reduced by NFAT decoy oligos (92 + 6.5 %) but not 

by Mut-NFAT decoy oligos (126 + 7 %) as compared to controls (Fig.4.1.2.B). 
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Fig: 4.1.2.A. Inhibition of NFAT by NFAT decoy oligonucleotides. 
Retardation gels indicating NFAT binding activity under control conditions (C), in 

cells treated with phenylephrine (PE, 10 µM), cells transfected with oligo decoys 

directed against NFAT (NFAT decoy), cells treated with mutated NFAT oligo 

decoys (Mut-NFAT decoy), or combination of these supplements. 
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Fig: 4.1.2.B. Quantitative analysis of retardation gels showing NFAT 
inhibition by NFAT decoy oligonucleotides. Data are means ± S.E.M. of n = 5 
experiment, * p <0.05 vs. control (C). 
 
4.1.3. NFAT is not involved in hypertrophic growth induced by PE 

Since α-adrenoceptor agonist phenylephrine activates NFAT, we assumed that 

NFAT might be involved in PE-induced hypertrophic growth. To test this 

hypothesis cardiomyocytes were transformed with 500 nM of NFAT decoy 

oligonucleotides that have been shown to intracellular inhibit NFAT binding 

activity, or with Mut-NFAT decoy oligos. Cells were then stimulated with PE (10 

µM) overnight. This NFAT inhibition did not reduce the hypertrophic growth effect 

of PE (Fig.4.1.3.A). Still PE increased the rate of protein synthesis, determined 

by incorporation of radioactive labeled 14C-phenylalanine (0.1 µCi/ml) during 24 

h. The rate of protein synthesis was 133 + 2.7 % under PE, 115 + 7 % under 

NFAT decoy 145 + 5.4 % under PE in presence of NFAT decoy and 149 + 5.3 % 

under PE in presence of Mut-NFAT decoy oligo as compared to 100 % in 

controls (Fig.4.1.3.A). This rate of protein synthesis was related to total protein 

contents determined by Bradford method. In the presence of Mut-NFAT decoy 

*
*
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oligo hypertrophic growth was also not inhibited. These results demonstrate that 

NFAT, although it is induced by PE, it is not a mediator of PE-induced 

hypertrophy. 
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Fig: 4.1.3.A. Effect of NFAT activation on phenylephrine-induced 
hypertrophic growth response. Impact of PE (10 µM) in cardiomyocytes 

transformed with NFAT and Mut-NFAT oligo decoys was determined by 14C-

phenylalanine incorporation during 24 h. Data are means ± S.E.M. of n = 4 

experiments, * p <0.05 vs. control (C). 

 

As another parameter of hypertrophic growth, cell size was determined. Again 

cardiomyocytes were transformed with NFAT and Mut-NFAT decoy 

oligonucleotides for 5h. Then cardiomyocytes were exposed to PE for 24 h. One 
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plate of NFAT decoy oligos treated cells and one plate of Mut-NFAT decoy oligos 

transformed cells were kept without PE exposure. Myocyte size was determined 

on micrographs digitalized by a charge-coupled device camera. Diameters of 

myocytes were determined. Cross-sectional area and cell volume was 

calculated. The cross-sectional area of cells treated with PE in presence of NFAT 

decoy oligos was increased to 312.12 + 5.64 % as compared to 267.51 + 5.06 % 

in myocytes only treated with NFAT decoy oligos. The cross-sectional area of 

cells treated with PE and Mut-NFAT decoy oligos also increased to 337.67 + 8.06 

% compared to 241.23 + 5.64 % in cells transformed with Mut-NFAT decoy 

oligos in absence of PE stimulation (Fig 4.1.3.C). The cell volume was increased 

to 29482.9 + 1083.9 % by PE in presence of NFAT as compared to 25161.6 + 

1052.3 % in cells treated with NFAT decoy oligos only. In presence of Mut-NFAT 

decoy oligos PE increased the cell volume to 30451.1 + 1459.5 % as compared 

to 22885.5 + 1152.5 % in Mut-NFAT decoy transformed cells (Fig.4.1.3.D). 

These results show that cross-sectional area and cell volume is increased by PE 

(Fig.4.1.3.B & D). This parameter of hypertrophy is not blocked by NFAT decoy 

oligonucleotides. 
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Fig: 4.1.3.B. Impact of phenylephrine on cell size in cardiomyocytes 
transformed with decoy oligos directed against NFAT or Mutant NFAT 
decoy oligos. a-d are representative pictures of cardiomyocytes transfected with 

NFAT (a+b) or Mutant NFAT decoy oligos (c+d). Cells were either kept without 

phenylephrine (PE, 10 µM) (a+c) or exposed to phenylephrine (b+d) for 24 h. The 

bars represent 100 µm. 
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Fig: 4.1.3.C. Quantitative analysis of cross sectional areas of the cells. Cells 

were treated as explained under Fig.4.1.3.B. Then cross sectional area was 

determined. 

Data are means ± S.E.M. from n=120 cells, * p<0.05 vs. cells not treated with 

PE. 
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Fig: 4.1.3.D. Quantitative analysis of cell volumes. 

Data are means ± S.E.M. from n=120 cells, * p<0.05 vs. cells not treated with 

PE. 

 

 
4.2. Effect of PE on cell contraction 
Besides its hypertrophic effects PE may also influence cell contraction. To 

analyse this, contraction of cardiomyocytes due to electrical stimulation was 

analysed after 24 h exposure to PE. 

 

4.2.1. Cell shortening is reduced at low beating frequency (0.5 Hz) 
Cardiomyocytes were incubated for 24 h in the presence of PE, then the drug 

was washed out and cell shortening was analysed by using cell-edge detection 

system. Cells were stimulated at 0.5, 1 or 2 Hz for 1 minute, and every 15 s cell 

shortening was measured. 24 h exposure of cardiomyocytes to PE reduced cell 

shortening at low beating frequency at 0.5 Hz to 4.82 + 0.62 % as compared to 
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7.25 + 0.4 % in controls. However, when beating frequency was increased 

reduced cell shortening was less pronounced and no more significant at 2 Hz 

(6.99 + 1.32 %) as compared to 8.48 + 1.35 % in controls (Fig.4.2.1.). 

 

 

 

Fig: 4.2.1. The impact of α-adrenoceptor stimulation on cell shortening at 

various beating frequencies. Cells were kept over night under control 

conditions (control) or in presence of phenylephrine (PE, 10 µM). Data are 

expressed as percent cell shortening relative to the diastolic cell lengths. Data 

are means ± S.E.M. (n=24 cells, 4 experiments), * p<0.05 vs. control. 

 

 

 

 

80

90

100

110

120

0 1 2
Frequency (Hz)

dL
/L

 (%
 o

f C
on

tr
ol

) Control
PE

*



 60

 

4.2.2. Relaxation velocity under PE is enhanced at high beating frequency 
at 2.0 Hz 

Cardiomyocytes were pre-incubated with PE (10 µM) for 24 h. Relaxation velocity 

of these cells was enhanced with increasing frequencies of electrical stimulation. 

The relaxation velocity of PE stimulated cells at 0.5 Hz was 246 + 122 % as 

compared to 145 + 22 % in controls, and increased to 897 + 296 % at 2 Hz 

compared to 286 + 45 % in controls. Therefore, the relaxation velocity at high 

beating frequencies is enhanced in PE treated cells (Fig.4.2.2.). 

 

 

Fig: 4.2.2. The impact of α-adrenoceptor stimulation on relaxation velocity 

at various beating frequencies. Cells were kept over night under control 
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conditions (control) or in presence of phenylephrine (PE, 10 µM). Data are 

means ± S.E.M. (n=24 cells, 4 experiments), * p<0.05 vs. control (C). 

 
4.2.3. PE induces SERCA2A expression 
Relaxation velocity depends on a fast Ca2+ re-uptake in the sarcoplasmatic 

reticulum. This re-uptake is facilitated by the Ca2+ pump called SERCA2A. 

Therefore, it was tested if PE enhances SERCA2A expression. 

Cultured adult ventricular cardiomyocytes were exposed to PE for 24 h. 

SERCA2A expression after 24 h was determined on the protein level via 

immunoblotting using antibodies directed against SERCA2A (polyclonal antibody 

C-20). For loading controls, blots were re-probed with an actin antibody 

(monoclonal anti-actin clone AC-40). After 24 h SERCA2A protein expression 

was significantly increased to 181.7 + 25.1 % as compared to 100 % in controls 

(Fig.4.2.3.B).  

 

 
 
 
 
 
 
 
 
 
Fig: 4.2.3.A. Effect of α-adrenoceptor stimulation on SERCA2A protein 

expression. Representative immunoblot indicating increased SERCA2A protein 

expression in cells treated for 24 h with PE. 
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Fig: 4.2.3.B. SERCA2A protein expression. Immunoblots of SERCA2A were 
quantified. On average, SERCA2A protein expression increased in the presence 

of phenylephrine after 24 h as compared to control values (C). Data are means ± 

S.E.M. of n = 4 experiments, * p<0.05 vs. control. 

 

In addition to the protein level, mRNA expression of SERCA2A was analysed. 

Therefore, RNA was isolated at different time points of PE incubation. SERCA2A 

mRNA expression was quantified by real-time RT-PCR. HPRT was used as a 

housekeeping gene to normalize sample contents. PE induced SERCA2A mRNA 

expression after 1.5 h to 125 + 17 %, and after 4 h to 183 + 6.5 % as compared 

to control values. After 24 h up-regulation of SERCA2A mRNA was no more 

detected (71 + 9.5 %). This shows that phenylephrine, induced a transient 

increase in SERCA2A mRNA level, with a peak at 4 h (Fig.4.2.3.C). 
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Fig: 4.2.3.C. Effect of α-adrenoceptor stimulation on SERCA2A expression. 

SERCA2A mRNA expression was quantified by real-time RT-PCR. Data are 

normalized to HPRT as a housekeeping gene. Cells were kept under control 

conditions (C) and in the presence of phenylephrine (PE, 10 µM). Data are 

means ± S.E.M. from n = 4 experiments, * p<0.05 vs. control. 

 

 

4.2.4. Signaling pathway of SERCA2A up-regulation  
 
4.2.4.1. PKC is not involved in SERCA2A up-regulation 
Since it is known that PE stimulates PKC in cardiomyocytes, involvement of PKC 

in SERCA2A up-regulation under PE was determined. Cells were stimulated with 

PE (10µM) or PE in the presence of the PKC inhibitor Gö6850 (1µM). RNA was 

extracted after 1.5, 4 and 24 h and real-time PCR was performed. Data were 
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normalized to HPRT as housekeeping gene. SERCA2A mRNA induction by PE 

was not influenced by Gö6850. After 4 h SERCA2A mRNA in presence of 

Gö6850 was still enhanced by PE to 191 + 8 % (Fig.4.2.4.1.A). The effect of 

phenylephrine on SERCA2A mRNA expression is therefore, considered to be 

PKC-independent, because it could not be antagonized by PKC inhibitor 

Gö6850.  
 

 

Fig: 4.2.4.1.A. Effect of α-adrenoceptor stimulation on SERCA2A 

expression. SERCA2A mRNA expression was quantified by real-time RT-PCR. 

Data are normalized to HPRT as a housekeeping gene. Cells were kept under 

control conditions (C), in presence of phenylephrine (PE, 10 µM), or PE in co-
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presence of the PKC-inhibitor Gö6850 (Gö, 1 µM) for the times indicated. Data 

are means ± S.E.M. from n = 4 experiments, * p<0.05 vs. control. 

 

Effects of Gö6850 were also tested on the protein level via immunoblotting using 

antibodies directed against SERCA2A. When cardiomyocytes were incubated 

with PE or PE in the presence of Gö6850 for 24 h, SERCA2A protein expression 

was significantly increased in the presence of PE to 181.7 + 25.1 % as compared 

to controls. This SERCA2A induction was not reduced by the PKC inhibitor 

Gö6850 after 24 h (187.2 + 44.4 %) (Fig.4.2.4.1.C). 

 

 
 

                         
 
 
 
Fig: 4.2.4.1.B. Effect of α-adrenoceptor stimulation on SERCA2A 

expression. Cells were kept under control conditions (C), in presence of 

phenylephrine (PE, 10 µM), or PE in co-presence of the PKC-inhibitor Gö6850 

(Gö, 1 µM) for 24 h. Representative immunoblots indicating SERCA2A protein 

(top) and actin (bottom) that was used as a loading control. 
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Fig: 4.2.4.1.C. Quantification of immunoblots (SERCA2A protein 

expression). Cells were treated for 24 h with agonists. Data are means ± S.E.M. 

of n = 4 experiments, * p<0.05 vs. control. 

 

In parallel to the experiments on SERCA2A expression, 14C-phenylalanine 

incorporation was determined to quantify the rate of protein synthesis. These 

experiments confirmed earlier observations that the increase of protein synthesis 

caused by phenylephrine depends on PKC activation. PE increased 14C-

phenylalanin incorporation by 50.0 + 7.5 % compared to control cultures (P < 

0.05, n = 4 experiments), but not in the presence of Gö6850 (-5.5 + 5.3 %). 

These confirmatory experiments indicated that the PKC inhibitor worked in these 

newly performed experiments and that absence of PKC involvement in 

SERCA2A induction was not due to failure of the inhibitor. 
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4.2.4.2. Ca2+ / Calcineurin pathway is involved in SERCA2A up-regulation 
Based on the experiments described above, the signal transduction pathway 

leading to SERCA2A up-regulation by phenylephrine was found to be PKC-

independent. As has been shown previously, PKC-independent is also an 

increase in intracellular Ca2+ after PE stimulation. Therefore, involvement of the 

Ca2+ / Calcineurin pathway in SERCA2A up-regulation was now studied. 

Cells were treated for 24 h with PE or PE in presence of BAPTA (10 µM), a 

calcium-chelating agent. The effect of phenylephrine on SERCA2A expression 

could be inhibited by addition of BAPTA. SERCA2A protein expression increased 

to 258.6 + 30.4 % in the presence of phenylephrine and decreased to 139.4 + 

21.5 % in the presence of PE and BAPTA as compared to controls 

(Fig.4.2.4.2.B). 

 

 
 

             
 
 
 
 
Fig: 4.2.4.2.A. Impact of intracellular calcium on phenylephrine-induced 
SERCA2A expression. Representative immunoblot indicating SERCA2A protein 

(top) and actin (bottom) that was used as a loading control. Cells were treated for 

24 h with PE or PE in co-presence of BAPTA (10 µM). 
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Fig: 4.2.4.2.B. Impact of intracellular calcium on phenylephrine-induced 

SERCA2A expression. Quantification of immunoblots. Data are means ± S.E.M. 

from n = 4 experiments, * p<0.05 vs. control (C). 

 

Since Ca2+ often sequesters with calcineurin in order to convey its function, it was 

further investigated whether induction of SERCA2A expression depends on 

calcineurin. Cardiomyocytes were stimulated with phenylephrine in the presence 

or absence of cyclosporine (1µM), a calcineurin inhibitor. It was confirmed in this 

set of experiments that phenylephrine increases SERCA2A expression by 179.1 

+ 9.1 % as compared to control values. This effect was completely inhibited by 

cyclosporine (108 + 6.3 %) (Fig.4.2.4.2.C). 
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Fig: 4.2.4.2.C. Influence of cyclosporine on SERCA2A expression in 
cardiomyocytes. Quantitative analysis of SERCA2A expression (normalized to 

actin) from cells kept over night under control conditions (C), in presence of 

phenylephrine (PE, 10 µM), cyclosporine (cyclo, 1 µM), or PE in co-presence of 

cyclo. Data are means ± S.E.M. from n = 4 experiments, * p<0.05. 

 
4.2.4.3. NFAT is involved in SERCA2A up-regulation 
Since it is known that calcineurin is an activator of the transcription factor NFAT 

and NFAT has been shown to be induced by PE (Fig.4.1.1.B), it could be 

assumed that NFAT is also involved in SERCA2A up-regulation. To investigate 

whether induction of SERCA2A expression depends on NFAT activation, 

cardiomyocytes were stimulated with PE in the presence or absence of NFAT 

and Mut-NFAT decoy oligos. It was reconfirmed that PE increased SERCA2A 
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expression to 135.8 + 8.4 %. This effect of PE was inhibited by NFAT decoy 

oligos (100.6 + 7.2 %). Whereas in the presence of Mut-NFAT decoy 

oligonucleotides PE still increased SERCA2A expression (145.6 + 11.9 %) 

(Fig.4.2.4.3). 
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Fig: 4.2.4.3. Quantitative analysis of SERCA2A expression (normalized to 

actin) from cells kept over night under control conditions (C), kept in presence of 

phenylephrine (PE, 10 µM), transformed with NFAT or Mut-NFAT oligo decoys 

(500 nM), or PE in co-presence of NFAT or Mut-NFAT. Data are means ± S.E.M. 

from n = 4 experiments, * p<0.05. 

 
 
4.2.5. NFAT influences cell shortening under PE 
Finally, we confirmed that the afore mentioned changes in SERCA2A expression 

are of functional relevance. Incubation with 10 µM of PE did not modify the 
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contractile responsiveness of the cells at 2 Hz as shown in Fig.4.2.1. However, 

when the cells were co-incubated in the presence of NFAT decoy 

oligonucleotides (500 nM), contractile responsiveness was significantly 

depressed at high beating frequencies at 2 Hz (81.2 + 5.1 % as compared to 100 

% controls) (Fig.4.2.5.A). 

 
 
 
 
 

 
 
Fig: 4.2.5.A. Impact of NFAT decoy oligos on phenylephrine-induced 
changes in cell shortening. Cells were kept under control conditions (control) 

for 48 h or cells transformed with NFAT decoy oligos for 24 h were stimulated 

with PE (10 µM) for another 24 h. Cell shortening at 0.5, 1.0, and 2.0 Hz is 

plotted relative to cell shortenings of control cells. Data are means ± S.E.M. from 

n=36 cells from 4 experiments, * p<0.05 vs. control. 
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When cardiomyocytes were transformed with 500 nM of Mut-NFAT decoy 

oligonucleotides (void of specific binding site) cell shortening was normal in cells 

treated with PE at high beating frequencies at 2 Hz (106.6 + 5.1 % as compared 

to control) (Fig.4.2.5.B). 

 
 

 

 

Fig: 4.2.5.B. Impact of Mut-NFAT decoy oligos on PE-induced changes in 
cell shortening. Cells transformed with Mut-NFAT oligo decoys were kept under 

control conditions (control) for 48 h or cells transformed with Mut-NFAT oligo 

decoys for 24 h were stimulated with PE (10 µM) for another 24 h. Cell 

shortening at 0.5, 1.0, and 2.0 Hz is plotted relative to cell shortenings of Mut-

NFAT oligo decoys transformed cells. Data are means ± S.E.M. from n=36 cells 

from 4 experiments, * p<0.05 vs. control. 
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4.3. Analysis of NFAT activation in ventricular cardiomyocytes of rat under 

stimulation with β-adrenoceptor agonist ISO 

It was now analysed, if stimulation of cardiomyocytes with β-adrenoceptor 

agonist ISO also influences cell contraction in cardiomyocytes and if a similar 

pathway as under PE stimulation via NFAT is involved. 

 
4.3.1. NFAT is activated under ISO 
Activation of NFAT binding under ISO was determined in retardation gel assays. 

Cardiomyocytes of adult rat were stimulated with ISO (1 µM) for 2 h. Nuclear 

extracts of cardiomyocytes were isolated and retardation assay was performed to 

determine NFAT binding activity. An increased band shift can be detected after 

stimulation with ISO (Fig.4.3.1.A). NFAT binding was increased to 115.6 + 2.4 % 

as compared to controls (Fig.4.3.1.B). This demonstrates that ISO enhances 

NFAT binding activity in ventricular cardiomyocytes of rat. 

 
 
 

                                                           
 
Fig: 4.3.1.A. Stimulation of NFAT binding activity by isoprenaline. This figure 

represents a retardation gel that indicates enhanced NFAT binding activity in 

cells treated with isoprenaline (ISO, 1 µM) as compared to untreated controls (C). 
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Fig: 4.3.1.B. Stimulation of NFAT-binding activity by isoprenaline. 
Quantitative analysis of retardation gels indicating enhanced NFAT binding 

activity in cells treated with isoprenaline (ISO, 1 µM). Data are means ± S.E.M. of 

n = 6 experiments. * p <0.05 vs. control (C). 

 
4.3.2. Cell shortening under ISO stimulation 
Cardiomyocytes were incubated for 24 h in the presence of ISO, then the drug 

was washed out and cell shortening was analysed using cell-edge detection 

system. Cells were stimulated at 0.5, 1 or 2 Hz for 1 minute, and every 15 s cell 

shortening was measured. 24 h exposure of cardiomyocytes to ISO reduced cell 

shortening at low beating frequency at 0.5 Hz to 88 + 3 % as compared to 

control. However, when beating frequency was increased reduced cell shortening 
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was no more observed and similar to control when cells were stimulated at 2 Hz 

(101.9 + 3.2 %) (Fig.4.3.2.). 

 

 

Fig: 4.3.2. The impact of β-adrenoceptor stimulation on cell shortening at 

various beating frequencies. Cells were kept over night under control 

conditions (C) or in presence of isoprenaline (ISO, 1 µM). Data are expressed as 

percent cell shortening relative to the diastolic cell lengths. Data are means ± 

S.E.M. (n=24 cells, 4 experiments), * p<0.05 vs. control. 

 
4.3.3 ISO induces SERCA2A expression 
Cultured adult ventricular cardiomyocytes were exposed to ISO for 24 h. 

SERCA2A expression after 24 h was determined on the protein level via 

immunoblotting using antibodies directed against SERCA2A (polyclonal antibody 

C-20). After 24 h SERCA2A protein expression was significantly increased to 

132.6 + 2.8 % as compared to control (Fig.4.3.3.A & B). 
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Fig: 4.3.3.A. Effect of β-adrenoceptor stimulation on SERCA2A protein 

expression. Representative immunoblot indicating SERCA2A protein in cells 

treated for 24 h with ISO. 
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Fig: 4.3.3.B. SERCA2A protein expression. Immunoblots of SERCA2A were 

quantified. Data are means ± S.E.M. of n = 6 experiments. * p<0.05 vs. control 

(C). 
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In addition to the protein level, mRNA expression of SERCA2A was analysed. 

Therefore, RNA was isolated after 4 h of ISO incubation. SERCA2A mRNA 

expression was quantified by real-time RT-PCR. HPRT was used as a 

housekeeping gene to normalize sample contents. ISO induced SERCA2A 

mRNA expression after 4 h to 118 + 4.1 % as compared to control values. This 

shows that isoprenaline induced an increase in SERCA2A mRNA level within 4 h 

(Fig.4.3.3.C). 
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Fig: 4.3.3.C. Effect of β-adrenoceptor stimulation on SERCA2A mRNA 

expression. SERCA2A mRNA expression was quantified by real-time RT-PCR. 

Data are normalized to HPRT as a housekeeping gene. Cells were kept under 

control conditions (C) and in presence of isoprenaline (ISO, 1 µM). Data are 

means ± S.E.M. from n = 4 experiments. * p<0.05 vs. control. 
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4.3.4. Signaling pathway of SERCA2A up-regulation under ISO 
 
 
4.3.4.1. NFAT mediates SERCA2A up-regulation under ISO 

Cells were stimulated with ISO (1 µM) for 2 h. Then nuclear extracts of 

cardiomyocytes were isolated and used in retardation assays. For scavenging of 

NFAT binding, nuclear extracts of cardiomyocytes were pre-incubated with 1 µl of 

(100 µM) NFAT oligonucleotides (containing the specific binding sequences for 

NFAT) or 1 µl of (100 µM) Mut-NFAT decoy oligonucleotides (void of specific 

binding site). Then nuclear extracts were incubated with fluorescence labeled 

NFAT oligonucleotides, which have NFAT binding sequences. The samples were 

run on retardation assay gels. These experiments showed that NFAT was 

activated in cells treated with isoprenaline. This enhanced NFAT activity was 

reduced by NFAT oligonucleotides but not by Mut-NFAT decoy oligos as 

compared to control (Fig.4.3.4.1.A), thereby demonstrating specificity of NFAT 

binding in retardation assays. 

 

 

 

                                                  
 

Fig: 4.3.4.1.A. Inhibition of NFAT binding by NFAT oligonucleotides. 
Retardation gels indicating NFAT binding activity under control conditions (C), 

and in cells treated with isoprenaline (ISO, 1 µM). When nuclear extracts of ISO 
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induced cells were pre-incubated with NFAT oligos, NFAT binding was reduced, 

whereas Mut-NFAT oligo did not influence NFAT binding. 

 

To block NFAT binding intracellular, cells were transformed with NFAT decoy 

oligos. Therefore, cells were treated for 24 h with ISO (1 µM) in presence or 

absence of NFAT decoy oligonucleotides (500 nM). SERCA2A protein 

expression increased to 159.6 + 5.9 % in the presence of isoprenaline and 

decreased to 114.4 + 6.4 % in the presence of ISO and NFAT decoy oligo as 

compared to controls (Fig.4.3.4.1.C). These results show that enhanced 

SERCA2A protein expression by ISO was inhibited by NFAT decoy oligos. 

 

 

                                
 

 

 
 
Fig: 4.3.4.1.B. Isoprenaline-induced SERCA2A expression was inhibited by 
NFAT decoy oligos. Representative immunoblot indicating SERCA2A protein 

expression. Cells were treated for 24 h with ISO in absence or presence of NFAT 

decoy oligos (500 nM). 

 

C  ISO NFAT decoy
ISO

SERCA2A 



 80

80

90

100

110

120

130

140

150

160

170

180

C ISO ISO+NFAT

S
E

R
C

A
2A

 e
xp

re
ss

io
n 

(%
 o

f C
on

tro
l) *

 
Fig: 4.3.4.1.C. SERCA2A protein expression. Quantification of immunoblots. 

Data are means ± S.E.M. from n = 6 experiments. * p<0.05 vs. control (C). 

 

Besides up-regulation of SERCA2A protein it was further analysed, if SERCA2A 

mRNA under ISO was also down regulated by NFAT decoy oligos. Cells were 

stimulated with ISO (1 µM) or ISO in the presence of the NFAT decoy 

oligonucleotides (500 nM) for 4 h. Data were normalized to HPRT as 

housekeeping gene. Isoprenaline induced SERCA2A mRNA up-regulation to 118 

+ 4.1 %. This increase was totally abolished in cardiomyocytes transformed with 

NFAT decoy oligos (81.5 + 6.9 %) (Fig.4.3.4.2.). Therefore, NFAT is considered 

to be involved in SERCA2A up-regulation on the mRNA and protein level. 
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Fig: 4.3.4.2. Effect of β-adrenoceptor stimulation on SERCA2A expression. 

SERCA2A mRNA expression was quantified by real-time RT-PCR. Data are 

normalized to HPRT as a housekeeping gene. Cells were kept under control 

conditions (C), in presence of isoprenaline (ISO, 1 µM), or ISO in co-presence of 

the NFAT decoy oligonucleotide (NFAT decoy, 500 nM) for 4 h. Data are means 

± S.E.M. from n = 4 preparations. * p<0.05 vs. control. # = p<0.05 vs. ISO. 

 

4.3.4.3. AP-1 is involved in SERCA2A up-regulation 
Under ISO stimulation induction of AP-1 has been described (Taimor et al., 

2004). Since NFAT and AP-1 are co-operating transcription factors it was 

analysed if AP-1 is also involved in SERCA2A up-regulation. Therefore, 

cardiomyocytes were transformed with CRE decoy oligos which can intracellular 
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scavenge AP-1 or with scrambled decoy oligos (SCR) that contain no specific 

AP-1 binding site. Cells were treated for 24 h with ISO (1 µM) in the presence of 

CRE (250 nM) or SCR decoy oligos (250 nM). SERCA2A protein expression 

increased to 113.6 + 3.8 % in the presence of SCR decoy oligos (250 nM) but 

was decreased to 98.6 + 21.5 % in the presence of CRE decoy oligos as 

compared to controls (Fig.4.3.4.3.B). The effect of isoprenaline on SERCA2A 

expression could be inhibited by addition of CRE decoy oligos (250 nM) and is 

therefore AP-1-dependent. 

 

 

                                               
 

 

 

Fig: 4.3.4.3.A. Involvement of AP-1 in SERCA2A expression under 

stimulation of β-adrenoceptor ISO. Cells were kept under control conditions 

(C), or ISO (1 µM) in co-presence of SCR (250 nM) or CRE decoy oligos (250 

nM) for 24 h. Representative immunoblot indicating SERCA2A protein 

expression. 
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Fig: 4.3.4.3.B. Quantification of immunoblots of SERCA2A protein 
expression. Cells were treated for 24 h with ISO in presence of decoy oligos. 

Data are means ± S.E.M. of n = 6 experiments. * p<0.05 vs. control. 

 

 

4.3.5. NFAT is involved in reduced cell shortening under ISO 
Finally, we confirmed that the afore mentioned changes in SERCA2A expression 

are of functional relevance for cell contraction as shown in Fig.4.3.2. Incubation 

with 1 µM of ISO did not modify the contractile responsiveness of the cells at 2 

Hz however, when the cells were co-incubated with NFAT decoy oligonucleotides 

(500 nM), contractile responsiveness was significantly depressed at high beating 

frequencies at 2 Hz to 88 + 3.1 % as compared to 100 % in cells treated with ISO 

alone (Fig.4.3.5.A). 
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Fig: 4.3.5.A. Impact of NFAT decoy oligos on isoprenaline-induced changes 
in cell shortening. Cells treated with ISO were kept under control conditions 

(control) for 48 h or cells transformed with NFAT decoy oligos for 24 h were 

stimulated with ISO (1 µM) for another 24 h. Cell shortening at 0.5, 1.0, and 2.0 

Hz is plotted relative to cell shortenings of ISO treated cells. Data are means ± 

S.E.M. from n=36 cells from 4 experiments. * p<0.05 vs. control. 

 

When cardiomyocytes were transformed with 500 nM of Mut-NFAT decoy 

oligonucleotides (void of specific binding site) cell shortening was normal in cells 

treated with ISO at high beating frequencies at 2 Hz (96.3 + 2.7 %) as compared 

to ISO treated cells as control (Fig.4.3.5.B). 
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Fig: 4.3.5.B. Impact of Mut-NFAT decoy oligos on isoprenaline-induced 
changes in cell shortening. Cells were kept under ISO for 48 h as control 

conditions (control) or cells transformed with Mut-NFAT decoy oligos for 24 h 

were stimulated with ISO (1 µM) for another 24 h. Cell shortening at 0.5, 1.0, and 

2.0 Hz is plotted relative to cell shortenings of ISO treated cells as control. Data 

are means ± S.E.M. from n=36 cells from 4 experiments. * p<0.05 vs. control. 
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5. Discussion 
From previous studies it is known that α-adrenoceptor stimulation by 

phenylephrine but not the β-adrenoceptor stimulation by isoprenaline induces 

hypertrophy in freshly isolated adult rat cardiomyocytes (Schlüter and Piper, 

1992). The functional consequences of adrenergic stimulation on cardiomyocyte 

contraction have not been analysed yet. 

The main findings of this study are that PE or ISO stimulation of cardiomyocytes 

decreases cell shortening at 0.5 Hz, but not at high beating frequencies (2 Hz). 

This normal cell shortening at high beating frequencies can be explained by 

induction of SERCA2A expression under PE or ISO stimulation in adult rat 

ventricular cardiomyocytes. The induction of SERCA2A expression is mediated 

via activation of calcineurin/NFAT pathway. And this SERCA up regulation 

influences cell shortening since decreased cell shortening in myocytes, 

transformed with NFAT decoy oligonucleotides, is also present at 2 Hz under PE 

or ISO stimulation. Interestingly, induction of hypertrophic growth under α-

adrenoceptor stimulation was independent of NFAT activation. 

 

5.1. Role of NFAT in cardiomyocyte hypertrophy 
In transgenic mice containing an NFAT-dependent luciferase reporter gene it was 

demonstrated that calcineurin/NFAT signaling is constitutively up regulated 

throughout a time course of pressure overload hypertrophy, as well as in the 

failing mouse heart following myocardial infarction (Molkentin JF, 2004). As 

discussed in the introduction, transgene-mediated over expression of NFAT in 

the mouse heart antagonized the cardiac hypertrophic response (Antos et al., 

2002; Sanbe et al., 2003). Subsequently studies in several transgenic animal 

models have supported the initial observation that activation of the 

calcineurin/NFAT signal transduction pathway is both necessary and sufficient for 

this hypertrophic response (Molkentin JF, 2004). However, there are also reports 

of transgenic models with genetic loss of calcineurin that blocks mechanical 

overload induced skeletal muscle fiber type switching but not hypertrophy 

(Parsons et al., 2004; Pu et al., 2003). Therefore, importance of 
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calcineurin/NFAT signaling for hypertrophy is not yet clear and a role for NFAT in 

cardiac hypertrophy under physiological conditions is less well established. There 

are no confirmed data, which demonstrate that hypertrophic growth in all systems 

depends on activation of calcineurin/NFAT pathway.  

My results indicate that stimulation of α- or β- adrenoceptor agonists significantly 

activate the calcineurin/NFAT signal transduction pathway in adult 

cardiomyocytes from rat. In this respect this study confirms earlier reports on 

neonatal cardiomyocytes in which NFAT activation upon adrenergic stimulation 

was demonstrated (Molkentin, 2004; Pu et al., 2003; Zobel et al., 2002). In 

contrast to neonatal cardiomyocytes, I did not find functional involvement of the 

calcineurin/NFAT pathway in hypertrophic growth of cardiomyocytes. This 

conclusion is based on the following finding: Transformation of cardiomyocytes 

with NFAT decoy oligonucleotides did not reduce the PE-induced hypertrophic 

growth in cardiomyocytes, neither on the level of rate of protein synthesis nor on 

the level of cross sectional area. So NFAT decoy oligonucleotides did not impair 

the effect of phenylephrine on protein synthesis and cell size. Therefore, it was 

concluded that NFAT activation is not involved in the induction of hypertrophy 

induced by  α-adrenoceptor PE stimulation in adult rat cardiomyocytes. Reasons 

for these different findings compared to neonatal cardiomyocytes or transgenic 

mice may be the different signaling in cardiomyocytes from diverse differentiation 

states or the high artificial over-expression of the transgene in mice. 

 
5.2. SERCA2A as a downstream target of the calcineurin/NFAT pathway 
It has been shown in previous studies that PE increases intracellular free calcium 

concentrations but this is not related to hypertrophy (Schäfer et al., 2002; Stengl 

et al., 1998; De Jonge et al., 1995). An elevation of intracellular calcium will lead 

to an activation of calcineurin. In most immune-system cells calcineurin regulates 

the activity of a number of downstream targets including the transcription factor 

NFAT (Rao et al., 1997). Therefore, NFAT activation can be regulated by 

calcium/calcineurin pathway. Since calcium signaling under PE has been shown 

to be independent of hypertrophic growth, it was proposed that NFAT pathway 
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might influence the cell function under adrenoceptor stimulation. As a down-

stream target of calcium/calcineurin/NFAT signaling SERCA2A up-regulation was 

identified in this study. I have shown that SERCA2A expression was increased at 

mRNA level after 4 h incubation with PE or ISO and at protein level after 24 h 

incubation of cardiomyocytes at 37°C. By using BAPTA (calcium blocker) 

cyclosporine (calcineurin inhibitor) or transformation of cardiomyocytes with 

decoy oligonucleotides directed against NFAT, PE-induced SERCA2A 

expression was inhibited. Similar to this response ISO-induced SERCA 

expression was also blocked by decoy oligonucleotides. 

These findings are related to a recent report, which shows a linkage between 

NFAT and SERCA promoter activity in neonatal rat cardiomyocytes (Vlasblom et 

al., 2004). These authors demonstrated by the use of 2,3-butanedion monoxime 

(BDM), which arrests cell contractions, that mechanical unloading increases 

SERCA expression in a calcineurin/NFAT-dependent way. By using a co-

transfection system of cardiomyocytes they also showed activation of SERCA 

promoter activity by calcineurin/NFAT. My findings that PE or ISO activates 

NFAT and increases SERCA2A expression is related to these observations. 

Furthermore, it was also shown previously on transgenic calcineurin model that 

SERCA expression could be increased on the protein level in a calcineurin-

dependent way (Chu et al., 2002). Thus, in agreement with my findings there are 

indications through-out the literature that the calcineurin/NFAT pathway is 

positively linked to SERCA expression. 

So in my study it was demonstrated that α- or β-adrenoceptor stimulation, 

calcineurin/NFAT activation and SERCA expression are linked with each other. 

This is confirmed by following findings: 

1. NFAT activation and SERCA expression was induced by stimulation of α- 

or β-adrenoceptors. 

2. Cyclosporine, an inhibitor of calcineurin, or NFAT decoy oligonucleotides, 

that can inhibit the NFAT could attenuate SERCA expression under 

adrenergic stimulation. 
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5.3. SERCA expression and cellular function 
A decrease in SERCA2A expression and/or activity seems to be a major defect 

responsible for impaired function of the failing heart. SERCA2A levels and 

activity were decreased and severe contractile dysfunction was evident in both 

conditions of failing cardiac myocytes and intact animal hearts subject to 

experimental heart failure (Del Monte et al., 1999; Hajjar et al., 1998; Miyamoto 

et al., 2000). Over expression of SERCA2A by gene transfer in vivo restores both 

systolic and diastolic dysfunction to normal levels (Periasamy & Huke, 2001). 

Transgenic mice over expressing SERCA2A develop a lower rate of mortality 

with improved contractility compared to non-transgenic littermates at the onset of 

early heart failure in animals with biomechanical overload (Ito et al., 2001). The 

chronic transgenic expression of SERCA2A in mice enhances survival and 

systolic performance in vivo and preserves contractile reserve and the capacity 

to increase SR Ca2+ load at high work states in isolated myocytes. Del Monte et 

al. (1999) showed that over expression of SERCA2A in human ventricular 

myocytes from patients with end-stage heart failure can increase SERCA pump 

activity and enhance contraction and relaxation velocity. The negative frequency 

response was normalized in cardiomyocytes over expressing SERCA2A. Thus in 

several models importance of SERCA for cardiomyocyte contraction and heart 

function have been shown. 

In the cell model investigated in this study, cells required an up-regulation of 

SERCA to maintain normal contractile responsiveness at high beating 

frequencies under α- or β-adrenoceptor stimulation. This conclusion is based on 

experiments in which cardiomyocytes transformed with NFAT decoy 

oligonucleotides displayed depressed contractile responsiveness under α- or β-

adrenoceptor stimulation. Under both conditions, up-regulation of SERCA was 

also inhibited. The data suggest that up-regulation of SERCA is an early 

response of cardiomyocytes due to adrenergic stimulation and that this improves 

cardiomyocyte contractile function. 

My functional findings on single cell shortening and the interaction with SERCA 

expression are in agreement with previous work on transgenic mice. As already 
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known from published data, a moderate increase in SERCA expression was 

found to be sufficient to increase maximal relaxation velocity (He et al., 1997). 

Relaxation velocity depends on calcium re-uptake by sarcoplasmic reticulum and 

this reuptake is regulated by SERCA2A. Thus the increase in SERCA2A 

expression is responsible for the enhancement of relaxation velocity at high 

beating frequency in ventricular cardiomyocytes, and this results in normal cell 

shortening at high beating frequency of 2 Hz. 

The long-term outcome of hypertrophic response cannot be predicted from this 

study. However, the effect of α-adrenoceptor stimulation on SERCA expression 

is transient. This is suggested by the data on SERCA mRNA expression: SERCA 

mRNA expression was measured by real-time PCR after exposure of 

cardiomyocytes to PE for 1.5, 4 and 24 h. A transient increase in SERCA2A 

mRNA level with a peak at 4 h is found. During prolonged culturing of cells, the 

preparation progressively develops atrophy (Volz et al., 1991; Pinson et al., 

1993) so I could not prolong the time in such a model of experiments. Therefore, 

I could not determine the subsequent SERCA protein expression and the 

influence of long-term adrenoceptor stimulation on cell contraction. But the 

transient expression of SERCA mRNA may suggest, that longer times of 

adrenergic stimulation would decrease SERCA expression. 

This is in agreement with many clinical and experimental observations whereby 

short-term interventions that improved cardiac contractility were associated with 

adverse long-term effects on survival and progression of heart failure (Packer et 

al., 1991; Cohn et al., 1998; O’Connor et al., 1999; Du et al., 2000). β-

Adrenoceptor stimulation acutely increases cardiac contractility by the activation 

of the SERCA2A through protein kinase A-dependent phosphorylation of 

phospholamban whereas over expression of β2-adrenergic receptors 

exacerbates the development of heart failure in mice (Du et al., 2000). 

 
5.4. Limitation of the study 
In my study I have used isolated cardiomyocytes for analysis of chronic effects of 

α- or β-adrenoceptor stimulation on cell function. In this study the cells were kept 
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quiescent. There was no significant loss of cell protein under these culture 

conditions and the cells remained rod-shaped. The responses of cells to 

electrical stimulation were normal. These findings indicate that there is only minor 

dedifferentiation of cells during the time of experimental analysis. Therefore, in 

vivo conditions of cell function could be mimicked in this model. However, 

changes during culturing procedure cannot be totally excluded. 

The main advantage of this cell model is to investigate signaling mechanisms 

induced by only one distinct stimulus i.e. PE or ISO, independent of other cell 

types and influences in the heart. Thus this cell model is of advantage in regard 

to the specificity of the investigated agonists and in ruling-out compensatory 

mechanisms via other neurohumoral factors. 

 

5.5. Conclusion 

Several previous studies demonstrate that α- or β-adrenoceptor stimulation can 

regulate SERCA2A expression. In isolated adult rat cardiomyocytes I have 

shown that under PE or ISO stimulation decreased cell shortening is found at 0.5 

Hz, but not at high beating frequency (2 Hz). Normal cell shortening at high 

beating frequencies can be maintained by up-regulation of SERCA2A 

expression, which is mediated via calcineurin/NFAT pathway. 
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6. Summary 
 

Catecholamines contribute to the adaption of heart to pressure overload via 

stimulation of adrenoceptors (α- or β-adrenoceptor). While mechanisms resulting 

in hypertrophic growth of myocytes after α- or β-adrenoceptor-stimulation are 

established, the functional consequences on cardiomyocyte contractility or 

hypertrophy are unknown. The present study investigates whether α- or β-

adrenoceptor-stimulation by phenylephrine (PE) or isoprenaline (ISO) over 24 h 

modifies cell shortening in ventricular cardiomyocytes of rat. 

In PE-treated myocytes cell shortening at 0.5 Hz was reduced. At 2.0 Hz this 

reduction was compensated by an increased relaxation velocity. In parallel, 

SERCA2A expression was increased at protein level and at mRNA level. This 

induction was independent of PKC activation but dependent on an increase in 

diastolic calcium. The calcineurin/NFAT pathway was identified, since addition of 

BAPTA, cyclosporine or NFAT-decoy oligonucleotides reduced SERCA2A 

expression in presence of PE as regulators of SERCA2A expression. Inhibition of 

SERCA up regulation under PE by NFAT decoy oligonucleotides reduced cell 

shortening at high beating frequencies. 

Under β-adrenoceptor stimulation similar effects were found: SERCA2A 

expression was increased under ISO-stimulation and could be reduced to basal 

level by NFAT decoy oligonucleotides. Decreased cell shortening under ISO is 

found at 0.5 Hz, but not at high beating frequencies (2 Hz). In myocytes 

transformed with NFAT decoy oligos decreased cell shortening is present also at 

2 Hz under β−adrenergic stimulation. 

In conclusion, a functional deficite in contraction of cardiomyocytes due to PE or 

ISO stimulation can be partially antagonized by PE- or ISO-dependent activation 

of SERCA expression mediated via the calcium/calcineurin/NFAT pathway. 
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6.1. Zusammenfassung 
 

Katecholamine tragen über die Aktivierung α- oder β-Adrenorezeptoren Zur 

Anpassung des Herzens an erhöhte Druckbelastung bei. Während Mechanismen 

der Hypertrophie-Induktion unter α- oder β–adrenerger Stimulation weitgehend 

bekannt sind, ist ihr Einfluss auf die kontraktile Funktion von Herzmuskelzellen 

wenig untersucht. Die hier vorliegende Arbeit untersucht, ob eine 24-stündige 

Adrenozeptorstimulation mit Phenylephrin (PE) oder Isoprenalin (ISO) die 

Zellverkürzung in ventrikulären Herzmuskelzellen der Ratte beeinflusst. 

In PE-behandelten Herzmuskelzellen kam es zu einer verringerten 

Zellverkürzung (dL/L), wenn die Zellen mit 0,5 Hz stimuliert wurden. Bei erhöhten 

Frequenzen (2 Hz) war die Zellverkürzung normal. Dies ging einher mit einer 

erhöhten Relaxationsgeschwindigkeit und einer Erhöhung der SERCA2A-

Expression in PE-behandelten Zellen. Die Induktion der SERCA-Expression war 

abhängig von einer Erhöhung der diastolischen Kalziumkonzentration. Gabe von 

BAPTA, Cyclosporin oder NFAT-Decoy-Oligonukleotiden hemmte die PE-

induzierte SERCA-Expression, was Kalzium/Calcineurin/NFAT als Regulatoren 

der SERCA-Expression charakterisiert. Die reduzierte SERCA-Expression nach 

Transformation mit NFAT-Decoy-Oligonukleotiden hatte eine erniedrigte 

Zellverkürzung bei elektrischer Stimulation auch unter hohen Frequenzen (2 Hz) 

zur Folge. 

Unter β-adrenerger Expression wurden ähnliche Effekte gefunden: Die 

SERCA2A-Expression wurde durch Gabe von Isoprenalin erhöht. Diese 

Induktion konnte durch NFAT-Decoy-Oligonukleotide verhindert werden. Eine 

reduzierte Zellverkürzung wurde in ISO-behandelten Zellen bei elektrischer 

Stimulation mit 0,5 Hz, aber nicht mit 2 Hz gefunden. Nach Transformation der 

Herzmuskelzellen mit NFAT-Decoy-Oligonukleotiden wurde eine reduzierte 

Zellverkürzung auch bei 2 Hz in ISO-stimulierten Zellen gemessen. 

Schlussfolgerung: Ein funktionelles Defizit der kontraktilen Zellverkürzung durch 

Inkubation von Herzmuskelzellen mit PE oder ISO kann zum Teil durch eine 

Erhöhung der SERCA-Expression ausgeglichen werden. Die Expression der 
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SERCA unter PE- oder ISO-Stimulation wird über den 

Kalzium/Calcineurin/NFAT-Signalweg vermittelt. 
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