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1. Introduction 

1.1 Retroviruses 

1.1.1 Discovery of retroviruses 

In 1908, Vilhelm Ellermann and Oluf Bang who were part of a Danish physician–veterinarian 

team found chicken leukosis, a form of leukemia and lymphoma, which was caused by a 

virus (Retroviruses 1997, Cold Spring Harbor Laboratory Press). Today, this virus is known as 

avian leukosis virus (ALV) (1). In 1936, John Bittner found that mice mammary carcinomas 

were caused by a kind of milk-transmitted, filterable agent, which was identified as mouse 

mammary tumor virus (MMTV) (2). In 1957, Ludwik Gross reported murine leukemia virus 

(MLV) (3).  

Human immunodeficiency virus (HIV) is a lentivirus, which is a subgroup of retroviruses. HIV 

can attack the immune system and cause acquired immunodeficiency syndrome (AIDS) in 

humans (4). Similarly, the simian immunodeficiency virus (SIV) attacks the immune systems 

of monkeys and apes (5). By analyzing the “family tree” of HIV and SIV, scientists found that 

HIV-1 was transmitted from chimpanzees to humans in Kinshasa (Democratic Republic of 

Congo) around 1920 (4). HIV-1 had already rapidly spread to five continents (Africa, Europe, 

Australia, North America, and South America) by 1980 (4). A second HIV virus, HIV-2, 

originates from the cross-species transmission of SIV from sooty mangabey (6). In 1986, the 

feline immunodeficiency virus (FIV) was discovered in the domestic cat (7). FIV can cause 

AIDS in domestic cats and the pathogenesis and genomic organization of FIV are similar to 

HIV (8). Thus, FIV has been used as an experimental model for HIV-1 in the investigation of 

immune-pathogenesis and antiviral drugs (9). 

 

1.1.2 Classification of retroviruses  

Retroviruses include exogenous retroviruses and endogenous retroviruses. Exogenous 

retroviruses include seven genera that are Alpharetroviruses, Betaretroviruses, 

Gammaretroviruses, Deltaretroviruses, Epsilonretroviruses, Lentiviruses and Spumaviruses 

(10). The classification of exogenous retroviruses is shown in table 1.1. Among the 

https://en.wikipedia.org/wiki/Alpharetrovirus
https://en.wikipedia.org/wiki/Alpharetrovirus
https://en.wikipedia.org/wiki/Alpharetrovirus
https://en.wikipedia.org/wiki/Alpharetrovirus
https://en.wikipedia.org/wiki/Alpharetrovirus
https://en.wikipedia.org/wiki/Alpharetrovirus
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exogenous retroviruses, only HIV and human T-lymphotropic virus (HTLV) cause diseases in 

humans. 

Genus Type species 

Alpharetrovirus ALV 

Betaretrovirus MMTV 

Gammaretrovirus MLV, FLV 

Deltaretrovirus BLV, HTLV 

Epsilonretrovirus WDSV 

Lentivirus FIV, SIV, HIV 

spumavirus SFV, FFV, 

Table 1.1 The genera of exogenous retrovirus. ALV: Avian leucosis virus, MMTV: Mouse 

mammary tumor virus, MLV: Murine leukemia virus, FLV: Feline leukemia virus, BLV: Bovine 

leukemia virus, HTLV: Human T-lymphotropic virus, WDSV: Walleye dermal sarcoma virus, 

FIV: Feline immunodeficiency virus, SIV: Simian immunodeficiency virus, HIV: Human 

immunodeficiency virus, SFV: Simian foamy virus, FFV: Feline foamy virus. 

There are endogenous viral elements in mammal and other genomes, which are called 

endogenous retroviruses (ERVs). Depending on the relatedness to exogenous retrovirus, 

endogenous retroviruses are classified into three classes: Class I is similar to the 

gammaretroviruses, Class II is closely related to the betaretroviruses and alpharetroviruses, 

Class III resembles the spumaviruses (10). Around 8% of the human genome consists of 

endogenous retroviral sequences that play important biological roles in humans (11).  

 

1.1.3 Retrovirus genome structure 

Retroviruses are enveloped single-stranded positive-sense RNA viruses, which have a reverse 

transcriptase that converts viral RNA to DNA and an integrase that incorporates the viral 

DNA into the host cellular genome. The integrated viral genome is referred to as a provirus, 

which replicates together with the host genome. The diameter of a retrovirus virion is 

around 80–120 nm and the length of single-stranded RNA molecule is around 7–12 kb. The 

https://en.wikipedia.org/wiki/Alpharetrovirus
https://en.wikipedia.org/wiki/Alpharetrovirus
https://en.wikipedia.org/wiki/Alpharetrovirus
https://en.wikipedia.org/wiki/Alpharetrovirus
https://en.wikipedia.org/wiki/Alpharetrovirus
https://en.wikipedia.org/wiki/Alpharetrovirus
https://en.wikipedia.org/w/index.php?title=Walleye_dermal_sarcoma_virus&action=edit&redlink=1
https://en.wikipedia.org/wiki/Alpharetrovirus
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retroviral genome includes four main genes: gag, pro, pol, and env. The gag gene encodes 

viral structural proteins: matrix (MA), capsid (CA), and nucleocapsid (NC). The pro gene 

encodes a protease (PR) that cleaves or induces proteolysis of proteins produced by gag, 

pro, pol, and env. The pol gene encodes the viral enzymes reverse transcriptase (RT), 

integrase (IN), and RNase H. The pro gene is found in pol in some viruses. The env gene 

encodes the viral envelope proteins surface (SU) glycoprotein and transmembrane (TM) 

protein. In addition, some retroviral genomes also include several regulatory genes, 

including tat, rex, nef, rev, vpr, vif, and vpu. These regulator proteins play an important role 

in virus infection, production, and pathogenesis. At the termini of the viral genomes, there 

are two long terminal repeats (5'-LTR and 3'-LTR, respectively). The two LTRs are essential 

for viral transcription and integration (Fig. 1.1) (Retroviruses 1997, Cold Spring Harbor 

Laboratory Press). 

 

Fig. 1.1 Schematic representation of retroviral genome and particles. (A) The gag, pol and 

env are main genes of retrovirus. Both 5’ and 3’ termini of viral genomes contain long 

terminal repeats (LTRs). (B) The retroviral particle contains RNA genomes and viral proteins. 
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The env encodes virus envelope proteins: surface (SU) glycoprotein and transmembrane 

(TM) protein. The gag encodes virus structural proteins: matrix (MA), capsid (CA), 

nucleocapsid (NC). The pol encodes virus enzymes: protease (PR), integrase (IN).  

 

1.1.4 Retroviral lifecycle 

The retroviral lifecycle starts at the point of attachment of the retroviral envelope 

glycoproteins to specific host cell receptors. HIV-1 attaches to the host cell by binding to the 

CD4 receptor and co-receptors CCR5 or CXCR4 (12). The receptor for FIV is CD134 and CXCR4 

(13-15). Once the retrovirus attaches to the host cell, the virion envelope fuses with the 

plasma membrane of the host cell. This fusion step leads to the release of the viral capsid 

into the cytoplasm. After entering the host cell, the reverse transcriptase of the virus 

transcribes the single-stranded RNA into complementary DNA (cDNA), and then the viral 

double-stranded DNA is synthesized using the cDNA as the template. Following this, the viral 

integrase incorporates the double-stranded DNA into the host genome. After integration, 

the 5-LTR acts as a promoter to induce viral transcription. The retrovirus hijacks the host 

cellular translation and transcription machinery for its own replication. Next, newly 

synthesized viral proteins and the full-length viral genome are assembled. Most retroviruses 

express envelope proteins from the spliced mRNA and Gag and GagPol proteins from 

unspliced mRNA. Pol is expressed in most cases as GagPol polyprotein by repressing a stop 

codon of Gag either by stop-codon suppression or ribosomal frameshifting. Different 

retroviruses choose distinct cellular assembly sites. For example, equine infectious anemia 

virus (EIAV) assembly starts at the trans-Golgi while HIV-1 selectively assembles on the 

cellular plasma membrane (16). The retroviral Gag protein alone is sufficient to form virus-

like particles (VLPs). However, retroviruses need to obtain envelope proteins, and be 

released from the cell membrane to form infectious virions; this step is called viral budding. 

The viral maturation is induced by a viral protease by cleaving the Gag and GagPol proteins. 

The mature viruses are able to repeat this cycle in new target cells (Retroviruses 1997, Cold 

Spring Harbor Laboratory Press) (Fig. 1.2). 
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Fig. 1.2 The replication cycle of retroviruses. Four main steps are included: Viral entry and 

uncoating; reverse transcription and integration; transcription and splicing; assembly and 

release.  

 

1.2 Human immunodeficiency virus 

HIV is a lentivirus that attacks and destroys the human immune system. HIV infects CD4+ T 

cells, macrophages, and dendritic cells (17). HIV may be present in several body fluids, 

including blood, semen, pre-ejaculate, vaginal fluids, rectal fluids, breast milk, and wound 

secretions. HIV has several transmission pathways: vaginal sexual intercourse; anal sexual 

intercourse; intravenous blood exposure by sharing needles; blood transfusions; mother-to-

child transmission during childbirth; and breastfeeding (18). However, HIV cannot be 

transmitted through sweat, saliva, or urine. In the early stage of HIV infection, the patient 

may not have any symptoms. However, ultimately, HIV attacks the immune system and 

finally causes acquired immune deficiency syndrome (AIDS). Clinically, HIV replication is 

inhibited using antiretroviral treatment (ART) (19). Without treatment, the immune system 

https://www.avert.org/node/56
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of the HIV patient will be lethally damaged after 10–15 years. Under effective and correct 

ART therapy, HIV replication in patients is controlled and patient immune system is 

protected. However, drug resistance is becoming increasingly common (20) and scientists 

are currently trying to identify new antiretroviral drugs. These drugs may interrupt the HIV 

lifecycle by interfering with viral reverse transcription, stopping the virus fusing with the host 

cell, inhibiting viral integration into the host genome, or by inhibiting release of new HIV 

particles from the producer cell. 

HIV includes two main strains, HIV-1 and HIV-2, which are very similar, but they are two 

distinct viruses (4). The origin of HIV-1 is from SIV of chimpanzees (SIVcpz) and the origin of 

HIV-2 is from SIV of sooty mangabeys (SIVsm). HIV-1 is most common and causes around 

95% of HIV infections worldwide. HIV-1 can be divided into four groups: M, N, O, and P (4). 

Among the four groups, M is the major group, whereas viruses of N and P are only found in a 

few infected individuals. The O group of HIV-1 is mainly distributed in west-central Africa 

and has a low prevalence rate (less than 1% of global HIV-1 infections) (4). Recent data 

indicate that the O and P groups of HIV-1 originate from the cross-species transmission of SIV 

of gorilla (SIVgor) (21). In addition, group M is mainly responsible for the AIDS pandemic and 

is subdivided into 11 subtypes (subtypes A–K) based on the genetic sequence data (22). HIV-

2 is less infectious and progresses more slowly than HIV-1 and HIV-2 infection cases are 

limited to a few West African countries. Currently, HIV-2 is divided into eight groups (groups 

A–H). However, only group A and group B are pandemic; the other six groups (C–H) were 

rarely found (23, 24). The HIV subtype information is described in Table 1.2. 

 Major types Groups  Subtypes  Prevalence  

HIV HIV-1 Group M 

Subtype A Is common in West Africa 

Subtype B 
is most common in the Middle East and North 

Africa, Europe, the Americas, Japan, and Australia 

Subtype C 
is dominant form in Southern Africa, Eastern 

Africa, India, Nepal, and parts of China 

Subtype D generally is only seen in Eastern and central Africa 

Subtype E is dominant form in Southeast Asia 

Subtype F 
was found in central Africa, South America and 

Eastern Europe 

Subtype G have been found in Africa and central Europe 

Subtype H is limited to central Africa 

Subtype I a strain with the cpx for a "complex" 
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recombination of several subtypes 

Subtype J is primarily found in North, Central and West 

Africa, and the Caribbean 

Subtype K 
is limited to the Democratic Republic of Congo and 

Cameroon 

Group N 
was firstly isolated from a Cameroonian woman in 

1998 

Group O 
is most common in Cameroon and unusually seen 

outside of West-central Africa 

Group P 
was isolated from a Cameroonian woman 

residing in France in 2009 

HIV-2 

Subtype A 

is found mainly in West Africa, but has also spread 

globally to Angola, Mozambique, Brazil, India, 

Europe, and the US 

Subtype B is mainly limited to West Africa 

Subtype C is found in just one person from Liberia 

Subtype D is found in just one person from Liberia 

Subtype E is found in just one person from Sierra Leone 

Subtype F is found in just one person from Sierra Leone 

Subtype G is found in just one person from Ivory Coast 

Subtype H is found in just one person from Ivory Coast 

Table 1.2 The classification of HIV. 

The genome of HIV-1 contains LTR, gag, pol, env, and some accessary genes (vif, vpr,nef, 

vpu). The genome of HIV-2 contains LTR, gag, pol, env, and some accessary genes (vif, 

vpr,nef, vpx). Vpu is unique for HIV-1, such as Vpx is special for HIV-2. These different 

accessory genes are important for HIV replication and pathogenesis (25) (Fig. 1.3).  

 

https://en.wikipedia.org/wiki/Cameroon
https://en.wikipedia.org/wiki/Angola
https://en.wikipedia.org/wiki/Mozambique
https://en.wikipedia.org/wiki/Brazil
https://en.wikipedia.org/wiki/India
https://en.wikipedia.org/wiki/Europe
https://en.wikipedia.org/wiki/US
https://en.wikipedia.org/wiki/Liberia
https://en.wikipedia.org/wiki/Liberia
https://en.wikipedia.org/wiki/Sierra_Leone
https://en.wikipedia.org/wiki/Sierra_Leone
https://en.wikipedia.org/wiki/Ivory_Coast
https://en.wikipedia.org/wiki/Ivory_Coast
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Fig. 1.3 HIV-1 and HIV-2 genome structure. Both HIV-1 and HIV-2 contain two long terminal 

repeats (LTRs) and the genes gag, pol, env, vif, vpr, tat, rev, and nef. HIV-2 uniquely contains 

vpx gene, while HIV-1 contains vpu gene. 

 

1.3 Feline immunodeficiency virus  

1.3.1 FIV-caused disease 

FIV is a lentivirus that attacks the cat immune system and was isolated in 1986 by Dr. Smith 

at the University of California (7). Around 2.5–4.4% of cats are infected with FIV worldwide 

(8). FIV cannot infect humans and can only be transmitted from cat to cat. The spread of FIV 

among cats passes through deep bite wounds. It can also be transmitted from infected 

mother cats to offspring but this transmission mode is rare. In semen FIV can be detected, 

but sexual transmission is uncommon. Cats infected with FIV may not show symptoms for 

several years because FIV is a slow-acting virus, but once the cat immune system is impaired, 

various secondary infections will occur. FIV-infected cats may display several symptoms 

including enlarged lymph nodes, fever, anemia, weight loss, disheveled coat, poor appetite, 

diarrhea, conjunctivitis, gingivitis, stomatitis, dental disease, skin redness or hair loss, 

wounds that don’t heal, sneezing, discharge from eyes or nose, frequent urination, straining 

to urinate or urinating outside of litter box, and behavioral changes (8). When a cat is 

diagnosed with FIV, the survival time is around 5 years. Normally, FIV infection is diagnosed 

by blood testing using an enzyme-linked immunosorbent assay (ELISA), Western blotting, or 

immunofluorescence (IFA) assays. Some anti-HIV-1 inhibitors or drugs can be used for 

antiviral treatment of FIV (26). In addition, the development of an FIV vaccine is underway 

and several commercial dual-subtypes FIV vaccines are available (27). 

In fact, only a small proportion of FIV-infected domestic cats progress into an 

immunodeficiency disease similar to HIV-1-induced AIDS (28). However, highly pathogenic 

FIV isolates can lead to mortality rate up to 60% under experimental conditions (29-31). 

Thus, FIV-infected domestic cat is a valuable animal model to study the pathogenesis of HIV-

1 and the progression of AIDS (32-34). In addition to the domestic cat, species-specific FIVs 

isolated from many Felidae might cause disease in these natural hosts (35). 
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1.3.2 FIV subgroups and cross-species transmission 

FIV has five subtypes (subtypes A–E; Table 1.3) (36), which are classified through envelope 

gene polymorphisms. Subtype A has been found in Northern Europe and California. Subtype 

B was reported in southern European countries and central and eastern USA. Subtype C is 

dominant in California and British Columbia, whereas subtype D was reported in Japan and 

also Argentina. The prevalence of FIV infection shows that older cats (6 years or older) are 

more frequently infected, male cats are four times more likely to be infected than female 

cats, and outdoor cats are more likely to be infected than indoor cats (37). Different strains of 

FIV can infect both domestic and wild feline species, including cheetah, lion, puma, bobcat, 

leopard, and Pallas’ cat. The FIV that infects lions is called FIVple and has a subtype 

composition that may affect disease outcome in African lions (38, 39). One previous study 

showed that more than 40% of Serengeti lions in Tanzania are multiply infected with 

different FIVple subtypes, including subtypes A, B, and C, and it was also suggested that the 

circulation of FIVple within this large population may offer opportunities for recombination 

(40). The FIV that infects puma is named FIVpco, while some studies describe FIVpco as puma 

lentivirus (PLV) (38, 39, 41-44). PLV includes subtypes A and B (PLVA and PLVB). PLVB infects 

puma throughout North and South America. PLVA infects puma in southern California and 

Florida, and bobcats in these two regions are also infected with PLVA (41). PLVA and PLVB are 

highly divergent in infected pumas and bobcats (41). 

 Subtype Prevalence 

FIV 

A northern Europe, California. 

B 
southern European countries, the central and eastern 

USA 

C California, British Columbia 

D Japan 

E Argentina 

Table 1.3 The classification of FIV. 

It is known that the pandemic of HIV originated from cross-species transmission events of 

SIVs to humans (4). As described for inter-species infections of primate lentiviruses, cross-
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species transmission of FIV between several Felidae were observed (39). For example, pumas 

are described to be occasionally infected by FIV of domestic cats and bobcats, and the lion 

FIV can be transmitted to tigers and leopards (43, 45-48). However, phylogenetic evidence 

indicated that these FIV transmissions are exceedingly rare events between wildlife cat 

species, and restriction factors of the host may act as barriers to prevent the spread of FIV 

(39, 42, 49). 

 

1.3.3 FIV genome structure 

FIV infects T cells, monocytes/macrophages, dendritic cells, and also B lymphocytes. Unlike 

HIV, FIV uses CD134 as a receptor and CXCR4 as a co-receptor (13-15); however, FIV and HIV 

entry mechanisms are similar. The genome of FIV contains gag, pol, env, vif, and orfA, coding 

for Gag, Pol, and Envelope structural and enzymatic proteins, and accessory proteins of Vif 

and OrfA (Fig. 1.4). During viral replication, the expression of Vif and OrfA is very low, but 

both are important for viral replication and infection. Vif protein prevents the restriction of 

feline APOBEC3 by inducing degradation via E3 ubiquitination (50). The OrfA protein 

downregulates the CD134 receptor from the cell surface and increases virus release and 

replication (51, 52). Sundstrom et al. also indicated that FIV OrfA alters the expression of 

cellular splicing factors and proteasome-ubiquitination proteins (53). 

 

Fig. 1.4 FIV genome structure. Two long terminal repeats (LTRs) locate at 5’ and 3’ termini. 

The structural genes of FIV are gag, pol, and env. The regulatory genes of FIV are vif, orfA, 

and rev. The gag encodes virus structural proteins: matrix (MA), capsid (CA), nucleocapsid 

(NC). The pol encodes virus enzymes: protease (PR), reverse transcriptase (RT), integrase (IN) 

and dUTPase (DU). The env encodes virus envelope proteins: surface (SU) glycoprotein and 

transmembrane (TM) protein.  

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Sundstrom%20M%5BAuthor%5D&cauthor=true&cauthor_uid=17963812
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1.3.4 FIV based lentivirus vectors 

Viral vectors are common tools to deliver viral genomes into cells in vivo and in vitro. In the 

1970s, the viral vector system was first developed by Paul Berg who received the Nobel Prize 

for Chemistry in 1980. Berg delivered a modified simian virus 40 (SV40) containing DNA from 

the bacteriophage λ to monkey kidney cells (54).  

For gene therapy, viral vectors should be safe, non-tocxic, stable, and have wide cell-type-

specificity. Currently, there are several types of viral vectors available: retroviral vectors (55, 

56), lentiviral vectors (57), adenoviral vectors (58), and adeno-associated viral vectors (59). 

HIV-1-based vectors can be utilized for gene therapy and the first lentiviral vector was 

designed based on HIV-1 (60) while the first non-primate lentiviral vector was based on FIV 

(61). The FIV vector can effectively transduce cells in the brain, eye, airway, hematopoietic 

system, liver, muscle, and pancreas (61, 62). The FIV vector system includes three 

components: FIV transfer vector, e.g., pGINSIN, a packaging construct, e.g., pFP93, and non-

lentiviral glycoprotein pseudotyping construct, e.g., pMD.G. The pGINSIN plasmid is a self-

inactivating (SIN) vector with a U3 deletion that can deliver an exogene to the target cells. 

pGINSIN encodes a GFP exogene that can be used as a marker to evaluate the transduction 

efficiency; pFP93 is a minimal FIV packaging plasmid encoding Gag, Gag/Pol precursor, and 

Rev proteins; pMD.G is an envelope pseudotyping plasmid that expresses the envelope 

glycoprotein of vesicular stomatitis virus (VSV-G); VSV-G pseudotyped FIV particles have a 

wide cell tropism. However, other viral envelope glycoproteins can also be applied to the FIV 

vector system (63) (Fig. 1.5). 

https://en.wikipedia.org/wiki/Bacteriophage
https://en.wikipedia.org/wiki/Kidney
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Fig. 1.5 Diagram of FIV-based lentiviral vector system. In FIV transfer vector pGINSIN, the U3 

of 5’ LTR is replaced by CMV promoter (hCMVp). Only the 5’ 230bp of gag are present named 

G230. pGINSIN contains a (ψ) packaging signal and also encodes enhanced green 

fluorescent protein (GFP), which is linked monocistronically via an internal ribosome entry 

site (IRES) to the gene of neomycin phosphotransferase (neoR). RRE is Rev responsive 

element. cPPT is central polypurine tract. CTS is central termination sequence. WPRE 

facilitates mRNA stability. U3 of 3’ LTR has a central 167-nucleotide deletion. pFP93 is a FIV 

packaging construct encoding Gag, Gag/Pol precursor, and Rev proteins. A variety of viral 

envelope proteins (e.g. FIV env or VSV-G) can be used for pseudotyping. 

 

1.4 Feline restriction factors 

Restriction factors are innate cellular proteins that inhibit retrovirus replication by different 

mechanisms. Most of the restriction factors are IFN-inducible. However, retroviruses are able 

to escape the inhibition of restriction factor by specific counteraction mechanisms. Until 

now, many restriction factors were identified: Tetherin, tripartite motif-containing protein 5α 

(TRIM5α), SAM and HD domain-containing protein 1 (SAMHD1), myxovirus resistance B 
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(MxB), and serine incorporator protein 3/5 (SERINC3/5), apolipoprotein B mRNA-editing 

enzyme, catalytic polypeptide-like 3 (APOBEC3) (64). 

 

 

Fig. 1.6 Feline restriction factors and FIV counteraction mechanisms. In the absence of viral 

antagonists, several cellular proteins called restriction factors inhibit different stages of viral 

replication cycle. Monkey TRIM5α interacts with FIV capsid and inhibits an early infection 

step. Felines expresses a truncated TRIM5 gene that appears to have no antiretroviral 

activity, while the artificial fusion protein of feline TRIM5 with feline CypA displays potential 

inhibition against FIV. Feline APOBEC3s induce hypermutations of FIV genomes by its 

cytidine deamination activity. It is still unkown whether SERINC3/5 are expressed in feline 

cells and whether they confer antiviral activity. Cats have mutation in the MxB gene resulting 

in a very short transcript not encoding a functional protein. Feline tetherin prevents FIV 

release from cell surface. The restriction factors are counteracted by FIV encoded proteins. 

FIV Vif interacts with feline APOBEC3s and induces their degradation by the proteasome 

pathway. FIV Env counteracts the restriction of tetherin.  

 

FIV 
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1.4.1 Tetherin:  

Tetherin (also called BST2, CD317, or HM1.24) is a type I interferon (IFN-I)-inducible factor 

that can inhibit the release of many enveloped viruses from the cell surface. Tetherin is a 

type II transmembrane protein with an N-terminus transmembrane anchor, single-pass 

transmembrane domain, an extracellular domain, and a C-terminus 

glycophosphatidylinositol (GPI) lipid anchor. The N-terminus transmembrane domains are 

inserted into the cell membrane and the GPI anchors are incorporated into the lipid envelope 

of the virion particles. The extracellular domain promotes dimerization of adjacent tetherin 

molecules with disulfide links between the cell and the virus. Then, the tetherin protein 

spans both the virion and cell membranes after completion of budding. Some proteins 

encoded by viruses are able to counteract the inhibition of tetherin, including Vpu of HIV-1 

and the Nef proteins of SIVmus/gsn/mon, both of which induce tetherin internalization and 

thus tetherin downregulation at the cell surface. The Env proteins of HIV-2, SIVtan, FIV, EIAV, 

and Ebola virus can sequester tetherin in intracellular compartments (65-68). Feline tetherin 

has the capability of preventing the release of FIV and HIV-1, which is antagonized by FIV Env 

(69-71). 

 

1.4.2 Trim5α: 

After retroviral fusion into the cytoplasm of the target cell, a conical core that contains capsid 

proteins (CA), two viral genomic RNAs, and several viral proteins are released into the 

cytoplasm. In the cytoplasm of the target cell, CAs are separated from the viral complex in a 

process named uncoating. During the uncoating process, the viral genome is reverse 

transcribed. Changing the stability of the lentivirus core can cause impaired reverse 

transcription or nuclear import (72-74).  

The tripartite motif (TRIM) family member 5 with its splice variant alpha (TRIM5α) is 

expressed in cells of primates and most mammals and inhibits lentiviral infection by 

disturbing the uncoating process and thus provides an effective species-specific barrier to 

retroviral infection. Members of the TRIM family can be induced by interferons. TRIM 

proteins have a functional motif at the N-terminus, which includes RING (really interesting 

https://en.wikipedia.org/wiki/Interferon
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new gene), B-box, and coiled-coil domains (75). The alpha isoform of TRIM5 (TRIM5α) 

additionally includes a C-terminal PRYSPRY (B30.2) domain (74-77), which directly interacts 

with the HIV-1 and FIV capsid core (78-81) and induces the anti-HIV-1 activity of TRIM5α. 

However, this kind of interaction is very weak (millimolar-level affinity). Thus, it requires both 

TRIM5α dimerization and assembly of the dimers into a multivalent hexagonal lattice to 

facilitate that interaction (82). The RING domains of TRIM5α have E3 ubiquitin ligase activity, 

and it can induce the proteasome-dependent degradation of the HIV-1 core (74, 83). Feline 

expresses a truncated TRIM5 gene that appears to have no antiretroviral activity (84). 

However, the fusion protein of feline TRIM5 with feline CypA displays potential inhibition 

against FIV and HIV-1 (85). 

 

1.4.3 SAMHD1： 

SAMHD1 (sterile α motif and histidine-aspartic acid domain-containing protein 1) is an 

enzyme that can inhibit retroviral reverse transcription by hydrolyzing intracellular 

deoxynucleotide triphosphates (dNTPs) (86, 87) during the early step of the viral lifecycle 

(88). This dNTP hydrolyzation function of SAMHD1 decreases the concentration of 

intracellular dNTP, which are essential for viral cDNA synthesis, and thus inhibits viral 

replication (86). The phosphorylation of SAMHD1 regulates its antiretroviral activity (89, 90). 

SAMHD1 can prevent the infection of HIV-1 in CD4+ T cells but this antiviral activity can be 

inhibited by viral accessory protein Vpx from HIV-2/SIV, which causes proteasomal 

degradation of SAMHD1 (91, 92). The SAMHD1 protein also has single-stranded DNA- and 

RNA-binding activity, and it is possible that SAMHD1 directly digests genomic HIV-1 RNA to 

restrict HIV-1 infection (93). SAMHD1 is an IFN-α inducible protein (94), which can also block 

the replication of several DNA viruses such as Hepatitis B virus (HBV) in liver cells (94, 95). All 

retroviruses tested so far, except for prototype foamy virus (PFV) and human T cell leukemia 

virus type I (HTLV-1), can be restricted by SAMHD1 (96). Before virus entry, PFV has already 

completed reverse transcription and so escapes SAMHD1 restriction (96).  

The infection of FIV is evidently inhibited by human SAMHD1 (97). One recent study indicates 

that feline SAMHD1 expresses in a wide range of cat tissues, such as skin, mucosal epithelium 
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spermatogenic tissues, and FIV susceptible cell lines (98). However, no study demonstrated 

whether feline SAMHD1 has the ability of restricting FIV or other retroviruses. 

 

1.4.4 MxB: 

Mx proteins are encoded by the Mx genes and are interferon-induced GTPases that act as 

restriction factors. Most mammals have two Mx genes: MxA (also called Mx1) and MxB (also 

called Mx2) (99). The amino acid sequence similarity of MxA and MxB is 63% and they have 

a similar domain structure and architecture (99). Human MxA protein can restrict many viral 

pathogens such as influenza viruses (100, 101) and it probably provides a barrier to the 

cross-species transmission of zoonotic influenza A viruses to humans (102). The human MxA 

protein is localized within the intracellular membranes, predominantly in the endoplasmic 

reticulum/Golgi intermediate compartment, which is an intracellular replication site of many 

viral pathogens (101). MxB protein is a capsid-interacting restriction factor that targets HIV 

after reverse transcription but before integration (103, 104). In the MxB knockout cell lines, 

the replication of HIV is increased compared to the wild-type cell lines. However, MxA cannot 

inhibit the replication of HIV (103, 104). MxB protein accumulates at the nuclear envelope 

(NE), throughout the cytoplasm, and in cytoplasmic granules (105) and some studies indicate 

that the oligomerization of MxB is essential for its antiviral activity (105-110). In addition, 

one study indicates that MxB is not a restriction factor of foamy viruses (111). In IFN-α-

treated human cells, MxB directly interacts with the core of HIV-1 to inhibit the uncoating 

process of HIV-1 (112, 113). An HIV-1G208R mutant inhibits the interaction of MxB with the 

viral core (114). The 11RRR13 motif of MxB is important for binding to the capsid and to 

restrict HIV-1 infection (105).  

Interestingly, human MxB does not inhibit several non-primate retroviruses, such as FIV, EIAV, 

and MLV (103). It is unknown whether MxB or MxA from the host of these non-primate 

retroviruses contains antiviral activity. Two studies identified that cats have a highly damaged 

and inactivated MxB gene (115, 116) 
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1.4.5 SERINC:  

The serine incorporator (SERINC) family contains five members (SERINC1–5), all of which 

contain multiple transmembrane domains (117, 118). These five SERINC proteins are 

discussed to be eukaryotic cell membrane transporter proteins that incorporate serine into 

membrane lipid (117). In eukaryotes, SERINC proteins are highly conserved but there is no 

amino acid homology between SERINC and other proteins (117). SERINC3 and SERINC5 can 

be incorporated into HIV-1 particles and restrict the fusion of virions with target cells (119-

121). It is likely that SERINC3 and SERINC5 restrict the expansion of the viral fusion pore and 

then prevent the release of the viral core into the cytoplasm (119-121). However, this 

antiviral activity is counteracted by the Nef protein from HIV-1 and SIVs (119, 120, 122). HIV-

1 Nef and mouse leukemia virus glycosylated Gag (glycoGag) increases the infectivity of HIV-1 

via inhibition of SERINC3 and SERINC5 (119, 120). Furthermore, in SERINC3 and SERINC5 

double-knockout human CD4+ T cells, the infectivity of nef-deficient virions increased more 

than 100-fold (119, 120). Nef protein of HIV-1 antagonizes SERINC5 by downregulating 

SERINC5 expression at the cell surface and blocking SERINC5 incorporation into virions. In 

addition, the Env protein of some HIV-1 strains (AD8-1 and YU-2) and glycoproteins of 

vesicular stomatitis virus (VSV) and Ebola virus can also prevent SERINC5 antiviral activity 

(118). However, why HIV-1 uses two proteins, Nef and Env, to counteract SERINC5 is not 

known (118). Both EIAV S2 and Env proteins partially counteract the antiviral activity of 

SERINC5 (123). EIAV Env also inhibits Tetherin (67). 

 

1.4.6 APOBEC3: 

Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC3, A3) family of 

DNA cytidine deaminases are found in placental mammals with different clade-specific gene 

copies and arrangements, which plays a vital role for innate immune defense against 

retroviruses (see recent reviews (124, 125). A3 proteins target retroviruses by interacting 

with viral Gag protein and viral RNA, and then A3 is packaged into viral particles (126). In the 

next round of infection, A3 inhibits viral replication by deamination of cytidines in viral 

single-strand DNA that forms during reverse transcription, introducing G-to-A 

hypermutations in the coding strand (127-131). These hypermutated viral genomes will be 
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destroyed by some cellular DNA degradation enzymes (132). In addition, some A3s inhibit 

virus replication by decreasing reverse transcription and integration via deaminase-

independent mechanisms (133-139) (Fig. 1.7). One recent study demonstrated that human 

A3G directly interact with HIV-1 reverse transcriptase and inhibits its function (139).  

 

Fig. 1.7 Feline A3s inhibit the replication of FIV and are counteracted by FIV Vif. In producer 

cells, A3s can be incorporated into virus particles and be delivered into target cell in the 

absence of Vif. During viral reverse transcription, A3s are able to catalyze the cytidine-

deamination to uridine in viral cDNA. In the synthesis of next strand virus DNA, lots of G-A 

hypermutations are produced. The highly mutated viral genomes are degraded by cellular 

enzymes. However, FIV Vif directly interacts with feline A3 and forms an A3-Vif-E3 

ubiquitination complex, which induces A3 degradation by the proteasome pathway. In Vif 

expressing FIV infections, viral particels are produced that are free of A3 proteins. 

 

 

 

FIV particles 
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1.5 Cullin 5-E3 ubiquitin complex 

To achieve sufficient lentiviral replication, the lentivirus antagonizes some cellular restriction 

factors by hijacking Cullin-E3 unbiquitin complex to introduce their proteasomal 

degradation. Ubiquitin (Ub) is a small highly conserved regulatory protein that is expressed in 

most eukaryotic cells (140, 141). There are four ubiquitin genes in the human genome: UBB, 

UBC, UBA52, and RPS27A (141). Ubiquitination is thought to function as a “garbage disposal” 

for clearing away damaged proteins through an ATP-dependent reaction (142-146). Different 

types of poli-ubiquitination can induce protein degradation by the proteasome pathway, 

change protein enzyme activity or cellular localization, or inhibit the protein-protein 

interaction (144). Ubiquitination includes three main steps: activation, conjugation, and 

ligation and three kinds of enzymes are involved: ubiquitin-activating enzymes (known as 

E1s), ubiquitin-conjugating enzymes (known as E2s), and ubiquitin ligases (known as E3s). 

There is one major E1 enzyme, which is shared by all ubiquitin ligases. At the activation step, 

the E1 enzyme activates ubiquitin to form the Ub-S-E1 complex in the presence of ATP. The 

next step is conjugation: the E2 enzyme replaces the E1 enzyme and interacts with the 

activated ubiquitin. The last step is ligation: the E2 enzyme transfers the ubiquitin to the E3 

enzyme, and then the E3 enzyme induces the ubiquitin to specific substrate proteins (147, 

148). In humans and cats, there are four E3 ubiquitin ligase families: HECT, RING-finger, U-

box, and PHD-finger (149) (Fig. 1.8). The RING-finger family is the largest. Normally, it is 

called the cullin-RING ubiquitin ligases (CRLs). CRLs include four members: cullins, RINGs, 

adaptor proteins, and substrate recognition receptors. 

 

Fig. 1.8 Membership of E3 ubiquitin ligase. E3 ubiquitin ligase is classified into four families: 

HECT, RING-finger, U-box, and PHD-finger. The RING-finger E3 ligase is the largest family and 

named as Cullin-RING ubiquitin ligases (CRLs). Generally, CRLs consists of four components: 

cullins, RINGs, adaptor proteins and substrate recognition receptors. 
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Cullin (CUL) family proteins appear to be expressed in all eukaryotes and function as a 

scaffold for contact with the RING proteins to form the CRLs. There are eight cullin genes in 

the human genome: CUL1, CUL2, CUL3, CUL4A, CUL4B, CUL7, and CUL9 (also called PARC) 

(150). All CUL members combine with different RING proteins, different adaptor proteins, 

and different substrate recognition receptors (Fig. 1.9). CUL5 can be found in many cells and 

organs, such as endothelial cells, kidney collecting tubule cells, vascular endothelial cells, and 

the brain (151-154). CUL5 binds the RING-box2 protein to form CRLs and in this CUL5-CRL 

complex, the adaptor proteins are Elongin B (ELOB) and Elongin C (ELOC) and the substrate 

recognition receptors are the SOCS-box containing proteins (150). Vif is an accessory protein 

for some lentiviruses and contains a SOCS-box domain. Vif acts as a substrate receptor for 

the CUL5 ubiquitin complex to induce proteasomal degradation of the APOBEC3 restriction 

factor (155-158). 

 

Fig. 1.9 Models of cullin-RING E3 ligases. CUL1 and CUL7 proteins recruit Skp1 as adaptor 

protein, CUL2 and CUL5 proteins recruit Elongin B/C as adaptor protein, CUL3 recruits BTB 

protein as adaptor protein, CUL4A and 4B recruit DDB1 as adaptor protein; Receptor 

proteins of CUL1, CUL2, CUL4A, CUL4B, CUL5, and CUL7 are F-box proteins, VHL-box 

proteins, DCAFs proteins, SOCS proteins, FBXW8 proteins, respectively; RING proteins 

(RBX1/2) interact with Cullins, which promotes ubiquitin transferring from RBX1/RBX2-
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bound E2 to a substrates. The adaptor proteins, receptor proteins and RING proteins of CUL9 

are unclear. 

 

1.6 Feline APOBEC3 and FIV Vif 

Human A3s include seven genes that contain either one (A3A, A3C, and A3H) or two (A3B, 

A3D, A3F, and A3G) zinc (Z)-binding domains with the conserved motifs of HXE(X)23-28CXXC (X 

can be any residue) (159, 160). Similar to human A3-mediated restriction of HIV-1Δvif, feline 

A3s are shown to inhibit FIVΔvif (50, 52, 161-164). Moreover, natural polymorphisms of 

feline APOBEC3s correlate with the infection of FIV and FeLV in domestic cats (165). The 

domestic cat expresses three single domain of A3Z2s (A3Z2a - A3Z2c) and one A3Z3 protein 

as well as double domain A3Z2Z3 proteins by read-through transcription and mRNA 

alternative splicing (50, 161) (Fig. 1.10). Previous studies demonstrated that feline A3Z3 and 

A3Z2Z3, but not A3Z2s, inhibit FIVΔvif (50, 161), while feline A3Z2s strongly restrict feline 

foamy virus (FFV) Δbet and feline A3Z3 and A3Z2Z3 only slightly decrease FFV Δbet infectivity 

(50, 166). In addition to feline retroviruses, feline A3s also show antiviral activity against HIV-

1 (161, 163, 164, 167).  

 

Fig. 1.10 Diagram of human APOBEC3 and feline APOBEC3. Human A3s include seven genes 

that contain either one (A3A, A3C, and A3H) or two (A3B, A3D, A3F, and A3G) zinc (Z)-binding 

domains. The domestic cat expresses three single domain of A3Z2s (A3Z2a - A3Z2c) and one 
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A3Z3 protein as well as double domain A3Z2Z3 proteins by read-through transcription and 

mRNA alternative splicing. 

 

FIV Vif, similar to HIV-1 Vif, forms an E3 ubiquitin ligase complex, to induce feline A3 

degradation (168) (Fig. 1.11). However, HIV-1 and SIV Vifs need the cofactor CBF-β to 

stabilize and form this complex (155, 169), whereas FIV and other non-primate lentiviruses 

(e.g. maedi-visna virus (MVV), caprine arthritis encephalitis virus (CAEV) and bovine 

immunodeficiency virus (BIV)) Vifs do not require CBF-β to induce A3s degradation (170-

173). A recent study demonstrated that BIV Vif appears to operate independently of any 

cofactors, while MVV Vif hijacks cellular cyclophilin A (CYPA) as a cofactor to reconstitute the 

E3 ligase complex (170). Whether FIV Vif recruits any additional protein is unclear.  

 

Fig. 1.11 Models of HIV-1/FIV Vif-E3 ligases. HIV-1 Vif forms Vif-E3 ligase together with 

Cullin 5, Elongin B/C, CBF-β, and RING box 2 proteins. FIV Vif forms Vif-E3 ligases together 

with Cullin 5, Elongin B/C, and RING box 2 proteins. Human A3s and feline A3s are the 

substrate for Vif-E3 ligases, respectively. 

 

1.7 Molecular interaction of APOBEC3 with Vif 

Human APOBEC3s, such as hA3G, hA3H hapII and hA3F, share a conserved Zinc-coordination 

motif, but HIV-1 Vif targets different sites in these A3 proteins for degradation. For example, 

the 128DPDY131 motif in hA3G is involved in direct interaction with the 14YRHHY17 domain of 

HIV-1 Vif (126, 174). The E121 residue in hA3H hapII determines its sensitivity to HIV-1 Vif 

derived from NL4-3 strain (175, 176). The hA3C and the C-terminal domain (CTD) of hA3F are 

conserved homologous Z2-typed A3s (159, 160), and 10 equivalent residues in these Z2-
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typed A3s are identified as involving in HIV-1 Vif interaction (177, 178). Additionally, 

A3F.E289 and HIV-1 Vif.R15 show a strong interaction by applying molecular docking (179). 

The equivalent residue E106 in A3C also determines A3-Vif binding (180). In contrast to this 

conserved A3-Vif interaction, it was also demonstrated that E324 in A3F is essential for HIV-1 

Vif interaction, but the equivalent residue E141 in A3C is not, which suggests that the Vif 

interaction interface might differ between A3C and A3F (177, 181). In addition, previous 

studies have proved that these two glutamic acids vary in primate A3Fs, and therefore 

determined the distinct sensitivities of primate A3F to HIV-1 Vif (182-184) (Fig. 1.12).  

 

Fig. 1.12 Schematic representation of A3-Vif interaction sites.  (A) It shows HIV-1 Vif binding 

sites in hA3C, hA3F, hA3G, and hA3H, respectively. (B) The hA3F, hA3G, hA3H, CUL5, CBF-β, 

and ElonginB/C binding sites in HIV-1 Vif are represented. (C) It is unclear how FIV Vif 

interacts with CUL5 and feline A3s. 
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The N-terminal part of HIV-1 Vif is mainly involved in interaction with human A3s. For 

example, the 40YRHHY44 box is reported essential for A3G degradation, while the 14DRMR17 

motif determines A3F degradation (185). Vif derived from HIV-1 clone LAI, but not that of 

NL4-3, could induce the degradation of hA3H hapII, which is determined by residues F39 and 

H48 (186). The C-terminal of HIV-1 Vif consists of one Zinc coordination motif that interacts 

with CUL5, one SLQ BC box that binds to ELOB/C and one Vif dimerization domain (reviewed 

in (187)). Previously, it was also reported that the 171EDRW175 motif in the C-terminus of Vif 

determines the degradation of A3F (181, 188). However, A3 interaction sites in SIV Vif have 

not yet been identified. Recently, it was reported that the 16PXXME…PHXXV47 domain and 

G48 of HIV-2 Vif and SIVsmm Vif are involved in the interaction with A3F and A3G, 

respectively (189) (Fig. 1.12).  

HIV-1 Vif cannot counteract the strong anti-HIV activity of feline A3Z2Z3, however binding of 

HIV-1 Vif and feline A3Z2Z3 was detectable by co-immunoprecipitation assays (162, 164). In 

contrast to HIV-1 Vif, Vifs from the HIV-2/SIV lineage counteract and induce degradation of 

feline A3Z2Z3 (162, 164). Residues in feline A3s that are functionally involved in the 

interaction with FIV Vif were identified by recent studies (162, 165, 190). In contrast, the 

determinants in FIV Vif important for inhibition of the antiviral activity of feline A3s are 

poorly understood (191), and which domain of FIV Vif interacts with cullin 5 is unclear (Fig. 

1.12).  

 

1.8 Objectives of current study 

1. Identify the important domains of FIV Vif that interacts with feline APOBEC3s. 

2. Identify the important domains of feline APOBEC3s that targeted by FIV Vif. 

3. Find out the interaction surface between FIV Vif and CUL5. 

4. Investigating how FIV escapes the restriction of feline SERINC. 
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2. Materials and Methods 

2.1 Laboratory instruments 

The following instruments were used in current study (Table 2.1). 

Instruments Company  

Cell incubator BBD 6220 heraeus/ thermo scientific 

Cell incubator KS4000-i IKA 

Centrifuge 4K15 Sigma  

Centrifuge 5417R Eppendorf  

Centrifuge fresco 21 heraeus/ thermo scientific 

Centrifuge PICO 21 heraeus/ thermo scientific 

CO2 incubator IBS 

Film processor Curix 60 AGFA 

Gel documentation system Peqlab  

Heating block Bioblock scientific 

Luminometer, Micro lumat plus Berthold technologies 

Microscope AE20 motic 

Nano-drop NP-1000 Peqlab 

OptimaTm MAX-XP ultracentrifuge Beckmann coulter 

PCR thermocycler T3 biometra 

Photometer genesis 10Bio thermo scientific  

SDS-gelelectrophoresis apparatus BioRad  

Semi-dry blot apparatus BioRad 

Thermo shaker  biometra 

Vortexer, top mix FB 15024 Fischer scientific 

 

2.2 Chemicals 

All chemicals in current study are listed in the following Table 2.2. 

Chemicals  Company  

Agar  applichem GmbH, Darmstadt 

Agarose  Bio&Sell e.K, Nuernberg 

Ampicillin  Sigma-aldrich, ST.Louis, USA 

Casein peptone Carl Roth GmbH, Karlsruhe 

DMEM GIBCO/BRL, Eggenstein 

DMSO(Dimethylsulfoxid) Merck, Darmstadt 

Ethanol  Applichem GmbH, Darmstadt 

Ethidiumbromide(EtBR) Carl Roth GmbH, Karlsruhe 

FBS Biochrom KG, Berlin 

Glycerin  Applichem GmbH, Darmstadt 

Isopropanol  Carl Roth GmbH, Karlsruhe 

Lipofectamine® LTX Reagent Invitrogen Karlsruhe 

L-glutamine Biochrom KG, Berlin 

Natriumchloride (NaCl) Biomedicals, Heidelberg 

https://www.thermofisher.com/us/en/home/brands/product-brand/lipofectamine/lipofectamine-2000.html
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Natriumhydroxide (NaOH) Applichem GmbH, Darmstadt 

Opti-MEM Invitrogen, Karlsruhe 

penicilllin Biochrom KG, Berlin 

Phosphate buffered saline (PBS) PAN Biotech Gmbh, Aidenbach 

6X sample buffer Applichem GmbH, Darmstadt 

Steady-glo® luciferase assay system Promega GmbH, Mannheim 

streptomycin Biochrom KG, Berlin 

Yeast extract Carl Roth GmbH, Karlsruhe 

 

2.3 Enzymes 

All enzymes in current study are listed in the following table 2.3. 

Enzymes Company 

DNA polymerases fermentas 

Restrictions endonucleasee (10U/ul) Fermentas/biolabs 

T4 DNA ligase (5U/ul) fermentas 

 

2.4 Kits 

All kits in current study are listed in the following table 2.4. 

Molecularbiology kits Company 

DNA T4 ligation kit Fermentas, St. Leon-Rot 

Plasmid miniprep TM-classic Zymo research, Irvine, USA 

Pure yieldTM plasmid maxiprep system Promega GmbH, Mannheim 

QIAquick®gel extraction kit Qiagen GmbH, Hilden 

QIAquick®PCR purification kit Qiagen GmbH, Hilden 

 

2.5 Buffers and solutions 

2.5.1 Buffers for gel electrophoresis 

20 x TAE buffer was used for gel electrophoresis and listed below (Table 2.5.1). 

Compositions 

0.8 M tris (hydroxymethyl)-aminomethan 

0.8 M acetic acid 

20mM EDTA 

pH 8 
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2.5.2 6 x DNA loading dye 

The 6 x DNA loading dye was used for DNA loading on agarose gels (Table 2.5.2).  

Compositions amounts 

6X sample 

buffer 

100μl 

glycerine 150μl 

add dH2O to final volume of 1250μl 

 

2.5.3 10 x SDS PAGE buffer (Table 2.5.3) 

Compositions 

25 mM tris 

192 mM glycine 

0.1% (v/v) SDS 

pH 8.8 

Table 2.5.3 The composition of 10 x SDS PAGE buffer. 

2.5.4 20 x TBS  

20 x TBS is basis for TBST (Table 2.5.4). Tween 20 was diluted in 1 x TBS buffer 0.2% (v/v). 

TBST was used for washing nitrocellulose membrane in western blotting. 

Compositions 

25 mM tris 

150 mM NaCl 

3 mM KCl 

pH8 

 

2.6 Bacterial strains (Competent cells) 

The following bacterial strains belong to the genus Escherichia coli (E.coli) Table 2.6. 

Name Genotype 

TopF 10  F-mcrA Δ( mrr-hsdRMS-

mcrBC)Φ80lacZΔM15Δ lacX74 recA1 araD139Δ( araleu)7697 galU galK rpsL 

(StrR) endA1 nupG 

Stab II F-mcrAΔ(mcrBC-hsdRMS-mrr) recA1 endA1lon gyrA96 thi supE44 relA1 λ-

Δ(lac-proAB) 

 

 



28 

 

2.7 Cells  

Human embryonic kidney-HEK293T (293T, ATCC CRL-3216), human osteosarcoma-HOS 

(ATCC CRL-1543), feline kidney-CRFK (ATCC CCL-94) cell lines were maintained in Dulbecco’s 

high-glucose modified Eagle’s medium (DMEM, Biochrom, Berlin, Germany) supplemented 

with 10% fetal bovine serum (FBS), 2 mM L-glutamine, penicillin (100 U/ml), and 

streptomycin (100 μg/ml). CRFK-CD134 cell line was maintained in Dulbecco’s high-glucose 

modified Eagle’s medium (DMEM, Biochrom, Berlin, Germany) supplemented with 10% fetal 

bovine serum (FBS), 2 mM L-glutamine, penicillin (100 U/ml), streptomycin (100 μg/ml), and 

800 µg/ml G418.  

 

2.8 Vif and A3 plasmids.  

Domestic cat A3s with a carboxy-terminal hemagglutinin (HA) tag were described previously 

(50, 161, 167). All the FcaA3s mutants were produced by fusion PCR (Primers are shown in 

Table 2.9 and 2.10). Human A3G with a C-terminal HA tag, a gift of Nathanial Landau, was 

previously described (131). FIV-34TF10 (codon-optimized), HIV-1, HIV-2, SIVmac and SIVsmm 

Vif genes were inserted into pcWPRE containing a C-terminal V5 tag (192). Codon-optimized 

Vif gene of FIV-34TF10 and Vif-TLQ-AAA were inserted into pcWPRE containing a C-terminal 

V5 tag (50, 162). All the FIV Vif mutants were produced by fusion PCR. FIV Vif-GST constructs 

were generated by inserting the full length FIV Vif or C-terminal truncated FIV Vif into pkGST 

(193) using HindIII and BamHI. The primers for all FIV Vif constructs are shown in Table 2.8. 

pcDNA3-DN-hCUL5-FLAG (15823) (194), pcDNA3-myc-CUL5 (19895) (195), pcDNA3-DN-

hCUL2-FLAG (15819) (194), pcDNA3-myc3-CUL2 (19892) (195), T7-Elongin C-pcDNA3 (19998) 

(196) and HA-Elongin B-pcDNA3.1(+)-Zeo (20000) (197) were obtained from Addgene 

(Cambridge, USA). The CUL5 mutations were produced by fusion PCR and cloned into 

pcDNA3-myc-CUL5 by using BamHI and XbaI to replace wild type CUL5 (Table 2.11). Feline 

SERINC3/5 were cloned from CRFK cells by RT-PCR and then cloned into pcDNA3.1(+) or pBJ6 

expression plasmid by using EcoRI and NotI (Table 2.12). 

Name  Vector  Gene  Tag  

pcDNA3.1 empty pcDNA3.1 (+) - - 
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HIV-1 Vif pcWPRE HIV-1 Vif   V5 

HIV-2 Vif pcWPRE HIV-2 Vif V5 

SIVagm Vif pcWPRE SIVagm Vif V5 

SIVmac Vif pcWPRE SIVmac Vif V5 

Feline A3Z2b pcDNA3.1 Feline A3Z2b HA 

Feline A3Z3 pcDNA3.1 Feline A3Z3 HA 

Feline A3Z2bZ3 pcDNA3.1 Feline A3Z2bZ3 HA 

FIV Vif/mutants/T1-4 pcWPRE FIV Vif /mutants/ N-terminal 

deletion constructs 

V5 

FIV Vif TLQ-AAA GST/ 

50-160/110 mutants 

pkGST FIV Vif TLQ-AAA/ 

C-terminal deletion truncations/ 

110 deletion mutants 

GST 

CUL5 pcDNA3-myc Cullin 5 Myc3 

CUL2 pcDNA3-myc Cullin 2 Myc3 

DN-CUL5 pcDNA3.1 (+) Cullin 5 (dominant negative  N441) Flag  

DN-CUL2 pcDNA3.1 (+) Cullin 2 (dominant negative  N427) Flag  

Elongin B pcDNA3.1 (+)-Zeo Elongin B HA 

Elongin C pcDNA3 Elongin C T7 

Hu.SERINC5 pcDNA3.1 (+) Human SERINC5 HA 

Feline SERINC5 pcDNA3.1 (+) Feline SERINC5 HA 

Feline SERINC3 pcDNA3.1 (+) Feline SERINC3 HA 

pBJ6.Hu.SERINC5 pBJ6 Human SERINC5 HA 

pBJ6.Feline SERINC5 pBJ6 Feline SERINC5 HA 

pBJ6.Feline SERINC3 pBJ6 Feline SERINC3 HA 

pMD.G (VSVG) pMD.G Envelope glycoprotein gene of  

vesicular stomatitis virus 

- 

pFP93 Helper construct 

CMV promoter 

Gag, Pol, and Rev. - 

pLinSin pGinSin FIV Luciferase transfer vector 

Self inactivating 

- 

pEE14 vPGK FIV Env 14 - 
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pPR unknown Full length virus FIV-PPR - 

C36 unknown Full length virus FIV-C36 - 

Table 2.7 Plasmids used in this study. 

 

Primer name Sequence (5' to 3') 

FIVVif-EcoRI-F atGAATTCGCCACCATGAGCGAAGAGGACTG 

FIVVIF-V5NotI-R atGCGGCCGCTCAGGTGCTGTCCAGGCC 

FIVVifEcoRI24F atGAATTCGCCACCatgctgtacatcagccgg 

FIVVifEcoRI49F atGAATTCGCCACCatggagaccggcttcatc 

FIVVif-EcoRI73F atGAATTCGCCACCatgatcggctacgtgcgg 

FIVVifEcoRI103F atGAATTCGCCACCatgcagtacagacccggc 

FIVVifEcoRI144F atGAATTCGCCACCatgccaggctggggccctg 

FIVVifEEAAEcorI-F atGAATTCGCCACCatgagcgcagcggactggcag 

FIVVifQVAAEcorI-F atGAATTCGCCACCatgagcgaagaggactgggcggcgtccag 

FIVVifSRAAEcorI-F atGAATTCGCCACCatgagcgaagaggactggcaggtggccgcgcggc 

FIVVifLFAAEcorI-F atGAATTCGCCACCatgagcgaagaggactggcaggtgtccaggcgggcggccgccgtgc 

FIVVifGGAA-F gtgctgcaggccgccgtgaacagcgcc 

FIVVifGGAA-R ggcgctgttcacggcggcctgcagcac 

FIVVifYIAA-F gcgccatgctggccgccagccggctgccc 

FIVVifYIAA-R gggcagccggctggcggccagcatggcgc 

FIVVifERAA-F cccccgacgcggcggagaagtacaagaagg 

FIVVifERAA-R ccttcttgtacttctccgccgcgtcggggg 

FIVVifKDAA-F gaagtacaaggcggccttcaagaagaggctg 

FIVVifKDAA-R cagcctcttcttgaaggccgccttgtacttc 

FIVVifKKAA-F caagaaggacttcgcggcgaggctgttcgac 

FIVVifKKAA-R gtcgaacagcctcgccgcgaagtccttcttg 

FIVVifRLAA-F gacttcaagaaggcggcgttcgacaccgag 

FIVVifRLAA-R ctcggtgtcgaacgccgccttcttgaagtc 

FIVVif53FIAA-F ccgagaccggcgccgccaagcggctgcgg 

FIVVif53FIAA-R ccgcagccgcttggcggcgccggtctcgg 

FIVVif57LRAA-F cttcatcaagcgggcggcgaaggccgaggg 

FIVVif57LRAA-R ccctcggccttcgccgcccgcttgatgaag 

FIVVif61EGIAAA-F ggctgcggaaggccgcggccgccaagtggagcttccacac 

FIVVif61EGIAAA-R gtgtggaagctccacttggcggccgcggccttccgcagcc 

FIVVif65WSFAAA-F gccgagggcatcaaggcggccgcccacacccgggactac 

FIVVif65WSFAAA-R gtagtcccgggtgtgggcggccgccttgatgccctcggc 

FIVVif81VAGAAA-F gcgggagatggcggccgccagcaccacc 

FIVVif81VAGAAA-R ggtggtgctggcggccgccatctcccgc 

FIVVif95YIAA-F gcggatgtacatcgccgccagcaaccccctgtgg 

FIVVif95YIAA-R ccacagggggttgctggcggcgatgtacatccgc 

FIVVif119VNAA-F gaatggcccttcgcggccatgtggatcaag 

FIVVif119VNAA-R cttgatccacatggccgcgaagggccattc 
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FIVVif126GFMAAA-F gtggatcaagaccgccgctgcgtgggacgacatcgag 

FIVVif126GFMAAA-R ctcgatgtcgtcccacgcagcggcggtcttgatccac 

FIVVif184CCSS-F ccaagaagtggtccggcgactcctggaacc 

FIVVif184CCSS-R ggttccaggagtcgccggaccacttcttgg 

Vif25L-A-F gaacagcgccatggcgtacatcagcc 

Vif25L-A-R ggctgatgtacgccatggcgctgttc 

Vif28SR-AA-F ccatgctgtacatcgccgcgctgccccccg 

Vif28SR-AA-R cggggggcagcgcggcgatgtacagcatgg 

Vif30L-A-F gtacatcagccgggcgccccccgacg 

Vif30L-A-R cgtcggggggcgcccggctgatgtac 

Vif47F-A-F caagaagaggctggccgacaccgagac 

Vif47F-A-R gtctcggtgtcggccagcctcttcttg 

Vif24M-A-F gaacagcgccgcgctgtacatcagcc 

Vif24M-A-R ggctgatgtacagcgcggcgctgttc 

Vif26Y-A-F gaacagcgccatgctggccatcagccggc 

Vif26Y-A-R gccggctgatggccagcatggcgctgttc 

Vif27I-A-F gcgccatgctgtacgccagccggctg 

Vif27I-A-R cagccggctggcgtacagcatggcgc 

FVif25L-S-F gaacagcgccatgtcgtacatcagcc 

FVif25L-S-R ggctgatgtacgacatggcgctgttc 

FVif25L-G-F gaacagcgccatggggtacatcagcc 

FVif25L-G-R ggctgatgtaccccatggcgctgttc 

FVif25L-V-F gaacagcgccatggtgtacatcagcc 

FVif25L-V-R ggctgatgtacaccatggcgctgttc 

FVif25L-I-F gaacagcgccatgatttacatcagcc 

FVif25L-I-R ggctgatgtaaatcatggcgctgttc 

FVif25L-F-F gaacagcgccatgttttacatcagcc 

FVif25L-F-R ggctgatgtaaaacatggcgctgttc 

FVif25L-Y-F gaacagcgccatgtattacatcagcc 

FVif25L-Y-R ggctgatgtaatacatggcgctgttc 

FVifHindIII-F atAAGCTTGCCACCatgagcgaagaggactgg 

FVifFullBamHI-R atGGATCCcagctcgccgctccacag 

FVif160BamHI-R atGGATCCgctgaaggccttgatggc 

FVif110BamHI-R atGGATCCcttcaggccgggtctgtac 

FVif80BamHI-R atGGATCCcatctcccgcacgtagcc 

FVif50BamHI-R atGGATCCctcggtgtcgaacagcctc 

FIV_vif PF CTTCCTGAAGGGGATGAGTG 

FIV_vif PR ATCTCTTCCATTCATAGYTCTCC 

Env_PR CCTARTTCTTGCATAGCRAAAGC 

A3H2F TCATCCCCAATGGCACCCACAGC 

A3H3R TCAAACTCTGAGACGGAGGAGGAG 

FIVVif.MI-AA-F gaggccacccccgtggcggctatccggggcgag 

FIVVif.MI-AA-R ctcgccccggatagccgccacgggggtggcctc 

FIVVif.IR-AA-F cccccgtgatgattgccgcgggcgagatcgac 

FIVVif.IR-AA-R gtcgatctcgcccgcggcaatcatcacggggg 
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FIVVif.GE-AA-F gattatccgggccgcgatcgaccccaag 

FIVVif.GE-AA-R cttggggtcgatcgcggcccggataatc 

FVif.SLR-AAA-F gcaccacctccctggccgcggcgatgtacatctac 

FVif.SLR-AAA-R gtagatgtacatcgccgcggccagggaggtggtgc 

FVif.MY-AA-F gagcctgcgggcggccatctacatcag 

FVif.MY-AA-R ctgatgtagatggccgcccgcaggctc 

FVif.PLW-AAA-F catcagcaacgccgcggcgcacagccag 

FVif.PLW-AAA-R ctggctgtgcgccgcggcgttgctgatg 

FVif.YRP-AAA-F gtggcacagccaggccgcagccggcctgaagaac 

FVif.YRP-AAA-R gttcttcaggccggctgcggcctggctgtgccac 

Fvif.HTR-AAA-F catcaagtggagcttcgccgccgcggactactacatc 

Fvif.HTR-AAA-R gatgtagtagtccgcggcggcgaagctccacttgatg 

Fvif.DYY-AAA-F cttccacacccgggccgccgccatcggctacgtg 

Fvif.DYY-AAA-R cacgtagccgatggcggcggcccgggtgtggaag 

Fvif.IGY-AAA-F cgggactactacgccgccgccgtgcgggagatgg 

Fvif.IGY-AAA-R ccatctcccgcacggcggcggcgtagtagtcccg 

Fvif.VRE-AAA-F catcggctacgcggcggcgatggtggccggcag 

Fvif.VRE-AAA-R ctgccggccaccatcgccgccgcgtagccgatg 

Fvif.MWD-AAA-F caagaccggctttgcggcggccgacatcgagaagc 

Fvif.MWD-AAA-R gcttctcgatgtcggccgccgcaaagccggtcttg 

Fvif.IEK-AAA-F ctttatgtgggacgacgccgcggcgcagaacatctg 

Fvif.IEK-AAA-R cagatgttctgcgccgcggcgtcgtcccacataaag 

Fvif.I174-A-F ccgtgatgattgcccggggcgagatc 

Fvif.I174-A-R gatctcgccccgggcaatcatcacgg 

Fvif.R175-A-F gtgatgattatcgcgggcgagatcgac 

Fvif.R175-A-R gtcgatctcgcccgcgataatcatcac 

FIVVifK181A-F cgagatcgaccccgcgaagtggtgcggcg 

FIVVifK181A-R cgccgcaccacttcgcggggtcgatctcg 

FIVVifK182A-F gatcgaccccaaggcgtggtgcggcgac 

FIVVifK182A-R gtcgccgcaccacgccttggggtcgatc 

FIV Vif C138S-F gaagcagaacatctccatcggcggcgag 

FIV Vif C138S-R ctcgccgccgatggagatgttctgcttc 

FIV Vif C184S-F cccaagaagtggtccggcgactgctggaac 

FIV Vif C184S-R gttccagcagtcgccggaccacttcttggg 

FIV Vif C187S-F gtggtgcggcgactcctggaacctgatg 

FIV Vif C187S-R catcaggttccaggagtcgccgcaccac 

FIV Vif C192S-F ctggaacctgatgtccctgcggaacagc 

FIV Vif C192S-R gctgttccgcagggacatcaggttccag 

FIV VifC161S-F ggccttcagctccggcgagcgg 

FIV VifC161S-R ccgctcgccggagctgaaggcc 

FIV VifC209S-F catgctggcctccggcgtgcc 

FIV VifC209S-R ggcacgccggaggccagcatg 

Table 2.8 Primers used for introducing FIV Vif mutations. 

 



33 

 

Primer name Sequence (5' to 3') 

FcaZ3KL-TP.fw gctaccagctgacgccgcccgaaggcacc 

FcaZ3KL-TP.rv ggtgccttcgggcggcgtcagctggtagc 

FcaZ3PE-QN.fw ccagctgaagctgcagaatggcaccctaattc 

          FcaZ3PE-QN.rv gaattagggtgccattctgcagcttcagctgg 

FcaZ3LI-TP.fw gcccgaaggcaccacacctcacaaagactgcc 

FcaZ3LI-TP.rv ggcagtctttgtgaggtgtggtgccttcgggc 

FcaZ3H-T.fw cgaaggcaccctaattaccaaagactgcc 

FcaZ3H-T.rv ggcagtctttggtaattagggtgccttcg 

FcaZ3DC-AA.fw ctaattcacaaagccgcccttcgaaataag 

FcaZ3DC-AA.rv cttatttcgaagggcggctttgtgaattag 

FcaZ3LR-AA.fw cacaaagactgcgctgcaaataagaaaaag 

FcaZ3LR-AA.rv ctttttcttatttgcagcgcagtctttgtg 

FcaZ3LI-AA.fw gcccgaaggcaccgcagctcacaaagactgcc 

FcaZ3LI-AA-rv ggcagtctttgtgagctgcggtgccttcgggc 

FcaZ3.fw atgaattcgccaccatgaatccactacaggaag 

HA-rv agctcgagtcaagcgtaatctggaacatcgtatggataagcgtaatctggaacatcgtatg 

Table 2.9 Primers used for introducing FcaA3Z3 mutations. 

Primer name Sequence (5' to 3') 

FcaZ2bN18K.fw gatagatcctaagaccttccgtttc 

FcaZ2bN18K.rv gaaacggaaggtcttaggatctatc 

FcaZ2bT44R.fw cttccaagtggagagagaagactacttc 

          FcaZ2bT44R.rv gaagtagtcttctctctccacttggaag 

FcaZ2bD165Y.fw caactttgtgtaccacaagggaatgc 

FcaZ2bD165Y.rv gcattcccttgtggtacacaaagttg 

FcaZ2bH166N.fw caactttgtggacaacaagggaatgc 

FcaZ2bH166N.rv gcattcccttgttgtccacaaagttg 

FcaZ2bDH-YN.fw caactttgtgtacaacaagggaatgc 

FcaZ2bDH-YN.rv gcattcccttgttgtacacaaagttg 

PtiY165D.fw caactttgtggaccacaagggaatgc 

PtiY165D.rv gcattcccttgtggtccacaaagttg 

FcaZ2bfeApo3.fw tataagctttgaagaggaatggagccctggcgccccag 

FcaZ2bHA-rv agctcgagtcaagcgtaatctggaacatcgtatggataagcgtaatctggaacatcgtatg 

Table 2.10 Primers used for introducing FcaA3Z2b mutations. 

Primer name Sequence (5' to 3') 

CUL5-BamHI-F atggatcccggcgacgtctaatctgttaaag 

CUL5-XbaI-R attctagatcatgccatatatatgaaagtgttg 

CUL5_52LW-AA-F gtgcatgcagtctgtgctgcggatgataaaggc 

CUL5_52LW-AA-R gcctttatcatccgcagcacagactgcatgcac 

CUL5_54DD-AA-F cagtctgtctttgggctgctaaaggcccagc 
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CUL5_54DD-AA-R gctgggcctttagcagcccaaagacagactg 

Table 2.11 Primers used for introducing CUL5 mutations. 

Primer name Sequence (5' to 3') 

Hu+Fe SERINC5-F atgtcagctcagtgctgtgcgg 

Hu SERINC5-R tcacacagagaactcccgg 

Fe SERINC5-R tcacacggagaactgccgag 

Hu+Fe SERINC3-F atgggggctgtgctgggtgtc 

Hu SERINC3-R tcagctgaagtcccgactgg 

Fe SERINC3-R tcagctgaagtcacgattgg 

Hu+Fe SERINC5HindIII-F ATAAGCTTGCCACCatgtcagctcagtgctgtgcgg 

Hu SERINC5 XhoI-R ATCTCGAGctaagcgtaatctggaacatcgtatggataCACAGAGAACTCCCG

GGTG 

Fe SERINC5 XhoI-R ATCTCGAGctaagcgtaatctggaacatcgtatggatacacggagaactgccgagag 

Hu+Fe SERINC3HindIII-F ATAAGCTTGCCACCatgggggctgtgctgggtgtc 

Hu SERINC3 XhoI-R ATCTCGAGctaagcgtaatctggaacatcgtatggatagctgaagtcccgactgg 

Fe SERINC3 XhoI-R ATCTCGAGctaagcgtaatctggaacatcgtatggatagctgaagtcacgattgg 

Hu+Fe SERINC5NotI-F ATGCGGCCGCatgtcagctcagtgctgtgcgg 

Hu SERINC5 EcoRI-R ATGAATTCctaagcgtaatctggaacatcgtatggataCACAGAGAACTCCCG

GGTG 

Fe SERINC5 EcoRI -R ATGAATTCctaagcgtaatctggaacatcgtatggatacacggagaactgccgagag 

Hu+Fe SERINC3NotI-F ATGCGGCCGCatgggggctgtgctgggtgtc 

Hu SERINC3 EcoRI -R ATCTCGAGctaagcgtaatctggaacatcgtatggatagctgaagtcccgactgg 

Fe SERINC3 EcoRI -R ATCTCGAGctaagcgtaatctggaacatcgtatggatagctgaagtcacgattgg 

Table 2.12 Primers used for cloning human and feline SERINC genes. 

 

2.9 Fusion PCR 

In current study, I used fusion PCR to introduce point mutation in FIV Vif and FcaA3s 

expression plasmids. The fusion PCR step, reaction mixture and program are shown below 

(Fig. 2.1). 
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Fig. 2.1 Steps of Fusion PCR. Fusion PCR requires two steps of amplification. The primers of 

the first PCR are forward primer together with reverse mutation primer or forward mutation 

primer with reverse primer. After first round amplification, two PCR fragments are produced. 

Fragment 1 and fragment 2 from first round PCR are used as templates for PCR amplification 

with forward primer and reverse primer. 

Step Temperature (℃) Time  

Initial denaturation 95 1-3 min  

denaturation 95 30 s  

Primer-annealing X 30 s   30 cycles 

elongation 72 2 min/kb     

Final elongation 72 5-15 min  

cooling 4 rest  

Table 2.13 The PCR program. 
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DNA template 20-50 ng 

10X restriction buffer+MgSO4 5 μl 

Upstream primer 5-50 pM 

Downstream primer 5-50 pM 

DNA polymerase (2.5 U/ul) 1 μl 

dNTP mix (10 mM each) 1 μl 

Nuclease-free water to final volume of 50ul 

Table 2.14 The composition of PCR mixture. 

 

2.10 Transfection 

A3 degradation experiments were performed in 24-well plates, 1×105 293T cells were 

transfected with 50 ng feline A3Z2 or 250 ng feline A3Z3 or A3Z2Z3 expression plasmids 

together with 30 ng codon-optimized FIV Vif expression plasmid, pcDNA3.1(+) (Thermo 

Fisher Scientific, Schwerte, Germany) was used as control. To produce FIV-luciferase viruses, 

293T cells were co-transfected with 0.6 μg FIV packaging construct, 0.6 μg FIV-luciferase 

vector, 0.6 μg A3 expression plasmid, 0.2 μg VSV-G expression plasmid, 80 ng FIV Vif 

expression plasmid; in some experiments pcDNA3.1(+) was used instead of Vif or A3 

expression plasmids. At 48 h post transfection, cells and supernatants were collected. The 

FcaA3Z2bZ3 degradation experiments were performed in 12-well plates, 2×105 293T cells 

were transfected with 300 ng feline A3Z2b or feline A3Z3 or A3Z2bZ3 expression plasmids 

together with 60 ng codon-optimized FIV Vif expression plasmid, pcDNA3.1(+) was used as 

control, and 700 ng pcDNA3-DN-hCUL5-FLAG or pcDNA3-DN-hCUL2-FLAG expression 

plasmids, pcDNA3.1(+) was used as control. The test of interaction between CUL5 and FIV 

Vif, 293T cells were co-transfected with 1000 ng pcDNA3-myc-CUL5 and 1000 ng FIV Vif-V5 

or FIV Vif mutants in 6-well plates; pcDNA3.1(+) was used as control. For the interaction 

between ELOB, ELOC and FIV Vif, 293T cells were co-transfected with 700 ng T7-Elongin C-

pcDNA3, 700 ng HA-Elongin B-pcDNA3.1(+)-Zeo and 700 ng FIV Vif-V5 or FIV Vif mutants in 6-

well plates; pcDNA3.1(+) was used as control. For transfections in the presence of MG132 

(474790, Calbiochem) and TPEN (16858-02-9, Calbiochem), the culture medium was 

replaced with fresh DMEM containing different concentrations of MG132 or TPEN, or 

dimethyl sulfoxide (DMSO). After the cells were treated for 16 h, the cell lysates were used 

for immunoprecipitation or immunoblotting as described below. All the transfections were 
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performed by using Lipofectamine LTX (Thermo Fisher Scientific) according to 

manufacturer’s instruction.  

 

2.11 Viruses and infection 

To produce FIV single-cycle luciferase viruses (FIV-Luc), 293T cells were co-transfected with 

the replication deficient packaging construct pFP93 (198), a gift from Eric M. Poeschla, which 

only expresses gag, pol, and rev; the FIV luciferase vector pLinSin (50); a VSV-G expression 

plasmid pMD.G; FcaA3s expression plasmids; FIV Vif expression plasmid; or empty vector 

pcDNA3.1(+) (Fig. 2.2). To produce FIV Env pseudotyped FIV-Luc, 293T cells were co-

transfected with the replication deficient packaging construct pFP93, the FIV luciferase 

vector pLinSin, FIV Env expression plasmid pEE14, FcaSERINC expression plasmids, or empty 

vector pcDNA3.1(+) (Fig. 2.3). The reverse transcriptase (RT) activity of FIV was quantified by 

using the Cavidi HS lenti RT kit (Cavidi Tech, Uppsala, Sweden). For reporter virus infection, 

293T or CRFK-CD134 cells were seeded in 96-well plate one day before transduction. After 

normalizing for RT activity, the same amounts of viruses based on RT values were used for 

infection. Two days post transduction, firefly luciferase activity was measured with the 

Steadylite HTS reporter gene assay system (Perkin-Elmer, Cologne, Germany) according to 

the manufacturer’s instructions on a MicroLumat Plus luminometer (Berthold Detection 

Systems, Pforzheim, Germany). Each transduction was done in triplicates; the error bar of 

each triplicate was shown.  
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Fig. 2.2 Schematic representation of VSV-G pseudotyped FIV single round infection assay. 

Feline A3s expression plasmids together with FIV-based 3 plasmids system are cotransfected 

into 293T cells. 48 hours later, viral supernatant are collected, which contains VSV-G 

pseudotyped FIV particles. The supernatant are used for 293T cells infection. 48 hours later, 

viral infectivity is determined by detecting the luciferase activity. 

 

Fig. 2.3 Schematic representation of Env pseudotyped FIV single round infection assay. 

Feline SERINC3/5 expression plasmids together with FIV-based 3 plasmids system are 

cotransfected into 293T cells. 48 hours later, viral supernatant are collected, which contains 
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VSV-G pseudotyped FIV particles. The supernatant are used for CRFK-CD134 infection. 48 

hours later, viral infectivity is determined by detecting the luciferase activity. 

 

2.12 Immunoblot analysis  

Transfected 293T cells were lysed in radioimmunoprecipitation assay (RIPA) buffer (25 mM 

Tris-HCl [pH7.6], 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% sodium dodecyl 

sulfate [SDS], protease inhibitor cocktail set III [Calbiochem, Darmstadt, Germany]). The 

expression of A3s and Vif were detected by mouse anti-hemagglutinin (anti-HA) antibody 

(1:7,500 dilution, MMS-101P; Covance, Münster, Germany) and mouse anti-V5 antibody 

(1:4,500 dilution, MCA1360, ABDserotec, Düsseldorf, Germany) separately, tubulin was 

detected using mouse anti-α-tubulin antibody (1:4,000, dilution, clone B5-1-2; Sigma-Aldrich, 

Taufkirchen, Germany), followed by horseradish peroxidase-conjugated rabbit anti-mouse 

antibody (α-mouse-IgG-HRP; GE Healthcare, Munich, Germany), and developed with ECL 

chemiluminescence reagents (GE Healthcare). For test of encapsidation of FcaA3 proteins 

into FIV particles, HEK293T cells were transfected with 600 ng pFP93, 600 ng of pLinSin, 200 

ng pMD.G, 600 ng of A3 constructs, and 80 ng FIV Vif or empty vector pcDNA3.1(+). Viral 

supernatants were collected 48 h later, overlaid on 20% sucrose and centrifuged for 4 h at 

14,800 rpm in a table top centrifuge. Viral pellet was resuspended in RIPA buffer, boiled at 

95⁰C for 5 min with Roti load reducing loading buffer (Carl Roth, Karlsruhe, Germany) and 

resolved on a SDS-PAGE gel. The A3s and tubulin proteins were detected as described above. 

VSV-G and FIV p24 proteins were detected using mouse anti-VSV-G antibody (1: 10,000 

dilution; clone P5D4; Sigma-Aldrich) and mouse anti-FIV p24 antibody (1: 2,000 dilution; 

clone PAK3-2C1; NIH AIDS REPOSITORY) separately, followed by horseradish peroxidase-

conjugated rabbit anti-mouse antibody (α-mouse-IgG-HRP; GE Healthcare), and developed 

with ECL chemiluminescence reagents (GE Healthcare). The following antibodies were used 

for FIV-CUL5 study: mouse anti-T7-tag monoclonal antibody (1:1000 dilution, 69522, mouse 

monoclonal IgG2b, Merck, Germany), mouse anti-CUL-5 monoclonal antibody (1:1000 

dilution, sc-373822, Santa Cruz, USA), mouse anti-myc monoclonal antibody (1:100 dilution, 

MCA2200, MbD Serotec, Canada), mouse anti-flag M2 monoclonal antibody (1:1000 dilution, 
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F1804, Sigma, USA). The second antibody was horseradish peroxidase-conjugated rabbit 

anti-mouse antibody (1:10,000 α-mouse-IgG-HRP; GE Healthcare, Munich, Germany). 

Name  Number  Company  Host  Dilution 

anti-HA MMS-101P Covance, Münster, Germany mouse 1:7,500 

anti-V5 MCA1360 
ABDserotec, Düsseldorf,  

Germany 
mouse 1:4,500 

anti-α-tubulin clone B5-1-2 
Sigma-Aldrich, Taufkirchen,  

Germany 
mouse 1:4,000 

anti-VSV-G  P5D4 Sigma-Aldrich mouse 1:10,000 

anti-FIV p24 PAK3-2C1 NIH AIDS REPOSITORY mouse 1: 2,000 

anti-T7 69522 Merck, Germany mouse 1:1000 

anti-CUL-5 sc-373822 Santa Cruz, USA mouse 1:1000 

anti-myc MCA2200 MbD Serotec, Canada mouse 1:1000 

anti-flag M2 F1804 Sigma, USA mouse 1:1000 

Table 2.15 The list of antibodies used in this study. 

 

2.13 Immunofluorescence 

HOS cells grown on polystyrene coverslips (Thermo Fisher Scientific) were transfected with 

expression plasmids for wild type FIV Vif or mutants using Lipofectamine LTX (Thermo Fisher 

Scientific). At day two post transfection, cells were fixed in 4% paraformaldehyde in PBS for 

30 min, permeabilized in 0.1% Triton X-100 in PBS for 15 min, incubated in blocking buffer 

(10% FBS in PBS) for 1 h, and then cells were stained by mouse anti-V5 antibody in a 1:1,000 

dilution in blocking solution for 1 h. Donkey anti-mouse Alexa Fluor 488 (Thermo Fisher 

Scientific) was used as a secondary antibody in a 1:300 dilution in blocking solution for 1 h. 

Finally, DAPI was used to stain nuclei for 2 min. The images were captured by using a 60 × 

objective on a Zeiss LSM 510 Meta laser scanning confocal microscope (Carl Zeiss, Cologne, 

Germany). The images were analyzed by ZEN 2.1 (blue edition) software (Carl Zeiss).  
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2.14 GST-pull down 

To determine Vif and A3 binding, 293T cells were co-transfected with 1 μg FcaA3 and 1 μg 

FIV Vif constructs that expressed a C-terminal GST tag or pkGST empty vector. 48 h later, the 

cells were lysed in IP-lysis buffer (50 mM Tris/HCl pH 8, 1 mM PMSF, 10% Glycerol, 0.8% NP-

40, 150 mM NaCl, and protease inhibitor cocktail set III (Calbiochem)). The lysates were 

cleared by centrifugation. The supernatants were incubated with 50 μl pre-equilibrated 

glutathione sepharose beads. After 2 h incubation at 4˚C in end-over-end rotation, the 

samples were washed 4 times with lysis buffer on ice. Bound proteins were eluted by boiling 

the beads for 5 min at 95°C in SDS loading buffer. FcaA3 was detected by immunoblot using 

anti-HA antibody. The GST or Vif-GST proteins were observed by coomassie brilliant blue 

staining.  

 

2.15 Immunoprecipitation 

293T cells were transfected with FIV Vif-V5 together with pcDNA3-myc-CUL5 or T7-Elongin 

C-pcDNA3, HA-Elongin B-pcDNA3.1(+)-Zeo or FcaA3Z2bZ3-HA expression plasmids. At 48h 

post-transfection, the cells were harvested and lysed in IP-lysis buffer (50 mM Tris/HCl pH 8, 

10% Glycerol, 0.8% NP-40, 150 mM NaCl) with protease inhibitor cocktail set III (Calbiochem, 

Darmstadt, Germany) on ice for 20 min. Cell lysates were clarified by centrifugation at 

10,000g for 30 min at 4°C. The supernatant were incubated with 15 μl rabbit anti-c-myc 

agarose affinity gel antibody beads (A7470, Sigma, USA) or 15 μl rat anti-HA affinity matrix 

beads (16598600, Roche, USA). After 2 h incubation at 4˚C in end-over-end rotation, the 

samples were washed 4 times with lysate buffer on ice. Bound proteins were eluted by 

boiling the beads for 5 min at 95°C in SDS loading buffer. The eluted materials were 

subsequently analyzed by immunoblotting. To detect the interaction of FIV Vif with 

endogenous CUL5, 5 x 105 293T cells in 6-well plates were transfected with wild type FIV Vif 

or indicated mutant expression plasmids. The cells were harvested like above, and 500 µl cell 

lysis were incubated with 2 µg mouse anti-V5 antibody (MCA1360, ABDserotec, Düsseldorf, 

Germany) and 20 µl protein A/G plus agarose (Santa Cruz, Heidelberg, Germany) for 4 h at 

4°C in end-over-end rotation. The samples were washed 4 times after 4 h incubation, and 

bound proteins were analyzed by immunoblotting.  
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Fig. 2.4 The Scheme of Co-IP for detecting FcaA3s-FIV Vif interaction. Feline APOBEC3s (HA 

tag) and FIV Vif (V5 tag) expression plasmids are cotransfected into 293T cells. 48 hours 

later, 293T cells are harvested. Cell lysis is incubated with anti-HA agarose beads at 4°C for 2 

hours. Then the interacted proteins are detected by western blotting. 
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Fig. 2.5 The Scheme of Co-IP for detecting Cullin-FIV Vif interaction. Cullin (myc tag) and FIV 

Vif (V5 tag) expression plasmids are cotransfected into 293T cells. 48 hours later, 293T cells 

are harvested. Cell lysis is incubated with anti-myc agarose beads at 4°C for 2 hours. Then 

the interacted proteins are detected by western blotting. 

 

2.16 Vif sequences from naturally infected cats 

Fifteen samples of peripheral blood of domestic cats naturally infected with FIV were 

submitted to DNA extraction. DNA was extracted using buffer saturated phenol and 

submitted to three PCRs to detect proviral and genomic DNA. In order to amplify the vif 

genes, a semi-nested PCR was developed. In the first round of amplification the primers 

FIV_vif_PF and Env_PR were used to obtain a 3 kb amplicon using the Phusion High-Fidelity 

DNA Polymerase (New England Biolabs, Ipswich, USA). In the second round of amplification 
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the primers FIV_vif_PF and FIV_vif_PR were used and the PCR product was obtained with 

Taq DNA Polymerase (Thermo Fisher Scientific). The product was cloned into pCR2.1 vector 

using TOPO TA Cloning kit (Thermo Fisher Scientific) and submitted to sequencing. The A3Z3 

haplotype of each sample was determined using a previously described protocol (165) using 

primers A3H2F and A3H3R, and named (see recent report (190)). Sequences were analysed 

with the Geneiuos software (Biomatters, Auckland, New Zealand). More information about 

A3Z3 haplotype and the corresponding FIV Vif sequence are shown in table 2. This part of 

work was performed by my project cooperators, Lucía Cano Ortiz and Ana Cláudia Franco 

from laboratory of Virology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil. 

 

2.17 Homology Modeling  

We modeled the complex of FIV Vif and Cul5 based on the X-ray crystal structure of the HIV-

1 Vif and Cul5 complex as a template (158). Owing to the low sequence identity between FIV 

and HIV-1 Vif, we performed the modeling in an iterative fashion. We used ClustalW2 (158) 

to align the sequences, using the (T/S)LQ-BC box and the conserved 174IR175 motif as 

anchor points to guide the alignment. Next, we modeled the complex employing Modeler 

v9.10 (199) and, subsequently, manually curated the sequence alignment based on the 

resulting models: Accounting for a possible zinc dependency of FIV Vif, cysteines in the FIV 

Vif sequence, which in the models were structurally close to zinc binding cysteine and 

histidine residues in HIV-1 Vif, were aligned to these zinc binding residues in the HIV-1 

sequence (C113, C114, H108, and H139). Furthermore, we used information on the 

secondary structure of FIV Vif, predicted by PSIPRED (200) to guide the manual curation of 

the sequence alignment. The final model was then used to predict interacting residues. The 

model is accessible at the Protein Model Data Base (PMDB; 

https://bioinformatics.cineca.it/PMDB/main.php) with accession code: PM0081296. This 

part of work was performed by my project cooperators, Christoph G. W. Gertzen and Holger 

Gohlke from Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University 

Düsseldorf, Düsseldorf, Germany 

 

 

 

https://bioinformatics.cineca.it/PMDB/main.php
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2.18 Nucleotide sequence accession numbers 

The GenBank accession numbers for FIV Vif are: FIV C36 (AY600517.1); FIV 34TF10 

(M25381.1); FIV PRR (M36968.1); FIV TM-2 (M59418.1); FIV Shizuoka (LC079040.1); FIV Oma 

(AY713445); FIV Lion B (EU117991); FIV Lion E (EU117992); FIV puma A (U03982); FIV bobcat 

A (KF906143); FIV puma B.1 (DQ192583); FIV puma B.2 (KF906194); Vif_FIV_RS09 

(KX668638); Vif_FIV_RS11 (KX668640); Vif_FIV_RS13 (KX668642); Vif_FIV_RS02 (KX668631); 

Vif_FIV_RS04 (KX668633); Vif_FIV_RS08 (KX668637); Vif_FIV_RS14 (KX668643); Vif_FIV_RS06 

(KX668635); Vif_FIV_RS12 (KX668641); Vif_FIV_RS03 (KX668632); Vif_FIV_RS05 (KX668634); 

Vif_FIV_RS07 (KX668636); Vif_FIV_RS10 (KX668639); Vif_FIV_RS01 (KX668630); Vif_FIV_RS15 

(KX668644). The feline APOBEC3 and human APOBEC3G GenBank accession numbers are: 

FcaA3Z2b (AY971954), FcaA3Z3 (EU109281), FcaA3Z2bZ3 (EU109281) and HsaA3G 

(NM_021822). Human SERINC5 (NM_178276.6); Chimpanzee SERINC5 (XM_016953076.1); 

African green monkey SERINC5 (XM_007976640.1); Rhesus Macaque SERINC5 

(XM_015140335.1); Feline SERINC5 (XM_011284262.3); Equine SERINC5 (XM_001503874.4); 

Rabbit SERINC5 (XM_017344548.1); Mouse SERINC5 (NM_172588.2). Human SERINC3 

(NM_006811.3); Chimpanzee SERINC3 (NM_001280388.1); African green monkey SERINC3 

(XM_008016564.1); Rhesus Macaque SERINC3 (NM_001260972.1); Feline SERINC3 

(XM_011280708.3); Equine SERINC3 (XM_001917430.4); Rabbit SERINC3 

(XM_008274475.2); Mouse SERINC3 (NM_012032.4). 

 

2.19 Statistical analysis  

Data are represented as the mean with SD in all bar diagrams. Statistically significant 

differences between two groups were analyzed using the unpaired Student’s t-test with 

GraphPad Prism version 5 (GraphPad software, San Diego, CA, USA). A p value  0.05 was 

considered statistically significant: P value < 0.001 extremely significant (***), 0.001 to 0.01 

very significant (**), 0.01 to 0.05 significant (*), > 0.05 not significant (ns). 
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3. Results 

3.1 Identification of FIV Vif domains responsible for feline A3 degradation 

3.1.1 Identification of FIV Vif determinants specific for feline A3Z2 degradation.  

Previous studies have described that feline A3 cytidine deaminases can act as restriction 

factors for FIV, which are counteracted by the FIV Vif protein (50, 52, 161, 164). However, 

the molecular interaction between FIV Vif and feline A3s is poorly understood. In order to 

identify determinants in the FIV Vif protein that are specific to the degradation of different 

feline A3 proteins, I used a FIV from domestic cats (Felis catus, Fca), hereafter referred to as 

FIV. First several FIV Vif constructs were generated that had N-terminal deletions. The amino 

acids 1-24, 1-49, 1-73, or 1-103 of FIV Vif were deleted, respectively, termed FIV Vif T1, FIV 

Vif T2, FIV Vif T3 and FIV Vif T4 (Fig. 3.1A). Co-transfection experiments of cat-derived A3s 

and FIV Vif expression plasmids were performed in 293T cells. All A3 constructs expressed 

the corresponding A3 protein with a C-terminal HA-tag, whereas Vif was expressed as a C-

terminal V5-tag fusion protein (Materials and Methods 2.8). Immunoblots of protein extracts 

from cells co-expressing both A3 and Vif were used as readout for the degradation of the 

respective A3 protein (Materials and Methods 2.12). The results showed that wild type FIV 

Vif induced degradation of single-domain feline A3Z2b, A3Z3 and double-domain A3Z2bZ3 in 

agreement with previous reports (161, 162). FIV Vif T1 induced degradation of single-domain 

feline A3Z3 and double-domain A3Z2bZ3, but could not mediate the degradation of feline 

A3Z2b, which suggested the possibility that amino acids 1-24 of FIV Vif are specific for 

interaction with feline A3Z2b (Fig. 3.1B). FIV Vif T2 failed to deplete feline A3Z3 and A3Z2b, 

but moderately induced degradation of feline A3Z2bZ3 (Fig. 3.1B). All three feline A3 

proteins showed resistance to FIV Vif T3 and T4 (Fig. 3.1B). Taken together, these results 

implied that amino acids 1-24 of FIV Vif are specific to feline A3Z2b degradation, while the 

feline A3Z3 interaction site may localize to residues 24-49 of FIV Vif.  
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Fig. 3.1 The N-terminal region of FIV Vif determines specific A3 degradation. (A) Schematic 

structure of FIV Vif N-terminal deletion constructs (T1, T2, T3, T4). The C-terminal amino 

acids TLQ that interact with Elongin B and Elongin C (BC box) of the E3 complex are shown. 

The numbers represent the amino acids position in FIV Vif. (B) FIV Vif wild type, FIV Vif T1, 

FIV Vif T2, FIV Vif T3 or FIV Vif T4 were co-expressed with FcaA3Z2bZ3, FcaA3Z3 and 

FcaA3Z2b. A3s, FIV Vifs and tubulin proteins were detected by using anti-HA, anti-V5 and 

anti-tubulin antibodies, respectively. 

 

A previous study demonstrated that FIV Vif from lions also counteracted feline A3s from the 

domestic cat (162). Thus, I analyzed sequences of domestic cat FIV Vif and lion FIV Vif, and 

identified conserved amino acids that localized at residues 1-24 of domestic cat FIV Vif as 

potential feline A3Z2b interaction sites (Fig. 3.2A). Next, these conserved residues were 

mutated in cat FIV Vif to alanines and tested for their degradation activity of feline A3Z2b 
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(Materials and Methods 2.9). Filippis et al. showed that mutations of a big residue into 

alanine or glycine rarely lead to major rearrangements in the direct 3-D environment (201). 

The results showed that alanine mutations in residues 3EE4, 7QV8 and 9SR10 did not alter 

the FIV Vif activity to degrade feline A3Z2b, whereas replacing 12LF13 and 18GG19 by 

alanines abolished FIV Vif mediated A3Z2b degradation (Fig. 3.2B). In addition, it was found 

that mutations in the 12LF13 and 18GG19 motifs had no influence on FIV Vif-induced 

degradation of feline A3Z3 and A3Z2bZ3 (Fig. 3.2C). These results demonstrated that 

residues of 12LF13 and 18GG19 of FIV Vif selectively determine degradation of feline A3Z2b. 

 

Fig. 3.2 Identification of determinants in FIV Vif important for degradation of feline A3Z2b. 

(A) Sequence alignment of domestic cat FIV and lion FIV Vif. The numbers represent amino 

acids position in domestic cat FIV Vif; the boxes represent the conserved regions between 

domestic FIV Vif and lion FIV Vif. The distinct amino acids between two Vif proteins are 

shown in black. Two extra regions of 24-27 and 34-45 are additionally indicated. (B) 

FcaA3Z2b was co-expressed with FIV Vif wild type or Vif alanine mutants of the indicated 
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residues. A3, FIV Vif and tubulin proteins were detected by using anti-HA, anti-V5 and anti-

tubulin antibodies, respectively. (C) FcaA3Z2b, FcaA3Z3 or FcaA3Z2bZ3 were co-expressed 

with FIV Vif wild type and alanine Vif mutants of residues 12LF13 or 18GG19. A3, FIV Vif and 

tubulin proteins were detected by using anti-HA, anti-V5 and anti-tubulin antibodies, 

respectively. 

 

3.1.2 Identification of feline A3Z3 interaction sites of FIV Vif. 

Figure 3.1 suggested that the amino acids from 24 to 49 of FIV Vif interacted with feline 

A3Z3. To identify the specific feline A3Z3 interaction residues in this region, I analyzed the 

sequences of cat FIV Vif and lion FIV Vif. I found that residues 24-27 and 34-45 were 

conserved, while amino acids 27-34 of Vif were more variable (Fig. 3.2A). Then, I replaced 

the conserved residues (26YI27, 34ER35, 40KD41, 43KK44 and 45RL46) in cat FIV Vif by 

alanines (Materials and Methods 2.9; Fig. 3.3A). Additionally, I chose nine conserved motifs 

in the region between residues 53 and 184 for alanine mutations (53FI54, 57LR58, 61EGI63, 

65WSF67, 81VAG83, 95YI96, 119VN120, 126GFM128 and 184C187C) (Materials and 

Methods 2.9; Fig. 3.3A). All FIV Vif mutants were co-expressed with either one of the three 

feline A3 proteins (A3Z2b, A3Z3 and A3Z2bZ3) and immunoblots were used to evaluate the 

expression of A3 proteins and FIV Vif mutants (Materials and Methods 2.10 and 2.12). The 

result showed that all FIV Vif mutants displayed similar expression levels (Fig. 3.3B). The 

alanine mutant of 26YI27 showed no degradation activity of any feline A3 protein, while FIV 

Vif mutants of 34ER35, 40KD41 and 43KK44 diminished feline A3Z2b, A3Z3 and A3Z2bZ3 

levels as efficient as wild type FIV Vif (Fig. 3.3B). Alanine mutations introduced in position 

45RL46 of FIV Vif had a minor influence on feline A3 degradation (Fig. 3.3B). Mutants of 

residues 53FI54, 57LR58, 61EGI63 and 65WSF67 slightly induced degradation of feline 

A3Z2b, not much of A3Z3, and triggered quite efficient degradation of feline A3Z2bZ3 (Fig. 

3.3B). All three feline A3 proteins were mostly resistant to alanine mutants of Vif residues 

81VAG83, 95YI96, 119VN120, 126GFM128 and 184C187C (Fig. 3.3B). Next, I focused on the 

motif of residues 26YI27 in FIV Vif. Single mutations around this motif in FIV Vif were 

generated (M24A, L25A, Y26A, I27A and L30A), and additionally residues 28SR29 and F47 

replaced by alanines (Materials and Methods 2.9; Fig. 3.3A and C). The immunoblotting 
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results of the A3 degradation test revealed that mutations M24A, L25A and I27A of FIV Vif 

specifically blocked the capacity to induce degradation of feline A3Z3, but had no influence 

on degradation of feline A3Z2b and A3Z2bZ3 (Fig. 3.3C). Interestingly, the mutation Y26A 

impaired FIV Vif degradation for all three feline A3 proteins. In contrast, mutations in 

residues 28SR29, L30 and F47 of FIV Vif had no effect on feline A3 degradation (Fig. 3.3C).  

 

Fig. 3.3 Identification of determinants in FIV VIF that confer degradation of feline A3Z3. (A) 

FIV Vif schematic structure, locations of tested mutations indicated. The numbers are the 

position of amino acids, all these amino acids were mutated to alanines, and additionally 

some residues were mutated to other amino acids. The residues that determine FIV Vif 

degradation activity against FcaA3Z3 are shown in red. (B, C) FcaA3Z2b, FcaA3Z3 or 

FcaA3Z2bZ3 were co-expressed with FIV Vif wild type and Vif mutants. A3, FIV Vif and 

tubulin proteins were detected by using anti-HA, anti-V5 and anti-tubulin antibodies, 
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respectively. (D) Leucine 25 of FIV Vif was replaced by several amino acids: alanine-A, serine-

S, glycine-G, valine-V, isoleucine-I, phenylalanine-F and tyrosine-Y. FcaA3Z3 was co-

expressed with FIV Vif wild type and Vif mutants. A3, FIV Vif and tubulin proteins were 

detected by using anti-HA, anti-V5 and anti-tubulin antibodies, respectively. 

Next, I constructed several derivatives of FIV Vif in which residue 25 was replaced by 

different amino acids (Materials and Methods 2.9; Fig. 3.3D). However, L25A, L25S, L25G and 

L25V mutants could not degrade feline A3Z3, whereas L25I, L25F as well as L25Y mutants 

degraded feline A3Z3 as efficiently as wild type FIV Vif (Fig. 3.3D). Compared with amino 

acids alanine, serine, glycine and valine, the residues isoleucine, phenylalanine and tyrosine 

have a more complex side-chain. These results may suggest that the specific spatial distance 

of the FIV Vif-A3Z3 interaction area determines the FIV Vif induced degradation of feline 

A3Z3.  

 

3.1.3 FIV Vif mutants fail to counteract the anti-viral activity of feline A3s.  

Previous studies reported that FIV Vif inhibited feline A3s by E3-complex induced 

degradation, and thus prevented A3 incorporation into FIV particles (161, 168). Thus, I 

analyzed the anti-FIV activity of feline A3Z3 in the presence of wild type or mutant FIV Vifs 

by using a single round FIV-luciferase reporter virus (Materials and Methods 2.11). As 

previously reported (162), feline A3Z3 inhibited FIVΔvif 5-7-fold, which could be 

counteracted by wild type FIV Vif (Fig. 3.4A). However, the presence of defined FIV Vif 

mutants (M24A, L25A, L25S, L25G, L25V and I27A) destroyed this FIV Vif activity (Fig. 3.4A). 

The immunoblots of virus-producing cells indicated that FIV wild type Vif decreased the 

protein level of feline A3Z3 and prevented feline A3Z3 incorporation into FIV viral particles 

(Fig. 3.4B). However, the tested FIV Vif mutants had no effect on the protein level of feline 

A3Z3 in cells and failed to generate A3-free virions (Fig. 3.4B).  

FIV Vif counteracts feline A3s by interacting with both single Z2 and Z3 domains (161, 162). 

Hence, I generated a FIV Vif mutant in which the A3Z2 interaction sites 18GG19 and the 

A3Z3 interaction site L25 were replaced by alanines, termed FIV Vif.18GG19+L25A (Materials 

and Methods 2.9). Testing this Vif mutant, I found that it did not neutralize the anti-viral 

activity of feline A3Z2bZ3. The Vif mutants of residues 18GG19 and L25 rescued most of the 
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infectivity of FIVΔvif compared to infections without Vif (vector) (Fig. 3.4C). The 

corresponding immunoblots from virus producing cells and viral particles demonstrated that 

FIV Vif.18GG19+L25A did not influence feline A3Z2bZ3 protein levels and its viral 

incorporation (Fig. 3.4D).  

 

Fig. 3.4 FIV Vif mutants cannot counteract the anti-viral activity of feline A3s. (A, C) Single-

round FIVΔvif luciferase reporter virions were produced in the presence of feline A3 

expression plasmids (FcaA3Z3 or FcaA3Z2bZ3) with FIV Vif wild type or Vif mutants, 

pcDNA3.1(+) was added as a control (vector). Infectivity of reporter vectors was determined 

by quantification of luciferase activity in 293T cells transduced with vector particles. (B, D) 

Cell lysates of FIV producer cells examined in (A, C) were used to detect the expression of 

feline A3s and FIV Vif by anti-HA and anti-V5 antibodies, respectively. Cell lysates were also 

analyzed for equal amounts of total proteins using anti-tubulin antibody. Feline A3s 

encapsidated into FIV virus like particles (VLPs) were detected by anti-HA antibody. VSV-G 
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and FIV p24 proteins in VLPs were also detected by anti-VSV-G and anti-FIV p24 antibodies 

separately. Asterisks represent statistically significant differences: ***, p < 0.001; **, 0.001 < 

p < 0.01; *, 0.01 < p < 0.05 [Dunnett’s t test]. 

 

3.1.4 FIV Vif mutants failing to degrade A3s still can bind to A3.  

The results above demonstrated that FIV Vif residues 12LF13, 18GG19, M24, L25 and I27 

determine the specific degradation of either feline A3Z2 or A3Z3. To determine whether 

mutations in these Vif sites alter the cellular localization of Vif, wild type and mutant FIV Vif 

were expressed in HOS cells. The cellular localization was determined by confocal 

microscopy (Materials and Methods 2.13). The results showed that wild type FIV Vif was 

mainly localized to the cytoplasm. I also observed some small levels of wild type FIV Vif 

localizing to the nucleus (Fig. 3.5), which was consistent with a previous study (202). The 

cellular localizations of the FIV Vif mutants were found to be identical to wild type FIV Vif 

(Fig. 3.5). These results suggest that mutations in 12LF13, 18GG19, M24, L25 and I27 of FIV 

Vif impair the degradation of selective feline A3s, but do not alter the subcellular localization 

of FIV Vif.  
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Fig. 3.5 Cellular localization of FIV Vif and Vif mutants. HOS cells were transfected with FIV 

Vif wild type and Vif mutants. All Vif mutants were generated by replacing the indicated 

residues by alanines. The numbers represent the amino acids position. To detect FIV Vif and 

Vif mutants (green) immunofluorescence, staining was performed with an anti-V5 antibody. 

Nuclei (blue) were visualized by DAPI staining. The white bar indicates 10 µm. The white 

arrows indicate Vif protein in the nucleus.  

 

To characterize the determinants of binding of FIV Vif to feline A3, GST-pull down assays 

were performed (Materials and Methods 2.14). I tested FIV Vif constructs with a GST-tag, 

which had a C-terminal deletion, expressing the first 160 (Vif 1-160), 110 (Vif 1-110), 80 (Vif 

1-80) or 50 (Vif 1-50) amino acids of Vif (Fig. 3.6A). For the full length of the FIV Vif, I 

inactivated the BC box (TLQ-AAA) to prevent A3 degradation activity. These five Vif 
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constructs were co-transfected with a feline A3Z2bZ3 expression plasmid into 293T cells. 48 

h later, cells were harvested, and Vif was pulled down by glutathione sepharose beads. The 

binding between FIV Vif and feline A3Z2bZ3 was evaluated by detecting the A3Z2bZ3 protein 

in the pull-down complex. It was found that GST alone could not pull down feline A3Z2bZ3, 

while it was detected in the pull-down complex of Vif.TLQ-AAA, Vif.1-160, Vif.1-110 and 

Vif.1-80 (Fig. 3.6B). Vif.1-50 displayed very weak binding to feline A3Z2bZ3, compared to the 

GST control (Fig. 3.6B). These results may suggest that residues 50 to 80 of FIV Vif confer 

binding to feline A3Z2bZ3. However, the specific A3Z2 and A3Z3 degradation determinants 

locate at residues 1-50 of FIV Vif (Fig. 3.2 and 3.3). To test whether these determinants were 

involved in the binding of A3Z2 and A3Z3, I generated several derivatives of Vif.1-110 in 

which residues 12LF13, 18GG19, M24, L25 or I27 were replaced by alanines separately (Fig. 

3.6A). The binding to A3Z2 or A3Z3 of these mutants was detected by GST-pull-down assays. 

It was found that Vif.1-110, Vif.1-110-12LF13 and Vif.1-110-18GG19 had identical protein 

level in the pull-down complex, and immunoprecipitated similar amounts of feline A3Z2b 

protein (Fig. 3.6C). Vif.1-110 could also bind to feline A3Z3, and introducing M24A and L25A 

into Vif.1-110 did not alter its binding affinity to feline A3Z3 (Fig. 3.6D). Compared with Vif.1-

110, I detected less Vif.1-110-I27A and feline A3Z3 proteins in immunoprecipitated 

complexes (Fig. 3.6D). Taken together, these results suggest that the specific A3Z2 and A3Z3 

degradation determinants in FIV Vif (12LF13 and 18GG19 for A3Z2; M24, L25 and I27 for 

A3Z3) do not determine to any great extent the Vif-A3 binding, which, however, is regulated 

by the region from residue 50 to 80 of the FIV Vif.  
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Fig. 3.6 Binding of FIV Vif to feline A3s. (A) Schematic structure of C-terminal truncations of 

FIV Vifs. TLQ-AAA represents the inactive BC box of FIV Vif. FIV Vif TLQ-AAA, FIV Vif 1-50, FIV 

Vif 1-80, FIV Vif 1-110 and FIV Vif 1-160 constructs were fused with a C-terminal GST tag. (B, 

C, D) 293T cells were co-transfected with an expression plasmid encoding GST or different 

FIV Vif constructs fused with a C-terminal GST, as indicated. At 48 h, the transfected cells 

were lysed and incubated with glutathione-sepharose beads. The feline A3s of input and 

bound fractions were detected by immuno blots using anti-HA antibody. The pull-down 

fractions were also used for coomassie staining to show the GST or Vif-GST. * indicates 

unspecific bands.  
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3.1.5 The specific A3Z2 and A3Z3 interaction sites are conserved in FIV Vif variants except 

puma FIVPco Vif.  

After the identification of the selective A3Z2 and A3Z3 interaction sites of domestic cat FIV 

Vif (isolate FIV-34TF10), 15 Vif sequences that belong to naturally FIV infected cats, and their 

respective A3Z3 haplotypes, were analyzed. Our collaboration partner, Lucía Cano Ortiz and 

Ana Cláudia Franco identified three animals with haplotype I, four with haplotype II, two 

with III, four with IV and one animal displayed haplotype V (165). A3Z3 haplotype of one 

sample was not determined. All 15 Vifs isolated showed that the A3Z2 and A3Z3 interaction 

sites are highly conserved (Fig. 3.7A and Table 3.1). It was described that FIV from several 

felid species showed genetic divergence, which suggests virus-host adaptations and rare 

cross-species transmissions in the wild (39, 40). Thus, I analyzed Vif sequences of additional 

domestic cat FIV strains and Vif from several non-domestic cat FIVs. I identified that the 

feline A3Z2 and A3Z3 interaction sites are conserved in domestic cat FIV Vif from subtype A, 

B and D (Fig. 3.7B). FIV Vif from pallas cats (Otocolobus manul) had one substitution (F13Y) 

at the feline A3Z2 interaction sites (Fig. 3.7B). The A3Z2 and A3Z3 interaction sites in lion FIV 

Vif from subtype B and E were identical to domestic cat FIV Vif except one substitution 

(L25M) in FIV lion (Panthera leo) subtype E Vif (Fig. 3.7B). Interestingly, Vif from three FIVPco 

strains of puma (Puma concolor) and one FIVPco strain of bobcat (Lynx rufus) had an evident 

difference compared to the other FIV Vifs, especially the Vif from the FIV subtype B of puma 

had two discontinuous deletions at the N-terminal region (Fig. 3.7B) (41). Taken together, 

the sequence analysis suggests that the A3Z2 and A3Z3 interaction sites of the FIV Vif 

protein are highly conserved in different domestic cat FIV Vifs in agreement with its 

importance in counteracting A3 restriction of the host and interestingly conserved as well in 

some FIVs from non-domestic cats.  
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Sequence Name Vif Haplotype 

A3Z3 

Alleles 

A3Z3 

Vif_FIV_RS09 I Homozygous 

Vif_FIV_RS11 I Homozygous 

Vif_FIV_RS13 I Homozygous 

Vif_FIV_RS02 II Heterozygous 

Codon 65: S or A 

Vif_FIV_RS04 II Heterozygous 

Codon 65: S or A 

Vif_FIV_RS08 II Heterozygous 

Codon 65: S or A 

Vif_FIV_RS14 II Homozygous 

Codon 65: S 

Vif_FIV_RS06 III Heterozygous 

Codon 65: S or A 

Codon 68: Q or R 

Codon 96: I or V 

Vif_FIV_RS12 III Homozygous 

Codon 65: S 

Heterozygous 

Codon 68: R or Q 

Codon 94: T or A 

Vif_FIV_RS03 IV Heterozygous 

Codon 65: S or A 

Codon 96: I or V 

Vif_FIV_RS05 IV Heterozygous 

Codon 65: S or A 

Codon 96: I or V 

Vif_FIV_RS07 IV Heterozygous 

Codon 65: S or A 

Codon 96: I or V 

Vif_FIV_RS10 IV Heterozygous 

Codon 65: S or A 

Codon 96: I or V 

Vif_FIV_RS01 V Heterozygous 

Codon 65: I or V 

Vif_FIV_RS15 not characterized  

 

Table 3.1 Haplotypes of feline A3Z3 in FIV infected cats. This table was provided by Lucía 

Cano Ortiz and Ana Cláudia Franco from laboratory of Virology, Federal University of Rio 

Grande do Sul, Porto Alegre, Brazil. 
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Fig. 3.7 Sequence alignment of Vif from different FIV stains. (A) Sequence alignment of Vif 

(N-terminus) naturally isolated from cats infected with subtype B FIV in Brazil with known 

A3Z3 haplotypes. (B) Subtype A of FIV includes FIV C36, FIV 34TF10 and FIV PRR. Subtype B 

includes FIV TM2. FIV Shizuoka belongs to subtype D. Other FIV Vifs sequence are from non-

domestic cats of FIV Oma (pallas cats), FIV lion B, FIV lion E, FIV puma A, FIV bobcat Aand FIV 

puma B. The different residues between these FIV Vifs are shown. Dots represent identical 

residues with Vif of FIV C36. Hyphens indicate sequence deletion. The feline A3Z2 and A3Z3 

interaction sites are boxed.  
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3.2 Identification of feline A3s domains targeted by FIV Vif and HIV-2/SIVmac Vif 

3.2.1 FIV and HIV-2/SIVmac/smm Vif induced degradation of felines A3s.  

In order to identify the molecular interaction of the FIV Vif protein and feline A3 proteins, 

co-transfection experiments of cat-derived A3s and FIV Vif expression plasmids were 

performed in 293T cells (Materials and Methods 2.10). All A3 constructs expressed the 

corresponding A3 protein as a C-terminal HA-tag, whereas Vif was expressed as a C-terminal 

V5-tag fusion protein (Materials and Methods 2.8). In addition, I also studied Vifs derived 

from HIV-1, HIV-2, SIVmac, and SIVsmm. Immunoblots of protein extracts from cells co-

expressing both A3 and Vif were used as a read-out for degradation of the respective A3 

protein. Results in Fig. 3.8 show that FIV Vif induces degradation of single-domain feline 

A3Z2a, A3Z2b, A3Z2c, A3Z3, and double-domain A3Z2bZ3 and A3Z2cZ3 in agreement with 

previous reports (168, 192, 203, 204). The double-domain feline A3Z2bZ3 and A3Z2cZ3 were 

degraded by SIVmac Vif as seen before (173, 203), as well by the Vifs of SIVsmm and HIV-2. 

For subsequent experiments I used the expression plasmid FcaA3Z2bZ3, hereafter referred 

to as feline A3Z2Z3 for simplicity. 
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Fig. 3.8 The interaction of feline APOBEC3s with FIV Vif. 293T cells were transfected with 

expression plasmids for FcaA3Z2a, FcaA3Z2b, FcaA3Z2c, FcaA3Z3, FcaA3Z2bZ3 and 

FcaA3Z2cZ3 together with HIV-1, SIVmac, HIV-2 and SIVsmm or FIV Vif or no Vif (replaced by 

pcDNA3.1). Cells were harvested 48 h later. FcaA3s, Vifs and tubulin were visualized by 

immunoblot using anti-HA, anti-V5 and anti-tubulin antibodies. 

 

3.2.2 Identification of feline A3Z3 residues important for FIV Vif induced degradation.  

The A3Z3 region position 23 to 50 differs in 16 amino acids between human and feline 

A3Z3s, and contains highly conserved amino acid positions. I mutated thus most feline-

specific residues in feline A3Z3, in positions 35 to 38 and 40 to 48 (Materials and Methods 

2.9; Fig. 3.9A). These mutated A3s were characterized for resistance to degradation by co-

expression with FIV Vif (Materials and Methods 2.10). I found that only A3Z3s mutated at 

position 41+42 (LI>>TP and LI>>AA) showed partial resistance to degradation by Vif (Fig. 

3.9B). The A65I in feline A3Z3 has been described in Brazilian cats and discussed to be a 

relevant resistance mutation against FIV (165, 205). Under our experimental conditions, 

A3Z3 mutated in position 65 (A65I) displayed only little resistance to Vif-mediated 

degradation (Fig. 3.9B). However, very important, the combination of mutations, A65I and 

L41A-I42A, resulted in an A3Z3 variant that showed complete resistance to FIV Vif 

degradation (Fig. 3.9B). 
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Fig. 3.9 Generation of FIV Vif resistant FcaA3Z3. (A) Representation of FcaA3Z3 protein. 

Residues investigated are shown. CD: cytidine deaminase domain. (B) Several mutants at N-

terminal region of FcaA3Z3 were generated. To analyze the sensitivity of FcaA3Z3 mutants to 

FIV Vif, 293T cells were co-transfected with expression plasmids for FcaA3Z3 wild type 

(FcaA3Z3) or indicated mutants and FIV Vif. 48 h later, FcaA3Z3, Vif and tubulin proteins 

were detected by immunoblot. 

 

3.2.3 Identification of feline A3Z2 residues important for FIV Vif induced degradation.  

The felid A3Z2s (puma A3Z2, Lynx A3Z2 and Tiger A3Z2) are very similar to FcaA3Z2 as they 

share 89% - 93% identically conserved residues, whereas cat A3Z2 and human A3C are much 

more diverse and share only 47% identical amino acids. Thus, it was identified that four 

positions in which all big cat A3Z2s differed from FcaA3Z2, in positions N18, T44, D165 and 

H166 (Fig. 3.10A). Accordingly, the positions 18 and 44 were replaced in the cat sequence 

with the corresponding residues from big cat, but found both mutants to be efficiently 

degraded by FIV Vif (Materials and Methods 2.9; Fig. 3.10B). Very similar, A3Z2.D165Y was 
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depleted when co-expressed with FIV Vif. Interestingly, mutation of residue 166 (H166N) 

generated a partially Vif-resistant A3Z2 protein. I speculated that the adjacent D165 might 

enhance the Vif-resistance seen in the H166N variant. Indeed, the A3Z2.DH-YN mutant 

showed complete resistance to FIV Vif (Fig. 3.10B). I also analyzed tiger A3Z2.Y165D but 

could not reverse the resistance to degradation by FIV Vif (Fig. 3.10B). I conclude that D165-

H166 in the C-terminal region of cat A3Z2 are important for Vif-mediated degradation 

together with other residues that remain to be characterized. 

 

Fig. 3.10 FcaA3Z2 and FcaA3Z2Z3 mutations block degradation by feline Vifs. (A) 

Representation of FcaA3Z2b protein. Residues investigated are shown. CD: cytidine 

deaminase domain. Residues different found in A3Z2 of the domestic cat and big cats 

indicated. Pti, Ple, and Lly represent Panthera tigris corbetti; Panthera leo bleyenberghi; Lynx 

lynx. (B) Expression plasmids for FIV Vif and FcaA3Z2, PtiA3Z2 or several mutants of feline 

A3Z2 were co-transfected into 293T cells. The expression of A3 and Vif proteins were 

detected by using anti-HA and anti-V5 antibodies 48 h later. 



64 

 

 

3.2.4 The Linker of feline A3Z2Z3 is important for HIV-2/SIVmac induced degradation. 

Under some conditions, APOBEC3s act as restriction factors for cross-species transmission of 

lentiviruses. To obtain an animal model for HIV based on cats, it is required to eliminate the 

restriction of cat A3s. Thus, the interaction between cat A3s and HIV or SIV Vif was also 

investigated in this study. 

The Vif-mediated degradation profile exclusive to A3Z2Z3s may indicate that the HIV-

2/SIVmac/smm Vifs require for interaction with the feline A3Z2Z3 a protein domain that is 

absent in the single-domain A3Z2 or A3Z3. It was speculated that the homeo-box domain 

insertion (linker region) could play a central role in these Vif interactions. To test our 

hypothesis, three constructs were assayed: an A3Z2Z3 in which the linker was deleted 

(ΔLinker); and two versions of A3Z2Z3 in which either residues 223 to 240 (Δ222) or residues 

211 to 240 (Δ210) in the linker were removed (Materials and Methods 2.9; Fig. 3.11A). All 

these constructs successfully expressed protein upon transfection, and FIV Vif was able to 

degrade all of them (Materials and Methods 2.10). Only the linker truncations Δ222 and 

Δ210 were efficiently degraded by Vif of HIV-2/SIVmac/smm, whereas the ΔLinker construct 

showed very little degradation (Fig. 3.11B and C). Interestingly, the A3Z2Z3 lacking the linker 

domain (ΔLinker) showed dose-dependent moderate degradation, while mutants Δ222 and 

Δ210 showed a HIV-2/SIV Vif-dependent degradation similar as the wild type A3Z2Z3 protein 

(Fig. 3.11B and C). 
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Fig. 3.11 The linker region in FcaA3Z2Z3 is important for HIV-2/SIVmac/smm Vif induced 

degradation. (A) Schematic representation of FcaA3Z2Z3 mutants (ΔLinker, Δ222, Δ210). Z2 

and Z3 domains are shown as yellow and blue rectangle. The linker from amino acid 192 - 

241 is shown as white rectangle. (B and C) Co-transfection of increasing amounts of 

expression plasmids for (B) HIV-2 Vif and (C) SIVmac Vif with constant amounts of the 

indicated A3 expression plasmids. The expression of FcaA3s and Vifs were analyzed by anti-

HA and anti-V5 antibodies, respectively. Cell lysates were also analyzed for equal amounts of 

total proteins using anti-tubulin antibody. 

 

3.3 Identification of a conserved interface of HIV-1 and FIV Vifs with Cullin 5 

3.3.1 CUL5 and not CUL2 is required for FIV Vif degradation of feline A3s.  

A previous study reported that FIV Vif interacts with Cullin 5 (CUL5) to form an E3 ubiquitin 

ligase complex that can induce the degradation of feline A3 proteins by the proteasome 

(168). However, the mechanism by which FIV Vif binds to CUL5 remains unclear and whether 
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FIV Vif binds to other Cullin family proteins is not known. Thus, the interaction of FIV Vif with 

CUL5 and CUL2 were firstly investigated. 293T cells were transfected with expression 

plasmids for FIV Vif-V5, CUL2-myc, or CUL5-myc, then the lysates were used for co-

immunoprecipitation (co-IP) (Materials and Methods 2.10 and 2.15). The results indicated 

that FIV Vif was found in the CUL5-immunoprecipitated complex, while no FIV Vif was 

observed in the CUL2 immunoprecipitation (Fig. 3.12A). CUL2 and CUL5 interact with Rbx by 

using their C terminus that is critical for E3 ubiquitin ligase activity (See recent review (150)). 

Dominant-negative (DN) CUL5 or DNCUL2 has a C terminal deletion, which can inhibit SOCS 

box protein induced substrate degradation (194). Thus, I expressed the indicated feline A3s 

together with FIV Vif and DNCUL5 or DNCUL2 (Materials and Methods 2.10). Immunoblots of 

protein extracts from transfected 293T cells were used as a readout for the degradation of 

the respective A3 protein (Materials and Methods 2.12). The results showed that FIV Vif 

efficiently degraded all three tested feline A3s (FcaA3Z2b, FcaA3Z3, and FcaA3Z2bZ3) in the 

absence of DNCUL5 (Fig. 3.12B), which is consistent with previous studies (161, 164, 206). 

The presence of DNCUL5 enhanced the cellular protein level of Vif and abolished the 

degradation of the A3s (Fig. 3.12B). In contrast, DNCUL2 did not affect the expression of Vif 

nor the Vif-dependent FcaA3Z3 and FcaA3Z2bZ3 degradation (Fig. 3.12C). However, in the 

presence of high level of FcaA3Z2b, expression DNCUL2 slightly impaired its degradation by 

FIV Vif, possible due to DNCUL2-dependent exhaustion of endogenous ElongB/C (Fig. 3.12D). 

Additionally, I investigated the impact of the proteasome inhibitor MG132 on Vif-mediated 

A3 degradation. It was found that the degradation of FcaA3Z2bZ3 by FIV Vif was sensitive to 

MG132 treatment but comparably less sensitive than the HIV-1 Vif-induced degradation of 

human A3G (Fig. 3.12E). The reasons for these different responses to MG132 are unclear and 

might indicate different kinetics of degradation. 
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Fig. 3.12 CUL5 is required for FIV Vif induced degradation of feline APOBEC3s. (A) FIV Vif 

interacts with CUL5, but not CUL2. myc-CUL5 or myc-CUL2 expression plasmids were co-

transfected with FIV Vif-V5 expression plasmid. Cell lysates were immunoprecipitated with 

anti-myc beads and then analyzed by immunoblotting with anti-V5 antibody for FIV Vif and 

anti-myc antibody for CUL2 and CUL5. (B, C) Dominant-negative (DN)-CUL5, but not DN-

CUL2, disrupts the degradation of feline A3s induced by FIV Vif. 293T cells were co-

transfected with 300 ng expression plasmids for FcaA3Z2b-HA, FcaA3Z3-HA or FcaA3Z2bZ3-

HA; 700 ng of DN-CUL5-FLAG or DN-CUL2-FLAG with 30 ng of FIV Vif-V5. pcDNA3.1 was used 

as control plasmid to replace the FIV Vif or dominant negative CUL5/2 expression plasmids. 

Cells were analyzed by immunoblotting using anti-HA, anti-V5, anti-CUL5, anti-Flag and anti-

tubulin antibodies, respectively. (D) 293T cells were co-transfected with 50, 100 or 200 ng 
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expression plasmids for FcaA3Z2b-HA, 700 ng of DN-CUL2-FLAG with 30 ng of FIV Vif-V5. The 

immunoblotting was performed as (B). (E) FIV Vif induces the degradation of FcaA3s in a 

proteasome-dependent manner. 293T cells were transfected with HsaA3G-HA or FcaZ2bZ3-

HA; HIV-1 Vif-V5 or FIV Vif-V5 expression plasmids, pcDNA3.1 was used as empty plasmid 

control. The transfected cells were treated with the proteasome inhibitor MG132 (2.5, 5, 7.5 

or 10 μM) or DMSO as control 36 h post transfection. Cells were harvested 12 h later (48 h 

after transfection) and then analyzed by immunoblotting with anti-HA, anti-V5 and anti-

tubulin antibodies. The percentage of FcaA3 and human A3G (HsaA3G) were calculated 

relative to that in the absence of FIV Vif or HIV-1 Vif (set as 1.00).  

 

3.3.2 FIV Vif N-terminal residues are not essential for CUL5 binding.  

A previous study suggested that FIV Vif may utilize a novel mechanism for binding CUL5 

(168). To investigate which domain of FIV Vif is involved in the CUL5 interaction, I analyzed 

FIV Vif sequences from different FIV strains. I found several conserved residues at the N-

terminal protein region (residues 53 to 132). Thus, I replaced the N-terminal conserved 

residues (53FI54, 57LR58, 61EGI63, 65WSF67, 68HTR70, 71DYY73, 74IGY76, 77VRE79, 

81VAG83, 92MY93, 95YI96, 99PLW101, 105YRP107, 128MED130, and 132IEK134) of FIV Vif 

by alanines (Fig. 3.13A). All FIV Vif mutants were co-expressed with CUL5-myc in 293T cells 

(Materials and Methods 2.10). FIV Vif with a TLQ-AAA mutation served as a control because 

destroying ELOC binding destabilizes the CUL5 interaction (168). Co-immunoprecipitation 

assays followed by immunoblots were used to evaluate the binding of FIV Vif mutants to 

CUL5 (Materials and Methods 2.15). The results showed that FIV Vif with mutations in 

53FI54, 57LR58, and 77VRE79 bound CUL5, but the binding affinity appeared to be weaker 

compared to the wild type FIV Vif (Fig. 3.13B). These three FIV Vif mutants had similar 

binding affinity to FcaA3Z2bZ3 (Fig. 3.13C) and ELOB/C (Fig. 3.13D). Consistent with a 

reduced CUL5 interaction, these Vif mutants partially lost the function to induce FcaA3Z2bZ3 

degradation (Fig. 3.13E). All other Vif mutants showed no change in CUL5 binding (Fig. 

3.13B). Overall, it appears that the residues in the N-terminus (53 to 132) of FIV Vif are not 

important for the CUL5 interaction. 
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Fig. 3.13 Relevance of FIV Vif N-terminal residues for interaction with CUL5. (A) Schematic 

structure of FIV Vif. The numbers indicate the positions of amino acids mutated to alanines. 

The relative positions of the feline A3Z2 and A3Z3 interaction sites (Z2 box, Z3 box) and the 

Elongin B/C interaction site (BC box) are represented. (B) Co-immunoprecipitation of FIV Vif 

wild type and mutants with CUL5. myc-CUL5 or pcDNA3.1 empty plasmid were co-

transfected with expression plasmids for FIV Vif-V5 wild type or FIV Vif mutants. 

Immunoprecipitated complexes (IP) were analyzed by immunoblotting with anti-V5 for FIV 

Vif and anti-myc for CUL5. (C, D) 293T cells were transfected with expression plasmids for 

FcaZ2bZ3-HA, FIV Vif-V5 wild type, indicated FIV Vif mutants or pcDNA3.1 empty plasmid (C); 

or FIV Vif-V5 wild type, indicated FIV Vif mutants, T7-ELOC or HA-ELOB and pcDNA3.1 empty 

plasmid (D). Cells were harvested at 48 h after transfection, protein of cell lysates (input) and 

immunoprecipitated complexes (IP) were analyzed by immunoblots stained with anti-V5 

antibody for FIV Vif, anti-HA antibody for FcaZ2bZ3-HA and HA-ElonginB and anti-T7 

antibody for T7-ElonginC. (E) 293T Cells were transfected with FcaA3Z2bZ3-HA and FIV Vif-

V5 wild type or indicated FIV Vif mutant expression plasmids or pcDNA3.1 empty plasmid. 
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Cells were harvested and analyzed by immunoblotting with anti-HA, anti-V5 and anti-tubulin 

antibodies, respectively. 

 

3.3.3 Identification of determinants in the C-terminus of FIV Vif that regulate binding to 

CUL5.  

It has been shown that in HIV-1 Vif, CUL5 interacts with the C-terminal HCCH box (207-209). 

Thus, the C-terminal region of Vifs from different FIV strains were analyzed. As in HIV-1, all 

FIV Vifs contained a TLQ-BC box that is essential for ELOB/C binding (Fig. 3.14A). In addition, 

a KCCC motif that is similar to the HCCH motif of HIV-1 Vif is found in FIV Vif. In the KCCC 

motif, I identified a conserved hydrophobic domain (172MIIRGE177; Fig. 3.14A). Despite the 

low sequence identity of only 13% in this region between FIV Vif and HIV-1 Vif, this 

hydrophobic domain matched when the C-terminal regions of both Vifs were aligned (Fig. 

3.14A). In the complex structure of HIV-1 Vif/CUL5 (158), residues 120IR121 of HIV-1 Vif are 

involved in the direct interaction with CUL5 (Fig. 3.14B). To investigate whether the 

equivalent hydrophobic domain 172MIIRGE177 of FIV Vif is also involved in CUL5 binding, 

172MI173, 174IR175, or 176GE177 were replaced with alanines (Materials and Methods 2.9; 

Fig. 3.14C). The binding activities of these FIV Vif mutants with CUL5 were evaluated by co-IP 

assays (Materials and Methods 2.15). The results showed that FIV Vif 176177GE-AA bound 

CUL5 similar to the wild type FIV Vif and 172173MI-AA slightly impaired the FIV Vif/CUL5 

interaction, while 174175IR-AA impaired binding (Fig. 3.14C). Additionally, single point 

mutations were introduced at 174IR175 and the I174A and R175A mutations of FIV Vif also 

decreased the CUL5 interaction (Fig. 3.14C). Taken together, I conclude that the conserved 

174IR175 motif of FIV Vif is the main CUL5 binding site. 
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Fig. 3.14 Identification of determinants in the C-terminus of FIV Vif that regulate binding to 

CUL5. (A) Top: Sequence alignment of FIV Vifs from different FIV strains including 34TF10, 

C36, TM2, PRR, Shizuoka, Oma (Pallas’s cats), and lion subtype E. Bottom: Sequence 

alignment of C-terminal residues of FIV Vif (clone 34TF10) and HIV-1 Vif (clone NL4-3). KCCC: 

a motif of FIV Vif similar to the HIV-1 Vif Zinc interaction region HCCH. Boxed region: a 

conserved hydrophobic motif. Non-similar: black with no background; Conservative: blue 

with cyan background; Block of similar: black with green background; identical: Ren with 

yellow background; weakly similar: green with no background. (B) The structure of the HIV-1 

Vif-CUL5 complex (Vif, orange; CUL5, green) (PDB entry 4N9F). A close-up view of the HIV-1 

Vif-CUL5 interface is shown. The residues that are involved in the HIV-1 Vif-CUL5 interaction 
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are indicated. Red dashed lines represent hydrogen bonds. (C) myc-CUL5 or pcDNA3.1 empty 

plasmids were co-transfected with FIV Vif-V5 wild type or indicated FIV Vif mutant 

expression plasmids. Immunoprecipitated complexes (IP) were analyzed by immunoblotting 

with anti-V5 for FIV Vif and anti-myc for CUL5.  

 

Next, the degradation activity of FIV Vif 174175IR-AA towards feline A3 was tested 

(Materials and Methods 2.10 and 2.12). The results showed that FIV Vif 174175IR-AA did not 

induce degradation of co-expressed FcaA3Z2bZ3 (Fig. 3.15A) and lost the ability to inhibit the 

anti-FIV activity of FcaA3Z2bZ3 (Fig. 3.15B). These data support the model that CUL5 binding 

of FIV Vif is essential for its antagonism of feline A3s. Furthermore, I asked whether 

impairing the CUL5 binding sites of FIV Vif affects its interaction with feline A3 and ELOB/C. 

To address this question, 293T cells were co-transfected with expression plasmids for wild 

type FIV Vif or alanine mutations of TLQ or 174IR175 together with expression plasmids for 

FcaA3Z2bZ3 or ELOB and ELOC. The immunoprecipitation results indicate that alanine 

mutations of FIV Vif TLQ and 174IR175 variants did not lead to a loss of binding to 

FcaA3Z2bZ3 (Fig. 3.15C). However, the FIV Vif TLQ-AAA variant lost its interaction with 

ELOB/C, as shown previously (168). The Vif 174175IR-AA variant bound to ELOB/C similar to 

the wild type FIV Vif (Fig. 3.15D). Together, these results support that residues 174IR175 of 

FIV Vif are required for the interaction with CUL5. 
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Fig. 3.15 Mutating residues 174IR175 in FIV Vif does not impair interaction with FcaA3s, 

ELOB and ELOC. (A) Cells were transfected with FcaA3Z2bZ3-HA and FIV Vif-V5 wild type or 

indicated FIV Vif mutant expression plasmids or pcDNA3.1 empty plasmid. Cells were 

harvested and analyzed by immunoblotting with anti-HA, anti-V5 and anti-tubulin 

antibodies, respectively. (B) Single round FIVΔvif luciferase reporter virions were produced in 

the presence of feline A3 expression plasmids (FcaA3Z2bZ3) with FIV Vif wild type or Vif 

mutants, pcDNA3.1(+) was added as a control for feline A3 (control) and FIV Vif (vector). 

Infectivity of reporter vectors was determined by quantification of luciferase activity in 293T 

cells transduced with normalized amounts of viral vector particles. (C, D) 293T cells were 

transfected with expression plasmids for FcaZ2bZ3-HA, FIV Vif-V5 wild type, indicated FIV Vif 

mutants or pcDNA3.1 empty plasmid (C); or FIV Vif-V5 wild type, indicated FIV Vif mutants, 

T7-ELOC or HA-ELOB and pcDNA3.1 empty plasmid (D). Cells were harvested at 48 h after 

transfection, protein of cell lysates (input) and immunoprecipitated complexes (IP) were 
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analyzed by western blots stained with anti-V5 antibody for FIV Vif, anti-HA antibody for 

FcaZ2bZ3-HA and HA-ElonginB and anti-T7 antibody for T7-ElonginC. 

 

3.3.4 Modeling the FIV Vif/CUL5 complex structure.  

To identify further interacting residues in the FIV Vif/CUL5 complex, we, in collaboration 

with Prof. Holger Gohlke, built a homology model of the complex to guide mutational 

analyses (Materials and Methods 2.17). As described in the methods section, we 

incorporated information of the predicted secondary structure of FIV Vif and our results 

about the importance of residues 174IR175 and the TLQ-BC box for CUL5 binding when 

generating the sequence alignment of FIV Vif to HIV-1 Vif. We did so due to the sequence 

identity between FIV and HIV-1 Vif is only 5.2%. In this way, residues corresponding to the 

FIV 174IR175 and TLQ-BC box motifs were identified in HIV-1. The homology model of the 

FIV Vif/CUL5 complex showed a contact of the TLQ-BC box with CUL5 and revealed a close 

proximity of residues 174IR175 of Vif to residues 52LWDD55 of CUL5 (Fig. 3.16A and B). 

Thus, I mutated 52LW53 and 54DD55 of CUL5 to alanines and tested these CUL5 variants for 

interaction with FIV Vif (Materials and Methods 2.9 and 2.15). The results showed that CUL5 

52LW53-AA no longer bound to FIV Vif; however, the CUL5 54DD55-AA variant still bound Vif 

similar to the wild type CUL5 (Fig. 3.16C). Additionally, I tested whether the CUL5 52LW53-

AA mutant effects FIV Vif induced feline A3s degradation (Materials and Methods 2.10 and 

2.12). I expressed the indicated feline A3s together with FIV Vif and the CUL552LW53-AA 

mutant in 293T cells. Immunoblots of protein extracts from transfected cells were used as 

readout for the degradation of the respective A3 protein. The results showed that FIV Vif 

degraded feline A3s with an unchanged efficiency in the presence of this CUL5 mutant (Fig. 

3.16D). A model representing the FIV Vif E3 complex is shown in Fig. 3.16E. 
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Fig. 3.16 FIV Vif-CUL5 3D structure model. (A) Homology model of the FIV Vif (orange)-CUL5 

(green) complex in cartoon representation. Helices α3 and α4 of Vif are interacting with 

CUL5. The model contains two unstructured loops (navy) before and after helix α2, as no 

structural template is available for these regions. These loops might be important for binding 

other parts of the complex. Residues that were subjected to mutational analysis are shown 

in spheres representation. The region of the close up shown in B is indicated by a light plum 

rectangle. (B) Close-up view of the homology model of the FIV Vif (orange)-CUL5 (green) 

complex in cartoon representation, with interacting residues shown in sticks representation. 

(C) The myc-CUL5 wild type or indicated mutants expression plasmids were co-transfected 

with FIV Vif-V5 wild type expression plasmid into 293T cells. Cell lysates were 

immunoprecipitated with anti-myc beads and then analyzed by immunoblotting with anti-V5 

antibody for FIV Vif and anti-myc antibody for CUL5. (D) 293T cells were co-transfected with 

expression plasmids for FcaA3Z2b-HA, FcaA3Z3-HA or FcaA3Z2bZ3-HA; CUL5-52LW53-AA 
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mutant with FIV Vif-V5. pcDNA3.1 was used as control plasmid to replace the FIV Vif or CUL5 

expression plasmids. Cells were analyzed by immunoblotting using anti-HA, anti-V5, anti-

CUL5, anti-Flag and anti-tubulin antibodies, respectively. (E) Model of FIV Vif with E3 ligase 

complex. The CUL5 interaction sites of FIV Vif (174IR175) are shown as red star. Figure A and 

B are produced by my cooperator Dr. Christoph G. W. Gertzen and Prof. Holger Gohlke, and 

included into my thesis with permission. 

 

3.3.5 The FIV Vif/CUL5 interaction is zinc-independent.  

Several previous studies demonstrated that the zinc binding motif (HCCH) of HIV-1 or SIV Vif 

regulates Vif/CUL5 interaction (207). Our FIV Vif/CUL5 complex model suggests that helix 3 

of FIV Vif-CTD regulates the CUL5 binding (Fig. 3.16 and 3.17A). There are two positively 

charged lysines (K181 and K182) and several potential zinc-binding cysteines (C138, C161, 

C184, C187, C192, and C209) at the FIV Vif CTD (Fig. 3.17B). To further address the FIV 

Vif/CUL5 interaction properties, K181 and K182 were mutated to alanines and several 

potential zinc-binding residues were mutated to serine (C138S, C161S, C184S, C187S, C192S, 

and C209S; Materials and Methods 2.9; Fig. 3.17B). The immunoprecipitation results 

revealed that the C184S and C184C187-SS variants decreased the CUL5 interaction, but Vif 

mutations K181A, K182A, C187S, C138S, C161S, C192S and C209S did not affect CUL5 

binding (Fig. 3.17C). Additionally, I tested the interaction of several FIV C-S mutants (C161S, 

C184S, C187S and C209S) with endogenous CUL5. The result showed that only C184S mutant 

lost CUL5 binding activity (Fig. 3.17D). I further investigated the binding property of FIV Vif 

C184S mutant to feline A3 and ELOB/C. The immunoprecipitation results indicate that FIV Vif 

C184S mutant has weaker binding affinity to FcaA3Z2bZ3 (Fig. 3.17E), compared with FIV Vif 

TLQ-AAA mutant and both, FIV Vif TLQ-AAA and C184S, lost interaction with ELOB/C (Fig. 

3.17F). I further found that FIV Vif C161S, C184S and C187S mutants completely lost 

FcaA3Z2bZ3 degradation function, but the other cysteine mutants (C138S, C192S and C209S) 

efficiently degraded FcaA3Z2bZ3 (Fig. 3.17G). Taken together, these data indicate that C184 

of FIV Vif is not specific for CUL5 interaction, and I speculate that C184 may regulate the 

integral structure of FIV Vif.  
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Fig. 3.17 C184 of FIV Vif is essential for Vif-CUL5, Vif-FcaA3 and Vif-ELOB/C interaction (A) 

Close-up view of the homology model of the FIV Vif (orange)-CUL5 (green) complex in 

cartoon representation, with residues that underwent mutational analysis shown in sticks 

representation. These residues are: K181, K182, C184, C187 and C192 in the loop following 

helix 3 of FIV Vif; C138 that forming a disulfide bond with C192 is also shown. (B) Sequence 

representation of FIV Vif C terminal domain (CTD). (C) myc-CUL5 or pcDNA3.1 empty plasmid 

was co-transfected with expression plasmids for FIV Vif-V5 wild type or indicated FIV Vif 

mutants. Immunoprecipitated complexes (IP) were analyzed by immunoblotting with anti-V5 

for FIV Vif and anti-myc for CUL5. (D) 293T cells were transfected with expression plasmids 
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for FIV Vif-V5 wild type or indicated FIV Vif mutants. Immunoprecipitated complexes (IP) 

were analyzed by immunoblotting with anti-V5 for FIV Vif and anti-CUL5 for CUL5. (E, F) FIV 

Vif C184S mutant lost binding capability to FcaA3s, ELOB and ELOC. 293T cells were 

transfected with expression plasmids for FcaZ2bZ3-HA, FIV Vif-V5 wild type, indicated FIV Vif 

mutants or pcDNA3.1 empty plasmid (E); or FIV Vif-V5 wild type, indicated FIV Vif mutants, 

T7-ELOC or HA-ELOB and pcDNA3.1 empty plasmid (F). Cells were harvested at 48 h after 

transfection, protein of cell lysates (input) and immunoprecipitated complexes (IP) were 

analyzed by immuno blots stained with anti-V5 antibody for FIV Vif, anti-HA antibody for 

FcaZ2bZ3-HA and HA-ElonginB and anti-T7 antibody for T7-ElonginC. (G) 293T cells were 

transfected with FcaA3Z2bZ3-HA and FIV Vif-V5 wild type or indicated FIV Vif mutant 

expression plasmids or pcDNA3.1 empty plasmid. Cells were harvested and analyzed by 

immunoblotting with anti-HA, anti-V5 and anti-tubulin antibodies, respectively. Figure A is 

produced by my cooperator Dr. Christoph G. W. Gertzen and Prof. Holger Gohlke, and 

included into my thesis with permission. 

 

To test the zinc dependency of the FIV Vif/CUL5 interaction, the cell-permeable zinc chelator 

TPEN (N,N,N',N'-tetrakis (2-pyridylmethyl) ethane-1,2-diamine) was applied in the following 

experiments. First I tested the effect of TPEN on FIV Vif’s ability to induce the degradation of 

feline A3s.. 293T cells were co-transfected with FIV Vif or HIV-1 Vif and FcaA3Z2bZ3 or 

HsaA3G and were treated with increasing amounts of TPEN (Materials and Methods 2.10). 

The immunoblotting results obtained from lysates of these cells indicated that FIV Vif 

efficiently degraded FcaA3Z2bZ3 in the presence of low concentrations of TPEN (2–4 µM), 

while higher concentrations of TPEN (5–8 µM) blocked the FIV Vif-induced FcaA3Z2bZ3 

degradation (Materials and Methods 2.12; Fig. 3.18A). A similar observation was found in 

the HIV-1 Vif-HsaA3G degradation assay; however, 4 µM TPEN blocked the HIV-1 Vif-induced 

HsaA3G degradation, while this concentration of TPEN had no influence on FcaAZ2bZ3 

degradation by FIV Vif (Fig. 3.18A and B). Because higher concentrations of TPEN may 

nonspecifically influence the A3 degradation, I tested the interaction of HIV-1 Vif or FIV Vif 

with CUL5 by co-IP assays using lysates of cells treated with 5 µM TPEN. The results showed 

that 5 µM TPEN repressed the HIV-1 Vif/CUL5 interaction, thus supporting the previous 
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model that HIV-1 Vif/CUL5 interaction is regulated by zinc (Fig. 3.18C) (207-210). In sharp 

contrast, treatment with 5 µM TPEN did not impair the FIV Vif/CUL5 binding. These data 

suggest that the FIV Vif/CUL5 interaction is zinc-independent. 

 

Fig. 3.18 FIV Vif binding to CUL5 is zinc independent. (A, B) 293T cells were transfected with 

expression plasmids for FcaZ2bZ3-HA (A) or HsaA3G-HA (B); HIV-1 Vif-V5 or FIV Vif-V5, 

pcDNA3.1 was used as empty plasmid control. The transfected cells were treated with zinc 

chelator TPEN (2, 3, 4, 5, 6, 7 or 8 μM) or DMSO as control 36 h post transfection. Cells were 

harvested 12 h later (48 h after transfection) and then analyzed by immunoblotting with 

anti-HA, anti-V5 and anti-tubulin antibodies. (C) myc-CUL5 expression plasmid was co-

transfected with FIV Vif-V5 or HIV-1 Vif-V5 expression plasmids into 293T cells. The 
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transfected cells were treated with 5 µM TPEN or DMSO 36 h post transfection. Cell lysates 

were immunoprecipitated with anti-myc beads and then analyzed by immunoblotting with 

anti-V5 antibody for FIV Vif and HIV-1 Vif, anti-myc antibody for CUL5.  

 

3.4 Cloning domestic cat SERINC3/5 and test their anti-FIV and anti-HIV-1 activities 

3.4.1 Cloning and sequencing domestic cat SERINC3/5 gene 

Recently, human SERINC3/5 were identified as restriction factors that inhibit the entry of 

HIV-1, and this restriction is counteracted by HIV-1 Nef (119, 120, 122). However, it is 

unknown whether domestic cat expresses SERINC3/5 proteins. In the current study, feline 

SERINC3/5 were cloned from feline CRFK cells. The feline SERINC3/5 cDNAs were verified by 

sequencing. I then performed the sequence alignment of human and feline SERINC3/5 

proteins. The alignment showed that both human and feline SERINC5 contain 461 amino 

acids, while human and feline SERINC3 include 473 amino acids. Both SERINC3 and SERINC5 

are conserved between humans and felines (Fig. 3.19 and 3.20). The different amino acids of 

SERINC proteins between humans and felines are indicated (black boxes)(Fig. 3.19 and 3.20).  
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Fig. 3.19 The sequence alignment of human SERINC5 and feline SERINC5. The amino acid 

sequences of human SERINC5 and feline SERINC5 were aligned by Clustal W method. The 

black boxes indicate different amino acids. 

 

 

Fig. 3.20 The sequence alignment of human SERINC3 and feline SERINC3. The amino acid 

sequences of human SERINC3 and feline SERINC3 were aligned by Clustal W method. The 

black boxes indicate different amino acids. 

 

I also performed a phylogenetic analysis of SERINC3/5 from different species. The results 

indicated that human, chimpanzee, African green monkey, Rhesus Monkey SERINC5 proteins 

were found in one clade, and equine and feline SERINC5 proteins clustered into another 

clade. Rabbit and mouse SERINC5 proteins formed two separate clades, respectively. The 

phylogenetic analysis of SERINC3 proteins showed the similar classification (Fig. 3.21 and 

3.22).  
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Fig. 3.21 The phylogenetic relationship of SERINC5 from different species. 500 bootstrap 

replications were performed during calculation and building the tree by using MEGA7 

software. The number on each node indicates the bootstrap support. The following SERINC5 

sequences were used: Human (h) SERINC5 (NM_178276.6); Chimpanzee (cpz) SERINC5 

(XM_016953076.1); African green monkey (agm) SERINC5 (XM_007976640.1); Rhesus 

Macaque (rh) SERINC5 (XM_015140335.1); Feline (fe) SERINC5 (XM_011284262.3); Equine 

(eq) SERINC5 (XM_001503874.4); Rabbit (r) SERINC5 (XM_017344548.1); Mouse (m) 

SERINC5 (NM_172588.2). 
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Fig. 3.22 The phylogenetic relationship of SERINC3 from different species. 500 bootstrap 

replications were performed during calculation and building the tree. The number on each 

node indicates the bootstrap support. The following SERINC3 were used. Human (h) SERINC3 

(NM_006811.3); Chimpanzee (cpz) SERINC3 (NM_001280388.1); African green monkey 

(agm) SERINC3 (XM_008016564.1); Rhesus Macaque (rh) SERINC3 (NM_001260972.1); 

Feline (fe) SERINC3 (XM_011280708.3); Equine(eq) SERINC3 (XM_001917430.4); Rabbit (r) 

SERINC3 (XM_008274475.2); Mouse(m) SERINC3 (NM_012032.4). 

 

Then, the feline SERINC3 and SERINC5 cDNAs were cloned into mammal expression plasmids 

(pcDNA3.1+ or pBJ6). The expression of these two proteins was detected by immuno blots of 

cell lysates from transfected 293T cells (Materials and Methods 2.10 and 2.12). Human 

SERINC5 served as control. The results revealed that feline SERINC3 and SERINC5 proteins 

have a molecular weight of around 42 KDa. Compared to human SERINC5 and feline 

SERINC3, feline SERINC5 protein showed a lower expression level (Fig. 3.23). 
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Fig. 3.23 The expression of SERINC in 293T cells. 293T cells were transfected with human 

SERINC5 (hS5), feline SERINC5 (fS5) and feline SERINC3 (fS3) expression plasmids or 

pcDNA3.1 empty plasmid. Cells were harvested and analyzed by immunoblotting with anti-

HA and anti-tubulin antibodies, respectively. 

 

3.4.2 Domestic cat SERINC3/5 proteins display antiviral activity against HIV-1 and FIV 

Human SERINC3/5 display strong inhibition of several retroviruses (HIV-1, EIAV and MLV) in 

an Env-dependent mechanism (123). The protein similarity of human SERINC and feline 

SERINC is high. Thus, we tested the anti-HIV activity of feline SERINC3 and SERINC5, in 

collaboration with Dr. Hanna-Mari Baldauf at the Institute of Virology in Technical University 

Munich (LMU). Wild type HIV-1 and Nef-deficient HIV-1 were produced in 293T cells in the 

presence of different SERINC proteins. The viral infectivity was determined by infecting TZM-

bl cells. The result indicated that human SERINC5 and feline SERINC3 showed around 50% 

inhibition against HIV-1Δnef. Feline SERINC5 restricted around 75% infection of HIV-1Δnef 

(Fig. 3.24). HIV-1 Nef overcame the restriction of human SERINC5 and recovered viral 

infectivity to the similar level of vector control (Fig. 3.24). Interestingly, HIV-1 Nef also had 

capability of antagonizing the restrictions of feline SERINC5 and SERINC3, which indicates a 

conserved Nef counteraction mechanism (Fig. 3.24).  
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Fig. 3.24 The anti-HIV activity of feline SERINC. HIV-1Δnef or HIV-1 wild type virions were 

produced in the presence of human SERINC5 (hS5) or feline SERINC expression plasmids (fS5 

or fS3), pBJ6 empty vector was added as a control (vector). Viral Infectivity was determined 

by quantification of luciferase activity in TZM-bl cells transduced with particles. This figure is 

produced by my cooperator Patrícia Pereira, and included into my thesis with permission.  

In addition, I tested feline SERINC restriction against FIV by using FIV based single round 

infection assays. Env- or VSV-G-pseudotyped FIVs were produced in the presence of SERINC 

in transfected 293T cells. The viral infectivity was determined by infecting feline CRFK-CD134 

cells. The results revealed that human SERINC5 and feline SERINC5 displayed strong 

restriction against Env-pseudotyped FIV (Fig. 3.25A). In contrast, no inhibition was observed 

by feline SERINC3 (Fig. 3.25A). Interestingly, I did not observe any antiviral activity of human 

SERINC5, feline SERINC5 and feline SERINC3 when FIV was pseudotyped with VSV-G (Fig. 

3.25B). These data indicate that feline SERINC5 suppresses FIV infection by an Env-

dependent mechanism.  

Next, I produced complete (full length) FIV virions in the presence of feline SERINC and the 

FIV reporter transfer vector pLinSin from 293T cells (Materials and Methods 2.10). The viral 

infectivity data indicated that human SERINC5 and feline SERINC5 showed strong restriction 

against PPR-based FIV (Petaluma strain), while feline SERINC3 had less inhibition (Materials 

and Methods 2.11; Fig 3.26A). FIV-C36 belongs to FIV subtype C, and this clone was obtained 
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by lambda cloning from cats that developed severe immunodeficiency disease when 

infected with CABCpady00C (Abbotsford, British Columbia, Canada) (Sohela de Rozie`res et 

al. 2004 JVI). Human SERINC5 and feline SERINC5 also strongly inhibited FIV-C36 infection 

(Fig. 3.26B). These data suggest that FIV has no capability of counteraction the antiviral 

function of feline SERINC. 

 

 

Fig. 3.25 The anti-FIV activity of feline SERINC. Single-round Env or VSV-G pseudotyped FIV 

luciferase reporter virions (“3-plasmid system” including pPF93, pLinSin, and pEE14 or 

pMD.G) were produced in the presence of human SERINC5 (hS5) or feline SERINC expression 

plasmids (fS5 or fS3), pBJ6 empty vector was added as a control (vector). Infectivity of 

reporter vectors (normalized by reverse transcriptase activity) was determined by 

quantification of luciferase activity in CRFK-CD134 cells transduced with vector particles. 
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Fig. 3.26 FIV does not counteract feline SERINC restriction. Full length FIV molecular clones 

(PPR or C36) and FIV luciferase transfer vector (pLinSin) were transfected together with 

human SERINC5 (hS5) or feline SERINC expression plasmids (fS5 or fS3), pBJ6 empty vector 

was added as a control (vector). Viral infectivity was determined after normalization for 

reverse transcriptase activity by quantification of luciferase activity in CRFK-CD134 cells 

infected with FIV particles. 

 

Furthermore, the incorporation of feline SERINC into viral particles was investigated. Full 

length FIV (PPR) virions were produced in the presence of SERINC in 293T cells (Materials 

and Methods 2.10). Viral particles were concentrated by centrifugation, and the presence of 

SERINC proteins were detected by immuno blots (Materials and Methods 2.12). The results 

revealed that human SERINC5, feline SERINC5 and feline SERINC3 were packaged into FIV 

viral particles (Fig. 3.27). Interestingly, I observed that human SERINC5 and feline SERINC5 

increased the FIV particle release compared to vector control (Fig. 3.27). However, feline 

SERINC3 had no effect on p24 capsid level of FIV in viral supernatants (Fig. 3.27). 
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Fig. 3.27 Feline SERINC5 and SERINC3 are packaged into FIV particles. A full length FIV 

molecular clone (PPR) was transfected together with pcDNA3.1(+) based human SERINC5 

(hS5) or feline SERINC expression plasmids (fS5 or fS3), pcDNA3.1(+) empty vector was 

added as a control (vector). FIV particles were concentrated by centrifugation. The 

expression of SERINC in 293T cells was detected by anti-HA antibody. Cell lysates were also 

analyzed for equal amounts of total proteins using anti-tubulin antibody. Feline SERINC5 and 

SERINC3 packaged into FIV particles were detected by anti-HA antibodies. FIV virions were 

detected by anti-FIV p24 antibodies. 
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4. Discussion 

In this study, I characterized the interaction of FIV Vif with feline A3 proteins and Cullin5. The 

Vif protein has the capacity to form a multi-protein complex that includes the different A3 

restrictions factors and cellular E3 ligase proteins. First, I identified potential specific 

interaction sites in FIV Vif for the degradation of feline A3Z2 and A3Z3. Several motifs of FIV 

Vif were also identified that were important for the degradation of all feline A3s. Then, I 

described essential domains in the feline A3Z2 and A3Z3 proteins for FIV Vif induced their 

degradation. Together, these results provide important insights for future experiments 

describing the FIV Vif interaction with A3s and other cellular proteins. 

As mentioned, Vif binds to several diverse proteins at the same time. The molecular 

interaction of FIV Vif with Elongin C was already identified (168). In addition, Cullin 5 forms 

the E3-ligase complex. Thus, the goal was to characterize the FIV Vif binding to CUL5. The 

less expected results show that the presumed FIV Vif-CUL5 interaction surface, structurally 

mirrors the one in HIV-1 Vif, even if the zinc dependency of both Vifs  is different.. Positive 

selection is not seen in mammalian CUL5 and, thus, the data that Vif protein interaction with 

CUL5 show evolutionarily preserved interfaces. In contrast, after cross-species transmissions, 

the lentiviruses adapt to rather variable A3 proteins, which are under positive selection. 

Furthermore, the current study shows for the first time that feline SERINC5 is an antiviral 

restriction factor against both FIV and HIV-1Δnef, while feline SERINC3 only inhibits the 

infection of HIV-1Δnef with less restriction for FIV. In addition, FIV seems to be unable to 

antagonize the restriction of feline SERINC5, while HIV-1 utilizes its Nef protein to overcome 

that restriction.  

 

4.1 The interaction between FIV Vif and feline A3s 

4.1.1 Comparison of HIV-1 Vif and FIV Vif sites that important for degradation A3s 

Previous studies have identified several determinants in HIV-1 Vif, which confer selective 

interactions with A3F or A3G (e.g. 39YRHHY44 for interaction with A3G, 13DRMR17 for 

interaction with A3F) (185, 188, 211, 212). Additionally, some motifs of HIV-1 Vif regulate its 

binding to both A3G and A3F (e.g. 55VxIPx4L64, 69YxxL72 and 96TQx5ADx2I107, x can be any 

amino acid) (211, 213, 214). In this study, I identified two motifs (12LF13 and 18GG19) in the 
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FIV Vif N-terminal region that specifically determine its interaction with feline A3Z2 (Fig. 3.2). 

I also found that the residues M24, L25 and I27 of FIV Vif mediate the selective interaction 

with feline A3Z3 (Fig. 3.4). Only by impairing the feline A3Z2 and A3Z3 interaction sites 

together, was it possible to generate a FIV Vif that lost its counteractivity against the feline 

double domain A3Z2Z3 (Fig. 3.4C and D). In addition, nine discontinuous, conserved Vif 

motifs (Y26, 53FI54, 57LR58, 61EGI63, 65WSF67, 81VAG83, 95YI96, 119VN120 and 

126GFM128) were identified that were shown to be necessary for inducing degradation of 

all three feline A3s (Fig. 3.3B and C). Why mutations in these residues blocked the 

degradation of feline A3s was not investigated here. I can speculate that amino acid changes 

in some of these motifs affect the integrity of the Vif protein. However, some conserved 

residues of Vif likely form part of the Vif-A3 interface. In addition, some of these residues 

may interact with cellular proteins important for A3 degradation. Recently, the HIV-1 Vif 

structure was reported, and it shows that the region forming the β1, β6 strands and α2 helix 

of HIV-1 Vif are involved in CBF-β binding (158). Impairing the α2 helix (T(Q/D/E)x5ADx2(I/L)) 

of HIV-1 Vif disrupted the neutralizing activity of HIV-1 Vif towards both A3G and A3F (213). 

Whether the nine discontinuous motifs of FIV Vif are involved in the interaction with the E3 

ligase or an unknown co-factor needs more investigation.  

A previous study demonstrated that A3F.E289 and HIV-1 Vif.R15 display a strong interaction 

by applying molecular docking (179). Additionally, it was reported that several electrostatic 

interfaces of HIV-1 Vif are involved in binding to A3F and A3C (179, 212). In this study, the 

specific feline A3Z3 interaction sites (M24, L25 and I27) of FIV Vif belong to hydrophobic 

residues, and FIV Vif counteraction against feline A3Z3 was also determined by the size of 

the side chain of FIV Vif residue 25 (Fig. 3.3C and D). These results may indicate that the 

interactions of FIV Vif with feline A3Z3 and HIV-1 Vif with human A3s are quite different. 

Yoshikawa et al. demonstrated that the exposed surface area of feline A3Z3 residue 65 

determines its interaction with FIV Vif (190). Whether M24, L25 or I27 of FIV Vif directly 

interact with I65 of feline A3Z3 by the specific spatial distance needs further investigation. 

 

4.1.2 FIV Vif cellular localization 

In this study, I found that FIV Vif protein localized to both cytoplasm and nucleus, but was 

mainly found be cytoplasmic (Fig. 3.5), which is consistent with a previous observation (202). 
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I also observed that the FIV Vif protein formed several puncta in the cytoplasm that may be 

caused by Vif oligomerization (Fig. 3.5). Previous reports showed that HIV-1 Vif also localized 

to both the cytoplasm and nucleus compartments (215, 216). Mutations of feline A3Z2 and 

A3Z3 interaction sites of FIV Vif did not alter the cellular localization of Vif (Fig. 3.5). 

However, the relationship between Vif localization and A3s degradation is still unclear. 

 

4.1.3 FIV Vif-feline A3 interaction and degradation 

Unexpectedly, the specific FIV Vif mutations I found that are relevant for feline A3 

degradation did not disrupt the binding of FIV Vif to feline A3Z2 and A3Z3 in pull-down 

assays (Fig. 3.6). When I tested different N-terminal Vif fragments, the region from amino 

acid 50 to 110 of FIV Vif was found to be important for binding to feline A3s and may explain 

why mutations in conserved residues of FIV Vif 50 to 110 regions disrupted the degradation 

activity of FIV Vif against all three feline A3s (Fig. 3.3B). Several previous observations 

describe that Vif binding to A3s is important but insufficient to induce degradation (162, 217, 

218). Based on a recent wobble model (179), I speculate that the region of FIV Vif 50 to 110 

contains the main Vif-A3 interaction interface, whereas the specific feline A3Z2 and A3Z3 

interaction sites at the N-terminal 1-50 region provide additional stabilizing contacts.  

 

4.1.4 Conservation of FIV Vif functional sites 

The A3G and A3F interaction sites of Vif from different HIV-1 strains are relatively conserved. 

The feline A3Z2 and A3Z3 interaction sites identified in this study are conserved in Vif from 

different FIV subtype stains of domestic cat, one FIV of Pallas cats, and two FIV subtype 

strains of lion (Fig. 3.7). Vifs of puma and bobcat FIVs (FIVpco) are quite different from the 

other FIV Vifs (Fig. 3.7B). It was reported that puma FIV has a high divergence, and multiple 

puma FIV strains circulate in pumas (45, 47, 219). One recent study demonstrated that puma 

FIV Vif is inactive against A3Z3s derived from puma and the domestic cat (191). However, it 

is important to point out that the described Vif was derived from puma FIV subtype B, which 

has two deletions at the N-terminal region (Fig. 3.7B). Puma FIV can cause infections in 

domestic cats, but these infections often are abortive (220-222), which indicates an immune 

defense from the domestic cat. Specifically, increased A3-related G to A mutations were 



92 

 

detected in viral genomes of puma FIV subtype B during infections in domestic cats (223). 

These observations indicate that the two N-terminal Vif deletions in puma FIV subtype B 

might impair viral cross-species transmission. However, it is also important to clarify how 

this virus evades the restriction from its host A3s.  

 

4.1.5 FIV Vif targets different domain of feline A3Z2 and Z3 for degradation 

Our knowledge about the interaction regions of A3s and of human and non-human lentivirus 

Vifs is limited. It was discussed that Vif is not simply a linker between the substrate A3 and 

the E3 ubiquitin ligase (218, 224). In this study I investigated the interaction of three groups 

of Vif proteins (FIV, HIV-2/SIV, HIV-1) with feline A3s. I found that HIV-2 and SIVmac Vifs are 

able to induce feline A3Z2Z3 degradation by targeting the linker domain, in agreement with 

two previous studies (164, 173).  

A previous study described that the residue A65 in feline A3Z3 modulates the sensitivity to 

FIV Vif (205). I identified here two additional residues (L41, I42) in feline A3Z3 whose 

combined mutation resulted in an A3 protein that was resistant even to degradation by very 

high amounts of co-expressed FIV Vif. My colleague demonstrated that the mutated feline 

A3Z3 protein clearly showed reduced binding to FIV Vif, supporting the model that Vif 

binding to A3 is needed for A3 degradation.  

In feline A3Z2 residues D165 and H166 were also found to regulate the FIV Vif induced 

degradation (Fig. 3.10), but it was demonstrated by my colleagues that these mutations did 

not block feline A3Z2 binding to FIV Vif in co-immunoprecipitation assays. This observation 

demonstrates that Vif binding to A3s is not sufficient for A3 degradation. Supporting 

evidence that Vif interaction is necessary but not sufficient is coming from reports describing 

that HIV-1 NL4-3 Vif binds A3C mutants, A3B and A3H without inducing APOBEC3 

degradation (217, 218, 225). The binding of mutated feline A3Z2.DH-YN to FIV Vif appeared 

to be robust, indicating a more complex mechanism. Studies on HIV-1 Vif binding to human 

A3B and A3H similarly concluded that the interaction strength is not the only determinant 

for complete Vif-mediated degradation, and the individual interfaces of the A3-Vif pair 

additionally regulate degradation (217). 
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 Recently, Richards et al. (179) presented a wobble model of the evolution of the Vif-A3 

interaction. This model implicates that Vif forms several interactions, of which some are 

essential and some provide additional stabilizing contacts. Based on this idea, only if Vif 

forms a sufficient network of interactions with its A3 binding partner, a functional 

interaction is made. Suboptimal, destabilized interactions could be restored by the evolution 

of compensatory changes in Vif–A3 interface. It is thus possible that in feline A3Z3 residue 

A65 and L41, I42 are major independent interactions in the Vif-A3 interface, whereas in 

feline A3Z2 D165 and H166 represent one of the relevant interacting points for FIV Vif 

complex formation, while additional contact points still exist. Such a suboptimal Vif-A3 

interaction might, for example, not be sufficient to facilitate E3 ligase conjugation of K48-

linked polyubiquitin chains that are generally recognized by the proteasome. 

 

4.2 The interaction between FIV Vif and CUL5 

4.2.1 The involvement of FIV Vif N terminus in interaction with CUL5 

FIV Vif interacts with CUL5, ELOB, and ELOC to form an E3 complex to induce degradation of 

feline A3s (168). The interaction properties of FIV Vif with feline A3s and ELOB/C were 

previously identified (162, 168, 206). However, the interface between FIV Vif and CUL5 was 

not characterized. 

Feline CUL5 and human CUL5 only differ in one amino acid, and this mutation does not 

affect its interaction with FIV Vif (168). It was also shown that FIV Vif can induce the 

degradation of feline A3s in both feline CRFK and human 293T cells, thus supporting that FIV 

Vif can interact with human and feline CUL5 (168, 206). In this study, I first identified that 

three FIV Vif N-terminal mutants (53FI54, 57LR58, and 77VRE79) partially lost CUL5 binding, 

compared to wildtype FIV Vif (Fig. 3.13B). These Vif mutants only partially degraded feline 

A3s, clearly less efficient than wildtype Vif. The N-terminus of FIV Vif does not directly bind 

CUL5, according to our FIV Vif/CUL5 structural model (Fig. 3.16A). Thus, I speculate that 

these residues rather interact with an unknown factor that regulates the FIV Vif/CUL5 

binding. Indeed, a previous study suggested that FIV Vif requires an unknown factor to 

stabilize the FIV Vif/CUL5/ELOB/C complex (170).  
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4.2.2 Comparison of FIV Vif-CUL5 and other adaptors-CUL5 interface 

CUL5-type ubiquitin ligases have a variety of adaptors that induce degradation of different 

cellular substrates (see recent review (150)). The adaptors of CUL5 share one common 

domain, i.e., the SOCS box, which consists of a BC box and a CUL5 box (150). The CUL5 box 

has a common sequence, -LPθP-θ-YL, in which θ represents a hydrophobic residue, and CUL5 

box is localized downstream of the BC box (150). Such a CUL5-like box is also found in HIV-1 

Vif (PPLP motif), but this region does not interact with CUL5 (226, 227). In fact, HIV-1 Vif uses 

a hydrophobic region of helix 3 to interact with CUL5 (158, 208, 209). In FIV Vif, a typical 

CUL5 box is also missing (168). However, I found that FIV Vif, similar to HIV Vif, uses a 

hydrophobic region of helix 3 upstream of the BC box, position 174 and 175, to interact with 

CUL5 (Fig. 3.14 and 3.16). Vif proteins are not unique in applying unusual CUL5 boxes. For 

example, the adenovirus serotype 5 (Ad5) protein E4orf6 does not have a typical CUL5 box 

either, but it still interacts with CUL5 and forms an E3 ligase complex to degrade p53 (228). 

 

4.2.3 FIV Vif function is zinc independent 

Three HIV/SIV accessory proteins (Vpr, Vpx, and Vif) bind zinc, which is essential for the 

assembly of their E3 ligase complexes (229-231). Zinc is also required for BIV Vif/CUL2 

binding, while MVV Vif/CUL5 interaction does not need zinc (232). In this study, I used the 

cell-permeable zinc chelator TPEN to investigate whether this chelator impairs the function 

of FIV Vif or HIV-1 Vif in A3 degradation. I found that TPEN inhibited both FcaA3 and HsaA3 

degradation induced by FIV Vif and HIV-1 Vif, respectively (Fig. 3.18A and B). It is important 

to point out that high concentrations of TPEN will repress cellular pathways, such as those of 

the cellular lysosome and autophagy (233). Thus, it is possible that high concentrations of 

TPEN may impact upon many cellular degradation pathways. However, I found that 4 µM 

TPEN inhibited the HIV-1 Vif-induced HsaA3G degradation, while this concentration of TPEN 

had no influence on FcaAZ2bZ3 degradation by FIV Vif (Fig. 3.18A and B). In addition, the 

presence of 5 µM TPEN did not allow the isolation of HIV-1 Vif/CUL5 complexes, whereas FIV 

Vif/CUL5 complexes could still be detected (Fig. 3.18). Thus, the data support that zinc is not 

important for the FIV Vif/CUL5 interaction, as discussed previously (168). Other studies have 

demonstrated that TPEN treatment blocks the function of HIV-1 Vif, Vpr, and SIVmac Vpx 
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(229). These findings indicate that, in the group of lentiviruses, there are zinc-dependent 

(e.g., HIV-1, BIV) and zinc-independent (e.g., FIV, MVV) Vif proteins. The inter-Vif diversity is 

high, and HIV-1 Vif shares only around 16% and 5.2% identical residues with BIV or FIV Vif, 

respectively. Thus, the requirement and structural consequences of zinc binding in Vifs are 

currently unclear. However, whether other metals (Mg2+ or Ca2+) bind FIV or MVV Vif needs 

more investigation. The SOCS3/CUL5 and E4orf6/CUL5 interactions are also zinc-

independent (228, 234), which, together, indicates that zinc is not necessary for binding of 

CUL5. 

 

4.2.4 FIV Vif structural homology model 

As the sequence of FIV Vif is 59 amino acids longer than that of HIV-1 Vif and no other 

structural template is available, an unstructured loop is found in our model between helices 

2 and 3 (Fig. 3.16A). This loop could be involved in the binding of CUL5 or other cofactors; 

however, without a structural template, its function remains unknown. Whether this loop is 

specific for FIV Vif requires further investigation. Despite the low sequence identity between 

FIV and HIV-1 Vif and their difference in sequence length, our homology model of the FIV 

Vif/CUL5 complex is apparently accurate enough to predict interacting residues between 

these proteins. Our data from the CUL5 alanine variant of 52LW53 (Fig. 3.16C) and our 

homology model suggest that the interaction between Vif and CUL5 is also mediated by a 

hydrophobic contact. This is similar to the importance of the hydrophobic motif in the CUL5 

BC box. In our homology model, helix 3 of Vif, which interacts with CUL5, is followed by 

C184. This cysteine was shown to be important for CUL5 interaction, and for feline A3 or 

ELOB/C interaction, which differs from a previous study (168). As C184 is neither located in 

the Vif/CUL5 interface according to our homology model nor involved in zinc binding, I 

speculate that it might contribute to stabilizing the integral structure of FIV Vif. Overall, 

while our model certainly cannot be expected to be a perfect structural representation of 

the FIV Vif/CUL5 complex given the low sequence identity between FIV and HIV-1 Vif, we 

were able to successfully predict interacting residues between the two proteins in those 

regions with a higher sequence similarity. 
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4.2.5 Further methods for investigation of protein-protein interactions 

Currently, many methods are available to investigate protein-protein interactions (PPI), such 

as tandem affinity purification (TAP), pull-down assay, co-immunoprecipitation (CoIP), 

protein chip, bimolecular fluorescence complementation (BiFC), Far-Western blotting, 

affinity electrophoresis, label transfer, and photoreactive amino acid analogs. In my 

investigations, CoIP and protein homology modeling were the main methods used. CoIP is a 

common method to study protein-protein interactions, especially for endogenous proteins. 

In this study, I tested the interaction of both over-expressed proteins (with a tag) and 

endogenous proteins (not tagged) by the CoIP method. The target protein is isolated by a 

specific antibody or an antibody conjugated to agarose beads. The partner proteins that bind 

the target protein are simultaneously isolated and detected by Western blotting. However, 

only according to the CoIP results, it is not sufficient to conclude that the identified residues 

involve in direct protein-protein binding. The protein-protein interaction was also suggested 

by homology modeling, to illustrate the direct protein binding surface. In turn, I used CoIP to 

confirm the protein-protein interface. By combining CoIP and protein homology methods, I 

exactly discovered the FIV Vif-Cul5 binding interface. In fact, nuclear magnetic resonance 

(NMR) and gel filtration are also commonly used by biochemist to investigate the direct 

protein-protein binding. However, these two methods require purified proteins, and in some 

cases they are not applicable due to the insolubility and instability of protein. 

 

4.3 The antiviral activity of feline SERINC 

Feline A3s, especially feline A3Z3 and A3Z2Z3, are strong restriction factors that inhibit the 

infection of FIVΔvif. A new human restriction factor, named as SERINC, was recently 

identified displaying strong inhibition for lentiviruses, while little is known about feline 

SERINC. Thus, I cloned feline SERINC3 and SERINC5 cDNAs. After expression and infections 

assays, I found that feline SERINC5 suppressed the infectivity of both HIV-1 and FIV (Fig.3.24 

and 3.25), consistent with the antiviral activity of human SERINC5 (119, 120, 122). These 

results indicate a common antiviral mechanism of feline and human SERINC5 proteins. 

Interestingly, feline SERINC3 inhibited HIV-1 infection, while it displayed quite less restriction 

against FIV (Fig. 3.24 and 3.25). This observation suggests that FIV may escape the restriction 
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from feline SERINC3. However, it is still unclear how FIV counteracts the inhibition of feline 

SERINC5.  Further investigation is required to evaluate the expression level of feline SERINC 

proteins in FIV targeted cells (CRFK, T cells or macrophages). Feline SERINC knockout 

experiments are also required to investigate the effect of SERINC on FIV replication and 

pathogenesis.  

FIV infection in cat is an animal model for HIV-1. In addition, previous studies indicated that 

feline A3s are main barriers for HIV-1 replication in cat cell lines and that HIV-1 with vif of FIV 

can replicate in feline cells (161, 164). Here, I demonstrated that HIV-1 Nef is able to 

overcome the restriction of feline SERINC5 and SERINC3 (Fig. 3.24). This result suggests that 

feline SERINC proteins are not considerable issues during construction animal model of HIV-1 

infected cat. 

 

4.4 Limitation of our study 

All the current studies use cellular molecular biology methods to test the molecular 

interaction between FIV Vif and its interactome. Even we use homology method to model 

the structure of FIV Vif, our model certainly cannot be expected to be a perfect structural 

due to the low sequence identity between FIV and HIV-1 Vif. We need biochemistry method 

to deeply resolve the exact 3D structure of FIV Vif. But generation a high resolution structure 

of Vif is difficult, because FIV Vif is highly insoluble when I expressed it in E.coli (data not 

shown). 
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5. Summary 

The apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like (APOBEC3, A3) family 

of DNA cytidine deaminases are intrinsic restriction factors against retroviruses. In felids 

such as the domestic cat (Felis catus, Fca), the APOBEC3 (A3) genes code for the A3Z2s, 

A3Z3, and A3Z2Z3 antiviral cytidine deaminases. Only A3Z3 and A3Z2Z3 inhibit viral 

infectivity factor (Vif)-deficient feline immunodeficiency virus (FIV). FIV Vif protein interacts 

with Cullin (CUL), Elongin B (ELOB), and Elongin C (ELOC) to form an E3 ubiquitination 

complex to induce the degradation of feline A3s. The functional domains in FIV Vif for 

interaction with FcaA3s are poorly understood. Here, I have identified several motifs in FIV 

Vif that are important for selective degradation of different FcaA3s. I initially proposed that 

FIV Vif would selectively interact with the Z2 and the Z3 A3s. Indeed, I identified two N-

terminal Vif motifs (12LF13 and 18GG19) that specifically interacted with the FcaA3Z2 

protein but not with A3Z3. In contrast, the exclusive degradation of FcaA3Z3 was regulated 

by a region of three residues (M24, L25 and I27). Only a FIV Vif carrying a combination of 

mutations from both interaction sites lost the capacity to degrade and counteract 

FcaA3Z2Z3. However, alterations in the specific A3s interaction sites did not affect the 

cellular localization of the FIV Vif protein and binding to feline A3s. Pull-down experiments 

suggested that the A3 binding region localized to FIV Vif residues 50 to 80, outside the 

specific A3 interaction domain. Finally, we found that the Vif sites specific to individual A3s 

are conserved in several FIV lineages of domestic cat and non-domestic cats, while being 

absent in the FIV Vif of pumas. Our data support a complex model of multiple Vif-A3 

interactions in which the specific region for selective A3 counteraction is discrete from a 

general A3 binding domain. 

Additionally, the functional domains in FIV Vif for interaction with Cullin are poorly 

understood. In this study, I found that the expression of dominant-negative CUL5 prevented 

the degradation of feline A3s by FIV Vif, while dominant-negative CUL2 had no influence on 

the degradation of A3. In co-immunoprecipitation assays, FIV Vif bound to CUL5 but not 

CUL2. To identify the CUL5 interaction site in FIV Vif, the conserved amino acids from 

position 47 to 160 of FIV Vif were mutated, but these mutations did not impair the binding 

of Vif to CUL5. By focusing on a potential zinc-binding motif (K175– C161—C184–C187) of 

FIV Vif, I found a conserved hydrophobic region (174IR175) that is important for CUL5 
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interaction. Mutating this region also impaired the FIV Vif-induced degradation of feline A3s. 

Based on a structural model of the FIV Vif/CUL5 interaction, residues 52LW53 in CUL5 were 

identified as mediating the binding to FIV Vif. By comparing our results to the human 

immunodeficiency virus type 1 (HIV-1) Vif/CUL5 interaction surface (120IR121, a 

hydrophobic region that is localized in the zinc-binding motif), we suggest that the CUL5 

interaction surface in the diverse HIV-1 and FIV Vif is evolutionarily conserved indicating a 

strong structural constraint. However, the FIV Vif/CUL5 interaction is zinc-independent, 

which differs from the zinc-dependency of HIV-1 Vif. 
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6. Zusammenfassung 

APOBEC3-Prtoteine (A3, apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like) 

gehören zur Familie der DNA-Cytidin-Desaminasen und sind intrinsische Restriktionsfaktoren 

gegen Retroviren. In Felidae wie der Hauskatze (Felis catus, Fca) kodieren die APOBEC3-Gene 

für die antiviralen Cytidin-Deaminasen A3Z2, A3Z3 und A3Z2Z3. Nur A3Z3 und A3Z2Z3 

inhibieren das Vif (viral infectivity factor)-defiziente feline Immundefizienz-Virus (FIV). Das 

Vif-Protein von FIV interagiert mit Cullin (CUL), Elongin B (ELOB) und Elongin C (ELOC), um 

einen E3-Ubiquitinierungskomplex zu formieren und die Degradierung feliner A3s zu 

induzieren. Bisher war über die funktionalen Domänen des FIV-Vif, die mit FcaA3 

interagieren, wenig bekannt. In dieser Arbeit habe ich diverse Motive des FIV-Vif entdeckt, 

die für die selektive Degradierung verschiedener FcaA3 von Bedeutung sind. Meine 

ursprüngliche Hypothese war, dass FIV-Vif selektiv mit A3Z2 und A3Z3 interagiert. 

Tatsächlich identifizierte ich zwei N-terminale Vif-Motive (12LF13 und 18GG19), die 

spezifisch mit dem FcaA3Z2- nicht aber mit dem A3Z3-Protein interagieren. Im Gegensatz 

dazu wird die exklusive Degradierung des FcaA3Z3 durch eine Region aus drei 

Aminosäureresten reguliert (M24, L25 und I27) bestimmt. Nur das FIV-Vif mit einer 

Kombination aus Mutationen an beiden Interaktionsstellen verliert die Fähigkeit FcaA3Z2Z3 

zu degradieren und zu neutralisieren. Dagegen hatten Veränderungen an den spezifischen 

A3-Interaktionsstellen keinen Einfluss auf die Bindung an feline A3s und verändern auch 

nicht die zelluläre Lokalisation des FIV-Vif-Proteins. Pull-down-Experimente deuten darauf 

hin, dass die A3-Bindungsregion in den Aminosäureresten 50 bis 80 des FIV-Vifs, außerhalb 

der spezifischen A3-Interaktionsdomäne, lokalisiert ist. Außerdem stellte ich fest, dass die 

Vif-Stellen, die spezifisch für individuelle A3s sind, in diversen FIV-Linien der Hauskatze und 

anderer Felidae konserviert sind, aber nicht im FIV-Vif des Pumas vorkommen. Unsere Daten 

unterstützen ein komplexes Modell mit multiplen Vif-A3-Interaktionen, bei denen sich die 

spezifische Region für selektive A3-Gegenwirkung von einer generellen A3-Bindungsdomäne 

unterscheidet. 

Außerdem ist über die Interaktion der funktionellen Domänen des FIV-Vif mit Cullin wenig 

bekannt. In dieser Arbeit habe ich herausgefunden, dass die Expression von dominant-

negativem CUL5 vor einer Degradierung feliner A3 durch FIV-Vif schützt, während die 

Expression von dominant-negativem CUL2 keinen Einfluss auf diese Degradierung hatte. In 
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Koimmunopräzipitations-Assays band FIV-Vif an CUL5, nicht aber an CUL2. Um die CUL5-

Interaktionsstelle des FIV-Vif zu identifizieren wurden die konservierten Aminosäuren der 

Positionen 47 bis 160 des FIV-Vif mutiert, was aber zu keiner verminderten Bindung des Vif 

an CUL5 führte. Während der Fokussierung auf ein potentielles Zink-bindendes Motiv (K175– 

C161—C184–C187) des FIV-Vif fand ich eine konservierte hydrophobe Region (174IR175), 

die eine wichtig Rolle bei der CUL5-Interaktion spielt. Mutationen in dieser Region verringern 

die FIV-Vif-induzierte Degradierung der felinen A3. Basierend auf einem Strukturmodell der 

FIV-Vif/CUL5-Interaktion wurden die Aminosäurereste 52LW53 des CUL5 als wichtig für die 

Bindung an FIV-Vif identifiziert. Vergleicht man unsere Ergebnisse mit der Vif/CUL5-

Interaktionsfläche des humanen Immundefizienz-Virus Typ 1 (HIV-1) (120IR121, eine 

hydrophobe Region, die im Zink-bindenden Motiv lokalisiert ist) schlagen wir ein Modell vor, 

bei dem die CUL5-Interaktionsfläche in diversen HIV-1- und FIV-Vif evolutionär konserviert 

ist, was auf einen optimale strukturelle Bindung mit wenig Freiheitsgraden schließen lässt. 

Im Gegensatz zum Zink-abhängigen HIV-1-Vif, ist die FIV-Vif/CUL5-Interaktion unabhängig 

von Zink.  
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