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“Insects nurture and protect us, sicken us, kill us. They bring us both joy 

and sorrow. They drive us from fear to hate, then to tolerance. At times 

they bring us up short to a realization of the way the world really is, and 

what we have to do to improve it. Their importance to human welfare 

transcends the grand battles we fight against them to manage them for 

our own ends. Most of us hate them, but some of us love them. Indeed, 

at times they even inspire us” 

John J. McKelvey, Jr. 1975 
Insects and Human Welfare 

 



                                                                                                                                            TABLE OF CONTENTS 

I 

TABLE OF CONTENTS 

 

TABLE OF CONTENTS ................................................................................................................................ I 

INDEX OF ABBREVIATIONS ........................................................................................................................ II 

INDEX OF FIGURES AND TABLES ................................................................................................................ III 

SUMMARY ........................................................................................................................................... IV 

ZUSAMMENFASSUNG ............................................................................................................................. VI 

1.  INTRODUCTION .............................................................................................................................. 1 

1.1 THE BIOLOGY OF APHIDS – THE PEA APHID ACYRTHOSIPHON PISUM ............................................. 1 

1.2 ABOUT INSECT PEST CONTROL IN GENERAL AND APHID CONTROL IN PARTICULAR ............................. 2 

1.2.1 INSECT PEST CONTROL – FROM PAST INNOVATIONS TO PRESENT PROBLEMS ....................................... 2 

1.2.2 APHID PESTS AND MANAGEMENT STRATEGIES.............................................................................. 5 

1.3 AIMS OF THE THESIS ......................................................................................................... 6 

2.  MODERN ASPECTS OF APHID MANAGEMENT ................................................................................... 8 

2.1 THE EPIGENETIC MACHINERY – THE IMPORTANCE OF HISTONE ACETYLATION IN APHIDS ..................... 8 

2.1.1 KATS AND KDACS IN A. PISUM - DETECTION AND CHARACTERIZATION ............................................. 9 

2.1.2 INHIBITING HISTONE MODIFICATION ENZYMES SIGNIFICANTLY EFFECTS APHID FITNESS ....................... 10 

2.1.3 ABOUT P300/CBP IN APHIDS – A UNIVERSAL TRANSCRIPTIONAL CO-REGULATOR ............................. 12 

2.1.4 DSRNAS AS BIOINSECTICIDES – RNAI AS AN ALTERNATIVE APHID MANAGEMENT STRATEGY ............... 13 

2.2 FRIEND OR FOE? – THE APHID’S BACTERIAL PASSENGER SERRATIA SYMBIOTICA ............................. 16 

2.3 AMPS – ANTIMICROBIAL PEPTIDES EVOLVING INTO BIOINSECTICIDES ......................................... 18 

3. CONCLUSIONS AND FURTHER PERSPECTIVES ...................................................................................... 21 

4. REFERENCES ................................................................................................................................ 22 

5. PUBLICATIONS ............................................................................................................................. 33 

5.1 1ST PUBLICATION .......................................................................................................... 33 

5.2 2ND PUBLICATION ......................................................................................................... 56 

5.3 3RD PUBLICATION – CO-AUTHOR PUBLICATION .................................................................... 73 

5.4 4TH PUBLICATION – CO-AUTHOR PUBLICATION .................................................................... 82 

5.5 PATENT AND CONFERENCE PARTICIPATIONS ........................................................................ 99 

DANKSAGUNG ................................................................................................................................... 100 

VERSICHERUNG AN EIDES STATT ........................................................................................................... 101 

 

 



                                                                                                                                  INDEX OF ABBREVIATIONS 

II 

INDEX OF ABBREVIATIONS 

DDT: Dichlordiphenyl-trichlorethan 

BVL: German Federal Office of Consumer Protection and Food Safety 

IP: insecticidal product 

IPM: integrated pest management 

GM: genetically modified  

Bt toxin: modified toxins obtained from Bacillus thuringiensis  

R genes: plant-derived resistance genes 

dsRNA: double-stranded RNA 

RNAi: RNA interference 

EFSA: European Food Safety Authority 

KAT: lysine acetyltransferases 

KDAC: lysine deacetylases  

GNAT: GCN5-related N-acetyltransferases  

p300/CBP: p300/CREB-binding protein 

MYST: MOZ/Ybf2/Sas2/Tip60  

Sir: sirtuin 

Epi-ML: epigenetic multiple ligand  

SAHA: suberoylanilide hydroxamic acid 

WCR: western corn rootworm 

nt: nucleotides 

GFP: green fluorescent protein 

AMP: antimicrobial peptide 

NDBP: non-disulfide bridged peptide 

MIC: minimal inhibitory concentrations 

  



                                                                                                                                                INDEX OF FIGURES 

III 

INDEX OF FIGURES AND TABLES 

FIGURE 1: Taxonomy and life cycle of aphids. 

FIGURE 2: Classification of histone acetyltransferases, deacetylases and sirtuins. 

FIGURE 3: Scheme of the experimental procedure of dsRNA injections. 

FIGURE 4: Effects on life history traits following the injection of mixtures of p300/CBP and GFP 

dsRNA, demonstrating a competitive inhibition of the RNAi machinery. 

FIGURE 5: Comparison of the A. pisum p300/CBP dsRNA construct to homolog sequences of aphid 

and non-aphid species. 

TABLE 1: Overview of insecticidal products and strategies. 

TABLE 2: Mechanisms of resistance. 

TABLE 3: Identity of the p300/CBP dsRNA construct to the mRNA of other aphid species. 

 

 



                                                                                                                                                              SUMMARY 

IV 

SUMMARY 

Aphids are notorious insect pests that harm ornamentals and crops by transmitting viruses and 

feeding on phloem sap, thus causing substantial economic damage. The extensive use of 

chemical insecticides is still the dominant aphid control strategy. The consequences of this are 

obvious: rapidly evolving resistance, environmental pollution, and risks to non-target organisms. 

For the last two decades, traditional control measures have been under debate due to an 

increasing ecological awareness of the society. This ongoing scenario illustrates the necessity to 

develop alternative, novel strategies and methods for sustainable aphid management. This 

dissertation is devoted to aspects of aphid biology, which should be considered to refine the 

application of existing and novel insecticides. Underexplored target genes and enzymes that 

may assist in development of new substances for aphid control are treated and RNA interference 

(RNAi) as a promising alternative pest control strategy is discussed in detail.  

The pea aphid (Acyrthosiphon pisum) is a well-known laboratory model organism to study the 

insect family Aphididae, insect-plant interactions, symbiosis with bacteria, aphid transmitted 

viruses and phenotypic plasticity. It was also the first hemipteran whose genome was fully 

sequenced. The intention of this thesis was to explore the role of epigenetic mechanisms in the 

ontogenesis of this aphid. Epigenetic modifications, e.g. the acetylation of histones, are 

heritable variations of DNA structure that affect gene expression or cellular functions without 

changes to the underlying DNA sequence. Such changes are regulated by the opposing activities 

of enzymes called histone acetyltransferases (KATs) and histone deacetylases (KDACs). These 

enzymes are essential in the regulation of numerous biological processes. In insects, the 

disruption of the tightly controlled equilibrium of acetylation and deacetylation of histones 

results in severely affected life-history traits, such as fecundity or longevity. 

This thesis provides a comprehensive overview of histone acetylation/deacetylation 

enzymes present in the genome of A. pisum. Compared to other insects, an enlarged diversity 

of KATs and KDACs has been identified in the pea aphid. Epigenetic multiple ligand 

(3,5-Bis-(3,5-dibromo-4-hydroxybenzylidene)-tetrahydro-pyran-4-one) and suberoylanilide 

hydroxamic acid (N-Hydroxy-N′-phenyloctandiamide) were used for chemical inhibition of these 

enzymes, which negatively affected survival and reproduction and delayed the development of 

the aphids. These findings indicate that the epigenetic machinery is a promising target system 

for the development of novel aphid control substances. However, specific gene silencing of the 

KATs kat6b, kat7, kat14, and the KDAC rpd3, mediated by RNAi, revealed mild effects on life-

history traits -mentioned above (Kirfel et al., 2019). 

Conversely, the attenuation of the histone acetyltransferase p300/CBP severely reduced 

lifespan and the number of offspring of the aphids. A much shorter reproductive phase and 

more premature nymphs, which developed in abnormally structured ovaries, have been 

observed. These data confirmed the evolutionarily conserved function of p300/CBP known from 
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other insects during ontogenesis and indicated that this protein is an ideal target for RNAi-based 

aphid control (Kirfel et al., 2020). 

It is well known, that aphids harbor the obligate bacterial symbiont Buchnera aphidicola, 

which is localized in a specialized organ (bacteriome), thus enabling the host to survive on a 

nutritionally poor phloem-sap diet by providing essential amino acids. Notably, aphids can live 

in symbiosis with a number of other, facultative symbionts (e.g. Serratia symbiotica, 

Hamiltonella defensa, and Regiella insecticola), facilitating adaptations to biotic and abiotic 

stress. In this context the question arose whether the symbiont S. symbiotica, which is present 

in the aphid line used in this study, has an effect on host fitness. In particular, the effect on the 

susceptibility of the aphids to different insecticidal compounds was investigated. Surprisingly, 

the facultative symbiont S. symbiotica was found to significantly impair the aphids’ fitness and 

the ability of A. pisum to tolerate different classes of insecticides, although it does provide 

benefits in certain circumstances (Skaljac et al., 2018). 

Antimicrobial peptides (AMPs), key players of the insect’s innate immune system, are 

short proteins with antimicrobial activity. During their long evolutionary history, aphids have 

lost many genes encoding AMPs, most likely because AMPs would harm their bacterial 

symbionts. The venoms of animals preying on insects contain molecules, including AMPs, which 

are highly efficient in targeting insects. Consequently, venom-derived scorpion AMPs, which are 

orally delivered to aphids, reduced their survival, reproduction and the density of bacterial 

symbionts. The AMPs compromised the bacteriome but also the aphid directly, holding the 

potential to be developed as bioinsecticides to replace or complement conventional insecticides 

for aphid control. (Luna-Ramirez et al., 2017). 
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ZUSAMMENFASSUNG 

Blattläuse ernähren sich vom Phloem und übertragen Pflanzenpathogene, schädigen so Zier- 

und Nutzpflanzen, und verursachen folglich schweren wirtschaftlichen Schaden. Zur ihrer 

Bekämpfung werden seit Jahrzehnten vorrangig chemisch-synthetische Insektizide verwendet. 

Deren Einsatz ist jedoch mit nachhaltigen Folgeschäden verbunden: zu nennen sind vor allem 

die rasche Entwicklung stabiler Resistenzen, Umweltverschmutzung, und mögliche Risiken für 

Nicht-Zielorganismen. Bedingt durch das sich in den vergangenen beiden Jahrzehnten immer 

stärker entwickelnde Umweltbewusstsein der Bevölkerung, werden rein chemische 

Maßnahmen der Schädlingsbekämpfung zu Recht hinterfragt und die Entwicklung neuartiger, 

nachhaltiger Methoden eingefordert. Die vorliegende Dissertation beleuchtet daher solche 

Aspekte der Blattlausbiologie, die genutzt werden könnten, um den Einsatz bereits vorhandener 

Insektizide zu optimieren und neuartige Strategien zur Bekämpfung von Blattläusen zu 

entwickeln. Hierbei werden bislang wenig beachtete Zielgene und -enzyme sowie der Einsatz 

der RNAi-Technik als vielversprechende Alternativen detailliert betrachtet.  

Die Erbsenblattlaus (Acyrthosiphon pisum) ist ein bewährter Modellorganismus zur 

Untersuchung von Röhrenblattläusen (Familie: Aphididae) und deren phänotypischen 

Plastizität, zum Studium von Interaktionen zwischen Pflanzen und Insekten, von 

Insekten-Bakterien-Symbiosen als auch von Insekten als Vektoren für Pflanzenviren. Die 

Erbsenblattlaus war überdies das erste Insekt aus der Familie Hemiptera, dessen Genom 

vollständig sequenziert worden ist. In der vorliegenden Dissertation wurde vorrangig die 

Bedeutung epigenetischer Mechanismen für die Ontogenese der Blattläuse untersucht. 

Epigenetische Modifikationen sind ererbte Variationen einer Genexpression oder zellulärer 

Funktionen, die jedoch ohne Veränderung der zugrundeliegenden DNA-Sequenzen entstehen. 

Solche Änderungen werden u.a. hervorgerufen durch das Wechselspiel von Histon-

Acetyltransferasen (KATs) und Histon-Deacetylasen (KADCs). Diese Enzyme sind essentiell für 

die Regulation zahlreicher biologischer Prozesse. In Insekten konnte gezeigt werden, dass eine 

Störung des streng kontrollierten Gleichgewichts von Acetylierungs- und 

Deacetylierungsprozesse zu beträchtlichen Veränderungen in der Lebensdauer und 

Fruchtbarkeit führt. 

Diese Arbeit bietet einen umfassenden Überblick über die im Genom von A. pisum 

codierten KATs und KDACs. Verglichen mit anderen Insekten, wurde in Erbsenblattläusen ein 

wesentlich breiteres Spektrum dieser Enzyme identifiziert. Der Einsatz spezifischer Inhibitoren 

(3,5-Bis-(3,5-dibromo-4-hydroxybenzylidene)-tetrahydro-pyran-4-one [= Epigenetic Multiple 

Ligand] gegen KATs; N-Hydroxy-N′-phenyloctandiamide – gegen KDACs) verkürzte die 

Lebensdauer, reduzierte die Nachkommenschaft und verzögerte die Entwicklung von A. pisum. 

Damit konnte gezeigt werden, dass die epigenetische Regulation ein vielversprechendes 

Zielsystem für die Entwicklung neuartiger insektizider Substanzen darstellt. Jedoch beeinflusste 
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die RNA-Interferenz spezifischer KATs und KDACs (kat6b, kat7, kat14, rpd3) die zuvor 

beschriebenen Fitnessparameter nur geringfügig (Kirfel et al., 2019). Wurde hingegen die 

Histon-Acetyltransferase p300/CBP spezifisch gehemmt, führte dies zu einer drastischen 

Verkürzung von Lebensdauer und Reproduktionsphase. Außerdem wurden nur wenige 

lebensfähige, dafür aber viele unterentwickelte Nymphen beobachtet, die sich in 

missgebildeten Ovarien entwickelten. Diese Daten bestätigen die Vermutung einer evolutionär 

konservierten Funktion von p300/CBP in der Ontogenese, wie sie bereits für andere Insekten 

beschrieben ist. Daher ist dieses Protein ein idealer Kandidat zur RNAi-basierten Bekämpfung 

von Röhrenblattläusen (Kirfel et al., 2020).  

A. pisum lebt in Symbiose mit dem Bakterium Buchnera aphidicola. Dieser obligate 

Symbiont besiedelt ein spezialisiertes Organ, das sogenannte Bakteriom. Er ermöglicht es den 

Blattläusen, auf ihrer extrem nährstoffarmen Kost zu überleben, indem er ihnen essentielle 

Aminosäuren zur Verfügung stellt. Darüber hinaus können Blattläuse andere, fakultative 

Symbionten beherbergen (z.B. Serratia symbiotica, Hamiltonella defensa, oder Regiella 

insecticola), die u.a. Anpassungen an biotischen und abiotischen Stress erleichtern. In den dieser 

Arbeit zugrundeliegenden Experimenten wurden die Auswirkungen der Anwesenheit von 

S. symbiotica auf die Überlebensfähigkeit der Wirte und deren Empfindlichkeit gegenüber 

verschiedenen Insektiziden untersucht. Zwar profitiert A. pisum unter gewissen Umständen von 

der Anwesenheit des fakultativen Symbionten, andererseits werden dessen Fitness und seine 

Fähigkeit, verschiedene Klassen von Insektiziden zu tolerieren, erheblich beeinträchtigt 

(Skaljac et al., 2018).  

Antimikrobielle Peptide (AMPs) spielen eine Schlüsselrolle im angeborenen 

Immunsystem von Insekten. Es handelt sich bei AMPs um kleine Proteine mit antimikrobieller 

Aktivität. Blattläuse haben im Laufe ihrer Evolution viele AMP-kodierende Gene verloren. Daher 

liegt die Vermutung nahe, dass AMPs ihren bakteriellen Symbionten erheblich schaden würden. 

Die Gifte solcher Tiere, denen Insekten als Beute dienen, sollten AMPs enthalten, die 

insbesondere zur Blattlausbekämpfung geeignet sein könnten. Es konnte gezeigt werden, dass 

die Verfütterung solcher AMPs die Überlebensfähigkeit und die Vermehrung der Blattläuse 

sowie die Konzentration der bakteriellen Symbionten reduzierte. Die AMPs scheinen dabei nicht 

nur das Bakteriom zu beeinflussen, sondern auch unmittelbare Auswirkungen auf die Blattläuse 

selbst auszuüben. Diese Ergebnisse veranschaulichen das beachtliche Potential von AMPs auf 

der Suche nach biologischen Bekämpfungsmöglichkeiten. Daher stellen AMPs eine interessante 

Alternative dar, um konventionelle Insektizide ganz oder zumindest teilweise zu ersetzen (Luna-

Ramirez et al., 2017).  
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1.  INTRODUCTION 

1.1 THE BIOLOGY OF APHIDS – THE PEA APHID ACYRTHOSIPHON PISUM 

Aphids (Aphidoidea) are small, hemimetabolous, plant phloem sucking insects, 

belonging to the order Hemiptera. The majority of all aphid species are found in temperate 

regions of the northern hemisphere. Together with psyllids (Psylloidae), whiteflies 

(Aleyrodoidea) and scale insects (Coccoidea), Aphidoidea comprise the Hemipteran subtaxon 

Sternorrhyncha (Fig. 1A) [1]. As common for the insect order Aphidoidea, the mouthparts of 

the insects are transformed into a sucking apparatus, which is located between the coxa of the 

first walking legs, thus enabling aphids to feed on phloem sap. Their fairly uniform morphology 

is further characterized by a soft, oval-shaped body ensuing from a broadly fused head, thorax 

and abdomen [2]. Conversely, the development and the lifecycles of aphids largely vary among 

species and include alternations of sexual and asexual generations, with oviparous or 

viviparous, as well as alate and apterous individuals (Fig. 1B) [3].  

Although some aphids can feed 

on a broad range of host plant species 

and are therefore considered 

generalists, about 99% of all 

Aphidoidea are specialists, associated 

with a defined host plant or a very 

limited number of closely related plant 

species. Some of these aphid species 

switch between two (specific) host 

plants, usually depending on seasonal 

changes [4]. The Aphidoidea can be 

further divided into three families, the 

Adelgidae (55 species), the 

Phylloxeridae (80 species), and the 

Aphididae. The latter is by far the 

largest subgroup, comprising ten 

recently described monophyletic 

families, which encompass over 4,400 

species [3,5–7]. The exact phylogenetic resolution of these groups has been a matter of debate 

since their first description, and various correlations have been proposed [6–10]. However, the 

insect family Aphididae is clearly characterized by their member’s life cycles that encompass 

viviparous generations, and the presence of the obligatory bacterial symbiont 

Buchnera aphidicola [11]. This symbiont is located in specialized cells (bacteriocytes) within an 

organ called the ‘bacteriome’ [12]. B. aphidicola provides the insect with essential amino acids 

Figure 1. (A) Taxonomic origin of aphids [3]. (B) Life cycle of 

the pea aphid 
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that allow the aphids to survive on their nutritionally poor phloem sap diet. Inversely, the 

aphids take over the biosynthesis of cell-surface components, regulators, and cell defense 

genes for and from the bacteria [13,14]. B. aphidicola is exclusively transmitted vertically to the 

offspring during embryogenesis. The bacteria are exocytosed from parental bacteriocytes in 

close proximity to the embryos [15] and subsequently endocytosed into the newly developing 

aphid [7,16]. This insect-bacteria symbiosis in aphids was first discovered and studied in the 

model organism Acyrthosiphon pisum, the pea aphid, a member of the aphid subfamily 

Macrosiphini (Hemiptera: Aphidoidea: Aphididae) [14]. Along with symbiosis, the pea aphid 

was taken as an archetype to study the Aphididae insect group as well as insect-plant 

interactions. Notably, A. pisum was the first Aphididae with a sequenced and annotated 

genome [14]. It is further used to explore phenotypic polyphenism, a phenomenon that 

describes the ability of an organism to translate environmental cues into distinct, reproducible 

phenotypic varieties, originated from a single genotype [14,17]. Several of these polyphenic 

forms are part of the complex life cycle of the pea aphid (Fig. 1B). Starting in spring, a wingless 

fundatrix hatches from an overwintering egg. The fundatrix reproduces asexually and 

viviparously, giving birth to up to ~120 winged or wingless female nymphs [18,19]. Wing 

development depends on the environmental conditions of the mothers and includes colony 

density, host plant quality, the presence of predators or parasites, etc. [20–28]. The nymphs go 

through four nymphal stages until they molt into adulthood and start to reproduce 

correspondingly [29]. In fall, shortening of the photoperiod finally triggers suppression of 

juvenile hormone production and induces changes in embryonic development. This results in 

the occurrence of one generation of wingless, sexual, and oviparous females as well as alate 

and apterous males [30–34]. Upon mating, the females lay inseminated, cold-resistant eggs, 

which undergo an embryonic diapause with an extraordinarily decelerated development during 

winter times [35]. Approximately 100 days later, asexual females hatch from these eggs and 

the life cycle starts over again (Fig. 1B) [36,37]. The monoecious pea aphids gain a body length 

of up to 5 mm, and its body color is pale green or pink (color polymorphism) with red eyes [38]. 

It is a major pest of peas and alfalfa, but can be found worldwide in a temperate climate, 

feeding on about 20 plant genera in the family Fabaceae, including Medicago, Trifolium, or 

Lotus [39]. 

1.2 ABOUT INSECT PEST CONTROL IN GENERAL AND APHID CONTROL IN PARTICULAR 

1.2.1 INSECT PEST CONTROL – FROM PAST INNOVATIONS TO PRESENT PROBLEMS 

Insects harbor the highest biodiversity of all eukaryotic groups in the animal kingdom 

[40]. They inhabit every single environmental niche on Earth (except the oceanic benthic zone) 

and are fundamental for all terrestrial ecosystems [8]. They are pollinators, dispensers, and 

they recycle nutrients. Insects maintain soil structure and fertility, control other organisms, and 

are a food source for other taxa themselves [41]. Regardless of their importance, some insects 
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became a threat to human health, or to the human food supply, by being food and feed 

competitors. Thus, the need for crop protection to prevent yield losses might be as old as crop 

domestication itself. First records of substances used to fight pest organisms date back to the 

old Sumerans, who used fumigated sulfur to fight insects or mites. Since 1000 B.C., salts of 

mercury, arsenic, cryolites or borax were used to control insect pests [42,43]. Later, organic 

preparations, such as ground Tanacetum cinerariifolium or tobacco were used as insecticides 

all over the world [44]. About 200 years ago, carbon disulfide and hydrocyanic acid expanded 

the range of compounds used as fumigants for pest control [45]. However, it was not until the 

1930s, that the first synthetic compound with decided insecticidal activity was discovered. 

Dichlordiphenyl-trichlorethan (DDT), synthesized 1874 by Othmar Zeidler, revealed its 

insecticidal properties to Paul Müller in 1939 [43]. DDT was used repeatedly in public health 

programs to fight vector insects (and is still used occasionally) and probably became the best-

known and most-expended chemical insecticide ever to prevent disease [46]. It was due to DDT 

that the elimination of endemic malaria from entire Europe was officially achieved in 1975. Its 

story of success ends, when growing concerns regarding the environmental persistence, fat 

solubility and, consequentially, the accumulation of DDT in non-target organisms, led to bans 

of DDT in most countries [44]. Additionally, more insecticide classes were discovered since the 

1940s, such as organophosphates, pyrethroids, or carbamates. They increasingly replaced DDT 

as they were considered to be less toxic and stable in the environment [43,44,47]. Currently, 

the German Federal Office of Consumer Protection and Food Safety (BVL) reports 279 

insecticides for crop protection [48]. Such products contain a total of 45 approved active 

substances [49]. In 2017, total sales of insecticides in Germany exceeded 850 metric tons of 

active substances [50]. Today, insect pest control products are considered one of the most 

important inventions for the rapidly growing human population. They improve human health 

by controlling vector insects, and secure food and feed supply by substantially decreasing crop 

loss [51]. Despite that, the discussion about problems associated with pest control and plant 

protection products continues. The concerns about the use of insecticides for crop protection 

involve their effects on non-target organisms including beneficial insects, bats, birds, worms, 

microorganisms, fish, etc. It is suggested that the extensive use of insecticides is one reason for 

the general decline in insect abundance and diversity, found recently [55]. Additional concerns 

include the stability and toxicity of the insecticides and/or their residues, (as well as safeners, 

co-formulants, adjuvants, synergists) to humans or livestock and the risk of eutrophication of 

the environment [54,56–62]. Perhaps the most important issue of insecticides is the dramatic 

increase of resistance, taking place in all kinds of agriculturally important pests [63–66] (Tab. 2). 

There is evidence that upon the introduction of every new pesticide group, cases of resistance 

occurred in various key pest species within 2 to 20 years [67]. 
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Table 1. A selection of insecticidal products (IP) and strategies including advantages and disadvantages of these methods 
(according to Serazetdinova, 2019 [52]; Barzmann et al., 2015 [53], Keulemans et al., 2019 [54], the IPM Guides of the 
European Commission and the FDA) 

At least one case of relevant field-evolved insecticide resistance has been confirmed in over 

580 different insect species. Generally, four major types of resistance mechanisms are 

distinguished (Tab. 2) [68–70]. Moreover, the costs for development and registration of a new 

synthetic insecticide have exploded during the last two decades. Currently, they exceed 286 

million US$ per insecticide during an average 12-year period [71].Growing environmental 

awareness, rising resistance issues and economic considerations led to the (re-)discovery, 

development and implementation of alternative plant protection products and strategies aside 

from chemical insecticides (Tab. 1). Now, there is an ongoing and accelerating transformation 

of pest control. One long-known but newly favored strategy is integrated pest management 

(IPM). It encompasses classical insecticides, but also novel or reconsidered products and 

IP/Strategy Advantages Disadvantages Description 

Synthetic 
Insecticides 

 Highly effective 

 Easy to use 

 Scalable 

 Bioaccumulation 

 Can be toxic to humans or non-
target organisms  

 In most cases unspecific 

 Development of resistances  

 Environmental persistence 

 Demanding regulation 

Synthetic substances 
with insecticidal activity 

Biological 
insecticides 

 Degradable 

 Easy to use 

 Can be less toxic than synthetic PPPs 
to humans and non-target 
organisms 

 Less demanding regulation  

 socially accepted 
 Can be specific 

 Scalable 

 Can be toxic to humans 

 In most cases unspecific 

 Development of resistances 

 Can be less effective than 
synthetic PPPs, 

 Risk of eutrophication and 
acidification of land 

A substance with an 
insecticidal or repellant 
activity which is of 
biological origin (animals, 
plants, bacteria) 
including extracts, 
pheromones or 
microorganisms 

Mechanical 
control 

 Free of chemicals or toxic 
substances 

 Time-consuming 

 Inefficient 

 Often not suitable for large 
scale farming 

Removal of pests by 
mechanical actions (e.g. 
shaking, picking) or 
protection through 
physical barriers (nets) 

Crop rotation 
 Easy to establish 

 Beneficial for biodiversity at the 
farm 

 Highly dependent on biological 
context (e.g. present pests) 

 Reduces pest infestation, but 
cannot reduce crop-loss after 
infestation 

Serial planting of crops, 
which are susceptible to 
different types of pests, 
thus, disrupting the 
pest’s lifecycle 

Biological 
control 

 Reduces synthetic PPP usage 

 Increases biodiversity 

 Can be highly efficient 
 Pest control effect can be persistent 

 Resistances are unlikely 

 Can be specific 

 Easy to use 

 Best suitable for closed 
environments (greenhouses) 

 Pest control effect can be 
delayed based on the 
reproduction time of biological 
control organism 

 Availability of control organism 
has to be assured 

Application of natural 
predators or parasites 
including bacteria, 
nematodes, fungi, and 
viruses 

Resistant 
cultivars 

 Reduces chemical intake 

 an be designed specifically against 
target organisms 

 Crop breeding is time-
consuming 

 GMO use limited due regulation 

 Great potential to raise the 
resistance of pests 

Use of crop strains, 
resistant to one or more 
particular pest-species 

Smart farming 
 Free of, or dramatically reducing 

pesticide use 
 Very expensive 

 Technically demanding 

Using sensors, cameras, 
unmanned (aerial) 
vehicles, high-tech 
monitoring and 
information technology 
to predict outbreaks of 
diseases, pests, etc. 
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methods, including bioinsecticides, the use or extension of refugee areas, biological pest 

management, “smart farming”, and others, aiming to balance sociological desires, ecological 

needs, and economical expectations [53,54]. 

Table 2 Mechanisms of resistance (see also The Reflection and Research Network on Pesticide Resistance (R4P) 2016 [70]) 

1.2.2 APHID PESTS AND MANAGEMENT STRATEGIES 

Aphids feed on phloem sap, severely damaging all kinds of plants, from crops in 

agriculture to ornamentals in horticulture [39]. This damage occurs directly through feeding in 

highly infested plants, but aphids are also vectors for a considerable amount of important plant 

pathogens, especially viruses [72]. As an indirect effect of sap-feeding, the aphids secrete large 

amounts of honeydew (a sugar-rich liquid) that covers all parts of the plants [73]. Subsequent, 

devastating fungal growth inhibits photosynthesis, reduces crop yields and decreases the 

market value of contaminated fruits and other field products [74,75]. Thus, aphids may cause 

yield losses worth billions of dollars each year [76,77]. The most prevalent practice to control 

aphids is the use of chemical insecticides including carbamates, organophosphates, 

pyrethroids, neonicotinoids and others [64,78]. Evidently, as a result of such a broad use of 

insecticides, a rapid selection for aphid resistance transpired. For example, the green peach 

aphid (Myzus persicae) has developed various resistance mechanisms (Tab. 2) to more than 70 

synthetic compounds, and it is considered one of the most resistant insect species [79–81]. For 

modern aphid management, predictive models, which use parameters like rainfall, 

temperature and other climate conditions as well as publicly available trap catch data, have 

been developed and adapted to forecast aphid spread and aphid population development. 

These models help to optimize seeding time and to reduce the use of pesticides, thus providing 

a substantial benefit for growers and the environment [74,82]. 

Another method to prevent or delay the use of chemicals for aphid management is to 

engage in biological control using predators, parasitoids and microbial pathogens. Aphid 

parasitoids such as Aphidius spp. and Aphelinus spp., or aphidophagous organisms, including 

ladybirds, hoverflies and lacewings, have been established to decrease aphid abundance to a 

tolerable level in the field [74,83]. Still, biological control faces some challenges (e. g., potency 

and speed of effect) that have to be considered carefully [84–86].  

A third strategy to restrict the aphid load on crops is the use of resistant plant varieties 

[87]. Such resistant cultivars can occur naturally, through breeding activities or are the result 

of genetic modification [88]. Genetically modified (GM) plants can be designed to deliver or 

release bioactive molecules for suppression of aphid population either by killing or by repelling 

the insect. A multitude of such bioactive molecules have been suggested, including protease 

Mechanism of resistance Description 
Target-site resistance Genetic modification of the insecticidal target site eliminates or reduces the insecticidal effect 

Penetration resistance The permeability of the insects' cuticle is diminished in resistant insects 

Metabolic resistance Enhanced detoxification of a certain insecticide using increased levels of metabolic enzymes 

Behavioral resistance Active avoidance of the insecticide by the insect 
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inhibitors, lectins, neurotoxins, modified toxins obtained from Bacillus thuringiensis (Bt toxin), 

aphid alarm pheromones or plant-derived resistance genes (R genes). Moreover, the use of 

double-stranded RNAs (dsRNAs) to inhibit essential aphid proteins through RNA interference 

(RNAi) has been proposed as a promising tool for aphid management [89]. Genetically modified 

pest-resistant crops, e.g. corn that produce multiple insecticidal Bt toxins, are already 

commercially available (e.g. YieldGuard™ from Monsanto or Herculex I® from Corteva 

Agriscience). However, no aphid-specific GM plants have entered the market yet and the future 

will show whether this is scientifically and economically feasible [90]. All over the world, more 

or less restrictive regulations are in place for GM crops. Especially the EU has very strict rules 

for the registration and cultivation of genetically modified plants. Many EU countries have even 

banned such plants completely. From a technical perspective, delivering bioactive molecules 

in planta entails a complex and long-lasting development of the transgenic plant. After 

ingestion, such compounds have to overcome gut defense mechanisms, target the gut directly, 

or have to access to target sides passing the gut epithelium. To circumvent such difficulties, 

non-plant strategies for topical application are now under investigation. The most obvious way 

is the direct application of the (formulated) bioactive molecules in sprays or powders. 

Additionally, recombinant viruses [91], (symbiotic) bacteria [92–95], fungi or microalgae are 

under discussion to be used as vectors to deliver the bioactive substances into the insects 

[96-99]. Next to spray-induced pest control formulations, additional exogenous application 

techniques are possible such as root or seed soaking, trunk injection, petiole absorption, or 

mechanical inoculation [98]. 

1.3 AIMS OF THE THESIS 

The aim of this thesis was to shed light on different aspects of the aphids’ biology that 

can be used to develop insecticidal compounds or strategies for aphid pest management apart 

from the traditional insecticides. Therefore, this thesis assessed the role of epigenetic 

modifications in aphids, or more precisely the importance of histone acetylation/deacetylation 

enzymes (KATs/KDACs) in the life history traits of the pea aphid. In the first step, a 

comprehensive overview of KAT and KDAC genes were supposed to be identified in the aphid 

genome. Then, it elucidated if these enzymes can be inhibited by chemical compounds such as 

Epi-ML (inhibition of KAT enzymes) and SAHA (inhibition of KDAC enzymes), and how such 

inhibition might affect various life-history traits of aphids. Additionally, it was intended to 

establish a robust RNAi protocol in A. pisum. Since achieving a high RNAi efficiency in aphids is 

known to be very challenging [100–103], the aim was to demonstrate that the pea aphid strain 

used herein is susceptible to RNAi. Subsequently, RNAi could be used for the specific 

attenuation of all previously identified KAT or KDAC genes. Doing this, the thesis aimed at the 

identification of target genes related to the histone acetylation apparatus, whose disruption 

reveals a major impact on the life-history traits of aphids. Thus, this thesis intended to find a 
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potent target gene that is suitable to be incorporated in RNAi-based pest control strategies for 

aphids. In addition, these experiments may uncover unknown aspects and new influencing 

variables of the aphid’s RNAi machinery that cause the previously mentioned imponderability 

of RNAi. The findings may help to assess, whether RNAi is a reasonable and highly specific aphid 

control method.  

While focusing on epigenetic traits and their potential as new targets for aphid control, 

this thesis additionally examines the influence of the facultative bacterial symbiont 

S. symbiotica on the life history traits of A. pisum. That included a closer look at the hypothesis 

that bacterial symbionts are crucial factors of insect tolerance against chemical insecticides and 

the idea that they may act as efficient targets for insect control agents itself. This information 

can help to optimize the use of artificial pesticides in the field. Finally, this thesis provides 

evidence that certain AMPs isolated from the venom glands of scorpions hold the potential to 

be developed as sustainable biopesticides.  
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2.  MODERN ASPECTS OF APHID MANAGEMENT 

“It is said that if you know your enemies and know yourself, you will not be imperiled in a 

hundred battles” – Sun Tzu, The Art of War  

For the development of future insect pest control strategies, we have to consider 

numerous requirements. Such strategies have to be sustainable and ecologically friendly, they 

must not be a threat to public health, insect resistance has to be prevented, etc. (European 

Directive EC91/414, [63]). The Eurobarometer for food safety, commissioned by the European 

Food Safety Authority (EFSA) in 2019, revealed that people in the EU are concerned most about 

‘antibiotic, hormone and steroid residues in meat’ (44%) followed by ‘pesticide residues in 

food’ (39%) [104]. Aphid management relies primarily on chemical insecticides. Due to the 

increasing demand in Europe, especially in Germany, to decrease the usage of chemical 

pesticides on cultivated land [105], there is a need to reconsider the traditional use of these 

substances. In the following chapters, aspects of aphid biology and life cycle will be discussed 

that offer new ways and strategies to refine or reduce the amount of currently used synthetic 

insecticides. It is obvious that novel targets and approaches are urgently required for 

sustainable control of aphids in the field.  

2.1 THE EPIGENETIC MACHINERY – THE IMPORTANCE OF HISTONE ACETYLATION IN APHIDS 

Ontogenesis requires a complex interaction of differentially expressed, controlled and 

regulated genes and their products, in order to convert a genotype into a phenotype. In some 

insects, such as aphids, this network appears to be even more complex, since multiple, distinct 

phenotypes may originate from a single genotype. This phenomenon is currently referred to as 

polyphenism. Such exceptional and heritable traits are thought to be environmentally 

triggered. Thus, their underlying molecular mechanisms need to be epigenetically controlled 

instead of being adjusted on the DNA sequence level. One possibility to regulate gene 

expression by means of epigenetic alternation is the chemical modification of chromatin 

residues. Subsequent changes in chromatin formation result in open euchromatin or closed 

heterochromatin. This modifies accessibility of the DNA to transcription factors and facilitates, 

or suppresses gene expression [106,107]. A well-characterized epigenetic modification is the 

acetylation of lysine residues within the N-terminal tail of core histone proteins [106]. The 

acetylation and the deacetylation of histones has to be precisely balanced to maintain normal 

physiological and developmental processes [108]. Disruption of this equilibrium is associated 

with anomalies in development, health, behavior, and other life-history traits [109–111]. For 

example, a disturbed ratio of acetylation and deacetylation of histones in the fruit fly 

Drosophila melanogaster affects survival and development, while in the flesh fly Sarcophaga 

bullata, such dysregulations interfere with the pupal diapause [112–115]. In honey bees (Apis 

mellifera), a reduced deacetylation induces neurological defects, but at the same time can 
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promote queen bee development [116,117]. The importance of this epigenetic mechanism in 

aphids has been discussed under different perspectives, including wing and reproductive 

polyphenism [118–120]. However, the particular significance of histone acetylation in normal 

aphid development remains unresolved. 

The reversible acetylation of histone residues is catalyzed by enzymes originally called 

histone acetyltransferases and histone deacetylases [106]. Today, these enzymes are also 

known as lysine acetyltransferases (KATs) and lysine deacetylases (KDACs), because they 

additionally target an abundant number of non-histone proteins [121–125]. A remarkably 

diverse spectrum of highly conserved KATs and KDACs has been identified in many organisms 

(Fig. 2) [121,126–128]. Most KATs belong to one of three protein families: the GCN5-related 

N-acetyltransferases (GNAT) family (KAT1-2); the p300/CREB-binding protein (p300/CBP) 

family (KAT3A, KAT3B); and the MOZ/Ybf2/Sas2/Tip60 (MYST) family (KAT4-8) (Fig. 2A) 

[121,127,129]. The 11 known KDACs can be subdivided into three families: Class I or Rpd3-like 

proteins, comprising Rpd3/KDAC1, KDAC2, KDAC3 and KDAC8; Class II or Hda1-like proteins, 

comprising KDAC4-7; and Class IV or Hos3-like proteins with KDAC11 as its only resident 

(Fig. 2B) [121]. The sirtuins (Sir1-7), the fourth subgroup of deacetylation enzymes, was 

previously referred to as Class III KDACs, but they appeared to be mechanistically and 

structurally distinct from the other KDACs. Consequently, they are now considered an 

independent group of proteins (Fig. 2C) [121,130–132]. 

2.1.1 KATS AND KDACS IN A. PISUM - DETECTION AND CHARACTERIZATION 

In the present work, the NCBI database and the genome of A. pisum have been 

screened for KAT and KDAC (incl. sirtuin) genes and motifs to identify relevant gene and protein 

sequences [14,133]. This bioinformatics approach revealed 18 KAT-related and 16 

KDAC-related sequences within the pea aphid genome. These results support previous studies 

suggesting an extended repertoire of chromatin-remodeling proteins in the pea aphid 

[14,103,133]. Assembly and annotation of whole genomes, including the pea aphid genome, 

are performed automatically and remain a huge computational challenge, which can be biased 

Figure 2. Classification of (A) Type A lysine acetyltransferases [176], (B.1) histone deacetylases with sirtuins as an inde-

pendent group of deacetylases [168] and (B.2) sirtuins [177,178]. 
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in various ways [134]. Coverage bias or two paralogous genes collapsed into a single gene by 

automatic assembly decrease the number of predicted genes within a draft genome. 

Conversely, splitting of allelic variants into separate paralogous loci (split genes) or the cleavage 

of gene sequences and the subsequent association of the resulting fragments onto more than 

one scaffold or contig (cleaved genes) leads to substantial overestimation of gene diversity 

[135]. With this in mind, the observed sequences have been further characterized – by manual 

examination of the underlying genomic information, protein domain analysis, and phylogenetic 

comparisons. Eventually, they were examined by in vitro detection via PCR and Sanger-

sequencing [103,136]. In this detailed analysis, Kirfel et al. (2019) for the first time revealed 

evidence for split genes (e.g. hdac8 and rpd3) and cleaved genes (e.g. kat6b and kat7) in the 

pea aphid genome assembly [103]. Nevertheless, several KATs and KDACs were clearly 

identified by the phylogenetic analysis and proven experimentally. One hat1 sequence and 

three kat2b sequences (GNAT family) have been cloned and sequenced. A KAT2A protein 

sequence was found and could not be ruled out by the bioinformatics analysis, yet an in vitro 

validation of its mRNA failed. From the MYST family, one sequence each representing kat5, 

kat6b and kat7 was confirmed in silico as well as in vitro [103]. One member of the p300/CBP 

family was recognized and analyzed in detail by Kirfel et al. (2020) [136]. As mentioned 

previously, some KDAC sequences found are most likely split gene events, e.g. only one 

transcript each out of two predicted hdac8 and four predicted rpd3 sequences (both Class I 

KDACs) could be verified experimentally. Conversely, a true gene duplication event was 

observed in the case of the two KDAC6-like sequences (Class II KDACs), which were found both 

bioinformatically and experimentally. Moreover, there is strong evidence for the existence of 

kdac3 (Class I), kdac4 (Class II) and kdac11 (Class IV), but not for homologs of KDAC2, KDAC5, 

KDAC7 and KDAC9. Four sirtuins were cloned and sequenced following the bioinformatic 

identification (Sir1, Sir4, Sir6 and Sir7). The mitochondrial Sir5 was found in silico but its mRNA 

transcript could not be confirmed in the lab [103]. It was demonstrated in Kirfel et al. (2019) 

that previous studies possibly overestimated the diversity of histone-modifying enzymes in 

some respect, but also showed that the repertoire of KATs and KDACs, indeed, has been 

extended in some cases (e.g. kdac6 and kat2b) in A. pisum [103,127]. 

2.1.2 INHIBITING HISTONE MODIFICATION ENZYMES SIGNIFICANTLY EFFECTS APHID FITNESS 

In this thesis, the role of histone modification in normal aphid development was 

investigated, in order to estimate the importance of this epigenetic modification for 

polyphenism, as suggested in previous studies [118–120]. Epigenetic modifications, and 

protein acetylation, in particular, are key regulatory adaptations in many biological processes 

[122,123,137]. Inhibition of this mechanism could lead to a dramatic loss of fitness [113]. 

Notably, this result may become the key to approaching a novel target system for insecticidal 

agents and strategies, apart from the most important classical targets like the nervous system 
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or chitin biosynthesis. Therefore, aphids were fed on an artificial diet containing either 

epigenetic multiple ligand (epi-ML) or suberoylanilide hydroxamic acid (SAHA), two chemicals 

inhibiting the activity of KATs or KDACs, respectively. Upon inhibitor ingestion, survival was 

reduced by up to 70% (SAHA) and 50% (epi-ML), respectively. Furthermore, a reproductive 

delay of up to 2 days was observed in a concentration-dependent manner [103]. Likewise, the 

inhibition of KDACs reduced survival and caused developmental arrest in D. melanogaster, the 

frog Xenopus laevis or the starfish Asterina pectinifera [113,138–140]. Despite the reduced 

development of A. pisum nymphs following SAHA treatment for KDAC inhibition, such aphids 

gained a greater body weight than their untreated peers [103]. This might result from 

nonspecific cell growth comparable to that reported for X. laevis [137]. Contrary to what has 

been observed for SAHA, inhibition of the KAT enzymes by epi-ML led to significantly smaller 

body size and lower body weight of the aphids [103]. These strong effects on survival, 

reproduction, growth, and development, as described in Kirfel et al. (2019), experimentally 

proved the importance of histone modification in several life-history traits in aphids. However, 

a polyphenetic response resulting from exposure to these two inhibitory chemicals was not 

discovered [103]. It is possible that this phenomenon is governed by other epigenetic 

modifications. Such an effect was shown by results of Dombrovsky et al. (2009) [142], who 

demonstrated that inhibition of DNA methylation using RG108 (N-phthalyl-L-tryptophan) or 

zebularine (pyrimidin-2-one-β-D-ribofuranoside) promoted wing development in A. pisum. 

The chemical disturbance of the entire histone acetylation system by SAHA and epi-ML, 

respectively, offers the opportunity to evaluate a possible role of this epigenetic modification 

in the aphid’s biology in general. Notably, this system also bears potential as a novel target for 

aphid control. To go more into detail, RNA interference was used to determine the function 

and importance of the previously identified genes involved in histone modification (see 2.3.1). 

RNAi is a preserved biological response mechanism to exogenous double-stranded RNA. It is a 

mechanism for sequence-specific gene silencing present in most eukaryotic organisms. RNAi 

controls gene expression and facilitates resistance to endogenous parasitic as well as 

exogenous pathogenic nucleic acids [143–147]. Silencing of the KATs hat1, kat2b1, kat2b2, kat8 

and the KDACs kdac3, kdac6, kdac8 and sir1 did not induce significant changes to the monitored 

parameters like survival, development or offspring production. Interestingly, silencing the 

KDAC Rpd3 led to a small but significant number of prematurely born, nonviable 

offspring [103]. Considering that embryos of rpd3-deficient D. melanogaster develop 

segmentation defects and also failed to hatch, these results suggest that Rpd3 is essential in 

aphid embryogenesis and eclosion [103,148]. Interference with the histone acetyltransferase 

kat6b significantly extended the aphid lifespan. Inhibition of kat7 mRNA resulted in the 

production of considerably more offspring compared to the controls. This is in line with studies 

in yeast, D. melanogaster, Caenorhabditis elegans, and mice, reporting a prolonged survival 
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after the loss of histone acetylation [149,150]. A lack of histone acetylation, either through 

impaired acetyltransferases or by an accelerated deacetylation process, is suggested to 

stabilize gene expression and thus, like in aphids, increase longevity [151–154]. The mechanism 

by which KAT7 promotes offspring production in aphids remains unclear. However, such 

beneficial effects of the inhibition of histone acetylation may be limited to certain 

acetyltransferases since the attenuation of the acetyltransferase p300/CBP appeared to be 

detrimental to the aphids’ fitness [136]. 

2.1.3 ABOUT P300/CBP IN APHIDS – A UNIVERSAL TRANSCRIPTIONAL CO-REGULATOR 

Although historically associated with histone acetylation, p300/CBP is now known to be 

important for numerous acetylation processes and signaling pathways [155–158]. With more 

than 400 protein targets resulting in the acetylation of over 100 protein substrates, this enzyme 

has been shown to be essential in many ways for growth and development in multicellular 

organisms [156,159–162]. In humans, p300/CBP has been demonstrated to play important 

roles in various forms of cancer [163]. In D. melanogaster, the German cockroach Blattella 

germanica and the red flour beetle Tribolium castaneum, the loss of p300/CBP activity has been 

shown to cause severe embryonic or postembryonic deformation [115,164–167]. Similar to the 

other KATs, nothing was known about the function of p300/CBP in aphids. The inhibition of 

most KATs in aphids through dsRNA injection exhibit no or rather mild incisions in the observed 

life-history traits [103]. Conversely, the injection of p300/CBP dsRNA had manifold and fatal 

consequences in A. pisum (Fig.3) as demonstrated in Kirfel et al. (2020) [136]. This result 

Figure 3. Scheme of the experimental procedure used for dsRNA injection. Injection occurred between the meso- and 

metathorax of a 5-day-old mother. The effect of different p300/CBP dsRNA concentrations on survival and the production 

of offspring is displayed in graphs. Additionally, regular offspring compared to premature offspring born after the 

injection of control dsRNA (top-right) and p300/CBP dsRNA (down-right), respectively, is shown. 
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strongly supports the conserved function of p300/CBP in fundamental regulatory and cellular 

processes as reported for other organisms [164,166]. E.g. in D. melanogaster, C. elegans and 

mice, p300/CBP seems to be essential during embryogenesis. If dysregulated, it causes lethality 

and severe developmental defects in these organisms [165,167,168]. Kirfel et al. (2020) 

revealed that treated aphids produced less offspring, gave birth to an astonishing number of 

premature nymphs, and showed that the attenuation of p300/CBP triggers the retention of 

embryos by their mothers (Fig. 3) [136]. Such an impact can be explained by a disrupted 

embryogenesis. It can also be caused by reduced tissue integrity within the aphids’ ovaries 

observed in this study upon p300/CBP manipulation. Along with additional effects perceived, 

such as the dramatic truncation of the reproductive phase and the dark-green 

hyperpigmentation of the aphid body, it was concluded in Kirfel et al. (2020), that sufficient 

evidence is provided for the induction of senescence by p300/CBP mitigation [136,169]. This is 

in agreement with other studies associating p300/CBP with an accelerated biological aging 

process [136,169]. Essential roles of p300/CBP in the senescence of human cells, the apoptosis 

of insect cells, and the disabling of lifespan extension in C. elegans have been reported, as well 

as a correlation of age and gene expression levels of p300/CBP in mice [170–174]. The 

hyperpigmentation of the aphids’ bodies, which can also be observed in aging aphids under 

normal conditions, is suggested to result from encapsulation and melanization of particles. This 

is suggested to be one of the few active immune response mechanisms in aphids [175-178]. 

From experiments in T. castaneum it is known that the knockdown of p300/CBP affects the 

expression of more than 1,300 genes, which trigger an enhanced melanization in the midgut of 

the beetles as a consequence of changes in innate immunity, pigmentation, and metabolism 

[166]. Hence, future investigations should additionally consider a correlation between the 

dysregulation of p300/CBP and aphid immunity. Apart from this, depletion of p300/CBP altered 

both foraging behavior and food intake in Camponotus floridanus and B. germanica. Moreover, 

modulation of gluconeogenesis and lipidogenesis was observed in the latter species, whereas 

the stability of nutritional storage proteins was affected in Bombyx mori [164,179,180]. 

Malnutrition may account for or, at least, exacerbate the detected developmental aberrations 

and the lifespan reduction. However, such an explanation seems to be less probable for aphids, 

because no obvious changes in feeding behavior, body weight, and body size were observed in 

this study. 

2.1.4 DSRNAS AS BIOINSECTICIDES – RNAI AS AN ALTERNATIVE APHID MANAGEMENT STRATEGY  

RNAi is regularly used to protect beneficial insects from pathogens or parasites like the 

Israeli acute paralysis virus, the Varroa mite (Varroa destructor), or the microsporidian parasite 

Nosema ceranae [181–185]. It was further considered as an alternative, environmentally 

friendly approach to control (pest) insects themselves [186]. Indeed, Baum et al. (2007) [187] 

and Mao et al. (2007) [188] demonstrated that insect-derived dsRNA expressed in planta 
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exhibit a significant degree of protection against the western corn rootworm (WCR) Diabrotica 

virgifera and the cotton bollworm Helicoverpa armigera, respectively. The only commercially 

available product using RNAi as the active mechanism against insects is SmartStax PRO maize 

that is expressing DvSnf7 dsRNA, which was estimated to reduce WCR appearance by up to 

95% [189]. Although feasible for many insects [144], some Lepidopteran and Hemipteran 

species, including aphids, appear to be recalcitrant in their response to environmental RNAi 

[101,147,190,191]. Previous studies aiming to establish RNAi-mediated aphid control focused 

on target systems that are well known in the context of pest control. Such studies were looking 

for genes related to insect digestion, respiration, and chitin biosynthesis. However, they were 

of debatable success [192–197]. Various reasons for a reduced susceptibility or resistance to 

RNAi were suggested, including natural barriers, such as the insect gut pH value, dsRNA 

degradation by nucleases, the accumulation of dsRNA in endosomes, and SID-1 deficiency. In 

other words, those mechanisms are affected that disturb normal uptake and (systemic) 

transport of dsRNA [102,198,199]. Additionally, RNAi-mediated gene silencing could be 

counteracted by regulatory feedback mechanisms, which are able to compensate for the 

function of the silenced gene. In this context, the gene’s transcription rate can be increased, or 

the up-regulation of other genes can be expedited. Alternative explanations for a less effective 

RNAi scenario comprise low expression or malfunction of RNAi enzymes or compounds [180]. 

The first obstacle for efficient RNAi, which has eventually been identified in aphids, was 

an extracellular dsRNase in the gut. It significantly and non-specifically degrades ingested 

dsRNA molecules [102,200]. Further, although all compounds of the siRNA pathway and related 

transport proteins are present in aphids, it remains controversial how and if these genes are 

regulated upon dsRNA delivery [102,201,202]. Remarkably, the examination of enzymes of the 

second RNAi pathway, the miRNA pathway, which can cause translational instead of 

transcriptional repression, has experienced an extensive expansion in A. pisum. The exposure 

of aphids to different kinds of dsRNA was followed by a vast, but inconclusive expression 

crescendo of several components of this pathway [201,203]. In this thesis, only a partial 

knockdown (~30%) of the expression levels of the p300/CBP mRNA was detected, which was 

Figure 4. Effects of RNAi after injection of p300/CBP dsRNA and GFP control dsRNA mixtures in different ratios (pure, 
1:1, 1:4, 1:8). (A) survival, (B) mean number offspring/day, (C) mean number premature offspring/day.  
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strictly in line with results found in many other studies on the pea aphid. Considering the 

extension of the miRNA pathway, it is worth suggesting that effects observed upon dsRNA 

injection in the pea aphid, at least to some degree, is based on a translational instead of 

transcriptional repression leading to only minor mRNA reductions hardly detectable by 

quantitative PCR [136]. Even if it was clearly demonstrated that there were only minor changes 

in the expression levels of the p300/CBP mRNA, the consequences on various A. pisum 

life-history traits were significant. However, a strong phenotypic effect even if, or especially if, 

the knockdown is only partial, is a prerequisite for a promising candidate gene in terms of 

RNAi-based insect pest control [200]. As pointed out, all enzymes of the RNAi pathways are 

present, but the overall expression levels of relevant enzymes as well as the fate of dsRNAs in 

A. pisum and other aphids largely remains unknown. Kirfel et al. (2020) demonstrated that 

even very low amounts of dsRNA (1.25 ng) can have tremendous effects on the life-history 

traits of aphids [136]. Surprisingly, the injection of larger amounts of dsRNA (75 ng) did not 

result in stronger effects in terms of mortality, offspring count, and viability of emerging 

nymphs [136]. These results may be an indication for low expression levels of participating 

enzymes and consequentially rapid saturation of the RNAi machinery. This hypothesis is 

supported by further experiments deploying mixtures of GFP and p300/CBP dsRNA in different 

proportions (1:1, 4:1 and 8:1, respectively). A rapid competitive inhibition of the RNAi pathways 

was observed (Fig. 4). Although it remains unclear, which part of the RNAi pathways (uptake, 

transport, core enzymes, etc.) is affected most seriously, this finding provides an alternative 

explanation for the variable efficacies of RNAi observed in aphids. At the same time, the 

assumption was corroborated that very strong phenotypic effects, necessary for RNAi-based 

aphid control, can be achieved by careful selection of a suitable target gene. It should not be 

neglected that the hypothesized fast and easy competitive inhibition of the RNAi machinery 

may come along with new challenges, especially for previously suggested delivery systems. For 

instance, modified viruses, which are commonly employed as transfer vectors, may not be a 

suitable tool for the control of aphids [98]. 

Table 3. Identity of the p300/CBP dsRNA construct to the mRNA of other aphid species 

Aphid species Identity Contig. nt (>21-mers) of A. pisum dsRNA similar to p300 mRNA of other species 
Cotton aphid 
(Aphis gossypii) 

93% 38nt, 32nt, 29nt, 41nt, 33nt 

Russian wheat aphid 
(Diuraphis noxia) 

96% 44nt, 123nt, 43nt, 47nt 

Green peach aphid 
(Myzus persicae) 

97% 28nt, 44nt, 80nt, 77nt, 47nt, 27nt 

Sugarcane aphid 
(Melanaphis sacchari) 

93% 29nt, 38nt, 26nt, 29nt, 26nt, 38nt, 30nt 

Corn leaf aphid 
(Rhopalosiphum maidis) 

92% 29nt, 38nt, 92nt, 23nt, 33nt 

Yellow sugarcane aphid 
(Sipha flava) 

88% 26nt, 47nt, 22nt 
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As discussed before, resistance is a major concern of every pest control product. To 

prevent resistance against dsRNA constructs, the use of long dsRNA has been suggested. 

Certainly, the longer the delivered dsRNA constructs, the less are the odds for mutations 

triggering resistance, but the higher the risk to target non-target genes in aphids or genes in 

non-target organisms [204]. The p300/CBP dsRNA construct used herein was >300 nucleotides 

long, and there is a high degree of identity to other aphid p300/CBP mRNA sequences (Tab. 3, 

Fig. 5). That means that the construct used herein is most likely not species-specific but 

presumably limited to the aphid family. In fact, no RNAi-relevant overlaps were identified to 

the mRNA of the beneficial insect A. mellifera and the mammal M. musculus. Consequently, 

those organisms are not targeted by the present dsRNA. Considering the strong phenotypic 

effects and the high specificity, the dsRNA molecules designed in this study are ideal candidates 

for use as alternative and aphid-specific crop protection products (Patent application: Methods 

of Multi-Species insect pest control #EP19209940). 

2.2 FRIEND OR FOE? – THE APHID’S BACTERIAL PASSENGER SERRATIA SYMBIOTICA  

A pest control strategy advocated for many years is the application of insecticides at 

the maximum permitted dose [205]. This practice is debatable, and a simple way to reduce 

insecticides is to apply the lowest possible, but still sufficient amount of insecticidal compound 

in the field [205,206,207]. To determine the appropriate amount of an insecticide to be applied, 

fundamental knowledge of factors influencing the susceptibility of the pest is mandatory. 

Contemporary approaches for IPM include the accurate identification of the pest to be 

controlled as well as an in-depth understanding of its biology and ecology [208]. For example, 

the presence of some bacteria in insects is associated with increased host susceptibility to 

insecticides due to overall reduced fitness of the host-insect [209–211]. In an opposite way, it 

Figure 5. Alignments of the A. pisum dsRNA construct with sequence of the p300/CBP mRNA sequence of other aphids 

(Aphis gossypii, Diuraphis noxia, Myzus persicae, Melanaphis sacchari, Rhopalosiphum maidis, Sipha flava), the honey 

bee (Apis mellifera) and the house mouse (Mus musculus). 
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has been demonstrated that the bacterial symbionts of other insects such as the bean bug 

Riptortus pedestris [212], the oriental fruit fly Bactrocera dorsalis [213], or the mountain pine 

beetle Dendroctonus ponderosae [214], act as detoxifiers. Presumably, such symbionts 

originally might have enabled the host to overcome plant defenses, but eventually, they 

specialized in mediating insecticide resistance [215–220]. Consequently, the presence or 

absence of a highly-specialized symbiont in a specific pest may substantially alter the necessary 

amounts of insecticidal compounds to be applied in the field.  

Outstanding examples of detoxifying bacteria are found in the genus Serratia 

[214,221-225]. One member of this genus, S. symbiotica, is one of the most frequent facultative 

symbionts in aphids, including the pea aphid [226]. S. symbiotica can protect aphids from 

parasitoids, predators, and heat stress [227–230]. Recently, it has been suggested to support 

the feeding on host plants by the excretion of digestive enzymes or through the suppression of 

plant defenses [231]. Therefore, the hypothesis investigated in this thesis was that 

S. symbiotica could also assist the detoxification of insecticides in A. pisum. Consequently, the 

insecticide resistance of aphid strains harboring this symbiont should be more pronounced. 

The influence of the aphids’ symbiont on the susceptibility to common insecticides was 

assessed with respect to the overall impact of S. symbiotica on A. pisum fitness [233]. 

Therefore, aphids from a Serratia-positive stock population were sterilized. Using ampicillin, a 

Serratia-free line of A. pisum was established. Then, several fitness parameters (development, 

reproduction, size, longevity) of the newly established Serratia-free population were analyzed 

and compared to those of the original Serratia-positive population. Furthermore, a bioassay 

was established to test the efficiency of different insecticides covering a spectrum of insecticide 

classes, frequently used for aphid control [64,232,233]. Aphids were exposed to a 

neonicotinoid (imidacloprid: agonist on the nicotinic acetylcholine receptor), an 

organophosphate (chlorpyrifos-methyl: non-competitive inhibitor of acetylcholine esterase), a 

carbamate (methomyl: non-competitive inhibitor of acetylcholine esterase), a diamide 

(cyantraniliprole: agonist on the ryanodine receptor) and a tetramic acid derivate 

(spirotetramat: inhibitor of acetyl-CoA carboxylase). Three concentrations of each insecticide 

were evaluated in order to determine LC50 values for both aphid lines [233]. Contrary to the 

hypothesis, S. symbiotica infection in A. pisum led to severe fitness costs regardless of the 

insecticide treatment. Without treatment, aphids hosting the bacterial symbiont underwent a 

significantly prolonged development, they produced fewer offspring and were considerably 

smaller (lighter) than individuals from the sterilized, Serratia-free population. Following 

insecticide treatment, the mortality in the Serratia-positive aphid line was substantially higher 

than that one in the sterilized line. This result was confirmed for all insecticides tested, except 

for cyantraniliprole, especially when low concentrations of the substances were applied [233]. 

This is in line with results discovered in Bemisia tabaci or Plutella xylostella, where the existence 
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of a bacterial symbiont increases the susceptibility to chemical insecticides [210,234]. As 

previously mentioned, whether symbiotic bacteria are only beneficial or come with costs to 

their insect hosts depends on a complex interplay of diverse factors. The effect of a symbiont 

can change, depending on environmental conditions, the presence or absence of stressors 

[235,236]; and they can vastly differ depending on the host as well as the symbiont species 

[32,169,237] or even strains [238,239]. In several studies, a trade-off between the insect’s 

endurance, offspring production, or development and their need to control their symbiotic 

community to ensure the success of both partners, has been demonstrated [169,237,240]. 

Likewise, it can be assumed that the fitness costs associated with the maintenance of 

S. symbiotica in aphids take part in the alteration of their ability to cope with chemical 

insecticides. Consequently, this study suggests that host sensitivity to insecticides is influenced 

by the introduction of a bacterial symbiont. In other words, the presence or absence of a 

particular symbiont may be a key factor for the efficacy of insecticide applications against 

insects in the field. This decisive result obtained in this thesis needs to be considered in future 

pest management strategies.  

2.3 AMPS – ANTIMICROBIAL PEPTIDES EVOLVING INTO BIOINSECTICIDES 

Antimicrobial peptides (AMPs) are short polypeptides with either a linear structure 

encompassing amphipathic α-helices, or a cyclic structure including β-sheets stabilized by 

disulfide bridges [241]. These peptides have been found in all living organisms ranging from 

bacteria to plants as well as vertebrates and invertebrates. As part of the organisms' innate 

immune system they exhibit antimicrobial activity, but additionally show antiviral or 

anti-inflammatory functions, etc. [242,243]. Depending on the individual biological 

surrounding, AMPs may act through numerous mechanisms including the formation of ion 

channels in the cell membrane; they may alter enzyme activity, inhibit protein folding and bind 

intracellular targets [244]. Although AMPs are under discussion as a replacement for classical 

antibiotics, only a few have officially been approved as such. This is mainly due to concerns 

about toxicity, cleavage, and stability [245–247]. To broaden the potential industrial use of 

AMPs, one attempt of this thesis was to evaluate the insecticidal activity of AMPs and assess 

their utility as bio-insecticides against aphids. 

Insects rely exclusively on their innate immune system to fight infections with 

pathogens or parasites [248]. AMPs play central roles in the insects’ immune response against 

intruding microbes [249–251]. Surprisingly, in the A. pisum genome, some genes for the 

detection and the elimination of microorganisms are absent, and only a weak immune response 

was detected following infection or stress treatments [249]. More precisely, the pea aphid 

genome lacks genes encoding typical antibacterial AMPs such as defensins. It is hypothesized 

that the reduction of the innate immune system co-evolved with the introduction of obligatory 
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endosymbionts in aphids [176,249,252,253]. These bacterial symbionts are responsible for the 

aphids’ ability to survive on nutritionally poor diets [254,255]. Therefore, eradication of the 

endosymbiont by antibiotics leads to a dramatic loss of fitness and fertility [256,257]. 

Consequently, new strategies for aphid pest control could be developed, which selectively 

target the symbionts themselves or the bacteriocytes harboring these organisms.  

To efficiently kill their prey, the venom of scorpions contains neurotoxins and other 

bioactive molecules, as well as a complex mixture of AMPs, optimized over millions of years in 

evolution [258]. The use of scorpion AMPs as antibiotics is still a challenge due to their mildly 

hemolytic activity, but they may also be an untapped source for novel peptides with insecticidal 

activity. In this study, their potential use as insecticides was investigated by testing their activity 

against the pea aphid and its bacterial symbiont, in vitro as well as in vivo. The AMPs used 

herein were part of the largely uncharacterized group of non-disulfide bridged peptides 

(NDBPs) [259] and have been isolated from the venom gland transcriptome of the Australian 

native scorpions Urodacus yaschenkoi and Urodacus manicatus. Naturally occurring scorpion 

AMPs and modified analogs thereof were fed to the pea aphid [260–265]. Survival and 

reproduction of the treated insects were analyzed, and the results were compared to 

treatments with three insect-derived AMPs (apidaecin, cecropin A, stomoxyn). Rifampicin, 

which inhibits the bacterial DNA-dependent RNA polymerase, was used as a control antibiotic, 

whereas the neonicotinoid imidacloprid was used as a control insecticide. Additionally, the 

impact of the AMPs on bacterial load of B. aphidicola and S. symbiotica have been investigated 

in vivo with quantitative PCR. In vitro, minimal inhibitory concentrations (MICs) against 

S. symbiotica were estimated using the cultivable strain CWBI-2.3, which is closely related to 

the S. symbiotica strain found in A. pisum [266]. The scorpion AMPs affected the survival of 

A. pisum to a varying extent, whereas none of the used insect AMPs exhibited lethal effects 

[261]. The observed modes of action of insect and scorpion AMPs are comparable, in general. 

However, while acting against a wide range of bacterial pathogens, insect AMPs do not seem 

to target eukaryotic cells [267–271]. In contrast, scorpion AMPs are devoid of this kind of 

specificity and have been shown to target bacteria, but also eukaryotic cells such as 

erythrocytes [258,268,270]. It has been suggested, that venom gland-associated AMPs not only 

protect the telson of scorpions against bacterial intruders. Additionally, they may influence the 

toxicity of the venom by destroying cell membranes and deploying entrance sites for the 

neurotoxins [268]. The observed decrease in aphid survival after AMP treatment could reflect 

the direct damage caused by scorpion AMPs to different cell-types, including gut cells and the 

bacteriocytes. This idea is supported by the fact that the AMPs influenced aphid viability in the 

feeding assay, although they were not active against S. symbiotica or B. aphidicola in vivo. 

Moreover, they did not exhibit activity against the cultivable S. symbiotica strain CWBI-2.3 or 

Escherichia coli (as a close relative to B. aphidicola) in vitro [260,261]. Nevertheless, most of 
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the scorpion AMPs, but not the insect AMPs, significantly reduced the concentration of the 

obligatory as well as facultative symbionts in the aphids. Still, the ability to affect eukaryotic 

cells may help the scorpion AMPs to penetrate the protective membranes and barriers 

provided by the aphids’ bacteriocytes, thereby promoting the perceived antimicrobial activity 

of the scorpion AMPs in aphids. Notably, the aphids’ bacterial symbionts were either immune 

against the tested insect AMPs or well protected by their bacteriocytes [261].  

In summary, scorpion AMPs are found to be promising as potentially novel insecticidal 

compounds. They reduced the survival as well as the reproduction of the aphids after oral 

uptake, presumably through direct damage of the aphids’ cells. Some of the AMPs examined, 

additionally decrease the amount of bacterial symbionts B. aphidicola and S. symbiotica. This 

also shows that the scorpion AMPs are functional even following exposure to the aphids’ 

digestive system. Genetically modified plants, ectopically expressing the antifungal peptide 

gallerimycin, have been shown to be protected against fungal infection [272]. Likewise, this 

study showed the potential of scorpion AMPs acting as insecticidal compounds, which could be 

provided through insect pest-resistant GM crops, topical application, or even other methods 

previously discussed (see 1.2.2). Hence, future research has to examine suitable application 

techniques, ecotoxicology and persistence, side effects on the adapted crop or the 

environment as well as the degree of protection offered by the AMPs applied.  
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3. CONCLUSIONS AND FURTHER PERSPECTIVES 

“when pests and diseases are causing major losses of biodiversity, and when we are increasingly 

aware of the contribution that plants make to our quality of life,[…], we simply have to be more 

cautious, more vigilant and more demanding, in tackling this major environmental risk.” 

(Charles P. A. G., Prince of Wales at a Plant Health and Biosecurity Conference at the Royal 

Botanic Garden, Kew) 

In recent years, the implementation of novel and secure insect management methods, 

or their improvement, became obligate for the entire agroindustry. This thesis focused on the 

development of alternative strategies for sustainable aphid management, which may stimulate 

the search for novel targets or pest control substances or may help to improve existing 

methods. The major subject of this thesis was the identification of the broad diversity and 

function of histone acetylation and deacetylation enzymes. It was postulated that this tightly 

controlled epigenetic machinery provides a promising target system for the development of 

novel insecticidal compounds. Surprisingly, this work exhibits the resilience of the epigenetic 

machinery against external manipulation, but also its weaknesses in terms of the highly 

connected gene node p300/CBP. The attenuation of p300/CBP has tremendous effects on 

life-history traits of A. pisum, corroborating the fundamental role of p300/CBP as a universal 

transcriptional co-regulator in insects. The RNAi-based insect pest control through transgenic 

plants may not be suitable for aphids for the reasons explained in previous sections (see 1.2.2), 

thus the utilization of dsRNA spray formulations with p300/CBP dsRNA as an active substance 

could provide a highly specific and environmentally sustainable method for aphid control. This 

work not only provides evidence for the potential of an RNAi-based pest management strategy 

but also revealed that this system may be prone to competitive inhibition and low expression 

levels of enzymes of the RNAi pathways. These new challenges need to be considered in future 

gene silencing experiments, the search for relevant target genes, the development of dsRNA 

delivery systems and the integration of this method in aphid management systems in general. 

As a second aspect, this thesis investigated one neglected aspect of aphid management: their 

bacterial symbionts. The presence of the facultative symbiont S. symbiotica increases the 

susceptibility of A. pisum to chemical insecticides. This knowledge opens up a new door to the 

optimization of the use of synthetic insecticides based on the symbiotic community of a specific 

aphid population and its resistance to different artificial stress agents. Additionally, the primary 

bacterial symbiont B. aphidicola itself provides a novel target for aphid pest control. Feeding 

scorpion-derived AMPs to A. pisum significantly decreased the fitness of this insect. Notably, 

this study disclosed the potential of scorpion AMPs as bioinsecticides. However, ecotoxicology 

and persistence, side effects on the adapted crop or the environment as well as the degree of 

protection offered by the applied AMPs have to be further examined.  
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