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Abstract
To determine the computational capacity of cellular automata they are often investigated towards their ability to accept

formal languages within certain time constraints. In this paper, we take up an opposite position and look at cellular

automata towards their ability to generate patterns, within certain time constraints. As an example we describe a con-

struction of a cellular automaton that generates prefixes of the Oldenburger–Kolakoski sequence within real time. Fur-

thermore, we study the real-time generation of unary and non-unary patterns in depth. In the unary case, we obtain a

characterization by time-constructible functions and their corresponding unary formal languages. In the non-unary case, we

provide constructions that generate any arbitrary given properly thin context-free language as well as all prefixes of any

given automatic sequence.

Keywords Cellular automata � Pattern generation � Thin languages � Automatic sequences

1 Introduction

Parallel computational models are appealing and widely

used in order to describe, understand, and manage parallel

processes occurring in real life. Cellular automata (CA) are

a model which allows to describe massively parallel sys-

tems, since they are arrays of identical copies of deter-

ministic finite automata. Furthermore, the single nodes are

homogeneously connected to both their immediate neigh-

bors, and they work synchronously at discrete time steps.

In general, cellular automata work on a given input which

is provided in a parallel way, that is, every cell is fed with

an input symbol in a pre-initial step.

The computational power of cellular automata can be

measured by their ability to accept formal languages. In

this context, the given input is accepted if there is a time

step at which the leftmost cell enters an accepting state.

Usually studied models comprise the real-time one-way

cellular automata (Dyer 1980), where every cell is con-

nected with its right neighbor only which restricts the flow

of information from right to left. Moreover, the available

time for accepting an input is restricted to the length of the

input. Other models studied are real-time two-way cellular

automata and linear-time two-way cellular automata

(Smith 1970, 1972; Choffrut and Čulik 1984). A survey on

formal language results concerning in particular the com-

putational capacity, closure properties and decidability

questions for these models and references to the literature

may be found, for example, in Kutrib (2008), Kutrib

(2009).

Another perspective on computations with cellular

automata is taken in Grandjean et al. (2012), Kutrib and

Malcher (2013), where cellular automata are used as

transducers, that is, they transform an input into an output

obeying time constraints such as real and linear time. The

paper (Grandjean et al. 2012) discusses for cellular auto-

mata several time constraints and inclusion relationships

based on these constraints. Moreover, closure properties

and relations to cellular automata considered as formal

language acceptors are established. In Kutrib and Malcher

(2013) also cellular automata with sequential input mode,

called iterative arrays, are considered as transducing

devices and compared with the cellular automata counter-

part with parallel input mode. Additionally, the cellular
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transducing models are compared with classical sequential

transducing devices such as finite state transducers and

pushdown transducers.

In this paper, we will take yet another view on com-

putations with cellular automata. Namely, we will consider

cellular automata not as devices processing an input and

computing a yes or no answer as in the case of a language

accepting device or computing an output as in the case of a

transducing device, but we consider cellular automata as

generating devices. This means that the cellular automaton

starts with an arbitrary number of cells being all in a qui-

escent state and being bordered by a permanent boundary

symbol at both ends. Subsequently, it works synchronously

according to its transition function. Finally, if the config-

urations reach a fixpoint, we consider such configurations

as the patterns generated by the automaton. Thus, cellular

automata considered this way compute a (partial) function

mapping an initial length n to a pattern of length n over the

alphabet of the automaton. In Kutrib and Malcher (2021),

first investigations on the basic ability of cellular automata

to compute such functions within real time have been

made. The results obtained concern basically structural

properties such as speed-up constructions, closure proper-

ties, and decidability questions. Here, we will study the

real-time generation of unary and non-unary patterns in

more depth.

It should be remarked that the notion of pattern gener-

ation is used for cellular automata also in other contexts,

but with a different meaning. For example, in Wolfram

(1986) the sequence of configurations produced by a cel-

lular automaton starting with some input is considered as a

two-dimensional pattern generated and the complexity of

such patterns is investigated for example for the regular

case in de Oliveira et al. (2016). In Kari (2012) a cellular

automaton is studied as universal pattern generator in the

sense that starting from a finite configuration all finite

patterns over the state alphabet are generated. This means

that these patterns occur as infixes in the sequence of

configurations computed.

The paper is organized as follows. In Sect. 2 we provide

a formal definition of cellular automata and describe how

they accept formal languages as well as they generate

patterns within time constraints, in particular, within real

time and linear time. The section is concluded with an

illustrating example generating prefixes of the Olden-

burger–Kolakoski sequence. In Sect. 3, we study the ability

of real-time cellular automata to generate unary patterns in

depth. A given function f : N ! N defines a unary pattern

in a natural way, namely, the pattern consists of all strings

an, where n is in the range of f, and is undefined otherwise.

A first result is that such patterns can be generated in real

time under the condition that the function f has some

constructibility properties. If the pattern is modified so that

strings bn are generated if n is not in the range of f, then

another result shows that the generation is still possible in

real time, but the construction is much more involved,

since the information whether or not n belongs to the range

of f is locally computed, but has to be transported to all

cells in due time. Moreover, it can be shown that the

notions of time-constructibility, real-time language accep-

tance, and real-time pattern generation are equivalent in the

unary case. In Sect. 4, we study real-time cellular automata

that generate non-unary patterns in more detail. It is a basic

observation that every pattern generated by a real-time

cellular automaton is a properly thin language, that is, it

contains at most one word of length n for all n� 1. Hence

it is of interest which thin languages are in turn generated

by real-time cellular automata. In Sect. 4.1 we first show

that every finite properly thin language can be generated in

real time. Subsequently, the construction can be enlarged to

generate every regular properly thin language and, finally,

an additional refinement gives that also every context-free

properly thin language can be generated in real time. In

Sect. 4.2 we consider another class of non-unary patterns,

namely those which are described by prefixes of automatic

sequences such as the well-know Thue-Morse sequence.

Automatic sequences are introduced and intensely studied

in Allouche and Shallit (2003). Our main result here is that

every pattern defined by the prefixes of any given auto-

matic sequence can be generated by a real-time cellular

automaton.

2 Preliminaries

We denote the non-negative integers by N. Let R denote a

finite set of letters. Then we write R� for the set of all finite

words (strings) consisting of letters from R. The empty

word is denoted by k, and we set Rþ ¼ R� n fkg. A subset

of R� is called a language over R. For the reversal of a

word w we write wR and for its length we write |w|. In

general, we use � for inclusions and � for strict inclu-

sions. For convenience, we use S# to denote S [ f#g.

A two-way cellular automaton is a linear array of

identical finite automata, called cells, numbered 1; 2; . . .; n.

Except for border cells each one is connected to its both

nearest neighbors. The state transition depends on the

current state of a cell itself and the current states of its two

neighbors, where the outermost cells receive a permanent

boundary symbol on their free input lines. The cells work

synchronously at discrete time steps.

Formally, a deterministic two-way cellular automaton

(CA, for short) is a system M ¼ hS;R;F; s0; #; di, where S

is the finite, nonempty set of cell states, R � S is set of

input symbols, F � S is the set of accepting states, s0 2 S is
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the quiescent state, # 62 S is the permanent boundary

symbol, and d : S# � S� S# ! S is the local transition

function satisfying dðs0; s0; s0Þ ¼ s0.

A configuration ct of M at time t� 0 is a mapping

ct : f1; 2; . . .; ng ! S, for n� 1, occasionally represented

as a word over S. Given a configuration ct, t� 0, its suc-

cessor configuration is computed according to the global

transition function D, that is, ctþ1 ¼ DðctÞ, as follows. For

2� i� n	 1,

ctþ1ðiÞ ¼ dðctði	 1ÞÞ; ctðiÞ; ctðiþ 1ÞÞ;

and for the outermost cells we set

ctþ1ð1Þ ¼ dð#; ctð1Þ; ctð2ÞÞ and ctþ1ðnÞ ¼ dðctðn	 1Þ; ctðnÞ; #Þ:

Thus, the global transition function D is induced by d.

Here, a cellular automaton M can operate as decider or

generator of one-dimensional patterns (or words, or

strings).

A cellular automaton accepts a word a1a2 � � � an 2 Rþ, if

at some time step during the course of the computation

starting in the initial configuration c0ðiÞ ¼ ai, 1� i� n, the

leftmost cell enters an accepting state, that is, the leftmost

symbol of some reachable configuration is an accepting

state. If the leftmost cell never enters an accepting state, the

input is rejected. The language accepted by M is denoted

by

LðMÞ ¼ fw 2 Rþ j w is accepted by M g:

A cellular automaton generates a word a1a2 � � � an, if at

some time step t during the computation on the initial

configuration c0ðiÞ ¼ s0, 1� i� n, (i) the word appears as

configuration (that is, ctðiÞ ¼ ai, 1� i� n) and (ii) config-

uration ct is a fixpoint of the global transition function D
(that is, the configuration is stable from time t on). The

pattern generated by M is

PðMÞ ¼ fw 2 Sþ j w is generated by M g:

Since the set of input symbols and the set of accepting

states are not used when a cellular automaton operates as

generator, we may safely omit them from its definition.

Let t : N ! N be a mapping. If all w 2 LðMÞ are

accepted with at most t(|w|) time steps, or if all w 2 PðMÞ
are generated with at most t(|w|) time steps, then M is said

to be of time complexity t. If tðnÞ ¼ n then M operates in

real time. If tðnÞ ¼ k � n for a rational number k� 1 then

M operates in linear time.

Before we illustrate the definitions with an example we

recall a basic technique which is useful for constructing

cellular automata that generate some sophisticated patterns.

The technique is basically the possibility of cellular auto-

mata to simulate certain data structures without any loss of

time (Kutrib 2008). Here we consider in particular the data

structures queues and rings, where a ring is a queue that

can write and erase at the same time (for convenience we

will call both queue in the sequel). For the simulation,

some designated cell (the rightmost one, for example)

simulates the front and the end of the queues. For the sake

of completeness, we next recall exemplarily the principle

of this simulation from (Kutrib 2008).

2.1 Simulation of a queue and ring store

It suffices to use three additional tracks for the simulation.

Let the three registers of each cell be numbered one, two,

and three from top to bottom, and suppose that the second

register is connected to the first register of the right

neighbor, and the third register is connected to the third

register of the right neighbor. The content of the store is

identified by scanning the registers as connected. That is,

beginning in the designated cell, first the first register is

scanned and then the second register. Next the first and

second register of the right neighbor, and so one until the

last cell participating in the simulation is reached. The

scanning continues with its third register and then with the

third register of its left neighbor, and so on. Empty registers

are ignored.

The store dynamics of the transition function is defined

such that each cell prefers to have only the first two reg-

isters filled. The third register is used to move the entered

symbols to the end of the store. Altogether, it obeys the

following rules (cf. Fig. 1).

1. If the third register of a left neighbor is filled, a cell

takes over the symbol from that register. The cell stores

the symbol into its first free register, if possible.

Otherwise, it stores the symbol into its own third

register.

2. If the third register of its left neighbor is free, it marks

its own third register as free.

3. If the second register of its left neighbor is free, it

erases its own first register. Observe that the erased

symbol is taken over by the left neighbor. In addition,

the cell stores the content of its second register into its

first one, if the second one is filled. Otherwise it takes

the symbol of the first register of its right neighbor, if

this register is filled.

4. If the second register of its left neighbor is filled and its

own second register is free, then the cell takes the

symbol from the first register of its right neighbor and

stores it into its own second register.

5. Possibly, more than one of these actions are

superimposed.

Now we are prepared to turn to an example.
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Example 1 We consider the Oldenburger–Kolakoski

sequence (Kolakoski 1965; Oldenburger 1939) that is an

infinite sequence over the alphabet f1; 2g. Basically, it is

the sequence of run lengths in its own run-length encoding,

where the sequence starts with 1 and consists of alternating

blocks of 1’s and 2’s. The sequence is described as follows:

The first symbol is 1. For n� 1, the nth symbol is the

length of the nth block. So, the Oldenburger–Kolakoski

sequence can be constructed by setting the first symbol

to 1. The 1 means that the first block has length 1, that is

the 1 itself. The next block starts with 2 which means that

the second block has length 2. This gives 122 Next, the 2 at

position three means that a block of length 2 has to be

appended to the sequence, which yields 12211. Now the 1

at the fourth position means to append 2 and the 1 at the

fifth position to append a further 1 yielding 1221121, and

so on.

Since the nth run of the sequence is generated by its nth

symbol, and the nth run generates the nth symbol, the

Oldenburger–Kolakoski sequence is self-generating or self-

describing. In fact, not much is known about the Olden-

burger–Kolakoski sequence and several of its properties are

non-trivial and open problems (Allouche and Shallit 2003).

Next, we want to construct a real-time CA M that will

generate the pattern POK ¼ f p j p is prefix of the Olden-

burger–Kolakoski sequence}. In order to ensure a real-time

generation, the CA M works with a real-time version of the

Firing Squad Synchronization Problem (FSSP) based on

the time optimal solution of Waksman (1966) on one of its

tracks. The latter solution starts with one general at the left

end of the array and it takes n	 1 time steps (n being the

length of the array) to reach the right end. If we start

instead with two generals at both ends, where the right

general symmetrically behaves as the left general, we save

n	 1 time steps. Since we need one additional time step to

initialize the generals at both ends, we can realize the FSSP

within 2n	 2 	 ðn	 1Þ þ 1 ¼ n time steps, that is, within

real time.

So, the cells of the CA M consist of four registers

forming four tracks. On the first track, the mentioned real-

time version of the FSSP is executed. When the FSSP fires

every cell enters instead a stable state 1 or 2. The second

track is used for some control information. The third track

(which is split into sub-tracks) is used to simulate a queue,

whose front and end is attached to the rightmost cell

of M. The content of the fourth track is shifted to the left in

each time step. The rightmost cell feeds this track with the

next symbol of the sequence to be generated.

In particular, in the very first time step, all cells split into

the four tracks, the rightmost cell sets up the queue, feeds

the fourth track with the first symbol 1 of the sequence, and

enters 1 into the queue (see Fig. 2 for an example).

Subsequently, the rightmost cell behaves as follows. It

maintains an internal counter that can count from one to

Fig. 1 Principle of a ring

(queue) simulation.

Subfigures are in row-major

order
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two. The counter is set to one in the first time step.

Whenever the counter coincides with the digit at the front

of the queue, the rightmost cell feeds the fourth track with

the first symbol of the next block of the sequence (1 or 2),

sets its internal counter to one, deletes the front of the

queue, and enters the symbol fed to the fourth track to the

queue. Whenever the counter is less than the digit at the

front of the queue, the rightmost cell feeds the fourth track

with another symbol of the current block, increments its

internal counter to two, keeps the front of the queue, and

enters the symbol fed to the fourth track to the queue.

In this way, each position from left to right of the

already generated sequence is interpreted, and, accord-

ingly, the next block of length one or two is fed to the

fourth track. This means, that the Oldenburger–Kolakoski

sequence is successively fed to the fourth track, which is

successively shifted to the left. At time step n when the

FSSP fires, the current contents of the fourth track become

stable states of the cells. Since the first symbol fed to the

fourth track arrives exactly at time step n at the leftmost

cell, the stable configuration reached at time step n is a

prefix of the Oldenburger–Kolakoski sequence. h

3 Unary pattern generation, languages
acceptance, and time constructibility

In order to explore the capabilities and properties of real-

time cellular pattern generators, we start with unary words.

At a first glance, to generate a unary pattern is trivial. In

fact, this is true for patterns of the form f an j n� 1 g. In

such cases it is sufficient that any cell enters state a in its

first step and remains in this state. However, these patterns

are total which means that the pattern contains a word for

any n� 1. So, let us make the task a little harder. Now we

define the pattern to be generated as a partial function on n.

More precisely, we impose a condition on n such that the

pattern an is to be generated if and only if n meets the

condition. Let, for example, u : N ! N be some function.

Then pattern Pu is defined to be an if there is some m such

that n ¼ uðmÞ, and undefined otherwise. Clearly, such a

pattern can only be generated by a cellular automaton in

real time if the function u is constructible in some sense. If

it is uncomputable, trivially Pu cannot be generated. In

order to fix the notion of constructibility the notion of time-

constructibility is widely used.

In particular, a strictly increasing function u : N ! N is

time-constructible if there is a semi-infinite cellular

automaton M ¼ hS;R;F; s0; #; di, that is, n is infinite,

whose leftmost cell is in some state of F at time t� 0 if and

only if t ¼ uðiÞ for some i� 0. The initial configuration

of M is quiescent, that is, c0ðiÞ ¼ s0, 1� i.

The investigation of time-constructible functions in

cellular automata originates in Fischer (1965), where a

cellular automaton is constructed that time-constructs the

function i 7!pi where pi denotes the ith prime number. In

Choffrut and Čulik (1984) a time-constructor for the

function i 7!2i is given. The systematic study of this con-

cept was started in Mazoyer and Terrier (1999). The family

of time-constructible functions is denoted by FðCAÞ.
As a simple example, in Fig. 3 the time-construction of

the function i 7!i2 is given. Basically, the necessary signals

can be derived from ðiþ 1Þ2 ¼ i2 þ 2iþ 1. In particular,

after being designated at time i2, the leftmost cell has to

wait for 2i time steps before it is designated again at time

i2 þ 2iþ 1. This delay is exactly the time needed by an

auxiliary signal a that moves from the leftmost cell 1 to cell

Fig. 2 Space-time diagram of

the generation of the prefix

1221121221 of the

Oldenburger–Kolakoski

sequence. The fourth track and

the counter of the rightmost cell

are depicted. For the sake of

readability, the queue on the

third track is depicted separately

to the right of the space-time

diagram
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iþ 1, stays there for one time step, and moves back to the

leftmost cell. To this end, another auxiliary signal b is used

that stays in cell i until it is hit by a and moves to cell iþ 1.

Let us come back to the pattern Pu, where u is a time-

constructible function. Since the pattern is undefined for

lengths n that are not in the range of u, the pattern is easily

generated by a CA.

Proposition 2 Let u : N ! N be a time-constructible

function. Then the pattern

Pu ¼ f an j there is an m with n ¼ uðmÞ g

is generated by some real-time CA.

Proof A real-time CA that generates Pu essentially sim-

ulates a time constructor for u. In addition, its rightmost

cell initially sends a signal with maximal speed to the left.

Each cell passed through by this signal enters state a and

remains in it. The signal arrives at the leftmost cell at time

n. If this cell is simultaneously distinguished by the time

construction, the number of cells n is in the range of u. In

this case the leftmost cell enters state a and remains in it.

This means that the pattern an is generated in real time. If

at arrival of the signal the leftmost cell is not distinguished

by the time construction, it starts to enter alternating some

states b and c. So, the configuration will never be stable and

no pattern is generated in this case. h

The simple construction of the generator of Pu works

fine since, in principle, only the leftmost cell decides

whether a pattern has to be generated or not. Moreover, the

other cells can safely enter the pattern states in advance

without violating the overall result. So, let us make the task

again a little harder. Now we define the pattern to be

generated as a total function on n and impose a condition

on n such that the pattern an is to be generated if n meets

the condition, but the pattern bn otherwise. In this case, the

leftmost cell can still decide which pattern has to be gen-

erated, but all the other cells cannot enter the pattern state

in advance. Instead, they have to know whether the con-

dition is met or not. Since an FSSP synchronization of the

array (starting at both ends simultaneously) cannot be done

in less than n	 1 steps, for a real-time generation there is

not enough time for the leftmost cell to inform the other

cells about whether or not the condition is met. For a time-

constructible function u : N ! N, we define the pattern

P̂u to be an if there is some m such that n ¼ uðmÞ, and bn

otherwise. The next theorem shows that even these unary

patterns are generated in real time.

Theorem 3 Let u : N ! N be a time-constructible func-

tion. Then the pattern

P̂u ¼ f xn j x ¼ a if there is an m with n

¼ uðmÞ and x ¼ b otherwise g

is generated by some real-time CA.

Proof The basic idea of a real-time CA M that generates

P̂u is as follows. In order to check the condition on the

length of the input, a time-constructor for u is simulated. In

order to gain enough time to synchronize the cells, it is

sped-up by a factor of two. This is done by grouping two

cells of the time-construction into one cell. So, the leftmost

cell now simulates cell 1 and cell 2 of the original time-

constructor. More precisely, if originally the leftmost cell is

distinguished at an even time step i, now it is distinguished

at time step i/2 by the simulation of the original cell 1. If

originally the leftmost cell is distinguished at an odd time

step i, now it is distinguished at time step ði	 1Þ=2 by the

simulation of the original cell 2.

Note that all computations apart from the compressed

simulation of the time-constructor are done without

grouping the cells.

Next, the compressed simulation of the time-constructor

is expanded again (see Fig. 4). To this end, a signal a with

speed 1/3 is initially sent to the right by the leftmost cell.

Case 1 Whenever the leftmost cell of the compressed

simulation is distinguished at time step i/2 by the

simulation of the original cell 1, that is, i is even, then it

sends a signal b to the right. When this signal meets a, it

follows a for one time step and runs back to the left. It

arrives at the leftmost cell at time i again. This is

inductively seen as follows.

Fig. 3 Time construction of the function i2. Signal a is depicted in

blue and green, signal b is depicted in red. (Color figure online)
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Case 1a Let j ¼ i=2 be even. Then b meets a in cell j/2

at time jþ j=2 	 1. This is true for j ¼ 2 in cell 1 at time 2.

Now assume it is true for some even j. Since j is even,

jþ j=2 	 1 is congruent 2 modulo 3. That is, signal a
moves to cell j=2 þ 1 at time jþ j=2 and stays there until

time jþ j=2 þ 2. Signal b is sent by the leftmost cell at

time jþ 2 and arrives in cell j=2 þ 1 ¼ ðjþ 2Þ=2 at time

jþ 2 þ j=2 þ 1 	 1 ¼ jþ j=2 þ 2 ¼ ðjþ 2Þ þ ðjþ 2Þ=2 	 1.

Next, when signal b meets a it follows a for one time

step, that is, when sent at time j it enters cell j=2 þ 1 at time

jþ j=2, and moves back to the leftmost cell, where it

arrives at time jþ j=2 þ j=2 ¼ 2j ¼ i as claimed.

Case 1b Now let j ¼ i=2 be odd. Then b meets a in cell

ðjþ 1Þ=2 at time jþ ðj	 1Þ=2. This is true for j ¼ 1 in cell

1 at time 1. Now assume it is true for some odd j. Since j is

odd, jþ ðj	 1Þ=2 is congruent 1 modulo 3. That is,

signal a moves to cell ðjþ 1Þ=2 þ 1 at time jþ ðj	
1Þ=2 þ 2 and stays there until time jþ ðj	 1Þ=2 þ 4 .

Signal b sent by the leftmost cell at time jþ 2 arrives in

cell ðjþ 1Þ=2 þ 1 ¼ ðjþ 2 þ 1Þ=2 at time

jþ 2 þ ðjþ 2 þ 1Þ=2 	 1 ¼ ðjþ 2Þ þ ðjþ 1Þ=2.

Next, when signal b meets a it follows a for one time

step, that is, stays in cell ðjþ 1Þ=2 at time

jþ ðj	 1Þ=2 þ 1, and moves back to the leftmost cell,

where it arrives at time jþ ðj	 1Þ=2 þ 1 þ ðjþ 1Þ=2 	
1 ¼ 2j ¼ i as claimed.

Case 2 Whenever the leftmost cell of the compressed

simulation is distinguished at time step ði	 1Þ=2 by the

simulation of the original cell 2, that is, i is odd, then it

sends a signal c to the right. When this signal meets a, it

follows a for one time step, stays in that cell for another

time step, and runs back to the left. Case 2 is basically the

same as Case 1 with the exception that the signal which

bounces at a is delayed for one time step. So, it arrives at

the leftmost cell one time step later than in Case 1, that is,

at time 2ði	 1Þ=2 þ 1 ¼ i.

Now we continue the construction of the real-time CA

that generates P̂u (see Fig. 5 for an example). In addition

to the simulation of the time-constructor, the rightmost cell

initially sends a signal s with maximal speed to the left. If

the number of cells n is not congruent 3 modulo 4, this

signal meets signal a of the time constructor in cell

bn=4c þ 1. At this point it can be determined if some signal

b or c of the time constructor joins s on its way to the

leftmost cell. Since s arrives at the leftmost cell at time

n and b or c distinguishes the leftmost cell, exactly in this

case the pattern an has to be generated, and bn otherwise.

So, cell bn=4c þ 1 can send this information to the right

and to the left to cause all cells reached to enter the correct

pattern state. In this way, the cells 1 to 2bn=4c þ 1 are

reached in the remaining bn=4c time steps. Since n is not

congruent 3 modulo 4 we have 2bn=4c þ 1�dn=2e. So,

the left half of the array generates the correct pattern. In

order to achieve the same for the right half it is sufficient,

additionally to implement the whole procedure symmetri-

cally on the right end of the array.

Finally, the case where n is congruent 3 modulo 4 has to

be considered. In this case, the signals a and s meet in the

adjacent cells bn=4c þ 1 and bn=4c þ 2. So, these cells can

send the information which pattern is to be generated one

time step after the meeting, for which then bn=4c time steps

are left. This means that also in this case the cells 1 to

2bn=4c þ 2�dn=2e will receive this information in due

time. h

The family of time-constructible functions FðCAÞ is

very rich. Several examples and the closure of the family

under a bunch of operations are shown in Mazoyer and

Terrier (1999). This fact transfers immediately to the

family of unary patterns of the form P̂u generated by cel-

lular automata in real time. Moreover, in Mazoyer and

Terrier (1999) the following relation between time-con-

structible functions and unary languages is shown: a

function u : N ! N is time constructible if and only if the

language Lu ¼ f auðmÞ j m� 1 g is accepted by a real-time

cellular automaton.

Proposition 4 Let u : N ! N be a function and P̂u be

generated by some cellular automaton in real time. Then

language Lu ¼ f auðmÞ j m� 1 g is accepted by a real-time

cellular automaton.

Fig. 4 Principles of designating time 2i (left) and 2iþ 1 (right)

starting at time i. The signal a with speed 1/3 is depicted in red. The

three computations starting at time steps 5, 6, and 7 are depicted in

blue, green, and yellow. (Color figure online)
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Now by Theorem 3, Proposition 4, and the result from

(Mazoyer and Terrier 1999), we have shown that for unary

languages/patterns the three different notions of language

acceptance, time-constructibility, and pattern generation, in

fact, coincide.

Theorem 5 A function u : N ! N is time constructible if

and only if the language Lu is accepted by a real-time

cellular automaton if and only if the pattern P̂u can be

generated by a cellular automaton in real time.

4 Generating non-unary patterns

In this section, we consider non-unary patterns and identify

some classes of non-unary patterns that can be generated

by cellular automata in real time. Since the cellular auto-

mata work deterministically, it is clear that for every initial

length of n cells at most one pattern of length n is gener-

ated. Patterns or languages having this property of con-

taining at most one word of length n for every n� 1 are

called properly thin in Păun and Salomaa (1995).

Since every pattern generated by a cellular automaton is

a properly thin language, it is an interesting question which

classes of properly thin languages can be generated by real-

time cellular automata. Here, we can identify two large

classes of such properly thin languages. First, we consider

in Sect. 4.1 finite, regular, and context-free properly thin

languages and eventually show that every context-free

properly thin language is generated by a cellular automaton

in real time. Second, we consider in Sect. 4.2 non-unary

patterns which are defined by the set of all prefixes of an

infinite sequence. For example, the prefixes of the Olden-

burger–Kolakoski sequence from Example 1 or the pre-

fixes of the Thue-Morse sequence. Clearly, every such

pattern is properly thin. We present a construction of a real-

time cellular automaton that generates the prefixes of every

given automatic sequence (Allouche and Shallit 2003).

4.1 Generating context-free properly thin
languages

We start with some definitions. A language is called

properly thin, if it contains at most one word of every

length. It is called properly k-thin, if it contains at most k

words of every length for a fixed k� 1. A language is

called slender, if it is properly k-thin for some k� 1. If L is

properly thin, then jfw 2 L j jwj ¼ ngj� 1 for all n� 1. It

should be noted that thin languages and generalizations are

studied in detail in Ilie (1994), Păun and Salomaa (1995)

and that there is some related older literature (Kunze et al.

1981; Latteux and Thierrin 1983) in which thin languages

are studied under the name of semi-discrete languages.

To obtain our main result we first show how to generate

every finite properly thin language.

Theorem 6 Every finite properly thin language can be

generated by a cellular automaton in real time.

Proof Let L be a finite properly thin language. Then, L ¼
f u1; u2; . . .; um g for some m� 1 and juij 6¼ jujj for all

1� i\j�m. Hence, the basic idea for a CA generating L is

to count the number ‘ of initial cells and to generate string ui,

if there is some ui of length ‘. Otherwise, nothing is gener-

ated by entering an instable configuration. To be more pre-

cise, let t ¼ maxf juij j 1� i�m g. Then, the leftmost cell

starts a signal with maximum speed to the right counting

from 1 to dt=2e, whereas the rightmost cell starts a signal

with maximum speed to the left counting from 1 to dt=2e as

well. If the counting would be larger than dt=2e, then nothing

has to be generated. This is realized by stopping both signals

and entering a new state p that alternates with some other

new state q and creates an instable configuration. If both

signals meet in the middle, then the number of initial cells,

say ‘, is known. Since there are only finitely many strings

in L, it can be checked using the state set whether there exists

some ui with juij ¼ ‘. If so, the signal to the left continues and

generates the first half of ui, whereas the signal to the right

continues and generates the second half of ui. If such an ui
does not exist, state p alternating with state q is entered and

an instable configuration is created. An example computa-

tion illustrating the construction is given in Fig. 6. h

Fig. 5 Example of a P̂u generator, where a15 2 P̂u. The signal a with

speed 1/3 is depicted in red, signal c that designates time 15 is

depicted in blue, and signal s is depicted in gray. Since

15 
 3ðmod 4Þ, the signals a and s meet in the adjacent cells 4 and

5. (Color figure online)
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The next step is to generalize the result from finite

properly thin languages to regular properly thin languages.

Theorem 7 Every regular properly thin language can be

generated by a cellular automaton in real time.

Proof According to Păun and Salomaa (1995) every

slender regular language L can be represented as the union

L ¼
Sk

i¼1 Li of pairwise disjoint sets Li ¼ f uivni wi j n� 0 g
with strings ui; vi;wi, for 1� i� k. This implies in partic-

ular for regular properly thin languages L that every w 2 L

is contained in exactly one set Li with 1� i� k. Hence, L

can be divided into a ‘‘finite’’ part and an ‘‘infinite part,’’

namely, L ¼ L0 [
Sk

i¼1 L
0
i with L0 ¼ fu1w1; u2w2; . . .; ukwkg

and L0i ¼ f uivni wi j n� 1 g, if vi 6¼ k, and L0i ¼ ;, otherwise.

Again, every w 2 L is contained in exactly one set from L0

and L0i with 1� i� k. The basic idea to generate a word

from L is again to count the number ‘ of initial cells. In

case of words from the finite part L0, we check this in one

track, say track 0, in the same way as in the construction

given in the proof of Theorem 6. If the check is successful,

stable states representing the word from L0 are entered. In

case of words from the infinite part, it has to be checked

whether there is some 1� i� k and some integer n� 1

such that ‘ ¼ juiwij þ n � jvij. This is realized in k addi-

tional tracks whereby in track i the check whether ‘ ¼
juiwij þ n � jvij (1� i� k) is performed. If L0i ¼ ;, nothing

has to be checked. Thus, we may assume that L0i 6¼ ;. In

this case, we first have to consider ui and wi. Let

t ¼ maxfjuij; jwijg. Then, we start in the leftmost cell a

signal R1 to the right which moves juij cells in t time steps.

Similarly, we start in the rightmost cell a signal L1 to the

left which moves jwij cells in t time steps. At time step

t þ 1 we start in cell juij þ 1 a signal R2 with maximum

speed to the right which counts modulo jvij. Additionally,

we start in the ðjwij þ 1Þst cell from the right a signal L2

with maximum speed to the left which counts modulo jvij
as well.

If both signals meet correctly, then we know that ‘	
juiwij is divisible by jvij. Hence, there is an n� 1 such that

‘ ¼ juiwij þ n � jvij. Then, the signal to the left continues

and generates, using stable states, the first half of vi. To this

end, it generates vi possibly multiple times as long as cells

passed through by R2 are visited, and finally generates ui as

long as cells passed through by R1 are visited. Similarly,

the signal to the right continues and generates the second

half of vi. If both signals meet incorrectly, then there is no

n� 1 such that ‘ ¼ juiwij þ n � jvij. In this case, an

instable configuration is created by entering a new

state p that alternates with another new state q.

Since every w 2 L is contained in exactly one set

from L0 and L0i with 1� i� k, there is at most one track in

which a check is successful and in which stable states are

entered. Hence, these stable states overwrite all tracks and

produce the word from L to be generated. An example

computation illustrating the construction is given in Fig. 7.

The time needed for the construction described so far is

bounded by ‘þ maxfju1j; jw1j; ju2j; jw2j; . . .; jukj; jwkjg
which is real time plus a constant. By using the speed-up

result for cellular string generators shown in Kutrib and

Malcher (2021) we obtain that our construction can be

sped-up to work in real time. h

Now, we have all prerequisites and can show the main

result of this subsection.

Theorem 8 Every context-free properly thin language can

be generated by a cellular automaton in real time.

Proof According to Ilie (1994) every slender context-free

language L can be represented as the union L ¼
Sk

i¼1 Li of

pairwise disjoint sets Li ¼ f uivni wix
n
i yi j n� 0 g with

strings ui; vi;wi; xi; yi for 1� i� k. This implies for con-

text-free properly thin languages L that every w 2 L is

contained in exactly one set Li with 1� i� k.

Hence, L can be divided into a ‘‘regular’’ part L0 and a

‘‘non-regular’’ part L00, namely, L ¼ L0 [ L00 with L0 ¼
fu1w1y1; u2w2y2; . . .; ukwkykg [

Sk
i¼1 L

0
i and L0i ¼ f uivni wi

xni yi j n� 1 g, if either vi ¼ k and xi 6¼ k or vi 6¼ k and

xi ¼ k. Otherwise, L0i ¼ ;. The non-regular part L00 is defined

as L00 ¼
Sk

i¼1 L
00
i with L00i ¼ f uivni wix

n
i yi j n� 1 g, if vi 6¼ k

Fig. 6 Example of generating the string w ¼ aababbbabba of

length 11. At time step 6 the number of initial cells is known since

both signals meet. Hence, these signals can be used to generate the

first and the second half of string w
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and xi 6¼ k, and L00i ¼ ;, otherwise. Again, every w 2 L is

contained in exactly one set from L0 and L00. The basic idea to

generate a word from L is again to count the number ‘ of

initial cells. In case of words from the regular part L0, we

check this in a finite number of tracks in the same way as in

the construction given in the proof of Theorem 7. If the

check is successful in one track, stable states representing the

word from L0 are entered. In case of words from the non-

regular part, it has to be checked whether there is some

1� i� k and some integer n� 1 such that

‘ ¼ juiwiyij þ n � jvixij. This is realized in k additional tracks

whereby in track i the check whether ‘ ¼ juiwiyij þ n � jvixij
is performed. If L00i ¼ ;, nothing has to be checked. Thus, we

may assume that L00i 6¼ ;.

In the following construction we will use signals to

subtract juij and jwiyij from ‘. Then, it will be tested

whether ‘	 juiwiyij is divisible by jvixij which can be

realized by a signal counting modulo jvixij. If so, there is an

n� 1 such that ‘ ¼ juiwiyij þ n � jvixij and w has to be

generated. If not, there is no such n and alternating states

leading to an instable configuration are entered in the track.

To be more detailed, let t ¼ maxfjuij; jwiyijg. Then, we

start in the leftmost cell a signal R1 to the right which

moves juij cells in t time steps, whereby the first juij cells

are suitably marked. Similarly, we start in the rightmost

cell a signal L1 to the left which moves jwiyij cells in t time

steps, whereby the last jyij cells are suitably marked. At

time step t þ 1 we start in cell juij þ 1 a signal R2 with

maximum speed to the right which counts modulo jvixij.
Additionally, we start in the ðjwiyij þ 1Þst cell from the

right a signal L2 with maximum speed to the left which

counts modulo jvixij as well. If both signals meet correctly,

we have found an n such that ‘ ¼ juiwiyij þ n � jvixij. Both

signals continue to the left and right, respectively, inform-

ing the remaining cells that a word w 2 L is to be

generated.

For the generation of w we already know due to

signals L1 and R1 in which cells ui and yi have to be

generated. For the generation of the infix vni wix
n
i we assume

for a moment that wi ¼ k. Then, we additionally start at

time step t þ 1 in cell juij þ 1 a signal R3 with speed

jvij=jvixij to the right, and we also start in the ðjwiyij þ 1Þst

cell from the right a signal L3 with speed jvij=jvixij to the

left. If both signals meet correctly, the cells touched by R3

should generate vni and the cells touched by L3 should

generate xni . However, if wi 6¼ k, then wi should be inserted

in between vni and xni which can in principle be realized by

shifting the contents of the cells touched by L3 jwij cells to

the right while generating wi. Observe that signal L1 has

left free jwij cells after marking the cells containing yi.

Hence, there are sufficient free cells into which the

contents of the cells touched by L3 can be shifted while

generating wi. To synchronize the cells to be shifted we

start at time step t þ 1 in an additional subtrack an instance

of the FSSP with initial generals at both ends that

synchronizes the array at time step t þ ‘, and the right

shift can be done within jwij additional time steps.

Moreover, it can be checked whether all cells have been

touched by signals L2 and R2 which gives the information

whether a word is indeed to be generated. Only in this case,

all cells enter a stable state at time step t þ ‘þ jwij þ 1.

Hence, the word w is generated. Again, since every w 2 L

is contained in exactly one set from L0 and L00i with

1� i� k, there is at most one track in which a check is

successful and in which stable states are entered. Hence,

these stable states overwrite all tracks and produce the

word from L to be generated. An example computation

illustrating the construction is given in Fig. 8.

The time needed for the construction can be calculated

as follows. We need t time steps for signals L1 and R1. We

need at most ‘ additional time steps for signals L2, L3, R2,

R3, and the FSSP. Finally, jwij þ 1 time steps are needed

for the right shift and the generation step. Altogether, the

time needed is bounded by ‘þ t þ jwij þ 1� ‘þ 2 �
maxfju1j; jw1y1j; ju2j; jw2y2j; . . .; jukj; jwkykjg þ 1 which is

Fig. 7 Example of generating the string w ¼ u1v
3
1w1 ¼ aabababbbbb

of length 11 with u1 ¼ a, v1 ¼ ab, and w1 ¼ bbbb. At time step 1 the

signals L1 and R1 (blue) are started. At time

step maxfju1j; jw1jg þ 1 ¼ 5 the signals L2 and R2 (red) are started

which meet correctly at time step 7. Subsequently, L2 continues to

generate the prefix aaba and R2 continues to generate the suffix

babbbbb. (Color figure online)
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real time plus a constant. By using again the speed-up

result for cellular string generators we obtain that our

construction can be sped-up to work in real time. h

4.2 Generating automatic sequences

Now, we turn to non-unary patterns whose elements are

prefixes of infinite sequences of symbols. Example 1

already showed how the prefixes of the infinite Olden-

burger–Kolakoski sequence are generated. We are going to

consider a wide class of sequences, that is, we consider

automatic sequences (Allouche and Shallit 2003). So, what

is an automatic sequence? It may be defined in a number of

ways. For our purposes the automata-theoretic definition is

well suited.

Let k� 1 be a positive integer and A ¼
hS;Rk;U; s0; d; si be a deterministic finite automaton with

output (Moore automaton), where S is the finite, nonempty

set of cell states, Rk ¼ f0; 1; . . .; k 	 1g is the set of input

symbols, s0 2 S is the initial state, d : S� Rk ! S is the

transition function, U is the set of output symbols, and

s : S ! U is the output function.

The automaton defines a k-automatic sequence ðumÞm� 0

as follows. For each m� 0, the automaton is fed with the k-

ary expansion of m (the unary expansion is 1m). After

processing this input word the automaton reaches one of its

states, whose image under the output function s gives the

mth element of the sequence. Basically, the automaton can

be fed with the k-ary expansions starting with the most

significant digit or starting with the least significant digit.

In the former case the automaton is said to be direct

reading and in the latter case it is reverse reading

(Allouche and Shallit 2003). However, since every auto-

matic sequence that is defined by a direct reading

automaton can be defined by a reverse reading automaton

and vice versa, we safely may assume reverse reading

automata in the sequel.

Many well-known infinite sequences with applications

in numerous fields of mathematics and non-trivial proper-

ties are automatic. The next example mentions three of

them (see (Allouche and Shallit 2003) for further details).

Example 9 The Thue-Morse sequence is a 2-automatic

sequence over the alphabet f0; 1g. There a several ways of

generating the Thue-Morse sequence one of which is given

by a Lindenmayer system with axiom 0 and rewriting rules

0 ! 01 and 1 ! 10. The generation of strings can be

described as follows: starting with the axiom every sym-

bol 0 (symbol 1) is in parallel replaced by the string 01

(10). This procedure is iteratively applied to the resulting

strings. The first steps of this procedure yield the strings 0,

01, 0110, 01101001, and so on. So, the first terms of the

sequence are 0, 1, 1, 0, 1, 0, 0, 1.

The Rudin-Shapiro sequence is a 2-automatic sequence

over f1;	1g. Let e(m) be the number of (possibly

overlapping) occurrences of 11 in the binary expansion

of m. Then the Rudin-Shapiro sequence ðumÞm� 0 can be

defined by the formula um ¼ ð	1ÞeðmÞ. The first terms of

the sequence are 1; 1; 1;	1; 1; 1;	1; 1; 1; 1; 1;	1;

	1;	1; 1;	1.

The Regular Paperfolding sequence takes its name from

the following fact. Assume that a strip of paper is folded

repeatedly in half in the same direction. If each fold is now

opened out to create a right-angled corner then a right turn

is represented by 1 and a left turn by a 0. The first terms of

Fig. 8 Example of generating the string w ¼ u1v
2
1w1x

2
1y1 ¼

ababaaababbabbb of length 15 with u1 ¼ a, v1 ¼ ba, w1 ¼ aa,

x1 ¼ bab, and y1 ¼ bb. At time step 1 the signals L1 and R1 (blue)

are started which mark the cells carrying u1 and y1. At time

step maxfju1j; jw1y1jg þ 1 ¼ 5 the signals L2 and R2 (red) counting

modulo jv1x1j ¼ 5 are started which meet correctly at time step 9.

Subsequently, L2 and R2 continue (red dotted lines) to inform all cells

that a word from L is to be generated. In addition, at time step 5 the

signal R3 (brown) with speed 2/5 and signal L3 (brown) with speed 3/

5 are started which meet correctly at time step 14 having marked cells

carrying vn1 and xn1. The FSSP fires at time step 19. Hence, the cells

carrying u1, vn1, and y1 enter stable states while the cells carrying xn1
are shifted jw1j ¼ 2 cells to the right and generate w1. Eventually, at

time step 22 all cells have entered a stable state. (Color figure online)
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the sequence are 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0.

The Regular Paperfolding sequence is 2-automatic. h

We now turn to show that the prefixes of automatic

sequences are patterns generated by cellular automata in

real time. The case k ¼ 1 is often omitted in the definition

of automatic sequences. However, it is treated separately in

Allouche and Shallit (2003). So, we treat it separately here

as well.

Lemma 10 Let u ¼ ðumÞm� 0 be a 1-automatic sequence.

Then the pattern

Pu ¼ f p j p is prefix of u g

can be generated by a cellular automaton in real time.

Proof Recall that the cells of a cellular automaton are

numbered from 1 to n, whereas the first term of the auto-

matic sequence is u0. So, the prefix to be generated is

u0u1 � � � un	1.

Let A be the deterministic finite automaton that defines

the 1-automatic sequence u. Then the state reached by A

after processing the input 1n has to be mapped to the nth

term of the sequence.

Basically, the simple idea of M is to start a signal at the

leftmost cell at time step 1 that moves with unit speed to

the right. The signal simulates the finite automaton A along

its way assuming the input symbols are 1. Since the initial

state of A has to be mapped to u0, the leftmost cell of M can

simply apply the output function s of A to enter the

stable state u0. Then cell 2 of M simulates the successor

state of A under input 1. Again, it can apply the output

function s of A to enter the stable state u1. When the signal

arrives at the rightmost cell of M, it simulates the state of A

after processing the input 1n	1. So, after applying the

output function s of A it enters the stable state un	1. h

Next we consider the general case, where k may be an

arbitrary positive integer.

Theorem 11 Let k� 1 be a positive integer and u ¼
ðumÞm� 0 be a k-automatic sequence. Then the pattern Pu ¼
f p j p is prefix of u g can be generated by a cellular

automaton in real time.

Proof The case k ¼ 1 has been shown in Lemma 10. So,

in the rest of the proof we assume k� 2.

We will construct a real-time CA M that generates the

pattern Pu. The cellular automaton M performs several

tasks in parallel on different tracks. We present the tasks

one by one. Let A ¼ hS;Rk;U; s0; d; si be the deterministic

finite automaton that defines the k-automatic sequence u.

Task 1 is already known from Example 1. In order to

ensure a real-time generation, the CA M establishes an

instance of the FSSP with initial generals at both ends, that

synchronizes the array at time step n in real time. If the

FSSP is about to fire, all cells enter their stable states from

the set U corresponding to their position in the sequence. In

order to know what states these are, essentially, two further

tasks are performed.

Task 2 is to realize a k-ary counter. The counter is

initially set up at the leftmost cell, that is cell 1. In each

time step, it is incremented by one and moves one cell to

the right with the least significant digit in front. The digits

(partial states) used for the counter are

fþ0; 0; 1; . . .; k 	 1g, where þ0 indicates digit 0 when a

carry-over occurred. Since the counter is moving, a cell

carrying such a carry-over can process it in the next step

when it receives the next, more significant digit. Figure 9

shows the first few steps of a binary counter (k ¼ 2).

Now we can see that the counter digits that are flowing

through some cell x are representing exactly the number

x	 1 in base k. Evidently, this is true for cell 1 through

which the counter 0 flows. In Fig. 9, exemplarily, the green

frames show that the counter flows through cell 3 entirely

with the digits 0 followed by 1. This means 2 in base 2.

Similarly, the green frame of cell 5 contains the digits 0, 0,

and 1. This means 4 in base 2. So, each cell x has simply to

simulate the deterministic finite automaton A on the input

provided by the counter digits in order to figure out the

Fig. 9 Example of a moving binary counter that is incremented by

one in each step. The cells carrying digits of the counter are shaded.

For example, when cell 3 sees the incoming 1 from the left at time 2,

it increments the counter by 1 resulting in digit 0. This incrementation

generates a carry-over that is indicated by the plus in the new

state þ0. In the next step cell 4 sees an incoming 0 and increments it

to 1 without carry-over. So, the state of cell 4 at time 4 is 1. Cell 3,

however was in state þ0 and, thus, knows that the carry-over

indicated by the plus has still to be processed. Since it sees that the

next incoming digit does not exist, that is, it is treated as 0, it

processes the carry-over by incrementing the 0 to 1, which is the new

state of the cell. The green frames show exemplarily that cell 3 is

flowed through by the digits 0 followed by 1, that is the binary

expansion of 2, and cell 5 is flowed through by the digits 0, 0, and 1,

that is the binary expansion of 4
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state of A reached by input of the k-ary expansion of x	 1.

Since each cell can trivially apply the function s to this

state, each cell x that is entirely flown through by the

counter knows the symbol ux	1 to which it has to enter

upon firing of the FSSP. However, this works fine only for

cells that are entirely flown through by the counter. More

precisely, it does not apply for the last dlog ne cells of the

array. To cope with these cells we have to consider the

most sophisticated task of M.

We first describe Task 3 in a way that is not imple-

mented. Instead, our first description has to be extended,

but is provided for clarity. The idea is to realize a k-ary

counter initially set up at the rightmost cell, that is cell n.

Initially, the counter gets value 1. Then, in each time step,

it is incremented by two and moves one cell to the left with

the least significant digit in front. However, the movement

of the counter has to be stopped when it meets the right-

moving counter of Task 2 in the center of the array. To

stop the movement cell by cell, the counter is realized by

providing an additional cell between each two cells that

carry a digit. As before, the digits (partial states) used for

the counter are f0; 1; . . .; k 	 1g, where a superscript þ

indicates that a carry-over occurred. The additional cells

between two digits enter the blank state, where a super-

script þ remembers that a carry-over occurred one step

before and is still to be processed in the next step.

Figure 10 shows an example of a binary counter (k ¼ 2)

for n ¼ 18.

Next, Task 3 has to be extended. To this end, we

distinguish whether the length of the array n is even or odd.

If n is even, the counter is stopped in cell n
2
þ 1 at time n

2
.

Since it is set up with value 1, it is stopped representing the

value 1 þ 2ðn
2
	 1Þ ¼ n	 1. In the following time step cell

n
2
þ 1 (the front of the counter) starts to send signals with

unit speed to the right. Along their way, these signals

simulate the deterministic finite automaton A by reading

the digits of the stopped counter. After passing through the

counter, the cells apply function s to the state reached at the

end of the simulation. In this way, the first signal reads the

k-ary expansion of n	 1 and after applying s knows the

symbol un	1. Since the signal is started at time n
2
þ 1 in cell

n
2
þ 1, it reaches the rightmost cell n at time n. Thus, cell n

can enter the correct state un	1 when the FSSP is about to

fire. Finally, after having sent the first signal, cell n
2
þ 1

starts to decrement the counter by 1 at each time step.

Fig. 10 Example of a left-moving binary counter that is incremented

by two in each step. The cells carrying digits of the counter are

shaded. The red cell 9 at t ¼ 9 indicates the front of the right-moving

counter of Task 2 that stops the movement of the left-moving counter

cell by cell

Fig. 11 Example of Task 3. The cells carrying digits of the counter

are shaded. The red cell 9 at t ¼ 9 indicates the front of the right-

moving counter of Task 2 that stops the movement of the left-moving

counter cell by cell. The digits involved in the decrementation are

shown in green. The green frames and arcs show exemplarily that the

first signal sees the digits 1, 0, 0, 0, 1, that is the binary expansion of

17, and reaches cell n ¼ 18 at time n, and that the dlog neth signal

sees the digits 1, 0, 1, 1, that is the binary expansion of 13, and

reaches cell 14 at time n, as well
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Therefore, the second signal sent reads the k-ary expansion

of n	 2. It reaches cell n	 1 at time n and, thus, cell n	 1

can enter the correct state un	2 when the FSSP is about to

fire as well. This works fine as long as the signals can pass

through the counter entirely. It is not hard to see that the

signal sent at time n
2
þ dlog ne has passed through the

counter entirely at time n at the latest, if n� 16. Therefore,

at least the last dlog ne cells of the array not covered by

Task 2 get their symbols from U in due time. Figure 11

shows an example of a binary counter (k ¼ 2) for n ¼ 18.

Now we turn to the case where n is odd. The case is

detected by the cell in front of the left-moving counter by

means of meeting the counter of Task 2 in one center cell

instead of two neighboring center cells. Since the further

behavior of Task 3 is controlled by this cell this is early

enough. If n is odd, the counter is stopped in cell dn
2
e at time

dn
2
e representing the value 1 þ 2ðdn

2
e 	 1Þ ¼ n. In the case

where n is even, the counter is first stopped and then

decremented. Here its value is one too much. Therefore,

these two steps are merged. So, the counter is already

decremented by 1 at its arrival in cell dn
2
e. This means that

the first signal simulates the deterministic finite automa-

ton A by reading the k-ary expansion of n	 1 as it should.

The rest of the task is as in the case where n is even.

Figure 12 shows an example of a binary counter (k ¼ 2)

for n ¼ 17.

So far, we have shown the theorem for n� 16. However,

the finitely many missing cases 1� n� 15 can be treated

by M on an extra track. To this end, initially a signal is sent

by the leftmost cell. The signal associates the cells passed

through with their corresponding symbols from U. It stops

when it arrives at the rightmost cell or when it reaches cell

15. Should the FSSP fire within the first 15 steps, each cell

can enter its stable state from U. Otherwise, the cells

ignore the information on the extra track. h
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