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1. General introduction 
 

RNA is necessary for protein synthesis and for gene regulation in all living organisms. Most 

RNA molecules are transcribed as precursors which are then maturated by ribonucleases 

(RNases) and RNA modification enzymes. Often large multi protein complexes are 

responsible for the maturation and for the degradation of various RNA molecules in the cell. 

The general mechanisms of RNA processing and degradation are highly conserved and 

include endonucleolytic cleavages,  post transcriptional modification at the 3’ end (RNA 

tailing) and exoribonucleolytic degradation or trimming in 3’-5’ direction or in 5’-3’ 

direction. 

1.1. Archaea and extremophiles 

Eukaryota, Bacteria and Archaea are the three domains of life [1]. Due to their 16S rRNA and 

other genetic, physiological, structural and biochemical properties, Archaea are 

fundamentally different from the Bacteria (Figure 1.1) [2]. There are two main phyla in 

Archaea; Euryrachaeota and Crenarchaeota. Another phylum was discovered which is known 

as the Nanoarchaea and a new phylum has been suggested as Korarchaeota [3].  Many 

Archaea live in extreme conditions such as very high temperatures (hyperthermophilic), 

highly concentrated salt solutions (halophilic) or strongly acidic (acidophilic) or alkaline 

environments (alkaliphilic) [4].  

The structure of the cell wall and the plasma membrane of Archaea show significant 

differences to the other Domains. Most Archaea enclose a cell wall. Unlike Bacteria, Archaea 

lack peptidoglycan in their cell walls.  Archaeal cell wall can consist of pseudo-murein 

(which is similar to murein), polysaccharides or glycoprotein, which gives them rigidity, 

strength and resistance against mechanical stresses and harsh environmental conditions. 

Archaeal cell membrane is significantly different from the membranes of the other domains. 

In Bacteria and Eukaryota, fatty acids are linked via an ester linkage to the glycerol 

molecules while in Archaea, simple fatty acids are replaced by branched isoprene units and 

those bind to the glycerol via diether bonds. Furthermore in some archaeal species lipid bi-

layer is replaced by a monolayer [5]. These characteristics make the membranes more rigid.  

https://en.wikipedia.org/wiki/Korarchaeota
https://en.wikipedia.org/wiki/Polysaccharide
https://en.wikipedia.org/wiki/Glycoprotein


 

2 

 

Despite morphological similarities to Bacteria such as the cell size and lack of cell nucleus, 

Archaea possess genes and several metabolic pathways that are more closely-related to genes 

and pathways of eukaryotes, for example, the enzymes involved in transcription, translation 

and the processes such as replication, and repair mechanisms [6], [7], [8]. Archaea therefore 

can be taken as model organisms to study the complex eukaryotic systems.  

 
Figure 1.1 Phylogenetic tree of the three domains of life: Bacteria, Archaea and Eukarya. This was derived 

from comparative sequence analysis of 16S and 18S rRNA (adopted from  [9]). Korarchaeota were not included 

in this analysis. 

 

 

https://www.boundless.com/microbiology/microbial-genetics/archaeal-genetics/shared-features-archaea-and-eukaryotes/#key_term_glossary_metabolic
https://www.boundless.com/microbiology/microbial-genetics/archaeal-genetics/shared-features-archaea-and-eukaryotes/#key_term_glossary_eukaryotes
https://www.boundless.com/microbiology/microbial-genetics/archaeal-genetics/shared-features-archaea-and-eukaryotes/#key_term_glossary_enzymes
https://www.boundless.com/microbiology/microbial-genetics/archaeal-genetics/shared-features-archaea-and-eukaryotes/#key_term_glossary_transcription
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1.2. Sulfolobus solfataricus 

Sulfolobus solfataricus is a hyperthermophilic archaeon which belongs to the phylum 

Crenarchaeota.  S. solfataricus was first isolated from sulfur sources near Naples [10], [11]. 

In 2001 S. solfataricus genome was fully sequenced [12]  and it is among the most commonly 

used and best-studied members of the Crenarchaeota due to its relatively straightforward 

growth requirements [13]. Sulfolobus optimum growth conditions are 75-80 °C and pH 3-4 

[13]. The pH in the cells, however, lies within pH 7 neutral range [14]. Because of its growth 

conditions, thermo and acid-stable enzymes, Sulfolobus is getting more and more attention 

from biotechnology streams.  

Sulfalobus has a versatile metabolic system. It can grow under aerobic or semi aerobic 

conditions. The main carbon source of Sulfolobus is CO2 in nature [5], [15] but it may also 

grow using variety of carbon sources. In the lab conditions it relies on organic substances 

such as yeast extract and casamino acid. The dependency of the vast variety of energy 

sources makes it easy to grow under lab conditions. 

 

  

 

Figure 1.2 Electron micrographs of various Sulfolobus cells [11]. 

Sulfolobus cells are more or less spherical (Figure 1.2) [5], [11] which has a diameter of 

about 1 µm [16]. Like other hyperthermophilic Archaea, Sulfolobus also has a stable, bipolar 

single-layer cell membrane. 
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1.3. Processing and degradation of RNA in Bacteria 

Particularly in prokaryotes, the RNA degradation plays an important role in gene regulation. 

For example, the degradation of the mRNAs affect RNA levels in the cell thus regulating 

gene expression [17]. RNA molecules can be divided into two classes: the structured, stable 

RNAs (rRNA, tRNA) and the short-lived mRNAs.  

The stable rRNA and tRNA, which account for about 95% of total RNA, are hardly degraded 

during the exponential growth. Those are degraded only under certain stress conditions or 

when an RNA molecule is defective (i.e. quality control) [18]. The mRNA’s fast degradation 

serves to continuously regulate the message population to the needs of the cell for precise 

proteins. Most bacterial mRNAs have rather short half-lives from a few seconds to a few 

minutes, so that the cell can respond quickly to changes in environmental conditions [18], 

[19], [20]. Small RNAs (sRNAs) are another distinctive group of RNA molecules. These are 

highly structured, typically characterized by their length (50-250) and play a key role in 

regulatory functions. They can bind to protein targets, and modify the function of the bound 

protein. Further they also can bind to mRNA targets and regulate gene expression [21], [22]. 

The RNA stability is determined by various factors such as the proteins to which the RNAs 

are bound and protected, the RNA secondary structures and/or the polyadenylation 

dependency of the RNAs [23]. Furthermore, the triphosphate at the 5' end of primary 

transcripts, RNA stem-loop structures at the 3' end or the 5' UTR (untranslated region) also 

contribute for the stability of the RNA. 

However, attachment of poly (A) tail makes the bacterial RNA destabilized. The 

polyadenylation of mRNAs plays an important role not only in the degradation, but also in 

the quality control. At the 3’ end of the RNA, the homogenous poly (A) tail is synthesized by 

poly (A) polymerase I (PAP I) in Escherichia coli. Additionally, heteropolymeric poly (A) 

rich tails are produced by the polynucleotide phosphorylase (PNPase). These RNA tails have 

a length of about 10-50 nucleotides. However, in in vitro PAP I could elongate RNA by 

approximately 500 adenyl residues [24]. The presence of such poly (A) - or (A)-rich 

attachments on the 3' end of bacterial mRNAs promotes their degradation due to the high 

affinity of the tails to the RNases, involved in the degradation [25], [26]. 

http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/MRNA
http://en.wikipedia.org/wiki/Gene_expression
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Previously it was considered that the degradation of mRNAs and stable RNAs is a very 

different process from the maturation of RNAs. It was assumed that there were certain 

enzymes that were responsible for the degradation of different classes of RNA. However it 

became clear that the specificity of the RNases is rather determined by the accessibility of the 

substrate. Thus, many RNases are involved in both the RNA degradation as well as the 

processing [18]. 

1.3.1. Bacterial endo- and exoribonucleases 
The degradation of the mRNA basically begins with the cleavage by endoribonucleases. 

Endoribonucleases cleave phosphodiester bonds within the RNA at specific cleavage sites. 

They contribute both to the processing and to degradation of RNA molecules. The resulting 

products are then further degraded to mononucleotides by exoribonucleases. Secondary 

structure of the mRNA can slow the degradation by 3'-5' exoribonucleases. The best-studied 

model organism for RNA degradation in Bacteria is E. coli (Figure 1.3). 

In many cases, the degradation of RNA is initiated by the removal of the stabilizing 5' 

triphosphate pyrophosphatase by RppH [27]. Then endoribonucleases come in to play. In E. 

coli the main endoribonucleases are RNase E, RNase G and RNase III. The key enzyme for 

the initiation of mRNA degradation is endoribonuclease E (RNase E). The RNase E interacts 

with the monophosphorylated 5' end of the RNA molecule before the endonucleolytic 

cleaving [28], [29]. RNase E recognizes specific cleavage sites, usually in single-stranded 

A/U-rich regions, and makes endonucleolytic cuts [30], [31]. RNase E is also an important 

component of a RNA degrading multi-enzyme complex, the degradosome (Chapter 1.3.2). 

RNase E also can interact with the RNA chaperone, Hfq, and multiple small RNAs to form 

ribonucleoproteins [32].  

Another endoribonuclease which exist in E. coli is RNase G. It has a high sequence identity 

with the N terminus of RNase E. Both these endoribonucleases have similar sequence 

specificities and it has been shown that RNase E mutant cells were not viable, but can be 

complemented by overproduction of RNase G. However, RNase G complemented cells 

accumulate RNAs such as the precursors of 5S ribosomal RNA (rRNA) indicating that 

normal processing of these RNase E-cleaved RNAs were not completely restored by RNase 
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G. Furthermore RNase G cannot take over the task of RNase E in degradosome, because it 

lacks the crucial C terminal part of RNase E [33].  

 

 

 
Figure 1.3 The mRNA degradation in prokaryotes (eg, E. coli). Bacterial mRNAs begin with a 5'-

triphosphate and end with a stem-loop structure. RNA decay is initiated by removing the stabilizing 5' 

triphosphate pyrophosphatase by RppH. The preferred substrate for RNase E is RNA with a 5'-monophosphate. 

In the presence of the poly (A) tails, the attack at the 3’ end by PNPase and RNase II is facilitated. However the 

3′-stem-loop structures block the processive activities of these two RNases. Other RNases are also involved but 

these are omitted for simplicity. 

 

RNase III degrades specifically double-stranded RNA regions and participates in the 

processing of 30S rRNA precursors to 16S rRNA and 23S rRNA [34]. In some Bacteria 

further RNase III dependent processing of the 23S rRNA occurs [35]. Conversely, deletion of 

the RNase III structural gene (rnc) does not lead to any considerable alteration in the decay of 

total pulse-labelled RNA or specific transcripts [34], [36]. Perhaps it is not a major player in 

mRNA degradation. 

The RNA fragments resulting from the cleavage of endoribonucleases are usually unstable 

and are degraded further by endo or exoribonucleases. The 3'-5' exoribonucleases, 

polynucleotide phosphorylase (PNPase), RNase R, RNase II and the Oligoribonuclease in E. 

coli play a decisive role in degradation of these resulting RNA fragments. 

The PNPase catalyzes the reversible phosphorolysis of polyribonucleotides with the 

liberation of nucleoside diphosphates. PNPase is composed of three identical subunits with a 
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molecular mass of 77.1 kDa and each has two RNase PH-like domains (RPD1 and RPD2) 

[37]. Crystallographic analysis of PNPase from Streptomyces antibioticus have shown that 

these three subunits form a hexameric ring, which contains catalytic sites in the central 

channel [38]. This trimeric ring structure of the PNPase has structural similarities to the 

eukaryotic and archaeal exosome (Chapter 1.4.1  and 1.5.1). 

The RPD1 and RPD2 domains are linked by α helical domain. At the C terminus of each 

subunit there are two RNA binding domains, which are positioned on the hexameric ring: S1 

(S1 protein homology) and KH (K homology protein). Deletion of the S1 and KH domain 

leads to the loss of activity and the loss of ability to bind RNA substrates [39]. 

The hydrolytic 3'-5' exoribonucleases RNase R and RNase II, have both catalytic and 

structural similarities [40]. However, RNase R is the only exoribonuclease that is capable of 

degrading highly structured RNA. This implies that RNase R is playing a significant role in 

the degradation of highly structured mRNA [41] and in the quality control of rRNA and 

tRNA [42] in vivo. Furthermore it also has a helicase activity [40],  [43]. It is also known that 

the quantity of E. coli RNase R increases under various conditions, such as under cold shock 

and upon the occurrence of the bacterial culture in the stationary phase [41], [44]. Thus, the 

enzyme has an important regulatory role in different stress conditions.  RNase II is an 

exoribonuclease which degrades single-stranded RNA in a processive manner. It 

preferentially degrades poly (A) attachments [45]. 

The double mutant E. coli K-12 strains (lacking PNPase and RNase R) having been not 

viable suggests that these enzymes carry out an essential function in RNA metabolism that 

cannot be taken over by any of the other cellular exoribonucleases, even the closely related 

RNase II [46]. Both PNPase and RNase R remove defective rRNA molecules as soon as they 

are generated [42]. PNPase is also involved in the degradation of damaged tRNAs. However, 

degradation is largely reliant on polyadenylation of the precursor by poly (A) polymerase 

[47]  and PNPase [48]. 

All three mentioned exoribonucleases cannot degrade RNA molecules to a mononucleotide. 

The final degradation products have a length of about 2-5 nucleotides. The Oligoribonuclease 

catalyzes the final step in the degradation of these 2-5 nucleotide substrates to 

mononucleotides. Free 3' OH ends are required for the activity of this enzyme [49], [50]. 
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Though the gram-negative model organism E. coli was used for the analysis of bacterial 3’-5’ 

exoribonuclease activity, 5’-3’ exoribonuclease activity was first found in gram positive 

bacterium Bacillus subtilis. In contrast to E. coli, B. subtilis lacks the essential RNase E and 

RNase II homologs and Oligoribonuclease. Instead, it harbors two paralogs of a novel RNase 

(RNase J1 and RNase J2) with both endo and 5’-3’ exo ribonucleolytic activity. Although 

these enzymes have no sequence homology to RNase E, they have similar substrate 

requirements  [51], [52]. More homologues of the RNase J were found in other Bacteria and 

Archaea including the organisms that also possess an RNase E ortholog. For example, RNase 

J is in Sinorhizobium meliloti involved in the maturation of the 5' ends of the 16S and 23S 

rRNA [53]. Furthermore, RNase Y plays a major role in endolytic cleavages of RNA in the 

RNase E lacking, gram positive, B. subtilis. This endoribonuclease has functional similarities 

to E. coli RNase E although it is completely lacking the sequence homology to RNase E [33]. 
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1.3.2 Bacterial mRNA degradation by multi protein complexes 
 

 

Figure 1.4 Bacterial mRNA decay machineries. (A) The degradosome: It is a multi-protein complex which 

includes an endoribonuclease (RNase E), a 3'-5' exoribonuclease (polynucleotide phosphorylase (PNPase), the 

glycolytic enzyme enolase and a DEAD-box RNA helicase (RhlB helicase). (B) The bacterial exosome: It is 

composed of PNPase and RhlB. It is independent of the RNA degradosome. RhlB is used as cofactor to unwind 

structured RNA in an ATP-dependent manner. This complex was shown to catalyze the 3'-5' exonucleolytic 

degradation of RNA. Taken from [54] . 

The degradosome in E. coli is a multi-enzyme complex which is involved in the degradation 

of mRNA ( Figure 1.4A). The central unit in the complex is the endoribonuclease RNase E. 

the N terminus contains the active site of the enzyme while the C terminus is critical for the 

formation of the complex [55], [56]. The object of the helicase RhlB is to unwind the stable 

secondary structures. Then the RNA can pass into the active site in the central channel of the 

PNPase [57]. 

 It has been demonstrated that RhlB and PNPase can also form a complex independent of the 

degradosome in vitro and in vivo [58] (Figure 1.4B). Bacterial cells, in which the helicase 

RhlB was inactivated, show strong deficits in the mRNA degradation. 

The glycolytic enzyme enolase is very abundant in E. coli and only a small amount is bound 

to the RNase E in the degradosome [58], [59]. The function of the enolase in relation to the 
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mRNA degradation is not fully revealed. It is only known that the enolase plays a role in 

regulating the stability of specific mRNA in the response to phosphosugar stress [32]. 

The degradosome was of great interest in the recent research. Lot is known about the protein-

protein interactions of its subunits and its role in RNA degradation. However, the detailed 

structure and organization of the protein complex was recently discovered. In vitro 

experiments with phospholipids have shown that it binds to the membrane by RNase E [60]. 

The association with the cytoplasmic membrane occurs with the aid of an amphipathic helix, 

which is referred to as the A segment. Changes of the localization pattern of RNase E have 

been observed as a result of the deletion of segment A or replacements of hydrophobic 

residues of the amphipathic helix. It has appeared to clump in the peripheral region of the 

cytoplasm or it has completely loss the localization [61]. Since, the degradosome subunits 

bind to the C terminus of the RNase E, the whole degradosome is localized at the cytoplasmic 

membrane. The role of the membrane localization of the degradosome on the RNA 

degradation is still unknown. Studies on B. subtilis using fluorescent tagged RNA polymerase 

and ribosomes have shown that RNA polymerase is associated principally with the nucleoid 

and the ribosomes which are localized almost exclusively to the cytoplasmic space outside of 

the nucleoid [62]. RNase Y, which is functionally similar to RNase E, localizes at the 

membrane, and in in vitro experiments it can form a ’degradosome’ with PNPase and other 

glycolytic enzymes. These results have been interpreted as witness for a 

compartmentalization of transcription and translation despite the lack of a nuclear membrane 

in Bacteria. The localization of RNase E and other enzymes to the inner cytoplasmic 

membrane suggests that RNA processing and degradation is also compartmentalized and 

group of transcripts, which remains to be identified, is processed or degraded on the inner 

cytoplasmic membrane. 

1.4. The RNA processing and degradation in Eukarya 

In Eukaryotes the RNA processing is much more complex than in Bacteria and in the 

following, only selected aspects of RNA processing of Eukaryotes are addressed. 

The mature monocistronic mRNAs of Eukaryotes contains a 7 methyl guanosine cap at the 5’ 

end and a long poly (A) Attachment (200- 500 nt) at its 3' end (Figure 1.5). The 5' cap is 

involved in the initiation of translation and the operation of splicing of the pre mRNA, to 
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form the mature, functional mRNA [63], [64]. In Eukaryotes, transcription and translation 

takes place in the nucleus and in the cytoplasm respectively. Thus, the mature mRNA has to 

be transported from the nucleus to the cytoplasm. It was demonstrated that the 5' cap of the 

RNA confers a higher stability [65]. The polyadenylation of the RNA takes place by different 

enzymes, both in the nucleus and in the cytoplasm.  

 

Figure 1.5 The mRNA degradation in Eukaryotes. Eukaryotic mRNAs begin with a 7-Me-GpppG cap 

structure on the 5' end and end with a 150–200-residue poly (A) tail. Degradation generally begins with 

shortening of the poly (A) tail to <30 residues by one or more deadenylases. Dcp2 is involved in cleaving the 7-

Me-GpppG cap which generates a 5’-monophosphate end and subsequently degraded in 5'-3' direction by Xrn1 

and in 3'-5' direction by the exosome.  

The TRAMP complex (Trf4/Air2/Mtr4p Polyadenylation complex) is a multi-protein 

complex consisting of the RNA helicase Mtr4, a poly(A) polymerase (PAP) (either Trf4 or 

Trf5) and a zinc finger protein (either Air1 or Air2). It assist the nuclear exosomes by the 

synthesis of short poly (A) tails at the 3’ end of  RNA, which causes destabilization [66], 

[67]. However in the cytoplasm, poly (A) polymerase I (PAP I), forms much longer poly (A) 

tail to stabilize the RNA molecules. In comparison to the half life of the mRNA of Bacteria, 

eukaryotic mRNA has a longer half life which range from several minutes to hours which 

basically depends on the deadenylation [68], [69].  

The poly (A) tail plays an important role in the degradation of the 3' end of the mRNA.  The 

long poly (A) tails are protected by the poly (A)-binding protein (PABP), thereby preventing 

the degradation of the mRNA. The key steps in the degradation of mRNAs are the removal of 

PABP and the poly (A) tail by a complex which contains the proteins, Ccr4p Caf1p/Pop2. 

http://en.wikipedia.org/wiki/Protein_complex
http://en.wikipedia.org/wiki/Protein_complex
http://en.wikipedia.org/wiki/Helicase
http://en.wikipedia.org/wiki/Polyadenylation
http://en.wikipedia.org/wiki/Zinc


 

12 

 

This process occurs in the cytoplasm [70]. Thus, PABP is removed and the cap structure at 

the 5' end of the mRNA can be attacked.  

In the cytoplasm, there are two pathways of mRNA degradation. In both cases, the 

degradation begins with the removal of the 3' poly (A) nucleotides, which is referred to as 

deadenylation [71], or by removing the 5’ cap by an enzyme called de-capping protein 

(Dcp2). The RNA degradation can either be by the exoribonuclease Xrn1 in 5'- 3' direction, 

or by a 3'-5' multi-protein complex called the exosome [65], [72],  [73], [74], [75]. 

1.4.1 The eukaryotic exosome 
The eukaryotic exosome is a multi-protein complex with a 3'-5' exoribonucleotic activity. It is 

present in the nucleus as well as in the cytoplasm. It has interactions with many other 

proteins. The complex was first reported in Saccharomyces cerevisiae [72]. The core of the 

exosome consists of six subunits that form a hexameric ring: Rrp41 (ribosomal RNA 

processing factor 41), Rrp42, Rrp43, Rrp45, Rrp46 and MTR3 (Figure 1.6). These proteins 

have a homology to the E. coli RNase PH. All subunits of the hexamer are essential, because 

the absence of the proteins would not lead to a functional structure [76], [77]. On the 

hexameric ring there is a trimetric cap which contains the proteins Rrp40, Rrp4 and Csl4 

(CEP1 synthetic lethality 4). Rrp40 and Rrp4 have S1 and KH RNA binding domains and the 

RNA binding protein Csl4 has KH and Zn ribbon domains. This nine subunit exosome has no 

RNase activity. The exosome activity is due to the tenth subunit Rrp44 (DIS3), which is a 

hydrolytic exoribonuclease and a homology to RNase R and RNase II from E. coli [72], [78]. 
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Figure 1.6 Schematic representation of the eukaryotic exosome architecture The active subunit Rrp44 is 

positioned below the inactive nine subunit exosome. 

A characteristic of the exosome complex is that it requires additional proteins to facilitate its 

exonucleolytic activity in either RNA processing, turnover or RNA surveillance pathways. 

The cytoplasmic exosome is involved in mRNA turnover [79]. Exosome function in mRNA 

turnover and cytoplasmic mRNA surveillance pathways requires the associated putative 

GTPase (Ski7p) and the Ski complex, comprising the putative RNA helicase (Ski2p), Ski3p 

and Ski8p [80]. 

The exosome was initially identified as involved in the maturation of 5.8S rRNA [72]. In the 

nucleus the exosomes is involved in the early biogenesis of stable RNAs, such as ribosomal 

RNA, eukaryotic-specific small nuclear (snRNAs), small nucleolar RNAs (snoRNAs) and 

degrades unstable transcripts that originate from intergenic regions of eukaryotic genomes 

[81], [82].  
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1.5. RNA processing and degradation in Archaea 

RNA processing and degradation in Bacteria and Eukarya are well researched. Nevertheless 

very little is known about these processes in the Archaea. Archaea show morphological 

similarities to Bacteria, but are phylogenetically closer to Eukarya than to Bacteria [83]. They 

show strong similarities to Eukarya at the molecular level, for example in the mechanisms of 

replication, transcription and translation. Archaeal mRNA, however, is more similar to 

bacterial mRNA: it is generally intron-less and lacks long stabilizing poly (A)-tail at the 

3’end as well as a methylguanosine cap at the 5’end. The 5‘- triphosphate stabilizes the 

structure [84] like in Bacteria. Interestingly the trimeric translation initiation factor (a/eIF2) 

binds to the 5’ end of the mRNA and protects it against the degradation similarly to the 7-me- 

guanosine cap of the eukaryotes.   

 In Sulfolobus approximately 8% of the mRNAs have a longer half-life than 20 minutes, but 

50% of the mRNAs are degraded after 4-8 minutes [85]. This is comparable to bacterial 

mRNAs half-lives and it also suggests the regulation of mRNA stability as a possible fast 

respond to changing environmental conditions. 

The genome sequencing of some Archaea provided the opportunity to identify homologs to 

known RNases of Bacteria and Eukaryotes by comparative sequence analysis of proteins. 

Archaea-specific RNases, however, cannot be detected with this method. Below some 

archaeal homologs to bacterial and eukaryotic RNaseses with experimentally confirmed 

ribonucleotic activity are shortly described. 

 In halophilic and some methanogenic Archaea, which have no exosomes, no post-

transcriptionally synthesized 3’ tails were found [86]. In these exosome-less Archaea, RNA is 

either exoribonucleolytically degraded in 3’-5’ direction by a homologue of bacterial RNase 

R (in halophiles) or seems to be degraded in 5’-3’ direction by a homologue of the bacterial 

RNase J (in some methanogenic Archaea) [87]. B. subtilis RNase J can act as an exo and 

endonucleolytic enzyme at the same time. Unlike Bacteria, in Archaea, RNase J shows exo- 

and endonucleolytic activities separately [51], [87]. In Archaea which endure exosomes 

(hyperthermophiles and some methanogens), RNAs contain heteropolymeric (A)-rich tails at 

the 3' end, which may exert a destabilizing function [86], [88]. Furthermore this archaeal 

group has the bacterial RNase J homolog which has a 5’-3’ exoribonucleotic activity or an 
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endoribonucleotic activity [87]. In RNA processing and degradation not only individual 

RNases, but also high molecular weight multi enzyme complexes (eg. Archaeal exosome) are 

also involved. Archeal exosome is highly conserved. Ribonuclease complexes which are 

structurally similar to archeal exosome can be found in Eukaryota (Eukaryotic exosome) and 

in bacteria (PNPase).  The mechanisms of RNA degradation in Archaea show strong 

similarities to PNPase in Bacteria [89], [90]. In the following chapters the composition, 

structure and function of the archaeal exosome are described. 

1.5.1 Composition of the archaeal exosome 
The existence of an RNA-degrading multi-protein complex in Archaea, which is very similar 

to the eukaryotic exosome, was predicted by bioinformatic studies. For example, the 

prediction of the S. solfataricus’s exosomal subunits from orthologs of eukaryotic essential 

exosome subunits, Rrp41, Rrp42 and Rrp4 in a single operon and   a fourth ortholog, Csl4 

encoded in a different operon [91]. The first experimental evidence of the existence of an 

archaeal exosome was provided by co-immunoprecipitation using cell free extract of S. 

solfataricus [92]. In the following years, similar protein complexes from Archaeoglobus 

fulgidus [93] and Pyrococcus [94] were reconstituted and analyzed. 

In addition to the predicted subunits Rrp41, Rrp42, Rrp4 and Csl4 there are other proteins 

which were co-precipitated with the exosome of the S. solfataricus such as the archaeal DnaG 

like protein, (a homolog of the bacterial primase), the chaperonin Cpn, the homolog of the 

eukaryotic protein Cdc48 (cell division cycle 48) and a 16 kDa hypothetical protein [92], 

[95]. The proteins Cpn  and Cdc48 [96] possess chaperone properties. Cpn is also an RNA 

binding protein and is involved in the processing of the 16S rRNA [97]. It is unclear whether 

Cpn and Cdc48 were co-purified with the exosome due to a functional relationship or non-

specifically. The function of the 16 kDa polypeptide is also unclear. The object of the 

bacterial DnaG primase is to produce an oligonucleotide RNA during DNA synthesis. The 

function of the archaeal DnaG in relation to RNA degradation was recently found in in vitro 

experiments. It enhances the interaction with adenine rich RNAs [98]. DnaG is not only 

found in S. solfataricus exosome but also in the exosome of other archaeal species such as, 

Methanothermobacter thermoautotrophicus and Thermococcus kodakarensis, which belong 

to different phylogenetic lines. The annotation of the archaeal DnaG protein as a bacterial 

type primase is based on its highly conserved central TOPRIM domain, which is 
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characteristic for topoisomerases and primases. Nevertheless recently it was published that 

DnaG of S. solfataricus exhibits primase activity in vitro. S. solfataricus also has a 

eukaryotic-type primase. This implies that this organism uses a dual system of primases [99] 

and that DnaG has a dual function: it is involved in the RNA metabolism and in the 

replication of DNA. 

1.5.2. Structure and function of the archaeal exosome 

 

 

Figure 1.7 Schematic representation of the structure of the archaeal DnaG-Rrp4-Csl4-exosome. Rrp41, 

Rrp42, Rrp4 and Csl4 form the nine-subunit exosome, while the Archaea specific exosome protein, DnaG (tenth 

subunit) interacts with the Csl4 protein. 

The structure and the catalytic mechanism of the reconstituted archaeal nine-subunit exosome 

are well understood. The Archeal exosome is a 3’-5’ multi-subunit exoribonuclease complex 

which is involved in RNA degradation and polyadenylation [100]. It is built of a 

phosphorolytically active hexameric ring, containing the subunits Rrp41 and Rrp42, to which 

a trimeric cap of the RNA-binding proteins Rrp4 or Csl4 is bound (Figure 1.7) [93], [101],    

[102]. However, in addition to the two isoforms of the exosome, Rrp4 trimer bound to the 
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hexameric ring (Rrp4-exosome) and the Csl4 trimer bound to the hexameric ring (Csl4-

exosome), exosomes with heteromeric caps can be reconstituted (Rrp4-Csl4-exosome) [93]. 

 

The archaeal exosome performs metal-dependent phosphorolysis of RNA in the presence of 

inorganic phosphate (Pi) and Mg2+, and synthesizes RNA using NDPs without a template 

[86], [101], [103]. The archaeal exosome is the only enzyme which is capable of 

polyadenylating RNA in Archaea. It was shown by depleting the exosome from S. 

solfataricus cell-free extract which results in strong reduction of RNA polyadenylation 

activity [86]. 

 

The active site of the complex resides in the subunit Rrp41 while Rrp42 is inactive. The 

formation of the hexameric ring is essential for the phosphorolytic activity and binding of the 

substrate. Thus, separate Rrp41 polypeptides have no activity [101], [103].  

 

The trimeric cap structure on the hexameric ring is formed by the RNA binding proteins Rrp4 

and/or Csl4. Rrp4 has a S1 and a KH domain and Csl4 has a S1 and a Zn ribbon domain. 

Both proteins anchor with their N terminal domain to Rrp41. The respective S1 domains are 

located in the center of the proteins and form a pore (S1 pore). The S1 pore is positively 

charged and negatively charged RNA substrates tread through this pore to the central 

chamber. The positions of the KH and Zn ribbon domain differ significantly [93]. 

 

The RNA substrate enters to the central channel of the hexameric ring via the opening of the 

central pore. The restriction (8-10 Å) near the central channel pore only allows the entry of 

unstructured, single-stranded RNA [103], [104].  At the end of the duct, a chamber is formed, 

which represents the active site. While the surface of the hexamer is predominantly 

negatively charged, the central channel pore contains positive charges. The RNA must be at 

least ten nucleotides long for the threading into the channel [93].  

 

The function of the RNA-binding cap was investigated in vitro using recombinant exosomes 

of Archaea belonging to the genera Sulfolobus, Pyrococcus and Archaeoglobus. So far 

homomeric caps composed of Rrp4 or Csl4 were studied in detail. Generally, the presence of 

Rrp4 or Csl4 increase the RNA binding and the efficiency of RNA degradation by the 



 

18 

 

archaeal exosome [93], [94], [105], [106]. It is predicted that many of the substrates of the 

exosome in S. solfataricus are adenine-rich mRNAs and adenine-rich, post-transcriptionally 

synthesized RNA-tails [86], [107]. Furthermore, the GC content of the S. solfataricus genome 

is 37% and short poly (A) stretches are present in its mRNAs [12], [107]. It has been shown 

that Rrp4 and Csl4 confer different substrate specificities to the archaeal exosome and that 

Rrp4 strongly prefers poly (A) [88].   

 

1.5.3. Soluble and insoluble exosomes 
Unlike in Eukarya, bacterial and archaeal cells lack organelles. In the compartmentalized 

eukaryotic cells, there are stress granules and processing bodies in the cytoplasm, in which 

RNA is translationally arrested and/or degraded. These processing bodies are involved in si- 

and mi-RNA mediated gene silencing and in mRNA degradation in 5’-3’ direction [108] The 

eukaryotic exosome, which degrades RNA in 3’-5’ direction, was found in the nucleus and in 

the cytoplasm, but not as a part of the processing bodies [109]. However, the archaeal 

exosomes are localized because of the need of prokaryotic cells to spatially organize RNA 

processing and degradation.  

 
 
Figure 1.8 The exosomal subunits are found in the insoluble fraction. A) Western blot analysis of S100 and 

P100 fractions hybridized with anti-Rrp41 and anti-DnaG antibodies. B) The dot blot analysis of RNA isolated 

from S100 and P100 fractions with probes complementary to 16S rRNA and 23S rRNA. Taken from [110]. 

 

In a previous study most of the S. solfataricus exosomes were detected in the pellet fraction 

after 100 000 g centrifugation (P100; insoluble exosome) comparatively less amount of the 

exosomes was detected in the supernatant fraction (S100; soluble exosome) [110]. DnaG was 

exclusively detected in the P100 fraction. The dot blot analyzes showed that the 16S and 23S 
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rRNA were also in the P100 fraction (Figure 1.8). Detection of the 16S/23S rRNA and the 

exosome majorly in the P100 fraction rose the question whether RNA interfere in the 

exosome sedimentation pattern. The sedimentation of the RNA and the exosome was further 

analyzed by sucrose density gradients. 

 

 

A) 

 
B) 

  
C) 

 
 

Figure 1.9 The exosome of the S. solfataricus is localized at the periphery of the cell and does not co-

sediments with the ribosomes. A) Fractionation through a salt-containing 15–70% sucrose density gradient. 
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Fractionized samples were separated through SDS-PAGE, blotted and hybridized with the DnaG and Rrp41 

antibodies. B) Sedimentation pattern of the ribosomal subunits in the sucrose density gradient. C) The cellular 

localization of S.solfataricus exosome by immunolabeling. The immunolabeled antibodies against DnaG and 

Rrp41 show that the exosomes at the periphery of the cell. Adopted from [110]. 

 

It was shown by our research group that in the 15%- 70% sucrose density gradient with salt, 

the yellow ring (where the membranes sediment) and the highest amount of exosomal 

subunits Rrp41 and DnaG were in the same fractions [110]. It was also shown that 

hydrophobic interactions are responsible for the co-sedimentation of the exosome with 

membranes, since this co-sedimentation was observed at high ionic strength only. This 

suggests that exosome is membrane- associated or interacts with a still unknown membrane 

protein via hydrophobic surfaces, but is not strongly bound to the membrane. The distribution 

of the exosome in the gradient was clearly different from that of the ribosomal subunits 

which says that there is no interference of the rRNA in the exosomal sedimentation pattern 

(Figure 1.9A and B). The localization of the archaeal exosome at the membrane was 

confirmed by immunolabelling (figure 1.9C). Rrp41 and DnaG proteins exhibited a distinct 

ring-shaped distribution, located almost exclusively at the membrane periphery of the cells. 

The mechanisms responsible for the specific subcellular localization of the archaeal exosome 

remain to be elucidated. 
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1.6. Aim of this work 

The archaeal exosome is a protein complex involved in the degradation and polyadenylation 

of RNA. The proteins Rrp41, Rrp42, Rrp4, Csl4 and DnaG are major subunits of the 

exosome in S. solfataricus. In vitro, catalytically active hexamer can be formed with Rrp41 

and Rrp42 subunits, to which an RNA binding cap of Rrp4 and/or Csl4 is attached. Rrp4 

confers strong poly (A) specificity to the exosome. The contribution of the individual Rrp4 

domains to its poly (A) preference was not shown so far. Therefore an important goal of the 

project was to analyze the domains of the Rrp4 protein in relation to poly (A) preference.  

 

Although it was shown that in vitro the reconstituted exosome of A. fulgidus can carry a 

heteromeric cap containing Rrp4 and Csl4 [93] the cap composition of the archaeal exosome 

was not studied in vivo so far. Changes in the composition of the exosome may influence not 

only its substrate specificity, but also the interaction with other proteins and even its sub-

cellular localization. To date it was not known whether Rrp4-Csl4-exosomes are present in 

vivo. Another important goal of the project was to examined where there are exosomes with 

heteromeric RNA binding caps in vivo.  

 

The majority of the active site containing subunit Rrp41 is localized at the periphery of the S. 

solfataricus cell and is detectable in the insoluble fraction of a cell-free extract. DnaG was 

also detected at the cell periphery and is essentially insoluble [110]. It was not clear whether 

the composition of the exosome differs in the soluble and insoluble fractions. The localization 

of the archaeal exosome at the cell periphery and its co-sedimentation with membranes 

suggests that the membrane is involved in the spatial organization of RNA processing in the 

third domain of life. However, we do not know whether the localization of the exosome 

changes in different conditions, such as under different stresses. Therefore another aim of this 

project was to analyze whether there are differences in the composition of the soluble and the 

insoluble exosomes and to investigate the changes of the localization of the exosome under 

different stress conditions. We also wanted to know whether the localization of the exosome 

changes at different stages of the growth curve, in the exponential and in the stationary phase. 

In addition we wanted to see whether there are any potential interaction partners of the 

archaeal exosome under different stress conditions or at different stages of the growth curve 
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which can be co-purified with the exosome. The detection of the exosome will contribute to 

the understanding of the role and mechanisms of this protein complex in the archaeal cell.  

So far there is no direct information regarding the 3-D structure of the native archaeal 

exosome and the exosome contain DnaG, which is essential for understanding its functional 

organization. Recently it was found that the DnaG interacts with the nine subunit exosome 

via Csl4 protein [98]. Nevertheless the archaeal DnaG protein has not been elucidated so far. 

Furthermore the stoichiometry between the Csl4 protein and the DnaG protein is not yet 

known. To address these questions, as the final part of this project we decided to analyse 

native and the reconstituted exosome by single particle electron microscopy (SPEM). 
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2. Materials  

2.1. Chemicals 

All chemicals which are not specifically mentioned were obtained from Applichem. 

Chemical Manufacturer 
Acetic acid  Roth 

Acrylamide (30% w/v)/ bisacrylamide (0.8% w/v) Roth 

Adenosindiphosphate (rADP) Roche 

Agarose (LE agarose Biozym)  Biozym 

Ammonium peroxide sulphate (APS)  Aldrich 

Anhydrotetracycline  IBA 

Bacto agar Difco 

Bacto-peptone  Becton, Dickinson Co. 

Bovine serum albumin (BSA) Sigma 

Bromophenol Roth 

Calcium chloride Merck 

Casamino acid Difco 

Coomassie Brilliant Blue G-250 Serva 

Deoxyribonucleoside triphosphates (dNTPs) Qiagen 

Desthiobiotin IBA 

Dimethyl pimelimidate (DMP) Sigma 

Dithiothreitol (DTT) Roth 

Ethanol  Roth 

Ethanolamine Sigma 

Ethidium bromide Roth 

Ethylene-diamine tetraacetate (EDTA) Roth 
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Formaldehyde (37%) Roth 

Glucose Merck 

Glycerol Roth 

N-2-hydroxyethylpiperazine-N'-2- ethanesulfonic acid 

 

Roth 

Imidazole Sigma 

Isopropyl-β-D-thiogalactoside (IPTG) Roth 

Lumi-Light Western Blotting Substrate I and II Roche 

Phenyl-methyl-sulfonylfluoride (PMSF) Sigma 

Potassium dihytrogen phosphate Roth 

Potassium chloride Roth 

Protease inhibitor cocktail  Roche 

Magnesium chloride Roth 

Magnesium sulfate Merck 

Methanol Roth 

Mineral oil Sigma 

Nickel NTA  Qiagen 

Nonidet P 40 (NP 40) Fluka 

Nickel sulfate  Aldrich 

Ponceau-Red Sigma 

Protein A-Separose  GE Healthcare 

Ribonucleoside triphosphates (rNTPs)  Promega 

Roti-Quant (Bradford-Reagent) Roth 

Sodium carbonate  Merck 

Sodium dodecyl sulfate (SDS)  Roth 

N, N, N ', N'-tetramethylene diamine (TEMED)  Roth 

Tris-(hydroxymethyl)-aminomethane (Tris)  Roth 
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Triton X 100  Roth 

tRNA (Saccharomyces cerevisiae) Boehringer 

Tween 20  Serva 

Urea Roth 

Vanadyl sulfate trihydrate  Aldrich 

Xylencyanol  Serva 

Yeast extract Difco 

Zinc sulphate  Sigma 

Table 1. Chemicals used in this thesis 

2.2. Culture media and agar plates 

2.2.1. LB medium  
 

 

  

 

 

2.2.2. SOC medium 
2% (w/v) Tryptone (pancreatic digest of casein) 

0.5% (w/v) Yeast extract 

8.6 mM NaCl 

2.5 mM KCl 

20 mM MgSO4 

20 mM Glucose 

 

10 g Bacto-Trypton 

10 g NaCl 

5 g  yeast extract 

Add 1000 ml dH2O 
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Glucose, which is previously sterile filtered with a 0.22 μm filter, was added only after 

autoclaving, just before use of the medium. 

 

2.2.3. LB-Agar plates  1000 ml LB-medium 15g of Agar was added 

 

2.2.3. Sulfolobus solfataricus 

2.2.3.1. Standard medium 

  

Adjust the pH value up to 4.2-4.4 by adding concentrated H2SO4 drop wise at room 

temperature. The components MnCl2∙4H2O, Na2B4O7⋅10H2O, ZnSO4⋅7H2O, CuCl2⋅2H2O, 

Na2MoO4⋅2H2O and CoSO4 were added from previously prepared stock solutions. VOSO4 

1.0 g Yeast extract 

1.0 g Casamino acid 

3.1 g KH2PO4 

2.5 g (NH4)2SO4 

0.2 g MgSO4⋅7H2O 

0.25 g CaCl2⋅2H2O 

100  µl MnCl2⋅4H2O (18 mg/ml) 

100  µl Na2B4O7⋅10H2O (45 mg/ml) 

10  µl ZnSO4⋅7H2O (22 mg/ml) 

10  µl CuCl2⋅2H2O (6  mg/ml) 

10  µl Na2MoO4⋅2H2O (3  mg/ml) 

10  µl CoSO4 (or CoCl2⋅6H2O) (3 mg/ml) 

add 1000 ml  dH2O 

10 µl/l VOSO4 (3 mg/ml ) (After autoclaving the medium) 
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solution (0.03 g/100 ml ddH2O) which was previously sterile filtered with a 0.22 micron 

filter, was added only after autoclaving, just before use of the medium (10 µl/ L medium). 

2.2.3.2. Brock medium  
 
1.3g (NH4)2SO4 

0.28g KH2PO4 

.25g MgSO4.7H20 

0.07g CaCl2.2H2O 

0.02g FeCl3.6H2O 

1.8mg MnCl2.4H2O 

4.5mg Na2B4O7.10H20 

0.22mg ZnSO4.7H2O 

0.05mg CuCl2.2H20 

0.03mg NaMoO4. 2H20 

0.01mg CoSO4 

add 1000 ml Distilled H20 

10 µl/l VOSO4(3 mg/ml )  (After autoclaving the medium) 

 

Adjust the pH value up to 4.2-4.4 by adding concentrated H2SO4 drop wise at room 

temperature. VOSO4 which was previously sterile filtered with a 0.22 micron filter, was 

added only after autoclaving, just before use of the medium (10 µl/L medium). 

2.3. Enzymes 

The enzymes were used according to the manufacturer’s instructions in their respective 

buffers unless otherwise stated. 

Enzyme Manufacturer 

DNase 1  NEB 

RNase A Fermentas 
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RNase T1 Fermentas 

T4-DNA-Ligase NEB 

T4-Polynucleotid-Kinase (PNK) NEB 

T4-RNA-Ligase NEB 

Taq-DNA-Polymerase NEB 

Table 2. Enzymes used in this thesis 

2.4. Markers 

Product Manufacturer 
Prestained Protein Marker, Broad Range NEB 

Low Range Protein Marker  Biorad 

GeneRuler 1kb DNA Ladder Plus Fermentas 

Low Molecular Weight Marker, 10-100 nt Fermentas 

Table 3.  Markers used in this thesis 

2.5 Antibiotics 

Antibiotic Manufacturer stock solution End concentration for E. 

coli 
Ampicillin Roth 100mg/ml (in 

ddH2O) 

200 µg/ml 

Kanamycin Serva 10 mg/ml (in ddH2O) 25 µg/ml 

Table 4. Antibiotics used in this thesis 
 

2.6. Molecular Biology KITs 

KIT Manufacturer 
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Plasmid Isolation KIT Qiagen 

P drive vector ligation KIT Qiagen 

QIAEX II Agarose Gel Extraction Kit Qiagen 

Table 5. KITs used in this thesis 
 

2.7. Bacteria and Archaea strains 

Strain Description 

Escherichia coli BL21-Gold(DE3)pLysS: E. coli B, F-, ompT, hsdS(rB-rnB-), dcm+, 

Tetr galλ(DE3), endA, Hte [pLysS Camr]  

(Promega) 

Escherichia coli JM109 E. coli K, F- , hsdR17, recA1 ,endA1, no 

resistance (Promega) 

Sulfolobus solfataricus P2: Wild type P2 strain 

Sulfolobus solfataricus M16: Wild type M16 strain for expression of 

proteins 

Table 6. The strains that were used in this thesis 

2.8. Plasmids 

Plasmid Description Reference 

pET-MCN Ampr; PT7; 5,2 kb Lorentzen et al, 2005 

pET-MCN::SsoRrp41 rrp41 was Cloned between 

NdeI/XhoI restriction sites 

in pET-MCN; Ampr
 

Lorentzen et al, 2005 
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pET-MCN::SsoRrp4 

 

rrp4 gene was cloned 

between NdeI/XhoI 

restriction sites in pET-

MCN; Ampr
 

Lorentzen et al, 2005 

pET-MCN::SsoCsl4 csl4 gene was cloned 

between NdeI/XhoI 

restriction sites in pET-

MCN; Ampr 

Prof. Dr. E. Conti 

(Max-Planck-Institute, 

Martinsried , Munich) 

pET::SsoDnaG dnaG gene was cloned 

between NdeI/XhoI 

restriction sites in pET30a; 

Ampr 

Zuo et al, 2010 

pSP72 Ampr; PT7; SP6; 2,46 kb Promega 

pET15b::SsoRrp4NT Gene portion corresponding 

to the N terminal of the 

Rrp4 protein was cloned 

between NdeI/XhoI 

restriction sites in pET-

MCN; Ampr 

This work 

pET15b::SsoRrp4S1 Gene portion corresponding 

to the S1 domain of the 

Rrp4 protein was cloned 

between NdeI/XhoI 

restriction sites in pET-

MCN; Ampr 

This work 

pET15b::SsoRrp4KH Gene portion corresponding 

to the KH domain of the 

This work 
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Rrp4 protein was cloned 

between NdeI/XhoI 

restriction sites in pET-

MCN; Ampr 

pET15b::SsoRrp4NTS1 Gene portion corresponding 

to the NT and S1 domain of 

the Rrp4 protein was cloned 

between NdeI/XhoI 

restriction sites in pET-

MCN; Ampr 

This work 

pET15b::SsoRrp4S1KH Gene portion corresponding 

to the S1 and KH domain of 

the Rrp4 protein was cloned 

between NdeI/XhoI 

restriction sites in pET-

MCN; Ampr 

This work 

pET15b::SsoNopF12 Gene portion corresponding 

to the N terminal and the 

middle domains of the 

Nop56 protein was cloned 

between  NdeI/XhoI 

restriction sites in pET-

MCN; Ampr 

This work 
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pET15b::SsoNop23 Gene portion corresponding 

to the  middle and the C 

terminal domains of the 

Nop56 protein was cloned 

between NdeI/XhoI 

restriction sites in pET-

MCN; Ampr 

This work 

pMS1::SsoRrp4 rrp4 gene was cloned 

between BamH1/Nco1 

restriction sites in pMS1; 

Ampr 

This work 

pMS1::SsoCsl4 csl4 gene was cloned 

between BamH1/Nco1 

restriction sites in pMS1; 

Ampr 

This work 

pMS1::SsoDnaG dnaG gene was cloned 

between Nco1 restriction 

site in pMS1; Ampr 

This work 

pMS1::SsoDnaGF12 Gene portion corresponding 

to the  N terminal and the 

TOPRIM domains of the 

DnaG protein was cloned 

between Nco1 restriction 

sites in pMS1; Ampr 

This work 

pMS1::SsoDnaGF23 Gene portion corresponding 

to the  TOPRIM and the C 

terminal  domains of the 

DnaG protein was cloned 

This work 
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between Nco1 restriction 

sites in pMS1; Ampr 

pMJ0105:: SsoDnaG dnaG gene was cloned 

between AvrII/EagI 

restriction sites in 

pMJ0105; Ampr 

This work 

Table 7.  Plasmids taken for the thesis. 

2.8.1 Domains encoded by the genes used in this thesis 

2.8.1.1. Domains encoded by the rrp4 gene 
0         199   438   698bp  

 

N terminus  S1    KH 

2.8.1.2. Domains encoded by the dnaG gene 
3         465   741   1218 bp  

 

N terminus (F1)  TOPRIM(F2)  C terminus(F3) 

 

2.8.1.3. Domains encoded by the nop5 gene 
0  453   663   1110 bp  

 

 F1   F2   F3  

 

2.9. Oligonucleotides 

Based on the known sequences of the genes, including their flanking regions, suitable primers 

were designed for the amplification. The oligonucleotides were produced by Roth, Biomers 
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and Eurofins companies. The concentration was adjusted to 100 pmol/µl. The stock solutions 

were stored at -20 ° C. 

Primer 

name 

 

 

Sequence Purpose Restriction 

sites 

S1-Rrp4-

Fwd 

5’CATATGCCCTTGGAAGGCTCG3’ Cloning 

in pET 

vector 

NdeI 

S1-Rrp4-

Rvs 

5’CTCGAGCCCTAGATCCTTGCC3’ Cloning 

in pET 

vector 

XhoI 

KH-Rrp4-

Fwd 

5’CATATGGATCTAGGGCGCTGTAAG3’ Cloning 

in pET 

vector 

NdeI 

KH-Rrp4-

Rvs 

5’CTCGAGTGAAGCATTTCTCTCACC3’ Cloning 

in pET 

vector 

XhoI 

NT-Rrp4-

Fwd 

5’CGCCATATGAACATGAGTCAGTCCCAG3 Cloning 

in pET 

vector 

NdeI 

NT-Rrp4-

Rvs 

5’CTCGAGCGAGCCTTCCAAGGG3’ Cloning 

in pET 

vector 

XhoI 

Rrp4-Fwd 5'GGGCCATGGAACATGAGTCAGTCCCAG3' Cloning 

in pMS1 

vector 

Nco1 

Rrp4-Rvs 5’GGATCCTCAAGAATTAGTTTTGGTCTCTCC3’ Cloning 

in pMS1 

vector 

Nco1 

F1-DnaG-

Fwd 

5’ CGCCCATGGGTGAGCTTCCAAATGAAATATG3’ Cloning 

in pMS1 

vector 

Nco1 

F1-DnaG-

Rvs 

5’CAGGCGGATCCTGGTCCATATTCTGTTATTTC3’ Cloning 

in pMS1 

vector 

Nco1 

F2-DnaG-

Fwd 

5’CCATGGGAAAGATTACCCGCAGG3’ Cloning 

in pMS1 

vector 

Nco1 
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F2-DnaG-

Rvs 

5’CCCACTCCATGGTGCCAATCGGTGCTCTTGCTAC3’ Cloning 

in pMS1 

vector 

Nco1 

F3-DnaG-

Fwd 

5’GTACCATGGAGAGAGGTAGAAGAACTAACAGGG3’ Cloning 

in pMS1 

vector 

Nco1 

F3-DnaG-

Rvs 

5’CAGAGGATCCAGAAGAAATAATATCGGTAAATGTC3’ Cloning 

in pMS1 

vector 

Nco1 

F1-Nop-

Fwd 

5’CCATGGATGAAAATATACCTAATTGAGCATGTTATTGG3’  Cloning 

in pMS1 

vector 

Nco1 

F2-Nop-

Fwd 

5’GGGCCATGGAAGAGAGACCTTTTAGCTATTCAAGC3’ Cloning 

in pMS1 

vector 

Nco1 

F2-Nop-

Rvs 

5’GCGCCATGGCATTTTAGCTAATTCATCTAAACTCC3’ Cloning 

in pMS1 

vector 

Nco1 

F3-Nop-

Rvs 

5’CAATGGTCACTTTCTTTTACCTCTTCTCTTTC Cloning 

in pMS1 

vector 

Nco1 

Table 8. Primers used for subcloning exosome genes of S. solfataricus. Fwd, forward primer; Rvs, reverse 

primer. 

2.10. Radioactive nucleotides 

Product Manufacturer 

[α-32P]-ATP, 3000 Ci/mmol Hartmann Analytic 

[γ-32P]-ATP, 3000 Ci/mmol Hartmann Analytic 

Table 9. The radioactivity used in this thesis. 
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2.11. Antibodies 

Antibody Manufacturer Reference 

Anti-SsoRrp41 (Rabbit, 

Antiserum) 

Davids Biotechnology GmbH Evguenieva-Hackenberg,  

et al., 2003 
Anti-SsoDnaG (Rabbit, 

Antiserum) 

Biogenes Walter , P., et al., 2006 

Anti-SsoRrp4 (Rabbit, 

Antiserum) 

Davids Biotechnology GmbH Witharana, C., et al., 
2012 

Anti-SsoCsl4 (Rabbit, 

Antiserum) 

Davids Biotechnology GmbH Witharana, C., et al., 
2012 

Anti-Rabbit IgG, Peroxidase 

Conjugates 

Pierce  

Table 10. The antibodies used in this thesis. 

2.12. Buffers and solutions 

De ionized water was used for the preparation of buffers.  

2.12.1. Buffers for gel electroporesis 
1 x TBS : 200 mM NaCl 

 50 mM  Tris-HCl 

  pH 7,4 

   

1 x TBE 89 mM Tris-HCl 

 89 mM Sodium borate 

 2,5 mM EDTA 

  pH 8.3 

   

4 x Separation buffer 1,5 M   Tris-HCl 

 0,4% (w/v) SDS 

  pH 8.8 
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4 x Stacking buffer 0,5 M   Tris-HCl 

 0,4% (w/v) SDS 

  pH 6.8 

   

1 x Laemmli-buffer 25 mM  Tris-HCl 

 192 mM Glycin 

 0,1 % (w/v) SDS 

  pH 8.2 

 

2.12.2. Buffers for Western blotting 
Transfer buffer 25 mM Tris-HCl 

 192 mM glycine 

 20% Methanol  

   

10x TBS 0.5 M Tris-HCl 

 2 M NaCl 

  pH 7.4 

   

Blocking solution  5% (w/v) Milk powder 

   

Stripping buffer I 500 mM NaCl 

 200 mM glycine 

  pH 2.8 

   

Stripping buffer II 500 mM NaCl 

 200 mM glycine 

  pH 2.2 
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Stripping buffer III 200 mM Tris 

  pH 7.2 

 

2.12.3. Other buffers 
1 x PBS  137 mM NaCl 

 2,7 mM KCl 

 10 mM Na2HPO4 

 2 mM   KH2PO4 

  pH 7,4 

   

1 x TE-Puffer  10 mM Tris-HCl 

 1 mM EDTA 

  pH 7,5 

   

MES-Low salt buffer 20 mM MES 

 2 mM DTT 

 1 mM  PMSF 

 0,5 mM EDTA 

  pH 6,5 

   

MES- High salt buffer 20 mM MES 

 2 mM DTT 

 1 mM  PMSF 

 0,5 mM EDTA 

 500 mM  NH4Cl 

 10 mM   Mg-Acetate 

  pH 6,5 
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10x TMN 100 mM Tris-HCl (pH 7.5) 

 1.5 M  NaCl 

 50 mM  MgCl2 

 1 %  NaPO4 

   

Po buffer 10 mM Tris-HCl (pH 7.0) 

 5 mM MgCl2  

 0.5 mM EDTA  

 200 mM NaCl  

 0.05 % Tween 20 

 0.2 % DTT  

 5 % 99.5 % glycerol 

   

Lysis buffer (Ni-NTA purification) 50 mM Tris-HCl (pH 8.0)  

 400 mM NaCl  

 10 mM Imidazole  

   

Elution buffer (Ni-NTA purification) 200 mM-400 mM Imidazole  

   

5 x RNase Buffer 

  

100 mM  HEPES pH 7 

(Degradtion assay) 40 mM  MgCl2 

 300 mM KCl 

 0,5 mM EDTA 

 10 mM  DTT 

 100 mM HEPES pH 7,9 

   

5 x RNase Buffer 

  

20 mM  MgCl2 



 

40 

 

(Polyadenylation assay) 300 mM KCl 

 0,5 mM EDTA 

 10 mM  DTT 

 

2.13. Equipments 

Equipment Manufacturer 
Centricon 10 membrane Millipore 

Cooling  centrifuge, Sorvall RC-5C+ Kendro 

Cooling  centrifuge, Sorvall -5B Kendro 

Cooling  centrifuge Z 323K Hermle 

Dialyse tubes (Type 20/32) Roth 

Electroporator (Micro Pulser) Biorad 

FPLC system (Akta) GE Amersham 

Filter paper, Whatman Hartenstein 

Fusion SL4 –Chemiluminasence detector Biorad 

Glass wool  Serva 

Incubator Shaker (Model G 25) New Brunswick Scientific 

Microcon (MWCO 3000) Millipore 

Nitrocellulose membrane (BA Protran) Schleicher & Schuell 

NanoDrop spectrophotometer  Biorad 

Optima TLX Ultra centrifuge Beckman Coulter 

Phosphoimager (Molecular Imager FX) Biorad 

Phosphoimager Screens Biorad/Fuji 

Screen Eraser K Biorad 

Semi dry blot- Apparatus(Novablot) Pharmacia 

Sterile filter 0,22 µm Nalagene 
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SuperdexTM75,HiLoadTM16/60 (Gel filtration) Pharmacia 

Scintillation counter (LS 6500) Beckman Coulter 

Tabletop centrifuge Biofuge 13 and fresco Kendro 

Ultrasound machine Sonoplus GM70 (Sonifier) Bandelin 

Ultra centrifuge Discovery 90  Kendro 

UV-StratalinkerTM 1800 Stratagene 

Table 11. Equipments used in this thesis 
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3. Methods 

3.1. General microbiology techniques 

3.1.1. Preparation of cultures 

3.1.1.1. Cultivation of E. coli 
The liquid cultures of E. coli were grown aerobically at 37 °C on a shaker, shaking at 180 

rpm. The culture was filled up to 25% of the total volume of the Erlenmeyer flasks. If 

necessary, an appropriate amount of antibiotic was added in to the culture to prevent cells 

lose the plasmid with resistance after a few cell divisions.  

The grown culture was plated on the LB agar plates (with appropriate antibiotics) with an 

inoculating loop. The agar plates were incubated at 37 °C over night. 

3.1.1.2. Cultivation of S. solfataricus  

3.1.1.2.1. Standard conditions  

In Duran bottles: S. solfataricus P2 was grown in liquid culture at 75 °C. The Duran bottles 

were filled up to 30% of the total volume with the medium and inoculated with 10% 

S. solfataricus pre-grown culture. Approximately in every 7 days a new culture was 

inoculated. 

In fermenter: Five Duran bottles containing 200 ml of S. solfataricus medium was grown as 

pre cultures on the shaker at 75 °C. Then 10 l of autoclaved media was inoculated with the 

pre cultures and was grown in the fermenter [92] at 75 °C aerobically.  

Growth was monitored by optical density measurements at 600 nm every 12 hours.  

3.1.1.2.2. Growth of S. solfataricus in stress experiments 

The S. solfataricus was grown in the fermenter for the stress experiments. Five litres out of 

the 10 l of exponentially growing cultures (OD600 ~ 0.3) were harvested as the control 

experiments while stresses were applied to the rest of the cultures (heat stress 88 °C, cold 

stress 65 °C, pH low stress pH 2, pH high stress pH 6.5 deviating from the normal growth 

temperature 75 °C and pH 4) for 30 min. For the stationary phase experiment, the cultures 

were grown till they reached a constant OD (OD600 ~ 0.7) for 48 hours prior to harvesting. 
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3.1.2. Preparation of competent cells 
The production of heat-competent cells and electro-competent cells were based on the 

document "Preparation of competent E. coli" by Qiagen (Qiagen 2003). The competent E. 

coli cells were stored in aliquots at -80 °C.  

For the preparation of the Sbl4 cells, first a LB agar plate was streaked out with the original 

stock and following day, 4 ml of self mixed LB medium was inoculated with 1 colony and 

incubated over night at 32 °C.  Next day, 60 ml of self mixed LB medium was inoculated by 

1% of the overnight grown culture and incubated at 32 °C until the OD600 reached 0.4-0.5. 

There after all the steps were performed on ice. The cells were harvested at 4 °C for 10 min at 

4000 g and supernatant was discarded. The cells were resuspended in 10 ml ice cold 

Glycerin-MOP-buffer (15% (w/v) glycerin and 1 mM MOPS), centrifuged and the last step 

was repeated. The cell pellet was resuspended in 1 ml ice cold Glycerin-MOP-buffer and it 

was transferred into Eppendorf tubes. Again the cells were centrifuged for 10 min at 4 °C at 

4000 g, the supernatant was removed and the pellet was resuspended in 200 µl Glycerin-

MOP-buffer. The cells were aliquoted (each 50 µl) in Eppendorf tubes, frozen it in liquid 

nitrogen and stored it in -80 °C.  

3.1.3. Transformation of E. coli cells 

3.1.3.1. Transformation by heat shock 
For each transformation, competent E. coli cells (50 μl) from -80 °C were thawed on ice. 

Plasmid DNA (approximately 50 ng) was added to the cells, mixed gently, and incubated on 

ice for 30 min. To facilitate the uptake of DNA, cells were heat-shocked by incubating the 

cells at 42 °C for 30 s, and cells were then placed back on ice for a further 2 min and 1 ml of 

LB medium without any antibiotics was added. The cells were allowed to recover at 37 °C 

for 1 h with shaking (180 rpm) before plating onto LB agar plates with antibiotics. Plates 

were then incubated overnight at 37 °C to allow for colony growth. 

3.1.3.2. Transformation by electroporation 
The electro competent cells (JM 109 and DH5α), which were stored at -80 °C, were thawed 

on ice. Plasmid DNA (approximately 50 ng) was added to the cells and mixed gently. The 

mixture was added in to a pre-cooledd cuvette and the cuvette was placed in the 

electroporator. The electro pulse (EC2- 2.5 kv) was applied to the cells and immediately 1 ml 
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of LB medium without any antibiotics was added. Cells were allowed to recover at 37 °C for 

1 hour with shaking (180 rpm) and then the procedure same as the heat shock trasfomation 

was followed. 

The procedure for the Stl4 electro competent cells was slightly different. Approximately 200-

250 ng of plasmid DNA was added to the cells and an electro pulse of 2.5 kv was applied. 

Immediately 1 ml of SOC medium was added without any antibiotics. Cells were allowed to 

recover at 32 °C for 1.5 hours. 

3.1.4. Preparation of electrocompetent Sulfolobus solfataricus M16 cells 
Two cultures of Sulfolobus solfataricus M16 (ΔpyrEF/lacS double mutant) were started to 

ensure that the negative control without uracil did not grow over an OD600 of 0.3. The culture 

with uracil was grown for 2 days. After 2 days growth, 500ml culture was inoculated and 

allowed to grow overnight to an OD600 of between 0.2-0.3. The overnight culture was cooled 

on ice, and centrifuged at 4000  g at 4 °C for 20 min. The cell pellet was resuspended in 1 ml 

cold sucrose water (6.9 ml 20% sucrose in 200 ml water) and then diluted into a total of 50 

ml sucrose water and centrifuged again. This was repeated with the pellet resuspended in a 

total of 10 ml sucrose water and centrifuged again. The cell number was adjusted to 1010 

cells/ml (e.g. if the OD600 of a 50 ml culture was 0.1 the cells would be resuspended in 200 μl 

sucrose or if original OD600 was 0.15 then 300μl of sucrose water should be added). Cells 

were incubated on ice before electroporation.  

3.1.4.1. Electroporation of Sulfolobus solfataricus M16 cells 
Twenty nanogram of the plasmid DNA was mixed with 50 μl of cells, and transferred to a 

chilled cuvette. Cells were electroporated at 1.5kV, 25μF and 400Ω, with a time constant of 

approximately 10 ms. After electroporation 1ml of Brock medium + uracil (2%w/v) were 

added and the cells were transferred to a 1.5 ml Eppendorf tube. Cells were regenerated at 

75°C for 1h and aerated every 20 min by opening the tube. 50ml pre-warmed medium plus 

uracil was inoculated with the transformed cells and grown for 2-3 days until the cells 

reached an OD600 of 0.5. After this time, cells were transferred to selective medium without 

uracil and with 0.1 % N-Z Amine and grown for 2 days. When the cells were grown to an OD 

of 0.3 or higher glycerol stocks were prepared (3.1.5.2.). The induction was done with 0.2% 

D-arabinose and when the culture reached OD 0.7 cells were harvested. 
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3.1.5. Preparation of the glycerol stocks 

3.1.5.1. Preparation of glycerol stocks of E. coli 
To create glycerol stocks of E. coli, 3 ml of a liquid culture was grown overnight and cells 

were pelleted at 4000 g for 10 min. The cells were washed with 1 ml of medium without 

added antibiotics. The cell pellet was resuspended in 1 ml of medium without antibiotics, 

glycerol was added to a final concentration of 20% and mixed gently. They were stored in 

special cryogenic tubes that were initially frozen in liquid nitrogen and then stored at -80 °C. 

3.1.5.2. Preparation of glycerol stocks of S. solfataricus 
To create glycerol stocks of S. solfataricus, 5 ml of a culture in the exponential growth phase 

was taken. The cultures were centrifuged for 10 minutes at 4000 g at 4 °C. The cells were 

resuspended in 1 ml of medium and glycerol was added to a final concentration of 20%. 

Mixed gently. They were stored in special cryogenic tubes at -80 °C. 

3.2. Molecular biology methods 

3.2.1. Nucleic acid techniques 

3.2.1.1. Polymerase chain reaction (PCR) 
The PCR is a method in which nucleic acid segments can be amplified exponentially. The 

primers used are listed in 2.9. 

Reaction mixture used for the PCR  

Fwd primer 1 µl (100 pmol/µL) 

Rvs primer 1 µl (100 pmol/µL) 

Taq Polymerase buffer (x10) 5 µl 

template DNA 1 µl (5 ng of plasmid DNA) 

dNTPs  0.4 µl (100 mM) 

Taq Polymerase enzyme 1 µl (5 Units/µl) 

Water 40.6 µl 

Total volume 50 µl 
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Annealing temperature was generally between 45 and 60 ° C and the extension time of the 

primer (about 1 min/kb template) were individually optimized for each PCR. The PCR 

product was purified (if necessary) using an agarose gel (see 3.2.10.1.). 

3.2.1.2. Preparation of plasmid DNA from E. coli 
To prepare small amounts of plasmid DNA in microgram quantities (termed ‘miniprep’), E. 

coli cells were transformed with plasmid DNA, and a single colony was inoculated in LB 

medium with appropriate antibiotics (5 ml) to stationary phase by incubation at 37 °C 

overnight in a shaking incubator. After centrifugation at 6000 g for 10 min at 4 °C, plasmid 

DNA was extracted from the cell pellet by sequential lysis, precipitation and extraction of 

DNA. After the cell lysis under alkaline conditions (NaOH 500 mM, SDS 1% v/w) acetate 

containing neutralizing buffer was added for the precipitation of proteins and large 

chromosomal fragments.  The sample was centrifuged for 20 min at 13 000 g and supernatant 

was taken in to another Eppendorf tube. The DNA was precipitated with 70% (v/w) 

isoproponal. The pellet was then re-suspended in RNase free water and typically yielded 100-

300 μg/ml plasmid DNA.  

 

To prepare larger quantities of plasmid DNA, ‘maxi-preps’, were performed using the Qiagen 

DNA Maxi Kit. A single bacterial colony, transformed with the relevant construct was used 

to inoculate LB (5 ml) containing the appropriate antibiotic and then a larger volume (250 

ml). After an overnight incubation at 37 °C, the cells were pelleted by centrifugation at 6,000 

rpm for 10 min at 4 °C. Plasmid DNA was purified according to the manufacturer’s 

instructions. Overnight cultures of 250 ml typically yielded 0.5-1 mg plasmid DNA. 

3.2.1.3. Enzymatic dephosphorylation 
The linearized plasmids were subjected for dephosphorylation to avoid self ligation. For the 

dephosphorylation of the 5’ terminus of DNA molecules, Antarctic Phosphatase (NEB) was 

used as specified by the manufacturer in the provided buffer.  

3.2.1.4. DNA cloning 

3.2.1.4.1. Use of cloning vectors  

To simplify the cloning in E coli, PCR fragments which were amplified by Taq polymerase 

were ligated in to the P Drive vector (Fermentas) as specified by the manufacturer in the 
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provided buffer for 2 hours at room temperature or at 16 °C over night. This is an open vector 

with (U) overhangs. PCR fragments can be directly ligated in to the P Drive vector because 

Taq polymerase synthesized (A) overhangs in the PCR products.  

3.2.1.4.2. Ligation 

Ligations were performed with T4 DNA ligase (Fermentas) in 1x ligase buffer. All ligations 

(except the P Drive vector ligation) were incubated at 16 °C overnight. The ligations are due 

to the covalent linkage between vector DNA and the DNA fragment (insert).  

3.2.1.4.3. Cloning in the shuttle vector for the expression in S. solfataricus M16  

Homologous expression of the exosomal proteins was attempted using the method in [111]. 

The S. solfataricus uracil auxotroph strain (ΔpyrEF/lacS double mutant) was kindly provided 

by Dr. Sonja-Verena Albers (Max Planck Institute for Terrestrial Microbiology, Germany). 

The genes dnaG, csl4, rrp4 and gene fragments corresponding to the  N terminus and C 

terminus of the DnaG protein, were PCR amplified using the primers shown in 2.9 and 

cloned into the vector pMZ1 using the restriction sites Nco1 and BamH1 (Csl4 and Rrp4) or 

single restriction site Nco1 (DnaG and its fragments).  

This vector contains an upstream D-arabinose inducible promoter and downstream His and 

Strep-tags at either side of the gene insertion site. The promoter, gene and tags were then 

restricted from the vector as a single piece of DNA using the restriction sites AvrII and Eag1, 

and ligated into the modified viral vector pMJ0503. This vector contains a pUC18 region to 

allow propagation in E. coli before transformation into Sulfolobus, and a selectable pyrEF 

gene which complements the Sulfolobus uracil auxotroph mutant, allowing transformants to 

be grown under selective conditions. After ligation, the pMJ0503 vector containing the insert 

was transformed into the Stbl4 strain of E. coli engineered for the propagation of large 

vectors. The cells were grown on LB agar plates, with 50 µg/ml ampicillin and 0.5% glucose 

at 32 °C for 1.5 days. The successfully transformed cells (colonies) were picked and grown in 

LB supplemented with 0.5% glucose at 30 °C over night. Plasmids were extracted by 

Minipreps (3.2.1.2.) and transformed into S. solfataricus M16 (3.1.4.1.) and cells were grown 

on Brock medium at 75 °C for 5-7 days to allow successful transformants to grow.  
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3.2.1.5. Detection of DNA by ethidium bromide 
Ethidium bromide (EtBr) intercalates into the DNA helix. When exposed to UV light EtBr 

florescence with orange colour. The agarose gels was dipped in EtBr solution (5 g/ ml) for 10 

min and non-intercalated EtBr was removed by brief washing with double-distilled water and 

then exposed to UV light for the visualization.  

3.2.1.6. Isolation of DNA fragments from agarose gels 
For the isolation and purification of DNA fragments from agorose gels, the peqGOLD Gel 

Extraction Kit (peqlab, Erlangen, Germany) was used as instructed by the manufacturer. 

3.2.1.7. DNA sequencing 
Sequencing of either plasmid DNA or PCR product DNA was performed by the sequencing 

Service, Life sciences, University of Giessen. 

3.2.1.8. RNA Isolation 
To isolate RNA from cell free extract, the TRIzol method (according to peqGOLD TriFastTM 

Manual) was used. Here, the 200 µl of cell free extract was added to 1 ml of TRIzol solution 

and mixed well and kept for 2-3 min at room temperature. Then, 200 µl of chloroform was 

added and mixed with the TRIzol solution by short, vigorous shaking. After centrifugation of 

the samples (11000 x g, 20 min, room temperature) three phases were formed. An upper 

aqueous phase with RNA, an interphase and a lower phenol-chloroform phase containing the 

DNA and the proteins respectively. The upper phase was carefully removed and then used to 

precipitate the RNA. For this purpose, 500 ml of ice-cold 96% ethanol was added and 

samples were left at least 30 min at -20 °C. After centrifugation (11000 x g, 20 min, 4 °C), 

the RNA was extracted as a visible pellet and washed once with 70% ethanol and centrifuged 

again briefly (4500 x g, 5 min, 4 °C). The pellet was then air dried and re-suspended in 30 µl 

sterile RNase free water. 

In order to avoid the amplification of possibly existing genomic DNA in this RNA solution, a 

DNA digestion by DNase was performed. This was done as stated by the manufacturer in the 

provided buffer. After the DNA digestion, samples were filled up with 150 µl of RNase free 

water and 200 µl of phenol / chloroform mixture (1:1), mixed well and centrifuged (11000 g, 

10 min, 4 °C).  The upper phase was removed and mixed again with 200 µl phenol:isoamyl 

alcohol(25:24:1) and chloroform. Samples were vortexed for 1 min and centrifuged at 13000 
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g for 5 min at room temperature for the phase separation. The upper aqueous layer containing 

the RNA was precipitated with ice cold 96% ethanol. The RNA pellet was then resuspended 

in about 15-30 µl RNase free water and RNA concentration was determined photometrically 

by the NanoDrop spectrophotometer at a wavelength of 260 nm.  

3.2.1.9. Estimation of purity and quantification of nucleic acids 
Quantification of RNA was performed on NanoDrop spectrophotometer using the solution 

which the RNA/DNA was in, as the reference. Both RNA and DNA absorb light at 260 nm 

wavelength. However, proteins have an absorption at 280 nm. Therefore, the ratio A260/280 

gives an estimation of the degree of contamination of RNA samples with protein. For pure 

RNA, the ratio A260/280 is between 1.9 and 2.1 (1 unit of absorption= 40 ng/ml of RNA). A 

ratio lesser than this range means that the prepared RNA is contaminated with proteins and 

aromatic substances (phenol).  

The quantification of DNA in aqueous solutions was measured as mentioned above. The ratio 

(260/280) 1.8 was considered as pure DNA (1 unit of absorption= 50 ng/ml of DNA). The 

integrity of plasmid DNA was assessed by agarose gel electrophoresis.  

3.2.2. Overexpression of proteins 

3.2.2.1. Overexpression of recombinant proteins in E. coli 
For expression of the recombinant proteins Rrp41, Rrp42 Rrp4, DnaG with an N-terminal 

hexa histidine tag (genes ligated in pET vector) and Csl4 with an N-terminal Strep-tag (gene 

ligated in pASK-IBA 3 vector) the E. coli strain BL21 Gold (DE3) pLysS was used.  

For the overexpression, 1 liter of LB medium was inoculated with the 1 ml of overnight 

culture with the appropriate antibiotic. Then the culture was incubated at 37 °C with shaking 

(180 rpm). When the OD600 was approximately 0.3-0.4, the culture with the cells which 

contain pET vectors were induced with 1 mM IPTG (final concentration) and incubated 

further for another 3 hours. Cells were harvested at 6000 g for 20 minutes. The proteins were 

either immediately isolated using Ni NTA affinity chromatography or stored at -80 °C. 

It was not possible to overexpress DnaG in E. coli strain BL21 Gold (DE3) pLysS. Therefore 

E.coli Archtic express cells were used for overexpression. As mentioned before the culture 

was grown until OD600 0.3-0.4 at 37 °C shaking at 180 rpm. Then the temperature was 
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lowered to 22 °C. After 2 hours, the culture was induced with 0.5 mM IPTG (final 

concentration) and left over night shaking at 22 °C. The next morning the cells were 

harvested at 6000 g for 20 minutes at 4 °C. 

Csl4 protein was overexpressed same as DnaG protein. The induction was performed with 

(0.02 mg/ml, final concentration) anhydrotetracycline. After harvesting the cells the proteins 

were either immediately isolated using Strep-tag isolation or Ni-NTA chromatography or 

stored at -80 °C. 

3.2.2.2. Overexpression of recombinant proteins in S. solfataricus M16 
The fermentation was carried out at 75 °C in Duran bottles on the shaking incubator (220 

rpm). Growth was monitored by optical density measurements at 600 nm every 12 hours. At 

an OD600 ~0.3-0.4 protein expression was induced by 0.2 % D-arabinose. After 36 hours the 

cells were harvested (6000 g for 10 min at 4° C) and stored at -80 °C.  

3.2.3. Isolation and purification of proteins from E. coli 

3.2.3.1. Ni-NTA chromatography 
For the purification of His-tagged proteins metal chelate chromatogrpahy was used as 

described in [112]. Ni2 + ions are coupled via nitrilotriacetic acid (NTA) on an agarose matrix. 

The cell free extract of E. coli or S. solfataricus was prepared by using 2 g or 1.5 g of wet 

pallet (respectively) mixing with 15 ml of lysis buffer and subjecting to sonification as 

mentioned in 3.2.7. Cell free extract of E. coli or S. solfataricus was added to the Ni-NTA 

beads (400 µl of slurry) and tumbled for 2 hours at 4 °C. The beads were washed with the 20 

ml of lysis buffer. Imidazole (400 mM) was used for the elution of the proteins. Six times of 

elutions were done with 100 µl of elution buffer each time. The elution of bound proteins was 

carried out by the addition of imidazole, which occupies its binding to the matrix due to the 

structural similarity to histidine.  

For the DnaG purification the lysis buffer was adopted as follows: 

50 mM Tris-HCl (pH 8.0)  

150 mM NaCl  

10 mM Imidazole  
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3.2.3.1.1. Co-purification of RNA bound to the native exosome 

The experiments were carried out at 4° C. Following the Ni- NTA purification of the native 

exosome by the His-tagged DnaG directly from S. solfataricus, I tried to isolate RNA from 

the elution fractions by the Trizol (Invitrogen) RNA purification method (as described in 

3.2.1.8.) Control experiment was carried out with the wild type S. solfataricus. Portions of the 

purified RNA were treated with RNAse T1, RNase A or with DNase 1. To confirm that the 

purified, DNase treated sample was DNA free, we carried out a PCR reaction.  

3.2.3.2. Strep-tag purification 
Cell free extract of E. coli was added to pre- activated Strep-tactin beads and tumbled for 2 

hours at 4 °C. The beads were then washed with 20 ml of washing buffer and eluted the 

proteins with the provided elution buffer.  

Strep-tag washing buffer  

100 mM Tris-HCL 

400 mM NaCl 

1 mM EDTA 

0.1% (w/v) Triton X-100 

 

3.2.3.3. Size exclusion chromatography 
The size exclusion chromatogrpahy was used for further purification of the native exosome 

complex.   

In this work the gel filtration column Superdex ™ 200, HiLoadTM 16/60 (Pharmacia) was 

used. The column was installed according to the manufacturer's specifications. First the 

column was washed and filled with ddH2O (filtered, 0.45 micron and degassed) and 

subsequently with the gel filtration buffer (filtered, 0.45 micron and degassed). The gel 

filtration took place with a flow rate of 1.0 ml/min. After 30 ml of flow 1.5 ml fractions were 

collected, immediately placed on ice and then analyzed by SDS-PAGE for their protein 

content. The UV absorption of proteins at 280 nm, which was measured as soon as the 

proteins leave the column, was used for the graphical representation of the elution profile. 
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Based on the known molecular weights of marker proteins, a standard curve was created 

which was used to verify the molecular sizes of the protein complexes [95].  

Gel filtration buffer:     10 mM  Tris pH 7.6 

      150 mM  NaCl 

 

3.2.4. Dialysis of proteins 
The proteins (minimum of 1 ml and maximum of 3 ml volume) were dialyzed in 1 l of P0 

buffer for 2 hours. 

3.2.5. Concentration measurements of protein samples 
Protein concentrations were measured by the Bradford method [113]. A standard curve was 

prepared according to the manufacturer’s protocol, by adding increasing amounts of BSA to a 

final volume of 0.1 ml with water, and then mixing with 0.9 ml Bradford reagent. The 

mixture was allowed to stand at room temperature for 5 min. The optical density of the 

standards was measured at 595 nm (OD595) in 1.5 ml plastic cuvettes against a reference 

cuvette containing water (0.1 ml) and Bradford reagent (0.9 ml). This was used to construct a 

standard curve that was employed to determine protein concentrations of cell lysates. On 

average the linear range of protein Bradford measurements lies between OD595 0.1 and OD595 

0.7. Cell lysates were diluted so that the OD595 lay in this range. Bradford measurements were 

performed in triplicates. 

3.2.6. In vitro reconstitution of complexes using native recombinant exosome protein 
subunits 

3.2.6.1. Reconstitution of the Rrp4-exosome the Csl4- exosome and the Rrp4-Csl4-
exosome 
All the dialysis steps were done at room temperature.  

 

Freshly isolated Rrp41 and Rrp42 were mixed briefly in an Eppendorf tube (0.5 mg each) in a 

final volume of 1.5 ml. The mixture was then transferred in to a dialysis tube which incubated 

for 2 h at room temperature in the P0 buffer for the formation of the hexameric ring. 

Thereafter excess amount of Rrp4 or Csl4 was added (0.7 mg each) to reconstitute Rrp4-
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exosome and Csl4-exosme, respectively. For the preparation of Rrp4-Csl4-exosome, excess 

amount Rrp4 and Csl4 proteins were added (0.7 mg each). The incubation took place at room 

temperature for 2 hours dialyzing in P0 buffer. After the heat treatment at 75 °C for 10 min 

and centrifugation for 20 min at 13,000 g, the supernatant was used directly for the activity 

assays or stored at -80 °C in portions of 10 µl. The frozen portions were always thawed on ice 

and second thawing was avoided. 

 

3.2.6.2. Reconstitution of the DnaG-Csl4-exosome 
Csl4-exosome was reconstituted as described in (3.2.6.1.). Subsequently excess amount of 

DnaG protein (0.7 mg) was added in to the dialysis tube and incubated for 2 hours at room 

temperature. Rrp41, Rrp4 and DnaG were His-tagged proteins while Csl4 was the only Strep- 

tagged protein in this complex. Afterwards, Strep-tag purification was done to avoid of all the 

monomers of His-tagged proteins and the complexes without Csl4. Subsequently the elution 

fractions of the Strep-tag purification were subjected to a Ni-NTA chromatography to evade 

all the monomers of the Strep-tagged Csl4 protein. The elution fractions were separated in the 

SDS-PAGE gels and visualized by silver staining. 

3.2.6.3. Reconstitution of the ΔKH-Rrp4-exosome (for RNA assays)  
The hexameric ring was reconstituted as mentioned above (3.2.6.1.). Then the full length or 

the truncated Rrp4 subunits (0.7 mg) were mixed together and dialyzed at room temperature 

in a modified P0 buffer with 500 mM NaCl instead of 150 mM NaCl.  

3.2.7. Cell free extract of S. solfataricus 
The cells (1.5 g) were thawed resuspended in 3 ml MES buffer with 30 μl protease inhibitor 

cocktail, 2 mM DTT and 1 mM PMSF. The suspension was subjected to ultrasound 

sonification for 3 times, 20 seconds with 50% power (pulsed). Subsequently, the sample was 

centrifuged for 20 min at 4 °C and 5,000 g to get rid of the cell debris. The supernatant, (cell 

free extract) was taken for the further experiments.  

3.2.8. Fractionation experiments 
The cell free extract was subjected to ultra centrifuged at 100 000 g and 4 °C for 1 hour to 

obtain S100 (soluble fraction) and the P100 (insoluble fraction). 
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3.2.8.1. Analysis of the change in the protein content in the soluble and non soluble 
fractions in the individual exosomal subunit after stress 
The cell free extract was fractionized as described in 3.2.8. 10 µl of S100 and P100 fractions 

were loaded in to a SDS-PAGE gel as described in 3.2.10.3. Thereafter a Western blot 

analysis was conducted and the band intensities were measured using the Fusion SL4 

software. 

3.2.8.2. Sedimentation of the exosome under different relative centrifugal forces 
To analyse the sedimentation properties after applying different relative centrifugal forces 

(RCF) the cell lysate, which was prepared as mentioned in 3.2.7., was subjected to the 2500 g 

and 14 000 g RCFs for 10 min. 

3.2.8.3. Sucrose density gradients 
In this work the sucrose density gradient centrifugation is used to separate the membranes of 

S. solfataricus and to demonstrate the interaction between the membrane fractions and the 

exosomal proteins. 

The gradients were prepared under high salt conditions. The gradient was prepared by 

increasing the concentration of sucrose starting with the highest concentration at the bottom 

of the ultra centrifuge tubes. Thereafter the next highest concentrated segment was pipetted 

very carefully on top of the bottom layer without mixing. Likewise the sucrose density 

gradient was prepared from 70% -15% w/v concentrations. Eight hundred micro liters of the 

cell free extract was pipetted on to the sucrose density gradient.  

The centrifugation was carried out in an ultracentrifuge for 24 hours at 25000 g at 4 °C. After 

centrifugation, the tubes were carefully removed from the rotor and immediately separated 

into 22 fractions of 0.5 ml. These fractions were further analyzed by Western blot, Co-IP and 

absorption measurements.  

Sucrose density buffer   

20 mM MES 

2 mM  DTT 

0.5 mM  EDTA 

500 mM NH4Cl 
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10 mM  Mg-Acetate 

15-70% Sucrose (15, 30, 40, 55 and 70%)  

 

3.2.9. Co-immunoprecipitation experiments 
Co-immunoprecipitation experiments with polyclonal antibodies covalently coupled to 

protein A-Sepharose were performed as previously described [95]. We used 800 μl of cell-

free extract and 0.04 g of beads with coupled antibodies in PBS buffer. The antibody-bead 

conjugate was incubated with cell free extract for 2 h at 4 °C on a tumbler and then 

centrifuged for 3 min at 4000 g at 4 °C. The supernatant was carefully discarded and the 

beads were washed seven times with 1 ml of lysis buffer. Then the proteins were eluted with 

the low pH-elution buffer. 

3.2.10. Gel electrophorosis 
The electrophoresis can be used for separating proteins and nucleic acids according to their 

molecular weight. The migration velocity of the molecules depends primarily on the net 

charge, shape and size. Large molecules move slower through the matrix than smaller ones. 

3.2.10.1. Separation of DNA by agarose gel elecrophoresis 
The separation of the DNA was done with the use of agorose gels. The samples were mixed 

with (4X) loading buffer (25% of the total volume) before loading to the gel. The 

electrophoresis was carried in TBA buffer (1X) at 70 mA. The visualization of the DNA was 

done as mentioned in 3.2.1.5. 

3.2.10.2. Separation of RNA by urea polyacrylamide gel electrophoresis (PAGE) 
For the separating of short RNA fragments that occur in RNA activity assays, 18% 

polyacrylamide gels containing 8 M urea was used. The 20 x 20 cm glass plates, spacers and 

comb were cleaned first with pure H2O and then with 70% ethanol. The "ears plate" was 

silanized with "Acrylease" in order to easily get the gel off the glass plates after 

electrophoresis.  

It is important that the urea is completely dissolved before the addition of APS and TEMED 

to the gel solution. The RNA samples were mixed with formamide-urea buffer (50% of its 

volume) before loading onto the gel and denatured for 10 min at 65 °C. The electrophoresis 
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was carried out for about 1 to 2 hours at 400 V in 1 x TBE buffer. The gels were transferred 

onto Whatman paper and dried on a vacuum drier for about 45- 60 min at 80 °C. The RNA 

bands were visualized by phosphoimaging. 

10-18% Urea PAGE 5-9 ml 40% (w/v) Polyacrylamid 

 2 ml 10 x TBE-buffer 

 9.6 g  Urea 

 add 20 ml ddH2O 

 70 µl 6% APS (w/v) 

 7 µl TEMED 

 

3.2.10.3. Separation of proteins by sodium dodecyl sulphate (SDS)-polyacrylamide gel 
electrophoresis (PAGE) 
The 20 x 20 cm glass plates, spacers and comb were cleaned first with pure H2O and then 

with 70% ethanol. The gel was sealed with melted agorose. First the separation gel was 

poured between the glasses. Subsequently 96% ethanol was layered carefully over the 

acrylamide solution and polymerisation was allowed to continue for at least 30 min- 1 hour. 

The ethanol was removed, washed with pure water and rest of the water was removed with 

filter paper. Thereafter stacking gel was poured onto the separating gel and a 22-well comb 

was added prior to polymerisation and left to set for at least 1 hour. Gel electrophoresis was 

carried out at 180 to 240 V in 1 × Laemmli buffer. Before loading, the protein samples were 

mixed with one-third its volume of 4 × SDS-PAGE loading buffer and denatured for 5 

minutes at 90 °C. The separated proteins were then visualized by silver staining or Coomassie 

stain of the gel or subjected for a Western blot analysis. 

 

3% Stacking gel: 1.2 ml  40 % (w/v) Acrylamide:Bisacrilamide solution 

    2 ml  4 x SDS-Stacking gel buffer 

    120 µl  6 % APS (w/v) 

    12 µl  TEMED 

    add 16 ml ddH2O 
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12% Separation gel: 7.5 ml  40 % (w/v) Acrylamide:Bisacrilamide solution 

    6.25 ml 4x SDS-Separation buffer 

    200 µl  6% APS (w/v) 

    20 µl  TEMED 

    add 25 ml ddH2O 

 

3.2.11. Protein detection on SDS-PAGE 

3.2.11.1. Detection of proteins in SDS-PAGE gels by silver stain 
This is a very sensitive staining method which enables the detection of even small amounts of 

protein (below 20 ng) on a SDS-PAGE gel. After the electrophoresis, the gel was fixed in the 

fixing solution for 1 hour  to over night to prevent the diffusion of separated proteins from the 

gel. The gel was washed with 50% ethanol, three times for 20 minutes. Then it was sunk in 

solution 1 for one minute and again rinsed three times, each for about 20 seconds, with 

deionized (DI) water. The incubation was carried out in solution 2 for 20 minutes at room 

temperature.  After the washing with DI water for three times for 20 sec, solution 3 was 

added for the development of bands. The development of the bands was reached the desired 

intensity; the reaction was stopped by adding of acetic acid. The gel was rinsed with water 

and scanned for documentation. 

Fixing solution: 50%  Methanol 

    12%  Acetic acid 

    500 µl/l 37% Formaldehyde (prior to use)  

  

Solution 1:  0.1 g  Na2S2O3 x 5 H2O 

    add 500 ml  ddH2O 

 

 

Solution 2:  0.4 g  AgNO3 
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 add 250 ml  ddH2O 

    187.5 µl 37% Formaldehyde (prior to use) 

 

Solution 3:  15 g  Na2CO3 

    5 ml  Solution 1 

add 250 ml  ddH2O 

125 µl  37% Formaldehyde (prior to use) 

. 

3.2.11.2. Detection of proteins in SDS-PAGE gels by Coomassie stain 
To visualize proteins after SDS-PAGE, gels were stained in Coomassie stain. The gel was 

dipped in the staining solution for 30 min at room temperature on a shaker (80 rpm). Gels 

were destained with destaining solution and then with water, using several changes of 

solution until the background staining was greatly reduced. The gels were scanned for 

documentation. 

 

Coomassie blue stain  50% (w/v) Water 

 40% (w/v) Methanol 

 10% (w/v)  Acetic acid 

 0.2% (w/v)   Coomassie Brilliant Blue (G-250) 

   

Coomassie destain solution 20% Methanol 

 10% Acetic acid 

 70% Water 

 

3.2.12. Mass spectrometry for protein identification 
Identification of proteins in silver stained SDS-PAGE gels were performed by mass 

spectrometry analysis in the lab of Prof. Dr. Günter Lochnit, Biochemistry institute, 

University of Giessen. 
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3.2.13. Western blot analysis 
For this purpose, at first a SDS-PAGE was performed as described under 3.2.10.3. Protein 

gels were assembled into a gel-membrane sandwich. Nitrocellulose membrane (or PVDF 

membrane) was placed on the gel, and this assembly was placed between three pieces of filter 

paper (3 mm), and all were piled up over one another. All components were pre-soaked in 

transfer buffer (PVDF membrane was activated by soaking it in 96% ethanol for 1 min and 

then washing with water and then with the transfer buffer). This assembly was loaded into a 

blotter, and proteins were transferred at 1-2 mA/cm2 for at least 1 hour and 20 min. 

Nonspecific bindings on the membranes were saturated by incubation with a blocking 

solution (5% fat-free milk powder in TBS) for 1 h at room temperature. Thereafter the 

membrane was washed with TBS buffer for 10 min. Primary antibodies were diluted (DnaG 

antibody, 1:500, Rrp41 antibody 1:1000, Rrp4 antibody, 1: 2000, Csl4 antibody, 1: 1000 ) in 

TBS buffer and incubated for 3 hours at room temperature. Membranes were washed with 

TBS buffer for 3 times at room temperature for 10 min and incubated with secondary 

antibodies conjugated to alkaline phosphatase for one hour on the tumbler at room 

temperature (secondary antibody was diluted at 1:10000 dilutions in TBS buffer). 

After washing for 3 times with TBS buffer for 10 min, membranes were developed with 

enhanced chemiluminescence reagent (ECL). To detect secondary antibodies bound to 

primary antibody, ECL reagents 1 and 2 were mixed in equal volumes and 1 ml of this mix 

was added to each blot for 1 min. The membrane was then placed in a clean piece of 

polythene roll. The membrane was then exposed to Medical X-Ray film and developed or the 

membrane was exposed to Fusion SL4 chemiluminescence detection machine to detect the 

chemiluminescence. The produced luminescence can be then recorded using a corresponding 

detection system (Fusion SL4 software). 

3.2.14. RNA assys 

3.2.14.1. In vitro RNA degradation assay and polyadenylation assay 
Degradation and polyadenylation assays using the reconstituted exosomal complexes were 

carried out with a 5’ end-labeled 30-meric poly (A) substrate in the presence of inorganic 

phosphate and ATP, respectively, and incubated at 60 °C. As a control instead of the protein 

complex double distilled water or the reaction buffer was used under the same reaction 
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conditions. The assays with proteins bound to the protein A-Sepharose beads were done as 

described in [95]. The salt concentration in the reaction mixtures was adjusted to 150 mM 

NaCl. Yeast tRNA or a 30-meric MCS-RNA was used as competitors. To stop the reactions, 

(1:1) formamide: urea buffer (1:1) was added immediately. The mixture was heated for 10 

min at 65 °C and then it was loaded on an 18% denaturing urea-polyacrylamide gel for the 

separation. 1,000 cpm RNA substrate was used per reaction. 

Degradation assay reaction: 

 1 µl    RNA-Substrate (6-90 fmol, 1.000 cpm/µl) 

2 µl    5 x degradation-buffer 

1 µl  10 mM K2HPO4 

60 ng/each polypeptide   Exosome-complex 

add 10 µl  ddH2O 

 

Polyadenylation assay reaction: 

1 µl   RNA-Substrate (6-90 fmol, 1.000 cpm/µl) 

2 µl  5 x Polyadenylation buffer 

1 µl  10 mM ADP 

60 ng/each polypeptide Exosome-complex 

add 10 µl   ddH2O 

3.2.14.2. Phospho imaging 
The Phospho imaging method is used for the detection of radioactively labeled samples by 

exposure of gels to phosphoimager screens. In these specific screens BaFBr:Eu crystals are 

embedded, which are excited by radioactive radiation. By irradiation with a He/Ne laser 

(Imager FX from BioRad) at 600 nm wavelength, the latent image was developed, which was 

stored by the excited BaFBr:Eu crystals in the optical disk. The result is a photo stimulated 

luminescence, which can be registered by a photomultiplier. With the appropriate software 

(Bio-Rad Quantity One) the visualized bands were evaluated quantitatively. 
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3.3. Single particle electron microscopy  

3.3.1. Negative-stain EM sample preparation and data collection  
The protein complexes were applied to glow-discharged holey carbon grids with a thin layer 

of carbon over the holes.  After 1 min, grids were stained consecutively in 3 droplets of 2% 

(w/v) uranyl formate solution and excess stain removed by blotting with filter paper. 

Negative staining and sophisticated computer programs such as spider and Imagic software 

were used to sort images into classes and average them. Prof Tomas Walz (Harvard 

University, Boston, USA) and Dr. Janet Vonck (Max Planck Institute for Biophysics, 

Germany) kindly helped us in single particle EM to determine the structure of the complex 

from images of individual particles or single particle projections.  
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4. Results 

4.1. Heterogeneous complexes of the RNA exosome in Sulfolobus solfataricus 

The structure and the function of the nine subunit exosome of Archaea are well understood. 

Nevertheless little is known about the regulation of the functions of the exosome in vivo. It 

was found that the exosomes are localized in the periphery of the S. solfataricus cells [110]. 

Thus, the archaeal exosome may be localized due to the need of prokaryotic cells to 

spatially organize RNA processing and degradation. Furthermore it was also found that 

there is a minor amount of exosomes in the soluble fraction, in which DnaG protein was not 

detected [110]. It is very important to know whether the compositions of the soluble and 

insoluble exosomes differ because the composition may directly influence its substrate 

specificity, the interaction with other proteins and even its sub-cellular localization.  

An aim of this work was to analyze the composition of the soluble and the insoluble 

exosomes. 

4.1.1. Differences in the composition of the soluble and the insoluble exosomes 
In the sucrose density gradients DnaG subunit was only found in the high density fractions 

while Rrp41, partly in the low density fractions and majority in the high density fractions. 

Furthermore the active subunit Rrp41 was mainly in the P100 fraction while DnaG was 

exclusively detected in the P100 fraction [110]. These findings raised the question whether 

there are different compositions of the exosome in the soluble (S100) and insoluble (P100) 

fractions.  

To answer this, first of all, polyclonal antibodies were raised against recombinant His-tagged, 

Rrp4 and Csl4 proteins of S. solfataricus. The antibodies against DnaG and Rrp41 were 

available in the lab. Then DnaG, Rrp41, Rrp4 and Csl4 were detected in quantitative Western 

blot analyses of the S100 and P100 fractions. In three independent experiments, 21±3% of 

Rrp4 and 23 ±3% of Rrp41 were detected in the S100 fraction. In contrast, Csl4 and DnaG 

were detected in the P100 fraction only (Figure 4.1.1A). However, the sensitivity of the anti-

Csl4 and anti-DnaG antibodies were lesser than the sensitivity of the antibodies directed 

against Rrp41 and Rrp4. This result does not necessarily imply the different subunit contents 
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of the soluble and the insoluble exosomes, but confirms that the majority of the exosome is 

insoluble.  

 

 

 

Figure 4.1.1 Detection of DnaG, Rrp41, Rrp4 and Csl4 in fractions of the S. solfataricus cell-free extract 

by Western blot analysis. A) Western blot analysis of S100 and P100 fractions. Equal volume amounts of the 

S100 and the P100 fractions were separated in 12% SDS-PAGE, blotted and hybridized with sera directed 

against the exosomal subunits indicated on the right side of the panels. B) Top panel- Schematical representation 

of the sedimentation of the small (30S) and large (50S) ribosomal subunits, and of membranes (MB) with 

surface layer proteins in fractions of a sucrose density gradient with 500 mM salt. Shown is also the relationship 
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between sucrose density gradient fractions and S100 and P100 fractions. The sedimentation of the exosome is 

shown on the example of DnaG detected by Western blotting of selected fractions. The sedimentation of the 

exosome is in the 18th fraction as in the published result by [110]. Fractionated was the crude extract. Bottom 

panel- The sedimentation of the exosome is in the 12-16 fractions. This was the most recurrent result in my 

work.    C) The cell-free extract was subjected to low speed centrifugation to remove the membranes with the 

surface layer proteins and the associated exosome. The supernatant was fractionated through the sucrose density 

gradient and the fractions were analyzed for the presence of DnaG, Rrp41, Rrp4 and Csl4 by Western blot 

hybridization. The analyzed fractions are given above the panels, the detected proteins are marked on the right 

side. The relationship between density gradient fractions, S100 and P100, and the sedimentation of the 

ribosomal subunits is given below the panels. 

 

To see the composition of the soluble and insoluble fractions of the exosome, Co-IP was 

attempted. Co-IPs were performed with the S100 and the P100 fractions with beads coupled 

to anti-Rrp41 antibody. However, it was not possible to immunoprecipitate the exosome from 

the P100 fraction due to less solubility (it formed clumps which were difficult to dissolve). In 

order to compare the exosomal complexes corresponding to the S100 and P100 fractions, 

fractionation of the cell free extract was done in 15-70% sucrose density gradients (4.1.1B 

and C). The fractions were analysed by SDS-PAGE and Western blot hybridization with anti-

DnaG, anti-Rrp41, anti-Rrp4 and anti-Csl4 antibodies. It was expected that the exosome 

should co-sediment with the membrane fractions (18th and 19th fractions) in the sucrose 

density gradients [110]. I could not observe the highest amount of sedimentation of the 

exosome with the membrane fractions constantly. Only one of the ten attempts was 

successful to reproduce the published results (Figure 4.1.1B-Top panel). Recurrent result was 

the exosome sedimentation at the 11-16 fractions (4.1.1B – Bottom panel). Consistent with 

previous results [110], DnaG was not detected in the low density fractions. Surprisingly Csl4 

also was not detected in the low density fractions. The sedimentation of Rrp41 and Rrp4 were 

considerably similar: The majority was in the high density fractions and a minor part was in 

the low density fractions.  

 

In the sucrose density gradient, 1-8 fractions correspond to the S100, while 9-22 fractions 

correspond to the P100 fraction (Figure 4.1.1C). The Co-IP was done with fraction 6 

(soluble), 12 (insoluble, not with the membrane) and 19 (insoluble, with the membrane).  

However, the Co-IP with the 19th fraction failed. Therefore we compared the results from the 
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Co-IP from fraction 6 and 12 (Figure 4.1.2). This Co-IP was done by Verena Roppelt. 

Interestingly there was a protein which was co-immunoprecipitated with the soluble exosome 

which was identified by mass spectrometry as EF1α. Furthermore the proportion of DnaG 

was lesser in comparison to the hexameric ring in the soluble exosome and the proportion 

was higher in comparison to the hexameric ring in the insoluble exosome (compare Figure 

4.1.2A and B). The identity of DnaG was also confirmed by mass spectrometry. 
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Figure 4.1.2 Exosomal complexes with different sedimentation behaviours are active and differ in their 

composition. A) and B) Silver stained SDS-gels showing proteins purified by Co-IP with Rrp41-specific 

antibodies from different sucrose density gradient fractions. The Co-IP was done by Verena Roppelt. A) The 

soluble exosome was purified from fraction 6. B) The insoluble exosome was purified from fraction 12. FT, 

flow-through; W7, last, seventh washing fraction; E, elution fraction. The migration of marker proteins is 

marked (in kDa). Underlined proteins were identified by mass spectrometry, bands with known migration 

behaviour are marked with the names of the respective proteins. The band corresponding to antibodies is marked 

with an asterisk. C) Western blot analysis of the elution fractions shown in A) and B). To estimate the relative 

amounts of Csl4 and Rrp4, the membranes were hybridized simultaneously with Csl4- and Rrp4-directed 

antibodies. The detected proteins are marked on the right side. D) Phosphorimages of degradation assays with 

fraction 6 (lane 1), depleted fraction 6 (the flow-through after three rounds of immunoprecipitation of the 

exosome with Rrp41-specific antibodies lane 2 [95]), exosomes reconstituted by mixing of equimolar amounts 

of Rrp41, Rrp42 and the RNA-binding proteins Rrp4 and Csl4 (lanes 3-6), the co-immunoprecipitated exosome 

from fraction 6 (lane 7), the co-immunoprecipitated exosome from fraction 12 (lane 8), and water (negative 

control C, lane 9), as indicated above the panels. The incubation time in minutes (min) is also indicated. The 5’-

labelled 30-meric poly (A) RNA and the degradation products are marked on the right side. E) Phosphoimages 

of the polyadenylation assay with the co-immunoprecipitated exosome from fraction 6 and the co-

immunoprecipitated exosome from fraction 12 and water, negative control (-) as indicated above the panel.  

 

Though Csl4 was not detectable in silver stain gels it was possible to detect it in Western blot 

hybridization. The relative amounts of the cap proteins, Rrp4 and Csl4 were also different in 

D 
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the soluble and insoluble exosomes (Figure 4.1.2C). In relation to Rrp4, the insoluble 

exosome contains higher amounts of Csl4 than the soluble exosome. These results strongly 

suggest that the composition of the soluble and the insoluble exosomes is different.  

 

Then I wanted to investigate the functional relevance of the soluble and insoluble exosomes. 

For that, I performed an activity assays with the co-immunoprecipitated complexes which 

were bound to the protein A-Sepharose beads (Figure 4.1.2D). Lane 7 and 8 show that the 

soluble exosome (fraction 6) and insoluble exosome (fraction12) are active. The amount of 

remaining substrates (poly (A) 30-mer) was lesser in lane 8 than in lane 7. We also performed 

polyadenylation assays with the complexes which were bound to the protein A-Sepharose 

beads (Figure 4.1.2E). That further proved that the soluble and the insoluble exosome 

complexes were active. 

 

We confirm that the major RNA degrading nuclease in fraction 6 of the gradient is the 

exosome. The exosome was depleted from a portion of this fraction with three rounds of Co-

IP using anti-Rrp41 antibodies. The assays were performed, using the flow though after the 

depletion. In lane 2 (Figure 4.1.2D), we saw that the RNA was not degraded at all. It clearly 

says that in that fraction the main RNA degrading nuclease is the exosome. 

  

It is important to note that DnaG and Csl4 were not detected by Western blot analysis in the 

S100 fraction (Figure 4.1.1A) and in fractions of low sucrose density like fraction 6 (Figure 

4.1.1C), but co-immunoprecipitated along the exosome from those fractions (Figure 4.1.2A). 

This means that the protein complexes with Csl4 and DnaG were under the limit of detection 

in the low density fractions and were enriched by the Co-IP. 

4.1.2. The sedimentation properties of the exosome are independent of the ribosomal 
subunits 
To rule out the hypothesis that DNA or RNA has an influence on the exosome sedimentation 

in the sucrose density gradient we treated the cell free extract with DNase I (40 units) or 

RNase A (40 units) and RNase T1 (40 units). The treated cell free extract was loaded onto the 

sucrose density gradient and centrifuged as mentioned in 3.2.8.3. Every second fraction was 

analysed by Western blot by hybridizing with anti-Rrp41 and with anti-DnaG antibodies. It 
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was not possible to see any major difference in Western blots between the standard and the 

treated cell free extracts (Figure 4.1.3). Following the anti-Rrp41 antibody hybridization, a 

signal was observed in the fractions 2-4 under the standard conditions which was not 

observed in the treated cell extracts. The signal at the low density fractions were not observed 

50 % times out of the ten repetitions (under the limit of detection). There was no major 

difference between the RNA sedimentation patterns in the standard condition, DNase treated 

cell free extract. Nevertheless, in the sucrose density gradient with the RNase treated cell free 

extract, RNA sedimentation was different from the standard. Here, 30S and 50S (ribosomal 

subunits) peaks were not seen.        

  

 

 

                   

30S 50S 
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Figure 4.1.3 The effect of RNA and DNA on the sedimentation pattern of the exosome. To verify that there 

is no influence of RNA and DNA for the sedimentation patterns of the exosome in the sucrose density gradient, 

the cell free extract was treated with of DNase and RNase before loading. The sucrose density gradient was 

fractionized and fractions were analysed by Western blotting with anti-Rrp41 and anti-DnaG antibodies. The 

sedimentation pattern of RNA in the sucrose density gradient is on the right side of the Western blots.  

 

4.1.3. The amount of soluble exosomes under different RCF (relative centrifugal forces)  
 

 
 
Figure 4.1.4 Western blot analysis to detect differences in solubility (S and P) of Rrp41, the catalytic 
subunit of the exosome, under different RCF (relative centrifugal forces).  A) Cell free extract of S. 
solfataricus (OD600 ~0.4) was centrifuged in an eppendorf tube at 2600 g and 14000 g RCFs for 20 min. After 
centrifugation the 1/3 on the top of the eppendorf tube was separated and analysed as the supernatant fraction 
(S) and the rest 2/3 was analysed as the pellet fraction (P). B) Equal volume of S and P fractions were loaded on 
a SDS-PAGE gel for separation of the proteins and blotted and hybridized with sera directed against Rrp41. The 
applied RCFs are indicated on the right side of the panel. C) Graphical representations of the results from two 
independent experiments and two technical replicates in which the percentage of the S100 fraction is indicated 
in relation to the total amount of proteins (S100+P100) after centrifugation at 2600 g and 14000 g. 

 
 
To elucidate whether we lose exosomes by centrifuging the cell free extract before adding to 
the sucrose density gradient we conducted another experiment. The cell free extract was 
subjected to different RCFs in eppendorf tubes and checked the whether the exosome is in the 
supernatant or the pellet fraction (Figure 4.1.4A) by Western blot analysis (4.1.4B). After 
applying different RCFs (2600 g and 14000 g) to the S. solfataricus cell free extract we found 
that increasing the RCF pulls the exosome towards the pellet fraction (Figure 4.1.4B and C). 
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The percentage of the exosomal subunit Rrp41 in the S100 fraction relative to the total 
amount of proteins (S100+P100) was 67% after centrifugation at 2600 g and 42 % at 14000 g 
RCFs. Thereafter we decided to add the crude extract on to the sucrose density gradient 
(15%-70%) without any prior centrifugation step to avoid the loss of the exosomes.  
Following the fractionation of the crude extract, the yellow ring where the membrane 
fractions sediment, was more intense. However, even after fractionation of the crude extract, 
the exosome sedimentation pattern in the sucrose density gradient was not as previously 
published [108], but it was in the fractions 12-16 fractions (Figure 4.1.1.B- bottom panel).  

 

4.1.3. DnaG is an integral part of the soluble exosome 
To verify the interaction of EF1α with the exosome, another experiment was conducted. The 

exosome was co-immunoprecipitated from the S100 fraction using anti-DnaG antibodies. The 

fished exosome contained the expected exosomal subunits, Rrp41, Rrp42, Rrp4, Csl4 and 

additionally, EF1α. The identity of DnaG and EF1α was confirmed by mass spectrometry 

(Figure 4.1.5A) (Appendix 1).  

 

To find out whether only a part of the soluble exosomes contains DnaG, depletion assays 

were conducted. If the hypothesis was correct, it should be possible to deplete the DnaG 

containing exosome from the soluble exosome pool. Three rounds of Co-IPs were carried out 

with beads coupled to anti-DnaG antibodies to deplete DnaG containing exosomes (4.1.5A) 

and the remaining exosome was fished with Co-IP using beads coupled to anti-Rrp41 

antibodies (4.1.5B). We were able to see the decrease of the signal of the Rrp41 in the flow 

through in sequential rounds of Co-IP by Western blot analysis (Figure 4.1.5C). However, in 

the remaining exosome, the presence of Csl4 and DnaG was detectable by SDS-PAGE and 

silver staining and was confirmed by mass spectrometry. This strongly suggests that DnaG 

and Csl4 are integral parts of the soluble exosome. Surprisingly, EF1α was co-

immunoprecipitated with the rest of the exosomal subunits from the S100 fraction using anti-

DnaG antibodies. The identity of EF1α and DnaG were confirmed by mass spectrometry 

(Appendix1). EF1α was not present in the remaining exosome after depletion; instead there 

was TIP49 protein (same migration pattern as EF1α). This indicates that EF1α was already 

removed with the exosome during the depletion with the anti-DnaG antibodies. EF1α and 

TIP49 were not found in the control experiments with the pre-immune serum (4.1.5D).   
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Figure 4.1.5. Co-immunoprecipitation (Co-IP) of EF1α with the soluble exosome using DnaG-specific 

antibodies. The S100 fraction was subjected to three rounds of Co-IP with anti-DnaG antibodies. Subsequently, 

two rounds of CoIP with anti-Rrp41 antibodies were performed. A) Silver stained SDS-gels showing the 

proteins, which were co-precipitated during the first Co-IP round with anti-DnaG antibodies B) Silver stained 

SDS-gels showing the proteins, which were co-precipitated during the first Co-IP round with anti-

Rrp41antibodies. C) Western blot analysis of the flow-through fractions (FT) after each Co-IP round. The 

antibodies used for Co-IP are marked above the panels. The FT fractions (depleted S100) were separated on a 

12% SDS-PAGE and hybridized with anti-Rrp41antibodies. The detected Rrp41 is marked on the right side of 

the panel. D) Co-IPs with Rrp41 and DnaG pre-immune serum using S100 fraction was performed as a control 

experiment. (+DnaG), DnaG purified protein was added in order to locate the position of the DnaG, and EF1α. 
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4.2. The RNA binding cap of archaeal exosome 

The RNA binding cap of the exosome plays a major role, in regard to the function of the 

exosome. The function of the cap proteins in the recombinant exosome have been 

investigated in Sulfolobus, Pyrococcus and Archaeoglobus. In general, in the presence of 

the RNA binding cap proteins, the efficiency of the RNA degradation and polyadenylation 

is higher. Recently it was shown that Rrp4 and Csl4 confer different substrate specificities 

and that Rrp4 strongly prefers poly (A) [88]. In addition, it is known that the KH domain 

has less RNA affinity compared to the S1 domain in E. coli- PNPase which has structural 

and functional similarities to the archaeal exosome. Furthermore S1 domain of the PNPase 

in chloroplast is responsible for the poly (A) specificity [39], [114], [115]. Nonetheless we 

do not know which domain of the Rrp4 protein in the archaeal exosome is responsible for 

this RNA specificity.  

Even though it was shown that in vitro the reconstituted exosome of Archaeoglobus 

fulgidus can carry a heteromeric cap containing Rrp4 and Csl4 [93], the cap composition of 

the archaeal exosome was not studied in vivo so far. 

An important goal of this work was to investigate whether heteromeric caps exist in vivo. 

Additionally an aim of this study was to investigate the contribution of the individual Rrp4 

domains to its poly (A) preference. 

4.2.1. The KH domain of Rrp4 is not responsible for poly (A) preference but is 
necessary for efficient RNA degradation 

4.2.1.1. Reconstitution of the exosome with truncated Rrp4 
The exosomal RNA binding protein Rrp4 confers a strong poly (A) affinity to the S. 

solfataricus exosome [88]. Nevertheless the mechanism of this poly (A) preference and the 

contribution of the individual domains of Rrp4 for poly (A) preference were not known. Rrp4 

protein has three domains, an N terminal domain, a S1 domain and a KH domain which is at 

the C terminus (2.8.1.1.). The individual domains (Nl, S1 and KH) or truncated versions 

lacking either N terminal or the C terminal domains (ΔNT or ΔKH respectively) were cloned 

in E. coli with a His-tag, overexpressed and purified under native conditions by Ni-NTA 

chromatography (3.2.3.1.) Exosomes were reconstituted with Rrp41, Rrp42 and with either of 
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the truncated Rrp4 polypeptides (3.2.6.). First it was necessary to test whether the truncated 

proteins interact with the hexameric ring. The hexameric ring was reconstituted as mentioned 

in 3.2.6.1. and then the truncated protein was added in excess amounts (3.2.6.). Co-IP was 

performed with anti-Rrp41 antibodies. The complexes were eluted with 40 µl of elution 

buffer and the whole elution fraction was loaded on to a SDS-PAGE gel and analyzed by 

silver stain. Unfortunately, under standard conditions (150 mM NaCl) none of the truncated 

proteins except the ΔKH variant interacted with the hexameric ring (4.2.1A). However, the 

interaction between the hexamer and the ΔKH variant was very weak in comparison to the 

control experiment done with the full length Rrp4 protein (compare 4.2.1A and B). Usually 

the Rrp41:Rrp42:Rrp4 stoichiometry is 1:1:1. In a previous work it was shown that under 

high ionic strength (1 M MgCl2 and up to 2 M NaCl) it was not possible to separate the 

reconstituted exosome in to individual subunits [116]. Therefore the NaCl concentration was 

increased up to 500 mM. The cap proteins interact with the ring via hydrophobic interaction 

[93]. Under higher ionic strength, hydrophobic interactions are forced and we expected that 

the truncated proteins will interact with the hexameric ring. Out of all the variants only the 

ΔKH truncated protein was able to interact with the hexameric ring successfully to form the 

ΔKH-Rrp4-exosome at high salt (4.2.1C). However, in the standard buffers for degradation 

and polyadenylation assays, the concentration of the salt is 60 mM and the reconstituted 

exosome is active at salt concentrations up to 300 mM [105]. Therefore it was necessary to 

test whether the ΔKH-Rrp4-exosome is still stable under salt concentration suitable for 

activity assays. After the reconstitution of the exosome under high salt (500 mM NaCl) Co-IP 

was performed with anti-Rrp41 antibodies. Prior to elution, the beads were washed with 150 

mM NaCl containing washing buffer. The elution buffer also contained 150 mM NaCl. The 

elution fractions were separated in a SDS-PAGE gel and analyzed by silver staining. Figure 

4.2.1D shows that, when the ΔKH-Rrp4-exosome was reconstituted at 500 mM NaCl, the 

protein complex was stable even though the complexes were washed with low salt (150 mM 

NaCl) buffer (4.2.1D).  
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Figure 4.2.1. Reconstitution of the ΔKH-Rrp4-exosome. Silver stained SDS-PAGE gels showing detection of 

protein-protein interactions by co-immunoprecipitation with Rrp41-specific antibodies. I, input; F, flow through, 

W1, W5, washing fractions 1 and 5; E, elution fraction. The NaCl content of the buffers is shown above the 

panels. The detected proteins are marked on the right side of the panels, the migration of protein markers (in 

kDa) in the gel is indicated on the left side. A) An attempt to reconstitute the ΔKH-Rrp4-exosome at 150 mM 

NaCl. B) Control reconstitution of the Rrp4-exosome at 150 mM NaCl. C) Successful reconstitution of the 

ΔKH-Rrp4-exosome at 500 mM NaCl. D) The reconstituted ΔKHRrp4- exosome is stable at 150 mM NaCl. 

 

4.2.1.2. Activity assays 
The comparison of the degradation and the polyadenylation assays with the reconstituted 

Rrp4-exososme and the ΔKH-Rrp4-exosome were done in the presence of 150 mM NaCl 

with the radioactively labeled poly (A) 30-mer. In line with the previously published results, 

the nine-subunit Rrp4-exosome was very efficient in degradation, leading to the fast 

disappearance of the substrate band and the accumulation of the final degradation product, 

while the hexamer performed this step less efficiently: The substrate disappeared but we did 
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not observe the accumulation of the final products [105] (Figure 4.2.2A, compare lanes FL 

and H). The ΔKH-Rrp4-exosome suppressed the degradation. The substrates were was not 

fully degraded after 4 min of incubation time. The degradation activity of the ΔKH-Rrp4-

exosome was lower than the degradation activity of the Rrp41-Rrp42 hexamer and the Rrp4-

exosome (compare the lane ΔKH to the lanes FL and H in Figure 4.2.2A).  

Furthermore the polyadenylation efficiency of ΔKH-Rrp4-exosome was similar to that of the 

hexameric ring. Rrp4-exosome had higher polyadenylation efficiency than the ΔKH-Rrp4-

exosome and the hexameric ring (Figure 4.2.2B). The ΔKH polypeptide does not appear to 

enhance the RNA degradation or the polyadenylation activity of the hexamer like the full 

length Rrp4 protein.  
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Figure 4.2.2. Comparison of the degradation and the polyadenylation activities of the ΔKH-Rrp4-

exosome, the Rrp4-exosome and the hexameric ring. A) Degradation assays. B) Polyadenylation assays. 

Shown are representative phosphorimages of denaturing polyacrylamide gels with resolved radioactively 

labelled substrate (30-meric poly(A) and degradation (degr.) or polyadenylation (polyad.) products, and 

graphical representations of the results from three experiments, in which independently purified ΔKH-Rrp4 

proteins were tested. The used protein complexes are indicated: exosome with full-length Rrp4 (FL), exosome 

with ΔKH-Rrp4 (ΔKH) and hexameric ring (H). C, control reaction without protein. In each reaction 8 fmol 

substrate was incubated with 0.6 pmol of the respective protein complex for 4 min (degradation assays) or for 2 

min (polyadenylation assays) at 60 °C. 

 

To analyze whether the KH domain is important for the poly (A) preference, competition 

assays were conducted with radioactively labeled poly (A) and over excess amounts of non 

labeled tRNA. In the degradation assays the ΔKH-Rrp4-exosome clearly conferred a poly (A) 

preference in comparison to the hexamer (4.2.3A). Furthermore, the poly (A) preference was 

slightly lesser than the Rrp4-exosome. The results were confirmed by the polyadenylation 

competition assays. Irrespective to the over excess amounts of tRNA, the ΔKH-Rrp4-

exosome preferably polyadenylated the lesser amount of the poly (A) RNA (4.2.3B). The 

efficiency of the polyadenylation of the labeled poly (A) RNA in competition with the 

enormous amount of tRNA was lesser with the ΔKH-Rrp4-exosome compared with the Rrp4-

exosome. The hexameric ring did not show any poly (A) preference in the degradation and 

the polyadenylation assays. In comparison to the poly (A) 30-mer, tRNA is a longer and 

highly structured molecule. Therefore the competition assay was performed with a short 

heteropolymeric RNA, 30-meric MCS-RNA [88]. The Rrp4-exosome and the ΔKH-Rrp4-

exosome preferably polyadenylated the RNA, which confirms the poly (A) specificity of the 

ΔKH-Rrp4 variant (4.2.3C). However, the efficiency of the ΔKH-Rrp4-exosome was lesser 

than the Rrp4-exosome. These results show that the KH domain of Rrp4 is not necessary for 

the poly (A) preference.                                                   
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Figure 4.2.3. Competition assays for comparison of the poly(A) specificities of the ΔKH-Rrp4-exosome, the Rrp4-exosome and the hexameric ring. In each competition 

assay, 0.6 pmol protein complex, 0.008 pmol labelled poly(A) RNA and an excess of non-labelled competitor RNA were incubated for 4 min (degradation assays) or for 2 

min (polyadenylation assays) at 60 °C. A) Degradation assays in presence of 300 pmol non-labelled tRNA. B) Polyadenylation assays in presence of 300 pmol non-labelled 

tRNA. C) Polyadenylation assays in presence of 50 pmol 30-meric MCS-RNA. Shown are representative phosporimages and graphical representations of the results from 

three independent experiments. 



80 

 

4.2.2. Rrp4 and Csl4 form heteromeric RNA-binding caps in vivo 

 

It was shown that exosomes of A. fulgidus can be reconstituted with heteromeric caps (Rrp4-

Csl4-exosome) in vitro [93]. Nevertheless it was not investigated whether these heteromeric 

caps containing Rrp4 and Csl4 exist in Archaea, in vivo. Co-IPs were performed with anti-

Rrp4 antibodies and anti-Csl4 antibodies with the cell free extract of S. solfataricus and the 

S100 fractions. Figure 4.2.4A and B show the elution fractions of the Co-IPs performed with 

anti-Rrp4 and anti-Csl4 antibodies with the cell free extract and the S100 fraction 

respectively. The presence of Rrp4 and Csl4 proteins in the co-purified exosome with anti-

Rrp4 and anti-Csl4 antibodies were identified by mass spectrometry and Western blot 

analysis (Appendix 1, and Figure 4.2.4C). Figure 4.2.4 shows that when Co-IP was done with 

anti-Csl4 antibodies, Rrp4 was fished out with the rest of the exosomal subunits and vice 

verse. It is important to note that the proportion of Csl4 was higher in the Co-IP performed 

with anti-Csl4 antibodies than in the Co-IP performed with anti-Rrp4 antibodies. Rrp4 and 

Csl4 were not found in the control experiments with the pre-immune serum (4.2.4D). Figure 

4.2.4 further shows that different relative amounts of Rrp4 and Csl4 are immunoprecipitated 

from the S100 fraction when the two different antibodies were used suggesting cap 

composition differs in the soluble exosome.    

 

To exclude the possibility of the existence of free monomers of Rrp4 or Csl4, we analyzed 

the pooled fractions 1 and 2 of the sucrose density gradient Co-IP. It was not possible to 

precipitate Rrp4 or Csl4 monomers using the anti-Rrp4 or anti-Csl4 antibodies. This clearly 

shows that Rrp4 and Csl4 do not exist as monomers in the cell. Thus the Csl4 and Rrp4 

which were co-immunoprecipitated in Figure 4.2.4A and B are parts of the exosome. 

Therefore we conclude that exosomes with heterogeneous RNA-binding caps are present in 

the soluble fraction of S. solfataricus. 
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Figure 4.2.4 In vivo analysis of the RNA-binding cap of the S. solfataricus exosome. A), B) and D) show 

silver stained SDS-PAGE gels, C shows Western blot analysis. A) Co-immunoprecipitation (Co-IP) experiments 

with anti-Rrp4 and anti-Csl4 antibodies from a clarified cell-free extract. B) Co-IP with anti-Rrp4 and anti-Csl4 

antibodies from S100 fractions. FT, flow through, W1, first washing fraction, W7, last washing fraction, E, 

elution fraction. C) Western blot analysis of exosomes immunoprecipitated from S100 fractions with anti-Rrp4 

and anti-Csl4 antibodies (marked above the panels). To estimate the relative amounts of Csl4 and Rrp4 in the 

immunoprecipitated complexes, the membranes were hybridized simultaneously with Csl4- and Rrp4-directed 

D 
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antibodies. The detected proteins are marked on the right side. D) Co-IPs with Rrp4 and Csl4 pre-immune serum 

using S100 fraction was performed as a control experiment. 
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4.3. The Sulfolobus solfataricus RNA-exosome under stress conditions  

Environment influences physiology of an organism and changes occur at cellular and 

molecular level. In the majority of studies on the Achaea, the third domain of life, response to 

environmental changes have been limited to just one level of information processing, 

transcription.  Nevertheless information on quality control pathways, RNA processing and 

degradation under stress conditions are lacking.    

The bacterial RNases, polynucleotide phosphorylase (PNPase) and RNase R are the only 

exoribonucleases so far shown to be inducible under at least one stress condition, cold stress 

[117-119]. PNPase is essential for adaptive growth resumption of cold stress treated cells at 

the end of the acclimation phase [120]. Under cold stress, bacterial degradosome changes the 

protein composition, leading to the replacement of RNA helicase, RhlB, with another 

helicase, CsdA [121].  

We previously found that the composition of the soluble and the insoluble exosomes differ 

(4.1.). Furthermore we found that DnaG is an integral part of the exosome. Nevertheless it is 

not known whether the exosome composition differs in different stress conditions to sustain 

the viability of the cell in problematical circumstances. Moreover it is important to elucidate 

how the archeal exosome performs under different stress conditions. In this study we examine 

changes in the exosome of the archaeon S. solfataricus to provide an insight on stress 

adjustments by describing whether there is any response to five different perturbations (cold, 

heat, pH high, pH low, and stationary phase). 

 

4.3.1 Changes of the exosome amount under stress conditions 

To study whether the total amount of the exosomal proteins change after 30 min of stress, I 

compared the total amount of exosomal proteins in the cell free extract before and after stress 

by Western blot analysis. Figure 4.3.1A shows representative growth curves of two 

independent experiments before applying the stress conditions of two independent 

experiments. The growth curves are comparable to each other. The stress was applied after 48 

hours of growth for 30 min and the OD was measured. In all four cases the ODs do not 

decline after the stress (Figure 4.3.1B). Western blot analysis revealed that the S. solfataricus 

exosome is induced upon cold stress conditions (Figure 4.3.1C). For this analysis, signal 
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intensities of two fold dilutions were measured to ensure that two fold dilutions give two fold 

less signal intensities (Figure 4.3.1D). The amount of the exosomal proteins increased by an 

average of 1.5 fold after a down shift of the temperature from 75 °C to 65 °C. No marked 

change in the exosomal protein level was observed before and after the heat, pH high and pH 

low stress (Figure 4.3.1E, Appendix 2).  
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Figure 4.3.1 Detection of exosomal subunits Rrp41, Rrp4 Csl4 and DnaG of S. solfataricus before and after 
stress by Western blot analysis.  

A) Comparison of the growth curves. The figure indicates the growth curves of Sulfolobus solfataricus before 
applying the stress. S. solfotaricus growth was determined using optical density data (OD) recorded for 
duplicates at 600 nm for 48 hours under normal growth conditions and then  pH low, pH high, heat stress or 
cold stress were applied for 30 min. B) The optical density data (at 600 nm) before applying the stress and 
after 30 min of stress. The ODs do not change before and after the stress. C) Detection of exosomal subunits in 
S. solfataricus cell-free extract before and after stress by Western blot analysis. Example for the comparison of 
the Western blot analysis of changes in the amount of the total protein of the exosomal subunits. Equal weight 
(µg) amounts of protein were separated in 12% SDS-PAGE, blotted and hybridized with sera directed against 
the exosomal subunits indicated on the right side of the panels. D) Quantification of the of signals. The 
chemiluminescent signals in the Western blot was detected by a digital imaging system in fusion X4 machine 
and signal intensities were quantified by the fusion X4 software. The intensities are divided by 1000 and 
rounded to the nearest decimal point. E) Graphical representation of the quantification of the total amount of 
proteins of the exosomal subunits under different stress conditions (a-pH low, b-pH high, c- heat stress, d-cold 
stress), relative to the control standard growth conditions. Shown are graphical representations of the results 
from two independent experiments and two technical replicates. Graphs for Csl4 protein under ph low, heat 
and cold stress were drawn by one measurement from one experiment due to the less sensitivity of the Cls4 
antibody. F) Western blot analysis to detect differences in solubility of the exosomal subunits in different 
stresses. Equal volume of S100 and P100 fractions were loaded on a SDS PAGE gel for separation of the 
proteins and blotted and hybridized with sera directed against the exosomal subunits indicated on the right side 
of the panels. The figure indicates an example (cold stress) for the Western blot analysis carried out for S100 
and P100 fractions of standard conditions and after the stress. G) Graphical representation of the results from 
two independent experiments in which the percentage of the S100 fraction is indicated in relative to the total 
amount of proteins (S100+P100). DnaG and Csl4 were exclusively in the P100 fraction.  
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Further we analysed the changes in solubility of the exosome after the stresses in comparison 
to the standard conditions.  We observed that the solubility does not change after the above 
mentioned stress conditions other than the cold stress (Figure 4.3.1F and G). Following the 
cold stress, the proportion of the exosomal proteins, Rrp41 and Rrp4 in the (S100) soluble 
fraction were increased by 7% and 10% respectively. DnaG and Csl4 were detected 
exclusively in the pellet fractions. 

To indentify the possible interaction partners of the exosome under stress, Co-IP experiments 
were done with anti Rrp41 antibody coupled beads and S. solfataricus cell free extracts from 
cells harvested under standard conditions and after applying different stress conditions. There 
are no interaction partners fished with the exosome in any of the stress conditions (Figure 
4.3.2). The additional bands which obtained were either in the elution fractions of the Co-IP 
in the control experiment or the bands were not reproducible. 
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Figure 4.3.2 Silver stained SDS-gels showing proteins purified by co-immunoprecipitation (Co-IP)  for 
two independent experiments with Rrp41-specific antibodies from S. solfataricus cell free extract under 
standard condition and under different stress conditions (A, pH low B, pH high C, heat and D, cold 
stress). W7, last, seventh washing fraction; E, elution fraction. The migration of marker proteins is marked (in 
kDa). 

 

4.3.2. Changes of the archaeal exosome in the stationary phase  
The experiments were done to study changes in the exosome in different stages of the growth 
curve.  The figure 4.3.3A shows a typical growth curve (exponential and stationary stages) 
for S. solfataricus under standard growth conditions. The viability of the cells was 
approximately 90% during the growth [122]. The total amount of exosomal proteins do not 
change except Csl4 protein when exponential and stationary phases were compared [123]. 
Nevertheless I was able to observe that there is 1.3 fold increase in the amount of the Csl4 
protein and 1.1 fold increases in the amount of the Rrp4 protein in the stationary phase 
relative to the exponential phase (Figure 4.3.3B and C).  
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Figure 4.3.3 Detection of exosomal subunits Rrp41, Rrp4 Csl4 and DnaG of S. solfataricus in exponential 
and stationary phase by Western blot analysis. 

 A) A typical growth curve of S. solfotaricus was determined using optical density data (OD) recorded for 
duplicates at 600 nm for 144 hours. Arrows indicate the exponential (OD600 ~ 0.3) and stationary phase 
(OD600 ~ 0.7). B) Total amount of cap protein, Cls4 increases in the stationary phases. The cap proteins Rrp4 
and Csl4 in S. solfataricus cell-free extract in the exponential phase (OD600 ~ 0.3, arrow in A) and in the 
stationary phase (OD600 ~ 0.7, arrow in A) were detected by Western blot analysis. Equal weight (µg) amounts 
of protein were separated in 12% SDS-PAGE, blotted and hybridized with sera directed against the cap proteins 
indicated on the right side of the panels. C) Graphical representation of the results from two independent 
experiments and two technical replicates. It shows the quantification of the increase of the proteins, Csl4 and 
Rrp4 in the stationary phase in relative to the exponential phase. D) Western blot analysis carried out for S100 
and P100 fractions of cells from the exponential and stationary phase. Equal volume of S100 and P100 fractions 
were loaded on a SDS-PAGE gel for separation of the proteins and blotted and hybridized with sera directed 
against the exosomal subunits indicated on the right side of the panels. E) Graphical representations of the 
results from two independent experiments and two technical replicates in which the percentage of the S100 
fraction is indicated in relative to the total amount of proteins (S100+P100). DnaG and Csl4 were exclusively in 
the P100 fraction. 
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Based on our previous study we know that there are different compositions of the soluble and 

the insoluble exosomes (4.1). DnaG and Csl4 are not detected in the S100 fractions whereas 

Rrp41 and Rrp4 are found in soluble fractions in the exponential and stationary phase. 

Interestingly the solubility of the exosomal Rrp41 and Rrp4 subunits increased in the 

stationary phase regardless the fact that the total Rrp41 content was not changed among 

phases in the growth cycle (Figure 4.3.3D and E).  

In 2010 Roppelt et al found that both ribosomal subunits, (30S and 50S) were in the P100 

fraction, in agreement with the previously described co-sedimentation of Rrp41 with 

ribosomal subunits in glycerol density gradients ([92] and chapter 4.1). It was also found that 

the  archaeal exosome localizes at the cell periphery and co-sediments with membranes [110]. 

To clarify whether the sedimentation behaviour of the exosome changes during the growth 

circle, sucrose density gradients were applied (Figure 4.3.3A).  

 

In agreement with the results shown in Figure 4.3.3D and E, we have been able to show the 

increment of the soluble exosome in the stationary phase by sucrose density gradients (Figure 

4.3.4A and B). In addition we found that DnaG is not present in the low density fractions 

(S100) in the exponential and the stationary phases whereas the protein content of Rrp41 and 

Rrp4 increased the low density soluble fractions in the stationary phases. Nevertheless we did 

not observe the highest exosome proportion to co sediment with the membrane fractions. 
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Figure 4.3.4. Fractionation through a 15–70% sucrose density gradient with salt.  
A) Cell free extract of the S.solfataricus was added on to the 15-70% sucrose density gradient. B) The cell-free 
extracts of S. solfataricus in exponential and stationary phase were fractionated through the sucrose density 
gradient and the fractions were analyzed for the presence of Rrp41, Rrp4 Csl4 and DnaG by Western blot 
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hybridization. The analyzed fractions are given above the panels, the detected proteins are marked on the left 
side. C)  Absorption of the gradient fractions of exponential (top) and stationary (bottom) at 280 or 260 nm. 

 
RNA and protein content of each fraction was monitored at 280 and 260 nm absorption, of 

the cell free extract of the S. solfataricus in the exponential phase and the stationary phase 

(Figure 4.3.4C). Peaks were detected in fraction 4 (contains tRNAs (not shown))and in the 

fractions 10-14 (contain 30S and 50S ribosomal subunits) [110] in both cell free extracts. 
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4.4. Exosome under the single particle electron microscope 

It was found in in vitro experiments that DnaG interacts with the reconstituted 9 subunit 

exosome via the Csl4 protein [98]. Although crystal structure of the Csl4-exosome from A. 

fulgidus [93] and of DnaG from E. coli [124] are known there is no direct information about 

the three-dimensional (3D) structure of the archaeal exosome with DnaG, which is essential 

for understanding its functional organization. Despite the recent study about the shape of E. 

Coli DnaG protein as crescent shaped protein with a groove in the middle, [124] the archeal 

DnaG has not yet been elucidated.  To address these questions we decided to analyse native 

and the reconstituted exosome by single particle electron microscopy (SPEM). 

 

4.4.1. Reconstituted exosome under SPEM 

As the first step of reconstitution of the exosome, the proteins were overexpressed and 

purified from E. coli BL21 (DE3) at 37° C. The recombinant exosomal proteins Rrp41, 

Rrp42, Rrp4 and Csl4 were purified to near homogeneity (Figure 4.4.1A, B, C, and D). 

However, it was not able to achieve any expression of DnaG protein in BL21 (DE3) cells. 

The construct was then transformed into the E. coli strain Arctic Express for the 

overexpression (Figure 4.4.1E) [98].  

The concentrations of DnaG and Csl4 were less in comparison to other recombinant 

exosomal proteins. The typical concentration of DnaG and Csl4 were about 0.2-0.3 mg/ml 

and the typical concentration of Rrp41, Rrp42 and Rrp4 were about 0.7-1 mg/ml. All the 

recombinant exosomal proteins (Rrp41, Rrp42 and DnaG) contain a His- tag except the Csl4 

protein which contains a Strep- tag at the C terminus. Reconstitution of the Csl4-exosome 

and the DnaG-Csl4-exosome was done as described in 3.2.6.2. In order to avoid monomers 

with the His- tag and complexes without Csl4 protein, we first purified the complexes by a 

Strep-tactin column. The elution fraction, which contains the Strep-tag Csl4 monomers and 

the complexes with Csl4 protein, was then subjected to a Ni-NTA column to avoid the 

monomers of Strep- tagged protein, Csl4. By this method I was able to achieve concentrated 

(total protein content-0.5 mg/ml) complexes without monomers. Prior to visualizing the 

samples under SPEM, samples were analyzed by silver staining, in a 12% SDS-PAGE 

denaturing gel (Figure 4.4.2A). Csl4 protein band was not visible in the silver stained gel. 

Nevertheless, as the first purification was done with Strep-tactin column, the protein 
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complexes should contain Strep-tagged Csl4. Previously it was shown that His-tagged 

proteins and samples do not stick to Strep-tactin beads [98].  

 

 
Figure 4.4.1 Overexpressed recombinant exosomal proteins were separated in a 12 % SDS-PAGE gel and 
visualised with silver staining. FT, flow-through; W1, W7, the first and the last washing fractions; E, the 
elution fraction.  The  bands of the expected size for the recombinant  A) Rrp42 (35 kD) , B)Rrp41 (30 kD), C) 
Rrp4 (28k D) and  DnaG (45 kD)   with His-tags and Csl4 (20 kD) with Strep-tag can be seen in the elution 
fractions (E1- E6, marked with an arrow). An E. coli protein binding to Ni-NTA, which was routinely present in 
the DnaG-fractions used for the reconstitution experiment, is marked with an asterisk (D). In  the last washing 
fraction (W7) no proteins were detected. The sizes of the Low-Range markers (Biorad) are shown in the lane 
marked as M in kDa. 

 
 
The Csl4 exosomes and the DnaG-Csl4-exosomes were directly applied to a grid and 
negatively stained. In the SPEM we could not observe any images of monomers or any 
impurities. Approximately 15000 particles were picked (pointed by the arrow heads in Figure 
4.4.2B) from each complex, with different projections before the translational and rotational 
alignment. Figure 4.4.2C shows the 25 classes resulting from classification. Though the 
crystal structure of the Csl4-exosome of A. fulgidus was known [93], the structure of the 
exosome of S. solfataricus was never revealed. We were able determine the structure of the S. 
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solfataricus Csl4-exosome by SPEM (Figure 4.4.2C). The bottom view of Csl4-exosome of 
S.solfataricus and A. fulgidus is similar (Figure 4.4.2D). The Csl4-exosome of S.solfataricus 
contains a ring shape structure with trimetric symmetry and appeared rather homogeneous 
when visualized by negative stain EM. We were not able to see any difference between the 
Csl4-exosome and the DnaG-Csl4-exosome.   

 
 

Figure 4.4.2 The analysis of the reconstituted Reconstitution of the Csl4-exosome and the DnaG-Csl4-
exosome.  A) The exosomes were reconstituted by mixing Strep-tagged Csl4 and His-tagged Rrp4, Rrp41, 
Rrp42 and DnaG proteins. Subsequent to the sequential purification by the Strep-Tactic followed by Ni- NTA 
chromatography, in the elution fraction, the Csl4-exosome and the DnaG-Csl4-exosome were detected by silver 
staining. Nonetheless Csl4 protein was not visible in both cases. M, protein marker, the migration behavior of 
the proteins is given in kDa on the left side. B) The particles were picked (pointed by the arrow heads), with 
different projections before the translational and rotational alignment. Approximately 15 000 particles were 
picked from each sample. C) Different views of the Csl4 exosome. Analysis of single particles projections gives 
the structure of Csl4 exosome from images of individual particles. Resolution 47 000x   D) Alignment of the 
bottom view of the SPEM analysed Csl4 exosome (left) and bottom view of the crystal structure of the Csl4 
exosome (right) using the Chimera software. 
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4.4.2. Native exosome under SPEM  
Homologous cloning system was used to express exosomal proteins in S. solfataricus (Figure 

4.4.3A). It was possible to clone the genes rrp4, csl4 and dnaG, as well as the dnaG parts 

encoding the N terminal and the C terminal portions of the protein, in to the pMJ0503 vector. 

However it was possible to transform and express only the full length DnaG-His6 in S. 

solfataricus M16. The comparison of the growth curves between the wild type and the strain 

containing the DnaG-His6 construct (without and with induction) is shown in Figure 4.4.3B. 

S. solfataricus cultures which contained other constructs failed to grow over OD600 0.1, which 

says that the expression of those construct were deleterious for the cells. The DnaG construct 

containing S. solfataricus M16 culture did not grow more than an OD600 of 0.3-0.4 (Figure 

4.4.3B). Induction for the overexpression was done in the stationary phase (OD600 0.3-0.4, 

indicated by the arrow head). The induction in the exponential phase (OD600, 0.15) resulted a 

higher amount of His-tagged DnaG protein in relative to the native DnaG protein (Figure 

4.4.3C and D). However, the induction in the stationary phase resulted a His-tagged DnaG 

and the native DnaG in similar stoichiometry. 
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Native DnaG 145 436 

 

 

Figure 4.4.3 Induction of DnaG-His6 construct in S. solfataricus M16. A) Overview of S. solfataricus 
homologous expression system.  X resembles the gene of interest, eg., rrp4, csl4 or dnaG. Adopted from 
[125]. B) The figure indicates the typical growth curve of Sulfolobus solfataricus M16 (wild type) and S. 
solfataricus with the DnaGHis-6 construct (without induction and with induction). S. solfotaricus growth was 
determined using optical density data (OD) recorded for duplicates at 600 nm for 144 hours under normal 
growth conditions. The arrow indicates the point of induction.     C) Comparison of the purified exosomes 
which was induced at different time points in the growth circle. The cultures were induced for the expression 
of proteins at the exponential and stationary phase. The exosomes were purified by Ni-NTA 
chromatography. The elution fractions were separated in a 12% SDS-PAGE gel and analysed by silver stain 
and Western blot. W7, last washing fraction, E, Elution fraction.  D) Quantification of the signals. The 
chemiluminescent signals in the Western blot was detected by a digital imaging system in fusion X4 
machine and signal intensities were quantified by the fusion X4 software. The intensities are divided by 
1000 and rounded to the nearest decimal point. 

C 

D 
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4.4.2.1.  Characterization of the DnaG-His6 protein 

4.4.2.1.1. Solubility and sedimentation pattern in sucrose density gradient 

We wanted to see whether DnaG-His6 in S.solfataricus M16 strain performs same as the 

native DnaG in S. solfataricus P2 strain. Thus, we checked the solubility of DnaG-His6 after 

ultracentrifugation of the cell-free extract at 100,000 g and the sedimentation pattern of DnaG 

in sucrose density gradient. Consistent with the previous results (chapter 4.1), only a minor 

part of Rrp41 was detected in the soluble, supernatant fraction (S100) and DnaG was detected 

only in the insoluble, pellet fraction (P100) (Figure 4.4.4A). Furthermore we observed 2 

bands (45 kDa and 48 kDa) after hybridizing with anti DnaG antibody and one band (48kDa) 

after hybridizing with anti His antibody.  DnaG was also not observed in the low density 

fractions in the sucrose density gradient of 15 % to 70% (Fractions 2 to 10, Figure 4.4.4B) 

and the sedimentation patterns of DnaG and Rrp41 were similar to the previous results which 

were obtain by the cell free extract of the S. solfataricus P2 strain (chapter 4.1 ). 

 

Finally we concluded that DnaG-His6 performs similarly as the native DnaG in S. 

solfataricus. Thereafter we wanted to fish the complete exosome by Ni-NTA 

chromatography. 

4.4.2.1.2. Interaction partners of the soluble and non- soluble exosomes 

Prior to the examination of the native exosome under the SPEM, we wanted to know whether 

there are any additional proteins which co-purify with the exosome or novel interaction 

partners of the complex. Hence, cell free extract from the D-arabinose induced sample was 

subjected to Ni-NTA chromatography (Figure 4.4.4C). A negative control was performed in 

which the cell free extract of S. solfataricus (wild type) was subjected to the same 

purification steps.  Some of the protein bands which were seen in the elution fractions were 

disappeared after the treatment with RNases. The bands in the second elution fraction after 

the RNase treatment (corresponds to lane 6 in Figure 4.4.4C) were given for the mass 

spectrometry analysis and further identified by Western blotting (Figure 4.4.4F and G). The 

underlined proteins were identified by mass spectrometry (Appendix 1). There were 2 bands 

of DnaG protein in the SDS-PAGE. The content of the DnaG protein was visibly more than 

the other exosomal proteins in the silver stained SDS-PAGE gel. Bands which are marked 

with asterisks were found in the control elution fractions (Figure 4.4.4H and I). I did not find 
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any interaction partners. However, RNA chaperone Hfq [bacillus coagulan 2-6] protein, 

which was identified by mass spectrometry, was co purified together with the exosome. This 

was not reproducible. This experiment was repeated three times. Silver stained gel with the 

last washing fraction and the elution fractions is in Appendix 

3.                                                                                                                         
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Figure 4.4.4 Characterization of DnaG His6 in S. solfataricus M16 and purification of the exosome by Ni –
NTA chromatography. 
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A) Western blot analysis of S100 and P100 fractions of the overexpressing strain. Equal volume amounts of the 

S100 and the P100 fractions were separated in 12% SDS-PAGE, blotted and hybridized with sera directed 

against the exosomal subunits indicated on the right side of the panels. Anti- His antibody gives one signal at 48 

kDa while anti-DnaG antibody gives 2 signals at 48 kDa and 45 kDa which correspond to the tagged DnaG and 

the native DnaG. Only a minor amount of Rrp41 protein was detected in S100 fraction which is consistent with 

the results in chapter 4.1.  B) The cell free extract of the overexpressing strain was fractionated through a 15–

70% sucrose density gradient with salt. Western blot analysis of the gradient fractions is shown with the use of 

specific antibodies in the right side of the panel. The number of the individual fractions is given above the panel. 

C) Elution fractions of the Ni-NTA chromatography from RNase treated, and non-treated and control samples. 

D) Elution fraction of the DnaG protein with the exosome protein complex. E) Before the elution, the beads 

were treated with RNases for 15 min at 37 °C to avoid the interactions of the exosome with other proteins due to 

RNA. The beads were washed with 6-column bed volumes and eluted. F) and G) DnaG, Rrp41 and His-DnaG 

were detected in elution fractions of Ni-NTA chromatography purification by Western blot analysis. Anti DnaG 

antibody gives 2 signals while anti His antibody gives one signal at the 45 kDa. The used antibodies are marked 

on the right side of the panel. H) Control experiment was carried out with the cell free extract of S solfataricus 

P2 without expression of DnaG.  I) The RNase treatment was done in the control experiments same as 

mentioned in D. The last washing fraction did not contain any protein bands in any of the pull down assays (not 

shown). Protein bands of lane 6 were given for mass- spectrometry identification. The proteins which are 

underlined were detected by mass spectrometry, and the bands which are marked with an asterisk were present 

in the control experiments (Lane 10 and 14).  

4.4.2.2. RNA and the native exosome 

The aim of the experiment was to determine the specific RNAs which the exosome prefers 

and binds. To purify the RNAs which were bound to the native exosome isolated by the Ni-

NTA chromatography from S. solfataricus, I treated the elution fraction of the Ni-NTA 

chromatography with TRIzol. The nucleic acid content was measured in the sample by 

NanoDrop spectrophotometer. The concentration of nucleic acids which were eluted with the 

exosome was 283.1 ng/µL and the in the sample of the control experiment the concentration 

was 38.8 ng/µL. After a portion of the Ni-NTA purified sample was treated with DNase, the 

concentration was 236,2 ng/µL and after an RNase treatment the concentration was 

dramatically decreased to 45.7 ng/µL.  Therefore I concluded that the nucleic acids which 

were co-purified using Ni-NTA and further purified by TRIzol were mainly RNA molecules. 

The RNA sample which was treated with DNase was then subjected to PCR experiment to 

see whether there is any DNA undigested. The control experiment was done with 

chromosomal DNA of S. solfataricus with the same primers. The PCR gave an intense signal 
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similar to the signal of control which means that there was DNA which was failed to be 

digested by DNases. We could not get rid of the undigested DNA.  

4.4.2.3. Shape of the archaeal DnaG protein 

The RNases treated elution fraction from Ni-NTA chromatography, was subjected to gel 

filtration before the examination under SPEM. There were two peaks which correspond to 

290 kDa (size of the exosome) and 90 kDa (data not shown). Both fractions were analysed 

with the SPEM.  In the 290 kDa peak, concentration of the protein was too less. Thus, we 

failed to see the exosome protein complex under the microscope. However, we were able to 

visualize the protein in relatively high concentration, which gave a peak around 90 kD in the 

gel filtration.  It was a symmetric, dimeric protein with a central pore. Each monomer 

contained two lobes (figure 4.4.5). The monomer of the protein is 45 kDa, which is the size 

of the DnaG protein.   

 

 

 

 
 
Figure 4.4.5 The native DnaG protein under SPEM. The DnaG protein was analysed and identified as a 
doubled lobed protein with a central pore from the technai T12 SPEM under 67000x resolution 
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4.5. Could Nop5 be a novel interaction partner of the soluble exosome of Sulfolobus 
solfataricus? 

DnaG was co-immunoprecipitated with the S. solfataricus exosome and it was identified as 

an integral part of the exosome [92, 95](chapter 4.1). However DnaG is present in the soluble 

exosome in lower amounts compared to the insoluble exosome. The amount of the soluble 

exosome is growth phase dependent and increases in the stationary phase (Chapter 4.1). 

Lassek in 2010 [122] found that the archaeal Nop5 protein as a potential interaction partner 

of the soluble exosome in the stationary phase, by preliminary experiments: The cell free 

extract from the stationary phase was separated through a sucrose density gradient. The 

soluble and insoluble exosomes were co-immunoprecipitated with anti-Rrp41 antibodies. The 

comparison of their composition suggested that in the soluble exosome, DnaG was 

‘exchanged’ by a protein which was then identified by the mass spectrometry analysis as 

Nop5, a well known subunit of the methylation ribonucleoprotein particle in S. solfataricus 

[122] Figure 4.5.1). In the methylation complex Nop5 is associated with L7Ae and fibrillarin 

protein [126]. Since only the Nop5 protein was co-purified with the exosome, we assumed 

Nop5 might have an exosome related function most probably in the stationary phase.  

Therefore we wanted to further investigate the reliability of the interaction between the Nop5 

and the soluble exosome which might regulate the growth stage dependent changes in the 

amount of the soluble exosome. 
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Figure 4.5.1 The Nop5 co-immunoprecipitation with the S. solfataricus exosome. The exosome was co-

immunoprecipitated using anti-Rrp41 antibodies from the low density fractions of the sucrose density gradient 

(soluble exosome) and from the high density fractions of the sucrose density gradient (insoluble exosome). The 

elution fractions were separated on a SDS-PAGE gel, and visualised by silver staining. Nop5 (45 kDa) was 

identified by the mass spectrometry analysis. The other bands were assigned according to their known migration 

behaviour [95]. Adopted from [122].  

 

4.5.1. Nop5 as a potential interaction partner of the exosome 
To analyse further the interaction between the Nop5 and the archeal exosome, antibodies 

were raised against a recombinant, His-tagged Nop5 protein expressed and purified from E. 

coli (Lassek and Hou unpublished data). In an attempt to confirm the association of Nop5 

with the soluble exosome, Co-IP with anti-Nop5 antibodies was performed with S100 

fraction from stationary phase cells. This led to the purification of the methylation complex 

(Figure 4.5.2A, lane1). The methylation complex consists of Nop5 (45 kDa), fibrillarin (27.5 
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kDa) and L7ae (13.5 kDa) proteins [126]. The major bands were identified by mass 

spectrometry analysis. None of the exosomal subunits were among them, although the 

mobility of the several bands in SDS-PAGE gel was similar to the mobility of the exosomal 

subunits in the elution fraction of a Co-IP with anti-Rrp41 antibodies (Figure 4.5.2A, 

compare lane 1 and 2). Although it was expected that the soluble exosome of the stationary 

phase will contain Nop5, only DnaG was identified by mass spectrometry analysis, in the 

complex fished by anti-Rrp41 antibodies (Figure 4.5.2A lane 2). In this case, we assumed that 

the major part of the Nop5 protein in the cells was with the methylation complex and a minor 

part might interact with the exosome. Furthermore the Nop5 which interacted with the 

exosome might get hindered by the DnaG because both the proteins run at the same position 

in the SDS-PAGE gel.  
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Figure 4.5.2 Analysis of Nop5 as a potential interaction partner of the S. solfolobus soluble exosome. A) 

and B) Co-IP experiments with S100 fractions from stationary phase cells. A) Co-IP was performed with anti- 

Nop5 antibodies and anti-Rrp41 antibodies. The elution fractions were analysed on a SDS-PAGE gel and 

visualised by silver staining. Indicated are the bands representing proteins indentified by the mass spectrometry 

(underlined) or the exosomal subunits with known migration in the gel (full gel in Appendix 4) B) Co-IP with 

anti-Nop5 antibodies was performed. Input (S100), flow through (FT), the first and the last washing fractions 

(W1, W9) and the elution fraction (E) were analysed in a silver stained SDS-PAGE gel and by western blotting 

with anti-Rrp41 and anti-DnaG antibodies. C) The elution fractions of the Co-IP (from S100 fraction) with anti-

DnaG and anti-Rrp41 were analysed by SDS-PAGE and Western blot. The proteins which were hybridized are 

shown in the right side of the panel. D) Relative amounts of Nop5 in S100 and P100 was quantified. The S100 

and P100 fractions of cells in exponential and stationary phase were subjected to Western blot hybridization 

with antibodies specific for Nop5. The relative amounts are given in percentages below the panel.  

Furthermore, we detected Rrp41 and DnaG by Western blot hybridization in the elution 

fractions of the Co-IP done with anti-Nop5 antibodies (Figure 4.5.2B). This result suggested 

that exosome was co-immunoprecipitated with the Nop5 protein in the methylation complex. 

To rule out the fact that the there is no proper protein-protein interaction but via an RNA 

molecule, (since the exosome and the methylation complex are performing on RNA), we 

conducted an RNase treatment, before the elution of the Co-IP with anti-DnaG and anti-

Rrp41 antibodies. The elution fractions were separated in a 12% SDS-PAGE and Western 

blot was done by hybridising with Nop5 and Rrp41 antibodies (Figure 4.5.2C). This further 
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suggested that the Nop5 protein in the methylation complex is co-purified with the exosome. 

Quantitative analysis of Nop5 in the S100 and P100 fractions in both growth phases was 

performed to see whether there is any change of the proportion of the protein in the soluble 

and the insoluble fractions. Nop5 was present in equal amounts in S100 and P100 in both 

growth phases (Figure 4.5.2D).  

However we found in the control experiments that His-tagged DnaG protein stick to the 

anti-Nop5 antibodies, after an incubation of the protein with anti-Nop5 antibodies covalently 

bound to protein A Sepharose beads. For this reason, unfortunately, the possibility exist that 

not only the methylation complex but also the exosome was co-immunoprecipitated together 

with the methylation complex. When the experiment was done vice verse (incubation of His-

tagged Nop5 protein with anti-DnaG antibodies covalently bound to protein A-Sepharose 

beads) a band was visible by the silver staining in the elution fraction which was in the size of 

the Nop5 protein. Further, anti- Nop5 and anti-DnaG antibodies gave unspecific signals to 

His-tagged DnaG and His-tagged Nop5 proteins respectively in Western blot experiments 

(data not shown).  

To check whether the unspecific signals occur due to the His-tag (both anti-DnaG and anti-

Nop5 antibodies were raised against the His-tagged protein), the tag was cleaved by thrombin 

enzyme as the manufacturer specified.  After the cleavage, the separation between the 

cleaved proteins and the His-tagged protein were performed by a Ni-NTA chromatography. 

The His-tagged proteins should bind to the Ni-NTA beads. However we could detect His- 

tagged proteins even in the flow through. Therefore, the experiment was not successful. 
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Figure 4.5.3 The soluble exosome was depleted with anti-DnaG antibodies and co-immunoprecipitated 

with anti-Rrp41 antibodies. The S100 fraction from the exponential stage was subjected to three rounds of Co-

IP with anti-DnaG antibodies and then the residual exosome was co-immunoprecipitated with anti-Rrp41 

antibodies. The flow through fractions were analyzed by Western blot, the detected proteins were indicated in 

the right side of the panel .C, control lanes, the S100 fraction was subjected to the same incubation and 

centrifugation steps without beads.  

In the attempt of depleting the DnaG containing exosome from the soluble fraction we 

observed decrease of the DnaG signal in the flow through, in the sequential Co-IP rounds 

with anti-DnaG-antibody. However when the Western blot was performed by hybridizing 

with Nop5 antibodies, the signal for Nop5 was constant (4.5.3).  
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5. Discussion 

5.1. Heterogeneous complexes of the RNA exosome in Sulfolobus solfataricus  

We found that the soluble and the insoluble exosomes of S. solfataricus which co-sediments 

in different fractions of the sucrose density gradients have different compositions. Though it 

is known that the majority of the exosomes co-sediments with the membrane fractions in the 

sucrose density gradient, it was not possible to reproduce that result repeatedly. The typical 

RNA sedimentation pattern in the sucrose density gradient was changed when the cell free 

extract was treated with RNases. The peaks corresponding to the 30S and 50S ribosomal 

subunits disappeared due to the degradation of the rRNA. The hypothesis that the 

sedimentation pattern is due to RNA or DNA interactions with the exosome was excluded 

due to no major changes in the Western blot results. The signal in the low density fractions 

(hybridization with anti-Rrp41 antibody) under standard conditions was not seen in the 

Western blots in fractions of the treated cell free extract. It could be because the protein is 

under the limit of detection.  Furthermore the signal which occurs in the low density fractions 

in the Western blot under standard conditions was not always reproducible. The influence of 

RNAs on the sedimentation pattern of the exosome in the sucrose density gradient is ruled 

out though the sedimentation of the 30S and 50S ribosomses and the exosomes are in the 

same fractions.  

 

The soluble and the insoluble exosomes were both active. The exact functions of these are yet 

to reveal. We can speculate that the soluble exosome is important for the metabolism of 

mRNAs and tRNAs present in the soluble fraction (soluble exosome), while the exosome 

insoluble fractions may be involved in rRNA processing (insoluble exosome).  

 

DnaG is an interaction partner of the archaeal exosome. It was first found as an interaction 

partner of the S. solfataricus exosome [95] and then it was found in other archaeal exosomes 

[127], [128]. DnaG is a highly conserved protein which is present even in the Archaea 

lacking exosomes. Here we show that the DnaG protein is an integral part of the exosome. 

The proportion of the DnaG is lesser in the soluble than the insoluble fractions. It could be 

that DnaG plays an important role mainly in the overall function of the insoluble exosome. It 

was found that DnaG has a poly (A) preference [98]. It could be that once the mRNA is 

released from the ribosome, the adenine stretches of the mRNA is recognised by DnaG and 
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Rrp4 proteins and are rapidly degraded by the exosome. EF1α was fished with the soluble 

exosome, using two different sera (Rrp41-specific and DnaG-specific) and different protein 

fractions (S100 or sucrose density gradient fraction). This strongly suggests a functional 

interaction between EF1α and the protein complex. The archaeal EF1α is involved in 

translational elongation and termination, and mRNA surveillance pathways [129]. It could be 

that once the mRNA is released from the ribosomes it is directed to the exosome via EF1α 

protein for degradation and/or polyadenylation.   

 

5.2. The importance of the KH domain of Rrp4 protein for the poly (A) preference 

The reconstitution of exosome containing truncated variants of the Rrp4 protein and the 

hexameric ring was not successful at low salt concentration. When the salt concentration was 

high, hydrophobic interactions are forced, and therefore interactions between proteins binding 

via hydrophobic forces can be expected. However, it was only possible to reconstitute the 

ΔKH-Rrp4-exosome. In the crystal structure of the Rrp4-exosome it is shown that the Rrp4 

protein anchors to the hexameric ring by the N terminal domain [93, 101, 130]. Therefore as 

anticipated the variants with the N terminus had more probability to form the complex with 

the hexamer. However, an interaction between the N terminus polypeptide and the hexameric 

ring was not observed even at the high salt concentrations. The N terminal domain is a small 

domain of 65 amino acids. It could be due to the peptide size that the interactions were not 

strong to form the complex.  

 

 S1 and KH of the Rrp4 protein are RNA binding domains. The S1 domains of the RNA 

binding proteins of the exosomal cap structure make the positively charged central pore 

where the RNA threads though, to the central channel and to the catalytic sites. The KH and 

N terminal domains are facing the periphery of the exosome. The size of the S1 pore is 

determined by all three domains by the electrostatic interactions between the amino acids. It 

could be due to the lack of KH domain, the size of the central pore changes and it limits the 

entry of the RNA. This might lead to the lesser degradation efficiency of the ΔKH-Rrp4-

exosome in comparison to the hexameric ring and the Rrp4-exosome. In the competition 

assays, irrespective to the huge amounts of tRNA and MCS RNA, the ΔKH variant was able 

to degrade or polyadenylate the minor amount of poly (A) RNA. This clearly says that the 
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KH domain of Rrp4 protein is not important for the poly (A) preference. Here, we revealed 

that there is no poly (A) preference by the KH domain.  

 

5.3. Heteromeric caps of the exosome 

Though heteromeric caps were reconstituted in vitro [93] the existence of the heteromeric 

caps in vivo was a question. With Co-IP using anti-Rrp4 and anti-Csl4 antibodies, we found 

that Csl4 and Rrp4 together are present in the S. solfataricus exosome. The presence of the 

heteromeric RNA binding caps probably ensures its interaction with different transcripts. It is 

important to note that, in comparison to the hexameric ring, the amount of Csl4 fished by the 

Co-IP with anti-Csl4 antibodies was more than the amount of Csl4 which was fished with 

anti-Rrp4 antibodies. However when the Co-IP was done with anti-Rrp4 antibodies, the 

proportion of Rrp4 in relation to hexameric ring was same as the Co-IP done with anti-Csl4 

antibodies (Figure 4.2.4A and B). Since we have ruled out the presence of the monomeric 

Csl4 in the S. solfataricus cells, it could be that there is a mixture of only-Csl4 exosomes and 

heteromeric caps containing exosomes. Nevertheless the exact stoichiometry between Rrp4 

and Csl4 is yet to disclose. 

 

5.4. Sulfolobus RNA-exosome under stress conditions  

Degradation of RNA plays a central role in RNA metabolism. The rapid decay of mRNA 

serves a continuous adjustment of the messages to the needs of the cell for distinct proteins 

[34, 131-133] . Nevertheless stable rRNAs and tRNAs are degraded only under various stress 

conditions or when an RNA molecule is defective [134]. However in both stable and mRNA 

degrdation the action of similar ribonucleases (RNases) are required. 

Most living beings are faced with a constantly changing environment and multitude of 

stressors that challenge their survival. The adaptive responses to the stress conditions involve 

a remodelling of bacterial gene expression and quality control of RNA aimed at adjusting cell 

physiology to the new environmental demands [135]. As a consequence of the stressed cells, 

the level of defective RNAs increase and these RNA have a potential to interfere with the 

function of their normal counterparts. Therefore, it might be expected that they would be 

repaired or eliminated. In stressed E. coli cells RNase R or PNPase are required to degrade 
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the fragments of rRNA during the quality control of rRNA metabolism and polyadenlation of 

tRNA and degradation of defected tRNA [42, 47, 136]. 

The Eukaryotic exosome has been shown to be involved in quality control processes that 

result in degradation of defective tRNA and rRNA. Furthermore the exosome is also a vital 

component in mRNA degradation and post transcriptional gene regulation [91, 137].  Very 

little is known about the role of the archeal exosome in vivo. It is interesting to find out 

whether the archaeal exosome plays a role in degradation of RNA in stress conditions.  

We show that the proportion of the soluble exosome increase considerably in the stationary 

phase and the total amount of the exosomal subunits remain constant during the growth 

curve, except the RNA binding protein Csl4. These findings advocate that different growth 

conditions have a direct impact on the S. solfataricus exosome. 

It is known that ribosomes in E. coli are degraded under certain physiological conditions [18, 

134]. Usually such degradation is associated with conditions in which nutrient sources are 

lacking, such as starvation [138, 139], which enable the bacterium to gain access to the large 

store of potential nutrients that are present in ribosomes.  In the growing cells the rRNA is 

most likely be protected by ribosomal proteins, incorporation in the ribosomes. Though the 

synthesis of rRNA and ribosomal proteins is closely coordinated in different growth rates 

[140] once the coordination is disrupted the unprotected rRNA molecules become subject to 

extensive degradation. Furthermore, during the transition from exponential to stationary 

phase, a large number of mRNAs are involved in altering gene expression to facilitate cell 

adaptation and survival in a changing environment lacking optimal nutrients.  

5.4.1. Archeal exosome as a cold stress protein 
We found that the total amount of the exosome after the cold stress for 30 min, increases 

when compared to the amount of the exosome before stress. Nevertheless we did not observe 

any major difference of the exosomal amount after pH low, pH high, and heat stress 

suggesting that the exosome is hardly affected by these stresses. 

Temperature is one of the most pervasive challenges faced by any organism. In E. coli there 

is growth arrest after cold stress. Upon temperature downshift, E. coli cells rapidly but 

transiently produce a selective set of proteins called cold stress proteins (CSPs), which are 

considered to be essential for cellular adaptation to low temperature [117].  
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There are massive changes in RNA stability during the cold stress response. Such changes 

may reflect alterations in the degradation machinery, as the changes in the amounts of both 

the PNPase and RNase R in E. coli [141]. RNase R and PNPase are the only cold stress 

ribonucleases described so far. RNase R is a cold stress protein that is induced seven- to 

eightfold by cold stress and its expression is tightly regulated by temperature. The increase of 

RNase R levels is mainly a result of the stabilization of the rnr transcripts. The transient 

stability of the rnr transcripts is shown to be regulated by PNPase at the end of the 

acclimation phase. Studies with an rnr mutant revealed a cold-stress phenotype showing that 

RNase R contributes to growth at low temperatures [120, 142, 143]. 

 In this chapter we introduce the S.solfolobus exososme as a new cold stress protein. The 

increase in Sso- exosome levels under cold stress conditions raises the question about the 

physiological role of this exoribonuclease at low temperature. The possible reason could be 

that the exosome degrades stable RNAs which are produced and are unprotected during the 

acclimation phase.  In the acclimation phase after the cold stress, the cellular protein 

synthesis is blocked most probably in the translation initiation step except for the cold stress 

proteins [117, 142]. In this phase, most probably, the portion of rRNA molecules that cannot 

be correctly assembled into ribosomes is focus to degradation as accumulation of the non-

correctly assembled rRNA may lead to cell growth arrest or lost of viability [42]. Thus, 

quality control of stable RNA metabolism would appear to be an important function for cell 

survival. 

Moreover, it is known that some E. coli mRNAs can contain secondary structures [144] and 

[145], which are considered to become more stable at low temperature. These stable mRNA 

structures inhibit translation initiation and pause the translational elongation steps. They are 

considered to be more deleterious at low temperatures. Hence such mRNAs should be 

eliminated. The archeal exosome possibly plays an important role for processing/degradation 

of RNA molecules containing secondary structures at low temperature. The role of the 

exosome may be especially important under stress conditions such as cold stress, when the 

stabilization of secondary structures of nucleic acids leading to reduced efficiency of mRNA 

translation and transcription. This also could be a possible explanation for the increment of 

the soluble exosome after the cold stress. Rapid production of exosomes in a short time 

period as 30 min, in comparison to the doubling time of S. solfotaricus, could be lethal for the 

cells. We speculate that there could be a certain percentage of exosomes which are active in 
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the cytoplasm, whereas the rest of the total production in the stress conditions may store in 

the non soluble fractions. We suppose that the exosomes are stored at the membrane where 

DnaG and Cls4 proteins are more and when situation demands, exosomes move to the 

cytoplasmic fractions by changing the composition of the exosome. (DnaG and Cls4 proteins 

are less). 

It was known that DnaG and Csl4 were not detected by Western blot analysis in the S100 

fraction [110]. Consistent to those results DnaG and Csl4 were not detected in any of the 

stress conditions in S100 fractions.  

5.4.2. The role of archaeal exosome in stationary phase 
We have demonstrated that the solubility of the exosome increases significantly from the 

exponential phase to the stationary phase though the total content of the exosome do not 

change throughout the life cycle (except Csl4). The presence of Csl4 proteins independently 

from the exosome complex in the stationary phase is doubtful. If there are independent Csl4 

proteins it should be in the low density fractions of the sucrose density gradients, which we 

did not observe. Nevertheless we cannot exclude the fact that the Csl4 protein could interact 

with another complex in the stationary phase which will drag Csl4 to the high density 

fractions of the sucrose density gradients. 

Regardless of whether we can fully distinguish the exact purpose of the increment of the 

soluble exosome we can speculate that it is important in the metabolism of tRNAs, rRNAs 

and turnover of mRNAs present in the soluble fractions in the stationary phase.  Our research 

group found that the exosomes are membrane associated [110].  It might be that the exosomes 

are stored at the membrane and when circumstances demands exosomes move to the 

cytoplasmic fractions. 

To analyse these facts, we decided to further investigate the non soluble exosome by 

overexpressing the exosomal proteins in vivo also to see the structure by single particle 

electron microscopy (Chapter 4.4).  

In summary, these results strongly suggest that archeal exosome plays an important role 

under cold stress and in the stationary phase for the survival of the cells. Our findings not 

only further reveal the involvement of exosome in the regulation of RNAs, but also will lead 

to a better understanding of the exosome complex as a combatant for the survival of the cell.   
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5.5. Exosome under SPEM 

5.5.1. Reconstituted exosome under SPEM 
It was not possible to purify recombinant DnaG from the E coli strain BL21 (DE3). We used 

E. coli strain Arctic Express cells to overexpress DnaG, which is designed to increase 

solubility of recombinant proteins by inducing chaperonin proteins at low growth 

temperatures. 

We could analyse the shape of the Csl4-exosome of S. solfataricus. Nevertheless we could 

not see any difference between the Csl4-exosome and the DnaG–Cls4 exosome. The possible 

explanation could be that in the purified DnaG-Csl4 exosome, there could be a mixture of 

DnaG-Csl4 exosomes and Csl4-exosomes and the negatively charged grid preferably attaches 

the Csl4-exosomes.  Furthermore due to the uneven charge distribution of the exosome [93], 

positively charged Csl4 caps bind to the negative grids selectively. Since DnaG protein binds 

to Csl4, it also could be that the DnaG protein gets hindered in the orientation of binding of 

the protein complex to the grid.  

Electron microscopy is arguably the most powerful tool for spatial imaging of structures. To 

get images in SPEM with the DnaG-Csl4 exosome, we require firstly a positively charge grid 

for the binding of the complexes and secondly we need to purify the complexes through a gel 

filtration column and then concentrating the complexes by Ni-NTA chromatography.  

5.5.2. Native exosome under SPEM 
The DnaG-His6 containing overexpressing strain was not able to grow over OD600 0.3-0.4. 

Other constructs (Rrp4 and Csl4) containing S. solfataricus cultures did not grow at all. It 

seems that the overexpression of exosomal subunits was deleterious for the cells.  

Using homologous cloning system, it was possible to produce soluble recombinant DnaG-

His6 proteins in S. solfataricus. The protein was purified with the rest of the exosomal 

proteins using Ni-NTA chromatography and was the expected size of 48kDa (due to the 

presence of His and Strep-tags) when analysed on SDS-PAGE. Interestingly, a second band 

of equal intensity was also observed which corresponded in size to the native DnaG, which 

was approximately 45kDa. Indeed both the bands were identified as DnaG by mass 

spectrometry analysis and by Western blot analysis. It is possible that due to the oligomeric 

nature of the native protein (as further proven by the SPEM), an association between the 

native and recombinant polypeptides has occurred, leading to this co-purification. After the 
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gel filtration, there were two distinct peaks at 290 kDa and 90 kDa and the major peak was at 

90 kDa. The reconstituted Rrp4-exosome usually gives a peak at ~270 kDa in the gel 

filtration [95]. The free dimeric DnaG proteins give a peak at 90 kDa.  In consistence with the 

result of the silver stained SDS-PAGE gels of the elution fraction of the Ni-NTA 

chromatography, which visually show that the proportion of DnaG is higher than the rest of 

the exosomal subunits, the major peak of the gel filtration was also the DnaG protein. It 

seems that the dimeric DnaG which contain the His-tag does not successfully interact with 

the exosome though it is yet insoluble. 

The concentration of the native exosome was too low to analyse the complex under SPEM. 

Nevertheless we were able to find out the shape of archeal DnaG as a double lobed protein 

with a central pore. Our findings are consistent with the crystal structure of E. coli DnaG 

primase. It was found that the crystal structure of the E. coli DnaG has a ‘groove’ in the 

centre and it is a crescent shaped protein [124].   

Following the RNases treatment there were no interaction partners fished with the native 

exosome, except an RNA chaperone Hfq [Bacillus coagulans 2-6]. This was not reproducible 

and furthermore this was not identified from Sulfolobus spp. Therefore we strongly suggest 

that it is due to a contamination.  

The nucleic acids which were co-purified from the elution fractions of Ni-NTA 

chromatography were RNA molecules.  After the RNase treatment the concentration of the 

nucleic acids was drastically decreased and following the DNase treatment the nucleic acid 

concentration was relatively constant.  Nevertheless, the control experiment of the PCR had a 

band which clearly indicates that after the DNase treatment the total DNA is not completely 

digested, and there is DNA contamination.  

The structural mechanism of exosomes in the diverse RNA processing and degradation 

pathways is still poorly understood. For instance, it is unclear how and why exosomes 

degrade some RNA substrates in a processive manner but only trim some ribosomal RNA 

substrates. By finding the shape of the archaeal native DnaG protein and reconstituted Csl4-

exosome by SPEM, we believe that we made a considerable progress and have taken to the 

next level of solving the mystery of the structural mechanism of the exosome.  
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5.6. Nop5 as an interaction partner of the archaeal exosome 

We observed differences in the composition of the soluble and insoluble exosome. So far, 

little is known about direct protein interaction partners of the archeal nine subunit exosome 

other than DnaG [95] and EF1α (Chapter 4.1). The co-immunoprecipitation of the Nop5 with 

the soluble exosome led us to analyse further regarding this interaction between the exosome 

and protein.  

The Co-IP with anti-Nop5 antibody fished the methylation complex. The mass spectrometry 

analysis suggested that there are no exosomal subunits fished with the methylation complex. 

However, the strong signals in the Western blot analysis, by hybridizing with anti-Rrp41 and 

anti-DnaG antibodies, state that the exosome was co-purified along with the methylation 

complex. For the mass spectrometry analysis, there should be a certain amount of protein on 

the gel. It could be that the amount of exosome fished with the methylation complex by the 

Co-IP with anti-Nop5 antibody was not sufficient for the mass spectrometry analysis but it 

was sufficient to give a signal in the Western blot. Another reason could be that Nop5 

antibody was raised as a polyclonal antibody and polyclonal antibodies are not absolutely 

specific.  

The fact that the two complexes have an interaction via RNA molecules was ruled out 

because after the RNase treatment also the Nop5 antibodies was able to  fish out the exosome 

and DnaG antibodies could co-precipitate the methylation complex.  

In the control Western blot analysis anti-Nop5 antibody gave a signal for His-tagged DnaG 

protein and anti-DnaG antibody gave a signal for His-tagged Nop5 protein. It is important to 

note that these are polyclonal antibodies and the antibodies are raised against the protein with 

the His-tag. It could be that the cross signals occur due to recognition of the His-tag by the 

antibody. Since the attempt to cleave the His-tag was failed, it is better to have the Strep- 

tagged Nop5 recombinant protein and check for the specificity.  

Nop5 is an abundant protein in the S. solfataricus cell in the soluble and in the insoluble 

fractions (Figure 4.5.2D). However, in the depletion assays (to deplete the DnaG containing 

exosomes from the S100 fraction), we could see the decrease of the DnaG signal in the flow 

through, in the sequential Co-IP rounds with anti-DnaG-antibody (Figure 4.5.3). If anti-DnaG 

antibody gives an unspecific signal with Nop5, we should not observe the decrease of the 

DnaG signal because of the high abundance of the Nop5 protein in the cell.  
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Nop5 as an interaction partner of the exosome, was first identified in the S100 fraction [122]. 

Furthermore, we assumed that Nop5 is exchanged to DnaG from S100 fraction to P100 

fraction. DnaG is an integral part of the exosome and the ‘exchange’ assumption is ruled out. 

Therefore further experiments should be done to test whether Nop5 is present in insoluble 

fractions as well.   

It was not possible to reconstitute the Nop5 containing exosome (Hou, unpublished data), 

therefore the project was stopped. Nevertheless, it could be that Nop5 is interacting with the 

exosome via a chaperone, or the complete methylation complex is needed for the interaction.  

The interaction between Nop5 and the RNA-exosome is not yet clear. Further experiments 

should be conducted to confirm the interaction between the Nop5 and the exosome.  
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6. Summary 

RNA processing and degradation are essential processes in the cell.  The exosome of S. 

solfatarticus is able to degrade and polyadenylate RNA and is localized at the periphery of 

the cell. The in vitro reconstituted S. solfolobus exosome is built of a hexameric ring, 

containing Rrp41 ( the catalytically active subunit)  and Rrp42 to which a trimeric cap of 

RNA binding proteins Rrp4 or Csl4 is bound. Rrp4 confers poly (A) specificity to the 

exosome.  The archaeal DnaG protein which is homologues to the bacterial primase, and an 

Archaea specific exosomal subunit, directly binds to Csl4 protein in the exosome.  

The majority of Rrp41 and DnaG is detectable in the insoluble fraction and is localized at the 

cell periphery.  In this study, it was found that the soluble and insoluble exosomes have 

different compositions. The soluble exosome contains less DnaG and less Csl4 than the 

insoluble exosome which co-sediments with ribosomal subunits in sucrose density gradients. 

However, after the RNase treatment the rRNA was completely degraded but the exosome 

sedimentation pattern was not changed. Furthermore potential interaction partners such as 

EF1α and Nop5 were found in the soluble exosome. The soluble and the insoluble exosomes 

were both active. However, different compositions of the exosome in the cell and thereby the 

localization could apparently be a common system in prokaryotes to separate biochemical 

processes in cells without compartmentalization. 

In this work Csl4 was co-immunoprecipitated with the exosome using anti-Rrp4 antibodies 

and vice versa. This finding clearly says that heteromeric RNA-binding caps are present in 

vivo. The presence of the heteromeric RNA binding cap probably ensures its interaction with 

different transcripts and probably different interaction partners. To understand the mechanism 

for poly (A) specificity of Rrp4, an exosome with an RNA-binding cap composed of 

truncated Rrp4 lacking the KH domain was reconstituted and analyzed. The deletion of the 

KH domain decreased the degradation activity, but the poly (A) specificity was retained. This 

finding says that the KH domain of the RNA binding Rrp4 protein is not responsible for the 

poly (A) specificity.  

It was further found that the proportion of soluble exosome increases in the stationary phase. 

Moreover the exosome amount increases under the cold stress conditions. The amount of 

exosome in pH high, pH low and heat stress was constant.  These results strongly suggest that 
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archeal exosome plays an important role under cold stress and in the stationary phase for the 

survival of the cells.  

Homologous cloning system was used to express recombinant His-tagged exosomal proteins 

in S. solfataricus. It was possible to clone the genes rrp4, csl4 and dnaG, as well as the dnaG 

parts encoding the N terminal and the C terminal portions of the protein, in to the pMJ0503 

vector. However it was possible to transform and express only the full length DnaG-His6 in S. 

solfataricus M16. Overexpression was achieved in the stationary phase and the exosome 

containing DnaG-His6 and the native DnaG was isolated by Ni-NTA chromatography.  For 

the first time, the native DnaG which was directly isolated from S. solfataricus was observed 

as a dimer with 2 lobes and a central pore using SPEM. The structure of the protein may help 

to solve many functions delusions.  

 

Figure 6.1 Current model of the composition and the distribution of the exosome in S. solfataricus. 
Distribution of the exosomes of different composition in the cell at different growth phases: more soluble 
exosome is present in the stationary phase than in the exponential phase. Furthermore, the insoluble exosome 
contain more DnaG and less DnaG is present in the soluble exosome. Proteins such as EF1α, Nop5 interact with 
the soluble exosome. The model also says that there are heterotrimeric caps in the exosome. 
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7. List of abbreviations 

 

A  Adenine 

Ap  Ampicillin 

APS  Ammonium peroxodisulfate 

ATP  Adenosine triphosphate 

BSA  Bovines-Serum-Albumin  

bp  Base pairs 

C  Cytosine 

°C  Celsius 

cDNA  Copy-DNA 

Ci  Curie 

cpm  Radioactive disintegrations per minute (counts per minute) 

DNA  Deoxyribonucleic acid 

dNTP  Deoxyribonucleoside triphosphate 

ddH2O  Double-distilled water  

ds  Double strands 

EDTA  Ethylenediaminetetraacetic 

et al.  And others 

fmol  Femtomol 

G  Guanine 

g  Grame 

g  Gravity 

h  Hour 
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HEPES 4 - (2-hydroxyethyl)-1-piperazine ethanesulphonate 

IPTG  isopropylthiogalactoside 

k  Kilo 

kb  Kilobases (pairs) 

kDa  Kilo Dalton 

Km  Kanamycin 

l  Liter 

M  Molar 

m  Milli 

µ  Micro 

mA  Milliamperes 

min  Minute 

mRNA  Messenger RNA 

MW  Molecular weight 

Ni-NTA Ni-NTA-Agarose 

nt  Nucleotide 

n  Nano 

OD  Optical density 

PAA  Polyacrylamide 

PBS  phosphate buffered saline 

PAGE  Polyacrylamide gel electrophoresis 

pmol  Pikomol 

PPi  pyrophosphate 

RNase  Ribonuclease  

RNA  Ribonucleic acid 

rpm  Revolutions per minute 
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rRNA  Ribosomal RNA 

RT  Room temperature 

SDS  Sodium dodecyl sulfate  

sec  Seconds 

Sm  Streptomycin 

snRNAs Small nuclear RNAs 

snoRNAs  Small nucleolar RNAs 

ss  Single stranded 

T  Thymine 

Taq  Thermus aquaticus 

TAE  Tris-Acetate- EDTA buffer 

TBE  Tris-Borate-EDTA buffer 

TEMED N, N, N ', N'-tetramethylethylenediamine 

Tris  Tris (hydroxymethyl) aminomethane 

tRNA  Transfer RNA 

U  Unit (for enzymes) 

U  Uracil 

UDP  Uridine-5'-diphosphate 

UMP  Uridine-5'-monophosphate 

UV  Ultraviolet 

V  Volt 

v/v  Volume /volume ratio 

W  Watt 

w/v  Weight / volume ratio 
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8. Appendix  

Figure No. Accession Name Mascot 
Score 

Peptides 
identified Covered sequence 

[%] 

4.1.2A gi|15897164 elongation factor 1-alpha 
[Sulfolobus solfataricus 
P2] 

70.6 8 22.06896552 

4.1.2A gi|284173389 DNA primase [Sulfolobus 
solfataricus 98/2] 

162 16 41.04477612 

4.1.4A gi|15897164 elongation factor 1-alpha 
[Sulfolobus solfataricus 
P2] 

92 9 23.67816092 

4.1.4A gi|284173389 DNA primase [Sulfolobus 
solfataricus 98/2] 

186 15 47.26368159 

4.1.4B gi|261600946 TIP49 domain protein 
[Sulfolobus solfataricus 
98/2] 

102 13 38.9380531 

4.1.4B gi|284173389 DNA primase [Sulfolobus 
solfataricus 98/2] 

272 25 70.64676617 

4.2.4A gi|15897237 exosome complex RNA-
binding protein Csl4 
[Sulfolobus solfataricus 
P2] 

149 12 57.14285714 

4.2.4A (left) gi|284174963 exosome complex RNA-
binding protein Rrp4 
[Sulfolobus solfataricus 
98/2] 

174 10 44.93927126 

4.2.4A (left) gi|15897237 exosome complex RNA-
binding protein Csl4 
[Sulfolobus solfataricus 
P2] 

254 17 80.42328042 

4.2.4A (right) gi|284174963 exosome complex RNA-
binding protein Rrp4 
[Sulfolobus solfataricus 
98/2] 

142 13 48.58299595 

4.2.4A (right) gi|15897237 exosome complex RNA-
binding protein Csl4 
[Sulfolobus solfataricus 
P2] 

78.3 8 44.97354497 

4.2.4B(left) gi|284174963 exosome complex RNA-
binding protein Rrp4 
[Sulfolobus solfataricus 
98/2] 

123 8 36.03238866 

4.2.4B (left) gi|15897237 exosome complex RNA-
binding protein Csl4 
[Sulfolobus solfataricus 
P2] 

183 15 63.49206349 
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Appendix 1. Identification of protein bands by mass spectrometry  

4.2.4B (right) gi|284174963 exosome complex RNA-
binding protein Rrp4 
[Sulfolobus solfataricus 
98/2] 

76.6 7 29.55465587 

4.2.4B (right) gi|15897237 exosome complex RNA-
binding protein Csl4 
[Sulfolobus solfataricus 
P2] 

70.3 5 33.33333333 

4.4.4E gi|284173389 DNA primase [Sulfolobus 
solfataricus 98/2] 

199.0 17 49.8 

4.4.4E gi|284173389 DNA primase [Sulfolobus 
solfataricus 98/2] 

195.0 21 56.5 

4.4.4E gi|299689088 Chain A, Crystal Structure 
Of The S. Solfataricus 
Archaeal Exosome 

73.1 8 30.3 

4.4.4E gi|284174963 exosome complex RNA-
binding protein Rrp4 
[Sulfolobus solfataricus 
98/2] 

89.4 7 32.8 

4.4.4E gi|336113906 RNA chaperone Hfq 
[Bacillus coagulans 2-6] 

74.6 4 53.9 

4.5.2A gi|284173389 DNA primase [Sulfolobus 
solfataricus 98/2] 

250 18 52.4 

4.5.2A gi|284173389 DNA primase [Sulfolobus 
solfataricus 98/2] 

235 19 57.21 
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Appendix 2. Detection of exosomal subunits in S. solfataricus cell-free extract before and 
after stress by Western blot analysis. The comparison of the Western blot analysis of changes 
in the amount of the total protein of the exosomal subunits under A) pH low, B) pH high and 
C) heat shock conditions. Equal weight (µg) amounts of protein were separated in 12% SDS-
PAGE, blotted and hybridized with sera directed against the exosomal subunits indicated on 
the right side of the panels. Quantification of the of signals are measured and indicated on the 
tables on the right side. The chemiluminescent signals in the Western blot was detected by a 
digital imaging system in fusion X4 machine and signal intensities were quantified by the 
fusion X4 software. The intensities are divided by 1000 and rounded to the nearest decimal 
point. 

A 

B 

C 
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Appendix 3 . A and B: Repetition experiments of purification of the exosome by Ni –NTA 
chromatography directly from S. solfataricus. The elution fractions were separated in a 12% 
SDS-PAGE gel and silver stained.  W5,W6 washing fractions, W7 last washing fraction, M, 
maker in kDa.  The last washing fraction did not contain any proteins.  

 

 

Appendix 4. Co-IP of the Nop5 protein from the S100 fraction of the stationary phase S. 
solfataricus cells by anti-Nop5 antibodies and anti-Rrp41 antibodies. The silver stained gel 
with the input (S100), the flow through (FT) and the washing fractions, W1, first washing 
fraction, W3 washing fractions, W10 last washing fraction, E, elution fraction, M, maker in 
kDa. 
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