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Abstract

An important task of human visual cognition is to make inferences about properties of

objects. One such property is an object’s causal history: what happened to the object in its

past (e.g., “this paper has been folded”). There is relatively little research on whether and

how we make such inferences. We took photographs of objects from six different materials

(‘wax’, ‘aluminum foil’, ‘gold foil’, ‘chicken wire’, ‘putty’, ‘cardboard’) transformed by one of

four shape-altering transformations (‘folded’, ‘bent’, ‘crumpled’, ‘twisted’). By varying execu-

tion of transformation and viewpoint, we obtained 30 images of each material/transformation

combination (720 images). We asked different groups of participants to: (1) name transfor-

mations and materials, (2) rate images with respect to the extent they belonged to each

transformation or material class, and (3) classify images into the four transformation clas-

ses. Our results show that participants can infer transformations from object shape–with

accuracy being modulated by object material. This inference of causal history from observed

object shape shows that we can distinguish between intrinsic (material) and extrinsic (trans-

formation) properties of the object. The separation of observed shape features by their

causal origin (‘shape scission’) presumably involves both perceptual and cognitive abilities.

1. Introduction

An important capability of visual cognition is to make inferences about the properties of per-

ceived objects. This is challenging because the proximal stimulus (e.g., retinal image) is the

result of complex interactions between intrinsic and extrinsic properties. Intrinsic properties

are those that tend to define what the object is; they ‘belong to’ the object and tend to persist

over time; and they tend to originate from the object itself rather than external events. Exam-

ples include the object’s material composition, its typical shape, and for animate agents, self-

induced motion. In contrast, extrinsic factors or events are in some sense circumstantial, vari-

able, and come from outside the object. Examples include position, orientation, lighting condi-

tions, viewpoint, motion caused by outside events or, as we focus on here, shape-transforming

insults that deform an object (e.g., crushing, denting). Of course, not all properties can be

cleanly divided into these two classes. For example, ‘usefulness’ can be thought of as relational

property that depends on both internal properties of objects and external circumstances. Nev-

ertheless, as the intrinsic properties are those that usually define what an object is and how it
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typically behaves, whereas extrinsic properties do not, it is widely agreed that one of the main

goals of perception is to distinguish between intrinsic and extrinsic properties. Here, we focus

on whether the human visual system can distinguish between material (an intrinsic property)

and ‘causal history’ (specifically, the application of shape-altering transformations to an object,

an extrinsic property).

Potentially, many cues could be used to make inferences about intrinsic or extrinsic proper-

ties of objects; for example, the surface texture could tell us whether the object is made from

wood or leather (allowing inferences about the internal property of material), or the color of a

bread could tell us about whether it has been toasted (allowing inferences about the external

property of causal history; e.g., [1, 2]). One of the most important cues for making inferences

about object properties is shape (e.g., [3–5]). Artists create powerful demonstrations of the

importance of shape by creating mismatches in perceived internal and external properties [6].

In Fig 1, we show a selection of sculptures in which objects made from rigid material (granite

and glass) feature shape cues indicating causal histories that are typically only found in non-

rigid materials (‘folded’ and ‘knitted together’).

However, there is relatively little experimental research about if and how we use object

shape to make inferences about the causal history of objects [2, 7–15]. This is surprising given

that every object gets its shape from some transformation applied to matter, and that identify-

ing and understanding these transformations is potentially important for a wide range of

perceptual and cognitive tasks, for example, for identifying objects across diverse viewing con-

ditions or organisms across growth (object constancy) [16], predicting future behavior and

motor affordances of objects, or predicting plausible variants of objects. Specifically, identify-

ing and understanding transformations has important implications for guiding our behavior

as it may facilitate inferences about object properties, such as compliance or fragility, as well as

in anticipating likely future behaviors (e.g., predicting how a deformable object will move,

bounce and change shape) and motor affordances (e.g., working out how to grasp and handle

objects). For example, by inferring that an object has been twisted, we can make an educated

guess about its internal properties (e.g., it is rather malleable and does not fracture easily) and

potentially even material category (e.g., it is more likely to be a sponge brick than a real brick),

which can guide us in handling the object, such as the selection of grasp locations and grip and

load forces. Indeed, an object’s function, or suitability for performing some task, may change

Fig 1. Examples of objects in which internal (material) and external (causal history) properties do not match. Object materials are granite and glass,

respectively. Images are reprinted with permission (from left to right): ‘Sin tı́tulo’ by José Manuel Castro López, 2010; ‘Bent’ by Carol Milne, 2014.

https://doi.org/10.1371/journal.pone.0202115.g001
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critically depending on the transformations that have previously been applied to it: a bloated

can indicates the food inside has gone off; a cracked glass is unsuitable for drinking; a crum-

pled sheet of paper is better than a flat one for playing catch, but worse for writing a letter.

Indeed, were transformations not important concepts, we most likely would not have words

for them.

There is some evidence to suggest that we can make inferences about causal history–most

likely by parsing and interpreting the causally significant features of shapes [11, 14, 17]. For

example, Pittenger and Todd [12] showed participants a sequence of three drawings (human-

oid bodies transformed by different geometric transforms) and asked them to describe what

process produced this sequence. They found that only transformations inducing changes in

head-to-body ratio (‘tapered stretch’) were described by most of the participants as growth.

Pinna [18] demonstrates that causal history can also be inferred from single examples by pro-

viding many variations on the line drawing of a simple square, all of which lead to inferences

of a different causal history (‘happenings’ in the square’s past, see Fig 19 in [18]). Do these

inferences depend on the transformed object being simple (like a square) or familiar (like a

line drawing)?

In a series of experiments with single presentations of unfamiliar/novel objects, we have

shown that participants tell apart bitten from whole objects by relying on specific shape cues

[14] and that the interpretation of concavities as bites affects judgments about symmetry axis

and about the front and back of objects [8]. Chen and Scholl [9] present evidence suggesting

that such effects of causal history might happen at the level of visual processing (rather than at

the level of cognition) by showing that observers perceived illusory motion only when a change

in the contour of an object was in line with a plausible causal history (i.e., a physical intru-

sion)–but not when it was a simple superposition of the ‘intruding’ shape. Finally, Spröte and

Fleming [7] showed that participants can use their inferences about causal history to determine

and discount transformations that were applied to novel objects–participants were able to

match the degree of bending between different objects and to identify objects across different

degrees of bending. Again, this suggests a ‘scission’ of the representation of object shape into

internal and external contributions, somewhat akin to the separation of retinal luminance val-

ues into distinct causal layers in the perception of transparency and reflectance [19–22].

However, even though there are some studies broaching the topic of causal history of

objects, there is no direct evidence for visual identification of transformations from real-world

objects across different materials. Here, we investigate how well we can identify the causal his-

tory of real objects and compare it to how well we can identify object material. To this end, we

took photographs from samples of six different materials (wax, aluminum foil, gold foil, wire,
putty, cardboard), transformed by four different physical transformations (twisted, crumpled,

bent, folded). Then, we asked participants to (i) freely name the materials and transformations

(Experiment 1), (ii) rate the extent to which they perceived each stimulus to be from one of the

materials or produced by one of the transformations (Experiment 2), and (iii) to identify the

transformations in a multiple-choice task (Experiment 3). Note that we chose transformations

affecting object shape without at the same time affecting material properties (i.e., ‘folding’ vs.

‘burning’ or ‘rusting’).

We hypothesize that participants should be able to name materials and transformations,

and identify materials and transformations in the subsequent experiments, above chance per-

formance. If participants can do these tasks, we can conclude that they can visually identify

certain kinds of transformation. The crossing of all levels of material and transformation lets

us investigate the effect of material on the identification of transformations, and vice versa.

This allows us to test if there are interactions between inferences about internal and external

properties of objects. Even though our sample of stimuli is limited to particular sets of
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materials and transformations, we can still derive some general characteristics about the per-

ception of causal history.

2. Experiment 1: Free naming task

2.1 Materials and methods

2.1.1 Participants. 15 students from the Justus-Liebig-University Giessen (7 female,

M = 29.6 years), Germany, with normal or corrected vision participated in the experiment for

financial compensation. All participants provided written informed consent, were debriefed

after the experiment, and were treated according to the ethical guidelines of the American Psy-

chological Association. All testing procedures were approved by the ethics board at Justus-Lie-

big-University Giessen and were carried out in accordance with the Code of Ethics of the

World Medical Association (Declaration of Helsinki).

2.1.2 Stimuli. Stimuli were photographs of real samples of six different materials (wax,

aluminum foil, gold foil, wire, putty, cardboard), transformed by four different transformations

(twisted, crumpled, bent, folded). These were selected out of a larger set of materials and trans-

formations to enable a factorial design, such that all tested transformation could be applied to

all tested materials. We varied the execution of the transformation (e.g., different types of fold-

ing) and viewpoint, yielding 30 stimuli per combination of material and transformation (6 ×
4 × 30 = 720 stimuli in total; see Fig 2 for example stimuli). Note that we did not use a stan-

dardized procedure for transformation execution or viewpoint variation as both were merely

ways to increase stimulus number and variability and were not intended to be analyzed as an

experimental variable. Objects were placed on a homogeneous white background and illumi-

nated under standardized light conditions with a normlight, and then photographed using a

Canon D600 camera with the standard kit lens in AV-mode with an ISO of 400 and an aper-

ture of F 6.3. The resulting images were color-balanced, cropped and re-sized so that the object

filled approximately the same image area across all images. All stimuli are available at https://

doi.org/10.5281/zenodo.1244096.

2.1.3 Procedure. For Experiment 1, we chose for each participant 24 different objects

defined by the combination of six materials and four transformations with random execu-

tion/viewpoint, so that 360 stimuli out of the 720 available stimuli were part of this experi-

ment. Stimuli were presented on a white background on a Dell U2412M monitor at a

resolution of 1920 × 1200 pixels. Height and width of each stimulus on screen was approxi-

mately 30 × 22 cm (about 34.38 × 25.21˚ of visual angle at a monitor distance of about 50

cm). In each experimental trial, participants were presented with a single stimulus in the cen-

ter of the screen and were asked to name (1) the object material, as well as (2) the process that

formed the current shape of the object (i.e., causal history): “In the following, you will be pre-
sented with objects of different materials, that were brought into their current shape by a specific
process or procedure. Your task is to describe or name (1) the material, and (2) the process or
procedure. If you can think of multiple responses, provide all of them.” The presentation order

of stimuli was randomized. Overall, each participant responded to four stimuli for each of

the materials (across transformations), and to six stimuli for each of the transformations

(across materials).

2.1.4 Analysis. For presentation in this paper, we translated the naming data from Ger-

man to English. Then, we counted frequency of names for materials and causal history (Fig 3

and S1 Fig for raw data). As we are interested in the relative frequency with which participants

correctly identified materials and causal history and to what extent they mixed up the different

materials/histories, we determined confusion matrices based on relative percentages (Fig 4).

All data are available at https://doi.org/10.5281/zenodo.1244096.
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2.2 Results and discussion

In Fig 3, we show word clouds for the raw naming data. For all materials but wax, the major-

ity of naming responses was that of the actual material (Fig 3A). Equivalently, for all

Fig 2. Example stimuli for all combinations of the six materials (rows) and four transformations (columns).

https://doi.org/10.1371/journal.pone.0202115.g002
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transformations but bent, the majority of naming responses was that of the actual transfor-

mation (Fig 3B).

We also plot confusion matrices to visualize the specific pattern of errors (Fig 4), with actual

materials/transformations plotted against perceived materials/transformations. As we plot

Fig 3. Word clouds for raw free naming task data for (A) materials, and (B) transformations. Size and saturation of naming responses is based on their

relative frequency. For bar plots of raw frequencies see S1 Fig.

https://doi.org/10.1371/journal.pone.0202115.g003
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percentages of all responses, including those that are not included in the confusion matrices

(e.g., material: plastic; transformation: squeezed together), values in the rows/columns do not

add up to 100%. For performance evaluation, we calculate correlations between the matrices

and a perfect prediction matrix (all zeros but a diagonal of ones). Additionally, we report as a

performance measure the inverse distance between participant’s response matrices and the

prediction matrix perf = 1-mean(abs(responseMatrix-predictionMatrix) with perf = [0, 1] where

lower values indicate lower performance and higher values indicate higher performance with

chance level perf = 0.5. For material naming, performance of participants was very close to

optimal (R2 = 0.99; perf = 0.99, 95% CI [0.98, 1.00]; compared to 100,000 bootstrapped random

prediction matrices: R2 = 0.00; perf = 0.51, 95% CI [0.41, 0.61]), and for transformation nam-

ing, performance was also clearly above chance (R2 = 0.91; perf = 0.90, 95% CI [0.84, 0.97];

compared to 100,000 bootstrapped random prediction matrices: R2 = 0.00; perf = 0.57, 95% CI

[0.43, 0.72]).

3. Experiment 2: Rating task

3.1 Materials and methods

3.1.1 Participants. Two new group of 15 students from the Justus-Liebig-University

Giessen (8 female, M = 26.5 years; and 11 female, M = 28.1 years), Germany, with normal or

Fig 4. Confusion matrices for the results of the free naming tasks [percentages] for (A) material naming and (B) transformation naming. Actual materials/

transformations on the y axis are plotted against perceived materials/transformations on the x axis. Note that we plot percentages of all responses, including those

that are not included in the confusion matrices (e.g., material: plastic; transformation: squeezed together), so that values in the rows/columns do not add up to

100%. R2 values indicate how much matrices resemble a perfect prediction matrix (see text for details).

https://doi.org/10.1371/journal.pone.0202115.g004
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corrected vision participated in the experiment for financial compensation. All other details

were the same as in Experiment 1.

3.1.2 Stimuli. Stimuli were the same as in Experiment 1.

3.1.3 Procedure. For Experiment 2, each participant was presented with 168 stimuli

defined by the combination of six materials, four transformations and seven executions/view-

points. Details of presentation were the same as in Experiment 1. Each of the 168 stimuli were

presented to each participant six (first group) or four (second group) times, in six or four

blocks of 168 trials. In each trial, participants were presented with a single stimulus in the cen-

ter of the screen and a rating bar at the bottom of the screen.

In the first group of 15 participants, the rating bar was labeled with the name of one of the

materials (‘wax’, ‘aluminum foil’, ‘gold foil’, ‘wire’, ‘putty’, ‘cardboard’), and its ends with “not

true” and “true”. In the second group of 15 participants, it was labeled with the name of one of

the transformations (‘twisted’, ‘crumpled’, ‘bent’, or ‘folded’) and its ends with “not true” and

“true”. They received the following instructions: “Look closely at each object and judge the
extent to which you think it is made from the given material. Use the mouse to choose a position
on the rating bar. Take as much time as you need for an accurate response.” (first group); and

“Look closely at each object and judge the extent to which you think it was brought into its current
shape by the given process. Use the mouse to choose a position on the rating bar. Take as much
time as you need for an accurate response.” (second group).

Within each of the blocks, participants rated all of the stimuli with respect to one of the

material/transformation names (e.g., in the first block, a given participant rated all 168 stimuli

according to the extent to which they appeared twisted). The order of blocks and the presenta-

tion order of stimuli within blocks was randomized.

3.1.4 Analysis. For the results of the rating task, we looked at the correlations between the

matrices and a perfect prediction matrix (cf. Experiment 1). Additionally, we calculated for

each group a repeated-measure ANOVA (rmANOVA) for rating accuracy with factors of

material (6) and transformation (4) within blocks. Ratings were averaged across variations in

execution of transformations and viewpoint. We report Huynh-Feldt-corrected degrees of

freedom and p values. All data are available at https://doi.org/10.5281/zenodo.1244096.

3.2 Results and discussion

For material ratings, performance of participants was very close to optimal (R2 = 0.99; perf =

0.96, 95% CI [0.95, 0.97], Fig 5; compared to 100,000 bootstrapped random prediction matri-

ces: R2 = 0.00; perf = 0.54, 95% CI [0.44, 0.64]). The average correlation between all individual

confusion matrices (calculated per material, material rating, and transformation) was r = 0.92,

indicating high consistency between observers. The rmANOVA showed that accuracy was by

trend affected by material [F(1.37,19.11) = 3.84, p = .054], with post-hoc contrasts showing

that this was driven by the lower performance for wax compared to the other materials (S1

Table). There was no effect of transformation (S2 Table) or an interaction of material and

transformation.

For transformation ratings, performance was also clearly above chance (R2 = 0.81;

perf = 0.81, 95% CI [0.73, 0.88], Fig 6; compared to 100,000 bootstrapped random prediction

matrices: R2 = 0.00; perf = 0.64, 95% CI [0.50, 0.77]). The average correlation between all indi-

vidual confusion matrices (calculated per transformation, transformation rating, and material)

was r = 0.78, indicating a substantial consistency between observers. The rmANOVA showed

that accuracy was affected by the type of transformation [F(1.68,23.49) = 26.11, p< .001],

mainly driven by the lower performance for bent (and somewhat by the lower performance

for folded) compared to the other transformations (S3 Table). Also, there was an effect of
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material [F(2.37,33.19) = 6.10, p = .004], driven by the higher performance for cardboard and

wax (S4 Table) compared to the other materials, as well as an interaction of transformation

and material [F(8.60,120.35) = 8.64, p< .001], where for example performance for bent was

especially low with gold foil and aluminum foil compared to with other materials (S5 Table).

Another way to look at the data is in terms of the extent to which participants can tease

apart the material properties and transformation, in the two complementary tasks with the

same stimuli (material and transformation ratings). As we have multiple ratings for every stim-

ulus, we can consider each stimulus as a point in the high-dimensional space defined by the set

of responses. To visualize these, we performed a principal component analysis (PCA) on

responses in the material rating task, averaged per transformation, transformation rating, and

material (Fig 7), and plotted the rating responses in the space spanned by the first three princi-

pal components. The plot reveals that the data are systematically organized when labeled by

material (Fig 7A), but not at all when labeled by transformation (Fig 7B), indicating that judg-

ments are dominated by the material class of the stimuli.

This is exactly the other way around for the transformation instructions (Fig 8): when plot-

ting the PCA solution for the first three factors, data are neatly organized when labeled by

transformation (Fig 8B) but not when labeled by material (Fig 8A).

Together, Figs 7 and 8 indicate that participants are excellent at separating the internal and

external properties of objects, and can selectively respond to either material or transformation

with negligible cross-talk between the two.

Fig 5. Confusion matrices for the results of the material rating task [accuracy] for (A) material ratings and (B) material ratings per transformation class.

Actual materials on the y axis are plotted against perceived materials on the x axis. R2 values indicate how much matrices resemble a perfect prediction matrix (cf.

Experiment 1).

https://doi.org/10.1371/journal.pone.0202115.g005
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Finally, to figure out which features participants might use to infer transformations, we sub-

jected all of our 720 stimuli to a final experiment, in which we specifically sought to identify

from the complete stimulus set those that were most often mislabeled (i.e., where participants

most often inferred a different transformation from the physical one).

4. Experiment 3: 4-way categorization task

4.1 Materials and methods

4.1.1 Participants. A new group of 15 students from the Justus-Liebig-University Giessen

(9 female, M = 31.0 years), Germany, with normal or corrected vision participated in the

experiment for financial compensation. All other details were the same as in Experiment 1.

4.1.2 Stimuli. Stimuli were the same as in Experiment 1.

4.1.3 Procedure. For Experiment 3, each participant was presented with all 720 stimuli

defined by the combinations of (6) materials, (4) transformations and (30) executions/view-

points. Details of presentation were the same as in Experiment 1. In each experimental trial

participants were presented with a single stimulus in the right half of the screen and the four

written transformation names in the left half of the screen (‘twisted’, ‘crumpled’, ‘bent’, and

‘folded’). For each stimulus, they choose the transformation fitting the stimulus most by tick-

ing the box next to the name: “Look closely at each object and judge how you think the object
was brought into its current shape. Use the mouse to choose between four options: ‘twisted’,

Fig 6. Confusion matrices for the results of the transformation rating task [accuracy] for (A) transformation ratings and (B) transformation ratings per

material class. Results are averaged across observers and execution of transformation and viewpoint. Actual transformations on the y axis are plotted against

perceived transformations on the x axis. R2 values indicate how much matrices resemble a perfect prediction matrix (cf. Experiment 1).

https://doi.org/10.1371/journal.pone.0202115.g006

Identifying shape transformations

PLOS ONE | https://doi.org/10.1371/journal.pone.0202115 August 16, 2018 10 / 20

https://doi.org/10.1371/journal.pone.0202115.g006
https://doi.org/10.1371/journal.pone.0202115


Fig 7. PCA for the results of the material rating task. (A) shows the explained variance as a function of the number of PCA components. We also plot the

rating responses in PCA space, labeled by (B) material, or (C) transformation. Single dots show responses averaged per transformation class and circles show grand

averages of these responses.

https://doi.org/10.1371/journal.pone.0202115.g007

Fig 8. PCA for the results of the transformation rating task. (A) shows the explained variance as a function of the number of PCA components. We also plot

the rating responses in PCA space, labeled by (B) material, or (C) transformation. Single dots show responses averaged per material class and crosses show grand

averages of these responses.

https://doi.org/10.1371/journal.pone.0202115.g008
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‘crumpled’, ‘bent’, and ‘folded’. Select the option you consider the most accurate.”. The presenta-

tion order of stimuli was randomized.

4.1.4 Analysis. For the results of the 4-way categorization task, we looked at the correla-

tions between the matrices and a perfect prediction matrix (cf. Experiment 1) and calculated a

rmANOVA for rating accuracy with factors of material (6) and transformation (4). Ratings

were averaged across variations in execution of transformations and viewpoint. We report

Huynh-Feldt-corrected degrees of freedom and p values. All data are available at https://doi.

org/10.5281/zenodo.1244096.

4.2 Results and discussion

Again, performance of participants was clearly above chance in identifying the physical

transformation (R2 = 0.94; perf = 0.93, 95% CI [0.88, 0.98], Fig 9; compared to 100,000 boot-

strapped random prediction matrices: R2 = 0.00; perf = 0.55, 95% CI [0.40, 0.70]). The average

correlation between all individual confusion matrices (calculated per transformation and

material) was r = 0.92, indicating high consistency between observers. The rmANOVA repli-

cated the findings from Experiment 2. Accuracy was affected by the type of transformation

[F(1.51,21.07) = 30.82, p< .001], again driven by the lower performance for bent (and some-

what by the lower performance for folded) compared to the other transformations (S6 Table).

The effect of material [F(3.44,48.13) = 3.39, p = .021] was driven by the lower performance

for aluminum foil (S7 Table). Finally, we found an interaction of transformation and material

Fig 9. Confusion matrices for the results of the 4-way categorization task [accuracy] for (A) transformation choices and (B) transformation choices per

material class. Results are averaged across observers and execution of transformation and viewpoint. Actual transformations on the y axis are plotted against

perceived transformations on the x axis. R2 values indicate how much matrices resemble a perfect prediction matrix (cf. Experiment 1).

https://doi.org/10.1371/journal.pone.0202115.g009
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[F(5.06,70.88) = 20.78, p< .001], where for example performance for bent was lower with alu-

minum foil, and for folded was lower with putty (S8 and S9 Tables).

5. General discussion

We set out to test whether observers can identify transformations of real-world objects from

photographs (twisted, crumpled, bent, folded), across different materials (wax, aluminum foil,
gold foil, wire, putty, cardboard). To this end, we asked participants to name materials and

transformations, rate the extent to which they perceived each stimulus to be from one of the

materials or produced by one of the transformations, and finally to identify transformations in

all of our stimuli in a multiple-choice task.

5.1 Perceiving materials

In line with previous work [23], we find that materials were mostly named with high consis-

tency across participants–with the exception of ‘wax’ which was often mistaken for some plas-

tic material. As we use a range of visual features to identify materials (including shape, texture

and color [2, 24]), the confusions might be driven by the fact both wax and plastic are rather

heterogeneous material classes, with overlapping internal properties as well as no strongly

established stereotypical color. It would be interesting to test the extent to which using typical

and atypical colors could alter performance. We would hypothesize that performance for

materials with a strongly established stereotypical color would be more strongly affected by

changing the color than materials which are routinely encountered in a wide variety of colors.

5.2 Perceiving transformations

We find that even in free naming of transformations there is a remarkable consistency across

participants: most participants describe twisted objects as having been twisted, crumpled

objects as having been crumpled, and folded objects as having been folded. However, this is

different for bent objects: even though they were also often described as having been bent,

more often they were described as having been kinked or folded.

This shows that we can identify external properties of objects (i.e., their causal history) just

as we can identify internal properties (i.e., their material) from photographs. In other words,

when transformations leave salient visible traces in an objects’ appearance, we can identify

those transformations [8, 10, 11, 18]. To put this in different terms, while a visual object cate-

gory, such as ‘cup’, is the visual analogue of a concrete noun, a visually identified transforma-

tion—like ‘twisted’—is the visual analogue of an adjective or verb. This is supported by

evidence from the child development literature. For example, 2-year-old children seeing

dynamic scenes (e.g., a man waving a balloon) tend to map novel nouns (e.g., ‘larp’) to object

categories (e.g., balloons) and novel verbs (e.g., ‘larping’) to event categories (e.g., waving

event) [25]. Equivalently, 3-year-old children group objects based on superordinate character-

istics (e.g., animals vs. food) when objects are labelled with nouns (e.g., ‘momos’), but group

objects based on subordinate characteristics (e.g., relying on colour or texture; red grapes vs.

green grapes) when objects are labelled with adjectives (e.g., ‘mom-ish’ ones) [26]. Note that

these differences could also be used to instruct observers: when asking them to judge objects

labelled with adjectives (‘red’, ‘furry’), they might tend to rely on object material (using color

and texture cues); when asking them to judge objects labelled with passive verbs (‘twisted’,

‘crumpled’), they might rely on object transformations (using shape features to infer the

dynamic event history).

We also found that identification of causal history was not uniform across transformations:

when testing for confusions between physical and perceived transformations, we find more
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confusions between bending and folding compared to between the other transformations

(Experiments 2 and 3). This presumably reflects inherent ambiguities in the effects of these

transformations on observed shape, which we discuss below.

Probably the most important findings of the experiments are those reported in Figs 7 and 8,

namely that the visual system can tease apart the complementary contributions of material and

transformation to the observed image. The stimuli were identical in the two tasks—only the

instructions differed, and depending on whether the participants judged material or transfor-

mation, the stimuli were grouped accordingly. This suggests that participants likely use distinct

and complementary features for making these two kinds of judgment. Again, there is evidence

from child development research that children can access different levels of shape representa-

tion for categorization, depending on task and context. When presented with one standard

object of a particular global shape and texture, 4-year-old children group a novel object based

on shape rather than texture; however, when presented with two standard objects of different

shapes but same textures, they group a novel object based on texture rather than shape [27].

Equivalently, we argue that we are able to access different shape features, depending on the

task at hand: when judging transformations, participants might use global shape features,

while when judging materials, participants might use local, texture-like shape features.

Of course, there are limits to teasing apart contributions of material and transformation.

All physical objects and materials end up with particular shapes due to some kind of generative

process (such as manufacture but also biological growth or self-organization) and often the

transformations involved do not leave traces in the shape of the object. For example, it is very

difficult for most of us to infer the processes and forces that were applied to a computer key-

board to bring it into its current form. The same is true for many other objects. Indeed, for

familiar objects, it seems likely that transformations are only perceived as such when they rep-

resent a deviation from the typical shape characteristics of the class: the rim and opener of a

crumpled can are not seen as due to transformations, but the creases caused by the crumpling

process are. At the same time, it is often still possible to infer intrinsic (e.g., material) proper-

ties of objects even when we are not subjectively aware of the causal history that brought them

into being. There are also (more infrequent) cases in which it is the other way around. For

example, we might see something twisted without being able to tell whether the material is

wool or polyester. Finally, the inference of intrinsic and extrinsic properties can also inform

each other. When we see a piece of cloth flapping in the wind, the type of shape transformation

tells us whether the textile is a stiff waxed cloth or flexible silk.

5.3 Diagnostic shape features likely play a central role in the pattern of

responses

Much as we use particular visual features to identify materials (e.g., texture, color [2, 24]), it

seems that observers use particular shape features when identifying transformations. Even

without a formal (image-computable) analysis, this becomes obvious when inspecting those

stimuli where participants most often inferred the wrong transformation (Fig 10).

Looking at the stimuli in Fig 10 and at stimuli from which the transformation was identified

correctly by the majority of participants (for example those in Fig 2), we derived a tentative list

of shape features that define the respective transformations (Table 1). Confusions between

transformations occur when an object that was transformed by a particular physical transfor-

mation does not express the shape features which perceptually define that transformation–or

rather expresses features of a different transformation. For example, bent objects are perceived

as folded when the object’s main axis does not follow a smooth curvy path, but rather when

the object is distinguished into parts that meet at sharp angles (third row in Fig 10). Vice versa,
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Fig 10. Example findings of Experiment 3. We show stimuli where a substantial percentage of participants inferred the wrong transformation (rows).

https://doi.org/10.1371/journal.pone.0202115.g010

Table 1. Transformations and corresponding local and global shape features.

shape features

transformations locally globally

twisted parallel spiralling creases elongated shape
crumpled many, non-parallel creases spherical shape

bent no sharp angles main axis follows smooth curvy path
folded distinct fold(s) parts meeting at (acute) angles at local folds

The list is not intended to be anyway exhaustive but should rather exemplify how a description of physical

transformations might be reflected in perceptually relevant shape features.

https://doi.org/10.1371/journal.pone.0202115.t001
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folded objects are perceived as bent when their main axis follows a smooth curvy path, and

they do not show distinct folds (fourth row in Fig 10).

We suggest that the perception of transformation is similar to object perception in the

sense that there are prototypical transformations (much as there is a prototypical bird, with

characteristics that are typical of birds). For example, a prototypical crumpling is defined by

shape features that are obtained when crumpling is applied to a material like paper (rather

than those obtained when ‘crumpling’ an atypical material, like a piece of wood). This idea of

prototypical transformations probably has two components. First, some transformations are

simply more frequently applied to certain materials, so the prototypical form of the transfor-

mation is associated with the features that emerge when the transformation is applied to those

materials. Second, it is also the case that transformation-diagnostic features are expressed

more saliently when the transformation is applied to some materials and objects than others.

For example, a runny fluid, like yoghurt, will not retain the traces of being stirred for very

long, while a thick paste, like cream cheese will.

Also, note that physical transformations are defined by a sequence of forces applied to an

object. We suggest that for manual execution, this sequence is rather stereotypical so that in

addition to identifying shape features that are typical for a particular transformation, it may

also be possible to identify the sequence of hand and finger movements together with the

applied forces that are typically used to realize a transformation. In other words, in addition

to identifying the class of transformation, the observer may also be able to recover the causal

history sequence [11]. For example, a typical bending transformation involves holding an

object at two distant points along its main axis and then moving those together by applying

force (Fig 11A), while a typical type of folding involves the material being bent over the two

thumbs and then being creased along the resulting fold with thumb and index finger of one

hand (Fig 11B). These stereotypical sequences of manual executions might also affect per-

ceived similarity between objects affected by the same transformation: even though shape fea-

tures of folded paper and steel might be more similar compared to those of folded cloth, the

manual actions involved in folding paper and cloth are more similar compared to those

involved in folding steel. Consequently, paper and cloth might be judged as being more simi-

lar with respect to their causal history compared to steel–in conflict with their relatively dis-

similar shape features.

Fig 11. Example of typical sequences of hand and finger movements while applying a (A) bending or (B) folding transformation.

https://doi.org/10.1371/journal.pone.0202115.g011
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5.4 Interactions of perceiving materials and transformations

The inference of causal history is also affected by the material of the objects. Previous findings

suggest that the perceived material identity of objects affects judgments about other internal

properties of these objects (e.g., [28–31]). Here, we show that perceived material also affects

judgments about external properties, that is, about the causal history of objects. We find an

interaction between object material and the ability to identify the physical transformation (but

not so much vice versa). For example, in Experiment 2, folded objects are perceived more

often as bent when the material is putty or wire compared to other materials. In Experiment 3,

this is even more pronounced: bent and folded objects are often confused, and the pattern of

these confusions vary with the object material–with objects made from wire been confused

most often. It is important to note that we made no attempt to standardize the transformations

applied to different samples. The materials were simply shaped by hand, with the understand-

ing that different samples and different materials would respond in different ways, leading to

different cues in the stimuli. Indeed, to the extent that there are differences between materials,

these are presumably driven primarily by stimulus differences, rather than some fundamental

difference in the subjects’ inference skills for different materials.

These findings fit well within our scheme of explaining the identification of transformations

via particular shape features: transformation judgments depend on the material specifically

when (i) the type of material affects the extent to which the typical shape features associated

with a transformation are expressed, and (ii) the type of material makes it difficult to see the

shape features.

First, the same physical transformation (i.e., the same external forces applied) can lead to

different shape features being expressed: A bending transformation can easily produce shape

features typical for folding if the physical properties of the material do not allow it to transform

smoothly (i.e., in foil or cardboard, a bending transformation will often produce distinct folds;

Fig 10, third row). In the limits, not all transformations can be applied to all objects, for exam-

ple, a board of timber cannot be crumpled. This implies that the mappings between transfor-

mation categories and shape features cannot be universal. As suggested above, folding paper,

cloth, and steel will produce different shape features even though all belong to the same trans-

formation category. This is the same problem that we are facing in material perception, where

very different color and texture features can map unto the same material category (e.g., differ-

ent kinds of plastic, wood or glass; [32]). For a strict test of this particular type of interaction

between materials and transformations, future studies will have to define transformations in

terms of their manual execution and forces. For example, it could be tested to what extent dif-

ferent materials are affected by exactly the same transformation (for a computer simulation

approach to testing the effect of the same force unto an object with different internal properties

see [29]). In the current study, we did not strictly control the transformation execution as we

reasoned that would be more natural: humans also vary the procedures and forces when apply-

ing manual transformations depending on the object material and material properties to pro-

duce the desired effects (e.g., to twist a piece of paper they will use less force compared to

chicken wire to avoid tearing the paper).

Second, the material itself can make it harder to see the shape features: in an object made

from wire it is much harder to identify local features compared to global features–thus, folded

and bent objects are more easily confused (Fig 10, fourth row) and twisted objects are misla-

beled as being bent when this is suggested by their global shape (e.g., third object in first row of

Fig 10). Note that for the same reason, judgments about transformations are also affected by

viewpoint–for example, when the typical shape features can just not be seen from the current

viewpoint (e.g., first object in third row of Fig 10).
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5.5 Conclusion

We asked participants to make inferences about the causal history of real objects from photo-

graphs. Objects were made of different materials and were transformed by either twisting,

crumpling, bending, or folding them. We show that participants perform far above chance,

thereby providing–to our knowledge for the first time–direct evidence for the visual inference

of causal history from real objects. Of course, our findings and conclusions are limited by the

selection of materials and transformations, and will not generalize to all other materials and

transformations. For example, our materials stem from a class of ‘smoothly transforming’

materials–we did not include any material that would break or splinter in response to physical

transformation. In the same way, we could have included other transformations, such as rip-

ping or hammering, that would give rise to other specific shape features. Still, we are confident

that our findings illustrate our general capabilities for understanding shape by parsing and

interpreting causally significant features, and thereby recovering the causal history of objects.

This inference is important–as knowing the causal history of a given object will affect other

perceptual and cognitive tasks, for example, (i) object constancy–by identifying objects across

transformations; (ii) predictions of object behavior–by knowledge about previous transforma-

tions; (iii) categorization–by using transformations as common denominator of categories; or

(iv) predictions of plausible variants–by applying transformations to other objects through

mental imagery.

Supporting information

S1 Fig. Raw free naming data from Experiment 1. The different panels show naming

responses for the different (A) materials, and (B) transformations. The bars plot the frequency

of naming responses [percent] with the actual material/transformation in black.

(PDF)

S1 Table. Paired t-tests comparing ratings between different materials in the material rat-

ing task. �� indicates p< .001 and � indicates p< .05.

(PDF)

S2 Table. Paired t-tests comparing ratings between different transformations in the mate-

rial rating task. �� indicates p< .001 and � indicates p< .05.

(PDF)

S3 Table. Paired t-tests comparing ratings between different transformations in the trans-

formation rating task. �� indicates p< .001 and � indicates p< .05.

(PDF)

S4 Table. Paired t-tests comparing ratings between different materials in the transforma-

tion rating task. �� indicates p< .001 and � indicates p< .05.

(PDF)

S5 Table. Paired t-tests comparing ratings between different materials in the transfor-

mation rating task within the class of bend objects. �� indicates p < .001 and � indicates

p < .05.

(PDF)

S6 Table. Paired t-tests comparing ratings between different transformations in the 4-AFC

task. �� indicates p< .001 and � indicates p< .05.

(PDF)

Identifying shape transformations

PLOS ONE | https://doi.org/10.1371/journal.pone.0202115 August 16, 2018 18 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202115.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202115.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202115.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202115.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202115.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202115.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202115.s007
https://doi.org/10.1371/journal.pone.0202115


S7 Table. Paired t-tests comparing ratings between different materials in the transforma-

tion rating task. �� indicates p< .001 and � indicates p< .05.

(PDF)

S8 Table. Paired t-tests comparing ratings between different materials in the transfor-

mation rating task within the class of bend objects. �� indicates p < .001 and � indicates

p < .05.

(PDF)

S9 Table. Paired t-tests comparing ratings between different materials in the transfor-

mation rating task within the class of folded objects. �� indicates p < .001 and � indicates

p < .05.

(PDF)

Acknowledgments

We thank Jonathan Seboek for stimulus generation and data collection. Stimuli and raw data

from all experiments are available for download at https://doi.org/10.5281/zenodo.1244096.

Author Contributions

Conceptualization: Filipp Schmidt, Roland W. Fleming.

Data curation: Filipp Schmidt.

Formal analysis: Filipp Schmidt.

Funding acquisition: Roland W. Fleming.

Methodology: Filipp Schmidt, Roland W. Fleming.

Resources: Roland W. Fleming.

Software: Filipp Schmidt.

Supervision: Roland W. Fleming.

Validation: Roland W. Fleming.

Visualization: Filipp Schmidt.

Writing – original draft: Filipp Schmidt.

Writing – review & editing: Roland W. Fleming.

References
1. Yoonessi A, Zaidi Q. The role of color in recognizing material changes. Ophthalmic Physiol Opt 2010;

30(5):626–31. https://doi.org/10.1111/j.1475-1313.2010.00722.x PMID: 20883347

2. Zaidi Q. Visual inferences of material changes: Color as clue and distraction. Wiley Interdiscip Rev

Cogn Sci 2011; 2(6):686–700. https://doi.org/10.1002/wcs.148 PMID: 23833699

3. Wiebel CB, Toscani M, Gegenfurtner KR. Statistical correlates of perceived gloss in natural images.

Vision Res 2015; 115(Pt B):175–87. https://doi.org/10.1016/j.visres.2015.04.010 PMID: 25937518

4. Biederman I. Recognition-by-components: A theory of human image understanding. Psychological

Review 1987; 94(2):115–7. PMID: 3575582

5. Landau B, Smith L, Jones S. Object Shape, Object Function, and Object Name. Journal of Memory and

Language 1998; 38(1):1–27.

6. Ludden GDS, Schifferstein HNJ, Hekkert P. Surprise As a Design Strategy. Design Issues 2008;

24(2):28–38.

Identifying shape transformations

PLOS ONE | https://doi.org/10.1371/journal.pone.0202115 August 16, 2018 19 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202115.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202115.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202115.s010
https://doi.org/10.5281/zenodo.1244096
https://doi.org/10.1111/j.1475-1313.2010.00722.x
http://www.ncbi.nlm.nih.gov/pubmed/20883347
https://doi.org/10.1002/wcs.148
http://www.ncbi.nlm.nih.gov/pubmed/23833699
https://doi.org/10.1016/j.visres.2015.04.010
http://www.ncbi.nlm.nih.gov/pubmed/25937518
http://www.ncbi.nlm.nih.gov/pubmed/3575582
https://doi.org/10.1371/journal.pone.0202115
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