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1 Einleitung 

Die wichtigste exogene Determinate für den Immunstatus des Menschen ist die Ernährung. 

Unterernährung bedingt die hohe Infektionsanfälligkeit von Kindern in sogenannten 

Entwicklungsländern und die damit verbundene hohe Mortalität (Chandra 1972, Scrimshaw 

et al. 1997). Im Gegensatz dazu sind die Menschen in Industrieländern im allgemeinen 

ausreichend mit Nahrungsenergie und Nährstoffen versorgt (DGE 2000). Dementsprechend 

ist eine alimentär bedingte sekundäre Immunschwäche in diesen Ländern selten. Allerdings 

treten in den Industrieländern zunehmend Probleme mit der Überversorgung an 

Nahrungsenergie auf, während einzelne Bevölkerungsgruppen wie alte Menschen, Personen 

mit Essstörungen oder Alkoholiker zeigen Nährstoffdefizite, so dass in diesen Ländern eine 

alimentär bedingte Immunsuppression zunehmend an Bedeutung gewinnt (Abb. 1). 

Abb. 1: Ursachen für alimentär-bedingte sekundäre Immunschwächen 

Entwicklungsländer: 

  Unterernährung 

Industrialisierte Länder: 

  Adipositas 

  hohe Fettaufnahme 

  Alkoholismus 

  Essstörungen (z.B. Anorexia nervosa) 

  extreme Fehlernährung 

Neben den essenziellen Nährstoffen stellen weitere Lebensmittelinhaltsstoffe eine zweite 

Gruppe von potenziell immunmodulatorisch wirkenden Stoffen dar. Hierzu zählen u.a. einige 

Vertreter der sekundären Pflanzenstoffe wie Carotinoide und Flavonoide, Alkohol sowie Pro- 

und Präbiotika. Die Wirkungen dieser Stoffe auf das Immunsystem sind bisher nur 

unzureichend untersucht.  

Weiter gibt es heute fundierte Kenntnisse über die Entstehung zahlreicher 

Zivilisationskrankheiten und der Beteiligung des Immunsystems an deren Pathogenese. 

Erste Hinweise aus klinischen Studien deuten auf eine diätetische Beeinflussung des 

Immunsystems in der Pathogenese dieser Krankheiten hin. Beispiele hierfür sind Herz-

Kreislauf-Erkrankungen, Krebs, chronisch-rheumatische Entzündungen und 
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Lebensmittelallergien. Die Wirkung einzelner Nährstoffe auf die immunologischen Prozesse 

dieser Krankheiten ist ein wichtiges Forschungsgebiet der Ernährungsimmunologie. 

Ein weiterer Schwerpunkt der Ernährungsimmunologie betrifft die Entwicklung funktioneller 

Lebensmittel mit dem Ziel das Immunsystem „positiv“ zu beeinflussen (enhanced function 

claim). Im Rahmen des EU-Projektes PASSCLAIM (Process for the Assessment of Scientific 

Support for Claims on Foods) wurden in der Arbeitsgruppe „Gut Health and Immunity“ hierzu 

Kriterien erarbeitet, anhand derer die immunmodulatorische Wirkung von Lebensmitteln bzw. 

spezifischen Inhaltsstoffen überprüft und belegt werden sollte (Cummings et al. 2004). In 

Zukunft ist von einer vermehrten Entwicklung solcher funktionellen Lebensmittel 

auszugehen. Diese kurze Einführung in das noch junge Forschungsgebiet der 

„Ernährungsimmunologie“ zeigt den Rahmen auf, in dem die experimentellen Arbeiten der 

vorliegenden kumulativen Habilitationsschrift durchgeführt wurden. 

1.1 Aufbau des Immunsystems 

Das Immunsystem kann in einen unspezifischen (angeborenen) sowie einen spezifischen 

(erworbenen) Teil untergliedert werden (Abb. 2).  

Abb. 2: Der schematische Aufbau des Immunsystems 

   unspezifisch     spezifisch

humoral  Komplementsystem    Antikörper 

Lysozym (Immunglobuline der  

Zytokine Klassen A, G, M, D, E) 

zellulär   Granulozyten     T-Lymphozyten  

   Monozyten     (T-Helfer, T-Suppressor) 

   NK-Zellen     B-Lymphozyten 

Das unspezifische Immunsystem ermöglicht dem Körper, eingedrungene Bakterien und 

Viren bereits beim Erstkontakt zu eliminieren. Wichtige Zellen hierfür sind die Phagozyten 

(Monozyten/Makrophagen und neutrophile Granulozyten) sowie die natürlichen Killer (NK)-

Zellen. Zusätzlich tragen lösliche Komponenten wie beispielsweise das Lysozym zur 

unspezifischen Immunabwehr bei.  



3

Das spezifische Immunsystem zeichnet sich durch drei Merkmale aus:  

1. Es ist in der Lage, zwischen eigenen und körperfremden Zellen zu unterscheiden; 

2. es kann auf spezifische Weise eine Abwehrreaktion gegen eine unbegrenzte Zahl 

von unterschiedlichen Antigenen ausüben;  

3. Bei einem Zweitkontakt mit einem Antigen kann es schnell eine starke 

Abwehrreaktion auslösen, da es nach dem Erstkontakt mit dem Antigen 

Gedächtniszellen bildet, die für die Wiedererkennung von Antigenen und für die 

Verhütung von Reinfektionen bedeutend sind.  

Die hierfür wichtigen Zellen sind die T- und die B-Lymphozyten  (Abb. 2). T-Lymphozyten 

sind für die Regulation der Immunantwort (T-Helferzellen1 und 2 sowie regulatorische T-

Lymphozyten) sowie für Unterdrückung unerwünschter Immunreaktionen (T-

Suppressorzellen) wichtig. T-Helferzellen modulieren das Immunsystem, indem sie z.B. 

Zytokine wie das Interferon-  sezernieren, welche andere Immunzellen aktivieren können. B-

Lymphozyten sind für die Antikörperbildung verantwortlich.  

Das Immunsystem ist auf verschiedene Kompartimente im Körper verteilt, wobei das Darm-

assoziierte Immunsystem das größte Immunorgan darstellt (Mowat 2003) (Abb. 3). Es 

besteht aus einer großen Anzahl von Immunzellen sowohl in Form von organisierten 

Strukturen wie z.B. solitäre Lymphfollikel und Peyer’sche Plaques (PP) als auch in Form von 

vereinzelt zwischen intestinalen Epithelzellen und in der Darmmukosa (Lamina propria) 

vorliegenden Immunzellen (intraepitheliale Lymphozyten, T-Lymphozyten und dendritische 

Zellen). Das Darm-assoziierte Immunsystem verhindert, dass krankheitsauslösende 

Bakterien und Viren das Darmepithel besiedeln oder überwinden und im Körper Infektionen 

auslösen können. Des weiteren ist es für die sogenannte orale immunologische Toleranz 

verantwortlich, d. h. es verhindert eine Überreaktion gegen harmlose körperfremde 

Substanzen, die täglich mit der Darmwand in Berührung kommen (Brandtzaeg 1998).  

Für die Auslösung einer Immunantwort im Intestinaltrakt sind primär die Immunzellen der PP 

wichtig. Die PP kommen überwiegend im terminalem Ileum vor. Im Bereich der PP ist ein 

spezialisiertes Epithel vorhanden, das sogenannte M-Zellen enthält (Abb. 4). M-Zellen 

können Antigene (z.B. Makromoleküle, Partikel, Bakterien und Viren) aus dem Darmlumen 

aufnehmen und zu darunterliegenden Immunzellen transportieren. Dadurch gelangen 

Antigene in die PP, wo die Antigenpräsentation und damit die Initiation der Immunantwort 

stattfindet. Dendritische Zellen der Lamina propria sind darüber hinaus in der Lage, die „tight 

junctions“ zwischen den Epithelzellen zu überwinden und aktiv Antigene im Darmlumen zu 
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binden und in den Bereich der Lamina propria zu transportieren, wo deren immunologische 

Information aufgearbeitet wird (Nagler-Anderson 2001). Die eigentliche Effektorfunktion im 

Intestinaltrakt erfolgt durch die Lymphozyten der Lamina propria sowie durch intraepitheliale  

Abb.  3: Das Darm-assoziierte Immunsystem (nach Schley und Field 2002) 

Lymphozyten. Beim Erwachsenen finden sich 70-80% aller Ig-produzierenden Plasmazellen 

des Körpers in der Lamina propria, wobei über 70% der gebildeten Antikörper zur Klasse der 

IgA-Antikörper zählen (Mowat 2003). 

In verschiedenen Studien konnte nachgewiesen werden, dass die intestinale Mikroflora 

einerseits eine entscheidende Bedeutung für die Entwicklung des intestinalen 

Immunsystems (z.B. IgA-Produktion) beim Säugling sowie andererseits für die 

Aufrechterhaltung eines intakten Immunsystems beim Erwachsenen besitzt. Ferner wird 

vermutet, dass bakterielle Antigene und Lipopolysaccharide aus der Zellwand gram-

negativer Bakterien zur normalen Entwicklung und Differenzierung der PP beitragen. Die 

Entdeckung der „pattern recognition receptors“  
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Abb. 4: Vorkommen von Immunzellen und lymphoiden Organen im Darm sowie mögliche 

Aufnahmewege von Antigenen. Luminale Antigene können über (A) intestinale Epithelzellen, 

(B) dendritische Zellen der Lamina propria und über (C) M-Zellen aufgenommen werden. 

Über ableitende Lymphgefäße der PP gelangen Antigene in die mesenteriellen Lymphknoten 

(Spahn und Kucharzik 2004) 

wie z.B. den „toll-like-receptors“ (TLR1-10) auf Immun- sowie Epithelzellen hat das 

Verständnis solcher „pathology-associated molecular patterns“ und ihrer Funktionsweise 

enorm erweitert (Medzhitov 2001, Abreu 2003). Des weiteren wurde im Tierexperiment 

nachgewiesen, dass die intestinale Mikroflora für die spezifische Aktivität der natürlichen 

Killerzellen des systemischen Immunsystems von Bedeutung ist. Keimfreie Mäuse bzw. 

konventionelle Mäuse mit sterilem Futter zeigten eine niedrige Aktivität der natürlichen 

Killerzellen (Bartizal et al. 1984). Beim Menschen konnten kürzlich mikrofloraspezifische T-

Zellklone in der Peripherie nachgewiesen werden (Duchmann et al. 1999). Dies unterstützt 

die Hypothese, dass die intestinale Mikroflora eine bedeutende Antigenquelle für den 

Organismus darstellt.
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1.2 Ernährungsimmunologie 

Etwa seit den 1960iger Jahren werden die Zusammenhänge zwischen Ernährung und 

Immunsystem systematisch erforscht (Beisel 1991, Scrimshaw et al. 1997). Das 

Immunsystem ist ein dynamisches Organ, welches auf eine kontinuierliche antigene 

Exposition mit Zellproliferation und -differenzierung reagiert und hierfür die ständige 

Synthese von immunregulatorischen Proteinen und Antikörpern benötigt. Ein Defizit an 

Makro- und Mikronährstoffen führt zu Beeinträchtigungen der Immunkompetenz verbunden 

mit einer gesteigerten Infektanfälligkeit (Field et al. 2002). Eine überhöhte Zufuhr einzelner 

Nährstoffe (z.B. Zink) oder die Qualität der aufgenommenen Fettsäuren beeinflußt ebenfalls 

die Immunantwort. Deshalb wird die Erfassung des Immunstatus als interessanter Biomarker 

diskutiert, der zur Bestimmung des Nährstoffbedarfs und/oder der gesundheitlichen Wirkung 

von Nährstoffen oder Nahrungsergänzungsmitteln eingesetzt werden kann  (Bronson et al. 

1999). Insgesamt lassen sich die Zusammenhänge zwischen Ernährung und Immunsystem 

durch 5 zugrundeliegende Wirkebenen charakterisieren (Klasing und Leshchinsky 2000): 

1. Regulation des Immunsystems durch Nährstoffverfügbarkeit 

2. Regulation des Immunsystems durch spezifische Nährstoffe 

3. Indirekte Modulation des Immunsystems durch das endokrine System 

4. Modulation der durch die Aktivität des Immunsystems bedingten Schäden 

5. Immunsystem-induzierte Änderungen des Nährstoffstatus 

Für eine normale Funktion des Immunsystems (Neubildung der Leukozyten, Proliferation, 

Immunglobulinsynthese, etc.) ist die kontinuierliche Zufuhr adequater Mengen einzelner 

Nährstoffe als Bausteine (z.B. Aminosäuren) sowie als Co-Faktoren (einzelne  

Spurenelemente) u.a. für die Proteinsynthese essenziell. Deshalb wirken sich 

Nährstoffdefizite negativ auf die Entwicklung des Immunsystem sowie die Immunkompetenz 

aus (Field et al. 2002).  

Eine direkte Regulation immunologischer Prozesse erfolgt durch spezifische Nährstoffe wie 

z.B. den langkettigen mehrfach ungesättigten Fettsäuren (PUFA). PUFA beeinflussen 

sowohl über den absoluten Gehalt als auch durch das n-3/n-6-Verhältnis die 

Zellmembranzusammensetzung und damit die Membranfluidität, die interzelluläre 

Kommunikation sowie die Synthese von Mediatoren wie den Eicosanoiden (Calder und Field 

2002). Des weiteren modulieren sie auch die über „toll-like receptors“ ausgelöste 

Signaltransduktion (Lee et al. 2003).  

Das endokrine System reagiert auf die Zufuhr von Nährstoffen durch Bildung von Insulin, 

Glucagon und Glucocortikoiden, welche immunmodulatorisch wirken. Die hormonelle 
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Situation bei Adipositas ist ein Grund für die bei Personen mit Fettsucht vorliegende 

Beeinträchtigung des Immunsystems (Samartin und Chandra 2001). Nährstoffe sind 

außerdem wichtig für die Begrenzung schädlicher Auswirkungen immunologischer Prozesse 

wie des oxidativen Burst als Nebeneffekt der Phagozytose. Hierfür sind Antioxidantien wie 

Vitamin C und E bedeutend. Das Immunsystem kann andererseits direkt über eine Änderung 

der Nährstoffkonzentration im Blut sowie anderen Körperflüssigkeiten nicht-immunologische 

Abwehrmechanismen induzieren. Ein Beispiel hierfür ist Eisen, welches als Wachstumsfaktor 

für bestimmte Bakterien benötigt wird. Während der akuten Phase einer Immunreaktion 

kommt es zu einer vermehrten Bildung von Eisen- sowie Häm-bindenden Proteinen (z.B. 

Laktoferrin), wodurch weniger freies Eisen für Pathogene zur Verfügung steht.  

Neben einem breiten Spektrum an validierten in vitro sowie tierexperimentellen in vivo-

Methoden zur Erfassung des Immunstatus kann der biologische Effekt einer 

Immunmodulation auch in klinischen Interventionsstudien untersucht werden. Abbildung 5 

enthält eine Gruppe immunologischer Marker, die primär im Rahmen von 

Interventionsstudien am Menschen zur Bestimmung des Immunstatus eingesetzt werden 

(Abb. 5). Diese Parameter wurden auch in den eigenen Untersuchungen verwendet. 

Abb. 5: Immunologische Marker zur Erfassung einer alimentären Immunmodulation beim 

Menschen (nach Cummings et al. 2004) 

Zell-vermittelte Immunantwort (DTH)    Hauttest 

Phagozytenfunktion (Granulozyten, Monozyten)    

 A: Phagozytoserate      FACS1

 B: Generation reaktiver O2-Verbindungen (Burst)  FACS  

Zytotoxische Aktivität der natürlichen Killerzellen   FACS 

Zytokinbildung (extra- und intrazelluär)    ELISA, FACS, PCR 

Aktivierungsmarker auf Lymphozyten    FACS  

Lymphozytenproliferation      ELISA, 3H-Thymidineinbau 

Phänotypisierung von Lymphozyten     FACS  

Vakzin-spezifische Antikörperbildung    ELISA 

1: FACS = Durchflußzytometer 
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2 LEBENSMITTELINHALTSSTOFFE MIT IMMUNMODULIERENDER

WIRKUNG 

Eine Reihe von Lebensmittelinhaltsstoffen kann nachweislich Immunmechanismen 

beeinflussen. Hierzu liegen jedoch primär Daten für essenzielle Nährstoffe vor (Calder und 

Field 2002). Im Gegensatz dazu sind wenig Kenntnisse über die immunmodulatorische 

Wirkung von nicht-essenziellen Lebensmittelinhaltsstoffen vorhanden. Das Verständnis über 

das immunmodulatorische Potential sämtlicher Lebensmittelinhaltsstoffe würde Strategien 

zur Optimierung der Immunkompetenz ermöglichen, und dies sowohl in 

immunstimulatorischer als auch in immunsuppressiver Hinsicht. Die vorliegende Arbeit fasst 

den Einfluß von Carotinoiden, Alkohol sowie von Pro- und Präbiotika auf das Immunsystem 

zusammen. 

2.1 Carotinoide 

2.1.1 Immunmodulatorische Wirkung der Carotinoide 

Gegenwärtig sind etwa 650 Carotinoide bekannt (Watzl und Bub 2001). Im Blut können 

derzeit etwa 15-20 Carotinoide und etwa 10 Metabolite nachgewiesen werden. Carotine (z.B. 

-Carotin und Lykopin) finden sich überwiegend in orange-gelb-rotem Gemüse und Obst, 

wohingegen Xanthophylle (z.B. Lutein und Zeaxanthin) hauptsächlich in grünblättrigem 

Gemüse vorkommen. Der Carotinoidgehalt von Gemüse liegt im Durchschnitt um den Faktor 

10 höher als im Obst (Watzl und Bub 2001). Auffallend ist die unterschiedliche Hitzestabilität 

der Carotine und Xanthophylle. Während Carotine eine hohe Hitzestabilität besitzen 

(Verluste etwa 10%), zeigen Xanthophylle in Abhängigkeit von der Erhitzungsdauer starke 

Hitzeverluste (> 50%). Das Carotinoidspektrum sowie die Gesamtcarotinoidkonzentration im 

Plasma (Tab. 1) sind abhängig von den jeweiligen Ernährungsgewohnheiten. -Carotin stellt 

bei Erwachsenen in Deutschland das Hauptcarotinoid im Plasma dar (15-30%). Provitamin-

A-Wirkung besitzen zwar etwa 50 Carotinoide, aber bei den üblichen 

Ernähungsgewohnheiten spielen hierfür nur - und -Carotin sowie -Cryptoxanthin eine 

Rolle.

Carotinoide üben verschiedene physiologische einschließlich immunmodulatorische 

Wirkungen aus (Watzl und Bub 2001). Bisher ist ausschließlich -Carotin intensiv am 

Menschen untersucht worden. Eine Carotinoid-arme Ernährung (< 1 mg/Tag) führte bei 

jungen Männern, die periodisch einer immunsuppressiv wirkenden UV- 
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Tab. 1: Konzentrationsbereich für Carotinoide im Plasma  

Carotinoid                 Konzentration (µmol/L) 

-Carotin       0,04-2,26 
-Carotin       0,02-0,47 

Lykopin       0,05-1,40 
-Cryptoxanthin      0,03-0,70 

Lutein        0,10-1,30 
Zeaxanthin       0,05-0,50 

Lichtexposition ausgesetzt waren, zu einer Störung von Immunfunktionen. Die zelluläre 

Immunantwort gegen intradermal applizierte Antigene (delayed-type hypersensitivity, DTH) 

war in der Placebo-Gruppe signifikant unterdrückt, wobei die Hemmung invers proportional 

zur Plasma- -Carotinkonzentration war. Bei den mit -Carotin supplementierten Männern (30 

mg/Tag) wurde hingegen keine Hemmung der DTH beobachtet (Fuller et al. 1992). 

Allerdings konnte in anderen Studien kein Einfluß von -Carotin auf DTH festgestellt werden 

(Santos et al. 1997). 

Bei der Zusammensetzung der Lymphozytensubpopulationen (CD4+, CD4+/CD25+) wurde 

eine positive Korrelation mit der Plasma- -Carotinkonzentration beschrieben (Watson et al. 

1991, Murata et al. 1994). Eine 2-monatige Supplementierung von -Carotin (30 oder 60 

mg/Tag) erhöhte den Anteil CD3-/CD16+ natürlicher Killerzellen im Blut sowie deren lytische 

Aktivität (Watson et al. 1991, Prabhala et al. 1991). In neueren humanen 

Interventionsstudien konnte ebenfalls ein Einfluss von -Carotin in physiologischen 

Konzentrationen auf das Immunsystem festgestellt werden. Langzeit-Supplementierung von 

-Carotin in einer Dosis von 25 mg/Tag verhinderte bei älteren Männern (65-86 J.) die Alters-

bedingte Suppression der Aktivität der natürlichen Killerzellen (Santos et al. 1996), bei 

jüngeren Männern (51-64 J.) war nach 4 Wochen -Carotinsupplementierung (15 mg/Tag) 

die Expression von Adhäsions- und MHCII-Molekülen (ICAM-1, HLA-DR) auf Monozyten 

sowie die ex-vivo Sekretion von Tumor-Nekrosis-Faktor-  erhöht (Hughes et al. 1997).  

Von den übrigen Carotinoiden sind beim Menschen bisher nur Lykopin und Lutein in einer 

einzigen Studie untersucht worden. Im Gegensatz zu -Carotin war nach oraler Zufuhr von 

15 mg Lykopin/Tag bei Monozyten keine Veränderung der Oberflächenrezeptorexpression 

beobachtet worden (Huges et al. 1997). Die gleiche Dosis Lutein verringerte die 

Rezeptorexpression signifikant (Hughes et al. 2000). Auffallend ist jedoch, dass die -

Carotinsupplementierung zu einem 5-fachen Anstieg der Plasmakonzentration führte, 

wohingegen die Lykopinplasmakonzentration nur um 50% gestiegen war (Hughes et al. 
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2000). Die Lutein-Plasmakonzentration war um das 4-fache erhöht.  Somit scheint die 

Plasmacarotinoidkonzentration in keinem direkten Zusammenhang mit der 

Rezeptorexpression zu stehen.  

In einer prospektiven epidemiologischen Studie im Sudan an 28.753 Kindern wurde der 

Zusammenhang zwischen der Aufnahme verschiedener Lebensmittel und dem 

Infektionsrisiko untersucht. Ein hoher Tomatenverzehr war invers mit dem Risiko für 

Durchfall sowie Infektionen der Atemwege assoziiert, und Husten mit Fieber trat signifikant 

seltener auf (Fawzi et al. 2000).  Diese Ergebnisse deuten auf immunmodulatorisch wirkende 

spezifische Inhaltsstoffe in Tomaten hin. Hier ist an erster Stelle das Lykopin zu nennen, da 

die übrigen Tomateninhaltsstoffe auch in anderen pflanzlichen Lebensmitteln häufig 

vorkommen (Beecher 1998).  

Für die immunmodulatorische Wirkung des -Carotins und anderer Carotinoide ist 

wahrscheinlich deren antioxidative Wirkung mitverantwortlich (Meydani et al. 1995, Hughes 

1999 und 2001, Chew und Park 2004). Das Immunsystem ist ein gegen Oxidationen 

besonders empfindliches System. Viele Membran-bezogene Prozesse (Eicosanoidsynthese, 

Rezeptorexpression, interzelluläre Kommunikation) werden durch Oxidation mehrfach 

ungesättigter Fettsäuren in den Zellmembranen beeinträchtigt. Als Folge treten Störungen 

der Membranfluidität sowie -integrität auf. Als ein weiterer Wirkmechanismus der Carotinoide 

wird die Beeinflussung des Signaltransduktionsfaktors NFKB diskutiert (Meydani et al. 1995). 

NFKB ist an der Regulation der Genexpression verschiedener Zytokine sowie von 

Adhäsionsmolekülen beteiligt (Flohé et al. 1997, Li und Karin 1999). NFKB wird durch den 

Redoxstatus der Zelle reguliert und -Carotin kann den intrazellulären Oxidationsstatus in 

kultivierten Zelllinien beeinflussen (Palozza et al. 2003). Allerdings lassen sich damit nicht 

die gegensätzlichen Ergebnisse von -Carotin und Lutein erklären, da beide antioxidativ 

wirksam sind (Stahl und Sies 1996). In einer neueren Studie konnte an HeLa-Zellen auch 

gezeigt werden, dass -Carotin die Bindung von NFKB an die DNA erhöhte, was auf eine 

Induktion oxidativer Veränderungen durch -Carotin hinweist (Palazzo et al. 2003). Inwieweit 

Carotinoide - als Bestandteil von Lebensmitteln aufgenommen – zusätzlich Parameter des 

Immunsystems beim Menschen beeinflussen, wurde in eigenen Interventionsstudien 

untersucht. Zusätzlich wurde in vitro überprüft, ob -Carotin unter Vermeidung der 

Umwandlung zu Retinol das Immunsystem stimuliert. 
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2.1.2  Eigene Untersuchungen 

2.1.2.1 In vitro-Effekt von -Carotin auf die Zytokinsekretion (Publikation 5.1)

-Carotin wird vom Menschen enzymatisch in einem gewissen Umfang zu Retinol 

umgewandelt, so dass in Humanstudien mit -Carotinsupplementierung nur bedingt 

zwischen der -Carotin- und der Retinolwirkung auf das Immunsystem differenziert werden 

kann. Deshalb wurde in dieser Studie ein in vitro-Ansatz zur Untersuchung der Wirkung von 

-Carotin auf die Zytokinsynthese gewählt. PBMC von gesunden Probanden wurden isoliert 

und mit Mitogenen aktiviert. Da -Carotin über den physiologischen Konzentrationsbereich 

von 10-6 – 10-9 µM hinaus konzentrationsabhängig die Zytokinbildung beeinflußt, wurden 

Konzentrationen bis zu 10-11 µM untersucht. -Carotin hatte keinen Einfluß auf das von TH1-

Lymphozyten gebildete Interferon-gamma. Im Gegensatz dazu wurde der Gehalt von Tumor-

Nekrose-Faktor-alpha (TNF- ) sowie von Interleukin-1-alpha (IL-1 ) im physiologischen 

Bereich (0,01-1 µM) im Kulturüberstand der PBMC signifikant erhöht. Diese Ergebnisse 

deuten darauf hin, dass -Carotin bei den gegebenen Versuchsbedingungen spezifisch die 

Zytokinsynthese von Monozyten stimuliert. Da kein Einfluß auf die Lymphozyten festgestellt 

wurde, könnte -Carotin einerseits zellspezisch wirken, andererseits könnte die 

Mitogenaktivierung (LPS bei Monozyten, Phytohämagglutinin bei Lymphozyten) sowie der 

nachfolgende Signalübertragungsweg durch -Carotin unterschiedlich moduliert werden. Die 

erhöhte IL-1 Bildung könnte in vivo zur Aktivierung von Lymphozyten beitragen. In vivo

führte -Carotin nach Langzeit-Supplementierung (> 2 Monate) tatsächlich zu einer Zunahme 

an TH-Lymphozyten sowie aktivierten T-Lymphozyten (IL-2R+) (Watson et al. 1991, 

Prabhala et al. 1991). Die eigenen in vitro-Ergebnisse werden zusätzlich durch die 

Ergebnisse einer Tierstudie bestätigt, in der -Carotin die TNF- -Konzentration von 

Makrophagen, die Tumorgewebe infiltriert hatten, erhöhte (Schwartz et al. 1986). In einer 

Humanstudie mit 15 mg/Tag -Carotin wurde ebenfalls eine erhöhte TNF- -Produktion ex

vivo nachgewiesen (Hughes et al. 1997). Somit zeigen die eigenen in vitro-Versuche, dass -

Carotin als nicht-essenzieller Lebensmittelinhaltsstoff unter diesen Bedingungen einen 

signifikanten stimulierenden Einfluß auf die Zytokinbildung von Monozyten besitzt, jedoch 

keine Wirkung auf die Zytokinsekretion von Lymphozyten ausübt. 
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2.1.2.2   Wirkung von Carotinoid-reichen Lebensmitteln auf das Immunsystem des  

  Menschen (Publikationen 5.2, 5.3, 5.4, 5.5, 5.6)

In dieser Interventionsstudie (Publikation 5.2) wurde erstmals der Versuchsansatz gewählt, 

nicht mit reinen Carotinoiden deren Einfluß auf das Immunsystem zu untersuchen, sondern 

mit Carotinoid-haltigen Lebensmitteln, die einen hohen Gehalt eines bestimmten Carotinoids 

aufweisen. Hintergrund für diesen Versuchsansatz war die Erkenntnis aus zahlreichen 

epidemiologischen Studien, dass eine hohe Aufnahme von Carotinoid-reichen Lebensmitteln 

mit einem verringerten Krebsrisiko korreliert (WCRF 1997). Ein weiteres Merkmal dieser 

Studie ist eine Carotinoiddepletion während der gesamten Studienphase, in der einzelne 

Carotinoid-reiche Lebensmittel supplementiert wurden.  

Die Intervention führte zu signifikanten Änderungen der Plasmacarotinoidkonzentrationen, 

womit eine hohe Bioverfügbarkeit für die Carotinoide Lykopin, - und -Carotin sowie Lutein 

aus den jeweiligen Lebensmitteln gezeigt werden konnte. Die gemessenen Immunparameter 

änderten sich ebenfalls im Laufe der Intervention. Besonders die ex-vivo Bildung von IL-2 

durch aktivierte PBMC wurde durch die Carotinoid-arme Ernährung gehemmt. Die 

Supplementierung mit Tomatensaft normalisierte die IL-2-Bildung, wohingegen mit 

Karottensaft ( - und -Carotin) und Spinatpulver (Lutein/Zeaxanthin) signifikant weniger IL-2 

als zu Beginn der Studie gebildet wurde. Ähnliche, aber weniger stark ausgeprägte Effekte 

wurden auch für die Parameter IL-4-Bildung sowie Lymphozytenproliferation gemessen. IL-2 

ist ein Aktivator der Lymphozytenproliferation. Die unterschiedliche Kinetik der Änderungen 

beider Parameter deutet darauf hin, dass IL-2 ein empfindlicherer Parameter ist als die 

Proliferationsantwort. Die Bestimmung des Antioxidantienstatus (Publikation 5.3) ergab, 

dass der Verzehr von Tomatensaft zu einer signifikanten Verbesserung dieses Status führte. 

Sowohl lag-time als auch die Menge an gebildeten Oxidationsprodukten waren verändert. 

Dieses Ergebnis bestätigt frühere Arbeiten, die ebenfalls weniger oxidative Schäden nach 

Verzehr von Tomatenprodukten feststellen konnten (Agarwal und Rao 1998, Rao und 

Agarwal 1998, Riso et al. 1999).  

Insgesamt lassen die Ergebnisse dieser Studie den Schluß zu, dass unter der 

Voraussetzung einer Carotinoid-armen Ernährungsweise vermehrt oxidativer Stress 

nachzuweisen ist, der mit einer Beeinträchtigung verschiedener T-Lymphozytenfunktionen 

einhergeht. Dabei unterscheiden sich die Immuneffekte der einzelnen Interventionsphasen, 

was möglicherweise auch mit dem unterschiedlichen Carotinoidgehalt der supplementierten 

Lebensmittel im Zusammenhang steht. 

Nachdem in der ersten Interventionsstudie mit 3 verschiedenen Carotinoid-reichen 

Lebensmitteln besonders für Tomatensaft eine immunmodulierende Wirkung beobachtet 
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wurde (Publikation 5.2), erfolgte die Dürchführung einer weiteren Studie mit ausschließlich 

Tomatensaftintervention (Publikation 5.4). Als Probanden wurden Senioren (Alter 63-86 J.) 

ausgewählt, da bei diesen im Vergleich zu jüngeren Studienteilnehmern von einer Alters-

bedingten Einschränkung der Immunkompetenz auszugehen ist (Lesourd et al. 2002). Die 

Studienteilnehmer waren in ihrer täglichen Lebensmittelauswahl völlig frei. Die 

Interventionsdauer wurde in dieser Studie auf 8 Wochen angelegt. Das Spektrum der 

immunologischen Parameter wurde um die Marker der zytotoxischen Aktivität der natürlichen 

Killerzellen, die zelluläre Immunantwort (DTH) sowie das Zytokin TNF-  erweitert (Abb. 6).

Abb. 6: Immunologische Parameter der Senioren-Studie 

Mitogen-aktivierte Lymphozytenproliferation 

  Zytokinsekretion (IL-2, IL-4, TNF- )

  Anzahl an CD3-/CD56+-NK-Zellen 

  Zytotoxische Aktivität der NK-Zellen 

  Hautreaktion vom verzögerten Typ (DTH) 

Obwohl die Plasmakonzentrationen für -Carotin und Lykopin signifikant zunahmen, war 

keiner der Immunparameter nach den 8 Wochen im Vergleich zur Kontrollgruppe signifikant 

verändert. Allerdings korrelierte die Plasma-all-trans-Lykopinkonzentration mit der 

zytotoxischen Aktivität der natürlichen Killerzellen (r = 0,367, p < 0,05); dies kann als Hinweis 

auf eine immunmodulierende Wirkung des Lykopins interpretiert werden.  

Die Ergebnisse einer weiteren Studie mit Senioren, die mit reinem Lykopin (15 mg/Tag) 

supplementiert wurden, stimmen mit den Ergebnissen unserer Studie überein. Corridan et al. 

(2001) konnten ebenfalls keine Modulation des Immunsystems feststellen. Die bei den 

Senioren beider Studien (Watzl et al. 2000, Corridan et al. 2001) gemessenen 

Plasmakonzentrationen für -Carotin bzw. Vitamin C lassen den Schluß zu, dass diese 

Senioren ausreichend Gemüse und Obst verzehrten und der Tomatensaftkonsum bzw. die 

Lykopinsupplementierung darüber hinaus keine Veränderung des Immun-bzw. 

Antioxidantienstatus bewirkte. Lediglich bei Senioren mit einem bestimmten genetischen 

Polymorphismus (R-Allel-Träger der Paraoxonase 1Q192R) war in unserer Studie die LDL-

Oxidation nach Tomatensaftkonsum signifikant verringert, nicht jedoch bei dem 

Gesamtkollektiv (Publikation 5.5). Dies deutet wiederum darauf hin, dass eine Änderung 

des Antioxidantienstatus Voraussetzung für eine Modulation des Immunsystems sein könnte. 
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Aufbauend auf den Ergebnissen der ersten beiden Interventionsstudien (Publikationen 5.2 

und 5.4) wurde eine dritte Studie durchgeführt, in der in einem Crossover-Design die 

Wirkung von Tomaten- und Karottensaft auf das Immunsystem verglichen wurde 

(Publikation 5.6). Wiederum wurde während der gesamten Versuchsdauer eine Carotinoid-

arme Ernährungsweise praktiziert. Nach 2-wöchiger Depletion konsumierten die 

Studienteilnehmer entweder Tomaten- oder Karottensaft (jeweils 330 ml/Tag), worauf eine 2-

wöchige Auswaschphase folgte. Danach wurde die Intervention mit den entsprechenden 

Säften fortgesetzt. 

Die Depletion führte zu einer signifikanten Hemmung der TNF- -Produktion ex vivo durch 

LPS-aktivierte PBMC. Die erste Interventionsphase normalisierte die TNF- -Produktion und 

erhöhte signifikant die IL-2-Synthese. Die zytotoxische Aktivität der natürlichen Killerzellen 

und die Lymphozytenproliferation waren ebenfalls signifikant gesteigert. Zum Ende der 

ersten Interventionsphase waren sowohl die IL-2-Produktion als auch 

Lymphozyenproliferation und zytotoxische Aktivität der natürlichen Killerzellen erhöht, was 

deutlich auf einen Immuneffekt hinweist. Die Erhöhung der TNF- -Produktion durch 

Karottensaft bestätigt die in vitro gewonnenen Daten zum Einfluß von -Carotin auf die 

Bildung dieses Zytokins (Publikation 5.1). Bei keinem Parameter wurden jedoch 

Unterschiede zwischen beiden Säften festgestellt. Auffallend war die zeitliche Verzögerung  

von einer Woche zwischen den Änderungen der Plasmacarotinoidkonzentrationen und den 

Änderungen der einzelnen Immunparameter. Interessant wäre es in zukünftigen Studien 

neben den Plasmakonzentrationen zusätzlich die Carotinoidkonzentration in den PBMC zu 

messen. Möglicherweise korrelieren Änderungen der intrazellulären 

Carotinoidkonzentrationen enger mit den Änderungen der Immunparameter als es für die 

Plasmakonzentration beobachtet wurde.  

Wichtig für einen immunmodulatorischen Effekt der Carotinoide scheint eine vorausgehende 

Carotinoiddepletion zu sein. Unter diesen Voraussetzungen war auch der 

Antioxidantienstatus durch die Carotinoidsupplementierung verbessert. Beide Studien mit 

Depletion (Publikationen 5.2 und 5.6) konnten einen Carotinoideffekt auf das Immunsystem 

nachweisen, wohingegen bei uneingeschränkter Ernährungsweise kein Immuneffekt 

vorhanden war (Publikation 5.4). Andere Arbeitsgruppen konnten ebenfalls nur bei 

Carotinoiddepletion eine Stimulation von Immunfunktionen wie der Lymphozytenproliferation 

nachweisen (Kramer und Burri 1997, Cross et al. 1998). Daraus läßt sich u.a. eine 

Bedeutung antioxidativer Mechanismen für die Immunmodulation ableiten.  
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2.2 Alkohol und Wein 

2.2.1 Immunmodulatorische Wirkungen von Alkohol und Wein 

Alkoholkonsum kann enorme gesundheitliche Auswirkungen zur Folge haben. So geht ein 

hoher Alkoholkonsum (> 40 g/Tag) mit einem erhöhten Risiko für verschiedene Krankheiten 

einher. In Deutschland verursacht ekzessiver Alkoholkonsum von Männern 6.2 % aller 

Todesfälle (Britton et al. 2003). Moderater Alkoholkonsum (10-30 g/Tag) geht mit einem 

verringerten Risiko für Herz-Kreislauf-Erkrankungen einher (Renaud et a. 1998, Rimm et al. 

1999, Gaziano et al. 1999, Gronbaek et al. 2000). Für Deutschland treten bei Männern 

dadurch 4,9 % weniger Todesfälle auf als statistisch zu erwarten wären (Britton et al. 2003). 

Die Alkoholaufnahme beeinflußt auch das Infektionsrisiko. In einer neueren prospektiven 

Kohortenstudie wurde der Zusammenhang zwischen der Aufnahme an Alkohol, Bier, 

Schnaps und Wein und dem Auftreten von Erkältungskrankheiten untersucht. Moderater 

Weinkonsum war invers mit dem Krankheitsrisiko assoziiert, wobei Rotwein wirksamer war 

als Weißwein (Takkouche et al. 2002). Moderater Alkoholkonsum senkte auch das 

Infektionsrisiko bei Personen, die mit einem Rhinovirus infiziert wurden (Cohen et al. 1993). 

Daraus kann ein protektiver Effekt von moderatem Alkoholkonsum auf das Immunsystem 

abgeleitet werden. Neben der Höhe des konsumierten Alkohols spielt jedoch die gesamte 

Ernährung eine maßgebliche Rolle für die Auswirkungen des Alkoholkonsums auf das 

Immunsystem. 

Chronischer ekzessiver Alkoholkonsum kann zu starken Schäden der unspezifischen sowie 

spezifischen Immunantwort führen (Watzl und Watson 1992, Nelson und Kolls 2002), wobei 

Alkohol (Ethanol) das Immunsystem auf zweierlei Wegen beeinflußen kann. Zum einen hat 

Alkohol einen direkten toxischen Effekt auf Immunzellen (Abb. 7). Zum anderen 

beeinträchtigt Alkohol Absorption, Speicherung, endogene Nutzung sowie Ausscheidung von 

Nährstoffen, was sich zusätzlich zur Toxizität negativ auf das Immunsystem auswirken kann. 

Die Metabolisierung von Ethanol in der Leber geht mit der Bildung reaktiver 

Sauerstoffverbindungen einher, die ebenfalls Immunzellen schädigen.  

Die direkte Wirkung des Alkohols betrifft die Dosis-abhängige Schädigung der 

gastrointestinalen Barriere, wodurch es zur vermehrten Aufnahme von Pathogenen bzw. 

Endotoxinen kommt. Dadurch wird vor allem die Synthese proinflammatorischer Zytokine in 

der Leber induziert (Watzl und Watson 1993). In vitro hemmt jedoch Ethanol die Bildung 

proinflammatorischer Zytokine durch PBMC (Szabo et al. 1996). Des weiteren wird die 

Neubildung von Leukozyten im Knochenmark durch Alkohol unterdrückt. Im Tiermodell ist 
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eine Atrophie von Thymus und Milz zu beobachten mit entsprechenden Änderungen der 

Lymphozytensubpopulationen. In vitro und in vivo hemmt Alkohol die Phagozytoserate

Abb. 7: Wirkungen hoher Alkoholkonzentrationen auf das Immunsystem  

  (  = Hemmung,  = Stimulation; G = Granulozyten, M = Monozyten) 

 Phagozytose (G, M) 

 Oxidativer Burst (M) 

 Aktivität der NK-Zellen 

 Modulation der Zytokinsynthese/-sekretion

   (TNF- , TGF- )

 Apoptose (Monozyten, PNG) 

 Lymphozytenproliferation 

 Infektionsresistenz 

sowie die damit einhergehende bakterizide Aktivität (Stoltz et al. 1999, Szabo 1999). 

Zxtotoxische Aktivität der natürlichen Killerzellen und Lymphozytenproliferation nach 

mitogener Stimulation sind weitere durch Alkohol in vivo beeinträchtigte Immunfunktionen 

(Abb. 7). Allerdings wurde in vitro eine Stimulation der natürlichen Killerzell-Aktivität durch 

Ethanol nachgewiesen (Li et al. 1997). Möglicherweise sind in vivo Abbauprodukte des 

Ethanols wie Acetaldehyd für die suppressiven Immuneffekte mitverantwortlich.  

2.2.2  Eigene Untersuchungen 

In den eigenen Studien wurde zunächst im Tiermodell die Wirkung von Alkohol auf das 

Immunsystem (systemisch und lokal im Bereich das Darmes) in Abhängigkeit von der 

Qualität der Ernährung untersucht. Im Rahmen von Interventionsstudien am Menschen 

wurde dann der Einfluß von moderatem Alkohol- sowie Rotweinkonsum sowohl akut als 

auch langfristig auf das Immunsystem erforscht. 
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2.2.2.1  Einfluß von Alkohol auf das Immunsystem in Abhängigkeit von der 

Nährstoffzufuhr (Publikationen 5.7 und 5.8)

Auf Grund der Wirkung von Alkohol auf die Bioverfügbarkeit sowie die endogene 

Verwertung, Speicherung und Ausscheidung von Nährstoffen kann die langfristige 

Alkoholwirkung auf das Immunsystem in vivo nur unter Berücksichtigung der jeweiligen 

Ernährung bewertet werden. Je nach Qualität der Nahrung könnte die immunmodulatorische 

Wirkung des Alkohols variieren. Deshalb wurde eine Tierstudie durchgeführt, bei der drei 

verschiedene Futterarten in Kombination mit Ethanol eingesetzt wurden (Publikation 5.7).

Verwendet wurde eine etablierte flüssige Standardkost (Lieber und DeCarli 1989). Dieses 

Flüssigfutter ist reich an einfach ungesättigten Fettsäuren (35 % der Gesamtenergie) und 

enthält u.a. 45-fach mehr Vitamin A und 5-fach mehr Vitamin E als vom National Research 

Council (NRC 1978) empfohlen. Die Zusammensetzung dieses Futters in Kombination mit 

Ethanol ermöglichte die Auslösung pathologischer, Alkohol-induzierter Leberveränderung, 

sie entspricht jedoch nicht der durchschnittlichen Ernährung eines chronischen 

Alkoholkonsumenten. Im Vergleich zu diesem „Standardfutter“ wurde deshalb ein weiteres 

flüssiges Futter hergestellt, welches exakt dem Nährstoffbedarf wachsender Ratten 

entsprach (NRC100) sowie ein Futter mit nur 60 % der empfohlenen Menge an 

Mikronährstoffen (NRC60).  

Die Futterzusammensetzung wirkte sich deutlich auf die immuntoxische Wirkung des 

Alkohols aus. Während mit der Nährstoff-reichen Standardkost nur geringe Immuneffekte in 

den Immunorganen Thymus und Milz durch Ethanol festgestellt wurden, traten bei adequater 

(NRC100) bzw. Mangelernährung (NRC60) besonders starke immunsuppressive Effekte 

(z.B. Thymusatrophie) nach der Aufnahme von Ethanol auf, die direkt mit dem 

Nährstoffgehalt korrelierte. Eine durch die Futterqualität modulierte Stimulation von 

Immunfunktionen durch Ethanol wurde bei der Bildung von IFN- , der zytotoxischen Aktivität 

der natürlichen Killerzellen sowie der Phagozytose gefunden. Futterunabhängig und nur 

durch Ethanol moduliert wurden die IL-2- und TNF- -Produktion ex vivo.

Insgesamt zeigt diese Arbeit, dass die Futterzusammensetzung einen starken Einfluß auf die 

immunmodulatorische Wirkung von Ethanol hat. Vermutlich trifft dies auch auf die Situation 

beim Menschen zu. 

Im Bereich des Darm-assoziierten Immunsystems führten die beiden Futterarten NRC100 

und NRC60 im Vergleich zum Standardfutter zu einer signifikanten Abnahme an CD4+ T-

Lymphozyten sowie sIgA+ Plasmazellen in den Peyer’schen Plaques (Publikation 5.8).

Somit kann auch das Immunorgan, welche für die orale Toleranz gegen Nahrungsantigene 

wichtig ist, durch die Kombination beider Faktoren moduliert werden. 
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2.2.2.2        Akute und Langzeit-Effekte von Alkohol und Rotwein auf das Immunsystem  

   des Menschen (Publikationen 5.9 und 5.10)

In epidemiologischen Studien wurde eine erhöhte Infektionsresistenz bei moderatem 

Alkohol- bzw. Weinkonsum beobachtet, jedoch wurde dieser Zusammenhang bisher in 

keiner Interventionsstudie bestätigt. Deshalb sollte in zwei humanen Interventionsstudien 

überprüft werden, inwieweit der akute sowie der tägliche moderate Alkohol- sowie 

Rotweinkonsum sich auf die Immunkompetenz des gesunden Menschen auswirken. Die 

Ergebnisse einiger in vitro-Studien ließen eine akute Wirkung von Alkohol auf das 

Immunsystem des Menschen vermuten. 

Zunächst wurde der Einfluß eines einmaligen Alkohol- und Rotweinkonsums (500 ml einer 

12 % Ethanollösung bzw. von 500 ml Rotwein) auf verschiedene Immunparameter 

untersucht (Publikationen 5.9). Im Gegensatz zu den in vitro-Daten konnte jedoch nach 

einmaligem Alkoholverzehr (12 % Ethanol oder Rotwein) in den nachfolgenden 24 Stunden 

kein Effekt auf die Phagozytoseaktivität von neutrophilen Granulozyten und Monozyten, 

Lymphozytenproliferation, zytotoxische Aktivität der natürlichen Killerzellen sowie auf die 

Zytokinbildung (TNF- , IL-2, IL-4) festgestellt werden.  

Um den potenziell immunsuppressiven Effekt der Rotweinpolyphenole (Middleton et al. 

2000) erfassen zu können, wurden als weitere Getränke aus dem selben Traubengut 

hergestellter entalkoholisierter Rotwein sowie Traubensaft geprüft. Beide polyphenolreichen 

Getränke waren ohne Einfluß auf das Immunsystem. 

Zusätzlich zur akuten Wirkung wurde auch der Effekt einer 2-wöchigen täglichen Aufnahme 

von 500 ml der jeweiligen Getränke untersucht. Neben den in der Kurzzeitstudie erfassten 

Parametern wurden die TNF-  mRNA-Expression in den Monozyten, Transforming-Growth-

Factor-  im Kulturüberstand aktivierter Monozyten, die Apoptoserate der peripheren 

Lymphozyten und der Anteil an V 2-T-Zellrezeptor-positiven Lymphozyten (Abb. 9) bestimmt 

(Publikation 5.10).

Täglicher Alkoholkonsum in einer Höhe, der das Maß eines moderaten Konsums übersteigt, 

hatte im Zeitraum von zwei Wochen keine negativen Auswirkungen auf das Immunsystem. 

Die Zufuhr an Polyphenolen übte ebenfalls keinen meßbaren Einfluß auf das Immunsystem 

aus. Somit konnten beide Studien übereinstimmend zeigen, dass das Trinken von 500 ml 

alkoholischer Getränke keinen suppressiven, aber auch keine stimulierenden Wirkungen auf 

ein breites Spektrum an Immunfunktionen ausübt. Dem zur Folge muß die bei moderatem 

Alkohol- bzw. Weinkonsum beobachtete erhöhte Infektionsresistenz auf andere Faktoren  
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Abb. 8: Immunologische Parameter der Langzeit-Rotweinstudie 

 Phagozytoserate (%), (G, M)1

 Phagozytoseaktivität (mittlere Fluoreszenz) (G, M) 1

 Zytotoxische Aktivität der NK-Zellen 

 Lymphozytenproliferation 

 Zytokinsekretion (IL-2, IL-4, TGF- , TNF- )

 Zytokin-Genexpression (TNF-  mRNA) 

 Apoptoserate (Lymphozyten) (%) 

 Anteil der V 2-TZR+-Lymphozyten (%) 

 Anteil der CD3+-T-Lymphozyten (%) 
  1(G = Granulozyten, M = Monozyten) 

zurückzuführen sein. Möglicherweise ist moderater Weinkonsum nur ein Indikator für einen 

gesünderen Lebensstil einschließlich einem erhöhten Verzehr von Gemüse, Obst und Fisch 

(Gronbaek 2001), wodurch das Infektionsrisiko ebenfalls beeinflußt werden kann. 

2.3    Pro- und Präbiotika 

2.3.1 Immunmodulatorische Wirkung von Pro- und Präbiotika 

Ergebnisse aus tierexperimentellen sowie klinischen Studien lassen einen Einfluß von 

Probiotika auf das Darm-assoziierte Immunsystem sowie auf das systemische Immunsystem 

vermuten. Im Gegensatz dazu ist bisher nur wenig über die immunmodulatorische Wirkung 

der Präbiotika sowie Synbiotika (Kombination von Probiotikum und Präbiotikum) bekannt. 

Zahlreiche Probiotikastämme wurden intensiv in vitro sowie in Tierexperimenten und 

Interventionsstudien am Menschen untersucht (Cross 2002, Gill and Cross 2002, Gill 2003). 

Die Hauptwirkungen der beim Menschen erforschten Probiotika beziehen sich auf eine 

Stimulation der Phagozytose und der Aktivität der natürlichen Killerzellen. Allerdings wurden 

häufig keine parallelen Kontrollgruppen in die Studien miteinbezogen, weshalb die 

Ergebnisse einer weiteren Absicherung bedürfen. Hingegen wurde in einer doppelblinden, 

Placebo-kontrollierten Studie mit L. casei Shirota kein Effekt auf eine Reihe von 

Immunparametern festgestellt (Spanhaak et al. 1998). Im Gegensatz dazu korrelierte in 

einem Tiermodell der Kolonkarzinogenese die Aktivierung der natürlichen Killerzellen durch 
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ein Probiotikum mit einer Hemmung der Tumorbildung (Takagi et al. 2001). Dies gibt einen 

Hinweis über die biologische Relevanz der Aktivierung der natürlichen Killerzellen. 

Vermutlich wirken Probiotika stärker auf das lokale Immunsystem des Darmes als auf das 

systemische Immunsystem; dies kann jedoch in Humanstudien nicht geklärt werden. Im 

Tiermodell wurden für verschiedene Probiotika ebenfalls eine Stimulation der Phagozytose, 

der natürlichen Killerzell-Aktivität sowie der intestinalen sIgA-Produktion gemessen (Gill und 

Cross 2002). Zudem wurde bei intestinalen Infektions- sowie Tumormodellen eine geringere 

Mortalität bei den mit Probiotika behandelten Tieren beobachtet. 

Lebensmittelinhaltsstoffe, welche die Voraussetzungen für die Klassifikation als Präbiotika 

erfüllen, dürfen (1) im oberen Gastrointestinaltrakt nicht abbaubar sein, (2) müssen ein 

spezifisches Substrat für nur eine einzige bzw. eine beschränkte Anzahl an potenziell 

gesundheitsfördernden kommensalen Bakterien im Kolon sein, und (3) müssen in der Lage 

sein die Mikroflora im Kolon in Richtung einer gesünderen Zusammensetzung zu verbessern 

(Gibson und Roberfroid 1995). Häufig in der Lebensmittelproduktion eingesetzte Präbiotika 

sind Inulin, Oligofructose, Galactooligosaccharide, Lactulose und Lacticol.  

Die immunologischen Wirkungen von Präbiotika sind bisher nur unzureichend untersucht 

(Schley und Field 2002, Watzl et al. 2004). Die postulierte Wirkung von Präbiotika auf das 

Immunsystem wurden bisher zumeist indirekt aus Tierexperimenten abgeleitet (Gibson und 

Roberfroid 1995), ohne jedoch direkt den Einfluß auf das Immunsystem zu bestimmen. 

Präbiotika sollten das Immunsystem stimulieren, da sie die Menge an Bifidobakterien im 

Dickdarm erhöhen, und die Supplementierung mit Bifidobakterien selbst einen antitumoralen 

Effekt auslöste (Mizutani und Mitsuoka 1980, Sekine et al. 1985).  

In vitro wurde lediglich ein Nigeroseoligosaccharid (eine Mischung von Di-, Tri- und 

Tetrasacchariden auf Basis der Nigerose [ -(1,3)-Diglucosid]) untersucht. Dieses 

Oligosaccharid stimulierte die zytotoxische Aktivität von aus Mäuseleber isolierten 

mononuklären Zellen (Murosaki et al. 2002), woraus ein direkter Effekt dieses Präbiotikums 

auf Immunzellen abgeleitet werden kann.  

In neueren Studien konnte mit verschiedenen Präbiotika alleine oder in Kombination mit 

einem Probiotikum ein immunmodulatorischer Effekt im Tiermodell festgestellt werden. 

Vorrangig wurde eine Stimulation der sIgA-Bildung in Ileum und Caecum sowie eine 

Aktivierung der Phagozytose und der natürlichen Killerzellen beobachtet (Watzl et al. 2004). 

Besonders häufig wurden Veränderungen von Immunmechanismen bei Zellen aus den 

Peyer’schen Plaques gemessen. Möglicherweise wirken Fermentationsprodukte der 

Präbiotika primär im Bereich des Darm-assoziierten Immunsystems. 
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Aus Humanstudien liegen bisher nur aus einer Studie Daten zur immunologischen 

Wirksamkeit vor (Guigoz et al. 2002). In dieser Studie wurde eine Hemmung der 

Phagozytoseaktivität von Granulozyten und Makrophagen durch Fructooligosaccharide 

beobachtet. Zusätzlich war die mRNA-Expression von IL-6 verringert, was als anti-

inflammatorischer Effekt interpretiert wurde. In weiteren vier Humanstudien wurden 

Präbiotika ausschließlich in Kombination mit Probiotika oder Nahrungsergänzungsmitteln 

geprüft, wobei jedoch Effekte nicht auf die Einzelkomponenten zurückgeführt werden 

können. Insgesamt ist festzuhalten, dass die potenziellen immunologischen Wirkungen von 

Probiotika, Präbiotika und Synbiotika beim Menschen wenig untersucht und vor allem 

hinsichtlich der Wirkung auf das Darm-assoziierte Immunsystem methodisch gegenwärtig 

nur unzureichend zu erfassen sind.  

2.3.2 Eigene Untersuchungen 

2.3.2.1 Kurzzeit-Effekte von Pro-, Prä- und Synbiotikum auf das Immunsystem der 

Ratte (Publikation 5.11)

Ziel dieser Studie war es, nach vierwöchiger Fütterung die Wirkungen von Probiotika, Prä- 

und Synbiotikum auf das systemische sowie Darm-assoziierte Immunsystem der Ratte zu 

untersuchen. Als Probiotika wurden Lactobacillus rhamnosus GG und Bifidobacterium lactis

BB12 verabreicht, als Präbiotikum mit Oligofructose angereichertes Inulin. Um die 

Vergleichbarkeit der Ernährung der Ratte mit der des Menschen zu verbessern, wurde ein 

fettreiches, ballaststoffarmes Rattenfutter verwendet. Der absolute Fettgehalt des Futters 

alleine beeinflußt bereits das Immunsystem (Barone et al. 1989) und möglicherweise 

dadurch auch das immunmodulatorische Potenzial von Pro- und Präbiotika.  

Immunparameter wurden im Blut, in der Milz sowie in den Peyer’schen Plaques und den 

mesenteriellen Lymphknoten bestimmt. Prä- und Synbiotikumbehandlung führten zu einer 

Stimulation der sIgA-Produktion im Caecum bzw. im terminalem Ileum sowie der IL-10-

Produktion durch Zellen der Peyer‘schen Plaques. Im Gegensatz zu den Daten der Literatur 

wurde kein Effekt auf die Aktivität der natürlichen Killerzellen und der Phagozyten 

beobachtet. Insgesamt wurde primär eine Beeinflußung der Immunzellen der Peyer’schen 

Plaques sowie der intestinalen sIgA-Produktion festgestellt und nur geringe systemische 

Effekte. Auffallend war auch die stärkere immunmodulatorische Wirkung des Prä- bzw. 

Synbiotikums im Vergleich zum Probiotikum. 
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2.3.2.2 Langzeit-Effekte von Pro-, Prä- und Synbiotikum auf das Immunsystem der 

Ratte sowie auf die Entstehung von AOM-induziertem Dickdarmkrebs 

(Publikation 5.12)

In dieser Langzeitstudie wurde der Effekt auf das Darm-assoziierte Immunsystem sowie auf 

die Kolonkarzinogenese untersucht. Ein Teil der Ratten wurde mit dem Karzinogen 

Azoxymethan behandelt, wodurch die Entstehung von Dickdarmkrebs ausgelöst wird. Über 

die Dauer von 33 Wochen wurden alle Tiere mit den gleichen Pro-, Prä- und Synbiotika 

behandelt wie in der Kurzzeitstudie. Die Synbiotikum-Behandlung verringerte die Anzahl an 

Adenoma und Karzinoma im Dickdarm im Vergleich zu den mit Kontrollfutter behandelten 

Tieren (Femia et al. 2002). Gleichzeitig war die Aktivität der natürlichen Killerzellen in den 

Peyer’schen Plaques signifikant erhöht. Dies könnte bedeuten, dass die Aktivität dieser 

Zellen für die Erkennung und Elimination der intestinalen Tumore eine Rolle spielt. Zusätzlich 

könnte die zytotoxische Aktivität weiterer Immunzellen des Darmes (z.B. intraepithelialen 

Lymphozyten), die in dieser Studie nicht untersucht wurden, ebenfalls stimuliert sein. Bei den 

nicht mit dem Karzinogen behandelten Ratten erhöhte die Präbiotikum-Behandlung die 

Killerzell-Aktivität der Milzzellen. Analog zum Kurzzeitversuch war auch nach 33 Wochen 

eine erhöhte IL-10-Produktion ex vivo sowohl durch die Zellen der Peyer’schen Plaques als 

auch der mesenteriellen Lymphknoten festzustellen. Die vermehrte IL-10-Bildung kann als 

ein Mechanismus interpretiert werden, der einerseits für die Regulation der Aktivität der 

natürlichen Killerzellen bedeutend ist, und andererseits für die Kontrolle inflammatorischer 

Prozesse. Die Probiotika-Behandlung führte zu einer verringerten IFN- -Produktion durch 

Zellen der Peyer’schen Plaques. Fundierte Daten zum protektiven Mechanismus der 

Synbiotikum- bzw- Präbiotikum-Behandlung liegen jedoch nicht vor. Ein möglicher 

Mechanismus könnte die vermehrte Bildung von kurzkettigen Fettsäuren sein, wie sie im 

Darm der mit Prä- und Synbiotikum-behandelten Ratten quantifiziert wurden (Femia et al. 

2002). Für Butyrat konnte in vitro eine suppressive Wirkung auf die Zytokinproduktion von 

TH1-Lymphozyten und eine Steigerung der IL-10-Synthese nachgewiesen werden 

(Säemann et al. 2000, Cavaglieri et al. 2003). In neuen Arbeiten wurden erstmals zwei 

spezifische G-Protein gekoppelte Rezeptoren (GPR43 und GPR41) für kurzkettige 

Fettsäuren auf verschiedenen Immunzellen identifiziert (Le Poul et al. 2003, Brown et al. 

2003). Ob über diese Rezeptoren die Zytokinsynthese durch Fermentationsprodukte der 

Präbiotika moduliert werden kann, muß in weiteren Studien geklärt werden. 
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3    ZUSAMMENFASSUNG 

Ziel dieser Arbeit war zu untersuchen, ob nicht-essenzielle Lebensmittelinhaltsstoffe das 

Immunsystem beeinflussen. Die Besonderheit der vorliegenden Arbeit liegt in der Prüfung 

von kompletten Lebensmitteln (Carotinoid-reiche Säfte, Rotwein) im Gegensatz zu isolierten 

Inhaltsstoffen. Darüber hinaus wurden die immunmodulatorischen Effekte primär im Rahmen 

humaner Interventionsstudien durchgeführt. Aus den Ergebnissen dieser Studien geht klar 

hervor, dass solche Lebensmittelinhaltsstoffe immunmodulatorisch wirksam sind. Für diese 

nicht-essenziellen Lebensmittelinhaltsstoffe kann gegenwärtig jedoch die Frage nicht 

beantwortet werden, welche Zufuhrmengen für eine optimale Immunfunktion benötigt 

werden.

Die Ergebnisse der Untersuchungen zu den Carotinoiden zeigen, dass die alimentäre Zufuhr 

von Carotinoiden als natürlicher Bestandteil von Lebensmitteln immunmodulatorisch wirksam 

ist. Eine Carotinoid-arme Ernährungsweise führt zu einer Unterdrückung verschiedener 

Immunfunktionen. Im Gegensatz dazu stimuliert der Verzehr Carotinoid-reicher Säfte als 

Supplement zur Carotinoid-armen Basisernährung die Zytokinsynthese (IL-2, TNF- ) sowie 

die Aktivität der natürlichen Killerzellen. Da eine hohe lytische Aktivität der natürlichen 

Killerzellen mit einem verringerten Krebsrisiko einhergeht (Imai et al. 2000), könnte dieser 

Zusammenhang für das bei Carotinoid-reicher Ernährung beobachte geringere Krebsrisiko 

(WCRF 1997) mitverantwortlich sein. 

Alkoholkonsum kann das Risiko für verschiedene Krankheiten einschließlich 

Infektionskrankheiten sowohl erhöhen als auch senken. In einer Tierstudie mit 

unterschiedlicher ernährungsphysiologischer Futterqualität konnte eine Beeinflußung der 

Alkohol-induzierten Immunmodulation gezeigt werden. Eine nicht-bedarfsgerechte 

Ernährung verstärkte die immuntoxische Wirkung von Ethanol. Dem zur Folge ist auch beim 

Menschen mit Alkoholkonsum von einem starken Einfluß der Ernährung auf das Alkohol-

bedingte Krankheitsrisiko auszugehen. In zwei Humanstudien wurde der Effekt eines akuten 

bzw. chronischen, moderaten Alkoholverzehrs auf das systemische Immunsystem 

untersucht. Dabei wurden weder Kurzzeit- (24 Stunden) noch Langzeiteffekte (2 Wochen) 

der Alkoholaufnahme auf das Immunsystem festgestellt. Somit ist bei moderatem 

Alkoholkonsum, unabhängig von der Form (Rotwein oder 12 % Ethanollösung) nicht von 

einer signifikanten immunmodulatorischen Wirkung auszugehen.  
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Schließlich wurde die Wirkung von Pro- und Präbiotika auf das Darm-assoziierte 

Immunsystem im Tiermodell untersucht. Die Kurzzeit-Behandlung mit einem Probiotikum 

hatte nur geringe Auswirkungen auf das Immunsystem, wohingegen das Präbiotikum alleine 

oder in Kombination mit dem Probiotikum die intestinale sIgA-Bildung sowie die IL-10-

Bildung ausschließlich durch Zellen der Peyer’schen Plaques stimulierte. Besonders 

bedeutend ist das Ergebnis der Langzeitstudie mit Prä- und Synbiotikum-supplementierten 

Tieren, die vorher mit einem Dickdarmkarzinogen behandelt wurden. Bei diesen Tieren 

waren verschiedene Funktionen von Immunzellen der Peyer’schen Plaques aktiviert und 

gleichzeitig traten signifikant weniger Tumore im Kolon auf. Hervorzuheben ist hier die 

zytotoxische Aktivität der natürlichen Killerzellen, die u.a. für die Erkennung und Elimination 

von Tumorzellen wichtig sind (Smyth et al. 2001). Insgesamt waren unter den gegebenen 

Voraussetzungen dieser Tierstudien (z.B. fettreiche, ballaststoffarme Ernährung) das 

Präbiotikum sowie das Synbiotikum stärker wirksam als das Probiotikum alleine. Des 

weiteren scheint durch diese Behandlung in erster Linie das Darm-assoziierte Immunsystem 

moduliert zu werden. 

Zusammenfassend zeigen die Ergebnisse der vorliegenden Arbeit, dass auch nicht-

essenzielle Lebensmittelinhaltsstoffe das Immunsystem beeinflussen. Zukünftige 

Empfehlungen zur optimalen Förderung des Immunsystems sollten deshalb neben den 

essenziellen Nährstoffen auch sekundäre Pflanzenstoffe sowie Pro- und Präbiotika 

berücksichtigen. 
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A human intervention study was conducted to determine the effect of the consumption of
carotenoid-rich vegetables on the immune system. Subjects, (twenty-three men), who were non-
smokers, were not restricted in their daily diet, except that they had to abstain from fruit and
vegetables high in carotenoids throughout the whole study period. The study was divided into
four periods, each lasting 2 weeks: weeks 1–2: low-carotenoid period; throughout weeks 3–8:
daily consumption of 330 ml tomato juice (40 mg lycopene/d, 1⋅5 mg b-carotene/d) (weeks 3–4),
330 ml carrot juice (21⋅6 mg b-carotene/d, 15⋅7 mg a-carotene/d, 0⋅5 mg lutein/d) (weeks 5–6),
10 g dried spinach powder (11⋅3 mg lutein/d, 3⋅1 mg b-carotene/d) (weeks 7–8). Blood was
collected weekly from subjects after a 12 h fast. T-lymphocyte functions were assessed by
measuring proliferation and secretion of immunoreactive cytokines. The consumption of a low-
carotenoid diet resulted in a significantly reduced proliferation of peripheral blood mononuclear
cells (PBMC) cultured with concanavalin A. After 2 weeks of tomato juice consumption and until
the end of the intervention period lymphocyte proliferation was not significantly changed
compared with proliferation at the end of the depletion period. Secretion of cytokines by
T-helper-1-like lymphocytes (interleukin (IL)-2) and by T-helper-2-like lymphocytes (IL-4) was
influenced by the dietary intervention. IL-2 and IL-4 secretion values were significantly
suppressed after the low-carotenoid diet (P �0⋅001 and P � 0⋅05 respectively compared with
baseline). Tomato juice consumption significantly enhanced IL-2 (P � 0⋅001) and IL-4 secretion
(P � 0⋅05) compared with the end of depletion period. After carrot juice and spinach powder
consumption the cytokine secretion capacity of PBMC was not significantly different from that at
the end of the depletion period. In conclusion, the results of the present study indicate that a low-
carotenoid diet reduces T-lymphocyte functions and addition of tomato juice restores these
functions. This modulation could not be explained by changes in the plasma carotenoid
concentrations. The active constituents in tomato juice as well as the biological significance of
this immunomodulation remain to be determined.

Carotenoids: Vegetable consumption: T-lymphocytes: Cytokines

Carotenoids are common constituents in many vegetable
and fruit varieties (Mangels et al. 1993). Only for b-caro-
tene, with its provitamin A activity, have the biological
activities of carotenoids been intensively studied (Burri,
1997). With the results of the Alpha-Tocopherol Beta-
Carotene (ATBC) and Carotenoid Retinol (CARET) studies
(The Alpha-Tocopherol, Beta-Carotene Cancer Prevention
Study Group, 1994; Omenn et al. 1996), however, interest
has increased in the physiological effects of carotenoids
other than b-carotene. Recently, lycopene and oxocaro-
tenoids (xanthophylls) have become a major focus in
carotenoid research (Stahl & Sies, 1996; Bone et al. 1997;
Gerster, 1997).

The immunomodulatory activity of b-carotene has been
thoroughly investigated in several animal species and in a
number of human trials (Bendich, 1989; Watson et al. 1991;
Meydani et al. 1995a). While the animal studies have shown
an immunoenhancing effect of pure b-carotene (Bendich,
1991), results from human trials are inconsistent. Studies
have reported stimulation of various immune functions with
b-carotene supplementation (Meydani et al. 1995b; Mor-
iguchi et al. 1996; Santos et al. 1996; Hughes et al. 1997a,b;
Kazi et al. 1997) or have observed no effects (Meydani et al.
1995b; Kramer & Burri, 1997). Most human studies have
used pure b-carotene in dosages ranging from 15 to 300mg/d
for short- and long-term periods (Meydani et al. 1995b).
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Depletion studies with low-b-carotene diets have
revealed conflicting results. Daudu et al. (1994) reported
no effect on lymphocyte proliferation of a low-b-carotene
diet consumed for 68 d, while Kramer & Burri (1997)
observed a suppressed proliferative responsiveness of lym-
phocytes in human subjects consuming a low-b-carotene
diet (0⋅5 mg/d) for 60 d. These controversial results may be
due to methodological differences in the protocol of
peripheral blood mononuclear cell (PBMC) isolation.

Besides b-carotene only lycopene has been studied in
human subjects. Supplementation with 15 mg lycopene/d
for 28 d induced no consistent changes in monocyte surface
marker expression (Hughes et al. 1997b). The immunomo-
dulatory activity of other carotenoids in human subjects is
not known. There is one study which investigated the effects
of consuming carotenoid-rich vegetable extracts on lym-
phocyte functions (T-lymphocyte proliferation) in human
subjects (Clevidence et al. 1997). In this study a carotenoid
complex from vegetables was consumed, which provided
b-carotene (3⋅3 mg/d), lycopene (0⋅6 mg/d) and lutein/zea-
xanthin (1⋅5 mg/d). Lymphocyte proliferation was enhanced
after the consumption of the carotenoid complex. So far, no
study has investigated the effects of consuming carotenoid-
rich vegetables on the human immune system.

The objective of the present study was to examine the
effects of consuming different carotenoid-rich vegetable
products on T-lymphocyte functions in healthy adult male
subjects. Carotenoids (a-carotene, b-carotene, lycopene,
lutein) were provided by highly accessible food matrices
(processed vegetable products) in amounts possibly con-
sumed by people eating a Mediterranean-type diet. In a
preliminary study we showed that for processed carotenoid-
rich vegetables a supplementation period of 2 weeks was
sufficient to increase plasma carotenoid concentrations 2–3-
fold (H Müller, A Bub, B Watzl and G Rechkemmer,
unpublished results). In the present study, after a carotenoid
depletion period of 2 weeks the low-carotenoid diet of the
subjects was supplemented daily for 2 weeks with tomato
juice (lycopene) followed by carrot juice (a-carotene,
b-carotene) and by spinach powder (lutein). No wash-out
periods between the different supplementation periods were
used in order to mimic more closely the dietary behaviour of
consumers. Plasma concentrations of major carotenoids
(including trans- and cis-isomers and epoxides), a- and g-
tocopherols, retinol, and ascorbic acid were measured
(Müller et al. 1999). T-lymphocyte functions were assessed
by measuring mitogen-activated proliferation. In order to
detect whether T-lymphocytes were affected as a total cell
population or whether subgroups of T-lymphocytes were
differentially affected, the secretion of T-helper-1 lympho-
cyte specific (interleukin (IL)-2) and T-helper-2 lymphocyte
specific (IL-4) cytokines was quantitated.

Subjects and methods

Subjects

Twenty-three non-smoking men (aged 27–40 years), with
normal weight (BMI 23⋅1 (SD 0⋅39) kg/m2) were recruited
for the study. All subjects were in good medical health as
determined by a screening history and medical examination.

None was taking vitamin supplements or medications from
1 month before or during the study. The study was approved
by the Medical Ethical Committee of the Landesärztekam-
mer Baden-Württemberg and all participants gave their
consent in writing. All participants were employees from
the Research Centre Karlsruhe, where the Institute of
Nutritional Physiology of the Federal Research Centre for
Nutrition is located.

Study design

This study was conducted during the months of October to
December. The study was divided into four periods each
lasting 2 weeks, resulting in a total study period of 8 weeks:
weeks 1–2 low-carotenoid period, weeks 3–4 tomato juice
consumption (330 ml/d providing 40 mg lycopene and
1⋅5 mg b-carotene; Schoenenberger, Magstadt, Germany),
weeks 5–6 carrot juice consumption (330 ml/d providing
21⋅6 mg b-carotene, 15⋅7 mg a-carotene and 0⋅5 mg lutein;
Schoenenberger), weeks 7–8 spinach powder consumption
(10 g/d providing 11⋅3 mg lutein and 3⋅1 mg b-carotene;
Völpel, Königsmoos, Germany). In order to supply a
standardized quantity of carotenoids through the vegetables,
we used vegetable juices. Since there was no juice from
green, lutein-rich vegetables available on the German
market, we decided to use spinach powder, which was
dissolved by the study subjects in water, milk, yoghurt or
soup. Subjects were told to consume the vegetable products
with their main meals. Subjects were not restricted in their
daily diet except that they had to abstain from fruit and
vegetables high in carotenoids throughout the whole study
period. A list of the fruit and vegetables the subjects were
not allowed to eat was provided (Müller et al. 1999).
Subjects had to record their daily fruit and vegetable
consumption throughout the whole study period. The daily
carotenoid intake provided by fruit and vegetables was
quantified by using a dietary assessment software package
(PRODI 4.4, Nutri-Science, Karlsruhe, Germany), which is
based on the German Food Code and Nutrition Data Base
(Bundesinstitut für gesundheitlichen Verbraucherschutz
und Veterinärmedizin, 1994). Total carotenoid and ascorbic
acid intakes of the study subjects before the study period
were assessed using a validated food-frequency question-
naire (Boeing et al. 1997).

Preparation of peripheral blood mononuclear cells

Blood from fasting subjects was collected once weekly
between 07.00 and 09.00 hours; plasma was separated
and an equal amount of PBS was added. PBMC were
isolated by density-gradient centrifugation using Histopa-
que 1077 (Sigma, Deisenhofen, Germany) and were washed
twice with PBS. Purified PBMC were resuspended in
complete RPMI-1640 culture medium (Life Sciences,
Eggenstein-Leopoldshafen, Germany), containing 50 ml
fetal bovine serum/l (Life Sciences), L-glutamine (2mmol/l),
penicillin (100 000 U/l) and streptomycin (100 mg/l).
Trypan blue staining was used to assess cell viability, and
lymphocytes were counted in a haemocytometer under a
light microscope.
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Leucocyte numbers

Total leucocyte numbers were determined on fasting blood
after each week. Leucocyte numbers were obtained by
using an automated analyser (F-300, Sysmex, Hamburg,
Germany) according to standard operational procedures.

Lymphocyte proliferation

PBMC from each subject at 1 × 109 cells/l in complete
RPMI-1640 medium were cultivated in quadruplicate in
flat-bottomed ninety-six-well microtitre plates (Greiner,
Nürtingen, Germany) and stimulated by the T-cell mito-
gen concanavalin A (ConA; 5 mg/l; Sigma) for 120 h at
37� in an atmosphere of 50 ml CO2/l and 95 % humidity.
PBMC were pulse-labelled with the thymidine analogue
5-bromo-deoxyuridine (100�mol/l; Boehringer, Mannheim,
Germany) for 3 h at 37�. The incorporated 5-bromo-
deoxyuridine was detected by a quantitative cellular
enzyme immunoassay using a commercial ELISA kit
(Boehringer), following the manufacturer’s instructions.
The amount of incorporated 5-bromo-deoxyuridine is quan-
tified by measuring the absorbance of the samples in a
multiplate spectrophotometer (Molecular Devices, Menlo
Park, CA, USA) at 450 nm (reference wavelength
650 nm). As background control absorbance was measured
in wells which were not pulse-labelled with 5-bromo-
deoxyuridine. Proliferative responses were expressed as the
net absorbance values (absorbanceA450nm−A650nm of pulse-
labelled cells− absorbanceA450nm−A650nm of unlabelled cells).

Interleukin-2 and interleukin-4

PBMC from each subject at 1 × 109 cells/l in complete
RPMI-1640 medium were stimulated in quadriplicate by
5 mg ConA/l for 48 h at 37�. Microplates were centrifuged
for 5 min at 300 g and cell-free supernatant fractions were
collected and stored at −80� until analysis. IL-2 and IL-4
were quantified by ELISA methods. For IL-2, microtitre
plates (Maxisorp, NUNC, Roskilde, Denmark) were coated
with 50 �l of an anti-human IL-2 monoclonal antibody
(4 mg/l carbonate buffer, pH 9⋅6; R&D Systems, Wiesba-
den, Germany) and stored overnight at 4�. Between subse-
quent steps in the assay, plates were washed five times with
PBS-Tween (0⋅01 M-PBS containing 0⋅5 ml Tween 20/l)
with an automated plate washer (Molecular Devices).
Non-specific binding was blocked by adding 50 �l bovine
serum albumin (10 ml/l in PBS-Tween; Boehringer) for 1 h
at 37�. Plates were incubated with supernatant fractions and
with serial dilutions of recombinant human IL-2 (R&D
Systems) diluted in complete RPMI-1640 medium. Then
50 �l of a polyclonal goat anti-human IL-2 neutralizing
antibody (8 mg/l PBS-Tween and 10 ml bovine serum albu-
min/l; R&D Systems) was added for 1 h at room tempera-
ture, followed by a further 1 h of incubation with 50 �l of a
rabbit anti-goat immunoglobulin G peroxidase-conjugated
antibody (dilution 1 : 40 000 in PBS-Tween and 10 ml
bovine serum albumin/l; Jackson ImmunoResearch Labora-
tories, Hamburg, Germany). As a peroxidase substrate,
100 �l of a 2,2�-azino-bis-3-ethylbenzothiazoline-6-sulfonic
acid buffer (ABTS; Sigma) (0⋅54g ABTS and 21 g citric acid

monohydrate, in 1 litre water, pH4⋅2, with final concentration
of 0⋅3ml H2O2/l) was used. Optical density was measured
with a multiplate spectrophotometer (Molecular Devices) at
405nm.

IL-4 was measured in a similar way to IL-2 with the
following reagents. Coating: polyclonal anti-human IL-4
(0⋅5 mg/l; Endogen, Cambridge, MA, USA); blocking:
40 ml bovine serum albumin/l in PBS-Tween; standards:
recombinant human IL-4 (Endogen); detecting antibody:
biotin-labelled anti-human IL-4 monoclonal antibody
(0⋅25 mg/l; Endogen); peroxidase-conjugated streptavidin
(0⋅5 mg/l; Jackson ImmunoResearch Laboratories).

Statistics

The results for plasma carotenoids and leucocyte numbers
are expressed as means and standard deviations and the
results for the immunological measurements as means with
their standard errors. Differences between values for week 2
(end of depletion) and supplementation with the vegetable
products for 2 weeks within the same group were examined
by Wilcoxon matched pairs signed rank test. Statistical
significance was accepted at P � 0⋅05. All statistical calcu-
lations were performed with the Statistical Analysis
Systems computer software program (SAS for Windows,
version 6.12; SAS Institute, Cary, NC, USA).

Results

Plasma carotenoids

Compliance of the study subjects was high, with no subject
missing the daily intake of the vegetable products. During
the 2-week low-carotenoid period there was no statistically
significant change in plasma carotenoids compared with
prestudy plasma concentrations (Table 1). Tomato juice,
carrot juice, and spinach powder consumption each resulted
in a significant increase of the vegetable-specific caro-
tenoids compared with plasma concentrations at the end
of the depletion period (Table 1). The increase in lycopene
concentration in week 4 was not associated with changes in
other carotenoids (Müller et al. 1999). In week 6 plasma
lycopene concentration returned to baseline concentration.
Plasma retinol, a-tocopherol and ascorbic acid concentra-
tions did not change throughout the intervention period
(Müller et al. 1999; A Bub, B Watzl, J Wever, SL Abra-
hamse, H Delincée, ST Adam, S Mittenzwei, J Hegele, H
Müller and G Rechkemmer, unpublished results). The
average daily intake of total carotenoids from self-selected
foods during the study period based on food records was
1⋅32 (SD 0⋅57) mg, with 57 % derived from b-carotene, 6 %
from a-carotene, 36 % from lutein and 2 % from lycopene.
Total carotenoid and ascorbic acid intakes before the study
period were calculated to be 3⋅48 (SD 2⋅17) mg/d and 114⋅3
(SD 48⋅9) mg/d respectively.

Leucocyte numbers

Total leucocyte numbers were constant throughout the
whole study period starting with 5⋅5 × 109 cells/l and
ending with 5⋅2 × 109 cells/l (range 5⋅1–5⋅5 × 109 cells/l).
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Lymphocyte functions

In a dose–response curve with ConA, 5 mg ConA/l gave the
maximum proliferative responsiveness and maximum cyto-
kine secretion. This concentration was, therefore, used
throughout the study. Lymphocyte proliferation decreased
at the end of the low-carotenoid period (week 1 v. week 2,
P = 0⋅07) and after the first week of tomato juice con-
sumption proliferation was significantly suppressed com-
pared with proliferation at the end of the depletion period
(Table 1). After a further week of tomato juice consump-
tion and until the end of the intervention period prolifera-
tion did not differ compared with proliferation at the end
of the depletion period (Table 1).

The concentrations of immunoreactive IL-2 secreted into
the culture media by the PBMC from study subjects when
cultured with ConA are shown in Fig. 1. There was a
significant decline in the capacity to secrete IL-2 after
2 weeks of consuming the low-carotenoid diet. The supple-
mentation with tomato juice activated PBMC to secrete IL-2
in an amount similar to the prestudy concentration. After the
2 weeks of carrot juice consumption and after two further
weeks of spinach powder consumption no increased
capacity to secrete IL-2 compared with week 2 was
observed.

The capacity of PBMC to secrete immunoreactive IL-4
was also modulated by the dietary intervention. The low
carotenoid intake during the first 2 weeks resulted in a
significant reduction of IL-4 secretion (Table 1). Tomato
juice consumption for 2 weeks increased IL-4 secretion
capacity of PBMC significantly. Again, 2 weeks of carrot
juice consumption and of spinach powder consumption did
not result in an enhanced IL-4 secretion compared with the
end of the depletion period.

Discussion

The immune system is a major component in the patho-
genesis of several chronic diseases like cancer and cardio-
vascular disease. Epidemiological studies have consistently
found that an inverse relationship between intake of vege-
tables and fruit and risk for these diseases exists (Steinmetz
& Potter, 1991; Block et al. 1992; Key et al. 1996; Ness &
Powles, 1997). The constituents in vegetables and fruit
contributing to the preventive effects are not yet identified.
In addition, a strong inverse association between dietary
intake of b-carotene and cancer risk has been observed in
several epidemiological studies (Mayne, 1996). Since diet-
ary b-carotene is mostly provided by vegetables and fruit,
the immunomodulatory activity of b-carotene may contri-
bute to the observed protective effects of these food items.

Subjects enrolled in our present study had a total caro-
tenoid intake of 3⋅48 (SD 2⋅17) mg/d before entering the
study. Since the average carotenoid intake of males in
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Table 1. Plasma carotenoid concentrations (�mol/l) and proliferation and interleukin-4 production (pg/ml) by peripheral blood mononuclear cells of
subjects consuming a low-carotenoid diet (weeks 0–2) supplemented with tomato juice (weeks 3–4), carrot juice (weeks 5–6) or spinach powder

(weeks 7–8)†

(Mean values and standard deviations (plasma carotenoids) or standard errors (lymphocyte functions) for twenty-three subjects)

Baseline Depletion Tomato juice Carrot juice Spinach powder

Week . . . 0 1 2 3 4 5 6 7 8

SD or SD or SD or SD or SD or
Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE

Plasma‡
Lycopene 0⋅16 0⋅07 – 0⋅16 0⋅08 – 0⋅38* 0⋅13 – 0⋅15 0⋅05 – 0⋅14 0⋅06
b-Carotene 0⋅74 0⋅44 – 0⋅60 0⋅36 – 0⋅65 0⋅25 – 2⋅05* 0⋅72 – 1⋅21* 0⋅51
Lutein 0⋅37 0⋅14 – 0⋅35 0⋅12 – 0⋅33 0⋅12 – 0⋅36 0⋅11 – 0⋅71* 0⋅17

Lymphocyte
Proliferation§ 1⋅57 0⋅06 1⋅61 0⋅08 1⋅47 0⋅08 1⋅25* 0⋅05 1⋅52 0⋅07 1⋅60 0⋅06 1⋅61 0⋅06 1⋅53 0⋅06 1⋅31 0⋅06
Interleukin-4 35⋅0* 5⋅3 29⋅6 14⋅6 27⋅9 3⋅1 26⋅5 16⋅5 36⋅4* 4⋅0 33⋅3* 4⋅4 30⋅8 3⋅0 32⋅5 4⋅3 26⋅9 3⋅6

Mean values were significantly different from those for week 2: *P � 0⋅05.
† For details of diets and procedures, see pp. 384–385.
‡ Data are from Müller et al. (1999). Plasma carotenoids were not determined at weeks 1, 3, 5 and 7.
§ Measured as absorbance at 450nm minus absorbance at 650nm.

Fig. 1. Concentration of interleukin-2 (pg/ml) secreted by peripheral
blood mononuclear cells (PBMC) activated with concanavalin A
(5 mg/l) and cultured for 48h at 37� and 50ml CO2/l. PBMC were
isolated from subjects (n 23) who consumed a low-carotenoid diet
(weeks 0–2), which was supplemented with tomato juice (weeks 3–
4), carrot juice (weeks 5–6) or spinach powder (weeks 7–8). Values
are means with their standard errors represented by vertical bars.
Mean values were significantly different from those for week 2: *P �
0⋅05, ***P � 0⋅001.
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Germany (aged 24–50 years) is 5⋅6 mg/d (Pelz et al. 1998),
our study subjects were consuming relatively low levels of
fruit and vegetables. The results of our study show that the
consumption of a diet low or high in carotenoid-rich
vegetable products modulates T-lymphocyte functions as
measured in in vitro assays. A low intake of carotenoid-rich
vegetables decreased lymphocyte proliferation and inhib-
ited the capacity to secrete cytokines, although plasma
carotenoid concentrations were not reduced significantly
during this period. Supplementing the low-carotenoid diet
with vegetable products high in specific carotenoids
significantly increased plasma concentrations of these
carotenoids. However, only after the tomato juice period
were T-lymphocyte functions enhanced compared with the
end of the depletion period. This enhancement was
paralleled by a significant increase in plasma lycopene
concentration (Müller et al. 1999).

The reduced lymphocyte proliferative responsiveness
observed after 1 week of tomato juice consumption may
have been a consequence of the preceeding low-carotenoid
period and not an effect of the tomato juice consumption.
The different kinetics of the dietary intervention on
T-lymphocyte proliferation and IL-2 secretion suggests
that IL-2 secretion capacity is more sensitive to such dietary
treatments than T-lymphocyte proliferation. Reduction of
IL-2 secretion in week 2 preceded the lowered lymphocyte
proliferation in week 3 and the recovery in IL-2 secretion in
week 3 preceded the recovery in lymphocyte proliferation.

After carrot juice and spinach powder consumption,
T-lymphocyte functions were not significantly different
compared with week 2 (end of depletion). While at the
end of week 6 plasma lycopene concentration had returned
to the prestudy concentration, a- and b-carotene and lutein
concentrations were increased compared with week 2.
These results suggest that tomato juice consumption, as
indicated by the high plasma lycopene concentration, is
related to the increased cytokine secretion capacity
observed after week 4, and tomato juice-specific ingredients
may be necessary for adequate T-lymphocyte functions.

Other studies have also investigated the impact of low-
carotenoid diets on lymphocyte functions. Consumption of a
low-carotenoid diet (b-carotene � 0⋅1 mg/d or = 0⋅5 mg/d)
for 60 d significantly suppressed lymphocyte proliferation
without significantly changing plasma b-carotene concen-
trations (Kramer & Burri, 1997), which helps to confirm the
results of the present study. The uptake of a carotenoid
complex from vegetables for 20 d corrected the proliferative
response (Kramer & Burri, 1997). These results suggest that
a b-carotene dosage of 0⋅5 mg/d may be too low to allow
normal proliferation or that the uptake of a mixture of
several carotenoids is required in order for lymphocytes to
function properly. The results of both studies also question
the significance of plasma b-carotene concentrations during
b-carotene depletion periods as a factor influencing lym-
phocyte functions. Probably PBMC carotenoid concentra-
tions more closely mirror the effect of low-carotenoid diets
as has been suggested by others recently (Fotouhi et al.
1996). In addition, non-carotenoid constituents in caro-
tenoid-rich vegetables could also modulate T-lymphocyte
functions. A similar study design was used in another
investigation in which b-carotene depletion as well as

repletion with pure b-carotene (15 mg/d) did not influence
lymphocyte proliferation (Daudu et al. 1994). In this study
plasma b-carotene concentration significantly decreased
during depletion.

In several studies supplementation with b-carotene with-
out using a depletion period before supplementation did not
affect lymphocyte proliferation (Ringer et al. 1991; Mey-
dani et al. 1995a). In a study on nutrition and lymphocyte
proliferation in young and aged subjects plasma b-carotene
concentration also did not correlate with lymphocyte pro-
liferative responsiveness (Gardner et al. 1997). Only one
study has clearly demonstrated a stimulatory effect on
lymphocyte proliferation after supplementation with
30 mg b-carotene/d for 28 d (Moriguchi et al. 1996).
Besides b-carotene there is no in vivo study on lycopene
and lymphocyte proliferation and only one study which has
investigated the effect of lutein on lymphocyte proliferation.
In this animal study a lutein-rich extract from marigold
(Tagetes patula) was applied orally for 2 and 4 weeks. This
treatment resulted in an enhanced lymphocyte proliferation
after 2 weeks of supplementation (Chew et al. 1996).

IL-2 and IL-4 are cytokines which are both produced by
activated T cells. While IL-2 production is concentrated
among T-helper-1 cells, IL-4 is primarily produced by
T-helper-2 cells (Mosmann & Sad, 1996). IL-2 plays an
important role in the proliferation of T cells following
in vitro stimulation with T-cell mitogens such as ConA.
IL-4 has also been shown to stimulate T-cell proliferation.
In the present study the low carotenoid intake resulted in a
significantly reduced IL-2 secretion capacity. This reduction
was paralleled by a suppressed proliferative response of
these cells. According to these results carotenoids, or other
substances provided by the consumption of carotenoid-
rich vegetables, may stimulate proliferation via their
impact on IL-2 and/or IL-4 production. No other study
looking at the effect of a high carotenoid intake through
the consumption of vegetables on cytokine secretion has
been published.

Several studies have investigated the effect of pure
b-carotene on IL-2 production and on IL-2 receptor expres-
sion on activated lymphocytes in human subjects. Supple-
mentation with b-carotene had no effect on IL-2 production
in human subjects (Moriguchi et al. 1996; Santos et al.
1996) or in mice (Chew et al. 1996) and did not enhance IL-
2 receptor expression on PBMC (Daudu et al. 1994; Santos
et al. 1996). Only in one study using four subjects did
b-carotene supplementation result in enhanced IL-2 recep-
tor expression on T lymphocytes (Watson et al. 1991). In
in vitro studies with T-helper-1 and T-helper-2 clones,
neither lycopene nor lutein affected the production of a
T-helper-1 specific (interferon-g) and of a T-helper-2 spe-
cific cytokine (IL-5) (Iyonouchi et al. 1996). Overall the
majority of studies clearly show that pure carotenoids do not
modulate T-cell cytokine production. This again suggests
that probably other constituents in carotenoid-rich vegeta-
bles mediate the observed effects on T lymphocytes. In
previous studies it has also been shown that b-carotene in
vitro has no effect on interferon-g secretion, however, the
secretion of monokines (IL-1, tumour necrosis factor a) was
significantly increased in vitro (Abdel-Fattah et al. 1993)
and in vivo (Hughes et al. 1997a).
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One potential mechanism for an immunomodulatory
effect of carotenoids is their ability to act as antioxidants
and to quench singlet oxygen, which results in a lower
generation of free radicals (Bendich, 1996). Free radicals
are known to impair the integrity and functionality of
membrane lipids and to affect signal transduction and
gene expression in immune cells (Meydani et al. 1995b).
Genotoxicity studies with PBMC from our study subjects
revealed that there were fewer oxidized pyrimidine bases of
the DNA after carrot juice consumption (Pool-Zobel et al.
1997) indicating antioxidative efficacy of carrot juice
ingredients. However, the capacity of these PBMC to
secrete IL-2 was not significantly different after carrot
juice consumption compared with the end of the depletion
period, which would not be in line with the proposed
hypothesis. Furthermore, no close relationship was
observed in vitro between the antioxidant activity of
carotenoids and their modulating effect on T-helper cell
functions (Iyonouchi et al. 1996).

The observed differences between the immunomodula-
tory potential of tomato juice, carrot juice, and spinach
powder could be caused at least in part by the different
quantities of vegetable products given to the study subjects.
While tomato juice and carrot juice at a dose of 330 ml/d
provided lycopene 28-fold and b-carotene 10-fold higher
than the average intake in Germany, 10 g/d spinach powder
provided only five times the quantity of average lutein
intake (Pelz et al. 1998). In addition, due to the design of
our study without the use of wash-out periods, we do not
know whether the treatments functioned independently,
limiting the interpretation of our results. Because the treat-
ment of the subjects was not randomized we do not know
whether the two other vegetable products given after the
depletion period would have induced the same results as
were achieved with the tomato juice. In future studies the
immunomodulatory activity of single vegetable products
such as tomato juice should be investigated over a time
range allowing the immunological effects to reach stability.

In conclusion, the results of the present study show that in
healthy male adults the consumption of a low-carotenoid
diet reduced T-lymphocyte functions. Tomato juice con-
sumption restored these functions. During the intervention
period the treatment with vegetable products never resulted
in the stimulation of T-lymphocyte functions beyond base-
line values, although the study subjects showed significantly
elevated plasma carotenoid concentrations after the dietary
intervention compared with baseline. The active constitu-
ents in tomato juice which mediate the immunomodulatory
effects, as well as the biological significance of this, must be
determined in further investigations.
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Moderate Intervention with Carotenoid-Rich Vegetable Products Reduces
Lipid Peroxidation in Men1
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Joachim Wever,3 Harald Müller3 and Gerhard Rechkemmer

Institute of Nutritional Physiology, Federal Research Centre for Nutrition, D-76131 Karlsruhe, Germany
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ABSTRACT Because of their antioxidant properties, carotenoids may have beneficial effects in preventing cancer
and cardiovascular disease. However, in humans consuming carotenoid-rich vegetables, data concerning the
antioxidant effects of carotenoids are rather scarce. A human intervention trial was conducted, therefore, to
determine whether a moderately increased consumption of carotenoid-rich vegetables would influence the
antioxidant status in 23 healthy men. This short-term feeding study lasted 8 wk during which the men consumed
a low carotenoid diet. A 2-wk low carotenoid period was followed by daily consumption of 330 mL tomato juice,
then by 330 mL carrot juice and then by 10 g of spinach powder, each for 2 wk. Antioxidant status [water-soluble
antioxidants in serum, ferric reducing ability of plasma (FRAP) and antioxidant enzyme activities] and lipid
peroxidation (plasma malondialdehyde and ex vivo oxidation of LDL) were determined. In a subgroup of 10 men,
lipoprotein carotenoids were measured. The consumption of carotenoid-rich vegetables significantly increased
selected carotenoids in lipoproteins but had only minor effects on their relative distribution pattern. Tomato juice
consumption reduced plasma thiobarbituric acid reactive substances (TBARS) by 12% (P � 0.05) and lipoprotein
oxidizability in terms of an increased lag time (18%, P � 0.05). Carrot juice and spinach powder had no effect on
lipid peroxidation. Water-soluble antioxidants, FRAP, glutathione peroxidase and reductase activities did not
change during any study period. In evaluating the low carotenoid diet, we conclude that the additional consumption
of carotenoid-rich vegetable products enhanced lipoprotein carotenoid concentrations, but only tomato juice
reduced LDL oxidation in healthy men. J. Nutr. 130: 2200–2206, 2000.

KEY WORDS: ● vegetable ● humans ● antioxidant ● carotenoid ● lipoprotein

The oxidative modification of LDL is considered to play an
important role in the pathogenesis of atherosclerosis (Diaz et
al. 1997). In addition, lipid oxidation products are involved in
the formation of mutagenic DNA adducts, which may con-
tribute to carcinogenesis (Chung et al. 1996). It has been
hypothesized that dietary antioxidants protect LDL from oxi-
dation and should therefore reduce the risk of atherosclerosis
and cancer. In fact, dietary antioxidants such as ascorbic acid,
vitamin E and �-carotene have been demonstrated to prevent
LDL oxidation in vitro (Frei et al. 1996, Jialal and Devaraj
1996). In vivo studies, however, have yielded contradictory
results. Some studies reported that �-carotene supplementa-
tion inhibited LDL oxidation (Levy et al. 1996, Nyysönen et
al. 1994), whereas others did not find an inhibition of LDL
oxidation (Gaziano et al. 1995, Reaven et al. 1993).

Although information exists concerning the absorption,
metabolism and action of �-carotene in humans, little is
known about these processes for other carotenoids. Nutrition

research has focused recently on other carotenoids including
�-carotene, lycopene and lutein (Stahl and Sies 1996, Yeum et
al. 1996). These include carotenoids to be found in high
concentrations in vegetables, such as lycopene in tomato and
lutein in spinach, cabbage or kale. One of the major charac-
teristics of these carotenoids is their high antioxidative poten-
tial measured as Trolox equivalent antioxidant capacity
(TEAC)4. Among carotenoids, TEAC values were highest for
lycopene, �-carotene and lutein (Miller et al. 1996). Because
antioxidant mechanisms are likely involved in the pathogen-
esis of cardiovascular diseases and cancer (Gaziano and Hen-
nekens 1993, Ziegler 1991), it is tempting to assume that the
health benefits associated with the consumption of carotenoid-
rich vegetables are due at least in part to antioxidant proper-
ties of the carotenoids. This hypothesis is supported by recent
studies that showed an increase in plasma antioxidant capacity
in humans (Cao et al. 1998a and 1998b, Miller et al. 1998)
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blood mononuclear cells; SOD, superoxide dismutase; TBARS, thiobarbituric acid
reactive substances; TEAC, Trolox equivalent antioxidant capacity.
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and protection against lipid peroxidation as measured by thio-
barbituric acid reactive substances (TBARS) and breath pen-
tane (Miller et al. 1998) upon increased consumption of fruit
and vegetables. Nevertheless, the protection of antioxidant
carotenoids from food against LDL oxidation in vivo in hu-
mans requires further elucidation (Agarwal and Rao 1998, Rao
and Agarwal 1998).

Therefore, we conducted a human intervention trial to
determine whether a moderately increased consumption of
carotenoid-rich vegetables would elevate plasma carotenoids
to a concentration that was correlated negatively with the risk
of cancer and cardiovascular disease in epidemiological stud-
ies. Effects of carotenoid-rich vegetable products on the anti-
oxidant status and LDL oxidation in men were assessed. Li-
poprotein carotenoids were measured to possibly relate diet-
induced changes in LDL carotenoids and LDL oxidation
measurements.

A study design without washout periods between the dif-
ferent vegetable intervention periods was chosen to mimic
more closely the dietary behavior of consumers. Tomato juice,
carrot juice and spinach powder were used as sources for
specific carotenoids because their major carotenoids showed
the highest antioxidant activity in the TEAC assay (Miller et
al. 1996). Results of this study referring to plasma carotenoid
concentrations (Müller et al. 1999), immunologic effects
(Watzl et al. 1999), prevention of lymphocyte DNA damage
(Pool-Zobel et al. 1997) and the effect of vegetable products
on detoxifying enzymes (Pool-Zobel et al. 1998) have been
published.

SUBJECTS AND METHODS

Subjects and study design. The study protocol was described
previously (Müller et al. 1999). In brief, 23 nonsmoking men aged
27–40 y in good health, as determined by a screening history and
medical check, were examined. Anthropometric data are given in
Table 1. None were taking vitamin supplements or medication dur-
ing the study. The study was approved by the Medical Ethical
Committee of the Landesaerztekammer Baden-Wuerttemberg and all
participants gave their written consent. This short-term feeding study
consisted of an 8-wk experimental period, divided into four 2-wk
periods. During the study the men consumed a low carotenoid diet.
They adhered to their usual diet but were instructed to avoid food
products with a high carotenoid content. They were given a list of
products to be excluded from the diet (Müller et al. 1999). On the
basis of food records, the average daily carotenoid intake from self-
selected foods during the study was 1.32 � 0.58 mg (Watzl et al.
1999). The first 2 wk served as a low carotenoid period, during which
no additional carotenoid-rich food was given. For the next 14 d, the
subjects ingested 330 mL/d of a commercially available tomato juice
(40 mg lycopene) in addition to their meals (tomato period). During
wk 5 and 6, the tomato juice was replaced by 330 mL carrot juice
(15.7 mg �-carotene and 22.3 mg �-carotene) daily (carrot period).
Tomato and carrot juice were provided by Schoenenberger Pflanzen-
saftwerke, Magstadt, Germany. Finally, during the last 2 wk, a liquid
spinach powder preparation (10 g spinach powder; 11.3 mg lutein and

3.1 mg �-carotene; Völpel, Königmoos, Germany) was given with the
daily meals (spinach period). Table 2 describes the carotenoid con-
centrations of these products.

Blood samples. Blood samples were taken from fasting subjects at
the beginning of the study and at the end of each week between 0700
and 0900 h. Blood was drawn from an antecubital vein into prechilled
tubes containing EDTA (1.6 g/L, Monovette-Sarstedt, Nümbrecht,
Germany) and immediately placed on ice in the dark. Plasma was
collected after centrifugation at 1500 � g for 10 min at 4°C. For the
lipid peroxidation assay, sucrose (15 g/L) was added to the plasma to
prevent LDL aggregation,. For carotenoid analysis, sucrose (15 g/L)
and BHT (5 mg/L) as antioxidant were added to the plasma and
stored at �80°C until analysis.

Blood antioxidant measurements. Albumin was determined by
using a bromcresol green reagent (Boehringer Mannheim, Germany).
Bilirubin (DCA method) and uric acid (enzymatic Trinder method)
were measured with test kits (RANDOX, Ardmore, N. Ireland).
Serum levels of vitamin C were determined spectrophotometrically
after derivatization with dinitrophenylhydrazin (Omaye et al. 1979).
Intra- and interassay variations were �2 and �6%, respectively.

Glutathione determination. Total glutathione (GSHt) and ox-
idized glutathione (GSSG) were determined in whole blood, plasma
and erythrocytes using a microtiter plate assay based on the method
described by Baker et al. (1990) and Richie et al. (1996). Samples
were deproteinized using 5-sulfosalicyclic acid (Sigma, Deisenhofen,
Germany). The reaction was followed at 405 nm wavelength and
30°C for 30 min at a rate of 1 measurement/min using a temperature-
controlled microtiter plate reader (Molecular Devices, München,
Germany). GSHt and GSSG concentrations were determined in
triplicate and calculated from standard curves of GSH and GSSG
(both from Sigma).

FRAP-assay. To measure “antioxidant power,” the ferric reduc-
ing ability of plasma (FRAP)-assay as described by Benzie and Strain
(1996) was used with minor modifications. In brief, in a 96-well
microtiter plate, plasma samples (10 �L) were added to 30 �L of H2O
and the reaction was started by further adding 300 �L prewarmed
(30°C) FRAP reagent. The reaction mixture was incubated for 8 min
at 30°C and absorbance was determined in a microtiter plate reader
(MWG Biotech, Ebersberg, Germany) at a wavelength of 585 nm.
Intra- and interassay variations were �5%.

Enzyme activity measurements. Superoxide dismutase (SOD)
and glutathione peroxidase (GPX) activities in erythrocytes were
assayed using commercial test kits (Randox Laboratories, Crumlin,
UK), which were adapted to a microplate reader (Molecular De-

TABLE 1

Anthropometric data of the men studied1

Age, y 34 � 4 (27–40)
Height, cm 181 � 7 (168–200)
Weight, kg 76 � 9 (59–100)
Body fat, g/100 g 17 � 3 (10.7–23.6)
Body mass index, kg/m2 23 � 2 (19.6–28.1)

1 Values are means � SD, n � 23 (range).

TABLE 2

Carotenoid concentrations of tomato juice, carrot juice and
spinach powder

Product

Tomato
juice

Carrot
juice

Spinach
powder

mg/100 g

% Dry matter 6.0 8.7 98
�-Carotene 0.45 6.56 31.1
cis-�-Carotene 0.06 0.19 4.83
�-Carotene ND1 4.76 0.89
�-Cryptoxanthin ND 0.01 1.47
�-Cryptoxanthin ND 0.007 ND
Lutein (incl. zeaxanthin) ND 0.154 113.5
Violaxanthin ND ND 22.55
Lycopene 11.84 ND ND
cis-Lycopene 0.28 ND ND
Lycopene-oxidation products 0.3 ND ND
Phytofluene 0.71 0.96 ND
Phytoene 2.23 2.1 ND

1 ND, not detected.
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vices). Catalase activity (CAT) in erythrocytes was assayed by the
method of Aebi (1983). The activity of glutathione reductase (GOR)
in plasma was assayed using a slightly modified procedure of Goldberg
and Spooner (1983) adapted to a microplate reader. All enzyme
assays were done in duplicate or triplicate for individual samples.
Intra- and interassay variations were between 5 and 7% and 7 and
9%, respectively. Hemoglobin concentrations in whole blood and
erythrocyte hemolysates were analyzed using a Sysmex F-300 analyzer
(Sysmex, Hamburg, Germany).

Fatty acid determination. Serum fatty acid components were
determined by the method of Müller et al. (1990) on a Fisons 8000
gas chromatograph (Thermoquest, Egelsbach, Germany) using split/
splitless injection and flame ionization as detection. The fused silica
column (length, 25 m; i.d., 0.25 mm; df, 0.25 �m) coated with
chemically bound polyethylene glycol was purchased from Supelco
(Sigma). The temperature program started at 50°C (3 min), followed
by a rise of 10°C/min to 190°C and a rise of 3°C/min to 230°C (20
min).

Malondialdehyde. Plasma malondialdehyde was determined as
thiobarbituric acid reactive substances (TBARS) using a fluorometric
method (Yagi 1984). Emission was measured at 548 nm emission
wavelength in a fluorescence spectrophotometer (PTI Systems,
Wedel, Germany) with an excitation wavelength of 533 nm. Intra-
and interassay variations were �4 and �6%, respectively.

Preparation of LDL for oxidation. LDL was isolated by a short-
run ultracentrifugation method based on nonequilibrium density-
gradient ultracentrifugation (Kleinveld et al. 1992). Centrifugation
was carried out in polycarbonate centrifuge tubes by using a Beckman
SW-55 Ti rotor at 236,000 � g for 2 h at 15°C (Beckman L7–80
ultracentrifuge, Beckman Instruments, Palo Alto, CA). After centrif-
ugation the LDL-containing fraction was located in the upper half of
the tube and collected by aspiration. Purity of the LDL fraction was
confirmed by agarose gel electrophoresis (Hydragel, Sebia, Fulda,
Germany). EDTA and salts were removed from LDL by gel filtration
on Pharmacia PD 10 disposable columns (Amersham Pharmacia
Biotech, Freiburg, Germany). The LDL oxidation was assayed on the
day of preparation.

LDL oxidation. The in vitro oxidation of LDL was performed by
using a modification of the procedure described by Esterbauer et al.
(1989). The LDL concentration in the PBS solution was determined
by measuring total cholesterol with the CHOD-PAP enzymatic test
kit (Boehringer) and adjusted for the oxidation assay to 0.1 �mol/L
LDL (0.204 mmol/L cholesterol), assuming an LDL molecular weight
of 2.5 MDa and a cholesterol concentration of 31.6 g/100 g (Ramos
et al. 1995). The LDL oxidation process was followed by recording
the conjugated diene absorption at 234 nm in a Perkin Elmer spec-
trophotometer (Lambda 15, Perkin Elmer, Überlingen, Germany).

The instrument was equipped with a water-heated autocell holder for
simultaneous measurement of six samples. Oxidation was started by
adding CuCl2 to a final concentration of 20 �mol/L. The recording
of the 234 nm absorption was started immediately after the addition
of CuCl2 and continued at intervals of 3 min for �4 h. The recorded
absorption data were finally processed on a computer. Intra- and
interassay variations were �5 and �8%, respectively.

Isolation and carotenoid analysis of plasma lipoproteins. In a
subset of 10 men, carotenoids were analyzed in the major human
plasma lipoprotein fractions, i.e., VLDL, LDL and HDL. EDTA
plasma with sucrose (15 g/L) and BHT (5 mg/L) added was used for
plasma lipoprotein separation by sequential floatation ultracentrifu-
gation adapted to the method of Clevidence and Bieri (1993). Purity
of each lipoprotein fraction was determined by agarose gel electro-
phoresis (Hydragel, Sebia). Ether/ethanol extraction and analysis of
carotenoids by HPLC have been described previously (Müller et al.
1999).

Statistics. Results are given as means � SD, unless otherwise
stated. ANOVA and the Friedman test for nonparametric testing
were used to compare the depletion period with the different inter-
vention periods. Comparisons of means were performed using the
appropriate ANOVA post-test (Tukey-Kramer or Dunn’s multiple
comparison test). Differences were considered to be significant at P
� 0.05. Linear regression analysis was performed and the coefficient
of correlation (r) was calculated. Statistical calculations were done by
using the InStat 2.02 statistical program (Graph Pad Software, San
Diego, CA) and StatView 5 (SAS Institute, Cary, NC).

RESULTS

Vegetable juice consumption was well tolerated by all men
and none had to be excluded from the study due to illness or
noncompliance. Plasma carotenoid concentrations have al-
ready been published (Müller et al. 1999).

Carotenoid concentrations in lipoproteins. Lycopene in-
creased significantly in VLDL, LDL and HDL after tomato
juice consumption. Both �- and �-carotene were elevated in
the lipoprotein fractions after carrot juice consumption and
after spinach powder consumption, and lutein was increased in
lipoproteins after consumption of a spinach preparation (Ta-
ble 3). After carrot juice consumption, �-tocopherol (4.3
� 1.3 vs. 6.6 � 2.2 �mol/L, P � 0.01) and ubichinone-10 (39
� 15 vs.72 � 33 nmol/L, P � 0.05) were significantly reduced
in HDL, but not in VLDL and LDL compared with the low
carotenoid period.

TABLE 3

Concentrations of carotenoids in plasma lipoproteins of men after consuming a low carotenoid diet and intervention with
carotenoid-rich vegetable products1

Lipoproteins
Study
period

Lutein �
Zeaxanthin �-Carotene �-Carotene

all-trans-
Lycopene

cis-
Lycopene

Lycopene
oxides Phytofluene Phytoene

nmol/L

VLDL Depletion 28 � 16 13 � 9 34 � 26 11 � 6 14 � 9 6 � 5 15 � 10 20 � 12
Tomato 38 � 22 16 � 8 40 � 21 35 � 22* 28 � 17* 10 � 6 74 � 44* 103 � 56*
Carrot 37 � 25 98 � 51* 155 � 83* 18 � 13 19 � 12 10 � 4 59 � 40* 86 � 39*
Spinach 66 � 32* 33 � 14 65 � 36 18 � 7 15 � 6 9 � 4 33 � 15 27 � 14

LDL Depletion 98 � 40 127 � 106 423 � 350 90 � 64 118 � 72 36 � 16 46 � 38 48 � 38
Tomato 99 � 40 123 � 76 424 � 214 265 � 76* 245 � 66* 92 � 22* 154 � 62* 221 � 74*
Carrot 92 � 54 828 � 344* 1230 � 607* 86 � 32 108 � 39 47 � 14 136 � 56* 283 � 114*
Spinach 215 � 86* 491 � 206* 795 � 396* 89 � 41 113 � 37 41 � 12 89 � 32* 132 � 57*

HDL Depletion 150 � 55 35 � 34 91 � 70 19 � 8 24 � 10 9 � 5 8 � 6 16 � 9
Tomato 132 � 40 32 � 26 88 � 64 39 � 14* 41 � 15* 19 � 8* 13 � 8 36 � 20*
Carrot 114 � 41 162 � 60* 194 � 92* 14 � 5 15 � 5 13 � 4 22 � 10* 60 � 33*
Spinach 281 � 123* 116 � 59* 163 � 101 15 � 7 19 � 6 11 � 2 13 � 8 31 � 22

1 Values are means � SD, n � 9 or 10. * Significantly different from depletion period, P � 0.05.
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Relative distribution of carotenoids in lipoproteins. Con-
sumption of carotenoid-rich vegetable products had only mi-
nor effects on the relative distribution of carotenoids among
the lipoprotein fractions (VLDL, LDL and HDL; Table 4)
despite the significant changes in carotenoid concentrations in
lipoproteins. In VLDL and LDL, no significant changes in the
carotenoid distribution were found except for phytoene, which
showed a significant relative reduction in VLDL and an in-
crease in LDL after the spinach period. In HDL, relative
reductions of �-carotene, all-trans- and cis-lycopene, phytoflu-
ene and phytoene were observed during various intervention
periods (Table 4).

LDL oxidation. Tomato juice consumption for 2 wk re-
duced lipid peroxidation in healthy men (Table 5). The initial
concentration of conjugated dienes in LDL did not change
during the study. In vitro lipoprotein oxidizability was reduced
as seen by an increased lag time (18%) at the end of the
tomato juice period (P � 0.001). At that point, all-trans- and
cis-lycopene and lycopene oxidation products in plasma and
LDL had increased significantly. LDL lycopenes were nega-
tively correlated with lag time (all-trans-lycopene, r
� �0.421, P � 0.22; cis-lycopene, r � �0.571, P � 0.08;
lycopene oxidation products, r � �0.816, P � 0.004). There
were no significant correlations between lag time and other
carotenoids at the end of the tomato juice period. During the
carrot and spinach periods, lag time was not elevated com-

pared with baseline values. At the end of the carrot juice
period, strong correlations were found between lag time and �-
and �-carotene (r � 0.695, P � 0.026; r � 0.785, P � 0.007,
respectively). No correlation between lag time and lutein was
observed after the spinach period. During the tomato juice
intervention, plasma TBARS were significantly reduced (P
� 0.05) by 12% and increased to baseline values at the end of
the carrot juice period.

Serum free fatty acids (data not shown) did not change
throughout the study.

Water-soluble serum antioxidants. Water-soluble serum
antioxidants, uric acid, bilirubin, albumin, glutathione and
vitamin C, and the reducing capacity of plasma measured as
the FRAP did not change during the vegetable juice interven-
tion (data not shown). Serum uric acid, bilirubin and albumin
were within the normal range. Serum vitamin C concentra-
tions ranged from 66.3 � 12.8 to 73.5 � 12 �mol/L. There was
a strong correlation between uric acid and FRAP (r � 0.898,
P � 0.001) but none for bilirubin, albumin, glutathione or
vitamin C.

Compared with the end of the depletion period, tomato
juice consumption reduced whole blood GSHt (0.72 � 0.02
vs. 0.87 � 0.04 mmol/L, P � 0.05) and increased whole blood
GSSG (0.09 � 0.01 vs. 0.07 � 0.01 mmol/L, P � 0.05).
Tomato juice had no effect on plasma or erythrocyte GSHt
and GSSG. Carrot juice consumption reduced whole blood

TABLE 4

Relative distribution of carotenoids in plasma lipoproteins of men after consuming a low carotenoid diet and intervention with
carotenoid-rich vegetable products1

Lipoproteins
Study
period

Lutein �
Zeaxanthin �-Carotene �-Carotene

all-trans-
Lycopene cis-Lycopene

Lycopene
oxides Phytofluene Phytoene

Distribution in lipoprotein fractions, %

VLDL Depletion 10.2 � 6.6 9.2 � 3.8 7.4 � 4.8 10.9 � 5.4 10.1 � 4.8 12.5 � 3.1 26.9 � 12.9 26.7 � 13.2
Tomato 14.0 � 6.9 10.8 � 5.7 7.7 � 4.0 10.2 � 5.4 8.9 � 4.6 8.3 � 3.4 29.9 � 12.8 28.6 � 11.9
Carrot 15.3 � 9.5 9.6 � 6.0 11.0 � 7.5 15.2 � 8.2 13.1 � 6.8 14.8 � 7.5 26.5 � 15.2 20.7 � 9.6
Spinach 11.8 � 4.8 5.3 � 1.7 6.5 � 2.4 14.8 � 2.4 10.3 � 2.5 14.9 � 4.8 23.8 � 8.2 14.8 � 6.2*

LDL Depletion 35.6 � 8.1 70.8 � 6.9 74.8 � 5.1 72.1 � 5.5 74.1 � 5.2 71.7 � 7.6 63.4 � 12.9 54.9 � 14.2
Tomato 36.0 � 5.6 70.5 � 8.1 77.1 � 5.1 77.9 � 6.1 77.8 � 6.1 75.7 � 7.2 64.6 � 12.2 61.6 � 9.3
Carrot 36.4 � 7.1 75.2 � 6.0 76.6 � 7.6 72.1 � 8.3 75.5 � 7.9 66.7 � 8.7 63.1 � 15.4 65.6 � 12.9
Spinach 38.7 � 8.2 76.1 � 7.5 77.5 � 6.1 72.4 � 6.4 75.9 � 5.4 66.5 � 6.3 66.9 � 8.8 68.5 � 8.4*

HDL Depletion 54.1 � 9.8 20.9 � 6.8 17.8 � 4.7 17.9 � 6.4 16.8 � 7.9 20.2 � 6.1 13.7 � 5.7 18.4 � 4.7
Tomato 50.0 � 6.8 18.7 � 6.4 15.2 � 4.6 11.9 � 4.7* 13.3 � 5.0 16.0 � 6.4 5.5 � 2.3* 10.1 � 4.5*
Carrot 48.3 � 7.5 15.2 � 4.0 12.4 � 3.6* 12.7 � 6.0* 11.4 � 4.2* 18.5 � 5.2 10.4 � 4.9 13.7 � 6.4
Spinach 49.5 � 9.2 18.6 � 7.4 16.0 � 5.9 12.8 � 4.9* 13.8 � 4.9 18.6 � 3.9 9.3 � 3.9* 16.7 � 10.9

1 Values are means � SD, n � 9 or 10. * Significantly different from depletion period, P � 0.05.

TABLE 5

Effect of vegetable juice consumption on LDL oxidation and plasma concentrations of thiobarbituric acid reactive substances
(TBARS) in healthy men after consuming a low carotenoid diet and intervention with carotenoid-rich vegetable products1

Study period

Depletion Tomato Carrot Spinach

Initial conjugated dienes, mol/mol cholesterol 55.9 � 4.1 57.5 � 4.2 55.4 � 3.6 56.4 � 2.8
Lag time, min 106 � 13.4 124 � 9.9* 114 � 12.8 108 � 11.2
Maximal diene production rate, mol/mol

cholesterol � min 2.44 � 0.41 2.15 � 0.28* 2.11 � 0.29* 2.25 � 0.34
TBARS, �mol/L 1.62 � 0.49 1.40 � 0.36* 1.62 � 0.51 1.76 � 0.46

1 Values are means � SD, n � 23. * Significantly different from depletion period, P � 0.05.
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GSHt (0.60 � 0.02 vs. 0.87 � 0.04 mmol/L, P � 0.05) and
whole blood GSSG (0.05 � 0.002 vs. 0.07 � 0.01 mmol/L, P
� 0.05) as well as erythrocyte GSHt (0.17 � 0.01 vs. 0.26
� 0.01 nmol/106 cells, P � 0.05), erythocyte GSSG (0.02
� 0.001 vs. 0.05 � 0.002 nmol/106 cells, P � 0.05) and
plasma GSSG (1.5 � 0.1 vs. 2.4 � 0.3 �mol/L, P � 0.05).
Plasma GSHt did not change during the carrot juice period.
Spinach consumption reduced whole blood GSHt (0.59
� 0.03 vs. 0.87 � 0.04 mmol/L, P � 0.05) and erythrocyte
GSHt (0.13 � 0.004 vs. 0.26 � 0.01 nmol/106 cells, P
� 0.05), whereas other glutathione measurements were unal-
tered. However, these changes did not correlate with any of
the carotenoids and derivatives measured in this study.

No significant changes in erythrocyte GPX and plasma
GOR activity were observed. Erythrocyte SOD activity [U/g
hemoglobin (Hb)] decreased during the low carotenoid period
(from 936 � 206 on d �14 to 816 � 16 on d 0 (P � 0.05) and
increased significantly after the first week of tomato consump-
tion (d 7, 961 � 216 vs. d 0, P � 0.05). In contrast, erythro-
cyte CAT activity (U/g Hb) increased during the low carot-
enoid period (from 165 � 21 on d �14 to 184 � 18 on d 0,
P � 0.05), was reduced after the tomato period (d 14, 165
� 24 vs. d 0, P � 0.05), but was elevated again after spinach
consumption (d 42, 221 � 34 vs. d 0, P � 0.05). All enzyme
activities were within the normal ranges (Aebi 1983, Barnett
and King 1995, Goldberg and Spooner 1983).

DISCUSSION

It was our aim to evaluate whether a moderate short-term
dietary intervention with carotenoid-rich vegetable products
affects antioxidant status and LDL oxidation in humans. We
further wanted to investigate whether diet-related increases in
lipoprotein carotenoids might be responsible for changes in
lipoprotein oxidation.

A study design without washout periods between the dif-
ferent vegetable intervention periods was chosen to mimic
more closely the dietary behavior of consumers. Although we
measured carotenoid concentrations in plasma and lipopro-
teins, we cannot exclude relevant functional carryover effects
of individual carotenoids at the end of each study period. In a
comparable study without washout periods between the inter-
ventions, the effect of tomato consumption on lymphocyte
DNA damage was investigated (Riso et al. 1999). Although a
significant carryover effect was observed with lycopene plasma
concentration, no carryover effect was present when lympho-
cyte resistance to oxidative stress was measured. This suggests
that functional carryover effects may not be the major limita-
tion with this study design. During the intervention, the men
had a different carotenoid uptake with the vegetable products.
They ingested 330 mL tomato juice (40 mg lycopene), 330 mL
carrot juice (15.7 mg �-carotene and 22.3 mg �-carotene) and
10 g spinach powder (11.3 mg lutein and 3.1 mg �-carotene)
daily. It was our objective to study the health effects of
reasonable serving sizes of vegetable products and not to com-
pare different carotenoids on an equimolar basis. As a result of
this approach, we cannot exclude the possibility that the
different doses of carotenoids may have influenced the anti-
oxidant measurements.

In this study, the consumption of carotenoid-rich food
increased lipoprotein carotenoids, showing that the major
carotenoid in the food is also the major carotenoid appearing
in lipoproteins. The intake of carotenoid-rich vegetable prod-
ucts had no effect on relative distribution of carotenoids in
VLDL and LDL, except for phytoene. This might be caused by
the ingestion of the phytoene-free spinach preparation after 4

wk consumption of phytoene-rich products, which can be seen
by the overall decrease of the phytoene concentration in all
lipoprotein fractions. Similarly, the relative changes in HDL
carotenoid distributions may be explained by the correspond-
ing changes in HDL carotenoid concentrations. The relative
distribution pattern of carotenoids among lipoprotein fractions
in this study is consistent with previous reports (Clevidence
and Bieri 1993, Paetau et al. 1998). Taken together, the data
show that the appearance of carotenoids in lipoproteins re-
flects the uptake from carotenoid-rich food and does not
substantially influence the relative distribution pattern, al-
though plasma carotenoid concentrations increased several
fold.

Tomato juice consumption for 2 wk significantly increased
plasma and lipoprotein lycopene concentrations. Compared
with the other two vegetable products, tomato juice was most
effective in this study as observed by the reduced lipid peroxi-
dation product TBARS in plasma and the ex vivo oxidation of
LDL, with an increased lag time and reduced diene production
rates. This suggests that lycopene accounts for the LDL-pro-
tecting effect during the tomato juice intervention period
because plasma and LDL lycopene increased significantly after
tomato juice consumption. However, other compounds from
tomato juice may also protect LDL from oxidation, contribut-
ing to the prolonged lag time. Nevertheless, in vitro studies
have shown that lycopene is a potent antioxidant (DiMascio
et al.1989, Miller et al. 1996, Woodall et al. 1997) that
protects LDL (Oshima et al. 1996, Romanchik et al.1997) and
other lipid structures from oxidation (Klebanov et al.1998,
Stahl et al. 1998). To date, there is little information on the
effects of tomato consumption on markers of oxidative stress in
vivo. Recently, Sutherland et al. (1999) found that tomato
juice consumption (400 mL/d, 4 wk) increased plasma lyco-
pene concentrations but had no effect on lipid peroxidation
(lag time, TBARS, LDL lipid peroxides) in 15 cyclosporine-
treated patients with stable kidney transplants. In that study,
baseline plasma lycopene concentrations in the patients were
approximately five times higher than in healthy men. Cyclo-
sporine treatment, which may increase susceptibility of LDL to
oxidation (Apanay et al. 1994), and the high baseline plasma
lycopene concentrations may account for the lack of observed
effect in the kidney transplant patients. On the other hand,
Agarwal and Rao (1998) and Rao and Agarwal (1998) showed
that consumption of tomato products reduced lipid peroxida-
tion and DNA damage in humans as seen in the reduction of
serum and LDL TBARS and lymphocyte 8-oxo-2�-deox-
yguanosine content. In a previous paper from our intervention
trial, we also found reduced DNA damage, measured as single
strand breaks in peripheral blood mononuclear cells (PBMC),
after tomato juice consumption (Pool-Zobel et al. 1997).
Whether these protective effects of tomato juice are mediated
by lycopene alone or by other antioxidants such as polyphe-
nols and phenolic acids present in tomatoes, could not be
determined here because we did not measure other tomato-
specific phytochemicals in plasma. However, we determined
the major antioxidants in plasma and lipoproteins. Concen-
trations of vitamin C, �-tocopherol and ubichinone-10 in
plasma, and �-tocopherol and ubichinone-10 in LDL were not
affected by any of the dietary interventions in this study and
may therefore not contribute to the observed antioxidant
effects after tomato juice consumption. The serum fatty acid
composition, which also influences the oxidizability of LDL
(Thomas et al.1994, Tsimikas and Reaven 1998) did not
change during the study. We conclude, therefore, that the
serum fatty acid composition does not contribute to the re-
duced LDL oxidizability after tomato juice consumption.
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In contrast to tomato juice, carrot juice had less pro-
nounced effects on antioxidant defense. No changes in plasma
TBARS and lag time were found. However, the diene produc-
tion rate in the ex vivo LDL oxidation assay was reduced
significantly after 2 wk of carrot juice consumption. We also
found a decrease in oxidative DNA damage in PBMC at this
time point (Pool-Zobel et al.1997). To date, studies on the
antioxidant properties of carotenoids in humans have been
designed using �-carotene as a supplement, which reduced
lipoprotein oxidation in healthy volunteers (Levy et al. 1996,
Nyysönen et al.1994), children suffering from cystic fibrosis
(Winklhofer-Roob et al.1995) and coronary artery patients
(Mosca et al.1997). However, some studies showed that sup-
plementation with �-carotene in vivo did not inhibit LDL
oxidation (Gaziano et al. 1995, Reaven et al. 1993). In these
studies, rather high doses (50–100 mg) of �-carotene were
given, and the authors discussed their results as possible
prooxidant effects of increased �-carotene levels at least dur-
ing the in vitro assay of LDL oxidation. These findings and the
results of the ATBC (Hennekens et al. 1996) and CARET
studies (Omenn et al.1996), in which �-carotene supplemen-
tation even increased lung cancer risk, suggest that the con-
sumption of whole diets rich in carotenoids (and other phy-
tochemicals) and not the supplementation with single
compounds may be important to prevent LDL oxidation
and/or disease development.

The findings of Hininger et al. (1997) support this conclu-
sion. They showed an inhibition of the susceptibility of LDL to
oxidation after carotenoid-rich food intake for 2 wk in which
carrots, tomatoes, and cabbage � spinach provided an addi-
tional daily amount of 10 mg �-carotene, 10 mg lycopene and
10 mg lutein. Compared with our intervention trial, which
increased plasma carotenoids several fold, those authors re-
ported only minor effects on plasma carotenoid concentra-
tions. In the nonsmoking group, which is comparable to our
study group, only �- and �-carotene and retinol increased
significantly in plasma. They concluded that the protective
effect of fruit and vegetables on susceptibility of LDL to
oxidation may also be related to biological interactions be-
tween carotenoids and other antioxidants and possible syner-
gistic effects. The study of Hininger et al. (1997) and our
present and earlier (Pool-Zobel et al. 1997) results are indic-
ative of an increased antioxidant capacity in blood lipid frac-
tions and cells as a result of the consumption of vegetable
juice. This increase in antioxidant capacity could be explained
by the increase in blood carotenoid levels. However, to be able
to make such a conclusion, we had to study the effects of the
vegetable consumption on endogenous antioxidants and sys-
tems involved in the detoxification of reactive oxygen species.

GSH is one of the endogenous antioxidants that plays an
important role in the cellular defense against reactive oxygen
species. The GSHt and GSSG concentrations measured in
this study fit very well with concentrations reported for blood,
plasma and erythrocytes of healthy volunteers (Costagliola et
al. 1990, Henning et al. 1991, Hininger et al. 1997). Interest-
ingly, GSHt and GSSG levels in blood, plasma and erythro-
cytes were decreased significantly at different sampling periods
throughout the study compared with GSHt and GSSG con-
centrations at the end of the carotenoid depletion phase (d 0).
However, due to the diversity and the inconsistency of the
decreases in GSHt and GSSG concentrations, the relationship
with the vegetable intervention remains unclear. The decrease
in GSHt concentrations in blood and erythrocytes during the
intervention with carrot juice and spinach powder was 	25%,
which is on the same order of magnitude as the difference in
GSHt concentration observed between smokers and nonsmok-

ers (Costagliola et al. 1990, Hininger et al. 1997). It is there-
fore tempting to speculate about a possible relationship be-
tween cellular GSH and the consumption of vegetables, an
area of investigation requiring further research.

Other water-soluble antioxidants in serum (albumin, bili-
rubin, uric acid, ascorbic acid), the antioxidant power (FRAP)
and the enzymes GPX and GOR did not change during the
study. For the spinach period, our results are comparable to
those of Castenmiller et al. (1999), who studied the effect of
carotenoid supplementation and spinach intake on blood an-
tioxidant enzyme activities and FRAP. One group ingested
11.5 mg of lutein daily from spinach products for 3 wk. In that
study, consumption of spinach had no effect on FRAP, GPX,
SOD, GOR and CAT when comparing wk 0 with wk 3. This
is in agreement with our findings except for CAT, for which
we found an increase in activity after spinach consumption.
Looking at another tomato juice intervention, Böhm and
Bitsch (1999) recently showed that tomato juice consumption
(5 mg/d lycopene, 2 wk) significantly increased plasma lyco-
pene concentrations. However, total plasma antioxidant ac-
tivity was not altered significantly by tomato juice interven-
tion. These results and our findings suggest that lipid-soluble
carotenoids from vegetable products do not substantially in-
fluence water-soluble antioxidants, antioxidant power and an-
tioxidant enzyme activities in healthy humans.

In conclusion, our data show that the appearance of caro-
tenoids in lipoproteins reflects the uptake from carotenoid-rich
food and does not substantially influence the relative carot-
enoid distribution pattern in lipoproteins, although plasma
carotenoid concentrations increased several fold. Tomato
juice, but not carrot juice or spinach powder consumption
reduced LDL oxidation in healthy men. Our findings also
suggest that the consumption of carotenoid-rich vegetables
does not influence water-soluble antioxidants and antioxidant
power and may have only minor effects on antioxidant enzyme
activities in healthy men.
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Prolonged Tomato Juice Consumption Has No Effect on Cell-Mediated
Immunity of Well-Nourished Elderly Men and Women1
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ABSTRACT The immunomodulatory potential of carotenoids has been investigated thoroughly only for �-caro-
tene. Data on the immunomodulatory activity of other carotenoids such as lycopene are scarce. The objective of
this study was to investigate the effects of prolonged tomato juice consumption on cell-mediated immunity of
well-nourished healthy elderly persons. In an intervention study, 33 female and 20 male subjects (aged 63–86 y)
consumed 330 mL/d tomato juice (47.1 mg/d lycopene) or mineral water for 8 wk. Immune status was assessed
by measuring number and lytic activity of natural killer (NK) cells, secretion of cytokines [interleukin (IL)-2, IL-4,
tumor necrosis factor-� (TNF-�)] by activated peripheral blood mononuclear cells (PBMC), lymphocyte prolifera-
tion, and delayed-type hypersensitivity (DTH) skin responses. Tomato juice consumption resulted in significantly
increased plasma lycopene and �-carotene concentrations over time. In both treatment groups, TNF-� and IL-4
secretion were increased at the end of the intervention period, whereas IL-2 secretion was decreased. Tomato juice
consumption had no effect on lymphocyte proliferation, DTH or the number of NK cells. Lytic activity of NK cells
was increased in both groups at the end of the intervention period. In conclusion, these results show that prolonged
tomato juice consumption increased plasma lycopene concentrations without significantly affecting cell-mediated
immunity in well-nourished elderly subjects. J. Nutr. 130: 1719–1723, 2000.

KEY WORDS: ● tomato juice ● lycopene ● elderly humans ● cell-mediated immunity

A high consumption of tomato and tomato-based products
is associated consistently with a low risk of cancer for a variety
of anatomic sites (Giovannucci 1999). Numerous potentially
beneficial compounds are present in tomatoes, with lycopene
as the major phytochemical (Beecher 1998). Although the
active compounds in tomatoes contributing to the observed
reduction of cancer risks are presently unknown, the benefits
of tomatoes are often attributed to lycopene (Clinton 1998),
and results from a recent study support this assumption (Gann
et al. 1999). Few studies to date have looked at the immuno-
modulatory activity of lycopene, which may contribute to the
observed cancer risk reduction with high consumption of
tomato products. In vitro, lycopene suppressed T-helper 2
(TH2)3 cell clone–mediated antibody production in unprimed
spleen cells. It had no effect on interleukin (IL)-5 production
of TH2 cells (Iyonouchi et al. 1996). In a mouse model, during
tumorigenesis, lycopene normalized the change of intrathymic
T-cell differentiation by increasing the CD4� cells (Koba-

yashi et al. 1996). In a human intervention trial, supplemen-
tation with 15 mg/d lycopene for 28 d induced no changes in
monocyte surface marker expression of healthy adults (Hughes
et al. 1997).

We have recently shown that in healthy adults a low
carotenoid diet resulted in significantly reduced proliferation
of peripheral blood mononuclear cells (PBMC). In addition,
secretion of IL-2 and IL-4 by these cells was also significantly
decreased. After 2 wk of supplementation with 330 mL/d
tomato juice, lymphocyte functions were normalized (Watzl et
al. 1999), whereas plasma lycopene concentrations were sig-
nificantly higher compared with baseline (Müller et al. 1999).
DNA from PBMC of these subjects had significantly lower
endogenous levels of strand breaks, indicating that tomato
juice consumption induced protective mechanisms in PBMC
(Pool-Zobel et al. 1997). These results have been confirmed by
a recent study, which reported increased resistance of lympho-
cyte DNA to oxidative damage after tomato consumption
(Riso et al. 1999). Whether enhanced antioxidative protec-
tion of PBMC after tomato consumption is related to an
immunomodulatory activity of tomato compounds such as
lycopene is currently not known.

The results of our first study prompted us to conduct an
intervention trial with healthy, noninstitutionalized elderly
people instead of young subjects to investigate the effect of
prolonged tomato juice consumption on cell-mediated immu-
nity. Elderly subjects have a dysregulation of immune re-

1 Presented in poster form at Experimental Biology 99, April 20, 1999, Wash-
ington, DC [Watzl, B., Bub, A., Blockhaus, M., Müller, H., Herbert, B., Lührmann,
P., Neuhäuser-Berthold, M. & Rechkemmer, G. (1999) Prolonged tomato juice
consumption has no effect on immune function and on plasma antioxidant activity
of well-nourished elderly. FASEB J. 13: A590 (abs.)].
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sponses, mainly as a result of changes in cell-mediated immu-
nity (Lesourd 1997). Therefore, any immunostimulatory
activity of tomato or tomato-specific phytochemicals such as
lycopene should be seen more clearly in subjects with age-
related impaired immune functions.

SUBJECTS AND METHODS

Subjects. Subjects were participants of the Longitudinal Study in
an Aging Population of Giessen (GISELA), Germany, in which the
nutritional and health status of free-living elderly people is investi-
gated at yearly intervals. Of the 453 subjects included in the survey,
selection for the participants of the tomato study was based on the
following exclusion criteria: smoking, alcohol consumption 
 50 g/d,
food allergies, cancer, coronary heart disease, chronic inflammatory
diseases (rheumatoid arthritis, Crohn’s disease, colitis ulcerosa), dia-
betes, asthma, use of prescription medication or nonsteroidal anti-
inflammatory drugs on a regular basis, use of vitamin or mineral
supplements for the last 3 mo, corticosteroid treatment and intake of
immunostimulators for the last 4 wk. Fifty-three elderly subjects were
enrolled after screening. The study was approved by the Ethical
Committee of the Department of Medicine, Justus-Liebig-University
Giessen and all participants gave their consent in writing.

Study design. This study was conducted during the months of
May–July, 1998. Subjects were assigned randomly to the control or
intervention group. Energy and nutrient intakes of the study subjects
before the study period were assessed by means of a validated 3-d
estimated food record (Lührmann et al. 1999). Subjects of the tomato
juice group consumed daily 330 mL tomato juice (47.1 mg lycopene,
1.7 mg �-carotene; Schoenenberger, Magstadt, Germany) for 8 wk.
Subjects of the control group consumed the same volume of mineral
water. Subjects were instructed to drink tomato juice or water with
their main meal. Because the current intake of lycopene in Germany
is 	1 mg/d (Pelz et al. 1998) and the tomato juice provided 	40
times more lycopene, subjects were allowed to continue with their
regular diet throughout the study period including tomato products in
the control group. During the entire intervention period, subjects
were asked to protocol any diseases or medicine use. Blood samples
from fasting subjects were collected between 0700 and 1030 h.

Measurement of carotenoids and ascorbic acid. Carotenoids in
tomato juice, fetal bovine serum (FBS) and plasma were measured by
reversed-phase HPLC as described earlier (Müller et al. 1999). Plasma
ascorbic acid concentrations were determined by a modified 2,4-
dinitrophenylhydrazine method (Lowry et al. 1943).

Isolation of PBMC and preparation of serum. Blood was drawn
into K�-EDTA tubes (proliferation and cytokine secretion) and
lithium heparin tubes [natural killer (NK) cell lytic activity]. PBMC
were isolated by density gradient centrifugation using Histopaque
1077 (Sigma, Deisenhofen, Germany) and resuspended in complete
RPMI-1640 culture medium (Life Sciences, Eggenstein-Leopold-
shafen, Germany), containing 5% (v/v) heat-inactivated FBS (Life
Sciences), L-glutamine (2 mmol/L), penicillin (100,000 U/L) and
streptomycin (100 mg/L). Serum from each subject was heat inacti-
vated for 30 min at 56°C.

Lymphocyte proliferation. PBMC at 1 � 109 cells/L in medium
containing 5% of either FBS or autologous serum were stimulated by
the T-cell mitogen concanavalin A (5 mg/L, ConA, Sigma) for 120 h
at 37°C. Proliferation was measured using the thymidine analog
5-bromo-deoxyuridine, which was quantitated in PBMC by a cellular
enzyme immunoassay as described earlier (Watzl et al. 1999).

Quantification of cytokine secretion. PBMC at 1 x 109 cells/L
were cultured in medium containing 5% of either FBS or autologous
serum and stimulated by 5 mg/L ConA for 48 h at 37°C (IL-2, IL-4)
or by 10 mg/L lipopolysaccharide (Difco, Augsburg, Germany) for
24 h at 37°C (TNF-�). Cell-free supernatants were collected and
stored at �80°C until analysis. IL-2 and IL-4 were measured by
sandwich-ELISA as described earlier (Watzl et al. 1999). For TNF-�,
a sandwich-ELISA was developed using an anti-human TNF-�
monoclonal antibody (25 mg/L PBS, pH 7.4; Endogen, Eching, Ger-
many) as capture antibody and a monoclonal biotin-labeled mouse
anti-human TNF-� antibody [375 �g/L PBS-Tween and 4% v/v
bovine serum albumin (BSA); Endogen] as detection antibody.

Percentage and lytic activity of NK cells. The percentage of NK
cells was determined by flow cytometry (FACSCalibur, Becton Dickin-
son, Heidelberg, Germany). PBMC were incubated with a phyco-
erythrin-conjugated monoclonal antibody NCAM16.2/anti-CD56 (Bec-
ton Dickinson) and a FITC-conjugated monoclonal antibody anti-CD3
(Becton Dickinson), washed and fixed with 1% paraformaldehyde
(Sigma). Lytic activity of NK cells against K562 target cells (effector:
target ratios 50:1, 25:1, 12.5:1) was measured with a recently described
flow cytometric method (Chang et al. 1993) and calculated as the
percentage of dead target cells in the test samples minus the percentage
of dead target cells in the control samples without effector cells.

Assessment of delayed-type hypersensitivity (DTH). DTH skin
response was assessed with Multitest-CMI (GN Pharma, Fellbach,
Germany) loaded with glycerine control and seven common antigens.
The device was administered on the forearm by a person who was
blinded to the study treatment assignment. The diameter of positive
reactions was measured 48 h after administration of the test. Accord-
ing to the manufacturer‘s instruction, an induration of �2 mm was
considered positive.

Statistical analyses. Normal distribution of the data was ana-
lyzed by using the Kolmogorov-Smirnov normality test. Baseline data
vs. post-treatment data within groups were analyzed by using Stu-
dent’s paired t test or Wilcoxon’s rank test for data that are not
normally distributed. Differences between treatment groups were
analyzed by using Student’s t test for independent samples (or the
Mann-Whitney U test for data that were not normally distributed) on
mean pre- to postintervention differences. To assess the plasma
lycopene-NK lytic activity relationship, Spearman correlation coef-
ficients were computed. Statistical significance was accepted at the P
� 0.05 level. All statistical calculations were performed with the
StatView program (SAS Institute, Cary, NC).

RESULTS

Three subjects were excluded from the study because they
had to receive a drug treatment during the intervention pe-
riod; 50 subjects completed the study with 21 (13 women, 8
men) subjects in the control and 29 (19 women, 10 men) in
the tomato juice group. No other subjects reported any inter-
current diseases during the study. On the basis of the results of
the 3-d estimated food record, there were no differences be-
tween groups at the beginning of the study in the intake of
energy, protein, carbohydrates and fat as well as in vitamin E
and zinc (data not shown). The �-carotene and ascorbic acid
intakes before the study period also did not differ between
groups (control 4.57 � 2.59 mg/d and 116.5 � 49.9 mg/d,
tomato juice group 4.24 � 2.53 mg/d and 119.1 � 61.5 mg/d).
Plasma ascorbic acid concentrations were measured only at the
end of the study period and did not differ between groups
(control 72.7 � 18.2 �mol/L, tomato juice group 72.7 � 14.2
�mol/L). No differences were observed between groups in
average age (control 70.5 � 5.2 y, tomato juice 69.7 � 5.8 y)
and body mass index (control 26.7 � 3.0 kg/m2, tomato juice
26.6 � 2.4 kg/m2). All subjects maintained body weight
throughout the study (data not shown).

There was no significant difference in plasma carotenoid
concentrations between groups at baseline (Table 1). Tomato
juice consumption significantly increased plasma concentra-
tions of all-trans- and cis-lycopene (threefold), �-cryptoxan-
thin and �-carotene. (Table 1). No carotenoids or tocopherols
were detected in FBS.

The capacity of PBMC (cultured in medium and FBS) from
both groups to secrete the cytokines TNF-�, IL-2 and IL-4 did
not differ significantly at baseline (Table 2). During the in-
tervention, the capacity of PBMC to secrete TNF-� increased
significantly in the tomato group and tended to increase in the
control group (P � 0.058). A significantly higher production
of IL-4 was also seen in both groups. In contrast, IL-2 secretion
decreased in both groups after 8 wk of intervention. Similar
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effects were seen with PBMC cultured in medium and autol-
ogous serum (Table 2).

Lymphocyte proliferation did not differ between groups at
baseline or after 8 wk of mineral water and tomato juice
consumption (Table 2). ConA-activated lymphocytes were
also cultured in medium and autologous serum, and no differ-
ences were observed between groups at either time point.

Flow cytometry revealed no significant differences in the per-
centages of NK cells between groups at baseline and after the
dietary intervention (Table 3). The lytic activity at baseline did
not differ between the groups, whereas during the intervention
period, lytic activity increased significantly in both groups. A
significant correlation between plasma all-trans-lycopene concen-

trations and lytic activity of NK cells (r � 0.367, P � 0.049) was
seen in the tomato juice group. Because we observed an increase
in both groups at all effector:target ratios, only the results for the
25:1 ratio are shown in Table 3.

DTH skin response was measured as the total number of
positive skin reactions (antigen score) and as the total diam-
eter of induration of all positive reactions (cumulative score).
There were no significant differences in antigen score and
cumulative score at baseline or after 8 wk of intervention.
However, in both groups, antigen score and cumulative score
increased during the intervention period (Table 3).

DISCUSSION

The immunomodulatory potential of carotenoids has been
investigated thoroughly only for �-carotene. Data on the
immunomodulatory activity of other carotenoids such as lyco-
pene are scarce. We showed recently that 2 wk of tomato juice
consumption (supplying 40 mg/d lycopene) after a 2-wk period
of a low carotenoid diet stimulated lymphocyte proliferation
and IL-2 secretion of PBMC in healthy adults (Watzl et al.

TABLE 1

Plasma carotenoid concentrations of elderly subjects before and after consuming mineral water or tomato juice for 8 wk1

Week 0 Week 8

Control Tomato Control Tomato

�mol/L

Lutein 0.38 � 0.22 0.32 � 0.19 0.39 � 0.19 0.32 � 0.18
�-Cryptoxanthin 0.036 � 0.02 0.046 � 0.04 0.036 � 0.02 0.062 � 0.04*
�-Cryptoxanthin 0.16 � 0.07 0.18 � 0.14 0.14 � 0.05 0.16 � 0.12
all-trans-Lycopene 0.16 � 0.10 0.13 � 0.07 0.18 � 0.12 0.54 � 0.21**
cis-Lycopene 0.11 � 0.07 0.13 � 0.19 0.12 � 0.08 0.46 � 0.17**
�-Carotene 0.22 � 0.29 0.19 � 0.14 0.23 � 0.31 0.21 � 0.09
all-trans-�-Carotene 0.68 � 0.58 0.75 � 0.42 0.79 � 0.56 1.10 � 0.48**
cis-�-Carotene 0.042 � 0.03 0.047 � 0.02 0.052 � 0.03 0.077 � 0.04**

1 Values are means � SEM, n � 21 (control) or 29 (tomato). * P � 0.01, ** P � 0.001 wk 0 vs. wk 8 and control vs. tomato.

TABLE 2

Cytokine production and proliferation of peripheral blood
mononuclear cells [cultured in medium containing 5% fetal
bovine serum (FBS) or autologous serum (AS)] from elderly

subjects before and after consuming mineral water or tomato
juice for 8 wk1

Week 0 Week 8

Control Tomato Control Tomato

Tumor necrosis factor-�, �g/L

FBS 11.4 � 1.2 11.0 � 0.8 13.4 � 1.2 13.9 � 0.8**
AS 9.9 � 1.3 9.7 � 1.0 12.3 � 1.5 11.2 � 0.8

Interleukin-2, ng/L

FBS 458 � 77 406 � 73 273 � 82* 269 � 65**
AS 202 � 42 140 � 32 140 � 36* 116 � 26

Interleukin-4, ng/L

FBS 20.9 � 3.1 18.4 � 5.6 32.1 � 4.0** 35.6 � 5.5**
AS 5.3 � 1.6 6.9 � 2.4 11.1 � 1.7** 13.8 � 3.6***

Lymphocyte proliferation (A450-A650)

FBS 1.31 � 0.11 1.32 � 0.11 1.35 � 0.11 1.24 � 0.09
AS 2.11 � 0.13 1.77 � 0.14 1.92 � 0.13 1.75 � 0.12

1 Values are means � SEM, n � 21 (control) or 29 (tomato). * P
� 0.05, ** P � 0.01, *** P � 0.001 wk 0 vs. wk 8.

TABLE 3

Percentage of natural killer (NK) cells, NK cell activity of
peripheral blood mononuclear cells and delayed-type

hypersensitivity skin response of elderly subjects before and
after consuming mineral water or tomato juice for 8 wk1

Week 0 Week 8

Control Tomato Control Tomato

NK cells

% 18.5 � 2.5 18.2 � 1.8 19.9 � 2.7 18.0 � 1.8
Activity2 39.7 � 4.5 35.1 � 3.0 55.7 � 4.2* 45.6 � 3.3*

Delayed-type hypersensitivity

A3 2.3 � 0.3 2.1 � 0.2 2.7 � 0.3 2.7 � 0.2
B4 10.0 � 1.3 9.5 � 1.3 12.5 � 1.5* 11.2 � 1.1

1 Values are means � SEM, n � 21 (control) or 29 (tomato). 2 % lysed
target cells. 3 (A) Antigen score calculated as the total number of positive
reactions. 4 (B) Cumulative score calculated as the total diameter of indu-
ration of all positive reactions in mm. * P � 0.001 wk 0 vs. wk 8.
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1999). The objective of this study was to investigate the effects
of prolonged tomato juice consumption on cell-mediated im-
munity of well-nourished healthy subjects with a higher risk
for impaired immune functions such as elderly people.

Tomato juice consumption significantly increased plasma
lycopene and �-carotene concentrations. In relation to the
average plasma �-carotene and ascorbic acid concentrations of
elderly subjects (age 
 65 y) in Germany (Heseker et al. 1992)
and other countries (Pallast et al. 1999, Vogel et al. 1997), our
study subjects showed higher plasma �-carotene and ascorbic
acid concentrations. This suggests that the participants in our
study have been well-nourished, which is of relevance for the
interpretation of the immunological results.

In our study, we sought to determine whether tomato juice
consumption affects cytokine secretion capacity of PBMC
from elderly subjects. The majority of studies in elderly sub-
jects show that lymphocytes produce significantly less TH1
subset–derived cytokines such as IL-2 and more TH2 cyto-
kines such as IL-4, indicating a dysregulation between TH1
and TH2 subsets (Rink et al. 1998). The production of proin-
flammatory cytokines such as TNF-� seems to be enhanced in
elderly people compared with young adults (Rink et al. 1998).
During our intervention, the secretion capacity of PBMC for
TNF-� and IL-4 was increased in both groups, whereas sub-
jects in both groups showed reduced IL-2 production after 8 wk
of tomato juice consumption. These results clearly indicate
that tomato juice consumption (i.e., a high intake of lyco-
pene) does not interfere with the regulation of cytokine se-
cretion capacity in elderly subjects. This conclusion is sup-
ported by our findings that PBMC cultured in medium
containing 5% FBS (free of carotenoids and tocopherols) or
5% autologous serum (high concentrations of tomato-derived
lycopene) yielded similar results. The reason for the significant
changes in cytokine secretion observed in both groups is
unknown.

Reduced lymphocyte proliferation is a common phenom-
enon observed in elderly subjects (Lesourd 1997), and en-
hancement of this T-cell function by dietary means would
be an interesting approach to stimulate immune functions
in this vulnerable population. In our study, proliferation of
activated PBMC cultured with medium containing 5% FBS
or autologous serum was not affected by the dietary inter-
vention and did not differ between groups. This suggests
that tomato juice– derived compounds in PBMC or in au-
tologous serum do not influence lymphocyte proliferation in
vitro. However, the addition of tomato juice to a low
carotenoid diet stimulated lymphocyte proliferation in
adults (Watzl et al. 1999). No other studies have looked at
the effect of tomato juice and/or lycopene on lymphocyte
proliferation.

Alterations of the immune system during aging include
functions of NK cells (Solana et al. 1999). The results of our
study show that the percentage of NK cells in PBMC was not
affected by the dietary intervention. In addition, lytic activity
of NK cells was increased independently of the dietary treat-
ment. However, a weak significant positive correlation be-
tween plasma all-trans-lycopene concentrations and lytic ac-
tivity of NK cells was seen in the tomato juice group. This
suggests that high plasma all-trans-lycopene concentrations
may stimulate NK cell activity. Because we did not observe
differences between treatment groups and multiple factors
modulate this activity, we cannot speculate at this time about
potential mechanisms of lycopene.

The age-related impaired cell-mediated immunity is re-
flected in the inability of elderly people to mount a DTH
(Bogden and Louria 1997), and a low DTH response has been

shown to be associated with increased mortality in healthy
elderly people (Wayne et al. 1990). In both groups of our
study, the range for the antigen score and cumulative score was
comparable to those observed in other studies of healthy
elderly subjects (Girodon et al. 1999, Pallast et al. 1999,
Santos et al. 1997), suggesting a normal DTH response in our
elderly subjects. DTH was not significantly affected by the
dietary intervention in our subjects. There are no other studies
in the literature investigating the effect of carotenoid-rich
vegetables or lycopene on DTH.

Studies have shown that tomato juice consumption reduces
oxidative DNA damage in PBMC (Rao and Agarwal 1998,
Riso et al. 1999). Prevention of such oxidative damage is one
potential mechanism for an immunomodulatory effect of caro-
tenoids (Meydani et al. 1995). Although we found a weak
positive correlation between plasma all-trans-lycopene and NK
cell activity, no effect of tomato juice consumption on cell-
mediated immunity was observed.

In conclusion, our study suggests that in well-nourished
elderly people, supplementation with tomato juice resulting in
high plasma lycopene levels does not modulate cell-mediated
immunity. It is likely that the good nutritional status of our
elderly subjects led to their normal immune functions. This
hypothesis is supported by the results of our study with young
healthy adults consuming a low carotenoid diet. Supplemen-
tation with tomato juice significantly stimulated various T-
lymphocyte functions in these subjects (Watzl et al. 1999).
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■ Summary Background The ox-
idative modification of LDL is con-
sidered to play a central role in the
pathogenesis of atherosclerosis and
coronary heart disease (CHD).
Paraoxonase (PON1) protects LDL
from oxidation and may therefore
retard the developement of athero-
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sclerosis. The PON1–192 polymor-
phism is associated with dimin-
ished PON1 concentrations and an
increased risk for CHD in RR-allele
subjects. Aim of the study To inves-
tigate the effect of tomato juice
consumption on PON1 activity and
other parameters related to oxida-
tive stress in healthy elderly sub-
jects. Furthermore, the PON1–192
genotype has been determined in
the volunteers in order to see
whether possible treatment effects
are related to the PON1–192 poly-
morphism. Methods Fifty elderly
subjects were randomly assigned to
control (mineral water) or inter-
vention group (tomato juice). Sub-
jects of the tomato juice group con-
sumed daily 330 mL tomato juice
for 8 weeks. Antioxidant status was
measured as LDL oxidation,
plasma malondialdehyde, ferric re-
ducing ability of plasma (FRAP)
and PON1 activity. The PON1–192

polymorphism was determined by
restriction fragment length poly-
morphism polymerase chain reac-
tion (RFLP-PCR). Plasma
carotenoids were analyzed by
HPLC. Results Tomato juice con-
sumption reduced LDL-oxidation
and improved antioxidant status in
R-allele carriers, but not in the QQ
genotype group. PON1 activity in-
creased irrespective of the geno-
type in both, control and interven-
tion group. Conclusions The
changes in antioxidant status after
tomato juice consumption seem to
depend on the PON1–192 geno-
type. Healthy elderly, carrying the
R-allele, could specificly reduce
their higher cardiovascular risk by
changing dietary habits.

■ Key words tomato juice –
lycopene – antioxidant – lipid
peroxidation – paraoxonase –
elderly
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R arginine; RFLP restriction fragment length polymor-
phism; TBARS thiobarbituric acid reactive substances.

Introduction

The oxidative modification of LDL is considered to play
a central role in the pathogenesis of atherosclerosis and
coronary heart disease (CHD) [1]. Paraoxonase 1
(PON1) is an HDL associated enzyme that belongs to the
paraoxonase gene family (PON1, PON2, PON3) and pro-
tects LDL from oxidation [2–4]. PON1 may therefore re-
duce the development of atherosclerosis [5, 6].An activ-
ity polymorphism for PON1 has been shown to be an
amino acid substitution glutamine(Q)/arginine(R) at
position 192 [7, 8]. The QQ-genotype results in an isoen-
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zyme showing a low activity towards paraoxon (an
organophosphate), the isoenzyme corresponding to the
RR-genotype exhibits a high activity towards paraoxon.
For the PON1 substrate phenylacetate, substrate activity
has been shown not to be affected by the PON1–192
genotype [5]. With respect to the PON1–192 polymor-
phism recent findings indicate that diminished PON1
concentrations and an increased prevalence of the RR-
allel is present in populations at increased risk for CHD
[9].

Dietary factors such as alcohol [10], pomegranate
juice [11] and dietary fat [12–15] have been reported to
modulate PON1 activity and may thus have an impact
on CHD. It has also been shown by Kleemola et al. [16]
that a high vegetable intake is associated with lower
PON1 activity and that PON1 activity is negatively cor-
related with the intake of β-carotene as revealed by a 3-
day food record. Data on other carotenoids, e. g. ly-
copene, were not presented in this study.

Tomatoes and tomato products are the major source
for lycopene in the human diet.Tomato consumption re-
sulting in high adipose tissue concentration of lycopene
is associated with a reduced risk for myocardial infarc-
tion [17], while a low serum lycopene concentration is
correlated with an increased incidence of acute coro-
nary events and stroke [18]. Whether lycopene intake
and lycopene plasma concentration would affect PON1
activity has not been investigated so far. Therefore, we
studied the effect of tomato juice consumption on PON1
activity and other parameters related to oxidative stress
in healthy elderly subjects. Furthermore, the PON1–192
genotype has been determined in the volunteers in or-
der to see whether possible treatment effects are related
to a distinct PON1–192 genotype.

Material and methods

■ Subjects

Subjects were participants of the Longitudinal Study in
an Aging Population of Giessen (GISELA), Germany, in
which the nutritional and health status of free-living el-
derly people is investigated in yearly intervals. Subjects
had to be at least 60 years of age, physically mobile, and
available around Giessen for the long term. The GISELA
study was initiated in 1994 and in 1997 453 elderly peo-
ple were enrolled in this investigation. Out of the 453
subjects included in the survey, selection for the partic-
ipants of the tomato study was based on the following
exclusion criteria: smoking, alcohol consumption
> 50 g/d, food allergies, cancer, coronary heart disease,
chronic inflammatory diseases (rheumatoid arthritis,
Crohn disease, colitis ulcerosa), diabetes mellitus,
asthma, prescription medication or nonsteroidal anti-
inflammatory drugs on a regular basis, vitamin or min-

eral supplements for the last 3 months, corticosteroid
treatment, intake of immunostimulators for the last 4
weeks. Fifty-three elderly subjects (33 females, 20 males)
were enrolled after screening. The study was approved
by the Ethical Committee of the Department of Medi-
cine, Justus-Liebig-University Giessen and all partici-
pants gave their consent in writing.

■ Study design

Subjects were randomly assigned to control (mineral
water) or intervention group (tomato juice). Subjects of
the tomato juice group consumed daily 330 mL tomato
juice (providing 47.1 mg lycopene and 1.7 mg β-
carotene; Schoenenberger,Magstadt,Germany) for a pe-
riod of 8 weeks. Instead of tomato juice subjects of the
control group consumed the same volume as mineral
water. Both groups were instructed to drink the tomato
juice or water with their main meal. Since the current in-
take of lycopene in Germany is around 1 mg/d [19] and
the tomato juice provided about 40 times more ly-
copene,subjects were allowed to continue with their reg-
ular diet throughout the study period including tomato
products in the control group. During the entire inter-
vention period, subjects were asked to protocol any in-
tercurrent diseases or medicine use. Blood samples were
drawn after an overnight fast between 7 am and 10:30
am at the Institute of Nutritional Sciences, University of
Giessen.

■ Analytical methods

The “ferric reducing ability of plasma” (FRAP) was used
to determine antioxidant activity in plasma [20]. The as-
say is based on the principle that electron-donating an-
tioxidants can be described as reductants. In this con-
text, the reducing ability of plasma may be refered to as
antioxidant activity. The ex vivo oxidation of isolated
LDL was performed by using a modified method of Es-
terbauer et al. [21]. The LDL oxidation process was fol-
lowed by recording the conjugated diene absorption at
234 nm. From the resulting curve, the time interval
(minutes) between the intersept of the linear last square
slope of the curve with the initial-absorbance axis is de-
fined as the “lag time” and is a measure of the suscepti-
bility of LDL to oxidation. Both methods have been de-
scribed earlier [22]. Plasma malondialdehyde was
measured as thiobarbituric acid reactive substances
(TBARS) by HPLC with fluorescence detection [23, 24].
Carotenoids in plasma were measured by reversed-
phase HPLC [25]. Serum triacylglycerol, cholesterol and
HDL-cholesterol were determined by enzymatic kits
(Roche Mannheim, Germany). LDL-cholesterol was cal-
culated by using the “Friedewald”-formula. Plasma pro-
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tein thiols were measured with a spectrophotometric
method using dithionitrobenzene, while glutathione
served as standard [26].

Arylesterase activity of paraoxonase 1

PON1 activity was determined spectrophotometrically
using phenylacetate as substrate as described by Gan
et al. [27] with minor modifications. The assay mixture
contained 5 mmol/L of phenylacetate and 0.9 mmol/L
CaCl2 in 20 mmol/L Tris-HCl,pH 8,at 25 °C.The reaction
was recorded at 270 nm. Nonenzymatic hydrolysis of
phenylacetate was substracted from the total rate of
hydrolysis. Results are expressed as U/mL. The E270 for
the reaction is 1310 mol x L–1 cm–1 and 1 unit of
arylesterase activity is equal to 1 micromole of phenyl-
acetate hydrolyzed per milliliter per minute.

■ Determination of the paraoxonase 192 genotype

Peripheral blood mononuclear cells (PBMC) were iso-
lated from blood (K-EDTA) by density gradient cen-
trifugation using Histopaque 1077 (Sigma,Deisenhofen,
Germany) as described earlier [28]. Genomic DNA was
extracted from isolated PBMC using the GenomicPrep
Blood DNA Isolation Kit (Amersham, Freiburg, Ger-
many) according to the manufacturers directions. The
quantity and quality of prepared genomic DNA were
measured at 260/280 nm in a UV/VIS spectrophotome-
ter (Lamda Bio 20, Perkin Elmer, Wellesley, MA, USA).
The determination of the paraoxonase 192 (PON1–192)
genotype followed a previously published protocol [8]
with some minor modifications: The 99 bp target region,
which encompasses the polymorphic region of the hu-
man PON1 gene, was amplified by polymerase chain re-
action (PCR) using specific sense 5� > TAT TGT TGC
TGT GGG ACC TGA G < 3� (nt 58–79; GenBank Acc.
HSPON1EX6) and antisense 5� > CAC GCT AAA CCC
AAA TAC ATC TC (nt 134–156; Acc. HSPON1EX6)
primers. The 50 µL reaction mixture contained 1 µg of
genomic DNA, 10 nmol of each dNTP, 5 µL of 10x reac-
tion buffer (100 mM KCl, 100 mM (NH4)2SO4, 200 mM
Tris/HCl pH 8.8, 20 mM MgSO4, 1 % Triton X-100), 200
ng of each primer and 0.5 µL VentR DNA polymerase (2
U/µL,New England Biolab,Schwalbach,Germany).After
denaturation of DNA at 95 °C for 3 min, the reaction
mixture was subjected to 40 PCR cycles (Thermocycler
PTC 200; MJ Research Inc., Waltham MA, USA), each
cycle comprising denaturation at 94 °C for 60 sec,primer
annealing at 55 °C for 30 sec and extension at 72 °C for
60 sec with a final extension time at 72 °C for 5 min.
Efficiacy of PCR amplification was checked after elec-
trophoretic separation of a 20 µL aliquot in 3 % agarose
and UV-visualization of the amplification product by
ethidium bromide staining. Subsequently, a 25 µL

aliquot of the PCR product was digested with 5.0 U Alw1
restriction endonuclease (2 U/µL, New England Biolabs)
for 2 h at 37 °C,and the digested products were separated
by agarose gelelectrophoresis using 5 % MS500 MoSieve
agarose (PeqLab, Erlangen, Germany) in 1x TBE buffer,
stained with ethidium bromide and visualized using
computer based image analysis (FluorS Imager; Biorad,
München, Germany). The 192 Q/R transition creates a
unique Alw1 site in the PCR amplicon. DNA samples ho-
mozygous for the 192 Q allele present the original undi-
gested 99 bp PCR product, those homozygous for the 192
R allele present two restriction fragments 66 bp and 33
bp and those heterozygous show the original product of
99 bp plus the restriction fragments of 66 bp and 33 bp.
Each genotype was read by two independent observers.

■ Statistical analysis

Results are given as means ± standard deviation (SD).
Baseline characteristics for the PON1 genotype groups
(QQ,QR,RR) were analyzed by ANOVA.For comparison
of the treatment groups (tomato juice or mineral water),
baseline data versus post-treatment data within groups
were analyzed by using Students paired t-test or
Wilcoxon’s rank test for data that were not normally dis-
tributed. Normal distribution of the data was analyzed
by using the variance ratio test (F-test). Differences be-
tween treatment groups were analyzed by using Stu-
dent’s t-test for independent samples (or the Mann-
Whitney U test for data that were not normally
distributed) on mean pre- to post-intervention diffe-
rences. Since the RR-genotype was present in 5 subjects
only, we merged the QR and RR groups resulting in a R-
allele-carrier group. For further analysis the QQ-geno-
type group was compared with the R-allele-carrier
group. Statistical significance was accepted at the
p < 0.05 level.All statistical calculations were performed
with the StatView computer software program (SAS In-
stitute 1998, Cary, NC, USA).

Results

Fifty subjects completed the study; 3 subjects were ex-
cluded from the study because they received a drug
treatment during the intervention period. No other sub-
jects reported any intercurrent diseases during the
study.Subject characteristics are summarized in Table 1.

PON1–192 genotyping revealed 20 subjects carrying
the QQ-genotype, 25 QR-genotypes, and 5 RR-geno-
types respectively (Table 1).A representative agarose gel
image showing the DNA fragments after the Alw1 diges-
tion is given in Fig. 1. At week 0, there were no diffe-
rences among the genotype groups with respect to
subject characteristics, lipid status (Table 1), LDL-oxida-
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tion, antioxidant status, and PON activity (data not
shown). Only BMI was higher in the RR-genotype group
at baseline (p < 0.05), which resulted from one male with
a BMI of 34.

There were no differences in any of the measured pa-

rameters between the tomato group and controls at
week 0. Tomato juice consumption reduced LDL-oxida-
tion and improved antioxidant status. Lag time
(p < 0.05) and FRAP (p < 0.05) were increased in the
tomato group but not in controls (Table 2). In both
groups, PON activity was higher after 8 weeks (p < 0.05).
TBARS,plasma thiols and serum lipids (data not shown)
did not change in the tomato and control group, respec-
tively.

In order to see whether the PON1–192 genotype is re-
lated to the changes in LDL-oxidation and antioxidant
status after tomato juice consumption, we evaluated
these parameters in the tomato group with respect to the
frequency of the QQ-genotype and the R-allele-carriers
(Table 3). Tomato juice consumption increased lag time
(p < 0.05) and FRAP (p < 0.05) and reduced TBARS
(p < 0.05) in R-allele-carriers. In the QQ-genotype group
however, there were no changes regarding LDL-oxida-
tion and antioxidant status. The observed increase in
PON activity seems not to be a result of the tomato juice
intervention, since PON activity had also increased in
the control group (Table 2). In the tomato group, plasma
thiols and serum lipids (data not shown) were not dif-
ferent between QQ-genotype and the R-allele-carriers.

The increase in plasma carotenoid concentrations af-
ter tomato juice consumption could contribute to the
improved antioxidant status and LDL-oxidation. Plasma
carotenoid concentrations of the control and tomato

Control Tomato QQ QR RR

n 50 21 29 20 25 5

Sex (F, M) 32, 18 13, 8 19, 10 11, 9 17, 8 4, 1

Age (y) 70±6 70±5 70±6 70±5 70±6 70±3

Body mass index (kg/m2) 27±3 27±3 26±3 26±3 26±2 30±3*

Triacylglycerol (mg/dl) 101±40 91±28 109±45 97±41 107±41 93±27

Cholesterol (mg/dl) 223±33 220±36 225±32 219±29 219±29 254±55

LDL-Cholesterol (mg/dl) 135±31 132±33 138±31 130±29 134±29 161±47

HDL-Cholesterol (mg/dl) 63±13 65±12 62±14 64±14 61±13 69±6

1 values are means ± SD; *: p < 0.05 for between group differences (QQ, QR, RR)

Table 1 Baseline characteristics of study partici-
pants1

Fig. 1 Determination of the paraoxonase1–192 polymorphism. Representative
agarose gel image showing the DNA fragments after the Alw1 digestion showing
the 3 PON1-192 genotypes. RR homozygous mutant; QR heterozygote; QQ ho-
mozygous wildtype. Right panel: 33, 66, 99 indicate the size (base pairs) of the di-
gested DNA fragments. Left panel: standard DNA size markers (length standard: LS)

Week 0 Week 8

Control Tomato Control Tomato

Lag time (min) 83±12 86±14 82±11 93±14*, a

TBARS (µmol/L) 0.70±0.2 0.68±0.2 0.73±0.3 0.66±0.3

PON (U/mL) 102±28 101±29 119±25* 113±32*

FRAP (µmol/L) 887±122 901±224 901±122 948±172*

Thiol groups (µmol/L) 267±53 310±104 291±57 319±113

1 values are means ± SD; n = 21 (control) or n = 29 (tomato); TBARS thiobarbituric acid reactive substances; PON
paraoxonase-arylesterase activity; FRAP ferric reducing ability of plasma; a p < 0.05 for between group diffe-
rences (control vs. tomato juice) and * p < 0.05 for within group differences (pre-post comparison) after tomato
juice consumption

Table 2 Effect of tomato juice consumption on lipid
peroxidation and antioxidant status in healthy el-
derly1
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group have already been published [28]. Table 4 shows
the plasma carotenoid concentrations of the tomato
group with respect to the PON1 genotype. In both
groups, the QQ-genotype and the R-allele-carriers,
lycopene and β-carotene increased after tomato juice
consumption, while plasma α-carotene, lutein, and β-
cryptoxanthin did not change. There were no significant
differences in plasma carotenoids between the genotype
groups before and after tomato juice consumption.
However, there was a tendency for total-lycopene to be
higher in the R-allele-carriers (p = 0.11).

Discussion

The aim of our study was to investigate the effect of
tomato juice consumption on PON1 activity and other
parameters related to oxidative stress in healthy elderly
subjects. Tomato juice consumption for 8 weeks reduced
LDL-oxidation in healthy elderly.This is in line with pre-
vious studies showing that in healthy volunteers tomato
products protected LDL from oxidation [22, 29]. Addi-
tionally, the antioxidant status as measured by the
FRAP-assay increased after tomato juice consumption
(providing 47.1 mg lycopene/d). Lee et al. [30] also re-

ported an increased antioxidant activity (FRAP) after
consumption of tomato products (46 mg lycopene/d) for
one week in young volunteers. In contrast, Pellegrini
et al. [31] found no effect of tomato puree consumption
(7 mg lycopene/d) for two weeks on total antioxidant ca-
pacity (TRAP). The type of tomato product (juice, soup,
puree) and/or the amount of lycopene supplied may ac-
count for the observed differences in antioxidant activ-
ity. Lycopene, the major carotenoid in tomatoes, exhibits
antioxidant activities in different in vitro systems
[32–35] and may be responsible for the observed an-
tioxidant effects. Furthermore, tomatoes contain con-
siderable amounts of polyphenolics and phenolic acids
[36, 37], which could also contribute to these effects.

In order to see whether the PON1–192 genotype has
an impact on LDL-oxidation and antioxidant status af-
ter tomato juice consumption, we analysed the tomato
group with respect to the QQ-genotype and the R-allele-
carriers. Within the tomato group we found that only in
R-allele-carriers tomato juice intervention significantly
reduced LDL-oxidation and TBARS,respectively,and in-
creased antioxidant activity (FRAP). This is the first re-
port, that a dietary intervention in humans has an im-
pact on the antioxidant status depending on a distinct
PON1–192 genotype. Other groups investigated the ef-

Week 0 Week 8

QQ QR/RR QQ QR/RR

Lag time (min) 88±19 84±11 94±13 93±15*

TBARS (µmol/L) 0.69±0.2 0.67±0.2 0.72±0.3 0.62±0.2*

PON (U/mL) 99±35 103±26 114±38* 112±28*

FRAP (µmol/L) 990±246 838±190 1009±202 905±138*

Thiols (µmol/L) 319±83 303±119 310±78 326±134

1 values are means ± SD; n = 12 (QQ) or n = 17 (QR/RR); TBARS thiobarbituric acid reactive substances; PON
paraoxonase-arylesterase activity; FRAP ferric reducing ability of plasma; * p < 0.05 for within group differences
(pre-post comparison) after tomato juice consumption

Table 3 Effect of tomato juice consumption and
paraoxonase (PON) Q192R polymorphism on lipid
peroxidation and antioxidant status in healthy el-
derly1

Week 0 Week 8

QQ QR/RR QQ QR/RR

(µmol/L)

Lutein 0.29±0.19 0.34±0.20 0.31±0.19 0.33±0.18

β-Cryptoxanthin 0.17±0.11 0.19±0.16 0.15±0.08 0.17±0.14

total-Lycopene 0.32±0.31 0.22±0.13 0.91±0.34* 1.06±0.39*, a

all-trans-Lycopene 0.13±0.05 0.13±0.09 0.48±0.19* 0.59±0.22*

cis-Lycopene 0.19±0.29 0.09±0.05 0.43±0.16* 0.47±0.18*

α-Carotene 0.17±0.11 0.20±0.15 0.20±0.11 0.21±0.08

all-trans-β-Carotene 0.68±0.27 0.79±0.50 0.97±0.23* 1.20±0.59*

cis-β-Carotene 0.05±0.02 0.05±0.02 0.08±0.05* 0.08±0.03*

1 values are means ± SD; n = 12 (QQ) or n = 17 (QR/RR); a p = 0.11 for between group differences (QQ vs. QR/RR)
and * p < 0.05 for within group differences (pre-post comparison) after tomato juice consumption

Table 4 Plasma carotenoid concentrations and
PON1 Q192R polymorphism in healthy elderly after
tomato juice consumption1
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fect of pomegranate juice [11], alcoholic beverages [10]
and used-cooking fat [13] on arylesterase activity of
PON1 in healthy volunteers. While pomegranate juice
and alcoholic beverages increased PON activity, used-
cooking fat decreased it. Additionally, pomegranate
juice reduced LDL oxidation while the used-cooking fat
increased LDL oxidation. The authors concluded that
the changes in PON activity due to the dietary interven-
tion may reduce the developement of CHD, since low
serum PON activity has been reported to be associated
with an increased risk for coronary artery disease [5].
Unfortunately, in these dietary intervention studies the
PON1–192 polymorphism had not been determined,
which would have allowed to see whether the changes in
PON activity and LDL oxidation depend on the
PON1–192 genotype. In our study, PON activity in-
creased in the control and in the tomato group with no
differences regarding the PON1–192 genotype. There
were no significant changes in serum HDL concentra-
tions which could account for these changes in PON ac-
tivity. We suppose, that the observed increase in PON-
arylesterase activity may represent a “seasonal” effect
during the 8 weeks lasting study period, which we can
not explain sofar. Therefore, tomato juice consumption
improved antioxidant status in healthy elderly indepen-
dent of PON activity. However, arylesterase activity of
PON1 may not be the adequate method to determine the
LDL-protecting properties of PON, since the phenylac-
etate substrate activity is not affected by the PON1–192
genotype [5]. The enzyme activity related polymor-
phism for PON1 at position 192 results in an isoenzyme
showing a low activity towards paraoxon (QQ-geno-
type) and an isoenzyme exhibiting a high activity to-
wards paraoxon (RR-genotype), while the lipid hy-
droperoxide hydrolyzing activity, which is important for
the LDL-protecting activity, is low for this isoenzyme
[5].A method for directly measuring the lipid hydroper-
oxide hydrolyzing activity of PON in human serum is
not available so far.Therefore,we prefered phenylacetate
as a substrate instead of the toxic paraoxon for PON ac-
tivity measurements.

The antioxidant status (LDL oxidation, TBARS,
FRAP) improved significantly after tomato juice only in
the R-allele-carriers, although tomato juice consump-
tion increased plasma carotenoid concentrations in the
QQ-genotype group and the R-allele-carriers.Assuming
that lycopene from tomato juice is responsible for the

improved antioxidant status, differences in plasma ly-
copene concentrations between the genotype groups
could account for the observed differences in antioxi-
dant status.The net increase in total lycopene was higher
in R-allele-carriers as compared to the QQ-genotype
(QQ: 0.60 ± 0.38µM vs. QR/RR: 0.85 ± 0.39µM). However,
these results were not statistically significant (p = 0.11).
Differences in carotenoid bioavailability among the
PON1–192 genotypes, which we can not explain with
this study, could contribute to differences in the antiox-
idant status. We did not assess the concentrations of
other antioxidants from tomatoes in the plasma of the
study participants and therefore can not discuss their
role in improving LDL oxidation and antioxidant activ-
ity after tomato juice consumption in healthy elderly.

Recently,Senti et al. [38] investigated the involvement
of the PON1–192 polymorphism in the different re-
sponses of plasma lipids to physical activity. They found
that men with the R-allele need to be physically active to
achieve a favorable lipoprotein profile which is similar
to that observed in QQ homozygous men. Comparable
results related to oleic acid intake have been presented
by Tomás et al. [15]. They found that high oleic acid in-
take was associated with increased HDL cholesterol and
PON1 activity only in QR and RR genotypes (R-allele
carrier), respectively. From these and from our results
we may speculate, that R-allele carrier, who are at a
higher risk for CHD as compared to the QQ-genotye,
could specifically reduce their risk by changing dietary
and life style (exercise) habits.

In conclusion, our data show that tomato juice con-
sumption for 8 weeks improves antioxidant status (LDL
oxidation, TBARS, FRAP) in healthy elderly. These
changes seem to depend on the PON1–192 polymor-
phism, since the improvement of the antioxidant status
is present in R-allele carriers (QR/RR) only, but not in
the QQ wildtype. However, antioxidant status in this
study is not related to PON-arylesterase activity. The
reason for the differences in the relative increase in
plasma lycopene between R-allele carriers and the QQ
wildtype has to be investigated in future studies.

■ Acknowledgements The authors thank M. Broßart, T. Gadau, M.
Giorgi-Kotterba, D. Haase and U. Stadler-Prayle for their excellent
technical assistance and the elderly subjects for taking part in this
study. Tomato juice was provided by Schoenenberger Pflanzensäfte
GmbH, Magstadt, Germany, which is gratefully acknowledged.

References

1. Diaz MN, Frei B, Vita JA, Keaney JF
(1997) Mechanisms of disease: Antioxi-
dants and atherosclerotic heart disease.
N Engl J Med 337:408–416

2. Mackness MI, Harty D, Bhatnagar D,
Winocour PH, Arrol S, Ishola M, Dur-
rington PN (1991) Serum paraoxonase
activity in familial hypercholestero-
laemia and insulin-dependent diabetes
mellitus. Atherosclerosis 86:193–199

3. Mackness MI, Durrington PN, Mack-
ness B (2000) How high-density lipo-
protein protects against the effects of
lipid peroxidation. Curr Opin Lipidol
11:383–388

64



A. Bub et al. 243
Tomato juice consumption and paraoxonase polymorphism

4. Aviram M, Billecke S, Sorenson R, Bis-
gaier CL, Newton R, Rosenblat M,
Erogul J, Hsu C, Dunlop C, LaDu B
(1998) Paraoxonase active site required
for protection against LDL oxidation
involves its free sulfhydryl group and is
different from that required for its
arylesterase/paraoxonase activities.
Arterioscler Thromb Vasc Biol 18:
1617–1624

5. Mackness MI, Mackness B, Durrington
PN, Fogelman AM, Berliner JXLA,
Navab M, Shih D, Fonarow GC (1998)
Paraoxonase and coronary heart dis-
ease. Curr Opin Lipidol 9:319–324

6. Aviram M (1999) Does paraoxonase
play a role in susceptibility to cardio-
vascular disease? Mol Med Today
5:381–386

7. Adkins S, Gan KN, Mody M, La Du BN
(1993) Molecular basis for the poly-
morphic forms of human serum
paraoxonase/arylesterase: glutamine or
arginine at position 191, for the respec-
tive A or B allozymes. Am J Hum Genet
52:598–608

8. Humbert R, Adler DA, Disteche CM,
Hassett C, Omiecinski CJ, Furlong CE
(1993) The molecular basis of the hu-
man serum paraoxonase activity poly-
morphism. Nat Genet 3:73–76

9. Mackness B, Mackness MI, Durrington
PN,Arrol S, Evans AE, McMaster D, Fer-
rières J, Ruidavets JB, Williams NR,
Howard AN (2000) Paraoxonase activ-
ity in two healthy populations with dif-
fering rates of coronary heart disease.
Eur J Clin Invest 30:4–10

10. vanderGaag MS, vanTol A, Scheek LM,
James RW, Urgert R, Schaafsma G,
Hendriks HFJ (1999) Daily moderate
alcohol consumption increases serum
paraoxonase activity; a diet-controlled,
randomized intervention study in
middle-aged men. Atherosclerosis 147:
405–410

11. Aviram M, Dornfeld L, Rosenblat M,
Volkova N, Kaplan M, Colemann R,
Hayek T, Presser D, Fuhrman B (2000)
Pomegranate juice consumption re-
duces oxidative stress, atherogenic
modifications to LDL, and platelet
aggregation: studies in humans and in
atherosclerotic apolipoprotein E-defi-
cient mice. Am J Clin Nutr 71:
1062–1076

12. Mackness N, Bouiller A, Hennuyer N,
Mackness B, Hall M, Tailleux A, Duriez
P, Delfly B, Durrington P, Fruchart JC,
Duverger N, Caillaud JM, Castro G
(2000) Paraoxonase activity is reduced
by a pro-atherosclerotic diet in rabbits.
Biochem Biophys Res Commun 269:
232–236

13. Sutherland WHF,Walker RJ, DeJong SA,
vanRijn AM, Phillips V, Walker HL
(1999) Reduced postprandial serum
paraoxonase activity after a meal rich
in used cooking fat. Arterioscler
Thromb Vasc Biol 19:1340–1347

14. Kudchodkar BJ, Lacko AG, Dory L,
Fungwe TV (2000) Dietary fat modu-
lates serum paraoxonase 1 activity in
rats. J Nutr 130:2427–2433

15. Tomás M, Sentí M, Elosua R, Vila J, Sala
J, Masià R, Marrugat J (2001) Interac-
tion between the Gln-Arg 192 variants
of the paraoxonase gene and oleic acid
intake as a determinant of high-density
lipoprotein cholesterol and paraox-
onase activity. Eur J Pharmacol 432:
121–128

16. Kleemola P, Freese R, Jauhiainen M,
Pahlman R,Alftha G,Mutanen M (2002)
Dietary determinants of serum paraox-
onase activity in healthy humans. Ath-
erosclerosis 160:425–432

17. Kohlmeier L, Kark JD, Gomez Gracia E,
Martin BC, Steck SE, Kardinaal AFM,
Ringstad J, Thamm M, Masaev V,
Riemersma R, MartinMoreno JM, Hut-
tunen JK, Kok FJ (1997) Lycopene and
myocardial infarction risk in the EU-
RAMIC Study. Am J Epidemiol 146:
618–626

18. Rissanen TH, Voutilainen S, Nyysönen
K, Lakka TA, Sivenius J, Salonen R, Ka-
plan GA, Salonen JT (2001) Low serum
lycopene concentration is associated
with an excess incidence of acute coro-
nary events and stroke: the Kuopio Is-
chaemic Heart Disease Risk Factor
Study. Br J Nutr 85:749–754

19. Pelz R, Schmidt-Faber B, Heseker H
(1998) Carotenoid intake in the Ger-
man National Food Consumption Sur-
vey. Z Ernährungswiss 37:319–327

20. Benzie IFF, Strain JJ (1996) The ferric
reducing ability of plasma (FRAP) as a
measure of “antioxidant power”: The
FRAP assay. Anal Biochem 239:70–76

21. Esterbauer H, Striegl G, Puhl H,
Rotheneder M (1989) Continuous mon-
itoring of in vitro oxidation of human
low density lipoprotein. Free Rad Res
Comms 6:67–75

22. Bub A, Watzl B, Abrahamse L, Delincée
H,Adam S,Wever J,Müller H,Rechkem-
mer G (2000) Moderate intervention
with carotenoid-rich vegetable prod-
ucts reduces lipid peroxidation in men.
J Nutr 130:2200–2206

23. Lepage G, Munoz G, Champagne J, Roy
CC (1991) Preparative steps for the ac-
curate measurement of malondialde-
hyde by high-performance liquid chro-
matography. Anal Biochem 197:
277–283

24. Burkart V, Liu H, Bellmann K, Wissing
D, Jäättelä M, Cavallo MG, Pozilli P, Bri-
viba K,Kolb H (2000) Natural resistance
of human beta cells toward nitric oxide
is mediated by heat shock protein 70. J
Biol Chem 275:19521–19528

25. Müller H, Bub A, Watzl B, Rechkemmer
G (1999) Plasma concentrations of
carotenoids in healthy volunteers 
after intervention with carotenoid-rich
foods. Eur J Nutr 38:35–44

26. Motchnik PA, Frei B, Ames BN (1994)
Measurement of antioxidants in human
blood plasma. Methods Enzymol 234:
269–279

27. Gan KN, Smolen A, Eckerson HW, La
Du BN (1991) Purification of human
serum paraoxonase/arylesterase. Evi-
dence for one esterase catalyzing both
activities. Drug Metab Dispos 19:
100–106

28. Watzl B, Bub A, Blockhaus M, Herbert
BM, Lührmann PM, Neuhäuser-
Berthold M,Rechkemmer G (2000) Pro-
longed tomato juice consumption has
no effect on cell-mediated immunity of
well-nourished elderly men and
women. J Nutr 130:1719–1723

29. Agarwal S, Rao AV (1998) Tomato ly-
copene and low density lipoprotein ox-
idation: A human dietary intervention
study. Lipids 33:981–984

30. Lee A, Thurnham DI, Chopra M (2000)
Consumption of tomato products with
olive oil, but not sunflower oil increases
the antioxidant activity of plasma. Free
Radical Biol Med 29:1051–1055

31. Pellegrini N, Riso P, Porrini M (2000)
Tomato consumption does not affect
the total antioxidant capacity of
plasma. Nutrition 16:268–271

32. DiMascio P, Kaiser S, Sies H, Conn PF,
Schalch W, Truscott TG (1989) Ly-
copene as the most efficient biological
carotenoid singlet oxygen quencher.
Arch Biochem Biophys 274:532–538

33. Miller NJ, Sampson J, Candeias LP,
Bramley PM, Rice Evans CA (1996) An-
tioxidant activities of carotenes and
xanthophylls. FEBS Lett 384:240–242

34. Oshima S, Ojima F, Sakamoto H, Ishig-
uro Y, Terao J (1996) Supplementation
with carotenoids inhibits singlet oxy-
gen- mediated oxidation of human
plasma low-density lipoprotein. J Agric
Food Chem 44:2306–2309

35. Stahl W, Junghans A, deBoer B, Drio-
mina ES, Briviba K, Sies H (1998)
Carotenoid mixtures protect multil-
amelar liposomes against oxidative
damage: synergistic effects of lycopene
and lutein. FEBS Letters 427:305–308

36. Beecher GR (1998) Nutrient content of
tomatoes and tomato products. Proc
Soc Exp Biol Med 218:98–100

37. Paganga G, Miller NE, RiceEvans CA
(1999) The polyphenolic content of
fruit and vegetable abd their antioxi-
dant activities. What does a serving
constitute? Free Radical Res 30:153–162

38. Sentí M,Aubó C, Elosua R, Sala J, Tomás
M, Marrugat J (2000) Effect of physical
activity on lipid levels in a population-
based sample of men with and without
the Arg192 variant of the human
paraoxonase gene. Genet Epidemiol 18:
276–286

65



ESTI:B59:ZANUT717XA.96 FF: ZUF9 E1: 47X6 30.7.2003

Original Paper

Ann Nutr Metab 2003;47:255–261
DOI: 10.1159/000072397

Annals of

Supplementation of a Low-Carotenoid Diet with
Tomato or Carrot Juice Modulates Immune
Functions in Healthy Men

Bernhard Watzl Achim Bub Karlis Briviba Gerhard Rechkemmer

Institute of Nutritional Physiology, Federal Research Centre for Nutrition, Karlsruhe, Germany

Received: January 3, 2003
Accepted: June 11, 2003

Bernhard Watzl, Institute of Nutritional Physiology
Federal Research Centre for Nutrition
Haid-und-Neu-Strasse 9, DE–76131 Karlsruhe (Germany)
Tel. +49 721 6625 410, Fax +49 721 6625 404
E-Mail bernhard.watzl@bfe.uni-karlsruhe.de

ABC
Fax + 41 61 306 12 34
E-Mail karger@karger.ch
www.karger.com

© 2003 S. Karger AG, Basel
0250–6807/03/0476–0255$19.50/0

Accessible online at:
www.karger.com/anm

Key Words
Carotenoid W Tomato W Carrot W ß-Carotene W Lycopene W

Cell-mediated immunity W Natural killer cells W Cytokines

Abstract
Background: ß-Carotene has been shown to enhance
immune functions in humans. Whether vegetables rich
in carotenoids, such as ß-carotene or lycopene, modu-
late immune functions in healthy humans is presently
not known. The objective of this study was to investigate
the effects of a low-carotenoid diet supplemented with
either tomato (providing high amounts of lycopene) or
carrot juice (providing high amounts of ·- and ß-caro-
tene) on immune functions in healthy men. Method: In a
blinded, randomized, cross-over study, male subjects on
a low-carotenoid diet consumed 330 ml/day of either
tomato juice (37.0 mg/day lycopene) or carrot juice
(27.1 mg/day ß-carotene and 13.1 mg/day ·-carotene) for
2 weeks with a 2-week depletion period after juice inter-
vention. Immune status was assessed by measuring lytic
activity of natural killer (NK) cells, secretion of cytokines
(IL-2, IL-4, TNF·), and proliferation by activated peripher-
al blood mononuclear cells. Results: Juice consumption
resulted in relatively fast responses in plasma carotenoid
concentrations (p ! 0.0002) which were not accompanied
by concomitant changes in immune functions. For IL-2,

NK cell cytotoxicity, and lymphocyte proliferation, maxi-
mum responses were observed during depletion peri-
ods. The highest production rate was measured only for
TNF· at the end of the first intervention period. Juice
intervention did not modulate the secretion of IL-4. Con-

clusions: Increased plasma carotenoid concentrations af-
ter vegetable juice consumption are accompanied by
a time-delayed modulation of immune functions in
healthy men consuming a low-carotenoid diet.

Copyright © 2003 S. Karger AG, Basel

Introduction

Diets rich in fruits and vegetables are recommended to
maintain overall good health and to prevent chronic dis-
eases. Compounds in this kind of healthy diet may modu-
late different aspects of immunity. Especially for ß-caro-
tene several studies suggest that this carotenoid may stim-
ulate the immune system [1]. Supplementation with pure
ß-carotene stimulated lymphocyte proliferation in several
human intervention studies [2–4]. Lytic activity of natu-
ral killer (NK) cells was enhanced in elderly subjects on
long-term ß-carotene supplementation [5], and after
short-term supplementation the percentage of NK cells
was significantly increased [6].

Recently, other carotenoids including lycopene and
lutein have received more attention. Several studies re-
vealed that a high intake of these carotenoids is associated
with a reduced incidence of prostate and lung cancer [7,
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8]. A high intake of tomato and tomato-based products is
also consistently associated with a low risk of cancer for a
variety of anatomic sites [7]. Numerous potentially immu-
nomodulatory compounds are present in tomatoes with
lycopene being the major phytochemical [9]. So far only one
study has looked at the immunomodulatory activity of pure
lycopene. In contrast to ß-carotene, this carotenoid (15 mg/
day) did not stimulate monocyte surface molecule expres-
sion and tumor necrosis factor-· (TNF·) secretion in a
human intervention study [10]. Overall, few data are avail-
able on the immunomodulatory activity of the various
carotenoids and carotenoid-rich vegetables.

We have recently shown that, based on a low-carot-
enoid diet, 2 weeks of tomato juice supplementation
(330 ml/day providing 40 mg lycopene/day) stimulated
lymphocyte proliferation and IL-2 secretion of peripheral
blood mononuclear cells (PBMC) in healthy adults [11].
However, in this study only a few immune functions were
measured and no washout period after juice consumption
was included. In a further study, on the basis of an unres-
tricted diet, tomato juice supplementation (330 ml/day
for 8 weeks) had no effect on various immune functions in
healthy elderly subjects [12]. The objective of the present
study was to compare, in a cross-over design, the immu-
nomodulatory potential of carrot and tomato juices on
immune functions in healthy men consuming a restricted,
low-carotenoid diet. Instead of a single-agent study, a
whole-diet approach providing active compounds in high-
ly accessible food matrices was used because, in epidemi-
ologic studies, data suggesting a lower cancer risk with a
high intake of carotenoid-rich vegetables and fruits were
also found on the whole-food level.

Subjects and Methods

Study Design
This study was a randomized cross-over study of two 14-day

treatments of tomato juice or carrot juice (330 ml/day, Schoenen-
berger, Magstadt, Germany). The tomato juice supplement (330 ml/
day) provided 37.0 mg lycopene and 1.6 mg ß-carotene. Carrot juice
supplementation (330 ml/day) delivered 27.1 mg ß-carotene and
13.1 mg ·-carotene. Treatment periods were preceded by 2-week
low-carotenoid periods. After the second treatment period a third
2-week low-carotenoid period followed resulting in a total study peri-
od of 10 weeks. In an earlier study we found that a 2-week depletion
or supplementation period is long enough to induce significant
changes in plasma carotenoid concentrations and in lymphocyte
functions [11]. Subjects were told to consume the juices with their
main meals. Subjects were not restricted in their daily diet, except
that they had to abstain from fruit and vegetables high in carotenoids
throughout the whole study period. A list of the fruit and vegetables
the subjects were not allowed to eat was provided [13].

Study Population
Twenty-two healthy, non-smoking, non-supplement-taking men

were recruited for the study. All subjects were in good medical health
as determined by a screening history and medical examination. The
study was approved by the Medical Ethical Committee of the Lan-
desärztekammer Baden-Württemberg, and all participants gave their
consent in writing.

Isolation of PBMC and Preparation of Serum
Venous blood samples were collected once a week between 7:00

and 9:00 in the morning after the subjects had fasted overnight.
Blood collection was done on 2 days with 11 subjects/day. Blood
samples were collected into 9-ml tubes containing lithium heparin.
Plasma was collected after centrifugation at 1,500 g for 10 min at
4°C. PBMC were isolated by density gradient centrifugation. For
serum preparation blood was collected and the clotted blood was cen-
trifuged at 1,854 g for 10 min at 4 °C. Autologous serum (AS) from
each subject for the culture of PBMC was heat-inactivated for 30 min
at 56°C.

HPLC Analysis of Carotenoids and Retinol in Plasma
Carotenoids and retinol in plasma were analyzed every other

week according to a recently described method [14].

Lymphocyte Proliferation
PBMC at 1 ! 109 cells/l in medium containing 10% AS were

stimulated by the T-cell mitogen concanavalin A (5 mg/l, ConA, Sig-
ma) for 120 h at 37 °C. AS was used instead of fetal bovine serum for
the culture of PBMC, because it provides PBMC with various plasma
carotenoids throughout the length of the cell culture period. In con-
trast, fetal bovine serum is free of carotenoids [12]. Proliferation was
measured as described earlier [11].

Quantification of Cytokine Secretion 
PBMC at 1 ! 109 cells/l were cultured in medium containing

10% AS and stimulated by 5 mg/l ConA for 24 h at 37°C (IL-2, IL-4)
or by 1 Ìg/l lipopolysaccharide (Difco, Augsburg, Germany) for 24 h
at 37°C (TNF·). Cell-free supernatants were collected and stored at
–80°C until analysis. IL-2, IL-4, and TNF· were measured by sand-
wich-ELISAs as described earlier [12].

Lytic Activity of NK Cells
The lytic activity of NK cells as part of PBMC against K562 tar-

get cells (PBMC:K562 ratios 25:1, 12.5:1, 6.25:1) was measured with
a recently described flow cytometric method [15] and calculated as
the percentage of dead target cells in the test samples minus the per-
centage of dead target cells in the control samples without effector
cells.

Statistical Analyses
We used multi-way repeated measures analysis of variance

(ANOVA) to analyze changes of the various immune parameters.
Treatment (tomato or carrot juice), period (first juice treatment or
second juice treatment), and diet sequence (tomato/carrot vs. carrot/
tomato) were included as main effects and change in immune param-
eters over the period (week 2 vs. week 4 and week 6 vs. week 8) as
dependent variables. Within-subject effects and between-subject ef-
fects were also included in the analyses. When significant diet
sequence effects were observed by repeated-measures ANOVA, dif-
ferences in the changes over the periods were analyzed by paired Stu-
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Table 1. Plasma carotenoid concentrations (Ìmol/l) of subjects consuming a low carotenoid diet supplemented with tomato or carrot juice
(mean B SD; n = 11/treatment group)

Study period
Week

Baseline
0

Depletion
2

Juice
4

Depletion
6

Juice
8

Depletion
10

ß-Carotene
Tomato/carrot 0.37B0.32 0.25B0.20 0.21B0.16 0.20B0.14 1.00B0.53* 0.45B0.29
Carrot/tomato 0.45B0.45 0.27B0.21 1.18B0.44* 0.49B0.14 0.41B0.17 0.25B0.10

·-Carotene
Tomato/carrot 0.09B0.09 0.06B0.06 0.05B0.04 0.05B0.04 0.53B0.22* 0.27B0.10
Carrot/tomato 0.08B0.06 0.06B0.04 0.61B0.26* 0.27B0.11 0.17B0.07 0.10B0.03

Lycopene
Tomato/carrot 0.45B0.29 0.21B0.12 0.52B0.20* 0.21B0.09 0.16B0.13 0.10B0.08
Carrot/tomato 0.55B0.41 0.23B0.11 0.14B0.07 0.12B0.10 0.48B0.21* 0.18B0.07

Lutein
Tomato/carrot 0.31B0.13 0.25B0.06 0.24B0.10 0.23B0.07 0.31B0.06 0.23B0.05
Carrot/tomato 0.31B0.09 0.27B0.07 0.30B0.08 0.26B0.06 0.26B0.07 0.24B0.05

ß-Cryptoxanthin
Tomato/carrot 0.11B0.07 0.08B0.04 0.06B0.04* 0.06B0.04 0.06B0.04 0.05B0.03
Carrot/tomato 0.16B0.11 0.12B0.06 0.09B0.04* 0.09B0.04 0.07B0.03 0.06B0.03

* Significantly different from week 2 (juice period 1) and week 6 (juice period 2) determined by ANOVA: p ! 0.0002.

dent’s t test using the data from week 2 as the baseline value. All
statistical calculations were performed with PROC GLM in SAS
Software (version 6.12) and with the StatView program (SAS Insti-
tute 1998, Cary, N.C., USA).

Results

All subjects (aged 28.7 B 5.9 years, body mass index
23.1 B 2.0 kg/m2) complied with the study protocol and
completed both dietary treatments. Plasma carotenoid
concentrations were determined including all trans and
cis configurations. Results for ß-carotene and lycopene
are shown as total ß-carotene and total lycopene. There
was no significant difference in plasma carotenoid con-
centrations between groups at baseline (table 1). Carrot
juice consumption significantly increased plasma concen-
trations of ß- and ·-carotene, and tomato juice consump-
tion resulted in elevated lycopene concentrations (ta-
ble 1). While lutein concentrations did not change signifi-
cantly during juice consumption, ß-cryptoxanthin con-
centrations were reduced at the end of the first juice sup-
plementation period (table 1). The absolute increase in
plasma carotenoid concentrations did not differ between
the 2 groups (data not shown). Therefore, the sequence of
the juice intervention had no effect on the carotenoid bio-
availability from vegetable juices. Plasma retinol concen-
trations were measured to control whether juice-derived

provitamin A carotenoids increased plasma retinol con-
centrations. Juice supplementations did not change plas-
ma retinol concentrations significantly (data not shown).

In general, crossover designs can induce 2 types of bias
as a result of diet sequence and period effects. We
observed significant diet sequence effects for lymphocyte
proliferation, lytic activity of NK cells and for secretion of
TNF·. Therefore, we analyzed changes in immune func-
tions before and after juice supplementation (period 1:
week 2 vs. week 4; period 2: week 6 vs. week 8) by paired
Student’s t test. Proliferation of PBMC cultured in AS did
not differ between both groups at baseline. Compared
with the end of the first low-carotenoid period, juice inter-
vention did not modulate proliferative responsiveness of
PBMC (table 2). One week after the end of the first juice
supplementation period until the end of the whole inter-
vention period lymphocyte proliferation was significantly
enhanced in both groups (table 2).

The lytic activity of NK cells at baseline and through-
out the study period was comparable between groups.
During the first supplementation period and the following
depletion period lytic activity increased significantly (ta-
ble 2). While during the second juice supplementation
period lytic activity first decreased to the baseline level,
lytic activity was again significantly enhanced at the end
of the second juice supplementation (carrot juice) 1 week
after tomato juice supplementation (table 2). As a further
control, the cytotoxicity of cryopreserved NK cells from 1
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Table 2. Proliferation of peripheral blood mononuclear cells (activated with ConA 5 mg/l for 120 h at 37°C) and lytic activity of NK cells
from subjects consuming a low-carotenoid diet supplemented with tomato juice (weeks 2–4 or 6–8) and carrot juice (weeks 2–4 or 6–8; mean
B SD; n = 11/treatment group)

Study period

Week

Depletion

0 1

Juice

2 3

Depletion

4 5

Juice

6 7

Depletion

8 9 10

Lymphocyte proliferation
Tomato/carrot 1.0B0.2 1.2B0.3 1.3B0.3 1.2B0.3 1.2B0.3 2.1B0.3*** 2.0B0.2*** 1.8B0.2*** 1.5B0.3* 1.5B0.4* 1.6B0.2**
Carrot/tomato 1.0B0.2 1.3B0.2 1.2B0.3 1.1B0.3 1.1B0.4 2.0B0.5*** 1.9B0.4*** 1.7B0.4*** 1.5B0.3 1.5B0.4 1.5B0.3*

NK cell activity
Tomato/carrot 55B5 65B6 52B5 67B6* 65B5* 66B6* 62B5* 51B6 63B5* 68B4* 59B4
Carrot/tomato 51B4 61B5 56B3 65B5 61B3 70B4** 65B5 62B4 55B4 70B4** 60B3

Proliferation is presented as measured absorbance at 450 nm minus absorbance at 650 nm; lytic activity of natural killer cells with an effector:target ratio of
25:1.

Significantly different from week 2 as determined by Student’s t test: * p ! 0.05; ** p ! 0.01; *** p ! 0.001.

individual not participating in the study was quantitated
on each day that the NK cell activity of study subjects was
measured. The mean NK cell activity was 54.1 B 3.2 (a
total of 21 measurements) and the coefficient of variation
was 5.9%.

IL-2 secretion was significantly affected by juice sup-
plementation, again without any differences between car-
rot and tomato juice (fig. 1). The first intervention period
resulted in significantly higher IL-2 secretion in those sub-
jects consuming carrot juice (fig. 1). One week later, both
juice supplementations resulted in elevated IL-2 secre-
tion. Carotenoid depletion after the first juice supplemen-
tation resulted in reduced IL-2 secretion. The lowest IL-2
concentration was measured when subjects were already
drinking the second juice for 1 week. Two weeks after the
second juice supplementation had stopped, IL-2 secretion
was again significantly increased.

In contrast to IL-2, the secretion of IL-4 by ConA-acti-
vated T lymphocytes was not affected by either juice sup-
plementation (data not shown). TNF· was measured as a
cytokine primarily produced by human monocytes. Sup-
plementation with either juice significantly enhanced
TNF· secretion (weeks 2–4) and, during the subsequent
low-carotenoid period, a significantly reduced TNF· se-
cretion was again observed (fig. 2).

Discussion

The major finding of the present study is that diets low
or high in carotenoids result in relatively fast responses in
plasma carotenoid concentrations, which are not accom-
panied by concomitant changes in immune functions.

The reason for this time delay is currently not known.
Assessing the time course of intracellular carotenoid accu-
mulation in PBMC in future intervention studies may
help to reveal this issue. Although total carotenoid intake
was not assessed in the present study, data from a similar
study indicated that the study subjects on such a low-ca-
rotenoid diet consumed about 1.3 mg/day of total carot-
enoids, which is far below the average carotenoid intake
of 5.6 mg/day for this age group [11]. The low carotenoid
intake in the present study was associated with a compa-
rable reduction in plasma carotenoid concentrations as
reported in our previous study. A provitamin A effect of
the juice supplementation can be excluded because plas-
ma retinol levels did not change after juice supplementa-
tion. No differences between both juices were observed,
although only carrot juice supplementation provided high
quantities of carotenoids with provitamin-A activity.

Lymphocyte proliferation is a common immune pa-
rameter which has been measured in several studies
investigating the immunomodulatory effects of ß-caro-
tene [2–4, 16, 17]. These studies reported conflicting data,
partly because of differences in the dosage and duration of
carotenoid supplementation, and the use of carotenoid
depletion periods. In the present study, juice supplemen-
tation did not affect proliferative responsiveness of
PBMC during the first juice supplementation period.
However, 1 week after juice supplementation had been
stopped, lymphocyte proliferation was significantly in-
creased (p ! 0.001). Probably as a result of the low-carot-
enoid diet and repletion with juices, carotenoid depletion
affects the regulatory processes of PBMC proliferation,
and it may take several days for this to result in enhanced
proliferation. In other studies longer time periods be-
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Fig. 1. Interleukin-2 production of activated
peripheral blood mononuclear cells (5 mg/l
ConA, 24 h at 37°C) from subjects consum-
ing a low-carotenoid diet supplemented with
tomato juice (weeks 2–4 or 6–8) and carrot
juice (weeks 2–4 or 6–8). Values are mean B
SEM, n = 11/treatment group. Significantly
different from week 2 as determined by Stu-
dent’s t test: * p ! 0.05; ** p ! 0.01.

Fig. 2. TNF-· production of activated pe-
ripheral blood mononuclear cells (1 Ìg/l
LPS, 24 h at 37°C) from subjects consuming
a low-carotenoid diet supplemented with to-
mato juice (weeks 2–4 or 6–8) and carrot
juice (weeks 2–4 or 6–8). Values are mean B
SEM, n = 11/treatment group. Significantly
different from week 2 as determined by Stu-
dent’s t test: * p ! 0.05; ** p ! 0.01.

tween dietary intervention and measurement of lympho-
cyte proliferation have been used [2, 4], which may have
masked a potential time delay in this response. The
present results are supported by data from another study
which demonstrated that, after consuming a low-carot-
enoid diet for 60 days, supplementation with a caroten-
oid complex from vegetables enhanced mitogenic prolif-
erative responsiveness of blood lymphocytes in women
[4]. In contrast, the same mixed carotenoid supplement
had no significant effect on mitogenic T-cell proliferation

in a free-living group of elderly women with normal plas-
ma carotenoid profiles at baseline [18].

A stimulatory effect of ß-carotene supplementation on
NK cell lytic activity has so far only been demonstrated in
elderly men on long-term ß-carotene supplementation [5]
and in healthy adults supplemented with 30 mg/day ß-
carotene for 3 months [19]. In the present study, supple-
mentation with either vegetable juice resulted in signifi-
cantly enhanced NK cell lytic activity at the end of the
juice supplementation periods, specifically 1 week after
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juice supplementations had been stopped. In the studies by
Santos et al. [5, 16], the ß-carotene plasma concentrations
in the placebo groups were around 0.6 Ìmol/l, but in the
present study the concentration was 0.26 B 0.21 Ìmol/l at
the end of the first depletion period. Again, the low plasma
carotenoid concentrations at baseline and the supplemen-
tation with a carotenoid mixture from food instead of sup-
plementation with single carotenoids may be relevant for
the differences between these studies. So far no study has
investigated the effect of pure lycopene or ·-carotene on
NK cell lytic activity. The low coefficient of variation
(5.9%) for this type of assay argues against the observed
differences being due to methodological variation.

The lytic activity of NK cells can be regulated by differ-
ent cytokines. IL-2 has been shown to be a potent stimula-
tory factor for NK cells increasing lytic activity [20]. In
the present study, juice supplementation significantly in-
creased IL-2 secretion by activated PBMC, with no signif-
icant differences between the types of vegetables. Again, a
time delay of 1–2 weeks between intervention and the
maximum responding change in IL-2 secretion was ob-
vious. Peak IL-2 secretions after the first juice supplemen-
tation were observed at the same time point (week 5) as
the maximum NK cell lytic activity and lymphocyte pro-
liferative responsiveness. In an earlier study tomato juice
supplementation to a low-carotenoid diet also resulted in
an enhanced IL-2 response [11].

In contrast to IL-2 which is primarily produced by T-
helper (TH) 1 lymphocytes, IL-4 is mainly produced by
TH2 lymphocytes [21]. The intervention with the low-
carotenoid diet as well as the juice supplementations did
not change IL-4 secretion significantly, suggesting that
TH2 lymphocytes are not affected by this type of dietary
intervention.

Previous studies have shown that ß-carotene supple-
mentation resulted in enhanced TNF· secretion in hu-
mans [2, 22, 23]. In in vitro studies with human PBMC
we have demonstrated that ß-carotene incorporated into
liposomes at physiologic concentrations also stimulated
TNF· secretion [24]. The present study clearly shows that
both juices during the first supplementation period signif-
icantly increased TNF· secretion by mitogen-activated
monocytes.

The observed differences in changes in immune func-
tions between supplementation periods 1 and 2 may be
related to the fact that during the whole study period sub-
jects were on a low-carotenoid diet. Juice supplementa-
tion provided the subjects with only lycopene and ß-caro-
tene (tomato) or ·- and ß-carotene (carrot), but caroten-
oids such as lutein and ß-cryptoxanthin were not provided

with the vegetable juices. As a result plasma ß-cryptoxan-
thin concentrations decreased during the first juice sup-
plementation period. Therefore, the degree of carotenoid
depletion in tissues such as immune cells may have been
higher during the second intervention period.

The underlying mechanisms of juice-induced immu-
nomodulation are currently not known. The antioxidative
effects of carotenoids might reduce the amount of free
radical generation protecting membrane lipids in PBMC
from oxidation [25], which might result in enhanced
immune functions. In an earlier study we were able to
show that tomato juice supplementation to healthy adults
on a low-carotenoid diet significantly reduced low-density
lipoprotein oxidation [26], although the level of oxidative
DNA damage in PBMC was not affected [27]. In vitro
studies also did not reveal a close relationship between
modulation of TH lymphocyte function and antioxidant
activity of carotenoids [28].

A major limitation of our study is the lack of an appro-
priate placebo group. Normally, studies with a cross-over
design do not require an additional placebo group. Due to
the observed time delay in the immunological changes in
the present study, such a placebo group would have been
helpful for the interpretation of the results. Based on the
outcome of this study, it is difficult to determine whether
the observed effects during weeks 3–5 were truly related to
the juice supplementation during weeks 2–4 or were related
to confounding factors. However, the consistent pattern of
immune responses with different cell types such as mono-
cytes, TH1 lymphocytes, and NK cells, all peaking within 1
week after stopping the juice intervention, suggests a real
effect. A study with similar design assessing the same
immune parameters was run immediately after the present
carotenoid study. Compared to baseline, no significant
changes for control and treatment group during a 12-week
period were found [29]. This argues against the idea that the
changes in immune functions measured in our study were a
chance finding and not related to carotenoid depletion and
juice supplementation.

From our earlier studies [11, 30] we know that washout
or depletion periods result in either no effect or in
decreased lymphocyte proliferation and cytokine produc-
tion. Therefore, it can be excluded that the observed
increase in cytokine production or NK cell activity in the
present study was due to the washout or depletion period.
In addition, similar effects on immune functions with
carotenoid depletion and carotenoid supplementation
have been reported by others [4, 18].

In conclusion, the present results suggest that carot-
enoid-rich vegetables affect the immune system in sub-
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jects consuming a low-carotenoid diet. Clearly, no signifi-
cant differences were observed between supplementation
with tomato or carrot juice. This may indicate that either
different carotenoids have similar effects on the immune
system or compounds other than carotenoids, which oc-
cur in both types of vegetables, may be responsible for the
effects observed. One example could be the hydroxycin-
namic acids [9], which are taken up in substantial quanti-
ties with tomatoes and carrots [31].
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ORIGINAL COMMUNICATION

Daily moderate amounts of red wine or alcohol have
no effect on the immune system of healthy men

B Watzl1*, A Bub1, G Pretzer1, S Roser1, SW Barth1 and G Rechkemmer1

1Institute of Nutritional Physiology, Federal Research Centre for Nutrition, Karlsruhe, Germany

Objective: To investigate whether the daily intake of red wine (RW) at a dose which inversely correlates with cardiovascular
disease (CVD) risk modulates immune functions in healthy men.
Design: Randomized single-blind trial with four intervention periods.
Setting: The Institute of Nutritional Physiology, Federal Research Centre for Nutrition, Karlsruhe, Germany.
Subjects: A total of 24 healthy males with moderate alcohol consumption patterns were recruited and all completed the study.
Intervention: Participants consumed 500ml of RW (12% ethanol (ETOH)) or 500ml of a 12% ETOH dilution per day for a
period of 2 weeks. To control the potential effects of RW polyphenols, accordingly 500ml/day of dealcoholized red wine (DRW)
and of red grape juice (RGJ) were given. The following immune parameters were measured before beverage consumption and at
1 and 2 weeks following beverage consumption: phagocytic activity of neutrophils and monocytes, production of tumor
necrosis factor-alpha (TNFa), interleukin-2 and -4, transforming growth factor-b, TNFa mRNA, lymphocyte proliferation, lytic
activity of natural killer cells, and percentage of apoptotic lymphocytes.
Results: Consumption of a moderate volume of alcohol with RW and with a 12% ETOH dilution had no effect on immune
functions in healthy males. Consumption of polyphenol-rich beverages (DRW and RGJ) did not affect immunity-related
parameters.
Conclusions: Daily moderate consumption of alcohol and of RW for 2 weeks at doses which inversely correlate with CVD risk has
no adverse effects on human immune cell functions. Polyphenol-rich beverages such as RGJ and DRW further do not suppress
immune responses in healthy men.
Sponsorship: The Federal Ministry of Consumer Protection, Food, and Agriculture, Germany.
European Journal of Clinical Nutrition (2004) 58, 40–45. doi:10.1038/sj.ejcn.1601742

Keywords: red wine; red grape juice; ethanol; anthocyanin; lymphocyte; immune system

Introduction
Moderate consumption of alcohol is inversely associated with

cardiovascular disease (CVD) risk (Renaud et al, 1998;

Gaziano et al, 1999; Rimm et al, 1999; Gronbaek et al,

2000). In addition, moderate intake of alcohol (up to three

drinks) or wine may strengthen the immune response toward

different types of viruses. For example, in nonsmokers

intentionally exposed to rhinoviruses, alcohol consumption

was associated with a decreased risk of common cold (Cohen

et al, 1993). Epidemiological data from a recent prospective

cohort study revealed that total alcohol intake as well as beer

and spirit consumptions were not related to the occurrence of

common cold, whereas moderate consumption of wine was

inversely associated with the risk of common cold. The

association was stronger for red wine (RW) when compared

with white wine (Takkouche et al, 2002), which suggests that

specific polyphenols in RW may contribute to the observed

reduction in common cold risk. Recently, in an animal study

it was shown that ethanol (ETOH) intake with RW (corre-

sponding to an intake of 360ml of RW in humans) produced

no changes in blood lymphocyte and NK cell numbers, while

a similar intake of ETOH alone reduced the percentage of

these cells (Percival & Sims, 2000). Based on these data, one

may speculate that polyphenols in RW protect from potential

adverse effects of ethanol on the immune system.
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Besides its beneficial effect on CVD risk, alcohol consump-

tion at a level of more than three drinks per day is associated

with an increased all-cause mortality (Ellison, 2002).

Chronic ethanol abuse is known to result in specific defects

in innate and acquired immunity and may increase host

susceptibility to infections (Watzl & Watson, 1992; Nelson &

Kolls, 2002). In a case–control study of patients with

community-acquired pneumonia, alcohol intake was identi-

fied as a risk factor. High-alcohol intake patients showed a

higher incidence of pneumonia and more severe clinical

symptoms than patients with a low alcohol intake (Fernan-

dez-Sola et al, 1995). ETOH in vitro suppresses significantly

the production of pro-inflammatory cytokines such as tumor

necrosis factor-a (TNFa) by human peripheral blood mono-

nuclear cells (PBMCs) (Watzl & Watson, 1993; Szabo et al,

1996). Chronic alcohol intake, however, results in an

enhanced response of proinflammatory cytokines

(Nelson & Kolls, 2002). Moreover, ETOH exposure of

polymorphonuclear neutrophilic granulocytes (PNG) and

monocytes in vitro and in vivo inhibits phagocytosis (Stoltz

et al, 1999) and decreases their capacity to produce reactive

oxygen species during the oxidative burst (Patel et al, 1996;

Szabo, 1999).

Alcohol consumption and its subsequent metabolism in

the liver generate reactive oxygen species, which interfere

with various immune cell functions. Phenolic antioxidants

in RW may scavenge reactive oxygen species and thereby

protect the host against impairment of immune cell func-

tions by ETOH intake. RW consumption delivers polyphe-

nols such as the flavonoids with strong in vitro and in vivo

antioxidant (Wang et al, 1997; Casalini et al, 1999; Lodovici

et al, 2001) and immunomodulatory effects (Middleton et al,

2000). Despite this, the immunological effects of flavonoids

in humans have not yet been studied. Most polyphenol

studies so far were done in in vitro systems demonstrating

that flavonoids suppress a variety of immune functions

including lymphocyte proliferation, lytic activity of NK cells,

and cytokine secretion (Middleton et al, 2000).

The objective of this study was first to investigate whether

daily consumption of a moderate volume of RW modulates

immune functions in healthy men during a period of 2

weeks. The second aim was to investigate whether poly-

phenols in RW with their antioxidative and immunomodu-

latory potential induce changes in immune functions that

differ from those induced by the consumption of a 12%

ETOH beverage. To broadly assess changes in immune

functions, we have measured a large range of immune

parameters.

Subjects and methods
Subjects

In all, 24 nonsmoking men with moderate alcohol con-

sumption patterns (r80 g ETOH/week) and with normal

body weight were recruited for the study. All subjects were in

good medical health as determined by a screening history

and medical examination. None were taking vitamin

supplements or medications 2 months before or during the

study. The study was approved by the Medical Ethical

Committee of the Landesärztekammer Baden-Württemberg

and all participants gave their consent in writing.

Study design

This study was a randomized crossover study of four

experimental treatments, each lasting 14 days. During the

experimental treatments, subjects were randomly assigned

to consume 500ml/day of RW (12% ETOH v/v), deal-

coholized red wine (DRW), red grape juice (RGJ), and ETOH

(12% ethanol v/v), with a wash-out period of 1 week between

each experimental treatment. Subjects were instructed to

drink the beverages with their main meals. During the study

period, subjects adhered to their usual diets, but were

instructed to avoid alcohol-containing beverages and food

products rich in anthocyanins or polyphenols (Bub et al,

2001).

RW (variety Lemberger) and RGJ (variety Lemberger)

grown in the same vineyard were obtained from the State

Winery Weinsberg (Baden-Württemberg, Germany). Deal-

coholization of the RW was achieved by a vacuum rectifica-

tion process (Centre for dealcoholization EAZ Petershans

GmbH, Waiblingen, Germany). The total anthocyanin (mg/

l) and total catechin ((þ )-catechin and (�)-epicatechin, mg/

l) contents were 171.1 and 63.4 (RW), 144.8 and 47.0 (DRW),

and 338.6 and 64.3 (RGJ), respectively. The resveratrol

content (mg/l) was 4.94 (RW), 5.15 (DRW), and 3.75 (RGJ)

(Bub et al, 2001). The 12% ethanol beverage was prepared

from vodka.

Collection and preparation of blood samples

Fasting venous blood samples were collected once a week

between 7:00 and 10:00. Blood was drawn from an

antecubital vein into prechilled tubes containing Li-heparin

(Monovette-Sarstedt, Nümbrecht, Germany) and immedi-

ately placed on ice in the dark. Plasma was collected after

centrifugation at 1500� g for 10min at 41C. PBMC were

prepared as described earlier (Watzl et al, 2000).

Lymphocyte proliferation

PBMC at 1� 109 cells/l in a medium containing 10% of FBS

were stimulated by the T-cell mitogen concanavalin A (5mg/

l, ConA, Sigma) for 120h at 371C. Proliferation was measured

using the pyrimidine analog 5-bromo-deoxyuridine, which

was quantified in PBMC by a cellular enzyme immunoassay

as described earlier (Watzl et al, 2000).

Quantification of cytokine secretion

PBMC at 1� 109 cells /l were cultured in medium containing

10% of FBS and stimulated by 5mg/l ConA for 24h at 371C
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(interleukin-2, -4 IL-2, IL-4) or by 1mg/l LPS (TNFa, trans-

forming growth factor-b, TGFb). Cell-free supernatants were

collected and stored at �801C until analysis. TNFa, IL-2, and
IL-4 were measured by sandwich-ELISAs as described earlier

(Watzl et al, 2000). For TGFb, a sandwich-ELISA was

developed using an anti-human TGFb monoclonal antibody

(2mg/l PBS, pH 7.4; R&D, Wiesbaden, Germany) as capture

antibody and a monoclonal biotin-labeled mouse anti-

human TGFb antibody (300 mg/l reagent diluent, R&D) as

detection antibody. TGFb in supernatants had to be activated

by mixing 0.5ml of supernatants with 0.1ml 1M HCl. After

incubation for 10min, 0.1ml of 1.2M NaOH/0.5M HEPES

was added, then the mixture was pipetted on a microtiter

plate. Optical density was measured with a multiplate

spectrophotometer (Molecular Devices) at 405nm with data

expressed as nanogram per liter compared to the optical

density of recombinant TGFb.

Quantification of TNFa mRNA

PBMCs were LPS-stimulated under conditions as already

described for the ELISA-based TNFa analysis, except that

duration of LPS-incubation for mRNA detection was 4h.

Total RNA was extracted from the cells using the guanidine

isocyanate/acid phenol method described by Chomczynski

and Sacchi (1987). The quantity and quality of the RNA were

measured at 260/280nm in a spectrophotometer (Lamda Bio

20 UV/VIS, Perkin-Elmer, Wellesley, MA, USA).

RT–PCR

Reverse transcription (RT) and polymerase chain reaction

(PCR) were performed using the Ready-to-Go RT–PCR kit

(Amersham Pharmacia Biotech; Freiburg, Germany). The

respective sequences used for generation of sense and

antisense primers were nt 350–373 and nt 795–772 of TNFa
cDNA (Acc. XM_165823.1) and nt 71–94 and nt 570–574 of

GAPDH cDNA (Acc. BC004109) used as internal standard for

normalization. All primers were tested for linearity over cycle

number, and analyses were all carried out in the linear

portion of the curve, therefore allowing semiquantitative

analysis of mRNA amount. PCR products were run on 1.5%

agarose gel in TBE buffer (89mM Tris, 89mM boric acid, 2mM

EDTA, pH 7.9) and ethidium bromide stained bands were

visualized and quantified using computer-based image

analysis (FluorS Imager; Biorad, München, Germany). Quan-

tities of each PCR product were normalized by dividing the

average gray level of the signal by that of the corresponding

GAPDH PCR product. Data are expressed as arbitrary units

(AU).

Lytic activity of NK cells

Lytic activity of NK cells against K562 target cells (effector:-

target ratios 50:1, 25:1, 12.5:1) was measured with a recently

described flow cytometric method (Watzl et al, 2000).

Phagocytic activity

Assessment of phagocytic activity (percentage of phagocytic-

active cells) was based on a recently described flow

cytometric method (O’Gorman, 2002).

Apoptosis

Apoptosis was measured in PBMC using Annexin V with a

recently described flow cytometric method (Roser et al,

2001).

Statistical analyses

Subjects were randomly assigned to a different treatment

order regarding the four beverages. As a consequence, only

three subjects consumed all beverages in the same sequence

during the four phases of beverage consumption. To test

whether baseline data for one beverage were significantly

different in the four different phases, data were analyzed by

factorial ANOVA with ‘time’ as dependent variable and

‘beverage’ and ‘phase’ as factors. When no significant

differences between baseline data of the four phases for

one beverage were observed, data of the four phases were

combined to one experimental period resulting in a total

number of 24 subjects with blood collections at weeks 0, 1,

and 2. Repeated-measures ANOVA were used with ‘time’ as

within-subject factor and ‘beverage’ as between-subject

factor to analyze treatment effects. Results are reported as

means7standard error of the mean (s.e.m.). All statistical

calculations were performed with the StatView program (SAS

Institute 1998, Cary, NC, USA).

Results
Mean age of the study subjects was 30.671.4 y. Body mass

index (kg/m2) and body mass (kg) were 23.570.4 and

79.771.4, respectively. All participants tolerated the inter-

vention with the four beverages well and completed the

study. Maximum blood ethanol concentrations in subjects

consuming red wine were 15.9 and 15.0mM in subjects

consuming the 12% ETOH dilution (Watzl et al, 2002).

No beverage-specific differences at baseline for the four

different phases were observed. Therefore, data of the four

phases for one beverage were combined into one phase of

beverage consumption. The capacity of mitogen-activated

PBMC to produce TH1-(IL-2) and TH2-(IL-4) lymphocyte-

specific cytokines as well as monocyte-specific cytokines

(TGFb, TNFa) did not change significantly over time when

the four different beverages were compared (Table 1). In

order to study the effect of ETOH on cytokine gene

expression, we measured TNFa mRNA expression. No

beverage-specific effects on TNFa mRNA were observed

(Table 1). Phagocytic activity of granulocytes and monocytes

ex vivo was not different at baseline and was not significantly

affected by the consumption of the different beverages

(Table 2). Apoptosis of T lymphocytes, T-lymphocyte
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responsiveness to mitogen-activation and lytic activity of NK

cells (data are only shown for the effector:target ratio of 25:1)

were also not modulated by the 2 weeks of beverage

consumption (Table 2).

Discussion
We have recently shown that the acute intake of moderate

amounts of red wine or 12% ETOH has no effect on the

immune system of healthy men in the following 24h (Watzl

et al, 2002). The objective of the present study was to

investigate the immunomodulatory effects of a daily mod-

erate intake of RW, DRW, RGJ and of 12% ETOH over a

period of 2 weeks. In order to study whether neutrophils,

monocytes, and lymphocytes were specifically affected by

the different beverages, cell-specific functional assays were

applied. Neutrophil functions such as chemotaxis and

production of reactive oxygen species have previously shown

to be affected by ethanol and polyphenols (Patel et al, 1996;

Lu et al, 2001). Acute ETOH exposure in humans (five glasses

of wine or more) induced neutrophil apoptosis (Singhal et al,

1999a), which is expected to impair neutrophil functions. In

the present study, however, no significant effects on

neutrophil as well as monocyte phagocytosis were observed

with the different beverages suggesting that neither ETOH

nor red grape-associated polyphenols were effective. In vitro,

ETOH exposure has been shown to attenuate dose-depen-

dently the phagocytic activity of human monocytes via the

Fc-receptor (Morland & Morland, 1984). While ETOH

concentrations (12 or 22mM) comparable to those measured

in the blood of our study subjects (15.9mM; Watzl et al,

2002) also had no effect in vitro confirming our in vivo

observations, higher in vitro ETOH concentrations signifi-

cantly suppressed phagocytic activity (Morland & Morland,

1984).

The production of TNFa by LPS-activated monocytes as

well as TNFa mRNA expression were not significantly

affected by the treatment. In another study with acute

alcohol exposure (a single intake of 80 g ethanol with wine

or beer), no changes in plasma concentrations of monocyte-

derived cytokines such as TNFa and IL-1a/-b were measured

(Mohadjer et al, 1995). In vitro, only high, but still

physiological doses (Z25mM) as well as pharmacological

doses of ETOH (440mM) significantly decreased TNFa
production by human monocytes (Verma et al, 1993; Szabo

et al, 1996; Arbabi et al, 1999). In addition, a concentration

of 25mM ETOH in vitro also reduced TNFa mRNA levels

Table 1 Production of IL-2, IL-4, TGFb, TNFa, and TNFamRNA expression by activated PBMCs isolated from subjects consuming for 14 days a volume of
500ml/day red wine (RW), red grape juice (RGJ), dealcoholized red wine (DRW), or a 12% ethanol control beverage (ETOH) (n=24, mean7s.e.m.)

Treatment

RW RGJ DRW ETOH

Week 0 1 2 0 1 2 0 1 2 0 1 2

IL-2 (ng/l) 877767 9907117 9707100 972790 1023792 991787 899779 982783 983777 943794 964798 927795
IL-4 (ng/l) 3874 3873 4074 4276 4575 4476 3874 4174 5076 4075 4074 4275
TGFb (ng/l) 1501776 1355796 1332769 13457108 1390766 1446773 1401774 1323777 1367772 1369783 13697107 13467526
TNFa (ng/l) 811741 763734 786729 785731 770738 756743 750743 741737 751738 783741 723735 772745
TNFa-mRNA

(AU)
1.470.2 1.570.1 1.370.2 1.470.2 1.470.1 1.070.1 1.070.2 1.370.2 1.170.1 1.270.1 1.370.2 1.170.1

Table 2 Immune parameters measured ex vivo with PBMCs isolated from subjects consuming for 14 days a volume of 500ml/day of red wine (RW), red
grape juice (RGJ), dealcoholized red wine (DRW), or a 12% ethanol control beverage (ETOH) (n=24, mean7s.e.m.)

Treatment

RW RGJ DRW ETOH

Week 0 1 2 0 1 2 0 1 2 0 1 2

Phagocytosis (%)
Granulocytes 4672 3873 4473 4572 4172 4173 4273 3973 4473 4572 3772 4573
Monocytes 3272 2672 2872 2772 2571 2672 2772 2572 2772 3072 2472 2872
Apoptosis (%)
Lymphocytes 8.270.4 6.570.3 7.570.4 7.170.3 7.270.4 7.270.4 7.770.4 7.170.4 7.070.4 7.370.4 7.270.3 6.870.4
Lymphocyte
Proliferation

(A450–A650)
1.870.06 1.770.06 1.770.05 1.870.06 1.870.05 1.770.05 1.770.06 1.770.06 1.770.05 1.770.07 1.770.06 1.770.07

NK cell activity
(%)a

5273 5473 5673 5273 5473 5473 5173 5374 5574 4873 5073 5173

aEffector:target ratio 25:1.
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(Szabo et al, 1996). Blood ETOH concentrations in subjects of

the present study may not have been high enough to affect

LPS-induced TNFa production at the protein and at the

mRNA level.

ETOH or polyphenol intake did not modulate lymphocyte-

derived cytokine production (IL-2, IL-4). For IL-4, a TH2-

lymphocyte-specific cytokine, no differences in serum levels

between controls and alcoholic patients were observed in

another study (Laso et al, 1998) supporting our observations

that daily ETOH consumption at this level has no effect on

TH2-lymphocytes. However, binge drinking of up to 3.1 l of

beer significantly reduced IL-2 production, a TH1-specific

cytokine (Bagasra et al, 1989). In an animal study, a long-

term intake of high ETOH doses significantly increased IL-2

production independent of the dietary composition (Watzl

et al, 1993). This suggests that in contrast to TH2-lympho-

cytes ethanol modulates TH1-lymphocytes depending on

dose and length of intake period. Lymphocyte proliferative

responsiveness to mitogen-activation was also not influ-

enced by the different beverages. This is in agreement with

an earlier human study, which did not observe acute effects

of ethanol after alcohol consumption (Mohadjer et al, 1995).

In the present study, lytic activity of NK cells was not

affected by ETOH or by RW. Another study with acute ETOH

consumption (blood ETOH levels 8.7 and 19.3mM) also did

not observe a change in NK cell lytic activity (Ochshorn-

Adelson et al, 1994). In contrast, chronic alcoholics without

liver disease were shown to have a significantly increased

number of NK cells and a parallel increase in NK cell lytic

activity (Laso et al, 1997). Several studies have investigated

the effect of wine flavonoids on NK cell function. While

quercetin in vitro (1mM) significantly decreased lytic activity

of NK cells (no effects at lower concentrations) (Exon et al,

1998), in animal models, quercetin (100mg/kg) and catechin

(125–500mg/kg) increased lytic activity of NK cells (Ikeda

et al, 1984; Exon et al, 1998). The doses used in in vitro studies

and those obtained in the animal studies were much higher

than the plasma flavonoid concentrations in our study

subjects after a single intake of these beverages. The major

polyphenol in the beverages RW, DRW, and RGJ was the

anthocyanin malvidin-3-glucoside, which contributed 80%

of the total anthocyanins in RW and DRW and 69% in RGJ

(Bub et al, 2001). The maximum malvidin-3-glucoside

plasma concentrations were 1–3nM, which were reached

within 120min following beverage consumption (Bub et al,

2001). This indicates that the major polyphenol from red

wine was absorbed, but only low quantities were available.

Whether these plasma concentrations are significant to

induce physiological activity can only be speculated at

present.

Results from recent studies reported that acute alcohol

intake (five glasses of wine) enhanced the percentage of

apoptotic neutrophils and monocytes (Singhal et al, 1999a,

b). So far, no information was available on the percentage of

lymphocyte apoptosis after moderate ETOH or polyphenol

intake. The present data show that neither RW nor 12%

ETOH at a volume of 500ml/day affected lymphocyte

apoptosis. TGF-b production by LPS-activated monocytes,

which has been demonstrated to partly mediate the increase

in monocyte apoptosis by ETOH (Singhal et al, 1999b), also

did not differ between the beverages.

In conclusion, the results of the present study clearly show

that the daily intake of different alcoholic beverages at a

volume of 500ml over a period of 2 weeks had no significant

immunomodulatory effects. In addition, a high polyphenol

intake with RGJ and DRW did not result in immunosuppres-

sion as suggested by results from several in vitro studies

(Middleton et al, 2000). These data indicate that daily RW

consumption at a level, which inversely correlates with CVD

risk, has no adverse effects on the immune system. Whether

longer time periods with such alcohol consumption patterns

result in more significant changes of immune functions

cannot be answered by the present study.
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ABSTRACT Probiotics (PRO) modulate systemic immu-
nity in animals and humans. In contrast, the effects of
prebiotics (PRE) on systemic and intestinal immunity have
not been investigated. Whether the combined application
of PRO and PRE [synbiotics (SYN)] has synergistic or ad-
ditive effects is presently unknown. Therefore, PRO (Lac-
tobacillus rhamnosus GG and Bifidobacterium lactis Bb12),
PRE (inulin enriched with oligofructose), and SYN (combi-
nation of PRO and PRE) were fed to F344 rats for 4 wk as
supplements to a high fat diet. Functions of immune cells
isolated from peripheral blood mononuclear cells (PBMC),
spleen, mesenterial lymph nodes and Peyer’s patches (PP)
were investigated. The SYN supplement increased secre-
tory immunoglobulin A (sIgA) production in the ileum com-
pared with controls fed the high fat diet alone (P < 0.05),
and decreased the oxidative burst activity of blood neutro-
phils (P < 0.05) compared with rats fed PRO. The PRE
supplement enhanced the production of interleukin-10 (P
< 0.05) in PP as well as the production of sIgA in the cecum
(P < 0.05), compared with controls. The PRO supplement
modestly affected immune functions, whereas systemic
immunomodulatory effects were observed in rats fed SYN.
The PRE supplement primarily acted at the level of the
gut-associated lymphoid tissue. The combined application
of PRO and PRE has different effects from those of the
individual supplements, but does not simply result in addi-
tive or synergistic effects. J. Nutr. 134: 153–156, 2004.

KEY WORDS: ● Immune sytem ● gut ● probiotic ● prebiotic
● synbiotic ● rat

Several recent reviews summarized the available experi-
mental evidence for the immunomodulatory effects of probi-

otics (PRO)4 (1,2). Although experimental and human studies
clearly show that PRO affect host resistance to intestinal
infections as well as a number of immune cell functions, the
results of these studies vary greatly. In addition, the underlying
immunological mechanisms of PRO are generally not well
defined (3,4). The gut-associated lymphoid tissue (GALT) is
increasingly recognized as a crucial component of immune
response (5). Although many studies have focused on the
systemic immunological effects of PRO, few data are available
regarding systemic immunological effects and local immuno-
logical effects in the gut in the same animal (6). Therefore,
studies investigating the immunomodulatory potential of
PRO, including their effects at the GALT level, are needed.

At present, few studies have investigated the direct ef-
fects of prebiotics (PRE) on the immune system (7).
Whether PRE modulate the immune response directly or
indirectly, by affecting the composition of the intestinal
flora and thus affecting the GALT, or by producing SCFA,
is presently unknown.

Our study investigated the effects of PRO, PRE and their
combined application [synbiotics (SYN)] at the systemic level
and at the GALT level. We hypothesized that PRO and PRE,
alone or in combination, would modify immune responses in
the GALT, enhancing cytokine production and other immune
cell functions. Therefore, we fed F344 rats consuming a high
fat, low fiber control diet a daily supplement consisting of two
probiotic strains (Lactobacillus rhamnosus GG and Bifidobacte-
rium lactis Bb12), an inulin-based prebiotic enriched with
oligofructose or the combination of PRO and PRE (SYN) for
a period of 4 wk. We decided to use two probiotic strains
because others have suggested that a mixture of PRO may have
a greater effect on the intestine than the individual strains
(8,9). We assessed a broad spectrum of immune functions with
cells isolated from peripheral blood mononuclear cells
(PBMC) and the spleen as well as from the GALT. We used
a Western-style high fat, low fiber diet instead of a standard rat
diet as the control diet to make the study conditions more
comparable to the situation of humans in Western countries
consuming PRO and/or PRE.

MATERIALS AND METHODS

Animals. The State Veterinary Office granted permission for the
rat studies, and the experiments complied with its guidelines for the
care and use of laboratory animals. Male Fischer 344/NHsd rats
(Harlan Winkelmann, Borchen, Germany) aged 12 to 13 wk were fed
a standard lab diet (Altromin, Lage, Germany) for 1 wk, and all rats
were then fed the control diet for 1 wk.

Diets. Dietary components were purchased from Piccioni (Ges-
sate, Milan, Italy). RaftiloseR Synergy1 was provided by Orafti
(Tienen, Belgium). This PRE is an oligofructose-enriched inulin,

1 This study was supported by the Commission of the European Communi-
ties, project QLRT-1999–00346.

2 Present address: Technical University of Munich, Department of Food and
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rhamnosus GG; MLN, mesenteric lymph nodes; NK, natural killer; PBMC, periph-
eral blood mononuclear cells; PP, Peyer’s patches; PRE, prebiotics; PRO, probi-
otics; PTX, pentoxifylline; sIgA, secretory immunoglobulin A; SYN, synbiotic.
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comprised of a 1:1 mixture of long- and short-chain fractions of
inulin, a �(2–1)-fructan extracted from chicory roots (Cichorium
intybus). L. rhamnosus GG (LGG) and B. lactis Bb12 (Bb12) were
provided by Valio (Helsinki, Finland) and purchased from Chr.
Hansen (Horsholm, Denmark), respectively. They were supplied as
freeze-dried powder in sealed packets containing �6 � 1011 colony-
forming units (CFU)/g (LGG) and �3 � 1010 CFU/g (Bb12), re-
spectively. The bacteria were stored at a temperature of �20°C until
used. The dietary concentration of LGG and Bb12 was evaluated as
described elsewhere (10).

Rats (n � 80) were allocated to four experimental groups (n
� 20). The control group was fed a high fat (HF) diet based on the
AIN76 diet (11), modified to contain a high level of fat (231 g corn
oil/kg) and a low level of cellulose (20 g/kg) to compare with the diet
typical of Western humans at high risk of colon cancer (10). The
sources of carbohydrates in this diet were sucrose (361 g/kg) and
maltodextrins (100 g/kg). The PRO group was fed an HF diet sup-
plemented with LGG and Bb12 to provide �5 � 1011 CFU of each
strain per kg of diet. The PRE group was fed an HF diet with the
maltodextrins replaced by 100 g/kg of Raftilose Synergy1. The SYN
group was fed the PRE-group diet supplemented with LGG and Bb12
to provide �5 � 1011 CFU of each strain per kg of diet, matching the
levels in the PRO-group diet. Food and water were consumed ad
libitum. Diets were prepared every week, divided into aliquots and
frozen at �20°C. At the end of the 4-wk experimental feeding period,
the rats were anesthetized with CO2 and then decapitated.

Preparation of immune cell suspensions and fecal samples. Im-
mune cell suspensions were prepared with RPMI-1640 culture me-
dium containing 50 mL/L of heat-inactivated fetal bovine serum,
L-glutamine (2 mmol/L), penicillin (1 � 105 U/L), streptomycin (100
mg/L) and HEPES (25 mmol/L); all components were purchased from
Life Sciences (Eggenstein-Leopoldshafen, Germany). Trunk blood
was collected in heparinized tubes after decapitation. The PBMC and
splenocytes were isolated as previously described (12). The intestinal
contents of the ileum and cecum were collected and stored at �20°C
until assayed.

Fluorescence staining of lymphocyte subpopulations. The ex-
pression of cell surface markers on the immune cells of blood, spleen
and mesenteric lymph nodes (MLN) was investigated by immunoflu-
orescence as previously described (12). Phycoerythrin-conjugated
mouse anti-rat monoclonal antibodies to CD4 (Caltag, Hamburg,
Germany) and fluorescein-conjugated mouse anti-rat monoclonal
antibodies to CD8 (Caltag) with appropriate isotype controls
(Caltag) were used. Samples were analyzed with a FACSCalibur flow
cytometer (BD Biosciences, Heidelberg, Germany).

Phagocytosis. The phagocytic capacity of the immune cells of
the blood and the spleen was assessed with a flow cytometric method
as previously described (13).

Oxidative burst. Whole blood (100 �L) was cooled on ice to
0°C. Tubes were incubated with 20 �L PBS (control) or 20 �L
phorbol myristate 13-acetate (8.1 �mol/L; Sigma-Aldrich, Deisen-
hofen, Germany), as a high stimulus for 10 min at 37°C. Dihydro-
rhodamine 123 (1.7 �L, 29 mmol/L; Molecular Probes, Leiden, Neth-
erlands) was added and samples were incubated for 15 min at 37°C.
Erythrocytes were lysed with 2 mL 1� lysing solution. After centrif-
ugation (250 � g, 4°C, 5 min), cells were washed with 3 mL PBS.
The cells were resuspended in 300 �L propidium iodide (0.75
�mol/L; Sigma-Aldrich) and incubated for 10 min on ice. Samples
were analyzed within 30 min with the flow cytometer.

Cytotoxicity of natural killer (NK) cells. The natural killer
(NK) cell activity of the immune cells of the blood, spleen, MLN and
PP was assessed with a flow cytometric method as previously described
(14), using target cells from the mouse Moloney leukemia cell line
YAC-1.

Lymphocyte proliferation. The ex vivo proliferative responsive-
ness of lymphocytes isolated from the spleen, MLN (each 5 � 109

cells/L) and PP (7 � 109 cells/L) to the mitogen concanavalin A
(ConA; 1 mg/L; Sigma-Aldrich, Deisenhofen, Germany) for 72 h at
37°C, 5% CO2 and 95% humidity was determined by ELISA, using
a commercial proliferation kit (Cell Proliferation ELISA kit; Roche
Diagnostics, Mannheim, Germany).

Cytokines. Splenocytes (100 �L; 1 � 109 cells/L IFN-� and 5
� 109 cells/L IL-10), MLN (100 �L; 1 � 109 cells/L IFN-� and 5
� 109 cells/L IL-10) and PP (100 �L; 5 � 109 cells/L IFN-� and 5
� 109 cells/L IL-10) were stimulated by 100 �L of Con A (5 mg/L)
for 24 h at 37°C, 5% CO2 and 95% humidity. Levels of IFN-� and
IL-10 in the supernatants were measured with OptEIA commercial
ELISA kits (BD Pharmingen, Heidelberg, Germany), following the
manufacturers’ instructions.

Secretory immunoglobulin A (sIgA). Fresh caecal (140 mg/rat)
and ileal contents (10 mg/rat) were mixed with 1 mL of a solution (10
g/L) of bovine serum albumin (BSA; Sigma-Aldrich) in PBS and
incubated for 10 min at room temperature. Samples were centrifuged
(4000 � g, 30 min, 20°C) and supernatants were collected and stored
at �20°C until assayed. Maxisorb 96-well microtiter plates (NUNC,
Roskilde, Denmark) were coated with 100 �L of a rabbit anti-rat
secretory component antibody (Bethyl Laboratories, Montgomery,
AL) diluted 1:1000 with a solution (50 g/L) of Tween 20 (Sigma) in
PBS and incubated overnight at 4°C. After blocking with 100 �L of
BSA (40 g/L) in the Tween solution for 1 h and washing, 100-�L
titers of the samples were applied. After incubation for 2 h, 100 �L
of horseradish peroxidase-conjugated goat monoclonal anti-rat IgA
(Bethyl Laboratories) diluted 1:500 with the Tween-BSA solution
was added, and the plates were then incubated for 2 h. A peroxidase
substrate, 100 �L of tetramethylbenzidine (Kirkegaard & Perry Lab-
oratories, Gaithersburg, MD) was then added, and the plates were
incubated for 30 min in the dark. The enzyme reaction was stopped
with 100 �L of 1 mol/L H3PO4. The relative amount of secretory
immunoglobulin A (sIgA) was quantified by measuring the absor-
bance at 450 nm.

Statistics. Results are reported as means � SD. Differences
among groups were tested for significance by one-way ANOVA with
the Tukey-Kramer test for comparison of individual means when
appropriate. To assess correlations between single immunological
markers, Pearson correlation coefficients were computed. Values of P
� 0.05 were considered significant. All statistical calculations were
performed with the StatView program (1998 release, SAS Institute,
Cary, NC).

RESULTS

Supplementation of the control diet with PRO, PRE and
SYN for 4 wk did not affect feed intake(15.0 � 1.05 g/d),
weight gain (46 � 11 g), and final body weight (370 � 21 g).
The intake of LGG was �7.3 � 0.5 � 109 CFU/d, and intake
of Bb12 was 7.6 � 0.6 � 109 CFU/d.

No significant differences in CD4� and CD8� T-lympho-
cytes were observed among the treatment groups in any of the
tissues studied (data not shown). In the blood the CD4:CD8
ratio tended to be greater (P � 0.08) in rats treated with PRO
or SYN than in the control or PRE groups (control, 1.80
� 0.22; PRE, 1.81 � 0.16; PRO, 1.95 � 0.35; SYN, 1.95
� 0.21).

Neutrophil and monocyte phagocytosis (percentage active
cells and mean fluorescence intensity) were not affected by
PRO, PRE or SYN (data not shown). Oxidative burst activity
was significantly reduced in blood neutrophils isolated from
rats treated with SYN compared with rats treated with PRO
(Table 1).

The treatments tended (P � 0.09) to affect NK cell activity
in PBMC (control, 15 � 6%; PRE, 16 � 5%; PRO, 18 � 6%;
SYN, 19 � 6%). The NK cell activity did not differ among the
groups in any other tissue studied. Lymphocyte proliferation
was not affected by the dietary treatments in any of the tissues
studied (data not shown).

The treatments did not modulate cytokine production in
the spleen or MLN (data not shown), but PRE treatment
increased IL-10 production in PP relative to the control group
(P � 0.05; Table 2). The production of IFN and IL-10 in this
tissue were correlated (r � 0.90; P � 0.0001).
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The SYN treatment enhanced the sIgA concentration in
the ileum (P � 0.05), and the PRE treatment increased it in
the cecum (P � 0.05; Table 3), relative to the control group.

DISCUSSION

The objectives of the present study were to investigate
whether the effects of PRO and PRE on the immune system
vary among different immune compartments and whether
SYN has a greater effect than that obtained with PRO or PRE
supplementation alone. The results demonstrate that PBMC
and PP are the primary tissues that are specifically affected by
PRE. In addition, although PRE supplementation alone in-
duced significant immunomodulation in the intestine, PRO
supplementation was primarily effective when provided as a
component of SYN.

We used a high fat, low-fiber diet instead of a standard rat
diet because it more closely resembles the dietary conditions of
Western humans consuming PRO and/or PRE. The fat con-
tent of the diet affects immune functions such as NK cell
activity (15). Therefore, the potential immunomodulatory ef-
fects of PRO and PRE may become more obvious in subjects
fed such a diet.

Overall, the treatments did not affect the subpopulations of
lymphocytes in the blood, spleen and MLN. However, the
PRO and SYN treatments tended to increase the CD4:CD8
ratio in the blood. This suggests that LGG � Bb12 treatment
modulates the composition of circulating lymphocytes in the
periphery. In another study with rats, consuming yogurt (Lac-
tobacillus bulgaricus and Streptococcus thermophilus) for 4 wk did
not affect lymphocyte subpopulations in the PBMC and spleen
when compared with unfermented milk (6). In mice, consum-
ing lactic acid bacteria (LAB) for 4 wk did not affect the
percentages of CD4� and CD8� cells in the blood (16).

Altogether these data suggest that PRO and PRE have only
minor effects on the composition of T cell subsets in different
immune compartments.

In contrast to a number of animal and human studies (17),
the present study found that PRO treatment did not stimulate
neutrophil and monocyte phagocytosis. A study with humans
also found that Lacobacillus casei Shirota supplementation for 4
wk did not affect phagocytosis in healthy adults (18). Because
the subjects of that study also consumed a high fat diet
comparable to the one used in the present study with rats, the
basic diet might be at least partly responsible for the observed
differences. The reason for the significant reduction of the
oxidative burst activity in the SYN group is unknown.

In the present study, lymphocytes from the blood, spleen
and GALT, including PP and MLN, exerted an NK-like
cytotoxic effect (based on their capacity to lyse the YAC-1
target cell line). Because no earlier study reported NK cell
activity in rat PP, we used pentoxifylline (PTX), a suppressor
of NK cell activity (19), to suppress NK cell activity in the
spleen and PP. The PTX suppressed NK cell activity in both
tissues (data not shown).

The PRO and SYN treatments tended to enhance NK cell
activity only in blood. This suggests that LGG � Bb12 sup-
plementation may have caused this increase. Studies in hu-
mans have demonstrated that L. rhamnosus (strain HNOO1)
and B. lactis (strain HN019) supplementation upregulate
PBMC NK cell cytotoxicity (17), although the overall nutri-
tional status of the study subjects also modulated the effect of
this PRO treatment (20). These data support the observations
of the present study with rats. Supplementation with B. lactis
in oligosaccharide-enriched milk caused higher NK cell cyto-
toxicity in humans than the PRO treatment without the
oligosaccharide (21).

The capacity of lymphocytes isolated from the spleen, MLN
and PP to proliferate following mitogen activation was not
affected by the dietary treatments. This conflicts with animal
studies on strains of LAB which found that consuming yogurt
(�1.4 � 109 bacteria/d) or pure bacteria increased the prolif-
erative responsiveness of lymphocytes to ConA (6,16). Again,
differences in the composition of the control diets may explain
the differing outcomes of these studies.

The PRE treatment significantly stimulated IL-10 produc-
tion by PP cells. In PP, IFN and IL-10 are primarily produced
by T-helper1 lymphocytes (IFN) and by T-helper2/T-regula-
tory lymphocytes and dendritic cells (IL-10). The strong cor-
relation between the level of production of the two cytokines
(r � 0.90, P � 0.0001) suggests that the PRE treatment
simultaneously activated different T-lymphocyte subpopula-
tions and/or dendritic cells. The PRE treatment did not affect
splenocytes or mesenteric lymphocytes, which constitutively

TABLE 3

Secretory immunoglobulin A (sIgA) concentrations in ileum
and cecum of rats fed a high fat diet supplemented with a
probiotic (PRO), a prebiotic (PRE) and a synbiotic (SYN)1

Tissue Control PRO PRE SYN

OD450

Ileum 0.78 � 0.36a 0.92 � 0.41ab 1.09 � 0.62ab 1.30 � 0.75b

Caecum 0.66 � 0.42a 0.88 � 0.59ab 1.15 � 0.77b 0.72 � 0.31ab

1 Values are means � SD, n � 20. Means in a row without a common
letter differ, P � 0.05.

TABLE 1

Oxidative burst activity in peripheral blood neutrophils of rats
fed a high fat diet supplemented with a probiotic (PRO), a

prebiotic (PRE) and a synbiotic (SYN)1

Parameter Control PRO PRE SYN

Active cells, % 41 � 14 40 � 13 40 � 10 38 � 11
Fluorescence intensity 47 � 5ab 48 � 7a 44 � 6ab 42 � 6b

1 Values are means � SD, n � 20. Means in a row without a common
letter differ, P � 0.05.

TABLE 2

Cytokine production of Peyer’s patch (PP) cells of rats fed a
high fat diet supplemented with a probiotic (PRO), a prebiotic

(PRE) and a synbiotic (SYN)1,2

Cytokine Control PRO PRE SYN

�g/L

IFN 2.7 � 0.8 2.7 � 1.0 3.6 � 2.0 2.9 � 1.2
IL-10 0.31 � 0.13a 0.37 � 0.19ab 0.56 � 0.38b 0.46 � 0.29ab

1 Values are means � SD, n � 20. Means in a row without a common
letter differ, P � 5.

2 Lymphocytes were stimulated with 5 mg/L concanavalin A (ConA)
and cultivated for 24 h.
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express lower levels of multiple cytokine transcripts than PP
(22). In contrast to the strong effects of PRE on PP cytokine
production, the combined treatment with PRO and PRE ab-
rogated this effect. Because PRE did not affect the proliferative
responsiveness of PP to the mitogen ConA, the increase in
cytokine production indicates that PRE and/or its metabolites
may interfere specifically with the regulatory processes of cy-
tokine production. A recent study with mice also reported that
consuming fructooligosaccharide enhanced IFN and IL-10
production by PP cells (23), confirming the results of the
present study. Consuming the prebiotic raffinose further in-
creased IL-12 production of PP (24), which enhances IFN
production in PP (25). However, feeding mice yogurt LAB (L.
bulgaricus, S. thermophilus) had no effect on basal IFN mRNA
expression in PP (26). In another study, feeding mice L.
rhamnosus for 4 wk significantly increased IFN production by
splenocytes, but B. lactis had no effect (18). Because we used
both LAB strains in combination, this may have impeded
enhanced IFN production by splenocytes in the present study.

Treatment with SYN (ileum) and PRE (cecum) increased
concentrations of total sIgA in rats, whereas PRO alone had
no effect. The availability of PRE in the ileum may have
supported the growth of the supplemented PRO and conse-
quently stimulated sIgA synthesis. In contrast, in the cecum
there is a large quantity of endogenous microorganisms; PRE
supported the growth of these bacteria, which also stimulated
sIgA production. However, in rats treated with SYN, the PRE
may have been metabolized in the ileum and therefore could
not further support bacterial growth in the cecum. Our results
are in line with those of a recent study that found that feeding
mice fructooligosaccharides increased fecal IgA concentration
(23). The mechanism of this sIgA-enhancing effect is un-
known. The IFN stimulates expression of the secretory com-
ponent for IgA by epithelial cells (27). However, we found no
correlation between changes in IFN production by PP and
caecal sIgA concentration with the PRE treatment (data not
shown). This argues against a potential role of IFN.

In conclusion, PBMC are sensitive (CD4�, oxidative burst,
NK) to PRO and SYN treatment, whereas PP are primarily
sensitive to PRE treatment (cytokine and sIgA production).
The spleen and MLN were not affected by any of the treat-
ments. The present data suggest that PRO and PRE act via
different mechanisms. Because we used a high fat, low fiber
diet rather than the standard low fat rat diet used by most
other studies, our results may be more relevant to the situation
of humans consuming PRO or PRE in Western-style diets.
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ABSTRACT1

Probiotics (PRO) are known to modulate immunity in animals and humans and to2

inhibit colon carcinogenesis in experimental models, while the effect of prebiotics (PRE) and3

synbiotics (SYN) are not well studied yet. Therefore, the effects of PRO (Lactobacillus4

rhamnosus GG and Bifidobacterium lactis Bb12), PRE (inulin-based enriched with5

oligofructose, 10 % w/w), and SYN (combination of PRO and PRE) on the immune system of6

rats were investigated in the azoxymethane (AOM)-induced colon cancer model. After 317

weeks, rats with and without AOM-treatment were sacrificed and immune cells were isolated8

from spleen, mesenterial lymph nodes (MLN), and Peyer’s patches (PP). AOM-treatment9

significantly reduced NK cell cytotoxicity (spleen, PP) of control and PRO-supplemented rats10

but not in rats supplemented with SYN or PRE (spleen). In addition, SYN supplementation11

increased  NK cell cytotoxicity in PP of AOM-treated rats compared to control rats (p < 0.01).12

SYN and PRE supplementation stimulated interleukin-10 production in PP of these rats13

(p<0.01) and in MLN of rats not treated with AOM (p < 0.05). Interferon-  production in PP14

was decreased by PRO supplementation (PRO and SYN groups combined; p < 0.05).15

Proliferative responsiveness of lymphocytes (PP) of AOM-treated rats was suppressed in16

SYN supplemented rats (p < 0.01). Overall, PRE and SYN supplementation of carcinogen-17

treated rats primarily modulated immune functions in the PP which coincided with a reduced18

number of colon tumors. PRE and SYN may contribute to the suppression of colon19

carcinogenesis by modulating the gut-associated lymphoid tissue. 20

21

Key words:22

Immune sytem, colon cancer, probiotic, prebiotic, synbiotic, rat23

24

25

Abbreviations used: 26
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AOM = azoxymethane, ConA = concanavalin A, GALT = gut-associated lymphoid tissue,1

IFN = interferon- , IL = interleukin, LAB = lactic acid bacteria, MLN = mesenteric lymph2

nodes, NK = natural killer, PP = Peyer’s patches, PRE = prebiotic, PRO = probiotics, SCFA =3

short-chain fatty acids, SYN = synbiotic4

5

6

7
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Introduction1

Diet plays an important role in cancer prevention by modifying the activity of a2

number of protective systems including the immune system. Among the different immune cell3

types involved in recognition of tumor cells are the natural killer (NK) cells. Through their4

production of immunoregulatory cytokines and their cytotoxic effects NK cells are primary5

effector cells in tumor cell elimination (Smyth et al. 2001). They comprise up to 15% of6

peripheral blood lymphocytes and occur in liver, spleen, intestinal tissue, and lymph nodes.7

Depletion of NK cells in vivo leads to enhanced tumor formation in several mouse tumor8

models (Smyth et al. 2001). In addition, cancer patients who had recurrences within two years9

of surgery had significantly lower preoperative NK cell cytotoxicity than recurrence-free10

patients (Tartter et al. 1987). Data from a prospective cohort study indicate that in healthy11

humans a low NK cell cytotoxic activity is associated with an enhanced risk of epithelial12

cancer development in later life (Imai et al. 2000). These data suggest that a high NK cell13

cytotoxicity is associated with lower cancer rates. 14

Increasing evidence from experimental and human studies suggests that probiotics15

(PRO) modulate the host resistance against intestinal infections as well as a number of16

immune cell functions (Cross, 2002; Teitelbaum & Walker, 2002). Several studies in animals17

and humans have shown that PRO specifically enhance NK cell cytotoxicity in blood and18

spleen (Gill et al. 2000; Gill et al. 2001; Gill & Cross, 2002). Enhanced NK cell cytotoxicity19

through supplementation with Lactobacillus casei Shirota was associated with delayed20

carcinogenesis in a 3-methylcholanthrene-induced carcinogenesis model (Takagi et al. 2001).21

In NK-deficient mice, however, it failed to suppress tumorigenesis (Takagi et al. 2001). 22

Besides PRO, prebiotics (PRE) are another potentially cancer-protective food23

constituent. PRE are non-digestible carbohydrates that selectively stimulate the growth of24

bacteria in the colon (van Loo et al. 1999). Several studies observed reduced tumor numbers25

in the colon of rats supplemented with PRE (Pool-Zobel et al. 2002; Verghese et al. 2002).26
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We have recently shown that the administration of PRE alone or in combination with PRO1

reduced the number of colon tumors in rats treated with the carcinogen azoxymethane (AOM)2

(Femia et al. 2002). 3

At present, the effects of PRE on the immune system have so far only been4

investigated in a few studies (Schley & Field, 2002). Studies in animals using oligofructose5

reported increased leukocyte and/or lymphocyte numbers in the gut-associated lymphoid6

tissue (GALT) as well as elevated numbers of Peyer’s patches (PP) (Pierre et al. 1997). In a7

short-term study we have shown that at the level of the GALT PRE as well as the combined8

administration of PRE and PRO (synbiotic, SYN) significantly stimulated secretory IgA and9

interleukin (IL)-10 production (Roller et al. 2004). 10

The present study investigated the long-term effects of PRO, PRE and SYN on the11

immune system of rats focusing primarily on the GALT. We hypothesized that rats exposed12

to the colon carcinogen AOM and treated with PRO/PRE alone or in combination would13

differ in their immune responses. Cytotoxicity of NK cells was assessed with cells isolated14

from PP, mesenteric lymph nodes (MLN), and spleen. All immunological measurements were15

done 31 weeks after the AOM-treatment, a time-point when the AOM-treated rats had16

developed adenomas and carcinomas in the colon. 17

18

Materials and methods19

Materials20

AOM was purchased from Sigma (Milan, Italy). Dietary components were purchased21

from Piccioni (Gessate, Milan, Italy). Raftilose Synergy1® was provided by Orafti (Tienen,22

Belgium). This PRE is an oligofructose enriched inulin which is a 1:1 mixture of long-chain23

and short-chain fractions of inulin, a (2-1)-fructan extracted from chicory roots (Cichorium24

intybus). The probiotics L. rhamnosus GG (LGG) and B. lactis Bb12 (Bb12) were provided25

by Valio (Helsinki, Finland) and purchased from Chr. Hansen (Horsholm, Denmark),26
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respectively. They were provided as freeze-dried powder in sealed packets which contained1

~4x1011 cfu/g (LGG) and ~3x1010 cfu/g (Bb12). The bacteria were kept at –20oC until used.2

The concentration of LGG and Bb12 in the diet was evaluated as described elsewhere (13).3

Animals and treatments4
5

Male Fischer 344 rats (Nossan, Correzzana, Milan, Italy) aged 4-5 weeks were used6

for this study. The experimental protocol was approved by the Commission for Animal7

Experimentation of the Ministry of Health, Rome, Italy. Details of the treatment were8

described earlier (Femia et al. 2002). Briefly, rats were randomly allocated to the following9

experimental groups: (a) controls (n = 32) were fed with a high-fat diet (HF) based on the10

AIN76 diet (1977), modified to contain a high amount of fat (230 g corn oil/kg diet) and a11

low level of cellulose (20 g/kg) as the diet typical of western human populations at high risk12

of colon cancer (Femia et al. 2002). The source of carbohydrates in this diet was sucrose (36113

g/kg) and maltodextrins (100 g/kg). (b) PRO group (n = 32): rats were fed with the same HF14

diet as controls but supplemented with LGG (5.0±1.3x108 cfu/g diet) and Bb12 (5.5±2.4x10815

cfu/g diet). (c) PRE group (n = 33): rats were fed with the same HF diet as controls but16

maltodextrins were replaced by 100 g/kg of Raftilose Synergy1®. (d) SYN group (n = 32):17

rats were fed with the same HF diet as the PRE group supplemented with LGG and Bb12 to18

provide ~ 5x108 cfu of each strain/g diet as in the PRO group. Food and water were offered ad19

libitum. Diets were prepared every 2 weeks, divided into aliquots and frozen at -20°C. Ten20

days after starting to feed the experimental diets, all rats were administered AOM (15 mg/kg21

two times s.c., 1 week apart) except 4-5 animals in each dietary group which were treated22

with saline instead of AOM and served as control for the carcinogen treatment. After a23

feeding period of 33 weeks with the experimental diets, the rats were sacrificed by CO224

asphyxiation. While for the assessment of tumor incidence all the 32-33 rats/group exposed to25

AOM were investigated, for the immunological investigations 15 AOM-exposed rats26

randomly chosen from each group were used. After rats were killed, spleens, MLN and PP27
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were immediately send (at 4oC) from Florence to Karlsruhe by courier so that tissues were1

processed within 24 hr from the sacrifice.2

Preparation of immune cell suspensions3

For the preparation of cell suspensions from spleens, MLN, and PP RPMI-16404

culture medium containing 50 mL/L heat-inactivated fetal bovine serum, L-glutamine (25

mmol/L), penicillin (1x105 U/L), streptomycin (100 mg/L), and HEPES (25 mmol/L) was6

used (all components were purchased from Life Sciences, Eggenstein-Leopoldshafen,7

Germany). Technical details of the cell isolation procedure have been described earlier (Watzl8

et al. 1999). 9

Fluorescence staining of lymphocyte subpopulations10

The expression of cell surface markers on the immune cells of spleens and MLN was11

investigated by immunofluorescence as described earlier (Watzl et al. 1999). Briefly, 100 µL12

of cell suspensions (1x1010 cells/L) were incubated with 5 µL phycoerythrin-conjugated13

mouse anti-rat monoclonal antibodies to CD4 (Caltag, Hamburg, Germany) and fluorescein-14

conjugated mouse anti-rat monoclonal antibodies to CD8 (Caltag). In the control tube cells15

were incubated with appropriate isotype controls (Caltag). Analysis was carried out on a16

FACSCalibur flow cytometer (BD Biosciences, Heidelberg, Germany). 17

Cytotoxicity of natural killer (NK) cells18

A flow cytometric method was used to assess NK cell activity of immune cells of19

spleen, MLN and PP. Cells from the mouse Moloney leukaemia cell line, YAC-1, were used20

as target cells at the effector:target ratio of 12.5:1 and 6.25:1. Details of the assay have been21

described earlier (Watzl et al. 2000) 22

Lymphocyte proliferation 23

Ex vivo proliferative responsiveness of lymphocytes isolated from spleen, MLN (each24

5 x 109 cells/L) and PP (7 x 109 cells/L) to the mitogen ConA (1 mg/L, Sigma-Aldrich) for 7225

h at 37°C, 5 % CO2 and 95 % humidity was determined by ELISA (Cellular Proliferation26
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ELISA kit, Roche Diagnostics, Mannheim, Germany). Proliferative responses were expressed1

as the net absorbance values (absorbanceA450nm-A650nm of pulse-labeled cells  -  absorbance2

A450nm-A650nm of unlabeled cells) and expressed as optical density (OD) units. 3

Cytokines4

Splenocytes (100 µL; 1 x 109 cells /L for IFN-  and 5 x 109 cells/L for IL-10), MLN5

(100 µL; 1 x 109 cells /L for IFN-  and 5 x 109 cells/L for IL-10) and PP (100 µL; 5 x 1096

cells/L for IFN-  and IL-10) were cultivated in duplicate in flat-bottomed 96-well microtiter7

plates and stimulated by 100 µL of Con A (5 mg/L) for 24 h at 37°C, 5 % CO2 and 95 %8

humidity. IFN-  and IL-10 in supernatants were measured by commercial ELISA kits9

OptEIATM (BD Pharmingen, Heidelberg, Germany) following the manufacturers’10

instructions.11

Statistical evaluation of the data12

Results are reported as means ± standard deviation (SD). Differences between control13

and treatment groups were tested for significance by ANOVA with the Tukey-Kramer test for14

comparison of individual means when appropriate. Differences between AOM-treated and15

non-treated animals per group were analyzed by using unpaired Student’s t-test. To assess16

correlations between immunological markers and numbers of tumors, Pearson correlation17

coefficients were computed. Values of p < 0.05 were considered significant. All statistical18

calculations were performed with the StatView program (SAS Institute 1998, Cary, NC,19

USA).20

21

Results22

Body weight and feed intake23

Supplementation of the control diet with PRO, PRE and the combined application of PRO and24

PRE (SYN) for 33 weeks had no significant effect on feed intake and weight gain when25

compared with the control group (data not shown). The mean weight of the rats at the26
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beginning of the experiment was 108.8 ± 12.2 g (n = 129). At death, the mean weight was1

similar among dietary groups (479.5 ± 34.0).2

3

Tumour suppressive effect of dietary treatment4

We already reported that AOM-treated rats receiving Raftilose Synergy1 (PRE and SYN5

groups) had a significantly lower number of tumors (adenomas and carcinomas; p < 0.001)6

than rats without the prebiotic supplement (control and PRO) (Femia et al. 2002). The7

probiotic treatment (PRO and SYN groups) slightly reduced the number of malignant tumours8

(p = 0.079) when compared to control and PRE groups. 9

NK cell activity 10

NK cell-like activity was measured in spleens, MLN and PP. In control and PRO-11

supplemented rats the AOM-treatment reduced NK-cell like activity in all tissues investigated12

(Table 1). PRE (PP) and SYN (PP and spleen) treatment prevented the AOM/tumor-13

associated suppression of NK cell cytotoxicity measurable in control and PRO-fed rats. PP of14

SYN-supplemented rats treated with AOM showed significantly higher NK cell activity15

compared with controls or PRO fed rats (Table 1). In addition, in the spleen of rats not16

exposed to the carcinogen supplementation with PRE also stimulated NK cell cytotoxic17

function. However, no significant correlation was observed between the total number of18

adenoma or carcinoma in the colon and the cytotoxic activity of NK cells independent of the19

dietary group (data not shown).20

Cytokine production21

IFN and IL-10 production of ex vivo activated cells isolated from spleen, MLN, and22

PP were measured. IL-10 production in PP of AOM-treated rats was significantly enhanced in23

rats supplemented with PRE and SYN (Table 2). This stimulatory effect on IL-10 production24

was also seen in the MLN of rats not treated with the carcinogen but supplemented with the25

prebiotic (PRE and SYN combined vs. control and PRO combined, 141.9±38.8 ng/L vs.26
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76.3±20.3 ng/L, p < 0.05). IL-10 production by splenocytes was neither affected by dietary1

supplements nor by AOM-treatment. In contrast, the capacity to produce IFN was only2

affected by the dietary treatment in the PP of rats not exposed to AOM (data not shown). Rats3

supplemented with the probiotics (PRO and SYN) showed significantly lower IFN production4

when compared with control and PRE rats (1.4±0.5 µg/L vs. 2.2±0.7 µg/L; p < 0.05). No5

significant effects were observed in spleen and MLN. 6

Lymphocyte subpopulations7

Spleen and MLN lymphocytes were analyzed for the percentage of CD4+ T-helper and8

CD8+ T-suppressor lymphocytes. AOM-treatment significantly reduced the ratio of CD4:CD89

lymphocytes in spleen and MLN (Table 3). In both tissues this was caused by an increase in10

the number of CD8-positive lymphocytes (p < 0.05; data not shown). In rats without AOM-11

treatment PRE reduced the CD4:CD8 ratio in spleens (Table 3) without significantly changing12

the percentage of CD4 or CD8 (data not shown). Cells isolated from PP were not available for13

the determination of the lymphocyte subpopulations.14

Lymphocyte proliferation15

The treatment with the carcinogen did not affect lymphocyte proliferation compared to16

untreated rats. In AOM-treated rats no significant effects of the dietary intervention were17

observed in spleens and MLN (data not shown). In PP, however, the SYN treatment18

significantly reduced lymphocyte proliferation (control 1.4±0.5 OD450, PRO 1.2±0.3 OD450,19

PRE 1.3±0.4 OD450, SYN 0.6±0.4 OD450, p < 0.01 vs. control, PRO and PRE). 20

21

DISCUSSION22

The results of the present study demonstrate that long-term supplementation with PRE23

and SYN modulates immune functions in the GALT, while PRO alone had only minor24

effects. Rats supplemented with PRE or SYN developed less tumors than control rats and25

showed increased NK cell cytotoxic function in the PP.26
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In rats not exposed to the carcinogen the PRE supplementation significantly increased1

NK cell activity of splenocytes. Only few studies so far have investigated the effects of PRE2

on the immune system. In mice supplementation with the non-digestible oligosaccharides3

nigerooligosaccharides stimulated hepatic NK cell cytotoxicity (Murosaki et al. 2002), while4

inulin and oligofructose enhanced splenic NK cell function (Kelly-Quagliana et al. 2003)5

confirming the results of the present study. In vitro, nigerooligosaccharides also stimulated6

NK cell function pointing to a direct effect of such oligosaccharides on NK cells via specific7

lectin-type receptors (Murosaki et al. 1999). 8

The AOM-treatment itself significantly suppressed NK cytotoxicity in spleens and PP9

of control and PRO-/PRE-supplemented rats. This suppression was prevented in the rats10

supplemented with SYN (spleens) and with SYN and PRE (PP). Although several studies11

have demonstrated that AOM-treatment inhibited NK cell cytotoxic activity of splenocytes12

(Baten et al. 1989; Altmann & Lala, 1994; Sekine et al. 1997; Exon & South, 2003), our13

study is the first to show that NK cell cytotoxicity is also suppressed by AOM in cells isolated14

from the PP. Whether this suppression of NK cells in PP is involved in colon carcinogenesis15

is currently not known. However, the probiotic Lactobacillus casei Shirota enhanced16

cytotoxicity of NK cells and delayed tumor onset in mice with normal NK cell functions,17

while in a NK cell-deficient mouse mutant it was not effective (Takagi et al. 2001). This18

suggests that not only the suppression of NK cell functions in spleens but also in PP may19

contribute to tumor growth. In the Min mouse model supplementation with short-chain fructo-20

oligosaccharides reduced the occurence of colon tumors and increased the number of PP in21

the GALT (Pierre et al. 1997). However, the cytotoxicity of NK cells in these PP was not22

measured. 23

Our data indicate that primarily the supplementation with PRE affected tumor24

incidence and NK cell function. In contrast to the effects of PRE, the long-term25

supplementation of AOM-exposed rats with the two probiotic strains had no significant effect26
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on NK cell function and minor effects on tumorigenesis. Several other studies with PRO1

reported stimulation of NK cell cytotoxicity and/or delayed colon carcinogenesis (Singh et al.2

1997; McIntosh et al. 1999; Takagi et al. 2001). However, these studies supplied only one3

probiotic strain and for shorter supplementation periods as in the present study. A further4

point of our study is that we have used a high-fat diet comparable to a Western-type diet5

which at least in humans is known to suppress NK cell cytoxicity (Barone et al. 1989). The6

standard rat chow, however, is a low-fat diet. In another animal study only L. rhamnosus7

treatment significantly increased NK cell activity, while B. lactis had no significant effect8

(Gill et al. 2000). Since we have used both lactic acid bacteria (LAB) strains in combination,9

this may have impeded the enhanced NK cell cytotoxicity observed with L. rhamnosus alone.10

NK cytotoxicity of MLN cells was not affected by the dietary supplementation. After short-11

term supplementation also no effect was observed in this tissue (Roller et al. 2004) suggesting12

that NK cells in these lymph nodes are not responsive to this dietary treatment. 13

Cytokine production in the GALT was modulated by the dietary supplements. PRE14

and SYN supplementation significantly stimulated IL-10 production by PP cells in AOM-15

treated rats. Recently, CD4+CD25+ regulatory lymphocytes have been shown to require IL-1016

to interrupt colon carcinogenesis in mice (Erdman et al. 2003). Short-term exposure to the17

same PRE also enhanced IL-10 production in PP (Roller et al. 2004). A recent study reported18

enhanced IL-10 production by PP cells after feeding of fructooligosaccharide to mice19

(Hosono et al. 2003) confirming the results of the present study. Feeding the non-digestible20

oligosaccharide raffinose to mice further resulted in increased IL-12 production of PP21

(Nagura et al. 2002) which is known to enhance IFN production in PP (MacDonald &22

Monteleone, 2001) as well as NK cell cytotoxicity (Trinchieri, 1995). Incubation of PP cells23

with raffinose in vitro did not increase IFN or IL-12 production suggesting that in vivo24

indirect effects of raffinose (e.g., butyrate production, altered intestinal microflora) are25

mediating the observed effects. In contrast to PP, cytokine secretion of splenocytes was not26
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modulated by the dietary treatment. In MLN, however, PRE and SYN supplements stimulated1

IL-10 production in untreated and AOM-treated rats. 2

While supplementation with PRE or SYN primarily stimulated immune functions of3

the GALT, probiotics supplementation inhibited IFN production by PP of rats not treated with4

AOM. Immune cells with the capacity to produce IFN include NK cells which occur as5

subtypes with high cytotoxic/low IFN-producing capacity (CD56dim) and low cytotoxic/high6

IFN-producing capacity (CD56bright) (Cooper et al. 2001). Since in rats (-AOM) of the present7

study supplemented with the two probiotic strains NK cell cytotoxicity was high, the PRO8

supplement may have induced a shift in the NK subtypes towards cells with a higher9

cytotoxic and a lower IFN-producing capacity. In another study, nigerooligosaccharides10

stimulated lytic function of hepatic NK cells but not IFN secretion (Murosaki et al. 2002).11

Oral exposure of mice to yoghurt LAB (L. bulgaricus, S. thermophilus), had no effect on12

basal IFN mRNA expression in PP (Tejada-Simon et al. 1999). Taken together, these results13

are in line with the present data. Feeding mice with L. rhamnosus for 4 weeks significantly14

increased IFN production by splenocytes, while B. lactis feeding had no significant effect15

(Gill et al. 2000). Since we have used both LAB strains in combination, again this may have16

impeded enhanced IFN production by splenocytes in our study. 17

AOM-treatment significantly reduced CD4:CD8 ratio in spleen and MLN primarily by18

increasing the percentage of CD8+ lymphocytes. In spleens of rats not treated with AOM the19

PRE supplement further decreased the CD4:CD8 ratio. Contradictory results were recently20

reported demonstrating in mice that a 2-weeks feeding period with fructooligosaccharides had21

no influence on the CD4:CD8 ratio in PP (Manhart et al. 2003). In mice, feeding of LAB for22

4 weeks induced no significant effects on the percentages of CD4+ and CD8+ cells in the23

blood (Gill et al. 2000). Altogether these data suggest that PRO and PRE have only minor24

effects on the composition of T cell subsets in different immune compartments. 25
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The capacity of lymphocytes isolated from spleen and MLN to proliferate following1

mitogen activation was clearly not affected by the dietary treatment. However, in PP2

supplementation with SYN reduced lymphocyte proliferation. This is in contrast to results3

from animal studies with strains of LAB which showed that feeding of yoghurt (about 1.4x1094

bacteria/d) or of pure bacteria resulted in significantly higher proliferative responsiveness of5

lymphocytes to ConA (Gill et al. 2000; Aattouri et al. 2002). Again, differences in the6

composition of the control diets may explain the differing outcomes of these studies.7

The mechanisms by which PRE and SYN act on the GALT and on tumorigenesis are8

not clear. Besides the direct immunological effects of PRO which have been demonstrated in9

a number of studies (Gill & Cross, 2002), PRE may affect the immune system by several10

ways. First, PRE may induce a shift in the intestinal microflora towards bifidobacteria11

changing the antigen pattern of the intestinal microflora (Teitelbaum & Walker, 2002).12

Second, we have shown that supplementing the rat feed with the prebiotic increased the13

production of short-chain fatty acids (SCFA) such as butyrate in the caecum (Femia et al.14

2002). Butyrate is known to suppress lymphocyte proliferation, to inhibit cytokine production15

of TH1-lymphocytes, and to up-regulate IL-10 production (Säemann et al. 2000; Cavaglieri et16

al. 2003). 17

In conclusion, the reduced number of AOM-induced colon tumors in rats18

supplemented with PRE or SYN coincided with a marked stimulation of immune functions19

within the GALT. The present data clearly suggest that PP are the primary lymphoid tissue20

responsive to the oral intake of PRE or SYN. Whether this modulation of PP cells is21

associated with the suppression of carcinogenesis in the colon and the underlying mechanisms22

have to be determined in future studies. 23

24
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Tab. 1. NK cell activity (effector:target ratio 12.5:1) of mononuclear cells isolated from1

spleen, mesenteric lymph nodes or Peyer’s patches from rats fed for 33 weeks with a2

probiotic, prebiotic, synbiotic or control diet. Rats were either non-exposed (n = 4-5 per3

group) or exposed to the carcinogen AOM (n = 15 per group) at the beginning of the dietary4

treatment. Data are expressed as percentage of lysed target cells. 5

6

AOM Control Probiotic Prebiotic Synbiotic7

Spleen8

   -    31±41 39±23 43±10*,4 33±39

  + 22±8 23±10    25±8 28±1010

Mesenteric lymph nodes11

   -    29±5 36±62 30±5 33±812

  + 27±8 26±7    27±6 27±513

Peyer’s patches14

   -    39±22 47±43 39±4 45±915

  + 32±6 34±8    39±8 42±6**16

17

* Mean differs compared to control (P < 0.05).18

** Mean differs compared to control (P < 0.01) and probiotics (P < 0.05).19

1: p = 0.057 vs. AOM-treated rats.20

2: p < 0.05 vs. AOM-treated rats.21

3: p < 0.01 vs. AOM-treated rats.22

4: p < 0.001 vs. AOM-treated rats.23

24

25

26
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Tab. 2. Interleukin-10 (ng/L) production of mononuclear cells isolated from spleen,1

mesenteric lymph nodes and Peyer’s patches from rats fed for 33 weeks with a probiotic,2

prebiotic, synbiotic or control diet. Rats were either non-exposed (n = 4-5 per group) or3

exposed to the carcinogen AOM (n = 15 per group) at the beginning of the dietary treatment.4

5

AOM Control Probiotic Prebiotic Synbiotic6

Spleen7

   -     592±180  644±201  956±480  722±1388

  +  687±139  748±147  677±168  646±2729

Mesenteric lymph nodes10

   -       83±211   69±201  144±26*  140±56*11

  +  136±40  138±38  178±44  166±6012

Peyer’s patches13

   -     270±55  220±151  297±64  308±6414

  +  197±85  260±65  331±99**  324±147**15

16

17
*: Means differ compared to probiotics (P < 0.05).18

**: Means differ compared to control (P < 0.01).19

1: p < 0.05 vs. AOM-treated rats.20

21

22

23

24

25

26

27

28

29
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Tab. 3. CD4+/CD8+ ratio of lymphocytes (%) isolated from spleen and mesenteric lymph1

nodes from rats fed for 33 weeks with a probiotic, prebiotic, synbiotic or control diet. Rats2

were either non-exposed (n = 4-5 per group) or exposed to the carcinogen AOM (n = 15 per3

group) at the beginning of the dietary treatment.4

5

AOM Control Probiotic Prebiotic Synbiotic6

Spleen7

   -    13.5±2.42 10.4±2.82 7.9±1.8* 9.7±3.318

  +   7.6±2.8   6.1±2.2 6.0±2.4 6.2±2.19

Mesenteric lymph nodes10

   -      8.7±2.12   6.7±1.3 7.7±0.52 8.0±2.0111

  +   5.1±1.7   4.8±1.3 5.9±1.1 5.9±1.312

13

* Mean differs compared to control (P < 0.01).14

1: p < 0.05 vs. AOM-treated rats.15

2: p < 0.01 vs. AOM-treated rats.16
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