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ABSTRACT 

Despite the high incidence of metaphyseal bone fractures in patients, the cellular and 

molecular mechanisms underlying the healing process of metaphyseal fractures are still poorly 

understood due to the unavailability of suitable experimental animal models. The intention of 

the current work was to establish a novel clinically relevant large animal model for metaphyseal 

bone healing in the distal femur of skeletally matured sheep. In contrast to commonly used 

partial osteotomy models, this model employed a complete wedge-shaped osteotomy at the 

metaphysis. The osteotomy was stabilised internally with a customised anatomical locking 

titanium plate that allowed immediate postoperative full weight bearing. Bone healing was 

evaluated at 12 weeks post-fracture relative to the unoperated contralateral femur. No plate 

breakage or secondary fracture was recorded in the animals. Histological and micro-computed 

tomography results revealed an increased amount of mineralised and dense trabeculae with 

rich bone marrow. The new trabeculae healed via direct intramembranous ossification without 

visible callus and cartilaginous tissue formation. Functional morphological analysis of the 

osteocyte-lacuna revealed regularly arranged spherically shaped osteocytes-lacunae along 

with the canaliculi system. The biomechanical test revealed a comparable stiffness in both 

operated and unoperated femurs. However, the stiffness at their cortical regions was two-fold 

more than in their trabecular regions. Histomorphometric assessment of two major bone matrix 

enzymes: ALP (osteoblast marker) and TRAP (osteoclast marker) revealed a significantly 

higher ALP activity in the operated femur. Bone remodelling was evident by the expressed 

bone formation markers (COL1A1, ALP, BGLAP, BMP2, ASMA, OPG) and bone resorption 

markers (RANKL, CTSK) as revealed by quantitative PCR and immunohistochemistry. Bone 

surface biochemical analysis using time-of-flight secondary ion mass spectrometry showed 

high, and a homogeneously distributed calcium and collagenous components. Ultrastructural 

imaging of the new trabeculae revealed a characteristic parallel arrangement of the collagen 

fibrils uniformly mineralised by the dense mineral substance. Active osteoblasts were 

characterised by their plump cuboidal-shape, abundant rough endoplasmic reticulum, and a 

distinct Golgi apparatus whereas active osteoclasts were characterised by their large size, 

multiple nuclei and a ruffled border. The ultrastructure of the osteocytes varied according to 

the mineralisation level. The matured star-shaped osteocytes embedded inside the fully 

mineralised bone whereas young osteocytes embedded within the osteoid or partially 

mineralised bone areas. In conclusion, this newly established metaphyseal fracture model is 

of interest to study bone healing and treatment options for the enhancement of metaphyseal 

fractures. 
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ZUSAMMENFASSUNG 

Ungeachtet einer hohen Inzidenz für metaphysäre Frakturen beim Menschen sind die dem 

Heilungsprozess unterliegenden zellulären und molekularen Mechanismen immer noch unzureichend 

bekannt, was in erster Linie durch das Fehlen klinisch relevanter Tiermodelle zu begründen ist. In der 

vorliegenden Studie wurde ein neuartiges, klinisch relevantes Großtier-Modell für die metaphysäre 

Knochenheilung im distalen Femur ausgewachsener Schafe etabliert. Im Gegensatz zu normalerweise 

genutzten partiellen Osteotomien realisierte dieses Modell eine durchgehende keilförmige Osteotomie 

im Bereich der Metaphyse. Die Osteotomie wurde durch eine anatomische winkelstablie Platte 

stabilisiert, welche postoperativ sofort eine Vollbelastung erlaubte. 12 Wochen nach der Operation 

wurde die Knochenheilung in Relation zur gesunden kontralateralen Seite evaluiert. Bei den Tieren 

traten weder Plattenbrüche noch Sekundärfrakturen auf. Histologische und µ-computertomografische 

Ergebnisse zeigten eine große Menge mineralisierten Knochens sowie verdichtete Knochentrabekel 

und reichlich Knochenmark. Neue Knochentrabekel entstanden durch desmale Ossifikation ohne 

sichtbare Knorpel- oder Kallusbildung. Eine spezifische morphologische Analyse der 

Osteozytenlakunen veranschaulichte regelmäßig angeordnete sphärische Lakunen zusammen mit 

den zugehörigen Knochenkanälchen. Biomechanische Tests demonstrierten eine vergleichbare 

Steifigkeit in den operierten und nicht operierten Femora. Dabei war die Steifigkeit in den kortikalen 

doppelt so hoch wie in den trabekulären Regionen. Histomorphometrische Analysen zweier wichtiger 

Knochenmatrix-Enzyme, der ALP (als Osteoblasten-Marker) und der TRAP (als Osteoklasten-Marker), 

ergaben eine signifikant erhöhte ALP-Aktivität im operierten Femur. Sowohl durch 

immunhistochemische Färbungen als auch mithilfe der quantitativen PCR konnten aktive 

Knochenumbau-Prozesse durch die Expression der knochenaufbauenden Marker Col1A1, ALP, 

BGLAP, BMP2, ASMA, OPG sowie der knochenabbauenden Marker TRAP und CTSK nachgewiesen 

werden. Die biochemische Analyse der Knochenoberfläche durch die time-of-flight secondary ion mass 

spectrometry (ToF-SIMS) ergab eine große Menge gleichmäßig verteilten Kalziums wie auch 

kollagener Komponenten. Die ultrastrukturelle Untersuchung der neu gebildeten Trabekel zeigte 

charakteristisch parallel angeordnete und gleichmäßig dicht mineralisierte Kollagen-Fibrillen. Aktive 

Osteoblasten konnten anhand ihrer würfelförmigen Gestalt, des zahlreich vorkommenden rauen 

endoplasmatischen Retikulums sowie eines auffälligen Golgi-Apparates identifiziert werden, während 

die aktiven Osteoklasten durch ihre Größe, die Mehrkernigkeit und ein ruffled border geprägt waren. 

Die Ultrastruktur der Osteozyten variierte dem Mineralisierungslevel entsprechend. Reife sternförmige 

Osteozyten lagen eingeschlossen in vollständig mineralisierter Knochenmatrix, während sich junge 

Osteozyten im Bereich des Osteoids, bzw. teilweise in mineralisierte Matrix eingebettet fanden. 

Zusammenfassend ist zu sagen, dass dieses neu etablierte metaphysäre Fraktur-Modell im Schaf 

zukünftig für die Untersuchung der Knochenheilung und für neue Therapien zur Stimulation zur Heilung 

bei metaphysärern Frakturen genutz werden kann. 
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1. INTRODUCTION 

 
1.1 Bone structure, composition and function 

The bones of the skeleton generally function in providing structural and movement 

support, protection of vital internal body organs, and as a storehouse of growth factors, 

cytokines, minerals, and hematopoietic stem cells [1], [2]. The long bones of the lower 

extremity are mostly subjected to load bearing activities and thus, crucial for skeletal 

movement [3]–[5]. The long bone is composed of a hollow shaft also known as the 

diaphysis, a rounded epiphysis lying above the growth plate and a cone-shaped 

metaphysis located underneath the growth plate. The diaphysis primarily consists of 

dense cortical bone, while the metaphysis and epiphysis are majorly composed of 

trabecular bone also called cancellous or spongy bone surrounded by a relatively thin 

layer of cortical bone as shown in figure 1. 

 

Fig. 1: A schematic representation of long bone anatomy. The diaphysis is consists of dense 
cortical bone whereas the epiphysis and metaphysis comprise majorly of trabecular bone (modified 
from http://docplayer.net/28369321-The-skeletal-system-musculo-skeletal-system.html; accessed on 
02.2.2019). 

 

The outer surface of the cortical bone is attached to a thick fibrous (Sharpeys’ fibres) 

periosteal layer that serves as a protective sheath while providing support to tendons, 

which secure the muscle to the bone. The osteogenic layer of the periosteum contains 

progenitor cells that can develop into bone forming cells. Enclosed within the cortical 
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bone is a porous network of trabeculae, surrounded by a hollow cavity containing the 

bone marrow. The endosteum covers the inner surface of the cortical, trabecular, and 

blood vessel canals. The cortical bone is composed primarily of osteons of concentric 

lamellae arranged in Haversian canal whereas the trabecular bone is primarily 

composed of thin plates and rod-shaped structural units called trabeculae packets 

arranged in a mosaic-like microstructure. The trabecular bone has a lower stiffness, 

larger surface area to volume ratio and shows a higher metabolic rate [2], [6]–[8]. 

The bone matrix is made up of organic and inorganic components. The fibrillar type 1 

collagen dominates the organic component whereas the inorganic component is 

mostly carbonated hydroxyapatite [Ca10(PO4)6(OH)2] [9]–[11]. The collagenous fibres 

appear very dense containing regularly arranged fibrils that are oriented in parallel and 

reinforced with the mineral particles deposited within and outside the structure [12], 

[13]. The mineral phase determines the stiffness, while the collagen component 

controls its post-yield ductility. By combining the unique mechanical properties, the 

collagen-mineral composite contributes to bone’s strength by providing both rigidity 

and resistance against the applied load. The mechanical property of a bone is also 

determined by the density and distribution pattern of the mineral within the collagenous 

matrix as well as the structural organisation of the tissue both at the micro and nano-

structural levels [14], [15]. Specific types of bone cells, namely osteoblasts, osteoclasts 

and osteocytes with unique morphological features occupy defined an area within the 

bone matrix. In response to physiological or mechanical forces, they perform defined 

roles during osteogenesis, bone modelling and remodelling processes. 

 

1.2 Healing process of diaphyseal and metaphyseal fractures 

The healing of a diaphyseal fracture in the cortical bone area is a complex multi-step 

process that combines both intramembranous and endochondral ossification. It is 

characterised by periosteal callus formation, in which the amount of callus depends on 

the stability of the fracture fixation [16]–[18]. In contrast, the healing of a metaphyseal 

fracture in the trabecular bone area under mechanically stable conditions occurs more 

rapidly, mainly through a direct membranous bone formation within the marrow space, 

and with very little or no external callus formation [19]–[23]. The inter-trabecular healing 

process begins with the formation of a hematoma, which subsequently leads to an 

inflammatory stage that is succeeded by a large assembly of undifferentiated 
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mesenchymal stem cells developing into the osteoid tissue, which then transforms into 

the woven bone that is later remodeled into lamellar bone [19]–[24]. Most trabecular 

fractures of the lower body extremity for example, in the distal femur, occur in the 

metaphyseal bone area. This is because trabecular bone density and strength 

decreases with ageing and in the disease condition, thus making it highly susceptible 

to fracture [25].  

 

1.3 Large animal models for fracture healing study 

Although small animal models are most often used for fracture healing studies, they 

have several shortcomings when compared to larger animals. Some of the limiting 

factors include their small skeletal size, bone structure and limited life expectancy [26]–

[28]. These drawbacks are addressable using large animal models. Among previously 

tested larger animals such as goats, pigs, dogs and non-human primates, sheep are 

the best choice with respect to orthopaedic research [29], [30]. These studies found 

many similarities between sheep skeleton and human subject in terms of size, 

microstructure, bone metabolism and mechanical properties [29], [31]–[33]. The use of 

skeletally matured sheep as a large animal model for fracture healing studies have 

been reported to be more clinically relevant in comparison to small animals because 

the results are more likely translatable to the human subject. Also, the large size and 

shape of the sheep skeleton allow the use of orthopaedic implants comparable to those 

used in patients [34], [35]. 

Although several fracture healing studies have been conducted using sheep, most of 

the defects were created in the diaphyseal area of the long bone as shown in table 1. 

This contrasts with the clinical situation where most fractures occur in the metaphyseal 

region. Based on the extensive literature review (Table 1), only three studies are 

available on metaphyseal bone healing using sheep models. In one of those studies, 

Malhotra et al. 2014 [36] compared the healing rate of different drill hole defect sizes 

(8 mm, 11 mm and 14 mm) created in the proximal tibia and distal femoral epiphysis 

of young and adult sheep. In the other two studies, a 3 mm partial osteotomy was 

created in the trochlear groove of the distal femur in skeletally matured sheep [37] and 

osteoporotic sheep [38]. Despite having interesting experimental outcomes, the 

models mentioned above are somewhat limited by the lack of full discontinuity of the 

bone at the fracture area and the absence of a clinically relevant fixation technique 
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owing to the simple nature of the fracture, which is often not the case with clinical 

fractures. Based on current literature review, a complete osteotomy at the metaphysis 

and a proper internal fixation are among the main criteria required for an animal model 

to be considered as clinically relevant for metaphyseal bone healing study [39], [40]. 
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Table 1: A comprehensive literature review of the available sheep long bone fracture models for studies on diaphyseal and 

metaphyseal bone healing. 

Experimental 
study 

Sheep breed 
and age 

Healthy or 
diseased 
condition 

Defect size and location Fracture fixation 
method 

Study 
duration 

Healing outcome 

Wullschleger 

et al., 2013  

[41] 

 

Merino 

5.6 ± 0.9 years 

Healthy 3 cm multi-fragmentary shaft 

fracture of the distal femur (A0 

- C3 fracture). 

External fixator 4 and 8 

weeks 

Callus bridging was 

observed at the fracture 

gap. 

Lill et al., 

2003 [42] 

Female Swiss 

mountain  

7.5 ± 1.5 years 

Osteoporotic 3 mm transverse midshaft 

osteotomy on the distal tibia. 

 

External fixator  8 weeks The osteoporotic group had 

reduced healing compared 

to sham. 

 

Challis et al., 

2006 [43] 

 

Not provided Healthy Transverse osteotomy of the 

right distal radius. 

External fixator 4 and 6 

weeks 

Addition of cyclic pneumatic 

pressure did not 

significantly increase 

healing outcome compared 

to the control group. 

 

Epari et al., 

2006 [44] 

 

Female merino 

2.5 – 3-5 years 

Healthy 3 mm osteotomy on the tibial 

diaphysis. 

External fixator (rigid 

and semi-rigid) 

6 and 9 

weeks  

The use of semi-rigid fixator 

increased healing time 

leading to prolonged 

chondral phase.  

 

Tufekci et al., 

2018 [45] 

 

Merino 

3 - 4 years  

Healthy 3 mm and 30 mm critical-sized 

defect separated by a 30 mm 

bone segment. 

 

External fixator 9 weeks Early mechanical 

stimulation alone is 

sufficient for a timely 

healing outcome. 
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Table 1 continued 

Experimental 
study 

Sheep breed 
and age 

Healthy or 
diseased 
condition 

Defect size and location Fracture fixation 
method 

Study 
duration 

Healing outcome 

Hente et al., 

1999 [46] 

 

Female Swiss 

Alpine  

6 – 11 years 

Healthy 3 mm osteotomy of the 

anterior aspect of the tibia. 

External fixator 

(static and dynamic 

fixation). 

10 

weeks 

No significant differences 

between dynamic and static 

fixation groups. 

 

Augat et al., 

2001 [47] 

 

Male merino 

1.8 – 2.5 years 

Healthy Transverse osteotomy of the 

right tibia at the mid-

diaphyseal level. 

External fixator with 

controlled 

interfragmentary 

movement (IFM). 

9 weeks Externally applied 

mechanical 

stimulation with cyclic non-

uniform tensile strains did 

not enhance healing. 

 

Claes et al., 

1995 [48] 

 

Male sheep 

2 years 

Healthy 0.6 mm transverse osteotomy 

of the right metatarsal. 

External fixator with 

controlled IFM. 

9 weeks Dynamic fixation 

accelerated healing. 

However, bone healing was 

more dependent on gap 

size rather than IFM.  

 

Wolf et al., 

1998 [49] 

 

Female merino 

sheep 

Healthy 3 mm transverse osteotomy of 

the left tibia. 

 

External fixator with 

controlled IFM. 

6 weeks External mechanical 

stimulation did not enhance 

healing. IFM of about 0.5 

mm seemed to be the 

optimal distance to support 

healing. 
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Table 1 continued 

Experimental 
study 

Sheep breed 
and age 

Healthy or 
diseased 
condition 

Defect size and location Fracture fixation 
method 

Study 
duration 

Healing outcome 

Claes et al., 

2009 [19] 

 

Mountain 

6 years 

Healthy 3 mm partial osteotomy in the 

trochlear groove of the distal 

femur. 

Two stainless-steel 

plates with a 

thickness of 2 and 

2.7 mm were 

implanted to limit 

IFM. 

 

8 weeks Smaller IFM resulted in 

better healing outcome 

compared to lager IFM. 

Bindl et al., 

2013 [38] 

 

Merino 

5 – 6 years 

Osteoporotic 

 

3 mm partial osteotomy in the 

trochlea region of the distal 

femur. 

Two stainless-steel 

plates with a 

thickness of 2 and 

2.7 mm were 

implanted to limit 

IFM. 

 

8 weeks Hypothalamic-Pituitary 

Disconnection (HPD) 

treated group had a poor 

healing outcome. 

Malhotra et 

al., 2014 [36] 

 

18 months and 

5 years 

Healthy Distal femoral epiphysis and 

proximal tibial epiphysis.  Drill 

hole defects with a fixed depth 

of 25 mm and diameter of 8 

mm or 11 mm or 14 mm. 

None. 4 weeks Healing decreased as 

defect size increased. The 

defect areas were only 

partially healed due to the 

short observation time. 
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1.4 Aim and objectives of the study 

The high incidence of metaphyseal fracture in the world’s ageing population makes it 

a serious clinical concern, especially since there are limited treatment options 

available. Therefore, there is an urgent need for appropriate large animal models that 

fulfil specific clinical criteria to enable translational studies on metaphyseal fracture 

healing. 

The goal of this doctoral research work is to establish and extensively characterise a 

clinically relevant metaphyseal fracture model in adult sheep distal femur. The full 

discontinuity at the metaphysis and the adequate internal stabilisation conferred by the 

titanium locking plate fixation comparable to the clinical situation met the criteria 

expected of a clinically relevant animal model. 

The objectives of this study include: 

1. To determine whether the customised anatomical locking plate construct conferred 

sufficient mechanical stability on the fractured gap under mechanical loading 

conditions. 

2. To quantify the extent of healing that occurred in the fractured area within the 12 

weeks observation period. 

3. To determine the nature of the tissue formation and whether the trabecular healing 

occurred via intramembranous or endochondral ossification. 

4. To determine the biomechanical competence of the newly formed bone. 

5. To extensively characterise the structural features of the organic, inorganic and 

cellular components of the newly formed trabeculae up to the nanometer scale. 
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2. MATERIALS AND METHODS 

 
2.1 Ethics statement 

The local animal care committee approved this study according to the German animal 

protection laws of the District Government of Darmstadt under the reference number 

V 54-19 c 20/15 - FU/1061. All the animals were handled in conformity with the 

guidelines for care and use of laboratory animals of the National Institutes of Health. 

2.2 Experimental design 

This study was conducted using six female adult Merino land sheep aged between 6 - 

7 years and an average weight of 99 kg. The animals were fed with a standard sheep 

diet (S6189-S010; ssniff-Spezialdiäten, Germany) and they grazed freely at the 

meadow. The bone mineral density (BMD) of the animals was measured using Dual 

Energy X-ray Absorptiometry (DEXA) two weeks after acclimatisation to the new 

environment. Subsequently, the femoral osteotomy on the left distal femur metaphysis 

was performed, and then the fracture was allowed to heal for 12 weeks. The matching 

right femurs were left intact and used as the experimental control. Just before the 

animals were euthanised for sample collection, their final BMD measurement was 

recorded. The left and right distal femur areas were harvested for further analysis using 

various methods as shown in figure 2. All the procedures including the DEXA, femoral 

osteotomy and euthanasia were carried out under general body anaesthesia, which 

was performed via intravenous administration of 2 mg/kg propofol (20 mg/mL propofol; 

Fresenius Kabi, Germany) and 2 mg/kg fentanyl (50 mg/mL Fentanyl-Hameln; Hameln 

Pharmaceuticals GmbH, Germany).  
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Fig. 2. Diagrammatic representation of the experimental design. 

 

2.3 Bone mineral density (BMD) measurement using DEXA  

The BMD of each animal was measured before the femur osteotomy and at 12 weeks 

post-surgery using the DEXA machine (Lunar Prodigy, GE Healthcare, Germany). The 

measurement was done after the standard machine calibration as described in the 

manufacturer’s protocol. The measured BMD of the whole-body region, operated left 

and unoperated right femurs of the animals were analysed using the large animal mode 

of the enCORE software (version 13.40). 
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2.4 Surgical procedure of the femur osteotomy 

A complete wedge-shaped osteotomy was created in the distal metaphyseal area of 

the left femur under general body anaesthesia as described below: 

Each sheep was laid in a supine position, and the hind legs were fixed in a slightly 

extendable position to enable proper internal rotation. The left hind leg to be operated 

was shaved entirely from the thigh region down to the knee area. Subsequently, the 

surgical site and the lower body part were fully draped sterile. Incisions were made to 

expose the lateral femur from the lateral condyle area into the midshaft area between 

the lateral vastus muscle, and the lateral head of the femoral biceps muscle. Proper 

care was taken to avoid the disruption of the surrounding collateral ligaments. Two 

blunt Hohmann retractors were used to expose the femoral shaft, and the soft tissues 

around the osteotomy site were carefully removed.  

For a stable fixation of the distal femur, a custom-made angular stable 11-hole titanium 

plate (aap Implantate, Germany) was inserted into the lateral side of the distal femur 

(Fig. 3A-B). Care was taken to fix the locking plate to the distal femur just proximal to 

the joint line of the knee joint, and a non-locking screw (aap Implantate, Germany) was 

used to fix the plate onto the lateral cortex via the oval hole. Six 50 mm long locking 

screws (aap Implantate, Germany) were fixed into the distal part of the plate with 

penetration from the medial cortex without violation of the cartilage or other 

intraarticular structures (Fig. 3C). The remaining four locking screws holes were fixed 

into the diaphyseal region. 

Afterwards, the patella was gently dislocated with the aid of blunt Hohmann retractors 

that exposed the ventral aspect of the distal femur. A line just proximal and parallel to 

the articular cartilage was marked. At the lateral aspect of the distal femur, the line was 

extended 10 mm proximally and connected to the medial origin of the line resulting in 

a triangular/wedge-shaped guideline for subsequent sawing. The osteotomy was 

carried out using a motorised oscillating saw. The exercised bone was chiselled out, 

then the defect (Fig. 3D) was cleaned and flushed with saline to remove residual bone 

particles. Multiple layered soft tissues and skin closure were performed using 

resorbable stitches. A spray silver dressing was applied to prevent infection. The stable 

angular fixation of the fracture permitted the immediate post-operative full-weight 

bearing of the animals. 
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Fig. 3. Internal fixation of the custom-made locking plate and full osteotomy at the sheep 
distal femur metaphysis. (A) Overview image of the customised titanium locking plate for 
fixation of the distal metaphyseal area of the femur (B) The condylar part of the plate allows for 
stable fixation of the distal femur with six 50 mm long locking screws. (C) Intraoperative image 
after fixation of the locking plate to the lateral part of the left femur with stable fixation of the 
locking screws into the condylar area before the osteotomy. (D) Intraoperative appearance after 
the creation of the wedge-shaped osteotomy with a full discontinuity at the distal metaphyseal 
area of the femur. 

 

 

2.5 Post-operative follow-up 

The animals were kept individually for one week to ensure proper wound healing and 

for the rest of the observation period in a flock on a nearby meadow with the standard 

diets and water ad libitum. The overall health status and wound healing were checked 

daily during the first two postoperative weeks by a veterinarian. The postoperative 

monitoring included the administration of relevant analgesics, observation of weight 

bearing and return to daily activities. Subsequently, the animals were monitored weekly 

until the end of the study period. Postoperative X-ray of the femur was performed one 

day after the surgery without additional anaesthesia to ascertain if the metallic implant 

was correctly placed and to exclude any additional peri-implant fractures of the femur. 
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2.6 Euthanasia and Sample harvesting 

All animals were euthanised at 12 weeks post-surgery by intravenous administration 

of 50 mg/kg pentobarbital (Anestesal; Pfizer, Germany) under anaesthesia as 

described above. After euthanasia, both the left and right femurs were harvested from 

the animals. The femurs were carefully cleaned of any unwanted soft tissues in contact 

with the cortical bone surface, and the plates were carefully removed from the femurs. 

All the harvested femurs remained stable after the plate removal, and no plate 

breakage was recorded. The distal end of the operated left and unoperated right 

femurs of the six sheep were harvested and sectioned into thin coronal bone slices 

using a diamond saw (Trennband 0. 2 mm; Patho-service Germany) under constant 

cooling and then assigned to the various analytical methods. For biomechanical 

analysis, coronal bone slices of about 4.5 mm thickness were immediately frozen 

without processing to avoid any alteration in bone quality. About 3 mm thick coronal 

bone slices were allocated for gene expression and ultrastructure analysis. The 

samples for gene expression analysis were immediately placed in RNAlater (1204027, 

Ambion, USA), and stored at -80 °C until further processing. Another 4.5 mm thick 

coronal bone slices were allocated for both micro-CT analysis and histological staining 

since micro-CT is a non-destructive technique. The bone specimens were immediately 

fixed in 4 % phosphate-buffered paraformaldehyde (Carl Roth, Germany) and stored 

at 4 °C until further processing.  

2.7 Embedding of bone slices in Technovit 9100 

Technovit 9100 New (Heraeus Kulzer, Germany) is a plastic embedding system based 

on methyl methacrylate (MMA). The undecalcified femoral bone slices were embedded 

in the Technovit 9100 New. This embedding technique enabled the investigation of the 

samples using various histological staining, enzyme-histochemistry and 

immunohistochemistry. The reagent was supplied as five components consisting of: 

1. Technovit 9100 basic solution of stabilised MMA. This component was 

destabilised by passing the reagent slowly through a column filled with 

approximately 50 g of aluminium oxide (X908, Roth, Germany). The 

destabilised solution was stored at -20 °C in corked brown glass. 

2. Technovit 9100 PMMA powder was used to eliminate polymerisation shrinkage 

and facilitate a better polymerisation process. 
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3. Technovit 9100 hardener 1 and hardener 2 worked together to facilitate targeted 

polymerisation even at temperatures less than 0 °C. 

4. Technovit 9100 regulator is a reactive organic compound that facilitates a 

precise polymerisation with controlled low-temperature spikes. 

The embedding process was performed in two steps, namely tissue pre-treatment and 

tissue treatment. In the tissue pre-treatment phase, the harvested samples were fixed 

in 4 % paraformaldehyde for 24 - 48 hours followed by six rounds of washing with 0.1 

M phosphate buffer, pH 7.3. The tissue treatment stage involved sample dehydration 

in increasing concentration of ethanol (32205, Sigma, Germany), then in an 

intermedium which involved defatting with xylene (9713, Roth, Germany) and lastly the 

immersion stage where the samples were embedded in Technovit. Table 2 below 

describes how the sample treatment phase was performed.  

Table 2: Sample embedding in Technovit 9100.  

Duration and temperatures for the tissue treatment phase of the sheep femoral bone slices. 

Treatment phase: Dehydration, intermedium and immersion 

Dehydration in Ethanol 

Concentration Duration Temperature 

70 % 2 days RT 

70 % 2 days RT 

80 % 3 days RT 

96 % 3 days RT 

100 % 4 days RT 

100 % 3 days RT 

100 % 4 days RT 

100 % 3 days RT 

100 % p.a. 4 days RT 

Intermedium in Xylene 

Concentration Duration Temperature 

100 % 6 hours RT 

100 % 12 hours RT 

Immersion in Technovit 9100 

Reagent Duration Temperature 

Pre-infiltration 1 5 days RT 

Pre- infiltration 2 5 days RT 

Pre- infiltration 3 5 days 4 °C 

Infiltration 1 6 days 4 °C 

Infiltration 2 6 days 4 °C 

Infiltration 3 6 days 4 °C 

Polymerisation 2 days - 4 °C 

Polymerisation 1 hour 4 °C 

Key: RT: room temperature; °C: degree Celsius  
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2.7.1 Preparation of reagents 

❖ Pre-infiltration 1: 200 ml Xylene + 200 ml Technovit 9100 stabilised basic 

solution.  

❖ Pre-infiltration 2: 200 ml stabilised Technovit 9100 basic solution + 1 g hardener 

1. 

❖ Pre-infiltration 3: 200 ml destabilised Technovit 9100 solution + 1 g hardener 1. 

❖ Infiltration solution 1 - 3: 250 ml destabilised Technovit 9100 solution + 20 g 

PMMA powder + 2 g hardener 1. 

❖ Polymerisation mixture: 9 parts of stock solution A + 1 part of stock solution B. 

▪ Solution A: 500 ml destabilised Technovit 9100 solution + 80 g PMMA 

powder + 3 g hardener 1. 

▪ Solution B: 44 ml destabilised Technovit 9100 + 17.6 ml hardener 2 + 2 

ml regulator.  

❖ Phosphate buffer, pH 7.3 

▪ Solution A: 27.6 g Sodium dihydrogen phosphate monohydrate (106346, 

Merck, Germany) in 1000 ml ddH2O. 

▪ Solution B: 35.6 g di-Sodium hydrogen phosphate dihydrate in 1000 ml 

ddH2O.  

▪ Stock solution (0.2 M Na-phosphate, pH 7.3): 230 ml solution A + 770 ml 

solution B. 

▪ Working solution (0.1 M Na-phosphate, pH 7.3): 500 ml stock solution + 

500 ml ddH2O. 

2.8 Micro-computed tomography (micro-CT) analysis 

2.8.1 Scanning procedure 

The Technovit-embedded coronal bone slices were scanned using a Bruker micro-CT 

(SkyScan 1173, Kontich, Belgium) at the X-ray energy of 130 kV and 60 µA for 

assessment of bone microstructure as described by Bouxsein and colleagues [50]. The 

samples were positioned on a computer-controlled rotation stage and scanned at 240° 

around the vertical axis in rotation steps of 0.25° with a noise reduction, and a frame 

average of 4-fold. A 0.25 mm brass filter was used for beam filtration to reduce beam 

hardening. A pair of HA-phantoms with a diameter of 32 mm and mineral densities of 
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250 mg / 750 mg HA was scanned with each scan for system calibration of linear 

attenuation coefficient to the density of HA. The images were reconstructed with the 

NRecon-Software (Bruker microCT, Kontich, Belgium), resulting in an 8-bit grayscale 

image. A Gaussian filter (kernel = 1) was employed for image reconstruction with a 

moderate smoothing. 

2.8.2 Micro-CT image post-processing and data acquisition 

The qualitative assessment of the generated micro-CT images of the bone specimens 

of the operated left femurs was performed by two independent investigators to 

determine the extent of bony bridging at both the cortical and trabecular regions of the 

fractured area. The examination was conducted with the Sykscan Dataviewer software 

for 3-dimensional (3D) image analysis. The 3D images of the bone slices were 

orientated in a similar direction before the assessment. Next, the fractured area was 

divided into the following three parts: medial cortex, defect centre and, lateral cortex. 

Healing at these regions were graded using the radiographic grading scale shown in 

table 3, which was adapted from previous reports [36], [51]. The images were reviewed 

in transverse, coronal as well as sagittal planes to ensure a thorough and precise 

assessment. The sum of the grades was used to determine the healing status of each 

specimen. 

Table 3: The radiographic image grading scale. 

0 No healing: No visible bone bridging within the fractured area. 

1 Partial cortical and trabecular healing: Minor bone bridging with gaps; defect visible 

with low radiographic density than adjacent bone outside the fractured area. 

2 Advance cortical and trabecular healing: Bone bridging evident with minimal gaps; 

defect visible with radiographic density fairly like that of adjacent bone outside the 

fractured area. 

3 Complete cortical and trabecular healing: Bone bridging with no gaps; defect 

hardly visible with a radiographic density equivalent to the adjacent bone outside the 

fractured area. 

 

For the quantitative analysis, a direct 3D-morphometry of the newly formed trabeculae 

of the operated left femurs was analysed relative to the unoperated right femurs. The 

creation of a region of interest (ROI), segmentation and quantitative morphometry were 

performed using the CTAn Software (Version 1.18.4, Bruker microCT, Kontich, 

Belgium). A triangular/wedge-shaped ROI was manually contoured within the fractured 
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area of the operated left femurs and at the comparable region in the unoperated right 

femurs (Fig. 4A-B).  

The cortical bone region was excluded from the ROI. The height of the wedge at the 

lateral and medial sides of each bone sample was about 10.5 mm and 0.5 mm, 

respectively. The contoured wedge was interpolated into a defined specimen volume. 

For the trabecular bone morphometry, a global threshold of 30 % of the maximum grey 

values corresponding to a mineral density of 400 mg HA/cm3 was defined. The analysis 

method was adapted from previous reports [52], [53]. 

 

Fig. 4. Creation of ROI for the 3D-quantitative morphometry. Representative images of (A) 
operated left and (B) unoperated right femur showing the wedge-shaped ROI defined only at the 
trabecular bone area. 

2.9 Biomechanical analysis 

The stiffness of the trabecular and cortical regions within and adjacent to the fractured 

area was determined using an indentation test. The indentation test was performed on 

non-processed fresh coronal bone slices by Prof. Dr. L. Dürselen, a collaborating 

partner at the Institute of Orthopaedic Research and Biomechanics, University of Ulm, 

Germany (Institute director: Prof. Dr. A. Ignatius). Similar points were also measured 

from the corresponding unoperated right femur to enable comparison. The samples 

were marked at nine points with a water-insoluble pen as shown in figure 5. Points 

2,5,7,8 and 9 were within the osteotomy area; points 1 and 3 were around the cortical 

region while points 4 and 6 were located within the trabecular region adjacent to the 

fractured area. The indentation test was performed on the marked points using a 

standard material test machine (Z10, Zwick Roell, Germany) as shown in figure 6A. 
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Fig. 5. The location of indentation points for biomechanical testing. Schematic representation of 
the operated left femur (A) and unoperated right femur (B) showing the measurement locations on 
the bone slice. Overview images of coronal bone slices of the operated left femur (C) and (D) 
unoperated contralateral side. The wedge-shape outlined the former fracture area. 

 

The machine was fitted with a force sensor (500 N maximum load, KAF-Tw, A.S.T., 

Germany) and the deformation was measured with a laser distance sensor (IL-D220-

20, Mikro-Epsilon, Germany). The samples were placed on a flat surface and kept 

moist throughout the test using sodium chloride. After applying a preload of 5 N with a 

stamp of 2.6 mm diameter, the indentation test was conducted at a constant 

deformation rate of 1 mm/min. The measurement was either automatically terminated 

if the sample failed to withstand the applied force or when a compressive force of 120 

N was reached. The stiffness (slope) in Nmm-1 was calculated from the linear part of 

the force-deformation curve (Fig. 6B). This occurred at an indentation depth of 

maximally 10 % of the sample height for trabecular bone and around 2 % of the sample 

height for cortical bone using the following formula: 

 

𝑆𝑙𝑜𝑝𝑒 (𝑁𝑚𝑚-1) =
𝐹high  𝑖𝑛 𝑁 − 𝐹low 𝑖𝑛 𝑁

𝑑𝐿(𝐹high) 𝑖𝑛 𝑚𝑚 − 𝑑𝐿 (𝐹low)𝑖𝑛 𝑚𝑚
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Fig. 6. Assessment of the bone stiffness via indentation test. (A) The overview image showed 
an indentation point on the cortical region of a coronal bone slice. (B) Schematic diagram of a force-
deformation plot of a given sample after the indentation test.  

2.10 Bone sample grinding and sectioning 

The undecalcified Technovit embedded bone slices were partly ground and polished 

into about 70 µm thick grinding using a cutting-grinding machine (Exakt-300, EXAKT 

Advanced Technologies Germany). Then the remaining Technovit blocks were 

trimmed and divided into two halves of lateral and medial sides to enable sectioning 

using the 2.5 cm Kawamoto’s film (Cryofilm type 2C(9), Section-Lab Co. Ltd., Japan). 

Five micrometres thick sections were prepared with the aid of a microtome (RM2155, 

Leica, Germany) equipped with a hard-metallic knife (400215, Leica, Germany). 

Consecutive sections were used for the various staining as shown in table 4. 

Table 4: The various staining methods with the allocated bone section number. 

Staining method Section number 

Von-Kossa van-Gieson 6 

Alpha-smooth muscle actin 7 

Silver nitrate 8 

Alkaline phosphate 9 

Tartrate-resistant acid phosphatase 10 

Bone morphogenetic protein-2  11 

Receptor activator of NF-kB ligand 12 

Osteoprotegerin 13 
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2.11 Histological staining 

2.11.1 Trichrome Masson-Goldner stain 

The undecalcified bone grindings were stained with trichrome Masson-Goldner to 

investigate the healing quality and general tissue appearance within the fractured area 

as described below. 

The samples were deplastified for two days in two changes of 2-methoxyethyl-acetate 

(8.06061, Merck Germany). Later, the samples were rehydrated in decreasing ethanol 

series namely, 100 %, 96 % and 70 % each for five minutes and then for five minutes 

in distilled water. Then, the samples were incubated in Weigert’s iron hematoxylin A + 

B (X906/ X907, Roth, Germany) for three minutes, washed under running tap water for 

ten minutes to develop the blue colouration. The samples were incubated for five 

minutes in a freshly prepared Masson solution made from Fuchsin-Ponceau-

Azophloxin compounds. Afterwards, the samples were rinsed in 1 % acetic acid 

(9372.4, Roth, Germany) and then incubated in Tungstophosphoric acid orange-G 

solution for 8 minutes and washed in 1 % acetic acid. Finally, the samples were 

incubated in 0.2 % light green (62110, Fluka, Germany) for eight minutes, rinsed again 

in 1 % acetic acid and dehydrated very rapidly in 100 % ethanol and then cleared twice 

in xylene for ten minutes each before mounting in coverslips with Eukitt (03989, Sigma-

Aldrich, Germany). 

2.11.1.1 Preparation of reagents 

❖ Weigert’s Iron Haematoxylin: 40 ml solution A + 40 ml solution B.  

❖ Masson Solution (Fuchsin-Ponceau-Azophloxin): 

▪ Solution A: 1 g Fuchsion-Ponceau Masson (1A-350, Chroma, Germany) 

in 100 ml dH2O, bring to boil and add 1 ml glacial acetic acid. 

▪ Solution B: 1 g Ponceau de Xylidine in 100 ml dH2O, bring to boil and 

add 1 ml of glacial acetic acid. Filter the solution before use. 

▪ Solution C: 0.5 g Azophloxin in 100 ml dH2O + 200 µl glacial acetic acid. 

▪ Working solution 1: 3.3 ml solution A + 6.7 ml part solution B + 2 ml 

solution C + 88 ml 0.2 % glacial acetic acid. Filter the solution before use. 
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❖ Tungstophosphoric acid Orange G Solution: 3 g Tungstophosphoric acid 

(1.00583, Merck, Germany) + 2 g Orange G (1B-221, Chroma, Germany) in 100 

ml dH2O. Filter the solution before use. 

❖ 0.2 % Light green: 0.2 g brilliant green + 200 µl glacial acetic acid in 100 ml 

dH2O. Filter the solution before use. 

2.11.2 Von-Kossa van-Gieson stain 

The undecalcified bone sections were stained with von-Kossa van-Gieson to 

differentiate the mineralised bone area from the osteoid area and to quantify the newly 

mineralised bone within the fractured area as described below. 

The samples were deplastified in three changes of 2-methoxyethyl-acetate (MEA) for 

20 minutes per round. Subsequently, the samples were rehydrated in decreasing 

ethanol series namely, 100 %, 96 % and 70 % each for five minutes and then for five 

minutes in distilled water. Afterwards, the samples were stained with von-Kossa as 

follows: incubation in 3 % silver nitrate solution (131459, Applichem, Germany) for five 

minutes, followed by rinsing in three changes of distilled water and then for about two 

minutes in 10 % sodium carbonate-formaldehyde solution. The samples were washed 

under running tap water for ten minutes, then fixed in 5 % sodium-thiosulfate solution 

(1.06509, Merck, Germany) for five minutes before being rinsed in two changes of 

distilled water for two minutes each. The samples were contrasted in 0.8 % methyl 

green solution (5159, Roth Germany) for eight minutes and washed in three changes 

of distilled water for two minutes each. Then samples were stained with van-Gieson as 

follows: incubation in Weigert’s iron haematoxylin for six minutes, washed under 

running tap water for ten minutes, followed by immersion in van-Gieson solution (2E-

050, Chroma, Germany) for five minutes. Lastly, the samples were dehydrated very 

quickly in 96 % and 100 % ethanol and cleared in two changes of xylene for five 

minutes each before mounting in coverslips with Depex (18243.02, Serva, Germany). 

2.11.2.1 Preparation of reagents 

❖ 3 % silver nitrate solution: 3 g of silver nitrate (AgNO3) in 1000 ml dH2O.  

❖ 10 % sodium carbonate-formaldehyde: 10 g sodium carbonate (A315, Roth, 

Germany) + 25 ml 37 % formaldehyde (104002, Merck,Germany). Bring to 1000 

ml with dH2O. 
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❖ 5 % sodium thiosulphate solution: 5 g sodium thiosulphate in 1000 ml dH2O. 

❖ 0.8 % methyl green: 1 g methyl green in 25 ml absolute ethanol. 

2.11.3 Silver nitrate stain 

The undecalcified Technovit-embedded sections were stained with silver nitrate to 

visualise the morphology of the osteocyte-lacuna canaliculi network and quantify the 

osteocytes lacunae within the fractured area as described below. 

After sample deplastification and rehydration as described for the trichrome Masson-

Goldner stain, the bone sections were decalcified in a solution (pH 7.3) containing 3.4 

% Tris (4855, Roth, Germany) and 10 % Titriplex III (1.08418, Merck, Germany) for 

three days. The samples were incubated in the silver nitrate mixture, containing a 1:2 

ratio of solution A and B for 90 minutes in the dark. The samples were rinsed in distilled 

water for five minutes, followed by ten minutes incubation in a freshly prepared 5 % 

sodium thiosulfate solution and then five minutes washing in distilled water. The 

samples were subsequently dehydrated through an ascending ethanol gradient (70 %, 

96 % and 100 %) for five minutes each and cleared in two changes of xylene before 

mounting in coverslips with Depex. 

2.11.3.1 Preparation of reagents 

❖ Solution A: 24.75 ml ddH2O + 250 µl methanoic acid + 0.5 g gelatin low bloom.  

❖ Solution B (50 % silver nitrate): 10 g silver nitrate in 20 ml ddH2O. 

❖ 5 % sodium thiosulfate solution: 1 g sodium-thiosulfate in 20 ml ddH2O. 

2.12 Enzyme histochemical staining 

2.12.1 Alkaline phosphatase (ALP) stain 

The undecalcified bone sections were stained with ALP to investigate the activity of 

osteoblasts in the fractured area. The bone sections were deplastified in MEA and 

rehydrated in descending series of alcohol as already described above. Next, the 

samples were treated with 0.1 M Tris-buffer (pH 9.4) for ten minutes and then 

incubated in ready-to-use 5-bromo,4-chloro,3-indolylphosphate/nitrobluetetrazolium 

substrate solution (50-81-08, KPL, Germany) using a moist chamber at 37 oC for one 

hour. Afterwards, the sections were rinsed in three changes of distilled water and 
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counterstained with nuclear fast red aluminium sulphate solution (N069, Roth, 

Germany), followed by washing in three changes of distilled water. The stained 

samples were dehydrated in an ascending series of alcohol and cleared in xylene 

before mounting with coverslips using Eukitt. 

2.12.1.1 Preparation of reagents 

❖ 1 M Tris-buffer, pH 9.4: 121.1 g Tris in 1 L dH2O. Adjust pH to 9.4 with 25 % 

HCl. 

▪ 0.1 M Tris-buffer, pH 9.4: 100 ml 1 M Tris-buffer + 900 ml dH2O. 

2.12.2 Tartrate-resistant acid phosphatase (TRAP) stain 

The undecalcified bone sections were stained with TRAP to investigate the activity of 

bone tissue associated macrophages such as osteoclasts. The deplastified sections 

were treated with 0.1 M sodium acetate buffer, pH 5.2 for ten minutes, followed by 

incubation in TRAP-stain solution containing naphthol-AS-TR-phosphate, N,N-

dimethyl formamide, fast red, sodium tartrate and sodium acetate buffer using a moist 

chamber at 37 oC for one hour. The sections were later rinsed in three changes of 

distilled water for five minutes each and then counterstained with Shandon Instant-

hematoxylin (6765015, Thermo Scientific, Germany) for about 20 seconds and rinsed 

again in distilled water for one minute. Afterwards, sections were placed under running 

tap water for ten minutes, rinsed in distilled water for five minutes, and then 

coverslipped using the Kaisers Glycerin gelatin (6474, Roth, Germany). 

2.12.2.1 Preparation of reagents 

❖ 1 M sodium acetate: 82.03 g sodium acetate (1.062680, Merck, Germany) in  1 

L dH2O. Adjust pH to 5.2 with 25 % HCl. 

▪ 0.1 M sodium acetate (pH 5.2): 100 ml 1 M sodium acetate + 900 ml 

dH2O. 

❖ TRAP-stain solution: Transfer substrate solution 1 into substrate solution 2. Mix 

thoroughly and filter before use. 

▪ Substrate solution 1: 35 mg of Naphthol-AS-TR-Phosphate (N6125, 

Sigma-Aldrich, Germany) in 125 µl of N, N-dimethyl formamide (D4551, 

Sigma-Aldrich). 
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▪ Substrate solution 2: 57.5 mg sodium tartrate-dihydrate (1.06663, Merck) 

in 1 ml of sodium acetate buffer + 35 mg fast red (368881, Sigma-Aldrich) 

in 1 ml of sodium acetate buffer. Mix thoroughly. 

❖ Instant-Haematoxylin stock solution: dissolve part A and B in 1 L ddH2O. Mix 

thoroughly. 

▪ Instant-Haematoxylin working solution: 100 ml of instant haematoxylin 

stock solution + 300 ml ddH2O. Mix thoroughly and filter before use. 

2.13 Immunohistochemical staining 

Immunohistochemistry was performed on undecalcified bone sections using the 

standard Avidin-Biotin Complex (ABC) method. The indirect antigen detection method 

involves an unlabelled primary antibody reacting with the tissue antigen and a 

biotinylated secondary antibody that reacts with the primary antibody. The signal is 

subsequently amplified using the Vectorstain ABC HRP kit that will form a complex of 

avidin-biotin-peroxidase. Finally, the peroxidase enzyme complex in conjunction with 

the Vectorstain NovaRED peroxidase substrate forms an insoluble brown-coloured 

precipitate. The bone sections were stained with both the primary and secondary 

antibodies for BMP2, OPG, RANKL (CD254) and ASMA to determine and quantify their 

cellular expression levels within the fractured area. The antibodies were titrated for 

optimal working dilution before use. Also, the staining protocol was optimised to avoid 

unspecific staining. 

2.13.1 Bone morphogenetic protein-2 (BMP2) stain 

The undecalcified bone sections were stained with BMP2 to investigate the activity of 

osteoblasts. After deplastification in MEA, the samples were incubated in 100 % 

acetone (9372, Roth, Germany) for ten minutes, then in a solution of acetone and wash 

buffer (1:1) for another ten minutes, followed by washing in two changes of wash buffer 

for five minutes each. Subsequently, an antigen retrieval step was performed with 

citrate buffer solution, pH 6.0 at 60 oC for 20 minutes. The samples were cooled down 

to room temperature, washed in two changes of wash buffer (TBS-X) for five minutes 

each. The endogenous peroxidase activity was blocked with 3 % H2O2 (v/v) in wash 

buffer for ten minutes, then washed in three changes of wash buffer for five minutes 

each. Sections were incubated overnight at 4 oC with the rabbit polyclonal anti-human 
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BMP2 antibody (AP20597PU-N, Acris, Germany) diluted 1:150 with the DAKO dilution 

buffer (S302283, Agilent Technologies, Germany). A negative control incubated only 

with the dilution buffer was included. Next, samples were washed in three changes of 

wash buffer for five minutes each and then incubated with biotinylated goat anti-rabbit 

secondary antibody (BA-1000, Vector, USA) diluted 1:500 with 1 % bovine serum 

albumin (A3912, Sigma-Aldrich, Germany) in Tris-buffered saline (4855.2, Roth, 

Germany) plus 12.5 % sheep serum (S2263, Sigma-Aldrich, Germany) for 40 minutes 

at room temperature. The samples were washed in two changes of wash buffer for five 

minutes each. The signals from the target antigen were amplified using the Vectorstain 

Elite ABC HRP-kit (PK-6100, Vector, USA) for 30 minutes at room temperature. Then, 

the samples were washed twice in wash buffer and once in distilled water for five 

minutes each. Visualisation of the detected signals was enabled by five minutes 

staining with the NovaRED peroxidase substrate kit solution (SK-4800, Vector, USA). 

Subsequently, the samples were washed in three changes of distilled water for five 

minutes each. The nuclei were counterstained with Shandon instant-haematoxylin for 

about 20 seconds, rinsed briefly in distilled water, placed under running tap water for 

ten minutes, and then washed in distilled water for five minutes. Lastly, the samples 

were dehydrated through an ascending series of alcohol, cleared in xylene and 

mounted with coverslips using Depex. 

2.13.2 Osteoprotegerin (OPG) and Receptor activator of NF-kB ligand (RANKL) stain 

OPG and RANKL were stained to quantify the cellular expression levels of both 

proteins as key regulators of osteoblastogenesis and osteoclastogenesis, respectively. 

The staining of the undecalcified bone sections with the OPG and RANKL primary 

antibodies also followed the similar procedures as described for BMP2 above. OPG 

was detected using a dilution of 1:300 rabbit polyclonal OPG antibody (250800, 

Abbiotec, USA). RANKL was detected using a dilution of 1:150 rabbit polyclonal 

CD254 antibody (251263, Abbiotec, USA). Both primary antibodies were detected 

using biotinylated goat anti-rabbit secondary antibody (BA-1000, Vector, USA) diluted 

at 1:500 with 1 % bovine serum albumin in Tris-buffered saline plus 12.5 % sheep 

serum. 
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2.13.3 Alpha-smooth muscle actin (ASMA) stain 

ASMA staining was used to investigate tissue vascularisation by quantifying the 

positively stained blood vessels in the fractured area. The ASMA staining also followed 

a similar procedure as described for BMP2 above. However, no antigen retrieval step 

was included. The staining was carried out using a 1:400 dilution of monoclonal mouse 

anti-human smooth muscle actin (M0851, Agilent Technologies, Germany). The 

primary antibody was detected with a horse anti-mouse secondary antibody (BA-2001, 

Vector, USA) diluted 1:150 in 1 % bovine serum albumin in Tris-buffered saline plus 

12.5 % sheep serum. 

2.13.3.1 Preparation of reagents 

❖ Citrate buffer, pH 6: 

▪ Solution A (100 mM citric acid): 0.2 g citric acid (3958.2, Roth, Germany) 

in 10 ml dH2O. 

▪ Solution B (100 mM sodium citrate): 5.8 g sodium citrate (106448, Merck, 

Germany) in 200 ml dH2O. 

▪ Working solution: Add 41 ml of solution B to 400 ml dH2O and adjust pH 

to 6.0 using solution A. Bring the volume to 500 ml with dH2O.  

❖ Tris-sodium chloride buffer (TBS), pH 7.4: Stock solution: 60.57 g Tris-base 

(4855.2, Roth, Germany) + 87.66 g sodium chloride (31434, Sigma-Aldrich, 

Germany) in 1000 ml dH2O. Adjust the pH to 7.4 with 25% HCl. 

▪ Working solution: 100 ml stock solution to 900 ml dH2O. 

❖ Wash buffer: 1000 ml TBS working solution + 0.025 % Triton-X. Mix thoroughly. 

❖ Tris-buffered saline-bovine serum albumin (TBS-BSA): 1 g BSA in 100 ml of 

TBS. 

❖ 3 % H2O2: 7 ml 30 % H2O2 (8.22287, Merck, Germany) + 63 ml wash buffer. 

❖ Vectorstain Elite ABC kit solution: 1 ml TBS + 18 µl reagent A + 18 µl reagent. 

Prepare fresh solution 30 minutes before use. 

❖ NovaRED peroxidase substrate kit solution: 5 ml dH2O + 3 drops of reagent 1. 

Mix properly. Then add two drops of reagent 2 and mix properly. Add two drops 

of reagent 3 and mix properly. Lastly, add two drops of hydrogen peroxide 

solution and mix thoroughly. Prepare the reagent about 30 minutes before use 

and store in the dark. 
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2.14 Light microscopic imaging 

Images were acquired using a Leica light microscopy system (Leica DM5500 

photomicroscope equipped with a DFC7000 camera and operated by LASX software 

version 3.0; Leica, Wetzlar, Germany).  

2.15 Bone Histomorphometric analysis 

Histomorphometric analysis was performed on the overview images generated from 

the Leica microscope using Adobe Photoshop (version CS6, Adobe, Germany). After 

loading each image, the system was calibrated according to the objective size. The 

ROI was defined and manually contoured in the fractured area of the operated left 

femur and at a comparable region in the unoperated right femur. Then, the positively 

stained area was selected and measured in a semi-automated manner, and the value 

was given in square millimetre. The generated values were then used to determine, for 

instance, the percentage of osteoid and mineralised bone areas of the operated femur 

relative to the unoperated femur. Similarly, the histomorphometric assessment was 

also performed on the TRAP, ALP, OPG, BMP2 and RANKL stained samples. Manual 

counting of the blood vessels and osteocytes lacunae was performed for the ASMA 

and silver nitrate staining, respectively. 

2.16 Gene Expression analysis 

2.16.1 RNA isolation 

The freshly frozen bone slices stored in RNAlater solution at -80 oC were thawed at 

room temperature. The newly formed trabecular bone within the fractured area of the 

operated femur was carefully selected. For comparison, the trabecular bone was also 

collected from the metaphyseal area of the unoperated contralateral side. 

Subsequently, about 50 mg was collected from each sample with the aid of forceps for 

RNA isolation using the Lipid Tissue Mini Kit (160021969, Qiagen, Germany) 

according to the manufacturer’s protocol. The isolated RNA was quantified using 

NanoDropTM 1000 Spectrophotometer (NanoDrop Technologies, USA). After DNase 

treatment to remove genomic DNA, 0.5 µg RNA from each sample was reserved 

transcribed to cDNA using the QuantiTect Reverse Transcription Kit (157036867, 
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Qiagen, Germany) as described by the manufacturer. The samples were stored at -20 

oC. 

2.16.2 Primer testing and validation for the target genes 

The primers for BMP2, OPG and RANKL were designed, tested and validated before 

being used for gene expression analysis. The remaining primers, namely osteocalcin 

(BGLAP), collagen type-1 alpha-1 (COL1A1), collagen type-2 alpha-1 (COL2A1), 

cathepsin-K (CTSK) and ALP were directly used for analysis since they were already 

established in the laboratory. The forward and the reverse sequences of the primers 

and the amplicon length are shown in table 5.  

Table 5: The forward and reverse primer sequence of the target genes. 

Gene Forward Sequence (5’ 3’) Reverse Sequence (5’ 3’) Amplicon 
length (bp) 

BGLAP CAGCGAGGTGGTGAAGAGAC GCTCATCACAGTCAGGGTTG 122 

CTSK GGGTCAATGTGGTTCCTGTT GCAGCCATCATTCTCAGACA 133 

COL1A1 CCAGTCACCTGCGTACAGAACG GCCAGTGTCTCCTTTGGGTCC 246 

ALP TCAGCAGACCCTGAAAAATG TTCTTAGCCACGTTGGTGTTG 60 

BMP2 GAAAGGACACCCTCTCCACAG GCAACGATCCAGTCATTCCAC 135 

OPG AAACAGCGACACAACTCACG TGTCCAATATGCCTCCTCACG 140 

RANKL CTGTGCAGAAGGAAATGCAAC GCGTTAATCGTGAGATGGGC 139 

COL2A1 ACCCAGAACCAACACAATCC TCAGTGCAGAGTCCTAGAGTG 81 

B2M CCAGAAGATGGAAAGCCAAA AGCGTGGGACAGAAGGTAGA 159 

2.16.3 Quantitative PCR 

Quantitative PCR analysis of BMP2, OPG, RANKL, ALP, BGLAP, COL1A1, COL2A1, 

CTSK and the reference gene B2M were performed with the Quantifast SYBR Green 

PCR Mastermix kit (151050429, Qiagen, Germany) on the LightCycler® 2.0 instrument 

(software version 4.1, Roche, Germany). Each capillary tube contained 2 µl sample 

cDNA, 5 µl Quantifast SYBR Green PCR Mastermix, 0.2 µl (20 µM) of the primer and 

RNase free water to bring it to a final volume of 10 µl. The sample mixture was 

centrifuged for about one minute before thermal cycling. The thermal cycling program 

comprised of one denaturation cycle at 95 oC for five minutes, followed by 40 PCR 

cycles at 95 oC for ten seconds and 60 oC for 30 seconds. The specificity of the 

amplicon was verified using melting curve formation under one cycle at 95 oC, down to 

60 oC for 15 seconds and back to 95 oC. The last cycle was a cooling step at 40 oC for 

30 seconds. All analysis was performed in duplicate. Two negative controls, that is, a 
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mixture without transcriptase (RT-) and water instead of cDNA were included in each 

run. A sample with a known CT value served as the positive control.  

2.16.4 Data analysis 

The mean values from the duplicate run were determined and normalised to the 

reference gene. Afterwards, the relative expression of the target genes of the operated 

left femurs was compared to those of the unoperated right femurs using the 2-ΔC
T 

method [54]. 

Relative expression = 2-ΔC
T

  

ΔCT (operated left femur) = (CT, target gene left femur - CT, B2M left femur) 

ΔCT (unoperated right femur) = (CT, target gene right femur - CT, B2M right femur) 

2.17 Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIM) analysis 

The local distribution of calcium and collagen within the fractured area was studied 

using the ToF-SIMS 5-100 machine (ION-TOF Company, Germany) equipped with a 

25 keV Bi-cluster ion source for surface examination. This analysis was performed by 

Dr. A. Henss, a collaborating partner at the Institute of Physical Chemistry, University 

of Giessen. The analysis was performed on undecalcified bone sample grinding of 

approximately 70 µm thickness. The ToF-SIMS method has been previously described 

[55]. Briefly, a primary ion gun using Bi3+ as main ion species was operated in the high 

current bunched (hc-bu) mode with highest mass resolution and a lateral resolution of 

about 10 µm. The signals collected from C4H8N+, a proline derivative, which is one of 

the main components of collagen was used to image the collagen distribution [56]. The 

Ca+ signal represented the mineralised bone area. To obtain a good mass image of 

the bone slice, a complete stage scan with a pixel density of 100 per mm, a cycle time 

of 60 µs, five frames per patch and three scans were generated. Single images with 

sizes of 400 x 400 µm2 were stitched together to obtain areas of several square 

millimetres. Data evaluation was done with the Surface Lab 6.7 software of IONTOF 

Company. 
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2.18 Embedding of bone slices in Epon 

The newly formed trabecular bone samples harvested from the fractured area were 

embedding in Epon to enable ultrastructure analysis as described below: 

❖ Fixation: yellow fix buffer overnight at 4-8 °C. 

❖ 6x washing using 0.1 M Cacodylate buffer at 4-8 °C with rigorous shaken. 

❖ 3x washing using 0.1 M Cacodylate buffer at 4-8 °C with rigorous shaken. 

❖ Store at 4 °C overnight in 0.1 M Cacodylate buffer. 

❖ 3x washing using 0.1 M Cacodylate buffer at 4-8 °C with rigorous shaken. The 

washing step was continued until the yellow colour faded away. 

❖ The samples were transferred into a dark staining rack. 

❖ The samples were fixed once more in 1 % osmium tetroxide for two hours at 

room temperature. 

❖ 6x washing using 0.1 M Cacodylate buffer at 4-8 °C with rigorous shaken. At 

least five minutes per wash. 

The samples were dehydrated in increasing concentration of ethanol and xylene as 

shown in table 6. 

Table 6: Sample embedding in Epon.  

Duration of the dehydration, infiltration, embedding and polymerisation steps. 

Treatment phase: Dehydration, infiltration and embedding 

Dehydration in Ethanol 

Concentration Duration Temperature 

30 % 10 minutes RT 

50 % 2x 10 minutes RT 

70 % 2x 10 minutes RT 

80 % 2x 10 minutes RT 

96 % 2x 10 minutes RT 

100 % 15 minutes RT 

100 % 3x 30 minutes RT 

100 % 45 minutes RT 

Intermedium in Xylene 

Concentration Duration Temperature 

100 % 3x 15 minutes RT 

Resin embedding (Epon mix) 

Reagent Duration Temperature 

Infiltration 1 2 hours Desiccator, 600mbar 

Infiltration 2 Overnight Desiccator, 600 mbar 

Infiltration 3 4 hours Desiccator, 600 mbar 

Infiltration 4 Overnight Desiccator, 600 mbar 
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Infiltration 5 10 minutes 60 °C incubator 

 50 minutes Desiccator, 600 mbar 

 10 minutes 60 °C incubator 

 50 minutes Desiccator, 600 mbar 

 10 minutes 60 °C incubator 

 50 minutes Desiccator, 600 mbar 

 10 minutes 60 °C incubator 

 50 minutes Desiccator, 600 mbar 

Embedding 10 minutes 60 °C incubator 

Embedding 15 minutes Desiccator, 600 mbar 

Polymerisation I 3 hours 48 °C 

Polymerisation II 20 hours 60 °C 

Key: mbar: millibar; °C: degree Celsius; RT: room temperature 

2.18.1 Preparation of reagents 

❖ Yellow fixation buffer (stock solution): 2 % paraformaldehyde (0335, Roth, 

Germany) in 500 ml dH2O + 500 ml sodium phosphate buffer solution (pH 7.2-

7.4) + 0.02 % picric acid (74069, Sigma-Aldrich, Germany).  

▪ Working solution: 32 ml of 25 %-glutaraldehyde (3778, Roth, Germany) 

+ 268 ml of the yellow fixation buffer stock solution. 

❖ 0.2 M Cacodylate buffer: 42.8 g Sodium cacodylate trihydrate (5169, Roth, 

Germany) in 1 L of ddH2O. The pH was adjusted with 0.2 N HCl to 7.2.  

▪ Working solution (0.1 M): Mix 1 part of 0.2 M cacodylate buffer + 1 part 

of dH2O. 

❖ 2 % Osmium tetroxide (OSO4): 1 g OSO4 (8371, Roth Germany) + 50 ml ddH2O. 

❖ Epon stock solution: 95 ml Glycid ether (21045, Serva, Germany) + 40 ml 2-

Dodecenylsuccinic acid anhydride (20755, Serva, Germany) + 62 ml 

Methylnadic anhydride (29452, Serva, Germany).  

▪ Epon working solution was prepared by mixing the 197 ml stock solution 

+ 3 ml 1.5 % 2,4,6-Tris(dimethylaminomethyl)phenol (20755, Serva, 

Germany). 

❖ Infiltration 1: 10 ml Xylene + 5 ml Epon working solution.  

❖ Infiltration 2: 5 ml Xylene + 5 ml Epon working solution. 

❖ Infiltration 3: 5 ml Xylene + 10 ml Epon working solution. 

❖ Infiltration 4:  15 ml Epon working solution. 

❖ Infiltration 5: 15 ml Epon working solution. 
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❖ Embedding: Samples were embedded in Epon working solution. The final 

volume was dependent on the size of the embedding form. The samples were 

placed longitudinally on the narrow part of the form with the number tags. 

2.19 Ultramicrotomy 

2.19.1 Semi-thin sections 

Semi-thin sections of about 0.5 µm thickness were prepared from the Epon-embedded 

samples using a histo-knife (DH4580 Diatome, Switzerland) on the ultramicrotome 

machine (701 701, Reichert-Jung, Germany). Each section was transferred onto a 

superfrost plus glass slide (03-0060, Langenbrinck, Germany) with the aid of a perfect 

loop (Diatome, Switzerland) and the sections were dried on a hot plate at 70 oC. The 

sections were stained for 15 seconds in Toluidine blue solution containing 1.25 % 

Toluidine blue (1B-481, Chroma Germany) + 1 % Borax (1.06306, Merck, Germany) 

diluted in double distilled water and then for five seconds in Safranin-O solution 

consisting of 1 % Safranin (1.15948, Merck, Germany) + 1 % Borax diluted in double 

distilled water, while been placed on a hot plate. Dried sections were coverslipped 

using a small drop of warm Epon solution and then polymerised at room temperature 

for two days. The samples were examined under the light microscope to localise the 

ROI. Overview images were taken, and the ROIs were identified and marked to enable 

further sample trimming and generation of the ultrathin sections. 

2.19.2 Ultrathin sections 

After proper sample trimming and cutting, ultrathin sections between 60 - 80 nm 

thicknesses were cut from the ROIs with the aid of a 35o-diamond knife (DU3525, 

Diatome, Switzerland) and an ultra-microtome machine (701 701, Reichert-Jung, 

Germany). Sections were carefully transferred onto 200 mesh copper grids (G2200C, 

Plano, Germany) that have been previously filmed with 2 % Collodion (12620-10, EMS, 

USA). To enable similar and reproducible contrasting, all samples were contrasted with 

0.5 % uranyl acetate (Ultrostain 1, Laurylab, France) for 30 minutes and 3 % lead 

citrate (Ultrostain 2, Leica, Germany) for 80 seconds using the Leica contrasting 

machine (Leica EM AC20, Germany) in accordance with the manufacturer’s protocol. 

Afterwards, the grids were dried, and the samples were stored using a grid box. 
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2.20 Transmission electron microscopic imaging 

Images were acquired using a Zeiss transmission electron microscopy system (Zeiss 

EM912 OMEGA, Germany), equipped with a camera (TRS Sharp Eye 2k slow-scan 

CCD, Tröndle, Moorenweis) and controlled by the Olympus iTEM software. During 

imaging, the camera was cooled at -5 oC by the iTEM software. 

2.21 Statistical analysis 

The data analysis and graphical presentations were done using GraphPad Prism 8.0 

(GraphPad Software Inc, USA) and SPSS (V.22.0, SPSS Inc, USA). All results are 

presented as means ± standard error of the mean. The mean values from the operated 

left femur were compared to those of the unoperated right femur using the Wilcoxon 

matched-pairs signed rank test or paired Student's t-test to determine if a significant 

difference exists between the two groups and p-values less than 0.05 were considered 

significant. 
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3. RESULTS 

3.1 Clinical observations  

All the six animals tolerated the 10 mm osteotomy gap created at the distal 

metaphyseal area of the left femur. The animals returned to their normal activity and 

full load bearing around day three post-surgery. Postoperative X-ray of the femur 

revealed the fracture gap at the distal femur metaphysis with correct placement of the 

plate and locking screws that extended into the epiphysis for better stability of the 

fracture (Fig. 7A-B). All the sheep survived the observation period without any plate 

breakage, fracture or other relevant adverse events and could be euthanised according 

to the study protocol. 

 

Fig. 7. Postoperative X-ray analysis of the operated femur. (A) The postoperative X-ray image on 
day 1 revealed the wedge-shaped metaphyseal fracture in the frontal plane on the antero-posterior 
view (arrow) with the locking plate and screws. (B) The lateral view showed the proper alignment of 
the plate along the femur axis. The osteotomy is not visible on the lateral image due to the overlying 
plate. 

 

3.2 Bone mineral density evaluation 

The whole-body BMD of each animal was measured immediately before the fracture 

and at 12 weeks post-fracture to determine whether the BMD of the animals were 

comparable before and after the surgery. The measurement revealed similar BMD in 

the study animals (Fig. 8A). The average BMD value at three months was slightly 

reduced at both the operated left and unoperated right femurs, but with no significant 

difference (Fig. 8B).  
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Fig. 8. Evaluation of the BMD. (A) The BMD at the whole-body region of the individual animal before 
and three months after femur osteotomy (B) Average BMD values on the operated left and unoperated 
right femurs. ns = not significant. 

 

3.3 Micro-computed tomography analysis 

3.3.1 Substantial bony bridging of the fracture gap evident by the high healing scores 

Next, the healing quality at the fractured area was determined by a macroscopic 

analysis of the reconstructed 3D micro-CT images of the bone slices. Qualitatively, 

images of all samples revealed a complete bridging of the fracture gap from the medial 

side up to two-thirds of the fractured area. Four of the six samples (Fig. 9A-D) achieved 

almost complete healing of the entire fracture gap from the medial to the lateral cortex 

whereas the remaining two samples attained partial healing (Fig. 9E-F). Blinded 

scoring of the degree of healing by two independent investigators showed scores 

ranging between 4 and 8.5 from a maximal score of 9 (Fig. 10). The newly formed bone 

present in the fractured area appeared very dense and quite like the native bone 

outside the fractured area. 
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Fig. 9. Micro-CT image evaluation of the healing status of all six sheep at 12 weeks post-
fracture. (A-D) Four of the six sheep, namely sheep number 2 (A), 3 (B), 5 (C) and 6 (D), showed 
almost complete bone bridging of the entire fractured area. (E-F) Partial healing of the fracture was 
evident in sheep 1 (E) and 4 (F). The fracture bridged fully from the medial aspect but very minor from 
the lateral side. The wedge-shaped outline shows the fractured area. (G-H) Two representative 
images of bone slices from the unoperated right femur showing the intact metaphyseal bone area. 



Results 
 

37 
 

 

 

Fig. 10. Qualitative evaluation of the degree of bone healing. Healing score was determined from 
the macroscopic assessment of the fractured area from medial to the lateral end of the cortex. 

 

3.3.2 An increased amount of newly formed bone revealed by the quantitative 3D-

morphometry 

Direct 3D-quantitative morphometry of a defined ROI within the trabecular bone area 

of the operated femur and a corresponding region within the unoperated femur showed 

that the bone volume (BV) and the ratio of the bone volume to total volume (BV/TV) 

were comparable in both femurs (Fig. 11A-B). Also, the number of trabeculae within 

the healed operated femur was comparable to the unoperated side (Fig. 11C). 

However, the thickness and spacing of the trabeculae were significantly higher in the 

operated femur when compared to the unoperated femur (Fig. 11D-E). Furthermore, 

the structural model index (SMI), a parameter for estimating the shape the trabecular 

was significantly reduced in the operated femur (Fig. 11F). 
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Fig. 11. Quantitative micro-CT image analysis. A direct 3D quantitative morphometry of a defined 
ROI within the trabeculae of the operated femur and the unoperated contralateral femur showing 
positive structural changes of the new trabeculae as revealed by a higher (A) bone volume (B) bone 
volume / total volume (BV/TV) and (C) comparable number of trabeculae (Tb.N). (D-E) A significantly 
higher trabecular spacing (Tb.Sp) and thickness (Tb.Th). (F) A negative structural mass index (SMI) 

value. ns = not significant. 
 

3.4 Biomechanical analysis 

3.4.1 A comparable bone stiffness at both the operated and unoperated femurs 

The indentation test on nine different points covering the trabecular and cortical regions 

within the fractured area and sub-regions was performed on the bone slices to compare 

the stiffness of the fractured bone to those of the unoperated contralateral femur. The 

data generated by the cooperation partner as mentioned in the method section was 

used for the quantitative analysis. The quantification of the bone biomechanical 

strength based on the degree of stiffness showed that the operated femur both at the 

cortical and trabecular areas was not statistically different from the intact contralateral 

side as shown in figure 12. Furthermore, the stiffness at both the cortical area of the 

operated and unoperated femurs was two-fold more than in the trabecular area. 
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Fig. 12. Assessment of the biomechanical competence of the newly formed bone. The bone 
stiffness at the cortical and trabecular areas of the operated and unoperated femurs. The bone 
stiffness of the operated left femur was not statistically different from the unoperated right femur. 
However, the stiffness was about two-fold higher in the cortical area of both groups. ns = not 
significant. 

 

3.5 Qualitative and quantitative histology 

The overall microstructural appearance of the newly formed bone and the 

differentiation of mineralised from osteoid tissue were determined by trichrome 

Masson-Goldner and von-Kossa van-Gieson stain, respectively. Furthermore, the 

quantity and morphological arrangement of the osteocytes-lacunae canaliculi network 

was determined through silver nitrate stain. 

3.5.1 Healing characterised by a dense inter-cortical and trabecular bone bridging  

The overall microstructural appearance of the newly formed bone was determined by 

trichrome Masson-Goldner stain. An advanced bony bridging that correlated with the 

micro-CT images was evident. Medially, there was both inter-cortical and trabecular 

bone bridging of the fractured area as shown in the representative overview image 

(Fig. 13A). The fractured area was almost entirely bridged with new bone. Only a minor 

area within the trabeculae was bridged with soft connective tissue, mostly in the form 

of dense collagenous fibres. The bridged cortical bone area revealed tightly parked 

osteons of concentric lamellae while the connective tissue area showed dense 

collagenous fibres (Fig. 13B-C). The newly formed trabecular bone revealed dense 

and well-structured trabeculae and marrow space enriched with adipose tissue, similar 

to the native bone lying outside the fractured area (Fig. 13D). Moreover, chondrocytes 

were absent in the fractured area. The new trabeculae healed through a direct 
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membranous bone formation at the marrow cavity without any visible callus. However, 

a thin layer of periosteal callus was visible only at the medial end of the femoral cortex 

whereas at the lateral cortex no external callus formation was visible. 

 

Fig. 13. Microstructural features of the newly formed cortical and trabecular bone in the 
fractured area. (A) Overview image of a coronal ground bone section of sheep number 2 stained 
with trichrome Masson-Goldner showing an advanced bony bridging at the fracture gap. The gap 
was almost entirely replaced with new bone. No callus formation is evident at the lateral cortex 
whereas a thin layer of periosteal callus is visible at the end of the medial cortex. A minor area within 
the trabeculae is filled with soft connective tissue, marked C. Detail images of the (B) cortical bone 
area showed a compact mineralised cortex with the typical Haversian system, (C) connective tissue 
showed bundles of dense collagenous fibres, and (D) trabecular bone area revealing dense and 
well-structured mineralised trabeculae with marrow cavity lying within. The mineralised bone area 
was stained greenish-orange, and the unmineralised bone area was stained green. 
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3.5.2 Major matrix mineralisation as evident by an increased amount of mineralised 

bone area 

The level of mineralisation of the newly deposited bone matrix was determined by the 

von-Kossa van-Gieson stain. The images revealed a large area of mineralised bone 

(black staining) and less of the osteoid area (pink staining) within the fractured area of 

the operated left femur that was similar to that of the unoperated right femur (Fig. 14A-

B). The osteoid region surrounded the mineralised area and was majorly composed of 

dense collagenous fibres with numerous osteoblasts embedded within (Fig. 14C-D). 

The histomorphometric analysis of a defined ROI revealed an average of about 40 % 

mineralised bone area in the operated femur that was comparable to the unoperated 

femur (Fig. 14E). However, the percentage of the osteoid area in the fractured area 

was significantly higher than the intact unoperated femur (Fig. 14F). 
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Fig. 14. Major bone matrix mineralisation as evidence of advanced bone healing. Overview 
image of undecalcified bone sections of the (A) unoperated right and (B) operated left femurs stained 
with von-Kossa van-Gieson showing the mineralised area in black and the osteoid area in pink. Close-
up images of B within the fractured area (yellow dashed-line sketch) revealed mainly mineralised 
bone area (C) and the minor osteoid area (D) showed collagenous fibres that surrounded and lined 
the surface of the mineralised bone with numerous osteoblasts embedded within. (E) A higher 
percentage of the mineralised bone area was evident; however, the quantity was not statistically 
different from the unoperated femur. (F) The percentage of the osteoid area of the operated femur 
was significantly higher relative to the unoperated femur. The dashed-line sketch shows the ROI area 
used for the histomorphometric analysis. ns= not significant. 
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3.5.3 Increased number of regularly organised osteocytes-lacunae canaliculi network 

The quality of the healing outcome in the fractured area was further characterised by 

quantifying the osteocytes lacunae and the morphological arrangement of the 

osteocyte-lacuna canaliculi network. Images of decalcified bone sections stained with 

silver nitrate revealed mostly spherically shaped osteocytes lacunae organised in 

lamellae and interconnected via the canaliculi network that was similar to the 

unoperated contralateral side (Fig. 15A-C). The canaliculi network was mostly 

arranged perpendicular to the longitudinal axis of the trabeculae. There was an 

increased number of osteocytes lacunae in the fractured area. However, the amount 

was significantly higher in the unoperated femur (Fig. 15D). Empty lacuna was mostly 

found at the lateral cortex where the least bone bridging occurred. 

 

Fig. 15. Increased number of well-organised spherically shaped osteocytes-lacunae with the 
canaliculi network as proof of the new bone maturation. Images of decalcified silver nitrate 
stained bone sections of (A-B) operated and (C) unoperated femur showing abundant spherically 
shaped osteocytes (arrows) that were regularly arranged within the trabecular bone area. The close-
up images (B-C) revealed the osteocyte-lacuna canaliculi network. The canaliculi networks in both 
operated and unoperated femur were arranged perpendicular to the bone surface (arrowheads). (D) 
The amount of the osteocytes lacunae was significantly higher in the unoperated femur. 
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3.6 Qualitative and quantitative enzyme histochemistry 

3.6.1 A significantly higher cellular expression of ALP in the operated femur 

The cellular activity of ALP as a key osteoblast marker associated with bone matrix 

mineralisation and TRAP as an osteoclast marker involved in bone resorption was 

determined by enzyme histochemical staining of the bone sections. The staining 

revealed high expression of ALP-positive cells and reduced expression of TRAP-

positive cells in the fractured area (Fig. 16A-D). Similarly, histomorphometric analysis 

depicted significantly higher ALP activity in the operated relative to the unoperated 

femur (Fig. 16E). Although there was a lower activity of TRAP compared to ALP in the 

fractured area, the amount of TRAP positive cells in the operated femur was 

significantly higher than in the unoperated femur that expressed a negligible quantity 

(Fig. 16F). 
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Fig. 16. Bone formation in the fractured area evident in the significantly higher activity of the 
osteoblasts. Photomicrographs of the ALP stained bone sections of the operated femur showing (A) 
increased activity of the osteoblasts. (B) Close-up image of A showing densely stained osteoblasts 
(obs) lining the bone surface (C) The reduced TRAP-positive cells visualised in the operated femur 
indicated lower osteoclasts activity (D) Close-up image of C revealing few multinucleated osteoclasts 
(ocs) attached to the bone surface. Histomorphometric analysis showed significantly higher activities 
of (E) ALP and (F) TRAP in the operated in comparison to the unoperated femur.  

 

3.7 Qualitative and quantitative immunohistochemistry 

3.7.1 A moderate amount of BMP2, OPG, RANKL and a reduced ASMA count 

By employing the immunohistochemical technique that involves primary antibody 

binding to a specific antigen, bone sections were stained with the following antibodies; 

BMP2, OPG, RANKL and ASMA to determine their cellular expression level within the 

fractured area. Both BMP2 and OPG (bone formation markers) and RANKL (bone 
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resorption marker) were positively expressed (Fig. 17A-C). Histomorphometric 

analysis of the defined ROI (Fig. 17E) revealed similar quantities of the tested bone 

formation and resorption markers (BMP2, OPG and RANKL). The positively stained 

alpha smooth muscle cells localised within the vascular walls (Fig. 17D) confirmed the 

presence of blood vessels in the fractured area. The blood vessels were typically small-

sized and sparsely distributed. The low ASMA count in the operated femur was 

comparable to the unoperated contralateral femur (Fig. 17F). 

 

Fig. 17. Comparative expression of BMP2, OPG, RANKL and ASMA. Photomicrographs of the 
bone sections revealed a brownish stained (A) BMP2 and (B) OPG area, indicating new bone 
formation. (C) RANKL positive area reflected osteoclast associated bone resorption. (D) ASMA 
positive area revealed small-sized blood vessels with thin lumen lying within the trabecular bone 
marrow as shown in the close-up image. (E) The reduced amounts of BMP2 and OPG corresponded 
with that of the bone resorption marker, RANKL in the operated femur. (D) The ASMA count of the 
operated was almost significantly higher than in the unoperated femur. 
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3.8 Gene expression analysis 

3.8.1 Up-regulation of prominent genes involved in bone formation 

The gene expression of prominent bone formation and resorption markers in the 

fractured area was quantified using quantitative PCR. Most of the tested genes were 

expressed higher in the operated femur. However, the quantity was not statistically 

different from the unoperated contralateral femur as shown in figure 18. The bone 

turnover markers including, COL1A1, a dominant extracellular matrix collagenous 

protein alongside BGLAP and ALP, which are important osteoblast markers known to 

support bone matrix mineralisation were expressed at higher amount compared to 

OPG and BMP2.   

Further, COL2A1 a cartilaginous tissue marker was expressed in a negligible quantity 

in both the operated and unoperated femur (Fig. 15A-F). The reduced expression of 

the OPG gene correlated positively with that of its agonist, RANKL that was also 

expressed in similar quantity resulting in equal RANKL/OPG ratio (Fig 15G-H). 

Surprisingly, CTSK, an important bone resorption marker was expressed more in the 

operated femur in contrast to the unoperated right femur (Fig 15I). However, there was 

no statistical difference between both groups. 
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Fig. 18. Relative expression of prominent bone formation and resorption genes. Relative 
expression of major bone formation markers: CoL1A1 (A), CoL2A1 (B), ALP (C), BGLAP (D), BMP2 
(E), and OPG (F) and bone resorption markers: RANKL (G) and CTSK (I) in the operated left and 
unoperated right femurs. The ratio of RANKL to OPG showed similar expression amounts both in the 
operated and unoperated contralateral femur (H). 
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3.9 Bone surface analysis using ToF-SIMS 

3.9.1 Calcium and collagen surface mapping revealed similar intensity distribution 

The local distribution pattern of calcium and collagen components of the newly formed 

bone within the fractured area was measured using ToF-SIMS by a collaborator as 

mentioned in the method section. The mass images of calcium and collagen 

represented by Ca+ and C4H8N+ signals respectively, as well as overlay images, were 

generated as shown in figure 19A-C. The calcium mapping revealed a quite 

homogeneous calcium distribution with increased calcium content in the cortical 

region. The colour scale encodes the signal intensity for each pixel, which means the 

brighter the colour, the more the detected signal. The collagen signal also showed a 

homogeneous distribution within the dense trabecular network. No noticeable 

difference was seen in the Ca+ and collagen signal intensity between the newly formed 

bone that replaced the fractured area and the native bone outside the fracture area. 

The line scan given the summed signal intensity along the x-direction revealed higher 

calcium and collagen signal intensity at the dense cortical bone region in comparison 

to the trabecular bone region. However, within the fractured gap, the line scans 

complemented the mappings and demonstrated the presence of calcium and collagen 

in the fractured area.  

 

Fig. 19. The local distribution pattern of calcium and collagen in the fractured area. Mass 
images of (A) Ca+ and (B) collagen fragment C4H8N+ showed homogenous distribution within and 
outside the fractured area. (C) An overlay image of calcium in red and collagen in green. 
Unmineralised collagen signal was detectable at the edge of the cortex. The line scans below the Ca+ 
and C4H8N+ mass images showed the signal intensity of calcium and collagen respectively, within the 
fractured area, as marked with the white rectangle. The signal intensity generated in y-direction was 
summed up and plotted with the distance in the x-axis.  
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3.10 Ultrastructural analysis of the newly formed trabeculae 

3.10.1 The localisation of the ROIs for further ultrastructural analysis  

Next, to characterise the composition of the organic and inorganic matrix as well as 

the unique features of osteoblasts, osteoclasts and osteocytes within the new 

trabeculae. The ultrastructural features were investigated via transmission electron 

microscopy. First, the samples were cut into semi-thin sections and examined under 

the light microscope to localise ROIs for further electron microscopic investigation.  

The ROI1 revealed an active remodelling zone as shown in figure 20A. The overview 

image (Fig. 20A) showed a mineralised bone area partly surrounded by an 

unmineralised area with an active remodelling front. A detail image of ROI1 at ‘point B’ 

(Fig. 20B) revealed parallel-aligned collagen fibres with abundant osteoblasts that 

were embedded inside the osteoid area and surrounded by blood vessels. A close-up 

image at ‘point C’, adjacent to the mineralisation front revealed predominantly 

unaligned collagen fibre with osteocyte-like cells embedded within the matrix (Fig.  

20C). The loss of the alignment of the collagen fibres at ‘point C’ (as opposed to ‘point 

A’) indicated an ongoing mineralisation process. This observation is supported by the 

increased number of young osteocytes originating from the osteoblasts. The Howship’s 

resorption pit was visualised at ‘point D’ with osteoclasts resorbing the mineralised 

bone surface (Fig. 20D). 

The ROI2 (Fig. 20E) revealed a fully mineralised trabecular bone area with osteoblasts 

lining the bone surface. A detail image of ROI2 at ‘point F’ (Fig. 20F) revealed plumb 

osteoblasts arranged perpendicularly to the bone surface. Also, matured osteocytes 

were embedded within the mineralised bone area.  
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Fig. 20. The localisation of ROIs in the fractured area for further ultrastructural analysis. (A) An 
overview image of ROI1 showed partly mineralised bone area, osteoid area and an active remodelling 
front (arrows) within the trabeculae. Blood vessels were evident in the osteoid area. (B) A close-up 
image of ROI1 at ‘point B’ showed the parallel alignment of the collagen fibres with an abundance of 
embedded osteoblasts. (C) A close-up image of ROI1 at ‘point C’ revealed unaligned collagen fibres 
with many osteocyte-like cells embedded inside the matrix. (D) A close-up image of ROI1 at ‘point C’ 
showed the Howship’s resorption pit with osteoclasts resorbing the bone surface (arrows). (E) An 
overview image of ROI2 showed fully mineralised trabeculae with osteoblasts lining the bone surface. 
(F) A close-up image of ROI2 at ‘point F’ showed plumb osteoblasts (black arrows), and flattened 
osteoblasts (white arrow) arranged perpendicular to the bone surface. Matured osteocytes (black 
arrowheads) embedded inside the mineralised bone matrix. 
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3.10.2 Ultrastructure of the organic matrix and the bone mineral material 

The unmineralised organic matrix revealed smooth bundles of collagenous fibrils (Fig. 

21A-B). The fibril has a thickness of about 50 nm. The fibrils were tightly packed 

together in parallel orientation and the architecture resembled those of type 1 collagen. 

The organic matrix was homogenously mineralised by the densely distributed bone 

mineral particle of a few nanometres thickness. The deposition of the bone mineral on 

the organic matrix seemed to have happened both parallel and perpendicularly to the 

direction of the collagen fibrils. The aggregation of collagen fibrils increased as more 

mineral particles deposit within and on the fibrillar space. The bone mineral appeared 

as dense needle-like clusters with a diameter of about 1 µm (Fig. 21C-D).  

 

Fig. 21. Ultrastructure of the organic matrix and the bone mineral material. (A-D) Electron 
micrographs of both ROIs showed the unmineralised organic matrix consisting of majorly collagen 
fibrils that were closely packed and parallel arranged. The densely mineralised area revealed a 
homogenous distribution of the bone mineral substance that localised within and on the collagen 
fibrils. The high electron-dense bone mineral particles appeared as needle-like clusters (arrows). At 
the active mineralisation front, the organic matrix appeared less dense. 
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3.10.3 Ultrastructure of the osteoclasts 

Large multinucleated osteoclasts actively involved in the resorption process were 

localised at the trabecular bone surface (Fig. 22A) and in the vicinity of bone (Fig. 22B). 

Their nuclei surrounded by Golgi apparatus were distributed in the cytoplasm and 

positioned away from the resorption area. The osteoclasts revealed prominent ruffled 

borders, known as the active resorption site that directly connected them to the bone 

surface. Numerous large vacuoles and mitochondria laid very close to the ruffled 

border (Fig. 22C). A closer focus into the ruffled border (Fig. 22D) revealed deep 

invaginations of the cell membrane in the locality of the tissue to be resorbed. 

 

Fig. 22. Ultrastructure of the osteoclasts. Osteoclasts (ocs) actively involved in bone resorption 
were attached directly to the bone surface (A) and some laid near the bone surface (B). Their large 
nuclei were positioned away from the resorption area. (C) A detail image of B revealed several 
cytoplasmic components surrounding the nucleus. The nucleus (black arrow) also revealed its highly 
electron-dense nucleolus, lying at the centre (white arrow). (D) A close-up image of the ruffled border 
showed deep invagination of the cell membrane into the resorption area (arrows). Small and large 
sized vacuoles (labelled V) and mitochondria (arrowhead) localised close to the ruffled border. 
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3.10.4 Ultrastructure of the osteoblasts 

Osteoblasts with different shapes, sizes and arrangements were evident in the 

trabeculae. Several of the osteoblasts were actively involved in the secretion of the 

new bone matrix along the mineralised bone surface. The active osteoblasts were 

mostly cuboidal shaped and arranged perpendicularly to the bone surface with their 

nucleus positioned opposite to the bone surface (Fig. 23A). A closer look into one of 

the osteoblasts revealed numerous rough endoplasmic reticulum and mitochondria 

within the cytoplasm (Fig. 23B). Furthermore, less active osteoblasts that were less 

plump (Fig. 23C) and some almost flattened along the bone surface (Fig. 23D) were 

seen lying at the osteoid layer, which separated them from the mineralised bone area. 

Unlike the active osteoblasts, they appeared less developed and have several 

elongated cytoplasmic components. 

 

Fig. 23. Ultrastructure of the osteoblasts. (A) Active osteoblasts (obs) in cuboidal shape containing 
a large nucleus laid perpendicular to the bone surface. (B) A close-up image of an obs revealed 
several electron dense rough endoplasmic reticulum (rER) and mitochondria (m). The obs were 
attached to the bone surface via short electron dense filopodia (arrows). Less active obs with 
elongated cytoplasmic extensions that appeared (C) less cuboidal and (D) flattened were evident. 
The less active obs occupied the less dense osteoid layer separating them from the more electron 
dense mineralised bone surface. 
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3.10.5 Ultrastructure of the osteocytes 

Mature star-shaped osteocytes localised individually in flattened periosteocytic lacuna 

and embedded in the fully mineralised bone matrix were evident in the newly formed 

trabeculae (Fig. 24A). Furthermore, osteocytes surrounded by osteoid or partially 

mineralised bone matrix referred to as osteoid-osteocytes or young osteocytes were 

seen connected via their cytoplasmic extension to osteoblasts at the bone surface as 

shown in figure 24B. A close-up image of a young osteocyte (Fig. 24B) revealed thin 

filopodia that linked it to the adjacent osteoblast on the bone surface. In comparison to 

osteoblasts, their nucleus appeared more prominent, and their cytoplasm seemed less 

abundant. 

 

Fig. 24. Ultrastructure of the osteocytes. (A) Micrograph of the matured star-shaped osteocytes 
(arrow) embedded within the fully mineralised bone matrix. A close-up image of an osteocyte (in the 
insert) revealed its flattened periosteocytic lacuna and the prominent nucleus. (B) Micrograph of a 
young osteocyte localised in the osteoid area and connected via the cytoplasmic projections to an 
adjacent osteoblast. A close-up image of the connecting area as shown in the insert revealed long 
filopodia (arrow) adjoining the osteocyte to the adjacent osteoblast. 
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4. DISCUSSION 

4.1 Successful establishment of a metaphyseal fracture model in the distal 

femur of skeletally matured sheep  

The first aim of this experimental study was to establish a clinically relevant 

metaphyseal fracture model in the distal femur of adult sheep. The three main 

parameters identified from clinical practice to be clinically relevant for such a model 

include (1) full discontinuity of the metaphyseal area, (2) comparable internal fixation 

method, and (3) postoperative full weight bearing of the operated hind limb [39], [40]. 

The establishment of the fracture gap at the distal metaphyseal region of the femur is 

of clinical relevance due to the high prevalence of fracture at this bone area [25], [57]. 

Instead of the commonly used partial osteotomy model, a complete osteotomy at the 

metaphyseal area was generated using a wedge-shaped fracture with a medial gap of 

approximately 0.1 mm, and a width of 10 mm at the lateral end of the femoral cortex. 

The full discontinuity allows comparison to frequently observed comminution defect 

zones in clinical metaphyseal fractures. The fracture gap was stabilised internally using 

a customised titanium locking plate construct, which is also comparable to the fixation 

method used in patients with a similar type of fracture. The main benefit of this fixation 

technique is the allowance of full weight bearing without any restrictions for the 

animals. Since the selection of an appropriate time point is essential for achieving a 

successful bone healing, an observation period of 12 weeks was selected for this study 

based on the suggested estimated time of 10 to 14 weeks for the union of long bone 

defects in sheep [51], [58], [59]. 

All animals survived the surgical procedure and returned to their regular activity as well 

as full load bearing around day three post-surgery. No form of plate breakage or 

secondary fracture was recorded throughout the 12-week observation period. This 

confirmed that all the three identified parameters were translated into this large animal 

model, thus demonstrating a successful establishment of a clinically relevant 

metaphyseal fracture model. 
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4.2 Validation of the BMD in the study animals 

4.2.1 A comparable BMD at the whole body and femur region of the sheep 

Since previous studies have demonstrated that sheep BMD significantly changes with 

seasonal variation [28], [60]. The initial and final BMD of the whole body and femur 

region of the animals was determined by DEXA. DEXA is a standard non-invasive 

method commonly used in the clinic and animal experiments for the assessment of 

bone quality [51], [61], [62]. The comparable BMD evident at the whole body region of 

the animals and the similar BMD of the operated left and unoperated right femur 

indicated that all six sheep have similar BMD status and no seasonal influence on their 

BMD. The comparable BMD measurement eliminates any potential adverse effect 

such seasonal variation could have had on the fracture healing, and also indicated that 

the surgical operation did not affect the general bone quality of the animals. This 

positive effect could be associated with the angular stable internal fixation that 

facilitated immediate postoperative full weight bearing of the animals and excluded the 

need for immobilisation that could have possibly led to a general bone loss. Many 

reports from patients and animal models have shown that long term immobilisation is 

a major culprit of mechanical unloading that could result in bone loss [63], [64]. 

 
4.3 Characterisation of bone healing in the fractured area  

The second aim of this study was to characterise bone healing in the established 

metaphyseal fracture model relative to the unoperated femur using different analytical 

methods. The various methods enabled a comprehensive characterisation of 

metaphyseal bone healing both qualitative and quantitatively. The findings provided in-

depth insight on the bone microstructure, bone stiffness and mineralisation, cellular 

activities of the specialised bone cells, vascularisation, normal ultrastructure of main 

bone components as well as the activities of prominent bone formation and resorption 

genes as discussed below.  

4.3.1 Bone microstructure 

The qualitative micro-CT and histological evaluation of the bone samples from the 

medial to the lateral end of the fractured gap showed prominent bony bridging from the 

medial cortex up to two-thirds of the defect. The lack of external callus formation at the 

lateral end of the cortex is suggestive of improved mechanical stability achieved by the 
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internal plate fixation. This observation in the fractured metaphysis is similar to those 

of Claes et al. 1997 [65] who linked periosteal callus formation in metatarsus diaphysis 

with the size of interfragmentary movement and strain. They showed that higher 

interfragmentary movement even though in smaller size gap could negatively impact 

the overall diaphyseal fracture healing and the resulting instability most often leads to 

external callus formation. A similar finding by Christopher and co-workers showed 

decreased periosteal callus formation in patients with distal femoral fractures stabilised 

with stable locking plates [66]. However, the thin layer of periosteal callus found at the 

end of the medial cortex where the defect was only 0.1 mm wide could be likely due to 

minor periodic movements at this region since the major stability was provided at the 

lateral aspect of the femur by the locking plate. Such minor periodic movements are 

reported to be beneficial for optimal healing of trabecular bone both in human and 

animal [67]–[69]. 

The new trabecular bone that bridged the fracture gap formed through a direct 

membranous bone transformation at the marrow cavity without any visible callus. The 

absence of cartilaginous tissue within the new trabeculae as evident by the lack of 

chondrocytes and the insignificant expression of COL2A1 supports the notion of a 

primary bone formation without an endochondral healing phase that mostly requires 

cartilage formation. Cartilaginous tissue formation is connected to instability in both 

cortical and cancellous bone healing. Thus, the direct transformation into new bone 

without any cartilage stage could also be attributed to the sufficient biomechanical 

stability provided by the locking plate in this model. These findings support previous 

observations that metaphyseal bone healing occurs through a direct intramembranous 

bone formation under stable biomechanical conditions [19]–[21], [70]. Furthermore, the 

presence of the Haversian system consisting of tightly parked osteons of concentric 

lamellae at the newly bridged cortical bone area is typical for a matured sheep compact 

bone and also similar to human subject [32], [60], [71]. 

The high healing scores of the micro-CT images provided a good impression of the 

healing outcome and correlated with the quantitative micro-CT results. The increased 

bone mass also evident by the high percentage bone volume fraction was comparable 

to the unoperated contralateral femur. The improved quality of the newly formed 

trabeculae microarchitecture is evident in the derived key morphometric parameters. 

The significantly higher trabecular thickness and separation of the operated left femur 
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also indicates a dense trabecula with an abundance of marrow filled cavities. This 

suggests that bone healing in the fractured femur is still under remodelling process in 

specific areas, unlike in the contralateral femur where the matured trabeculae are intact 

with no need for repair, hence the low trabecular thickness [72], [73]. The negative SMI 

value of the operated femur is also indicative of dense trabeculae with plate-like 

structure whereas the positive SMI value of the unoperated side suggests thinner 

trabeculae with more or less rod-like shape [74], [75]. 

4.3.2 Bone mineralisation and stiffness 

The newly formed bone that bridged the fractured gap also attained a substantial level 

of mineralisation as seen with the higher percentage increase of mineralised bone area 

that was, however, comparable to the unoperated femur. On the other hand, the 

significantly higher percentage of the osteoid area in the operated relative to the 

unoperated femur suggests a rich organic matrix that is still under remodelling process. 

ToF-SIMS as previously reported is an excellent method to identify mineralised tissue 

[76], [77]. The high calcium signal detectable within the fractured area also 

demonstrates high matrix mineralisation. Under-mineralisation with increased 

heterogeneity of calcium in the bone matrix is reported in patients with fragility fractures 

in the metaphyseal area [78]. The increased mineralised bone area correlates 

positively with the high stiffness measured at both the newly formed cortical and 

trabecular bone areas of the operated femur, which was quite comparable to the 

unoperated femur. The higher stiffness recorded at the bridged cortical bone area is in 

line with previous reports and could be attributed to its unique structural features [2], 

[14], [79]. Furthermore, the similar distribution pattern observed in the collagen 

component of the fractured area also implies abundant organic matrix. This 

observation indicates that the quality of both the organic and the inorganic bone 

components play important roles in the ultimate bone mechanical strength [80]–[82].  

 

4.3.3 Cellular activities of osteoclasts, osteoblasts and osteocytes 

The healing process is reflected in the activities of the specialised bone cellular 

components. The significantly higher activity of osteoblasts observed in the ALP 

staining indicates new bone formation. The bone formation also manifested in the 

BMP2 and OPG staining. The increased amount of ALP-activity in the operated femur 
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could be associated with the increased mineralised bone area, which suggests a 

possible role in matrix mineralisation [83]. BMP2, a bone matrix derived protein is 

shown to be more expressed during the early healing phase and subsequently 

downregulated at the later phase [84]–[86]. Hence, its low expression after this 12-

week study period could imply an advance healing stage. Besides, the stimulation of 

transforming growth factors (for instance the BMPs), are linked to OPG production [87], 

[88]. Thus, the low expression of BMP2 could be coupled to the decreased amount of 

OPG. In the operated femur, the ten-fold decrease in TRAP compared to ALP indicates 

a reduced osteoblast activity. However, the TRAP activity in the operated femur was 

significantly higher in comparison to the unoperated femur. This finding in line with the 

micro-CT result indicates that the operated femur, as opposed to the intact 

contralateral femur is still under active remodelling. Bone resorption in the operated 

femur is also evident in the RANKL staining. Osteoclast-mediated bone resorption is 

known to be strongly regulated by the ratio of RANKL to OPG [87], [89]–[93]. Thus, the 

similar expression amount of OPG and RANKL is suggestive of a controlled resorption 

process. 

The proper formation and maturation process of the newly formed bone is further 

reflected in the well-established osteocytes-lacunae canaliculi network. Their regular 

arrangement suggests active involvement of the osteocytes in the regulation of local 

strains that might have occurred during the mechanical loading episodes thus, implying 

a role in mechanosensing [2], [94]–[96]. In small animal models of osteoporosis, 

osteocytes death is associated with a reduction in bone formation and mechanical 

strength [97], [98]. Similarly, bone loss as reported in an ovine model of osteoporosis 

and the human subject were caused by low osteocytes density along with an increasing 

number of empty lacunae [99], [100]. Given that the number of osteocytes and their 

appropriate response to mechanical stimuli is very vital to the maintenance of superior 

bone quality, it is thus, certain that the increased density of osteocytes lacunae 

positively influenced the recruitment of active osteoblasts and osteoclasts as well as 

other relevant growth factors necessary for the bone remodelling process.  

Furthermore, changes in the osteocyte-lacuna morphology and arrangement are 

recently proposed to influence the way bone responds to the applied mechanical signal 

with ageing and or in disease condition  [96]. A previous study by Carter et al., 2013 

[101] showed that osteocytes lacunae of the human femora become smaller and 
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spherically shaped with ageing. Ubaidus and co-workers  [102] reported uniformity in 

the arrangement of the osteocyte-lacuna canalicular system in healthy bone. Similar 

to the result of this study, the osteocytes aligned parallel longitudinally to the bone 

surface and the canaliculi network extended perpendicularly. Therefore, the 

dominance of spherically shaped osteocytes lacunae along with regular canaliculi 

system in the newly formed trabeculae of the operated as well as the unoperated femur 

indicates that the morphological arrangement of the osteocytes positively influenced 

their overall function. 

4.3.4 Vascularisation  

The small size and reduced number of blood vessels visualised within the fractured 

area also suggest an advanced healing stage. The sparse distribution of the blood 

vessels implies that the healing is at a later stage and thus, does not require major 

blood vessels formation. The formation of fibrocartilages is linked to inadequate blood 

supply while bone formation indicates sufficient vascularisation under stable condition 

[103]. 

4.3.5 Activities of prominent bone formation and resorption genes 

The high expression of important bone formation genes (ALP, BGLAP and COL1A1) 

relative to the unoperated femur further indicates bone formation. The increased 

expression of ALP and BGLAP probably relates to the richly mineralised matrix. The 

low quantity of BMP2 and OPG as similarly observed in quantitative 

immunohistochemistry confirm both findings and the already stated interpretation.  

Conversely, bone resorption is evident in the expressed RANKL and CTSK genes of 

the operated femur, which is comparable to the unoperated contralateral side. CTSK 

is a key catabolic enzyme needed for the digestion of the collagenous matrix during 

the resorption process [104], [105]. Hence, its high level is also suggestive of an active 

remodelling phase. Regardless of the high CTSK level, there was a low level of 

RANKL/OPG ratio indicating that the resorption process is well coupled to the new 

bone formation process as evident by the increased bone mass. The high expression 

of CTSK could be related to this study time point. This could imply that a high level of 

CTSK is necessary even at the advanced healing stage since the remodelling process 

is still in progress. Since osteoclast-mediated bone resorption is strongly regulated by 
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RANKL/OPG ratio [87], [90] thus, their controlled expression by osteoblasts is vital to 

achieving a balanced remodelling in healthy bone. 

4.3.6 Characteristic ultrastructure of the organic, inorganic and the specialised bone 

cells 

Transmission electron microscopic imaging of the newly formed trabecular bone was 

performed to characterise the ultrastructure of the collagen-mineral composite, 

osteoblasts, osteoclasts as well as the osteocytes. A rich organic matrix majorly 

consisting of collagenous protein was evident. The typical parallel arrangement of the 

collagen fibrils resembles that of a normal human lamella bone [106]. Major 

mineralisation of the organic matrix evident in the dense and uniformly distributed bone 

mineral substance implies bone maturation. The dense needle-like clusters of the bone 

mineral substance laid within and upon the collagen fibrils, consequently reinforcing 

their regular cross-linking [9], [12], [107]. The less electron dense area observed close 

to the mineralisation front suggests an ongoing mineralisation process. Thus, the 

unique composition and structural arrangement of the collagen fibrils and the bone 

mineral substance at the osteoid and mineralised bone areas respectively, indicate 

that they both contribute to the final bone quality [82], [108]. 

The large multinucleated osteoclasts with the typical ruffled border attached directly to 

the surface of the newly formed trabeculae show their active involvement in the 

remodelling process [13], [109]. The abundant vacuoles situated adjacent to the ruffled 

border are necessary for the digestion and transportation of cellular debris produced 

during the bone resorption process [10]. Alterations in the structure and function of 

osteoclasts result in several bone pathologies [110]. 

The unique morphology and size of the osteoblasts reveal their level of activity. 

Previous reports have also shown that the shape, size and arrangement of osteoblasts 

is a reflection of the activity level [111], [112]. The plump cuboidal-shaped osteoblasts 

characterised by a larger surface area and enriched cytoplasmic components, notably 

the abundant rough endoplasmic reticulum and mitochondria; indicate their active 

involvement in the secretion of the new bone matrix whereas the flattened osteoblasts 

characterised by several elongated cytoplasmic extensions with a poorly developed 

cytoplasm possibly suggest a reduction in activity.  
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The ultrastructure of the osteocytes differed depending on the level of bone 

mineralisation. The matured star-shaped osteocytes localise individually in flattened 

periosteocytic lacuna and embed within the fully mineralised bone area. The 

osteocytes embedded in the osteoid and partially mineralised bone regions connect 

via their cytoplasmic extensions to adjacent osteoblasts at the bone surface. Those 

located in the osteoid area are termed osteoid osteocytes whereas those located in 

the partially mineralised area are called young osteocytes [94], [113]. Generally, the 

structure of the osteoid or young osteocytes seemed more developed than the matured 

osteocytes. This observation indicates that the young osteocytes are probably involved 

in the bone maturation process. Moreover, by connecting directly to adjacent 

osteoblasts, the young osteocytes could play important roles in inter-cellular 

communication as well as molecular transports [114]. 

 

4.4 Limitations of the study 

The two main limitations of this study are the small sample size and the use of a single 

observation time point. Although more sample size could have improved the outcome 

of the statistical analysis, this was not possible due to the strong European welfare act 

on the use of laboratory animals that encourages the use of a reduced number of 

animals for experimental purpose. Secondly, additional time points such as an earlier 

study period would have enabled a better understanding of the molecular and cellular 

events occurring during the early phase of bone healing. For example, studying the 

early phase of bone healing could have provided new insights on the impact of the 

initial mechanical condition at the fracture area during the early remodelling phase. 

However, an additional time point was not possible due to the small sample size.  
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5. CONCLUSION 

This study established and characterised a clinically relevant fracture model for 

metaphyseal bone healing in the distal femur of adult sheep. In contrast to the 

commonly used partial osteotomy model, this metaphyseal fracture model is the first 

large animal model to employ full discontinuity at the metaphysis and use a clinically 

relevant internal fixation technique to stabilise the fracture area. The customised 

anatomical locking plate conferred sufficient mechanical stability on the fractured area 

that enabled direct postoperative full weight bearing in the animals. The use of different 

analytical (both qualitative and quantitative) methods in this study enabled the 

comprehensive characterisation of the metaphyseal bone healing in the operated left 

femur relative to the unoperated contralateral femur at 12 weeks post-fracture. The 

results taken together showed an advanced bony bridging at the fractured area that 

was characterised by densely mineralised trabeculae. The improved quality of the 

newly formed trabecular microarchitecture reflected positively in the key morphometric 

indices. The advanced healing and maturation of the newly formed trabeculae also 

reflected on the increased mineralised bone area, high density of regularly arranged 

osteocytes-lacunae along with their canaliculi network, similar biomechanical 

competence and reduced vasculature. Bone formation and moderate resorption 

activities of osteoblasts and osteoclasts respectively were evident in tested markers at 

various stages, namely tissue, molecular, cellular and gene expression levels. This 

study also presents an in-depth ultrastructure analysis of the newly formed trabeculae 

using TEM imaging. The characteristic ultrastructure of the collagen-mineral composite 

and those of the specialised bone cells (osteoblast, osteoclasts and osteocytes) also 

support normal bone healing and maturation. 

The metaphyseal bone area healed through a direct intramembranous bone formation, 

which is typical and unique to the trabecular bone without visible callus and 

cartilaginous tissue formation. This large animal model enabled direct metaphyseal 

healing study without the influence of any material. Thus, the findings explicitly reveal 

the characteristic healing pattern of the metaphyseal bone under stable internal 

fixation. 

 In conclusion, this newly established metaphyseal fracture model is of interest to study 

bone healing and treatment options for the enhancement of metaphyseal fractures. 
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