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1 Introduction 

1.1 Oxygen sensing 

An adequate supply of oxygen is essential to all higher organisms; it serves as the terminal 

electron acceptor in mitochondrial oxidative phosphorilation. Moreover, several enzymatic 

processes require molecular oxygen as a substrate. Therefore, oxygen supply must be 

optimised by tight regulation of ventilation, haemoglobin saturation levels and systemic 

oxygen transport. Changes in oxygen concentration (hypoxia, hyperoxia or anoxia) can cause 

a wide range of adaptive responses at the systemic, tissue and cellular levels. 

Molecular and metabolic cell responses to hypoxia show a universal pattern of an ability to 

cope with a reduction in available energy, caused by the limitation in oxidative 

phosphorilation. Adaptive strategies help to accommodate for actual level of ATP and to 

maintain the normal cell function (Lopez-Barneo et al., 2001; Michiels, 2004). A common 

feature is an increasing abundance and activity of enzymes responsible for anaerobic 

glycolysis and decreasing activity of ATP consumers such as Na+/K+-ATPase. Additionally, 

different organs respond to low oxygen tension by regulating the expression of unique sets of 

genes responsible for organ-specific functions. 

Even slight reduction in normal oxygen concentrations can cause the induction of specific 

genes involved in mammalian oxygen homeostasis such as erythropoietin or vascular 

endothelial growth factor. Investigations of such hypoxia-inducible genes performed in many 

different cultured cell lines suggest that every mammalian (perhaps even every vertebrate and 

insect) cell possesses one or several oxygen-sensing mechanism(s), i.e. a molecular oxygen 

sensor. However, the mammalian cellular oxygen sensor is not yet known.  

1.1.1 What is the oxygen-sensing protein?  

As there is no assay available to identify directly the oxygen sensor among the hundreds of 

known oxygen-binding proteins, many different candidate proteins have been suggested in the 
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past to play this role in addition to their known or proposed functions. A few of them will be 

shortly mentioned- 

One of the most important models trying to handle the oxygen sensor is that of the haem 

oxygen sensor. Since so far all proteins capable of binding oxygen contain iron, it is not 

surprising that the hypothesis has became widely spread, that one of these proteins is probably 

the oxygen sensor (Goldberg et al., 1988). Indeed, many findings support this model; the 

induction of erythropoietin gene expression can be induced not only by hypoxia, cobalt (and 

to a less extent nickel and manganese) salts proved to do that as well. This finding suggests 

that the ferrous haem iron was replaced by the non-oxygen binding cations. According to this 

model, this locks the oxygen sensor in the deoxy conformation. Further support to the haem 

hypothesis was provided by the finding that iron chelators, such as desferrioxamine, are also 

capable of mimicking hypoxia (Ho et al., 1996; Wang et al., 1993); blockers of haem 

synthesis abolished both hypoxic and cobalt –dependant erythropoietin induction.  

Although many evidences are in favor of this haem oxygen sensor model, some discrepancies 

remain. For example, the flavoprotein cytochrome P450 reductase inhibitor Mesalyl inhibited 

hypoxia-, cobalt- and desferrioxamine –dependant induction of the erythropoietin gene, but 

did not induce the hypoxia inducible factor 1α (HIF-1α, see below) and the vascular 

endothelial growth factor (VEGF) gene. 

The cytochrome b558/NADPH oxidase complex, that generates superoxide in the plasma 

membrane of phagocytes and B-lymphocytes, is just another one of the well-known 

candidates. Interestingly, subunits of this complex were also found in oxygen-sensing cells of 

the carotid body and pulmonary neuroepithelial bodies. However, it was demonstrated that in 

cell lines derived from patients suffering from chronic granulomatous disease, in which one of 

the subunits of the cytochrome b558/NADPH oxidase complex is defective, the oxygen-

regulated gene expression is normal (Wenger et al., 1996). This finding was later 

demonstrated using knock-out mice lacking a subunit of this cytochrome (Archer et al., 1999). 

Taking these evidences into account, we can probably conclude that this complex is not likely 

to be the universal oxygen sensor. 

Other promising candidates are the major oxygen-consuming organelle of the cell- the 

mitochondria, or some of the mitochondrial cytochromes. But because the respiratory electron 

transport chain blocker potassium cyanide cannot induce erythropoietin gene expression 
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(Goldberg et al., 1988; Tan et al., 1991) the role of the mitochondria and its cytochromes 

remains unclear. 

Taken together, and without mentioning some other possible candidates, the search for the 

oxygen-sensor protein is not yet over.   

1.1.2 Oxygen signalling 

Reactive oxygen species (ROS), such as superoxide and peroxide are known to serve as signal 

transducers in several systems. Because oxygen is the main component of these molecules, it 

seems obvious that their concentration depends upon the environmental oxygen 

concentrations, making them candidates for signal transduction in hypoxia. Many findings are 

truly supporting this assumption- a close relationship between oxygen and hydrogen peroxide 

concentration in hepatoma cells; hydrogen peroxide sequestration could mimic hypoxia and 

addition of hydrogen peroxide inhibited hypoxic induction of erythropoietin. In contrast, 

cardiomyocytes increase their production of ROS following exposure to hypoxia (Vanden 

Hoek et al., 1998). Antioxidants inhibited this increase in levels of ROS and also blocked 

hypoxic inhibition of cardiomyocyte contraction. 

To sum up, there is no common consensus about whether ROS concentrations decrease or 

increase following exposure to acute hypoxia, but meanwhile more and more studies indicate 

an increase of ROS under hypoxic conditions (Weissmann et al., 2006; Yamamoto et al., 

2006). 

1.2 Hypoxia and its influence on the cell 

1.2.1 The hypoxia- inducible factor 1 (HIF-1) 

Compared with the relative lack of information on the oxygen sensor and its signal-

transduction pathways, much more is known about the target of these putative signalling 

mechanisms. In 1995 Semenza and co-workers discovered HIF-1 on the basis of its ability to 

bind to a hypoxia-response element (HRE) in the 3´flanking region of the erythropoietin gene. 
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HIF-1 is a ubiquitously and constitutively expressed heterodimeric transcription factor, 

composed of a α subunit unstable under normoxia and a common β/ARNT (aryl hydrocarbon 

receptor nuclear translocator) subunit. While ARNT is abundantly expressed and almost not 

affected by the oxygen partial pressure, the stabilisation of its α subunit is hypoxia-induced. 

HIF-1α cannot be detected above a critical oxygen partial pressure (which is highly tissue 

dependant) when it is subjected to a rapid ubiquitination and proteasomal degradation. Only 

hypoxic exposure or addition of hypoxia-mimicking reagents (e.g. cobalt chloride or iron 

chelators) leads to increase HIF-1α protein levels and hence to activation of HIF-1 -dependant 

target genes. 

1.2.1.1 Stabilisation of HIF-1α under hypoxic conditions 

Once stabilized, HIF-1α translocates to the nucleus guided by a nuclear localization signal 

present in the C-terminus (Kallio et al., 1998). This translocation occurs not only under 

hypoxic conditions but also under normoxia, suggesting that it occurs without the need of any 

further hypoxia-dependant signals. After translocated, HIF-1α heterodimerises with ARNT, 

and the resulting HIF-1 complex binds to the sequence of the hypoxia response element 

(HRE) present in oxygen- regulated target genes (see Figure 1). 

Although HIF-1α is regulated mainly by the oxygen partial pressure, other factors modulate 

its stability and its trans-activation activity. Post-translational modifications (mainly 

phosphorilation) of HIF-1α are essential for full transcriptional activation and stabilization of 

the HIF complex. Extensive phosphorilation of the HIF-1α by the MEK-1/p42/p44 MAPK 

pathway enhances the transcriptional activity of HIF-1. As such, addition of a MEK-1 

inhibitor does not alter the hypoxic stabilization or DNA-binding ability of HIF-1 α but it 

inhibits the trans-activation ability of HIF-1α, thereby reducing the transcriptional activity of 

HIF-1 target genes (Hur et al., 2001; Richard et al., 1999). 

1.2.1.2 HIF-1α under normoxic conditions 

The von Hippel Lindau tumour-suppressor protein (pVHL), a subunit of a multiprotein 

complex harboring E3 ubiquitin ligase activity, is responsible for regulating cellular levels of 

HIF-1α (Maxwell et al., 1999). The pVHL directly interacts with the oxygen dependant 

degradation (ODD) domain of the HIF-1α. The key enzymes controlling the oxygen-
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dependant step in this degradation cascade are specific HIF-1α -proline hydroxylase that 

require Fe (II) as co-factor as well as dioxygen and 2-oxoglutarate as co-substrates. HIF-1α is 

hydroxylated at two proline residues that are highly conserved amino acid within the ODD 

domain. Under normoxic conditions, prolyl hydroxylation enables the specific interaction of 

pVHL with HIF-1α, whereas under hypoxic conditions, prolyl hydroxylation does not occur, 

preventing pVHL binding and the degradation of HIF-1α. 

 

Figure 1 Hypoxia-dependant function of HIF-1. Taken from (Hofer et al., 2002) 

Probably the most commonly cited example of HIF-1 inducing human genes expression in 

response to hypoxia is that of erythropoietin. It activates erythropoiesis to enhance the 

systemic oxygen transport capacity. Because iron is a limiting factor in haem formation, 

erythropoiesis is sustained by increased expression of transferin and transferin receptor to 

enhance iron supply to erythroid cells. 

At the local level, HIF-1 activates vascular endothelial growth factor (VEGF), the most 

powerful inducer of angiogenesis, as well as one of its receptors (Flt-1). The clinical relevance 

of this two target genes, mostly these of VEGF is enormous, because it might be applied to 



Introduction 6 

 

treat ischemic diseases like coronary artery disease, or on the other hand, fighting tumours by 

preventing them to secrete angiogenetic factors, required for their growth. 

Local blood circulation is also controlled by modulation of the vascular tone through the 

production of NO (via nitric oxide synthase), CO (haem oxigenease 1), endothelin-1, 

adrenomedullin or activation of the α1B adrenergic receptor. 

At the cellular level, loss of ATP production in the mitochondria is compensated by anaerobic 

glycolysis. Therefore, glucose uptake (glucose transporters) and glycolysis (glycolytic 

enzyme) are up regulated by HIF-1. In addition, HIF-1 activates Insulin like growth factor 2 

(IGF-2) and some of the IGF- binding proteins (IGFBPs). Figure 2 demonstrates some of the 

most important HIF-1 regulated genes. Genes are listed with regards to their activity. 

Metabolism
Adenylate Kinase 3
Carbonic anhydrase 9
Glucose transporter 1,3
Glycolitic enzymes (11)

Vascular biology
PAI-1, VEGF
VEGF receptor FLT-1
Nitric oxide synthase-2
Endothelin-1, HO-1
α1B Adrenergic receptor

Iron/Erythropoiesis
Ceruloplasmin
Erythropoietin
Transferin
Transferin receptor

Proliferation/Survival
Adrenomedullin, Heme
oxygenase 1, EPO
Nos2,Nip3, p21 Cyclin G2
IGF2, IGFBP-1,2,3
TGFβ3, VEGF

HIF-1

Metabolism
Adenylate Kinase 3
Carbonic anhydrase 9
Glucose transporter 1,3
Glycolitic enzymes (11)

Vascular biology
PAI-1, VEGF
VEGF receptor FLT-1
Nitric oxide synthase-2
Endothelin-1, HO-1
α1B Adrenergic receptor

Iron/Erythropoiesis
Ceruloplasmin
Erythropoietin
Transferin
Transferin receptor

Proliferation/Survival
Adrenomedullin, Heme
oxygenase 1, EPO
Nos2,Nip3, p21 Cyclin G2
IGF2, IGFBP-1,2,3
TGFβ3, VEGF

HIF-1

  

Figure 2 HIF target genes. EPO= Erythropoietin; HO= Haeme oxygenase; IGF= Insulin like growth factor; 

IGFBP= IGF binding protein; NOS= Nitric oxide synthase; PAI= Plasminogene activator 

inhibitor; TGF= Transforming growth factor; VEGF= Vascular endothelial growth factor. 

1.2.2 Nuclear Factor kappa B and hypoxia 

Nuclear factor (NF) - kB, named following its original description in B-cells, is one of the 

critical transcription factors required for maximal expression of many cytokines involved in 

the pathogenesis of acute lung injury. It functions to enhance the transcription of a variety of 
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genes, including cytokines and growth factors, adhesion molecules, immunoreceptors, and 

acute- phase proteins. Its activation is necessary for an intact host defence response, whereas 

excessive activation of NF-kB results in overly of exuberant inflammatory injury of lungs and 

other organs. 

Table 1 Genes involved in lung injury regulated by NF-kB. Taken from (Fan et al., 2001)  

Family Genes

Tumour necrosis factor TNF-α  ,TNF-β
Interleukins IL-1β,2,6,8,12
Chemokines MIP-1,MIP-1α,MCP,GRO-α,β,γ
Cell adhesion molecules ICAM-1,VCAM-1,E-Selectin
Colony-stimulating factor G-CSF,GM-CSF
Transcription factors and subunits IkB-α, NF-kB- precursor p100,105
Acute-phase proteins C-Reactive Protein, Lipopolysaccharide binding protein
Interferons IFN-β
Others NO Synthase, Tissue Factor, Phospholipase A2, Cyclooxigenease-2

 

Under resting conditions, NF-kB functions in regulating the expression of genes involved in 

normal immunologic response such as the generation of antibody light chains and other 

immunoregulatory molecules (Sen et al., 1986; Weih et al., 1995).  

1.2.2.1 Regulation of NF-kB   

NF-kB is normally sequestered in the cytoplasm through its association with an inhibitory kB 

(IkB), which masks the nuclear translocation signal and thus prevents NF-kB from entering 

the nucleus. NF-kB activation represents the terminal step in a signal transduction pathway 

leading from the cell surface to the nucleus. On exposure of the cell to activation factors, the 

IkB protein is phosphorylated on serine 32 and serine 36, ubiquinated, and degraded in 

proteasomes. After being freed from association with IkB, the NF-kB complex moves to the 

nucleus where it binds to specific sequences in the promoter/enhancer regions of target genes, 

(see Table 1).  

A wide variety of extracellular stimuli can trigger the activation of NF-kB. In response to 

infection (activation through rhinovirus, bacterial LPS), cytokines (TNF-α, IL-1β), 

lipopolysaccharide (LPS) and ionising radiation, the NF-kB complex is activated and 

translocated to the nucleus. An interesting and controversial stimulus of NF-kB is achieved by 

reactive oxygen species (ROS). Data stretching back a decade, suggests that the application of 
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oxidant stressors such as H2O2 to cell culture increase NF-kB activity and that addition of 

antioxidant compounds or up regulation of cellular antioxidant systems prevent this effect. 

However, oxidants effects seem to be also cell specific. In lymphoid and monocytic cells, 

prior administration of antioxidant results in suppression of the NF-kB response to Tumour 

necrosis factor-α  (TNF-α) or Interleukin 1β (IL-1β). In epithelial cell lines, antioxidant pre-

treatment did not have such effect. (Bonizzi et al., 1999),(Bonizzi et al., 1996) (Brennan et 

al., 1995) 

Further evidence for the complexity of NF–kB regulation is given by other studies (Bonizzi et 

al., 1999), demonstrating different, cell specific pathways leading to inhibitory kB (IkB) 

degradation and NF-kB activation by IL-1. IL-1β stimulation of lymphoid cells generates 

ROS, which are required for IkB degeneration and NF-kB activation. The source of generated 

ROS (in these cells) is the 5-lipoxygenase enzyme. In monocytic cells, ROS is also generated 

in response to IL-1 stimulation, but this time the source of ROS was the NADPH oxidase 

complex. 

 In recent years, we have just begun to understand the role of AM in mediating lung injury, 

directly or indirectly through the release of different cytokines and transcription factors such 

as NF–kB. New studies (Hirani et al., 2001; Madjdpour et al., 2003) demonstrate the hypoxia-

dependant activation of AM and the cascade following this activation with an increased 

binding activity of NF-kB and transcription of some of the cytokines that their transcription is 

NF-kB-dependant (TNF-α, MCP-1, MIP-1β, ICAM-1, and IL-8). Another work gives some 

further insight to the way in which hypoxia-dependant activation of AM leads to cytokine 

release. The scientists  exposed murine macrophages to hypoxia and analysed the levels of 

macrophages inflammatory protein-2 (MIP-2) (Zampetaki et al., 2004). They demonstrated 

both at the mRNA and the protein level a hypoxia induced increase of MIP-2. Furthermore, 

their results indicate that the hypoxic signal for induction of MIP-2 gene expression is 

implemented through enhanced NF-kB activity. 

1.3 Transcriptional mechanisms in acute lung injury 

Lung injury occurs as a result of a cascade of cellular events initiated by either infectious or 

non-infectious inflammatory stimuli. An elevated level of pro-inflammatory mediators 



Introduction 9 

 

combined with a decreased expression of anti-inflammatory cytokines is a critical component 

of lung inflammation. 

As mentioned previously, a key player in the molecular cascade leading to pulmonary injury 

is the transcription factor nuclear factor kB (NF-kB). For this reason its activation and 

regulation is tightly regulated by a complicated signalling cascade. The mechanism leading to 

lung injury and the involvement of NF-kB and AM will be shortly discussed: 

Endothelial activation- In lung injury, endothelial adhesion molecules have a role in 

recruiting inflammatory cells such as neutrophils and lymphocytes from the circulation to the 

injured area. NF-kB regulates the expression of several genes that encode adhesion molecules 

such as ICAM-1, VCAM-1, and selectin-E. Cytokine induced cell-surface expression of E-

selectins. VCAM-1, ICAM-1 and the secretion of IL-8 as well as of other chemokines are 

regulated at the transcriptional level in endothelial cells by the binding of NF-kB to its target 

site in the nucleus. Treatment with antioxidant down-regulate the NF-kB-dependant 

expression of these molecules (Chen et al., 1995). 

Neutrophils accumulation- Acute lung injury is characterized by the accumulation of 

neutrophils in the lungs, accompanied by the development of interstitial edema and an intense 

inflammatory response. A study made by neutropenic mice proved that an endotoxemia or 

haemorrhage-induced lung edema was significantly reduced in these animals, verifying the 

important role of neutrophils in lung damage. In addition, activated NF-kB contributes to lung 

neutrophils accumulation and expression of TNF-α, MIP-2, and IL-1β mRNA in lung 

neutrophils (Shenkar et al., 1999). 

NF-kB and apoptosis- It is suggested that NF-kB has a role in apoptosis, probably by 

regulating the expression of genes important in regulating cell death. In particular, increased 

NF-kB activation results in decreased apoptosis and increased cell life span. This effect of 

NF-kB activation is a potential determinant of acute lung injury. An increased number of 

activated neutrophils that generate ROS and pro-inflammatory cytokines are present in the 

lungs of patient with ARDS, and these neutrophils have decreased rates of apoptosis. In 

experimental models of acute lung injury secondary to haemorrhage or endotoxemia, NF-kB 

was activated in the lungs and apoptosis was reduced in neutrophil population (Parsey et al., 

1999). Thus, increased survival of pro-inflammatory neutrophils in the lungs of ARDS 

patients secondary to NF-kB activation may perpetuate the pulmonary inflammatory response. 
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The role of AM- Due to their strategical location, at the air-tissue interface in the alveoli and 

alveolar duct, AM are the first cells to be encountered by inhalated antigens and organisms in 

the lower respiratory tract. They should not only be seen as cells capable of phagocytosis; 

when activated they function as potent secretor cells, making them very important in 

regulating inflammatory reactions in the lung. The mechanism of NF-kB activation during 

lung inflammation injury is known to require TNF-α and IL-1β, which operate as 

autocrine/paracrine stimulation of AM. AM activation is generally an initial event in the 

genesis of lung inflammatory reactions. Lentsch et al. showed that early activation of AM 

occurred in an NF-kB-dependant manner (Lentsch et al., 1997). Furthermore, NF-kB 

activation in AM in vivo occurred before NF-kB activation in whole lung tissue and depletion 

of AM attenuated NF-kB activation in whole lung and decreased the bronchoalveolar lavage 

fluid content of pro-inflammatory mediators. These findings suggest that the products of 

activated AM such as TNF-α are essential in stimulating nuclear translocation of NF-kB in 

other lung cell type. AM are necessary for maximal NF-kB activation in response to 

endotoxin (Koay et al., 2002). A depletion of AM showed a reduced total lung NF-kB 

activation and lower TNF-α concentration in lavage fluids. In addition, neutrophils 

recruitment (total neutrophils counts in BAL) was markedly reduced in AM-depleted lungs. 

Madjdpour et al. showed similar effects on the NF-kB levels after AM elimination in hypoxia-

dependant AM activation (Madjdpour et al., 2003). Although the importance of NF-kB in 

cytokine transcription has been established in animal model, only a few published studies 

have demonstrated a role for NF-kB in human AM. While the basal activation of NF-kB in 

AM of healthy volunteers appeared to be minimal, it has been reported  that NF-kB in AM 

from patient with ARDS is highly activated (Schwartz et al., 1996). 

1.3.1 Therapeutic targets for acute lung inflammation 

The regulation of inflammation by cytokines involved an intricate balance of pro-and anti-

inflammatory mediators. Many anti-inflammatory cytokines released in lung tissue are 

already well known (i.e. IL-4, IL-6, IL-10, IL-1RA, IL-11, IL-13, and TGF-β). Only some of 

them have been shown to be involved in lung injury via interaction with NF-kB. Because of 

the central role of NF-kB in conducting lung injury, it is interesting to focus on some options 

to interfere the activation of NF-kB. These options could very well become the target of future 
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drugs aimed to regulate and minimize lung injury. Some of these therapeutic approaches are 

discussed below. 

Studies using a model of intrapulmonary deposition of IgG immune complex in rats to cause 

AM activation have identified IL-10, IL-6, IL-13, and IL-1RA as endogenous regulators of 

the inflammatory lung injury. Exogenously administrated IL-10, IL-4, or IL-13 greatly 

attenuated the lung injury induced in this model (Lentsch et al., 1997). It was also 

demonstrated that both IL-10 and IL-13 inhibited nuclear localization of NF-kB in AM and 

lung tissue in a manner associated with preserved expression of IkB-α protein. These findings 

suggest that IL-10 and IL-13 reduce lung inflammation by preventing degradation of IkB-α, 

thus inhibiting the activation of NF-kB. 

TGF-β, a pleiotropic cytokine/growth factor, is believed to play a critical role in the 

modulation of inflammatory events. DiChiara et al. demonstrated that endogenous TGF-β1 

inhibited the expression of the pro-inflammatory adhesion molecule E-selectin in vascular 

endothelium exposed to inflammatory stimuli (DiChiara et al., 2000). The inhibitory effect 

occurred at the level of transcription of the E-selectin gene and was dependant on the action of 

Smad proteins, a class of intracellular signalling proteins mediating the cellular effects of 

TGF-β1. Moreover, this work demonstrated that Smad-mediated effects in endothelial cells 

resulted from a competitive interaction between Smad proteins activated by TGF-β1, and NF-

kB activated by inflammatory stimuli. This data demonstrates another way in which the pro-

inflammatory function of NF-kB can be regulated (namely by application of TGF-β1) and 

eventually used as a therapeutically measure.  

Lung injury is the final step in a complex cascade initiated by either infectious or non-

infectious inflammatory stimuli. Better understanding of these complicated, well regulated 

events, are crucial for developing new and efficient therapeutic ways that may specifically 

inhibit transcription signalling, and thus giving physicians new weapons to better cure lung 

injury of their patients. NF-kB and other pro-inflammatory mediators (some of which are 

secreted directly from AM) are without any doubt the key for achieving this goals and will be 

therefore in the centre of interest of future studies.    
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1.4 Hypoxia and alveolar macrophages 

1.4.1 Activation of alveolar macrophages by hypoxia and 

lipopolysaccharide  

The lung is an important target organ for systemic inflammatory mediators released after 

major trauma and severe infection. Local activation of resident cells in the lung interstitium 

and alveolus, primarily alveolar macrophages (AM), leads to elaboration of several pro 

inflammatory cytokines such as tumour necrosis factor-α (TNF-α), interleukin 1-β (IL-1β), 

IL-8 and macrophages inflammatory protein (MIP). These mediators act in concert to promote 

neutrophil sequestration by activating endothelial cell adhesion molecule expression and to 

induce migration of neutrophils into the interstitium where they propagate inflammation and 

injury through the release of reactive oxygen species and proteolytic enzymes. The release of 

mediators and the imbalance between pro- and anti-inflammatory factors is a critical 

component of lung injury. 

AM are often found in hypoxic environments such as large granulomas, lung abscesses, and 

lung segments with a low ventilation-perfusion ratio. Systemic inflammatory processes, like 

acute respiratory distress syndrome (ARDS) also expose AM to hypoxia. It was of great 

interest than, to try and explore the effects of hypoxia on the release of pro-inflammatory 

cytokines from AM. 

Hempel et al. have demonstrated that hypoxia decreases the gene transcription and synthesis 

of prostaglandin H synthase 2 (PGHS-2) in response to LPS, resulting in decreased 

prostaglandin E2 (PGE2) synthesis (Hempel et al., 1994). It was also demonstrated that PGE2 

decreases the release of TNF-α and IL-1. Taking these two findings together it is not 

surprising that under hypoxia (O2<0,05%), LPS- stimulated AM markedly increase the release 

of IL-1 and TNF-α (Hempel et al., 1996), suggesting that the release of these two 

inflammatory proteins under hypoxia was, at least partially regulated by the decrease of PGE2. 

When PGE2 synthesis was inhibited by indomethacin, an increase in the release of TNF-α and 

IL-1 was also the result. 

Another potential explanation of the increase in cytokines release during hypoxia involves an 

important transcription factor mentioned before, NF-kB. Fact is that many genes involved in 
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lung injury are regulated by NF-kB. TNF-α and IL-1β are only two of these genes, some other 

are listed in Table 1. Leeper-Woodford et al. have demonstrated this mechanism and the 

possible influence of hypoxia on NF-kB. LPS-exposed AM in hypoxia have shown enhanced 

expression of NF-kB compared with normoxia, and again higher levels of TNF-α and IL-

1α+β (Leeper-Woodford et al., 1999). They have found increased p65 and Rel-c isoform of 

NF-kB in the LPS-stimulated AM exposed to acute hypoxia (1.8 % O2; after 2 hours), with 

the p65 isoform appearing to be the most dominant one in this macrophages system. Another 

interesting study of (Koong et al., 1994)  demonstrated that hypoxia caused activation of NF-

kB by inducing tyrosine phosphorilation of IkB, an important proximal step that precedes its 

dissociation from the NF-kB complex before transcriptional activation. 

Taken together, these studies suggest that the release of pro-inflammatory mediators from 

LPS- triggered AM in acute hypoxia is regulated by the hypoxia-dependant activation of 

NF-kB. 

Hirani and colleagues have focused mainly on the influences of hypoxia on interleukin 8 (IL-

8), expressed and secreted by AM (Hirani et al., 2001). IL-8 is a potent neutrophil chemokine, 

secreted mainly by AM and known to play an important role in acute respiratory distress 

syndrome (ARDS). After 2 hours exposure of AM to hypoxia, IL-8 protein secretion was 

double compared to normoxia, but significantly lower than that induced by LPS, a finding 

supported by other studies that suggest hypoxia induces only a mild lung injury, compared 

with LPS inducing a more severe injury (see below). Since hypoxia also induced a rapid up 

regulation of IL-8 mRNA, (as rapidly as 30 minutes post exposure to hypoxia), the effects of 

hypoxia on transcription factors known to implicate in the regulation of IL-8 were also 

studied. Hypoxia increased the DNA binding activity of AP-1, C/EBP but not of NF-kB. The 

binding activity of these 3 transcription factors was measured 15 and 30 minutes after hypoxia 

exposure. In contrast, (Madjdpour et al., 2003) demonstrated a higher binding activity for NF-

kB, ( when measured 1 or 2 hours post-hypoxia exposure), which may suggest that the 

hypoxia dependant activation of   NF-kB can be first  detected after 60 min or later. 

The last work  (Madjdpour et al., 2003) further exposed the role of AM and NF-kB in 

response to acute hypoxia. Unlike many other studies about AM, they were activated solely 

by hypoxia and not by LPS allowing to focus and isolate the direct effects of hypoxia on AM. 

Rat lungs were exposed to a FiO2 of 0.1 over a short period of time (1-8h). An increase in the 

number of the AM in the bronchoalveolar lavage was shown between 1 and 8h (max. between 
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2-6h), resulting in AM accumulation. On the level of inflammatory mediators, DNA-binding 

activity of NF-kB and expression of mRNA for HIF-1α, TNF-α, intercellular adhesion 

molecule-1 (ICAM-1), MIP-1β and monocyte chemoattractant protein-1 (MCP-1) were 

increased. All the mediators listed above, except HIF-1α, are considered to be NF-kB 

regulated genes, and thus giving more data to support the thesis that hypoxia activates NF-kB 

and so the release of cytokines. The second part of this work should also evaluated whether 

AM were truly the source of mRNA of the inflammatory mediators. Performing a macrophage 

depletion they could show that AM were indeed the source of these mediators. The only 

mediator not affected by macrophage depletion was the MCP-1, suggesting that epithelial 

cells rather than macrophages are the main source for MCP-1. 

In conclusion, this study demonstrated that acute hypoxia results in inflammatory changes in 

the lung representing a mild lung injury (compared with other inflammatory changes, for 

example LPS), whereby alveolar macrophages are the main effector cells during this 

inflammatory process. 

1.4.2 The effects of hypoxia on the adhesiveness of AM 

Polymorphonuclear leucocytes (PMN) play a major role in mediating hypoxic injury. Both in 

vitro and in vivo studies have indicated that during hypoxia, adherence of neutrophils to 

endothelial cells is increased. It is interesting then, to try and understand the role of hypoxia in 

recruiting immune cells to fight lung damages. 

Alveolar epithelial cells (AEC) are targets for hypoxia in the alveolar space in pathologic 

conditions, such as hypoventilation. AEC are also a major component in the recruiting of 

PMN and AM since they express some of the adhesion molecules. Two of these molecules 

should be mentioned because of their role in binding immune cells. 

The intercellular adhesion molecule-1 (ICAM-1) is an adhesion molecule of the 

immunoglobulin superfamily and has two β2 -integrin ligands on leucocytes. Interactions 

between ICAM-1 and β2 –integrins are a key step in emigration of leucocytes to sites of 

inflammation. A second member of the immunoglobulin superfamily is the vascular cell 

adhesion molecule-1 (VCAM-1) that interacts with integrin α4β1. The primary role of this 

molecule is the promotion of lymphocytes and macrophages adhesion. 
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Beck-Schimmer et al. have exposed rat AEC to hypoxia (5% O2) for short periods of time 

ranging from 0,5 to max. 8 hours and investigated the effects on these two adhesion molecules 

(Beck-Schimmer et al., 2001). They demonstrated not only an increase on mRNA level and 

protein level, but also an increase in adherence of neutrophils and AM to these adhesion 

molecules. To specify the adhesion patterns of these two cell populations they used ICAM-1 

and VCAM-1 antibodies to block the adhesion. The adhesion of AM to AEC was blocked to 

95% using anti-VCAM-1 antibodies, while the neutrophils adhesion blocked to 83% using 

anti-ICAM-1 antibodies. Based on these findings, we can conclude that VCAM-1 is the 

adhesion molecule most important for the adhesion of AM, whereas ICAM-1 for the adhesion 

of neutrophils. 

Of interest are also the findings that the up regulation on mRNA level for ICAM and VCAM 

were time limited (only during the first hour), and the protein up regulation being limited to 4-

6 h of hypoxia. 

Compared with other experimental systems of lung inflammation, such as LPS-induced 

injury, there was a less intense increase of the mRNA and protein for ICAM-1 during 

hypoxia; AEC under LPS stimulation showed a 700% increase of mRNA for ICAM-1 

whereas hypoxia only led to an 80-90% up regulation. This finding is also supported by other 

works, showing similar results (Madjdpour et al., 2003). 

1.4.3 Phagocytosis and ATP levels in alveolar macrophages in hypoxia 

With its location in the oxygen-rich environment of the lung airways, the pulmonary alveolar 

macrophages may utilise primarily oxidative phosphorilation for energy production in 

activities like phagocytosis. Some studies could also demonstrate that AM having greater O2 

utilisation, higher activities of cytochrome oxidase and lower glycolytic enzyme activities 

than peritoneal macrophages.  

Leeper-Woodfore et al. exposed AM to hypoxia (1.7%) and measured ATP levels and 

phagocytosis activity (Leeper-Woodford et al., 1992).  

A direct influence of hypoxia on the phagocytotic ability of AM could be demonstrated when 

AM were exposed to hypoxia and rabbit red blood cells (RBC) at the same time; AM showed 

a normal phagocytotic activity in the first 30 min (compared with AM exposed to normoxia), 

followed by a falling of this activity when exposure to hypoxia proceeded. A pre-exposure of 
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AM to hypoxia for 30 min prior to the incubation with RBC showed a complete blocking of 

phagocytosis, but they could slowly regain this ability after being exposed for 30 min to 

normoxia. 

The ATP levels of AM were measured 30 and 60 min after exposure to hypoxia. Surprisingly, 

the level remained at a level comparable to the ATP concentration observed at time 0. The 

group suggested that although under normoxia the major source of energy for AM is oxidative 

phosphorilation, under anaerobic conditions AM were able to respond quickly and to shift 

their energy source to glycolysis.  

A similar effect was demonstrated when normoxia and hypoxia-exposed-AM were incubated 

with RBC. Knowing that phagocytosis is a highly ATP consuming process, it seems 

reasonable that ATP levels were falling in both cell populations and that the decrease was 

more dramatically in cells exposed to hypoxia. After 60 min though, ATP levels of hypoxia 

cells were as high as the levels of normoxia cells. They proposed that the rapid reduction of 

ATP levels in hypoxia-exposed AM in the first 30 min, induce mechanisms that either 

conserve or increase cellular ATP in the first 60 min of hypoxia. 

Another interesting observations, made by counting the RBC “swallowed” by the AM, was 

that hypoxia exposed AM were losing or exocytosing some of the previously phagocytosed 

RBC. 

They concluded that the cellular ATP level of AM in a hypoxic environment may only be 

partially responsible for the phagocytic alteration observed in AM. Moreover, these cells have 

the ability to maintain their energy depot (at least for a short period of time) by shifting their 

energy generation to anaerobic form. 

1.5 DNA Array technology 

With the growing abundance of sequencing data from different organisms, a pressing need has 

come to develop and apply technologies to perform comprehensive functional analysis. DNA 

arrays have been developed in response to the need for simultaneous analysis of the pattern of 

expression of thousand of genes and offer, therefore, great advantages over traditional “single 

gene” methods. 
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1.5.1 What is a Microarray? 

A gene expression Microarray consists of multiple features (spots) of DNA which are used to 

determine the levels of mRNA expression in a pool of cells. The DNA for each feature is from 

a gene of interest and is a target for the mRNA encoded by that gene. In general, one may 

think of a Microarray as a grid of DNA spots. Each spot has a unique DNA sequence, that is 

specific for one gene´s mRNA. Thus, each spot will be hybridised only by its complementary 

DNA strand. In this way each spot is acting as a target to determinate the levels of a specific 

mRNA produced by a collection of cells. 

The basic idea of using a piece of DNA as a target to determinate the presence of a 

complementary DNA in a solution was already used; it is the same general technique used in 

Southern and Northern blots by molecular biologists every day. The large number of DNA 

probes that is possible to place on a Microarray (the largest Microarray currently contains up 

to 170,000 spots) makes Microarrays so exciting. It allows to observe the response of the 

whole genome to various stimuli at once. 

1.5.2 How are Microarrays produced? 

There are, naturally, many different types of Microarray available but there are only two real 

fabrication methods: 

 In the first one, commercially available oligonucleotides, named “Gene-Chips” (registered 

trademark by Affymetrix), are supplied by Affymetrix Inc., Santa Clara, CA. This high-

density array of oligonucleotides (25mer oligonucleotides) is synthesised in situ (i.e. 

oligonucleotides synthesised directly on the matrix, usually glass slide) by using 

photolithographic techniques. The strength of this technology is its ability to detect 

polymorphism and mutations, thereby making oligotechnology particularly suited for single 

nucleotide polymorphism (SNP) screens and epidemiological studies. This technology has 

two main drawbacks- 1). It is very expensive to implement in an academic setting (based on a 

research from year 2000 only 11% of the labs having Microarrays facilities used exclusively 

Gene-Chip technology). 2). It has a limited flexibility. 

 In addition, Affymetrix is not currently promoting co-hybridisations of the two samples being 

compared, which makes the normalisation of the experimental and control Gene-Chips very 
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important (more about normalisation see also 2.4.11). Thus, the Affymetrix system does not 

produce ratios; each target produces primarily an absolute intensity. 

The second method is the cDNA or oligonucleotide Microarray technology for competitive 

hybridisation. cDNA Microarray spots the PCR fragments of cDNA on a glass or plastic slide, 

or even a nylon membrane (nylon membranes, used in our work, are currently considered to 

be an “old” technique and are therefore less in use). This method is relatively low in costs and 

flexible; making it suitable for an academic institution to produce in-house Microarrays with 

the clones of interest and to perform highly focused in-depth studies. Given the fact that only 

10-30% of the human genes are expressed in a given cell, it may not always be necessary to 

examine the whole genome at once (as made by Affymetrix). In many occasions, in-house 

Microarrays with well-defined target sequences can effectively address many research 

questions. 

1.5.3 How are Microarrays used? 

The basic protocol contains the following steps: 

1. Isolating the target and control RNA. RNA may come from any cells. It is important to 

realise though, that the RNA from tissues or any heterogeneous cells may lead to results that 

reflect changes in the composition of the sample rather than changes due to the experimental 

hypothesis. Therefore, a carefully isolation of target and control RNA is asked, avoiding 

contamination with “unwanted” RNA. 

2. RNA labelling. This means performing a reverse transcriptase reaction. In this reaction, 

dyes that have been linked to a DNA nucleotide are incorporated. When using nylon 

membranes, DNA is labelled radioactively (for more details see chapter 2.3.4). Otherwise, 

fluorescent dyes are also widely used. 

3. Hybridising the labelled probe to the Microarray. This consists of placing a solution 

containing the labelled probe on the Microarray to let it hybridise for a period of time, thus, 

allowing a given probe to find its target on the Microarray and bind to it. Usually this is 

carried out at a specific temperature, salt concentration, pH etc. to minimise non-specific 

binding of probes to the target on Microarray. 

4. Removing the hybridisation solution and washing the Microarray. The washing can be done 

at different salt and detergent concentrations to minimise non-specific binding. In general, 
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solutions with lower salt concentrations weaken the DNA base pairing and are referred to as 

“more stringent”.  

5. Once the Microarray has been washed it is scanned. That means to quantify how much 

probe bound to the DNA target on the Microarray. Most Microarrays use fluorescent dyes to 

labell DNA, and scanned by a laser, used to excite the fluorescent dye. The photons coming 

from the dye are captured using lenses to focus the light, and a photo multiplier tube (PMT) is 

used to quantitate how many photons are being captured. The resulting image is analysed by 

finding the spot and comparing the differences between chips (if the hybridisation contained 

only one colour) or the ratio of the two colours in co-hybridisation experiments.  

Nylon arrays radioactive -labelled are scanned using a Phosphoimager (see chapter 2.4.9) and 

analysed as described in chapter 2.4.11. 

 

Figure 3 demonstrate scanned images of nylon arrays. Spot intensity is proportional to the 

number of mRNA copies on the membranes, and can give a “first look” impression of the 

regulation level of specific genes. 

 

Figure 3 A phosphoimager scan of two membranes, left normoxia and right hypoxia. Arrows point the 

difference in spot intensity as can be seen best in the magnification of a single gene below. 

1.5.4 The Microarray technique and some of its problems 

Although being a new and very promising technique, there are substantive technical issues 

associated with the use of this technology that limit the interpretation of Microarray data. 

Some of these difficulties are listed below: 
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• Selection of target genes; a potential problem for cDNA Microarray technology is the 

cross-hybridisation due to sequence homology, particularly when including several 

members of the same family. If there is a high homology among the target genes, 

specific primers need to be designed to target the most divergent regions of these 

genes. 

• DNA concentration; optimum DNA concentration for printing has not been 

systematically investigated. Accepted concentration for printing varies from 0.1-to 0.5 

μg/μl. Investigations show that the concentration of DNA on the slides can 

significantly affect signal intensity and reproducibility. It should be pointed out that 

optimal DNA concentration could vary, depending on the expression level of target 

gene. 

• Isolation of RNA; the integrity and purity of RNA is one of the most important factors 

affecting reproducibility. When comparing two different samples (in this work 

hypoxia and normoxia) it is actually impossible to guarantee a high and equal quality 

of RNA in both samples, especially when they are held in different tubes. The same 

difficulty is also relevant concerning the RNA concentration of the two samples and 

the efficiency of the labelling. For an effective reproducibility these factors have to be 

equal in both probes. 

• Labelling methods; the labelling method is also a factor affecting reproducibility. 

When using a fluorescent labelling one should notice that the molecular structure 

affects the efficiency of incorporation. Cy5 is generally incorporated not as efficient as 

Cy3, which generates artificial signal bias. 

• Hybridisation protocol; the hybridisation conditions, such as probe concentration, 

ionic strength and temperature, largely depend on the length of DNA fragments 

present on the array and need to be optimised for a given experiment. It is not possible 

to present a universal protocol that suites every experiment. The users should perform 

preliminary experiments to determine which protocol gives reproducible, high-quality 

hybridisation results. An additional problem when working with nylon membranes, 

results from the facts that both samples (probe and control) are hybridised in separate 

hybridisation bottles, making it impossible to maintain exactly the same hybridisation 

conditions for both. 
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• Data analysis; this is currently one of the major bottle-necks in the use of Microarray 

technology and is still at developmental stage. Because there is no gold standard for 

analysis of Microarray data, valid results and correct interpretation require 

understanding of the nature of data set, theory, and assumption behind the raw data 

process. Only few issues will be mentioned here- 

 Visual examination of the array; prior to data analysis, the first step is to 

visually examine the array and remove the spots that are not suitable for 

analysis. It is essential to carefully examine each spot to exclude the 

unsuitable ones for analysis (for example, spots caused by artefacts). 

 Background subtraction; image processing software offers several options 

for background substitution. The option chosen for background subtraction 

will vary, depending on the uniformity of background. If membranes have 

a uniform background, mean intensity is a good option for background 

subtraction; however, if the background pattern is uneven or patchy, the 

background may be set at the median intensity of a user-defined area of the 

array. 

 Data normalisation; in most cases, it is useful to normalise the signal 

intensity between the two Array compared. This step is especially 

important if the probes have very different specific activities, or if the 

arrays analysed have very different levels of signal. Choosing the “global 

method” (the one used in this work) for normalisation means, that the 

signal value of all genes on the array are used. This method is best suited 

for the comparison of similar or identical tissues, because only a small 

number of genes are expected to be differentially expressed. When 

divergent tissues are compared, (i.e. many differentially expressed genes 

are expected), it may be useful to choose only a set of genes for the 

normalisation (for example take the average intensity value of all the house 

keeping genes to normalise the results).  

In summary, analysing the raw data is a multiple-step process. Because there is no gold 

standard for each step that suits every experiment, computer software offers options in 

many occasions. To correctly process raw data, it is important to understand assumptions 
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underlying each option so that the appropriate data-processing strategy is selected in 

accordance with experimental design. 

1.5.5 Array technology applications 

Two chief applications of DNA Microarray technology are described below. Other 

applications include gene discovery, genotyping, and pathways analysis. 

• Analysis of gene expression; gene expression patterns are biologically informative and 

provide direct clues to function. Correlating changes in gene expression with specific 

changes in physiology can provide insights into the dynamics of various biological 

processes in an organism. Array technology can be used, for example, for comparing 

genes expressed in normal and disease stages; in different tissues or at different 

developmental stages; analysing the response of cells exposed to drugs or different 

physiological conditions. In this work, the technology was used to compare the gene 

expression of alveolar macrophages in hypoxia and normoxia. The array analysis 

allowed to focus on a small number of genes (target genes), with changes in their 

expression, and to ignore many other genes which did not show hypoxia-dependant 

regulation. Knowing the function of these target genes can help understanding the 

cellular response to hypoxia.  

• Monitoring changes in genomic DNA; this application is extremely important in 

investigating cancer cells, because they often exhibit genomic instability with gene 

amplification or translocations, or tumour suppresser genes often marked by point 

mutations or deletion. 

• Mutation or polymorphism, in particular single nucleotide polymorphisms (SNP), can 

be studied within and among species using high density oligonucleotide arrays. These 

so-called mutation detection arrays consist of oligonucleotides representing all known 

sequence variants of a gene or collection of genes. Because hybridisation to 

oligonucleotides is sensitive enough to detect single-nucleotide mismatches, a 

homologues gene carrying an unknown sequence variation can be screened rapidly for 

a large number of changes. Examples of mutation detection arrays include p53 gene 

chip, HIV gene chip and breast cancer BRCA-1. 
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1.5.6 Limitations of Microarrays 

• First, level of mRNA expression does not always reflect protein concentration: 

therefore, differential RNA expression could have no biological significance. 

• Second, the expression data derived from cDNA Microarray are not the end point of 

the study. In many occasions, it only provides several candidates genes whose 

functions require further verification and investigation using other techniques like 

real-time PCR. Thus, the Microarray technique is used as a screening method that is 

only the first step in understanding biological processes. 

• Third, cDNA Microarrays require possession of cDNA clones or prior knowledge of 

cDNA sequence. Given the fact that only a small number of genomes have been 

sequenced and many functionally important genes are expressed at low levels and 

underrepresented in a cDNA library, not all genes can be studied with satisfying 

quality using this technology. 

1.6 Aim of this work 

This work aims to extend current knowledge about the mechanism leading to lung damage 

under hypoxia and in particularly on the role of alveolar macrophages in currying out this 

damage. Using established methods of molecular biology it will try to define genes that are 

taken part in this complex process and learn more about their activation/depression in alveolar 

macrophages. The application of different techniques enable the self-control of the obtained 

data. Additionally, it allows the distinguishing between the influence of hypoxia on genes at 

the mRNA level and at the protein level. 

Moreover, it aims to distinguish between genes that are activated under the influence of acute 

hypoxia and those activated under chronic hypoxia. For that reason examination of genes was 

performed after 1 and 21 days of hypoxia. 
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2 Materials and Methods 

2.1 Small Materials 

Atlas Mouse 1.2(II) Array Kit  Clontech (Heidelberg) 

Phosphimaging Screen (20x25 cm) Fuji (Düsseldorf) 

Hybridisation bottles (13 ml) Hybaid (Heidelberg) 

Pipettes (1-10 µl, 10-100 µl, 100-1000 µl)  Eppendorf (Hamburg) 

Pipette tips (sterile, 10-1000 µl) Fisher Scientific (Schwerte) 

PR-Tubes (15 ml, 50 ml) GreinerLabortechnik 

(Frickenhausen) 

Optical tubes (0.2 ml) / for TaqMan Applied Biosystems (Langene) 

Tubes (0.2-2.0 ml) Eppendorf (Hamburg) 

Cassettes for Phosphoimaging Screen (24x30 cm) Kisker (Steinfurt) 

Tubes for column chromatography 

QIAquickTM PCR Purification Kit Qiagene (Hilden) 

Microcon YM-100 Microcon (Ireland) 

Cannules 20 gauge x11/2” TERUMO (Leuven, Belgium) 

Microscope slides Menzel Glaeser (Braunschweig) 

2.2 Instruments 

AbiPrismTM 7700 Sequence Detector Applied Biosystems 

 (Foster City, USA) 

Autoclave 2540 ELC Tuettnauer Systec (Wettenberg) 
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Photospectrometer Uvikon 922A Kontron Instruments 

(Milano, Italy) 

β-γ-Detector LB 122 Berthold (Zurich, Switzerland) 

Bag sealer  Severin (Sundern) 

Hot plate Ika Labortechnik (Staufen) 

Gel electrophoresis chamber Bächler (Hölstein) 

Hybridisation oven (rotating) Hybaid (Heidelberg) 

Phosphorimager FUJIX BAS 1000 Fuji (Düsseldorf) 

Vortex Type REAX 2000 Heidolph (Schwabach) 

UV Transilluminator  Bachofer (Reutlingene) 

Liquid scintillation counter Hidex (Straubenhardt) 

Thermoblock TDB-120 Kisker (Mühlhausen) 

Trio-Thermoblock TB-1 Biometra (Göttingene) 

Microwave Bosch (Stuttgart) 

Scales PM 480 DeltaRangeRMettler 

(Giessen) 

Water bad GFL 1012 GFL (Burgwedel) 

Centrifuges:    Biofuge 15R Heraeus Sepatech (Hanau) 

Biofuge pico Heraues Instruments (Hanau) 

Centrifuge 5415D Eppendorf (Hamburg) 

Cytocentrifuge Cytospin Thermo Shandon (Pittsburgh, 

USA) 

Microscope Olympus (Hamburg) 

Cryostat (Cryocut Jung CM 3000) Leica (Bensheim) 
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2.3 Reagents and Kits 

2.3.1 Bronchoalveolar lavage and cell lysis 

Phosphate Buffered Saline (PBS) with 5mM EDTA: 

NaCl Carl Roth (Karlsruhe) 

KCl Merck (Darmstadt) 

EDTA  Sigma (Taufkirchen) 

Na2HPO4 Merck (Darmstadt) 

KH2PO4 Merck (Darmstadt) 

   HCl      Merck (Darmstad) 

2.3.2 RNA extraction 

Phenol Sigma (Taufkirchen) 

(Saturated with 0.1 M citrate Buffer, pH 4.3 +/- 0.2) 

Sodium acetate Sigma (Taufkirchen) 

Chloroform (100%) Merck (Darmstadt) 

Isoamyl alcohol (100%) Sigma (Taufkirchen) 

Isopropranol (100%) Sigma (Taufkirchen) 

Glycogen (20 mg/ml) Boehringer (Mannheim) 

Ethanol (75%) Merck (Darmstadt) 

DEPC-treated H2O Fresenius (Bad Homburg) 

2.3.3 DNAse treatment of total RNA 

All components were included in the Atlas™ Pure Clontech (Heidelberg) 

Total Labelling System (#K1038-1) 
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See chapter 2.4.4 

2.3.4 Labelling of cDNA 

α32 P dATP (3,000Ci/mmol, 10 μCi/μl) Amersham (Braunschweig) 

All other components were included in the Clontech (Heidelberg) 

Atlas Mouse 1.2 II Array Kit 

See chapter 2.4.6 

2.3.5 Column chromatography 

All components were included in the 

QIAquick PCR amplification Kit (Qiagene, (Hilden) 

2.3.6 Preparation of the cDNA for hybridisation 

2x Neutralizing solution (1M NaH2PO4, pH 7) Merck (Darmstadt) 

10x Denaturating Solution (1M NaOH, 10mM EDTA) Merck (Darmstadt) 

Cot-1 DNA Atlas Mouse 1.2 II Array Kit 

2.3.7 Stripping the Arrays membranes 

20 %SDS (Sodium Dodecyl Sulfate) Sigma (Taufkirchen) 

20xSSC (NaCl,Na3Citrate·2H2O) Sigma (Taufkirchen) 

2.3.8 cDNA synthesis from total RNA using RT enzyme (for PCR) 

All components were included in the (Foster city, USA) 

Applied Biosystems GeneAMp® RNA PCR kit. 

See chapter 2.4.13 
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2.3.9 Real-time PCR 

See chapter 2.4.12 

2.3.10 Agarose gel electrophoresis 

Electrophoresis Buffer 5xTBE 

54g Tris base  Sigma (Taufkirchen) 

27.5g boric acid  Sigma (Taufkirchen) 

20 ml  0.5M EDTA pH (8.0)  Sigma (Taufkirchen) 

in 1000ml aqua dest 

Gel-loading Buffer 

900 μl 5xTBE 

100 μl Glycerine (98%) Carl Roth (Karlsruhe) 

Bromophenol blue (concentration of 0.25%) Merck (Darmstadt) 

DNA size standard (Hinf I Marker) 

Per 50 μl- 10μl phiX 174 DANN /Hinf I Marker (1mg/ml) Promega (Mannheim) 

10 μl 5xTBE 

10 μl (gel-loading Buffer) 

20 μl (Ampuwa H2O) 

2.3.11 Immunohistochemistry 

Tris washing buffer pH 7.6 

(* For preparing 20 liter washing buffer) 

175.6g NaCl  Sigma (Taufkirchen) 

18g Tris base  Sigma (Taufkichen) 

137g Tris HCL  Sigma (Taufkirchen) 
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2.5 liter aqua dest 

Substrate solution: 

Developing solution (NaCl 87g, Tris-HCl 15g,Tris-Base 49g, aqua dest 1750 ml)   70ml 

N, N-Dimethyl formamide 600 ml Merck (Darmstadt) 

2-Amino-2-methyl-1,3-Propandiol 25 ml Merck (Darmstadt) 

Levamisole 40 mg Sigma (Steinheim) 

Natriumnitrit 20mg Merck (Darmstadt) 

aqua dest 500μl 

Naphtol 50mg Sigma (Steinheim) 

New-fuchsin 200μl Chroma -Gesellschaft (Koengene) 

Tissue- Tek® Sakura Finetek (Zoeterwoude, the 

Netherlands) 

2.3.12 Primers for TaqMan PCR 

*All the primers are for mouse species. 

*Primers are from MWG-Biotech AG (Ebersberg, Germany)
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Table 2 A list of the primers used in this work. 

Gene Position + Sequence (5’→ 3’)
Gene Code Length (Bp)
18s (house keeping )  218-289 FP-  AAA ACC AAC CCG GTC AGC C
U30831 Length-72 RP-  CGA TCG GCC CGA GGT TAT CT

GAPDH (house keeping) 411-531 FP-  GTG ATG GGT GTG AAC CAC GAG
M32599 Length-121 RP-  CCA CGA TGC CAA AGT TGT CA

CD36 144-244 FP-  CCA CTG CTT  TCA AAA ACT GGG
L23108 Length-101 RP-  GCT GCT GTT CTT TGC CAC G

Apolipoprotein C II 202-305 FP-  GGT TGC CAA AGA CCT GTA CCA 
Z15090 Length-104 RP-  TGC CTG CGT AAG TGC TCA TG 

Protein S alpha 298-398 FP-  TCA AAG GCA ACT CGC CGT C 
Z25469 Length-101 RP-  CAT TCA CTG GTG TGG CAC TGA 

Cytochrome b-245 beta polypeptide 107-207 FP-  TTT CGG CGC CTA CTC TAT CG 
M31775 Length-101 RP-  TCT GTC CAC ATC GCT CCA TG 

NADH-ubiquinone oxidoreductase 46-158 FP-  GGT GTG CTT GGT CAT CCC C 
Y07708 Length-113 RP-  CGC GTT CCA TCA GAT ACC ACT 

Prosaposin 117-220 FP-  GCA GTG CTG TGC AGA GAT GTG 
U23740 Length-104 RP-  TCG CAA GGA AGG GAT TTC G 

Peptidylprolyl isomerase A 306-406 FP-  ATG CTG GAC CAA ACA CAA ACG 
X52803 Length-101 RP-  GCC TTC TTT CAC CTT CCC AAA 

Polypyrimidine tract binding protein  496-596 FP-  TGG TGT GGT CAA AGG CTT CA
X52101 Length-101 RP-  GCA GTT CAA TCA GCG CCT G

Integrin β2 195-295 FP-  GCA GAA GGA CGG AAG GAA CAT
X14951 Length-101 RP-  CTA CCA CGG TGC CCC CTA C

Lectin galactose binding soluble Protein 1 255-355 FP- CTT TCC AGC CTG GGA GCA T
M57470 Length-101 RP- GCG GTT TGG GAA CTT GAA TTC

Desmoglein 2 45-148 FP- TCC TGC TTC CAC TCT GCA GTC
AJ000328 Length-104 RP- TGG GCA GAG GAC CTA TGC TT

Interleukin 9 receptor 1283-1397 FP-  GGC AGC AGC GAC TAT TGC AT 
M84746 Length-115 RP-  ACA CAG GAA GGG CCA CAG G 

G protein-coupled receptor 7 106-209 FP-  TGC AAG CTA ATT GTA GCC GT
U23807 Length-104 RP-  TCT GCT GTG GCC AGA ACC A

Fibroblast growth factor 10 279-381 FP-  TGA GAA GAA CGG CAA GGT CAG
D89080 Length-103 RP-  GAT GGC TTT GAC GGC AAC A

Interleukin 1 beta precursor 605-707 FP-  CTT GGG CCT CAA AGG AAA GAA
M15131 Length-103 RP-  CTT CTT TGG GTA TTG CTT GGG A

Cathepsin K 374-476 FP-  CCC AGA AGG GAA GCA AGC A 
X94444 Length-103 RP-  CCG CAG GCG TTG TTC TTA TT 

Cathepsin S 7-87 FP-  TTG ATG GCA AAG ATT ACT GGC TT
AJ223208  Length-81 RP-  TTC TTG CCA TCC GAA TGT ATC C

Acidic keratin complex 1 gene 16 325-427 FP-  TCC TCA CAG CAC TCC TCT GGA 
AF053235  Length-103 RP-  AGC TGG TTG AAC CTT GCT CCT

Vimentin 134-225 FP-  AGA CGG TTG AGA CCA GAG ATG G
M26251  Length-92 RP-  TGT TGC ACC AAG TGT GTG CAA T  
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2.4 Methods 

2.4.1 Animal model of hypoxia 

Male Balb/c AnNCr1BR –Mice (Charles River, Sulzfeld, Germany), 22-25 g, were placed in 

hypoxic chambers with reduced oxygen tension (FiO2:0.10). Oxygen pressure remained 

constant using an autoregulation control system (O2 control model 4010, Labotec, Göttingen). 

CO2 was continuously removed by soda lime (SodasorbR CO2 Absorbent, Grace, Columbia). 

Excess humidity in the recirculating system was prevented by condensation in a cooling 

system. Mice exposed to normobaric normoxia (FiO2 of 0.21 = control group) were kept in a 

similar chamber. After 1 or 21 days, the animals were intraperitoneally anaesthetised with   

180 mg of sodium pentobarbital/kg body weight.  

2.4.2 Bronchoalveolar lavage (BAL) 

For BAL, the trachea was exposed and a small incision was made to insert a shortened   21-

gauge cannula that was firmly fixed and then connected to a 1-ml insulin syringe filled with 

cold phosphate-buffered saline (PBS)-5 mM EDTA (pH 7.2). 300 μl PBS was gently instilled 

into the lungs, withdrawn, followed by 400 and 500 μl and then repeatedly with 500 μl, until a 

total volume of 5ml was recovered. Cells gained by the BAL were kept during the whole 

process on ice. To remove the supernatant cells were centrifuged (1130 rpm, 5 min). The 

supernatant  was then removed, 500μl cold saline added to the cells, followed by a second 

centrifugation, (1130 rpm, 5 min) and removal of the supernatant. Cells were counted using a 

Neubauer chamber and immediately afterwards stored in liquid nitrogen. 

A crucial point of this work was to make sure that a large portion of the cells gained in the 

BAL are alveolar macrophages. For this reason, a sample containing 100 μl cold saline and 

BAL-cells was taken (after the second centrifugation) for further investigation. Small portions 

of the sample were placed on a microscope slide, centrifuged in a cytocentrifuge (500 rpm, 5 

min); air dried and then stained using the Pappenheim stain. Pappenheim stain is a 

combination of May-Grünwald and Giemsa stain and is generally used for blood smears. The 

cell nucleus is stained red-violet and the cytoplasm bright blue. After cells were stained, they 

were examined under the microscope, counted and differentiated.  
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2.4.3 Isolation of RNA from alveolar macrophages (AM) 

The key to successful purification of intact RNA from cells is rapid preparation. Cellular 

RNAses should be inactivated as quickly as possible at the very first stage in the extraction 

process. Once endogenous RNAses have been destroyed, the immediate threat to the integrity 

of the RNA is greatly reduced, and purification can proceed at a more graceful pace.  

Exogenous RNAses (for example those present on the human skin) are as harmful as the 

endogenous ones and therefore contamination must be avoided.   

2.4.3.1 Cell Lysis 

The BAL containing-tubes were removed from the liquid nitrogen and a lysis buffer added to 

the cells. The buffer consist of 4M Guanidium Thiocyanat (GTC), 25mM Na3 Citrate, 0.5% 

Lauroylsarcosin, 1M Tris-HCL) and ß-Mercaptoethanol (Sigma, Taufkirchen Germany), for 

each sample (AM from 1 mouse)- 300 μl lysis Buffer and 2,4 μl ß-Mercaptoethanol. 

Mercaptoethanol is a reduction agent and GTC is the cell lysis agent. Both agents reduce 

RNAse activity. During the lysis step, probes were held at room temperature for 15 min, and 

then held on ice (during the whole extraction step), to protect RNA from degradation. 

2.4.3.2 Acid Phenol Guanidium Thiocyanate Chloroform Extraction 

To isolate the RNA from DNA and cellular proteins, following reagents were added to cells 

(per one sample = 1 mouse)                                         

Phenol   (pH 4.3) 300 μl  

Sodium-Acetate (2M, pH 4) 30 μl  

Chloroform: Isoamyl alcohol (24:1) 90 μl 

Tubes were briefly vortexed and centrifuged (15,000 rpm, 15 min, 4°C). The upper aqueous 

phase containing RNA was carefully transferred to a fresh tube. 

An equal volume of isopropanol (≈300 μl), and 1.5 μl of glycogen was added to the extracted 

RNA, tubes were vortexed and stored for 1h at -20°C to allow precipitation of RNA. 

Following the precipitation step tubes were centrifuged (15,000 rpm, 15 min, 4°C). To collect  

the precipitated RNA, isopropanolol was removed carefully, (to avoid the losing of the pellet), 
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and the pellet was washed with 300 μl 75% ethanol to remove remaining  salt and 

isopropanolol rests. Tubes were then again centrifuged, and remaining ethanol removed. By 

holding the tubes open for a few min ethanol evaporated and pellet air-dried. 

Finally, (glycogen) pellet was dissolved in 5 μl of DEPC-treated H2O and the solution stored 

at -80°C. 

2.4.4 DNAse treatment of total RNA 

The removal of contaminating DNA from the RNA is a crucial factor in obtaining good 

results with Atlas Arrays. DNA was removed by a Danes treatment; 

Total RNA 30 μl 

(5 μl from each mouse x6=30 μl) 

10x Danes I Buffer 4 μl  

(400mM Tris-HCl pH 7.5, 100mM NaCl, 60mM MgCl2) 

DNAse I (1unit/μl) 2 μl 

(Deionized) H2O 4 μl 

Total 40 μl 

Tubes were incubated at 37°C for 30 min, and the reaction was stopped by adding 4 μl of  

10x Termination Mix (0.1 M EDTA [PH 8.0], 1mg/ml glycogen). 

To remove the degradated DNA, a second phenol-chloroform extraction followed the DNAse 

treatment (as described in chapter 2.4.3.2). 

2.4.5 Spectrophotometry of isolated RNA 

For measuring the amount and purity of the isolated RNA, UV absorption was recorded at 260 

nm and 280 nm. The readings at 260 nm (OD260: Optical Density at 260 nm) were used to 

calculate the concentration of nucleic acid in the sample. An OD260 of 1 corresponds to a 

concentration of 40μg/μl RNA. The OD260/OD280 ratio provides an estimation of the purity of 

the nucleic acid. Pure preparations have OD260/OD280 ratio values of 1.8-2. By significant 
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contamination with phenol or proteins the values will be less than those given above (because 

phenol as well as proteins has a maximum absorbance at 280nm). 

1 μl of RNA (aqueous solution) was 1:100 diluted in DEPC-treated H2O. Absorption at 260 

nm and 280 nm was measured and corrected for those of the blank value (water sample). 

Concentration of the RNA was calculated using this equation- 

RNA (μg/μl) =   (OD260
sample - OD260

blank) x 40μg/μx 100 

Nucleic Acid Purity=   (OD260
sample - OD260

blank) 

(OD280
sample-OD280

blank) 

2.4.6 Synthesis of radiolabelled cDNA using oligo (dT) primers 

The following procedure enabled us to synthesise cDNA which is complementary to the 

mRNA isolated from AM, and to simultaneously labell it with α32 P-dATPs.                        

The α32 P-dATPs are integrated in the newly formed cDNA strand like other dNTPs, and are 

complementary to the dUTP in the mRNA strand. The reaction is catalysed by a reverse-

transcriptase. 

Four different samples were simultaneously labelled (2 hypoxia, 2 normoxia mice) so the 

expression of different genes in hypoxia/normoxia could later be compared. Each sample 

contained the genetic material isolated from 6 mice, so that the total number of mice scarified 

to perform one assay (with 4 membranes) was 24. 

2-5 μl total RNA were mixed with 1 μl Mouse 1.2 II CDS Primer mix in each tube and 

incubated in Thermoblock TDB120 at 70°C for 2 min Due to the specificity of these CDS 

primers, hybridisation of non-mouse material with the mRNA could not take place. A second 

incubation at 50°C, again for 2 min, followed. During the second incubation, 1 μl Molony 

Maurine Leukaemia Virus Reverse Transcriptase (MMLV-RT, 100U/μl) was added to the 

Master Mix (MM). 



Materials and Methods 35 

 

 

Preparation of MM-  

5x reaction buffer 2 μl 

(250mM Tris-HCl [PH8.3], 375mM KCl, 15mM MgCl) 

10xdNTP Mix (for dATP labell) 1 μl  

5mM each dCTP, dGTP, dTTP) 

α32 P dATP (3,000Ci/mmol, 10μCi/μl) 3.5 μl 

DTT (100mM) 0.5 μl 

Total volume (for 1 sample) 7 μl 

After completion of the 2-min incubation at 50°C, 8 μl of MM was added to each tube and 

incubated at 50°C for 35 min This reaction (cDNA and labelling) was then stopped by adding 

1 μl of 10x Termination Mix (0.1 M EDTA [PH8.0], 1mg/ml glycogen). 

2.4.7 Column chromatography 

To purify the labelled cDNA from unincorporated α32 P-dATPs and small (<100bp) cDNA 

fragments, a QIAquick PCR amplification Kit was used in the following way: 

1. Absorption of cDNA to a silica-gel membrane was achieved by adding 10 volumes of 

buffer PN to 1 volume of the cDNA sample. Tubes were then centrifuged (6000 rpm, 1 min). 

The PN buffer provided the correct salt concentration and pH for absorption of cDNA to the 

silica-gel membrane. Optimal absorption of nucleic acids to the membrane occurs in the 

presence of a high concentration of chaotropic salts at pH below 7.5. However, small cDNA 

fragments and nucleotides do not bind to the silica membrane. 

2. Washing: 500 μl ethanol containing PE buffer was added to the samples and centrifuged 

like in step 1 to wash salts away. This step was repeated twice followed by another 

centrifugation (13,000 rpm, 1 min) to remove any residual PE buffer, which may interfere 

with subsequent reactions. 

3. Elution in low salt solutions: elution efficiency is strongly dependant on the salt 

concentration and pH of the elution buffer. It is most efficient under low salt concentration 
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and neutral pH (7-8.5). For elution, 100-200 μl EB buffer (10mM Tris-Cl, pH 8.5) were added 

to the samples, which were then centrifuged (13,000 rpm, 1 min), giving the eluted purified 

cDNA. 

The radioactivity of the 4 probes was measured with a liquid scintillation counter. This 

measurement allows a rapid evaluation of a successful incorporation of the α32 P-dATPs. 

Furthermore, knowing the radioactive counts of the samples is a crucial factor to predict the 

time needed for exposure of the phosphoimager plates to the membranes (see below).  

2.4.8 Array hybridisation 

Principles- The hybridisation of Atlas ™ cDNA Expression arrays is a method for analyzing 

multiple genes simultaneously, by hybridisation of entire cDNA populations to nucleic acids 

arrays. This technology has a wide range of applications, including investigating of normal 

biological and disease processes and discovering potential therapeutic and diagnostic drug 

targets (see also chapter 1.5.5) 

Identical nylon membranes (Mouse 1.2 II Atlas™ cDNA arrays containing 1,176 spots = 

genes) can be compared side by side, so that a comparison of expression profiles of different 

mRNA (in this work-hypoxia/normoxia) can be studied. 

The cDNA fragments immobilized on the Atlas arrays are 200-600 bp in length and have been 

amplified from  regions of the mRNA that lack the poly-A-tail, repetitive elements, or highly 

homologous sequences. In this way, non- specific hybridisation is minimized.   

Different factors, mainly the quality of RNA, but also the correct hybridisation temperature, 

pH, low-viscosity of the hybridisation solution and the concentration of the probes are crucial 

factors for a successful and specific hybridisation. 

2.4.8.1 Preparation of the hybridisation solution 

5 ml (for each sample) ExpressHyb-solution (Atlas™ Mouse 1.2 II arrays) were preheated in a 

water bath at 68°C. 52 μl (for each sample) of sheared salmon testes (10.5 mg/ml, Sigma, 

Taufenkirchen, Germany) was heated at 95-100°C for 5 min and then quickly chilled on ice. 

Heat-denaturated sheared salmon testes were then mixed with prewarmed ExpressHyb-

solution and kept at 68°C until use.  
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Hybridisation bottles were filled with deionized water, and the membranes were placed into 

the bottles, adhering to the inside walls of the bottle without creating air pockets. Water was 

poured completely from the bottles and hybridisation solution prepared in the previous step 

was added to the bottles and distributed evenly over the membranes. Membranes were then 

prehybridised at 68°C for 30 min 

2.4.8.2 Preparation of radioactive labelled cDNA for hybridisation 

Each labelled probe (∼110 μl) was mixed with 11 μl 10x denaturating Solution (1M NaOH, 

10mM EDTA) and incubated at 68°C for 20 min 5 μl Cot-1 DNA (1mg/ml Mouse 1.2 II 

Atlas™  arrays) and 120 μl 2x neutralizing solution (1M NaH2PO4, pH 7) were added to each, 

and second incubation at 68°C for 10 min followed. Cot-1 DNA prevents non-specific 

hybridisation. Now the samples were finally suitable for hybridisation and pipetted carefully 

into the hybridisation bottles and well mixed. Hybridisation was performed overnight while 

bottles constantly being agitated in an oven at 68°C (Hybaid, Heidelberg, Germany). 

On the next day the hybridisation solution was discarded into a radioactive waste container. 

200 ml of pre warmed (at 68°C) Wash Solution 1 (2xSSC, 1% SDS) was poured into the 

bottles, which were then washed for 30 min with continuous agitation at 68°C. This step was 

repeated twice. 

2.4.9 Exposure of the phosphoimager plates to the membranes 

After washed, membranes were removed from the bottles and wrapped in to a transparent 

plastic foil, laid side by side and covered with a thin film of Wash Solution 1 to keep them 

wet. The radioactivity of the membranes was now measured by holding the β-γ-detector LB 

122 ∼1-2cm above. The radioactivity values (in counts per minute) were important for 

estimating how effective the hybridisation had been and the time needed for exposure of the 

plates (phosphoimaging screen). The plates were then laid over the plastic-wrapped 

membranes and packed together into a cassette for a time of exposure ranging from 1d to15d 

(depending on the radioactive counts). Finally, the plates were scanned by the Phosphoimager 

FUJIX BAS 1000 so that the spatial distribution of radioactivity was represented by a 

grayscale image. After scanning, the membranes were stored at 4°C until stripping.  
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2.4.10 Stripping cDNA from the Atlas arrays 

To reuse the membranes, they were stripped after every hybridisation. For this purpose 500 ml 

of 0.5% SDS was boiled in a 2-liter beaker on a hot plate. Membranes were removed from the 

plastic wrap and immediately placed in the boiling solution and boiled for 5-10 min. The   

beaker was removed from the hot plate and cooled for 10 min at room temperature. The 

membranes were rinsed in Wash Solution 1, wrapped and sealed again in a transparent plastic 

foil, and then stored at -20 °C until reuse. The efficiency of the stripping was checked using 

the β-γ-detector LB 122; the stripping was repeated when radioactivity was still measured. 

2.4.11 Image analysis and data processing 

 The investigation of such a large number of genes can hardly be done without the assistance 

of computer software developed for this purpose. The AtlasImage™ 2.0 (Clontech) is 

software for analysing the Atlas arrays in order to calculate normalised signal intensity values 

and intensity ratios as a measure for differential gene activity. 

Background correction 

For each spot i and each membrane k, the local background intensity Bk,i was subtracted from 

the corresponding spot (foreground) intensity Fk,i to obtain the background corrected intensity 

values 

Ik,I = Fk,I – Bk,i 

Normalising  

 It is necessary to normalise the signal intensity between two arrays being compared, 

especially when signal levels greatly differ. In this study, the “global normalisation” mode 

was used. This mode considers the signal values of all genes on the arrays. This approach 

assumes that although some genes are truly differentially expressed between two samples, the 

average activity of the genes represented on the membranes is more or less the same under 

treatment (hypoxia) and control (normoxia) conditions. The AtlasImage software normalises 

array 2 (hypoxia) with respect to array 1 (normoxia). The normalisation is done by 

multiplying the spot intensities of array 2 with a normalisation coefficient which   is 

calculated- 
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With Fk,i and Bk,i: forground and background intensity of spot i at array k;  

N: number of spots on the array (N=1176). 

 

Visualisation 

 The routine use of a variety of graphical displays is recommended to examine the outcome of 

the array results. Such displays can assist in deciding whether the experiment was successful, 

help in choosing appropriate analysis tools, and highlight specific experimental problems. 

Most of these graphical displays were first developed for the work with Microarrays, mainly 

because of large numbers of genes represented on each Microarray slide (few thousands), and 

the need to present the data obtained from these slides, in a form which is fast and easily 

understood for the viewer. Some of these displays were later “adopted” by scientists working 

with nylon arrays. In this work only summary displays are represented (e.g. for 1 day and for 

21days). This form of data representation has become widely accepted for nylon arrays during 

the time this study was carried out, and was therefore performed when the experimental part 

of these work was completed. 

The results of the array experiments are visualised in the form of MA-plots where the log 

intensity ratios (M) are plotted versus the average log intensities (A) with 

( ) ( )

2,
2 2 2, 2 1,

1,

1
2 2, 1, 2 2, 2 1,2

log log log

log log log

i
i i i

i

i i i i i

I
M I I

I

A I I I I

⎛ ⎞
= = −⎜ ⎟⎜ ⎟

⎝ ⎠

= ⋅ = +

 

MA plots allow recognising intensity dependant artifacts and bias in the data by visual 

inspection. 

Quality check 

Prior to using statistical tests on the raw data, we selected the arrays most appropriate for 

analysis and excluded those that were not. For example, we omitted the experiments that 
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demonstrated a generally low spot-intensity of all genes close to the background intensity as a 

distinction between genuine signals and “noise” could not be safely performed. 

Different background intensities between two membranes may further make a comparison of 

the signal strength of a single gene in normoxia/hypoxia difficult. Hence, to attain data 

representing the true biological activity of genes under hypoxia, a carefully selection of the 

row data is inevitable.  

Statistical analysis 

For the analysis the one-sample two-sided t-test (H0: M=0) was performed. 

2.4.12 Real-time PCR 

The real-time PCR method was performed to confirm the array results for selected genes.   

The principles of real-time PCR 

Real-time PCR uses commercially available fluorescence-detecting thermocyclers to amplify 

specific nucleic acid sequences and measure their concentration simultaneously. 

The technique applies oligonucleotides that anneal to an internal sequence within the 

amplified DNA fragment. The oligonucleotides, usually 20-24 bases in length, are coupled 

with a fluorescent dye at its 5` end (reporter) and a quenching group at its 3´ end, which is 

blocked with PO4, NH2, or a blocked base. The labelled oligonucleotide is added to the PCR 

together with primers required to drive the amplification of the target sequence. When both 

the fluorescent and quenching groups are present in close apposition on the intact probe, any 

emission from the reporter dye during the course of real-time PCR is absorbed by the 

quenching dye, and the fluorescent emission is low. As the reaction progresses, and the 

amount of target DNA increases, progressively greater amounts of oligonucleotide probe 

hybridise to the denaturated target DNA. However, during the extension phase of the PCR 

cycle, the 5´→ 3´ exonuclease activity of the thermostable polymerase cleaves the probe 

hybridised to the template strand. Because the reporter dye is no longer in close proximity to 

the quencher, it begins to fluoresce. The intensity of this fluorescence is directly proportional 

to the amount of target DNA synthesized during the course of the PCR. 

The instrument plots the intensity of fluorescence signal (which is proportional to the amount 

of PCR-product) over the course of the entire PCR. The greater the initial concentration of 
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target sequence in the initial mixture is, the fewer is the number of cycles required to achieve 

a particular yield of amplified product. The initial concentration of target sequences can 

therefore be expressed as the fractional cycle number (CT) required achieving a present 

threshold of amplification. 

An important factor in quantitative PCR is the definition of a reference sequence, so that later 

a ratio of the target sequence to this reference sequence can be achieved. Two types of 

reference sequences can be used: an endogenous standard and an externally added reference. 

Endogenous standard- these are usually so called house keeping genes (see further 

information about house keeping genes below) that are not regulated and present in the same 

preparation of DNA/RNA of the target sequence. Quantification is achieved by comparing the 

amount of amplified product generated by the endogenous standard and the target sequence. 

The method works well, if the amplified products are measured during the exponential phase 

of the reaction, if the reference and target sequence are amplified with equal efficiency and if 

they are present in the sample at approximately equal concentrations. 

However, these conditions are not always fulfilled because the amplified products are almost 

always different from the endogenous reference in size, sequence and abundance. In addition, 

the house keeping genes chosen, are often invariant in their level of expression from one 

sample to the other. 

Externally added reference- is added in known amounts to a series of amplification reactions. 

As the reference templates and the target sequences are present in the same amplification 

reaction and use the same primers, the effect of the variables mentioned earlier is nullified. To 

find out the ratio of target to reference sequence, a series of reactions is set up, containing 

different ratios of the reference and target molecules. A curve is calculated showing the 

relationship between the amount of amplified product and the amount of reference added to 

the reaction. The target sequence can be quantified by interpolation. Thus, in a reaction that 

yields equal amounts of two amplified products, the ratio of target molecules to reference 

molecules at the beginning of the PCR is one. However, this is only true if amplification 

efficiencies of the two PCR reactions are equal.  

House keeping genes (=reference genes) are a set of predefined genes required for 

fundamental cellular processes in a wide range of cell types and tissues and whose expression 

is not generally dependant on the developmental stage or physiological or pathological state 
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of the tissue. Operationally, few if any genes truly fit such invariant expression, although 

genes such as actin, cyclophilin, GAPDH, are frequently used in this context. In this study 

18S and GAPDH gene were used for that purpose: 

♦ 18S ribosomal RNA- DNA coding for ribosomal RNA is present in region p12 on 

each of the satellited chromosomes, 13, 14, 15, 21 and 22. At the ribosomal RNA gene 

promoter, transcription initiation by RNA polymerase I allows synthesis of the 45S 

rRNA precursor molecule, which serves as the molecular precursor for the 18S, 5.8S 

and 28S ribosomal RNA components. 18S is, like GAPDH, an extensively used house 

keeping gene (Veiga-Crespo et al., 2004; Yadetie et al., 2004; Yamada et al., 1997). 

18S was also used as a reference gene by other groups who studied the influence of 

hypoxia on several genes (Popovici et al., 1999; Razeghi et al., 2003). 

♦ GAPDH-Glyceraldehyde-3-phosphate dehydrogenease catalyzes an important energy-

yielding step in carbohydrate metabolism, the reversible oxidative phosphorilation of 

glyceraldehyde-3-phosphate in the presence of inorganic phosphate and nicotinamide 

adenine dinucleotide (NAD).{D-glyceradehyde 3- phosphate + phosphate + NAD (+) 

↔ 3- phospho-D-glycerol phosphate + NADH}.The enzyme is thought to be a 

tetramer of identical chains. GAPDH is widely used as a house keeping gene (Shen et 

al., 2003; von Schnakenburg et al., 2002). Regarding the influence of hypoxia on the 

expression of this gene, it should be mentioned that in recent years, some evidence 

showing an over-expression of GAPDH in cells exposed to hypoxia have been found. 

Furthermore, the GAPDH promoter region contains hypoxia responsive elements 

(Graven et al., 1999). To investigate whether the use of GAPDH for our purposes was 

acceptable, we compared the amplification curves for GAPDH and 18S in real-time 

PCR. Since we could not demonstrate a regulation of this gene neither under 1 day 

hypoxia nor under 21 days of hypoxia (strong correlation of expression for GAPDH 

and 18S in normoxia and hypoxia), we figured that the use of GAPDH for AM was 

suitable in our setup. We calculated the mean value of the two reference genes that 

served as our reference. 
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2.4.13 cDNA synthesis from total RNA using RT enzyme 

Before being able to use the Real-time PCR technique, a further step was made- “translation” 

of the extracted RNA to cDNA. Using a Reverse-Transcriptase (RT) enzyme, a RNA-

dependant-DNA-polymerase enzyme, RNA was transcripted to cDNA (c= copy, a 

complementary picture of the RNA). An important side effect of this step, is the fact that from 

this point on we no longer worked with a nucleic acid which is highly sensitive and prone to 

degradation ( through RNAse), but with a stable, double stranded DNA molecule. 

The enzyme used to catalyse this reaction, Murine Leukaemia Virus Reverse Transcriptase 

(MULV- RT), is an artificially mutated enzyme; by deletion or point mutation of its carboxyl-

terminal domain (220 residues), accounting for its RNAse H activity, this feature is 

inactivated. The inactivation dramatically increases the ability of the enzyme to catalyse the 

synthesis of cDNA at elevated temperatures (>42°C) and to generate a full-length cDNA 

molecules. 

Depending on the purpose of the experiment, the primer for the first-strand cDNA synthesis 

can be specifically designed to hybridise to a particular gene, or it can bind generally to all 

RNA. Since we investigated expression of different genes and not only of a specific one, we 

used the random hexanucleotides for priming. They are capable of priming cDNA synthesis at 

many points along RNA templates, generate fragmentary copies of the entire population of 

RNA molecule and are useful when the target RNA is extremely long (recovering the whole 

mRNA length). 

For the cDNA synthesis a GeneAMp® RNA PCR kit (Applied Biosystems, Foster, USA) was 

used. 

Denaturation: extracted RNA dissolved in 10 μl H2O was incubated at 70°C for 10 min, then 

shortly (∼ 5 min) ice cooled and centrifuged. 
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Mastermix:     per cup in 10 μl dissolved RNA: 

10xPCR Buffer II 2 μl  

 25mM MgCl2 4 μl 

 dNTP’s (dATP,dCTP,dTTP,dGTP, each 10mM) 1 μl 

 Random Hexamers 1 μl 

 RNAse Inhibitor 0.5 μl 

 MuLV Reverse Transcriptase 1 μl  

 RNAse –free H2O 0.5 μl 

 Total 10 μl 

Cups were incubated in the TRIO Thermoblock TB-1 and the following program was 

activated: 

 

Temp(°C) Time (min:sec) 

20.0    10:00 annealing 

43.0 75:00 elongation 

99.0  5:00 enzyme denaturation 

4.0  end of program 

Finally, cDNA was stored at -20°C.          
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 Preparation of Master Mix (MM) for PCR: 

2x PCR Master Mix Cyber® Green I Assays (Eurogenetec) 25μl 

Forward Primer (200 nM) 1 μl  

Reverse Primer (200 nM) 1 μl  

1/2000 dilution (in DMSO) of Cyber® Green I 1.5 μl (1 in 66000) 

RNAse-Free H2O 19.5 μl 

 

Total 48 μl 

 

 Preparation of MM for house keeping genes: 

2x qPCR™ -Mastermix (Eurogenetec) 25 μl 

Forward Primer (900 nM) 4.5 μl  

Reverse Primer (900 nM) 4.5 μl  

Probe 1 μl 

RNAse-Free H2O 13 μl 

 Total 48 μl 

The MM for the house keeping genes and the gene of interest were pipetted in the following 

way; 48 μl of MM in each optical tube followed by 2 μl templates (cDNA from 

hypoxia/normoxia material) to a total volume of 50 μl. Tubes for the negative control assay 

contained only MM and 2 μl H2O instead of templates.  
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The following program was used for the PCR reaction: 

Temp(°C) Time (min:sec) Cycles 

50.0 2:00                                          1x 

95.0      6:00  denaturation                    1x 

95.0                          0:20  denaturation       

59.0 0:30 annealing     45x 

73.0 0:30 elongation  

2.4.14 Agarose gel electrophoresis 

Gel electrophoresis is used to separate, identify, and purify DNA fragments. To reassure that 

the correct products were amplified by the real-time PCR, an agarose gel electrophoresis was 

performed.  

The agarose gel is a matrix in which the DNA is migrating in the presence of an electric field. 

The pore size of the gel is depending on the concentration of the gel (low concentration = 

large pore size), thus the DNA is sieved through the pores. In an aqueous solution and a 

neutral pH the DNA fragments are negatively charged (due to their sugar and phosphate 

residues) and are therefore migrating to the anode when they are in an electric field.  

The following factors determine the rate of migration of DNA through the agarose gel- 

• molecular size of the DNA 

• concentration of the agarose 

• conformation of the DNA 

• applied voltage 

• electrophoresis buffer and agarose type 

To visualize the DNA in agarose gel, the fluorescent dye ethidium bromide is added. This dye 

contains a tricyclic planar group that intercalates between the stacked bases of the DNA. UV 

radiation at 302 nm is absorbed by the DNA. The energy is transferred to the dye which re-

emits it as red- orange light with a maximum emission at wavelength of 590 nm, making the 
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dye-DNA complex visible. By comparing the DNA-bands obtained from the samples with a 

DNA fragment length marker, one can estimate the strands length of the DNA samples. 

Generally, DNA from 50 bp to several mega bases in length can be separated on agarose gels. 

Protocol:  

1.25g agarose mixed in 60 μl 0.5x TBE buffer were heated in a microwave until the agarose 

dissolved. Then, 1.6 μl ethidium bromide (10 mg /ml Roth, Karlsruhe) was added and the 

solution was mixed by gently swirling. While the gel was left at room temperature for a 

couple of minutes to cool, an appropriate comb for forming the slots in the gel was placed in 

the mould. The agarose solution was then poured in to the mould and left for 30-45 min until 

the gel completely formed. A small amount of 0.5x TBE buffer was poured on top of the gel 

and the comb carefully removed.  

The PCR samples (each contains 50 μl) were mixed with 7 μl of gel-loading buffer. 10 μl of 

the sample mixture were carefully loaded in to the slots, one slot for each PCR sample. To 

enable the estimation of the DNA strand length, 2 μl Hinf I marker was added in one slot. 

Finally, the lead of the gel tank was closed and the electrical leads attached (120V, 300 mA 

for 45 min). As electrophoresis was completed the gel was irradiated by UV light and 

photographed. 

2.4.15 Immunohistochemistry 

Immunohistochemistry (IHC), or immunocytochemistry, is a method for localising specific 

antigens in tissues or cells based on antigen-antibody recognition; it seeks to exploit the 

specificity provided by the binding of an antibody with its antigen at a light microscopic level. 

IHC has a long history, extending more than half a century from 1940, but it was not until the 

early 1990 when the method found general application in surgical pathology. 

The basic principle of IHC, as with any other special staining method, is a sharp localisation 

of target components in the cell and tissue, based on a satisfactory signal- to- noise ratio. 

Amplifying the signal while reducing non-specific background staining is the major strategy 

to achieve a satisfactory and practically useful result. 
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2.4.15.1 Blocking non-specific background staining 

There are two aspects to the blocking of background staining of tissues: non-specific antibody 

binding and the presence of endogenous enzymes. Non-specific antibody binding is generally 

more a problem using polyclonal antibody, because multiple “non-specific” antibodies may 

exist in the antiserum. If necessary, it is advisable to preincubate the tissue section with 

normal serum from the same species of animal in order to occupy “non-specific” binding sites 

before incubation with the primary antibody. Another form of non-specific binding results 

from the fact that antibodies are highly charged molecules and may bind non-specifically to 

tissue components bearing reciprocal charges (e.g., collagen). Such non-specific binding may 

lead to localisation of either the primary antibody or the labelled moiety, producing false- 

positive staining of collagen and other tissue components of sufficient degree to obscure 

specific staining. Pre-incubation with normal serum may also reduce this kind of non-specific 

binding. 

Blocking endogenous enzyme activity is also important. The degree of susceptibility of an 

enzyme to denaturation and inactivation during fixation varies. Some, like peroxidase, are 

preserved in both paraffin and frozen sections; others, like alkaline phosphatase, are 

completely inactivated by routine fixation and paraffin-embedding procedures. Any residual 

activity of these endogenous enzymes must be abolished during immunstainig in order to 

avoid false-positive reactions when using the same or similar enzymes as labells. It is 

essential that blocking of endogenous enzymatic activity be carried out before the addition of 

enzyme-labelled antibody; otherwise, the enzyme labell is also inactivated by the blocking 

procedure, resulting in a false-negative result. 

2.4.15.2 Alkaline phosphatase anti alkaline phosphatase method 

The alkaline phosphatase anti alkaline phosphatase (APAAP) reagents consists of antibody 

against alkaline phosphatase (AP) and AP antigen in the form of a small, stable immune 

complex. This complex typically consists of two antibody molecules in the configuration 

shown in the figure below. The APAAP reagent and the primary antibody must be from the 

same species (or closely related species with common antigenic determinants), whereas the 

bridge antibody is derived from a second species and has specificity against the primary 

antibody and the immunoglobulin incorporated into the APAAP complex. The bridge 

antibody serves as a “specific glue” to bind the APAAP-labelled moiety to the primary 
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antibody, which, in turn, is bound to the antigen under study (Figure 4). This is the “classical” 

form of the APAAP method. In this work, though, commercially available AP- conjugated 

second antibody was used. We demonstrated a specific staining of epitopes on the AM, the 

use of a third antibody was therefore not justified. 

APAAP AP-conjugated second antibody

primary ab primary ab

second (bridge) ab second ab

alkaline phosphatase

alkaline phosphatase

third ab

Tissue section

APAAP AP-conjugated second antibody

primary ab primary ab

second (bridge) ab second ab

alkaline phosphatase

alkaline phosphatase

third ab

APAAP AP-conjugated second antibody

primary ab primary ab

second (bridge) ab second ab

alkaline phosphatase

alkaline phosphatase

third ab

Tissue section  

Figure 4 The APAAP Immunohistochemistry method. The “classical method” (left) and the AP- conjugated 

second antibody (right) used in this work. Ab= antibody 
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Table 3 List of the antibodies used for staining 

Vimentin (c-20): sc-7557 Anti-goat IgG F(ab’)2 [Rabbit]
Goat polyclonal anti-mouse In buffer containing 0,05M Tris chlorid,0,15Msodium

chlorid,0,0001M Zinc chloride,50%(v/v) Glycerol; pH 8
Vimentin Each vial contains 200μg IgG in 1.0 ml of PBS

containing 0,1% sodium azide and 0,2% gelatin
Stabilizer-10mg/ml Bovine Serum Albumin

 Produced by Santa Cruz Biotechnology, INC Preservative-0,01%(w/v) sodium Azide

Integrin β2 (k-19): sc-6625 Anti-goat IgG F(ab’)2 [Rabbit]

Integrin β2 Goat polyclonal anti-mouse In buffer containing 0,05M Tris chlorid,0,15Msodium
chlorid,0,0001M Zinc chloride,50%(v/v) Glycerol; pH 8

Each vial contains 200μg IgG in 1.0 ml of PBS
containing 0,1% sodium azide and 0,2% gelatin

Stabilizer-10mg/ml Bovine Serum Albumin

Produced by Santa Cruz Biotechnology, INC Preservative-0,01%(w/v) sodium Azide

Antigen/Protein Primary antibody Secondary antibody

 

Protocol 

Lung tissue was obtained from mice treated in the same way described in chapter 2.4.1.  

A total number of 12 mice were sacrificed for immunohistochemistry procedure (3 mice for 

1day hypoxia, 3 mice for 1day normoxia, 3 for 21 normoxia and 3 for 21day hypoxia). After 

the peritoneal anaesthesy, the thorax was opened using small seizures, the lungs preparated 

and immediately fixed with preheated Tissue-Tek®.  

The tissue was stored at –80 °C until sections were cut in a cryostat. 7-10 μm thick sections 

were used (sections are usually thinner), because cutting lung tissue, which is naturally air 

filled, in thinner sections, is often very difficult or impossible. Each section was placed on a 

microscope slide and air dried overnight at room temperature. Before being stained, the 

sections were fixed in ice cold acetone for 10 min and briefly air dried. For binding the 

primary antibody, sections stained for vimentin and integrin β2 were incubated in a dilution of 

(1:50). Slides were incubated for 30 min incubation in a humid chamber and then washed with 

Tris buffer. For the secondary, alkaline phosphatase conjugated antibody, a (1:100) dilution 

was used; slides were incubated for 30 min at room temperature and then washed with Tris 

buffer.  

As for the negative controls, no primary antibody was introduced on the slides; slides were 

incubated solely with Tris buffer. For the second antibody, incubation was carried out as 

described above. 



Materials and Methods 51 

 

Finally, for staining, slides were incubated for 30 min in the following substrate solution: 

 

Developing solution 70 ml 

N, N-Dimethyl formamide 600 ml 

Propandiol 25 ml  

Levamisole 40 mg                  Blocks endogenous AP activity 

Natriumnitrit 20 mg 

Aqua dest 500 μl 

Naphtol 50 mg                    Substrate 

New-fuchsin 200 μl                Dye 

In this procedure, epitopes were stained red (new-fuchsin), and slides were again washed with 

Tris-buffer. A counter- stain of the nuclei with haematoxylin completed the process, dying 

them blue. 

After staining, slides were examined under a light microscope (magnitude x 200), and 

positive- stained- AM counted.  The positive- stained- AM were grouped according to the 

strength of the staining (more than 50% of AM did not show a staining and were therefore not 

grouped for further analysis); 1-mild, 2-moderate and 3-strong staining. Every slide was 

observed under 5 fields of vision (1 field had an area of 0.196 mm2) with a total area of 0.98 

mm2. The examination of the slides and cell counting was carried out by Prof. Dr. med RM 

Bohle, Institute for Pathology, university of the Saarland, Homburg, in a blinded way. 

For the statistical tests only two groups of stained AM were considered, namely mild and 

moderate/strong. The moderate and strong stained AM were united into one group as there 

was only one single strongly stained macrophage seen in all slides. The Fischer’s exact test 

(2-tailed) was performed for these two groups, to test whether there is a significant hypoxia 

dependant expression for the proteins stained.  
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3 Results 

3.1 Bronchoalveolar lavage 

Before exploring the gene expression of AM, we had to assure that the cells gained from BAL 

contain a major fraction of AM. For that reason, cells were counted and differentiated (as 

described in chapter 2.4.2.), in six different occasions. Counts from hypoxic and normoxic 

animals were compared in order to make sure that hypoxia does not affect cell numbers and 

type. 

Table 4 Cell counts from BAL AM= Alveolar Macrophages; Lymph= Lymphocytes; 

PMN=Polymorphonuclear leukocytes 

1 day 21 days

Date- 14/12/01 Date- 05/01/02
Normoxia Hypoxia Normoxia Hypoxia

Cell Nr. (Mean) 329 380 Cell Nr. (Mean) 290 304
Cell Nr. (Min-Max) 270- 403 282- 497 Cell Nr. (Min-Max) 219-522 252-354

Cell type AM-98% AM-97% Cell type AM-98% AM-99%
Lymph-1% Lymph-2% PMN-2% PMN-1%

PMN-1% PMN-1%

Date- 27/02/02 Date- 08/02/02
Normoxia Hypoxia Normoxia Hypoxia

Cell Nr. (Mean) 276 257 Cell Nr. (Mean) 313 367
Cell Nr. (Min-Max) 241-384 220-371 Cell Nr. (Min-Max) 198-523 252-480

Cell type AM-100% AM-99% Cell type AM-99% AM-98%
PMN-1% Lymph-1% Lymph-2%

Date- 26/03/02 Date- 26/02/02
Normoxia Hypoxia Normoxia Hypoxia

Cell Nr. (Mean) 242 272 Cell Nr. (Mean) 233 228
Cell Nr. (Min-Max) 166-304 166-411 Cell Nr. (Min-Max) 171-395 142-356

Cell type AM-100% AM-100% Cell type AM-98% AM-97%
Lymph-1% Lymph-2%

PMN-1% PMN-1%

Normoxia Hypoxia Normoxia Hypoxia
Mean 282.3 303.0 Mean 278.7 299.7
Standard deviation 35.8 54.8 Standard deviation 33.6 56.8  
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Table 4 shows that: first, all counts contained mainly (at least 97%) AM. Second, there was 

no significant distinction in cell numbers or type comparing BAL after 1 or 21 days. Third, 

hypoxia and normoxia did not differ in cell type or counts. 

By doing this pre examination we could ascertain, that results and conclusions achieved using 

further methods, will be valid to gene expression of AM. 

3.2 Hybridisation results 

A total number of 20 (10 for 1 day, 10 for 21 days) hybridisations was performed, each 

experiment contained 4 nylon membranes (2 hypoxia, 2 normoxia), laid side by side for 

analysis. Since the performance of the RT enzyme supplied by Clontech™ was inadequate, 

cDNA synthesis resulted in too low amounts of cDNA and poor incorporation of radiolabelled 

dATP. This in turn led to a weak hybridisation signal, and a low signal-to-noise ratio. 

Moreover, the low hybridisation signal made a longer exposition of the membrane inevitable, 

leading to an irregular background.  

Therefore, the initially obtained hybridisation results were not adequate for further use and 

could not be used. Usable hybridisation results were obtained just after another RT-enzyme 

(supplied by Promega™) was applied. The remaining sample size allowed only a small 

number of hybridisations to be carried out for further analysis (between 3 to 5 per time point). 

Figure 5 demonstrate the image obtained after the phosphoimager plates were scanned. Please 

note the major difference in signal intensity depending on the RT-enzyme used. 
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C D

 

Figure 5 Comparison of the images obtained using two different RT´s: (A)- normoxia, and (B)- hypoxia. 

Using the RT supplied by Promega™; (C)- normoxia, and (D)- hypoxia using the RT supplied by 

Clontech™. 

3.3 Arrays analysis 

Figure 6 shows the M/A plots for the 1day/ 21days arrays. Only a small number of genes were 

influenced in their expression by hypoxia. Furthermore, intensity-dependant artefacts did not 

exist. 

The use of statistical tests demonstrated the following; for 1 day not even one gene could be 

pointed out for demonstrating a statistical relevant regulation (P<0.05). As for the 21 days 

only one gene (Ia-associated invariant chain, gene code X05430) was selected (p= 0.0359). 

Therefore, an alternative way for the selection of genes had to be used. For that purpose, we 

composed Table 5 and Table 6 including only genes that exhibit at least 3 times a ratio 

(normoxia/hypoxia) > 1 or < 1, (i.e. showing a tendency to be hypoxia regulated). In that 

manner we introduced an instrument to identify (without using statistical methods) genes 

probably influenced by the lack of oxygen on their expression. A small number of candidates 

was selected from these tables for further analysis and validation by real-time PCR.  
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A) 

 

B) 

 

Figure 6 M/A-plots of the nylon arrays results after 1d hypoxia (A) and 21d hypoxia (B). Each dot 

represents one gene (feature) spotted on the membrane.  
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Table 5 Regulated genes under hypoxia 1 day. 

Gne Code* Gne bankcode** M1 SD2 P3    Gene

A01e M63697 0.43 0.2091 0.6270 CD1d2 antigen
A01f M58661 -0.30 0.1825 0.6837 CD24a antigen
A01j U18372 0.16 0.1898 0.8486 CD37 antigen
A01n S51806 -0.57 0.2031 0.6095 CD44 antigen precursor; phagocytic glycoprotein I 
A02c D16432 -0.47 0.2367 0.6549 Cd63 antigen
A02j AF001041 0.21 0.1850 0.7788 CD83 antigen
A02n L08115 0.33 0.2356 0.7523 CD9 antigen
A03f X14951 -0.61 0.2684 0.6095 integrin beta 2 (ITGB2); cell surface adhesion glycoproteins
A03k AB007599 -0.18 0.2214 0.8486 lymphocyte antigen 86 (LY86); MD1
A06e M94087 0.48 0.1916 0.6095 activating transcription factor 4 (ATF4); TAXREB67 homolog
A06f AB015140 0.71 0.2658 0.6095 aryl-hydrocarbon receptor repressor (AHR repressor; AHRR)
A06k AF000998 0.42 0.2984 0.7468 circadian locomoter output cycles kaput
A06m X79233 0.34 0.1889 0.6549 Ewing sarcoma homolog
A08j D87964 0.10 0.1940 0.9140 TEA domain family member 3
A09l X16834 -0.25 0.1658 0.7180 lectin galactose-binding soluble protein 3
B01k Z25469 -1.21 0.4404 0.6095 protein S (alpha)
B04i AB015800 0.22 0.2923 0.8507 solute carrier family 22 member 5 (SLC22A5); OCTN2
B07n X70854 0.56 0.2354 0.6095 fibulin 1
B08h U35035 0.04 0.1781 0.9736 matrilin 1; cartilage matrix protein 1
B10g X05430 -0.48 0.1697 0.6095 Ia-associated invariant chain
B10j M25244 -0.21 0.1764 0.7628 lysosomal membrane glycoprotein 1
B10n X90582 0.26 0.2092 0.7533 signal sequence receptor delta
B11k M31775 -0.45 0.2102 0.6095 cytochrome b-245 alpha polypeptide
B12e L06465 -0.33 0.2071 0.7000 cytochrome c oxidase polypeptide VI a1 (COX6A1)
B14h M60847 -0.09 0.3218 0.9697 lipoprotein lipase
B14i X51547 -0.64 0.1861 0.6095 P lysozyme structural
C01b AF002718 0.10 0.1854 0.9138 ATPase inhibitor
C02a M16229 0.62 0.2457 0.6095 mitochondrial malate dehydrogenase
C03f M65034 0.51 0.2552 0.6549 fatty acid binding protein intestinal
C03i D29639 -0.49 0.3536 0.7523 hydroxylacyl-Coenzyme A dehydrogenase-dehydrogenase
C03k X70100 -0.13 0.2287 0.9014 keratinocyte lipid binding protein
C04e U27340 0.39 0.2259 0.6549 prosaposin
C06d M63244 0.36 0.2410 0.7328 erythroid aminolevulinic acid synthase 2
C06j X13752 -0.32 0.2452 0.7523 delta-aminolevulinate dehydratase
C08g M61704 0.37 0.1822 0.6356 alkaline phosphatase 5
C09h L10244 -0.26 0.2093 0.7533 spermidine/spermine N1-acetyl transferase
C09m X52803 -0.18 0.1689 0.7811 peptidylprolyl isomerase A
C10n M73329 -0.61 0.1974 0.6095 endoplasmic reticulum protein
C11k X81987 -0.42 0.1738 0.6095 ribosomal protein L6
C12b X03039 -0.17 0.2245 0.8507 eukaryotic translation initiation factor 4A1
C12n AF067834 -0.45 0.2166 0.6356 caspase 8
C13d U19463 -0.27 0.1503 0.6549 tumor necrosis factor alpha-induced protein 3 (TNFAIP3; TNFIP3)
C14e X75947 0.66 0.2411 0.6095 poly(rC) binding protein 2
D01c X53476 -0.87 0.2600 0.6095 high mobility group protein 14 (HMG14)
D03c X59927 1.12 0.2643 0.5805 fibroblast growth factor receptor 4 (FGFR4)
D07m U26176 1.05 0.3224 0.6095 somatostatin receptor 4
D10e U40811 0.34 0.2251 0.7209 endothelial differentiation sphingolipid G protein-coupled receptor 1
D11g U28772 0.24 0.1971 0.7533 olfactory receptor 10
D12e AF102533 0.47 0.2891 0.7086 olfactory receptor F7
D13a M60909 0.16 0.1730 0.8282 retinoic acid receptor alpha
D14i D89080 0.21 0.1983 0.7938 fibroblast growth factor 10 (FGF10)
E01c AF092734 0.45 0.1670 0.6095 growth differentiation factor 11 (GDF11)
E02i U15209 -0.27 0.1912 0.7399 small inducible cytokine A9
E02k M13177 0.69 0.1970 0.6095 transforming growth factor beta 1 (TGF-beta 1; TGFB1)
E03e AF070988 0.29 0.1442 0.6270 wingless-related MMTV integration site 2b protein (WNT2B)
E05h M15131 -0.48 0.2878 0.6837 interleukin 1 beta precursor (IL1-beta; IL1B)
E06c X94322 0.40 0.2637 0.7328 melanoma inhibitory activity protein (MIA)
E08c U43187 0.43 0.2124 0.6270 mitogen-activated protein kinase kinase kinase 3 
E11k AF031147 0.15 0.1746 0.8447 phosphodiesterase 9A (PDE9A)
E12b D16301 0.18 0.1786 0.8049 caltractin; 20-kDa calcium-binding protein
F02e AB009459 0.79 0.2839 0.6095 mannan-binding lectin serine protease 2 (MASP2)
F02m D10445 -0.72 0.2914 0.6095 protein C
F04m D84096 0.28 0.2359 0.7639 ubiquintin c-terminal hydrolase related polypeptide
F05e AF090691 0.35 0.2719 0.7523 cystatin 8 (cystatin-related epididymal spermatogenic)
F06l X63535 0.42 0.3109 0.7523 AXL receptor tyrosine kinase
F07m U58884 0.55 0.2470 0.6270 drebrin-like
F09j M26251 -0.52 0.1946 0.6095 vimentin (VIM)
F09m U04443 -0.57 0.2493 0.6095 non-muscle myosin light chain 3
F12f L07063 -0.17 0.2493 0.8752 FK506 binding protein 6 (65 kDa)
F12i AF022371 -0.59 0.2473 0.6095 interferon activated gene 203
F13d U41805 -0.41 0.2202 0.6549 lymphocyte antigen 84 ligand
F14d L27990 -1.08 0.5596 0.6549 Sjogren syndrome antigen A1

* =Gene code given on the Clontech arrays 1M= Ratio log2(
H/N)

** = Gene code from the gene bank 2SD= Standard deviation
3P value of the one-sample two-sided t-test(H0:M=0)  
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Table 6   Regulated genes under hypoxia 21 days. 

Gne Code* Gne bankcode** M1 SD2 P3    Gene

A01d M62542 -0.85 0.3364 0.5948 CD19 antigen
A01n S51806 -0.34 0.2504 0.6131 CD44 antigen precursor; phagocytic glycoprotein I (PGP1)
A02j AF001041 -0.49 0.2842 0.5948 CD83 antigen
A03f X14951 -0.23 0.2328 0.7299 integrin beta 2 (ITGB2); cell surface adhesion glycoproteins 
A03h M76124 -0.86 0.3143 0.5948 lymphocyte antigen 74 (LY74)
A03m AJ223765 -0.44 0.2847 0.5956 lymphocyte antigen 94 (LY94); activating receptor 1 (mAR1)
A09b AF132483 -0.15 0.2349 0.8176 cyclin-dependent kinase 6
A10l AF013107 -0.74 0.3142 0.5948 a disintegrin & metalloproteinase domain 7 (ADAM7)
A12e L38281 -0.48 0.2990 0.5948 immunoresponsive gene 1
B10g X05430 1.39 0.2419 0.0358 Ia-associated invariant chain
B10n X90582 0.18 0.2857 0.8176 signal sequence receptor delta
B12c X54691 0.14 0.2836 0.8741 cytochrome c oxidase polypeptide IV (COX4)
B12e L06465 0.35 0.2405 0.6012 cytochrome c oxidase polypeptide VI a1 (COX6A1)
B12g U37721 0.28 0.2353 0.6630 cytochrome c oxidase polypeptide VIIIa (COX8A)
B12i X55771 -0.57 0.2858 0.5948 testis cytochrome c
B12k AI256292 -0.22 0.2873 0.7788 clone 1889103 (IMAGE Consortium mouse liver cDNA clone)
C02b M29462 0.52 0.3331 0.5956 soluble malate dehydrogenase
C03k X70100 0.19 0.2388 0.7788 keratinocyte lipid binding protein
C05m J02623 -0.18 0.2859 0.8176 soluble glutamate oxaloacetate transaminase 1
C09i AF036894 0.28 0.2960 0.7450 sphingosine phosphate lyase 1
C14a U72032 0.54 0.3412 0.5948 eosinophil-associated ribonuclease 1
D01i U35730 -1.00 0.2899 0.3659 jerky
D04e L26349 -0.44 0.2850 0.5956 tumor necrosis factor receptor superfamily member 1A 
D04f L12120 -0.57 0.2928 0.5948 interleukin 10 receptor alpha precursor ( IL10R- alpha; IL10RA)
D04g U53696 -0.33 0.2986 0.6865 interleukin 10 receptor beta ( IL10R- beta; IL10RB)
D05i Z15119 -0.63 0.2927 0.5948 5-hydroxytryptamine receptor 2C receptor (5HT2C; HTR2C)
D07d X78936 -0.84 0.2887 0.5768 parathyroid hormone receptor
D07e D50872 -0.46 0.2852 0.5948 platelet-activating factor receptor
D07m U26176 -0.72 0.3156 0.5948 somatostatin receptor 4
D08h X55674 -1.02 0.3836 0.5948 dopamine receptor 2
D08j U23807 -1.49 0.4639 0.4743 G protein-coupled receptor 7
D09a U51908 -0.50 0.2921 0.5948 neurotensin receptor 2
D10e U40811 -0.73 0.2875 0.5948 endothelial differentiation sphingolipid G protein-coupled receptor 1
D10m M14215 0.57 0.3232 0.5948 low-affinity IgG Fc receptor III (FCGR3)
D11g U28772 -0.69 0.3363 0.5948 olfactory receptor 10
D11h X89689 -0.45 0.3021 0.6012 olfactory receptor 24
D12a AF102520 -0.30 0.2917 0.7278 olfactory receptor B7
D13a M60909 -0.38 0.2400 0.5948 retinoic acid receptor alpha
D14i D89080 -1.08 0.3794 0.5768 fibroblast growth factor 10 (FGF10)
E01h M74181 -0.70 0.3429 0.5948 hepatocyte growth factor-like
E02i U15209 -0.43 0.2862 0.6012 small inducible cytokine A9
E03e AF070988 -0.40 0.2903 0.6131 wingless-related MMTV integration site 2b protein (WNT2B)
E05h M15131 -0.64 0.3139 0.5948 interleukin 1 beta precursor (IL1-beta; IL1B)
E08c U43187 -0.40 0.2899 0.6131 mitogen-activated protein kinase kinase kinase 3 
E09k U53276 0.48 0.2991 0.5948 protein phosphatase 1 catalytic subunit, gamma isoform
E10d S53270 -0.36 0.2423 0.6012 cell line NK14 derived transforming oncogene
E11b U85021 -0.73 0.3143 0.5948 adenylate cyclase 8
E12b D16301 -0.38 0.2872 0.6174 caltractin; 20-kDa calcium-binding protein
E14k X74154 -0.40 0.2927 0.6131 cellular retinol-binding protein 2
F03d D50411 -0.71 0.3400 0.5948 a disintegrin and metalloproteinase domain 12 (ADAM12)
F04c D38117 -0.38 0.2537 0.5956 calpain 2 (CAPN2)
F04l AJ000990 0.55 0.3050 0.5948 cysteine protease 1 (PRCS1); preprolegumain; legumain
F05b M93264 -0.49 0.3022 0.5948 alpha-2-macroglobulin
F07l AB011678 -0.29 0.2947 0.7371 X-linked doublecortin (DCX; DCN); X-linked lissencephaly protein (LISX)
F08l AF053235 -0.68 0.3299 0.5948 acidic keratin complex 1 gene 16 (KRT1-16)
F09g D49733 -0.53 0.2875 0.5948 lamin A
F09j M26251 -0.41 0.2488 0.5948 vimentin (VIM)
F10e M57590 -0.54 0.3027 0.5948 fast skeletal troponin C
F13k U69172 0.10 0.2852 0.9000 palate, lung & nasal epithelium-expressed transcript
F14e U95114 -0.22 0.2893 0.8020 sperm specific antigen 1
G11 X51703 0.22 0.2351 0.7421 ubiquitin; UBA52; UBB; UBC; UBCEP1
G47 L31609 0.38 0.2459 0.5955 40S ribosomal protein S29 (RPS29)

* =Gene code given on the Clontech arrays 1M= Ratio log2(
H/N)

** = Gene code from the gene bank 2SD= Standard deviation
3P value of the one-sample two-sided t-test(H0:M=0)  

The tables demonstrate that only very few genes expressed a tendency of hypoxia- induced 

regulation. In addition, a careful look at the log-ratios of these genes that were filtered and 
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were included in the tables shows that many of them had a log-ratio (M) close to 0, i.e., the 

observed regulation was only weak. 

3.4 PCR results 

After analysis of the nylon arrays, real-time PCR was performed for confirmation. Genes for 

PCR analysis were selected using the following criteria: 

• Genes listed in Table 5 and Table 6 as described earlier. 

• Genes that we found to be hypoxia-dependant regulated  in pulmonary vessels or 

alveolar septa; Cytochrome b-245 α polypeptide (Gene bank code M31775) was 

found to be hypoxia-regulated in vessels (Fink et al., 2002). We therefore tested it 

in this work aiming to understand its possible regulation in AM. New data 

suggested that other genes like CD36 (L23108), Prosaposin (U23740), IL-9RC 

(M84746),(Kwapiszewska et al., 2005) are hypoxia-regulated in alveolar septum or 

in lung vessels and were therefore investigated in this work as well. 

The results are demonstrated in Figure 7.  

1 day 

For most of the genes tested, real-time PCR resulted in a variable relative expression.  

Moreover, only few genes showed the same tendency (up / down) in regulation by PCR and 

arrays analysis {Cytochrome b245 alpha (M31775), G Protein coupled Receptor 7 (U23807), 

NADH Ubiquinone oxidoreductase (Y07708), Peptidylprolyl isomerase A (X52803) and 

Polypyrimidine tract binding protein (X52101)}. Regarding only the last two, the ratios were 

nearly equal. For all other genes tested, including vimentin (M26251) and integrin β2 

(X14951) that were further investigated by immunohistochemistry, a remarkable difference 

occurred comparing array and PCR calculated expression change. However, the average 

regulation factors determined by the real-time PCR results were close to 1 (i.e. ΔΔCT-values 

were close to 0), indicating a very weak if any regulation.  
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21 days 

PCR results for the gene expression after 21 days of hypoxia did not differ considerably from 

those of 1 day in the fact that most expression changes could not be confirmed.  Most of the 

genes investigated showed ΔΔCT-values close to 0. The regulation of Cathepsin S precursor 

(AJ223208), FGF 10 (D89080), CD 36 (L23108), G Protein coupled Receptor 7 (U23807), 

Peptidylprolyl isomerase A (X52803), Cathepsin K (X94444), Apolipoprotein C II (Z15090) 

was further supported by the PCR assays.  

G Protein coupled Receptor 7 (U23807) was the only gene underlying probably a real hypoxia 

dependant regulation with a reduction of m-RNA levels after 1 and 21 days of hypoxia. 
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Figure 7 A Comparison of array and PCR results for A- 1 day, B- 21 days. On the x axis the genes 

are listed, on the y axis ∆∆Ct = ∆Ct (target gene) - ∆Ct (reference/house-keeping gene) or (M) 

= average log2-ratio calculated for the membranes.  
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Figure 8 Gel electrophoresis of selected genes performed after PCR assay (A) 1 day, and (B) 21 days. 

For each of the genes tested, the 2 most left bands represent the PCR product of normoxia, 

followed by two PCR products of hypoxia and a negative control.  (A)- a.- G protein coupled 

receptor 7, b. Polypirimidin tract binding protein, c. Acidic keratin complex, d. Sepiapterin 

reductase e. Prosaposin.  (B)-a.-Desmoglein 2, b.- Cathepsin K, c.- IL-9 receptor, d.- Il 1 beta 

precursore. 

Each PCR assay was completed by gel electrophoresis (as described in chapter 2.4.14). For 

each one of the genes tested with PCR, PCR products of the two hypoxia and normoxia 

samples and a negative control were carried out, as demonstrated in Figure 8 . 

3.5 Immunohistochemistry 

To measure the protein expression level, immunohistochemistry staining was carried out for 

vimentin and integrin β2 (as described in chapter 2.4.15). More than 50% of the AM did not 

show a staining for vimentin /integrin β2 (personal communication Prof. Dr. med. R.M. 

Bohle, director of the department of pathology, University of the Saarland, Homburg) and 

were excluded from counting, the total amount of AM (hypoxia/normoxia) was in a 

comparable range. Figure 9 demonstrates the immunreactivity of AM stained for vimentin 

after 1 and 21 days hypoxia.  
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Figure 9 Immunreactivity for AM stained for Vimentin. A- 1day hox/nox, p-value = 0.004 (Fischer’s 

exact test, 2-tailed), B-21 days hox/nox, p-value = 0.414 (Fischer’s exact test, 2-tailed). 

The influence of acute hypoxia (1day) could clearly be seen as decrease of vimentin on the 

protein level (p=0.004), while the impact of longer term hypoxia (21days) seemed to be 

weaker and was not significant (p=0.414). These findings support the array results rather than 

the PCR results. 

The influence of hypoxia on the expression pattern of integrin β2, shown in Figure 10 was 

different than vimentin.  On protein level, acute hypoxia led to a reduction of β2 expression in 

AM (p=0.693), and to a significant (p=0.032) up-regulation of integrin β2 after 21 days of 

hypoxia. 
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Figure 10  Immunreactivity for AM stained for Integrin β2. A- 1day hox/nox, p-value = 0.693 (Fischer’s 

exact test, 2-tailed), B-21 days hox/nox, p-value = 0.032 (Fischer’s exact test, 2-tailed). 
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Figure 11 AM stained for vimentin magnitue x 400 (A-normoxia, B-hypoxia 1day), and integrin (C-

normoxia D-hypoxia 1day) as seen under the microscope. Arrows mark the stained AM 

C             D

A             B
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Figure 12     Negative control of the immunohistochemistry, no use of the primary antibody (A- integrin 1 

day magnitude x 200, B- integrin 1 day magnitude x 400, C- vimentin 21 days magnitude x 

200 and D-vimentin 21 days magnitude x 400) 

A B

C D

A B

C D
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4  Discussion 

4.1 Methodical aspects and limitation of the study 

The lung is an important target organ for systemic inflammatory mediators released after 

major trauma and severe infections. Hypoxia is a well studied factor known to mediate lung 

injury. Most studies investigating the role of hypoxia in initiating pulmonary damage have not 

solely examined the influence of hypoxia but rather the combination of hypoxia and other 

factors known to trigger an inflammatory reaction like lipopolysaccharide (Hempel et al., 

1994; Hempel et al., 1996; VanOtteren et al., 1995). However, some studies demonstrated 

that hypoxia can solely induce lung inflammation and secretion of pro-inflammatory 

mediators (Hirani et al., 2001; Madjdpour et al., 2003). The role of AM in mediating and 

regulating the inflammatory processes in the lungs is only partially revealed. In fact, AM can 

phagocyte cells, and be powerful secretors when activated, releasing cytokines that recruit 

other cells, altering the adhesion and permeability of blood vessels etc. 

The aim of this study was to extend the current knowledge about the hypoxia-dependant gene 

expression in AM. New hypoxia-regulated candidate genes should be identified using the 

Microarray technology. cDNA arrays are a powerful tool for analysing gene expression or 

monitoring gene regulation. The nylon membrane based arrays used in this work, the so-

called nylon arrays, were proven to be sensitive, reproducible and inexpensive. Since 

Microarrays are a new and fast developing technique in molecular biology, it is not surprising 

that nylon arrays have been partly replaced by a new generation of Microarrays using glass 

carriers. The advantage of glass arrays is the higher spot density (up to 170,000 spots per 

slide) which allows a comprehensive genome screen at once and therefore a detailed 

reflection of underlying processes. Furthermore, the use of competitive hybridisation of the 

fluorophor-labelled RNA- or cDNA sample on one slide and of local background 

normalisation overcomes the problems of different background levels between two arrays. 

However, high density glass Microarrays were not available at the beginning of this work. 

Nevertheless, nylon arrays have proven to be a powerful tool for investigating the expression 

and regulation of a large number of genes to screen for candidate genes. They can be used as 
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an efficient filter to point out hypoxia-dependant regulated genes. However, screening many 

genes at a time will inevitably yield false-positive results. Therefore, results for interesting 

candidates which should further be analyzed, e.g. by protein analysis or in knock-out/knock-

down experiments, need to be validated by an independent experiment. For this purpose, 

during the last decade quantitative real-time PCR became the standard. 

Initially, material for each 10 experiments per time point (1d and 21d hypoxia, including a 

technical replication = total of 80 membranes or individual hybridisations, respectively) was 

collected. The data obtained from the arrays turned out to be of insufficient quality. Since the 

performance of the RT-enzyme supplied by Clontech™ was inadequate, cDNA synthesis 

resulted in too low amounts of cDNA and poor incorporation of radiolabelled dATP. This in 

turn led to a weak hybridisation signal and a low signal-to-noise ratio (see Table 5). The high 

and irregular background observed in many hybridisations is caused by long exposure time 

and reduction in washing stringency due to the low enzyme performance. The initially 

obtained results could thus not be used for further analysis and an essential part of the samples 

was lost before the reason for the bad results was identified. The subsequent application of an 

enzyme from another supplier (Promega) finally gave usable results (see Table 5). However, 

the remaining sample size (3 to 5 experiments per time point) was too small to allow the 

identification of regulated genes by statistical means with adequate power. Accordingly, the 

statistical analysis for differential expression under hypoxic conditions revealed only a single 

candidate (Ia-associated invariant chain, p=0.0359, see chapter 3.2) at the desired level of 

significance (α=0.05). In order to extract as much information as possible, further candidates 

were selected using only the information about the direction of regulation (see chapter 3.3). 

The candidates showing a consistent direction in at least three experiments are shown in Table 

6 and Table 5.  

The differential expression of the selected candidates should be validated by real-time PCR. 

Although candidates with a more than 2-fold difference in expression between hypoxia and 

normoxia were expected to be found and to be subsequently validated by real-time PCR,   

hypoxia turned out to be only a weak stimulus in AM. Most candidates from the hybridisation 

experiments showed less than 2-fold differences. Such small effects require large sample sizes 

to yield statistically significant results from quantitative real-time PCR. Unfortunately, there 

was not enough sample material available to provide enough data for a statistical analysis with 

adequate power. Additionally, some samples showed very low expression yielding Ct values 
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that were not useable for a quantitative analysis. Consequently, it is not surprising that the 

results of the Microarray experiments and the real-time PCR show just a weak correlation. 

Additionally, the differential expression of some further genes was analyzed by real-time 

PCR. Some of these genes were previously investigated by members of our research group 

that examined the hypoxia dependant gene expression in lung vessels and alveolar septa. A 

small number of the genes, which seemed to play an important role in the adaptation of lung 

vessels to hypoxia, were also examined in this work. Examples are CD 36 that was found to 

be initially upregulated under hypoxia in intrapulmonary arteries while at later time period (21 

days) downregulated (Kwapiszewska et al., 2005). Additionally, Prosaposin and Cytochrome 

b-245 α polypeptide was shown to be regulated by hypoxia in intrapulmonary arteries (Fink et 

al., 2002). Because of the same reasons as discussed above, the real-time PCR did not provide 

enough evidence to identify a differential expression of these genes as well. The data do 

neither allow to conclude that these genes are not regulated in AM, nor that they are regulated. 

However, this work demonstrates that the sample size must be considerably increased to study 

hypoxia-dependant gene regulation in AM in future studies. 

4.2 Genes selected for immunohistochemistry 

Only some antibodies (for vimentin and integrin β2) for performing the 

immunohistochemistry were available, for all other candidates no antibodies existed at the 

time of practical work. Therefore, immunohistochemistry was performed only for these two 

proteins. Following is a literature research summing the current knowledge about them and 

evidences for hypoxia- dependant regulation.  

4.2.1 Vimentin 

 The cytoskeleton of all metazoan cells contains three major filament systems: actin 

microfilaments (MFs), microtubules (MTs) and intermediate filaments (IFs). The name 

“intermediate filaments” comes from their diameter (10-12 nm) being intermediate between 

that of MTs (25 nm) and MFs (7-10 nm). The integrated network formed by the three-filament 

system is responsible for the mechanical integrity of the cell and is crucially involved in such 

processes as cell division, motility and plasticity. 
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IF´s subunit proteins have been subdivided into three major groups on the basis of the 

assembly properties, gene, and sequence structure: the keratins, the neurofilament-like 

proteins, and the vimentin- related proteins. 

At present, IFs are the least characterised structures of the three-filament system. 

Nevertheless, we can say that they exhibit unique structural features clearly differentiating 

them from the two other filament systems. First, the elementary “building block” of both MFs 

and MTs are represented by globular proteins, a monomeric actin and a αβ-tubulin 

heterodimer, respectively. However, the elementary unit of IFs is a very elongated (ca.45 nm) 

and thin (ca. 2-3 nm) rod-like dimer. The axes of the elementary dimers are aligned 

approximately parallel to the filament axis, while the filament width is controlled by a specific 

lateral association of the dimers. Second, both actin MFs and MTs are polar, which allows an 

active transport of associated motor proteins, such as myosins and kinesins, along these 

filaments. On the contrary, assembled IFs have no polarity, as individual dimers are oriented 

in both “up” and “down” directions along the filament. Third, in vivo IFs appear to be the 

most dynamic of the three filament types. In particular, reversible dissociation –association of 

IF dimers can occur along the entire filament length and not just at the two ends as in MTs 

and MFs. 

All IF proteins exhibit a characteristic “tripartite” structure (Figure 13), which includes the 

highly α-helical, centre domain (the “rod”), and the non-helical “head” and “tail” domains 

located at either end of the rod domain. 

 

Figure 13 Schematic diagram of human Vimentin. The central rod domain is predicted to consist of two 

subdomains, coil 1 and coil 2, that are predicted to be largely -helical (rectangles). Two highly 

conserved regions are darkish highlighted. Taken from (Strelkov SV et al 2003). 

Vimentin IFs are expressed in many mesenchymal cell types during development and are the 

only IFs type found in a variety of cells, including fibroblasts, endothelial cells, macrophages 

(in particular, multinucleated giant cells), neutrophils, and lymphocytes. Although vimentin 
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IFs are clearly not required for the survival of individual cells (vimentin null or knockout 

mutations in transgenic mice failed to provide the functional significance of vimentin), at 

present there is no consensus on the functional role of this IF protein. 

4.2.1.1 What are the possibly roles of vimentin? 

♦ At the cellular level vimentin IF forms associations with other organelles, mostly with 

other components of the cytoskeleton and membrane adhesions. It was thought, that 

vimentin would have a significant influence on cell morphology and cytoskeleton 

organisation. But is it really the case? A work comparing the distribution of 

cytoplasmic organelles, including microfilaments and microtubules, in cell lines that 

either contain vimentin or lack any detectable IFs, failed to find any obvious 

difference that could be associated with vimentin expression (Colucci-Guyon et al., 

1994; Sarria et al., 1994). Other works demonstrated a normal microtubules and 

microfilaments organisation in fibroblasts lacking vimentin. 

Even when examing the widely accepted assumption that IFs have an important role in 

protecting cells against physical injury some questions about the role of vimentin are 

raised. Numerous studies have shown that mutations or lack of IF protein desmin or 

epidermal keratin leads to an increased fragility of these cells in response to 

mechanical stress. On the other hand, knockout mutation of other IF proteins 

(inclusive vimentin) failed to reveal a similar “fragility” phenotype. 

♦ A number of studies have indicated some interaction between vimentin IFs and 

chaperone or stress proteins. The organisation of IFs, including vimentin, is affected 

by conditions, such as heat shock or other agents that elicit a stress response. Hsc70, 

for example, a member of the large heat shock protein family, seems to co localize    

with vimentin after cells were exposed to hyperthermia. The functional significance of 

such interactions remains unclear.  

♦ When exposed to cytopathic/inflammatory agent (Toxin B from Clostridium difficile), 

human macrophages and monocytes showed a reorganisation of the components 

building the cytoskeleton; tubulin, actin, vimentin (Siffert et al., 1993). New evidences 

(Bravo et al., 2003) gives further support to the theory that vimentin is involved in 

cellular stress reaction; by inducing a renal injury scientists showed a tubulointerstitial 
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accumulation of macrophages and lymphocytes, and an increase (8 to 20 times) of 

vimentin, heat shock protein 60 and 70 expression in the renal cortex.  

♦ An interesting work (Mor-Vaknin et al., 2003) suggests a new role of vimentin in 

activated macrophages. The work demonstrates that vimentin, which was first 

phosphorylated at serine and threonine residues by protein kinase c, is secreted from 

macrophages. These findings are consistent with previous observations showing that 

phosphorilation of vimentin affects its intracellular localisation and redistribute the 

cytoskeleton (Ciesielski-Treska et al., 1991; Owen et al., 1996). Moreover, the 

activation of macrophages with the pro-inflammatory cytokine tumour necrosis factor 

α showed to trigger vimentin extracellular secretion and vimentin seemed to be 

involved in bacterial killing and generation of oxidative metabolites.  

 A lately published paper (Xu et al., 2004) gives some further evidence that vimentin 

can be secreted into the extra cellular matrix. It was found that the antigen of PAL-E 

antibody, a marker used for almost 20 years to identify blood and lymph vessels, is a 

secreted form of vimentin. Its secretion is restricted to a distinct population of blood 

endothelial cells and activated macrophages, and PAL-E reactive vimentin found in 

circulating human blood.  This secreted form of vimentin seems to be a product of 

cell-specific posttranslational modification and not to arise from an endothelial cell-

specific m-RNA. 

Taken together, there are some evidences that vimentin is involved, alone or via 

interactions with other proteins in the cellular response to stress factors like heat or 

inflammation; it can also be secreted by some cells including macrophages. Further 

studies are needed to evaluate the significance of these findings. 

A totally different perspective to the function of vimentin in macrophages is 

demonstrated in works investigating atherosclerotic lesions (Heidenthal et al., 2000; 

Muller et al., 2001). A membrane protein on the cell surface of macrophages, binding 

oxidised and acetylated but not native LDL, was identified as vimentin. Only oxidised 

LDL, but not native or acetylated LDL, induced apoptosis of human macrophages, a 

process involving the cleavage of vimentin into fragments of 48-50, 46, 29 and 26 kDa. 

Although it is yet too early to be able to evaluate these phenomena, vimentin may play a 

role in membrane-associated steps involved in the intracellular processing of modified 
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LDL, contributing to its unregulated uptake and intracellular retention by cells of the 

atherogenic plaque. 

Antibodies directed to the Sa antigen are highly specific for rheumatoid arthritis (RA) and 

can be detected in approximately 40% of RA sera. It was just recently discovered 

(Vossenaar et al., 2004), that Sa antigen is citrullinated vimentin (which means that some 

of its arginine residues are deiminated to citrulline residues). This modification of 

vimentin has also been described as occurring in dying macrophage (Asaga et al., 1998; 

Vossenaar et al., 2004). It is known that citrullination of the amino terminal head domain 

by peptidylarginine deiminase induces disassembly of the vimentin filaments in vitro. 

Therefore, citrullination may be involved in the disassembly of the vimentin cytoskeleton 

during cell death, when the network of vimentin filaments collapses into perinuclear 

aggregates. Taken together, this new information makes citrullinated vimentin an 

interesting candidate autoantigen in RA and may provide new insights into the potential 

role of citrullinated synovial antigens and the antibodies directed to them in the 

pathophysiology of RA. 

4.2.1.2 Vimentin and hypoxia 

A fascinating study (Krishnamachary et al., 2003) demonstrated an influence of hypoxia and 

hypoxia inducible factor-1 (HIF-1) on the m-RNA levels of vimentin in human colon 

carcinoma cells. The study showed that hypoxia or HIF-1 overexpression stimulates invasion 

by human colon carcinoma cells, whereas a small interfering RNA directed against HIF-1 

could inhibit this process. They also revealed that HIF-1 regulates the expression of genes 

encoding cathepsin D, fibronectin1, some keratins, vimentin and some other proteins, all 

playing a role in the pathophysiology of tumour invasion. Reprogramming of IFs expression 

(due to intratumoural hypoxia or HIF-1 activity) leads to the production of vimentin, which 

either alone or in combination with specific keratins, promotes tumour cell invasion. Similar 

findings are described by (Luo et al., 2006) regarding human prostate cancer cells. It was 

shown that over-expression of HIF-1 stimulates the invasion potency of these cells and that 

vimentin expression is HIF-1 regulated. Our findings regarding the hypoxia induced 

regulation of vimentin m-RNA und protein are not supported by the studies listed above. 

Evidences suggesting that the regulation of vimentin is stress-dependant, and that such stress 

may lead to a reorganisation of intracellular structures including cytoskeleton and vimentin 
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filaments are also favouring our data, because hypoxia must be seen a form of cellular stress. 

In which way the regulation of vimentin in  AM under hypoxia is involved in lung damage or 

in the attempt of the organism to cope with it, is still not clear, just like the question whether it 

can also initiate the secretion of vimentin from AM into the extracellular matrix (as described 

in some of the works). Our data indicates a suppression of vimentin m-RNA and protein by a 

lack of oxygen. The papers dealing with the induction of vimentin through HIF-1 are 

suggestive of a mechanism leading to an up-regulation of this gene. Although it may seem to 

be a contradiction, it does not necessarily have to be one since the records implicating HIF-1 

regulation of vimentin were made in tumour cells. Further studies taking a closer look at the 

regulation in non-tumour cells need to evaluate the exact mechanism in which hypoxia 

influences vimentin.  

4.2.2 Integrin β2 

Integrins are a large family of surface receptors that are localised on the plasma membrane 

and share common features in molecular structure and functions. Integrins are involved in cell 

interactions with extracellular matrix glycoproteins (collagen, fibronectin, laminin etc.). Some 

integrins are also involved in intercellular interactions (via binding to counter-receptors on 

other cells). In their capacity as adhesions receptors that organise the cytoskeleton, integrins 

play an important role in controlling various steps in the signalling pathways that regulate 

processes as diverse as proliferation, differentiation, apoptosis, and cell migration. 

All integrins share certain structural resemblance. Each receptor is a heterodimer consisting of 

one α- and one β-subunit (Figure 14). Each subunit is an integral transmembrane polypeptide 

that contains three domains: glycosilated extracellular domain (which consists of more than 

90% of the whole molecule), hydrophobic transmembrane domain (responsible for membrane 

anchoring) and endo- (or cytoplasmatic) domain, localised in the cytoplasma.  
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Figure 14 A diagrammatic representation of a universal integrin receptor heterocomplex. The - and ß-

chains are displayed as noncovalently linked parallel subunits with insertions through the cell 

membrane. The long extracellular domains of both chains are contrasted with their short 

intracytoplasmic subunit chains. The binding pocket (BP) is depicted as the stippled portion of the 

opposing sides of both the - and ß-chains. The various extracellular matrix protein ligands are 

contained within the rectangular box at the top of the diagram. An RGD-containing peptide 

(adhesion inhibitor) is interposed between the ligand and the Integrin binding site. Taken from 

(van der Flier et al., 2001). 

Analysis of the human genome suggests the possibility of existence of 24α – and 9β –integrin 

subunits. At the present time, 18α and 8β subunits forming 24 heterodimers have been 

recognised. In most cases, only one or a few α– subunits may bind certain β–subunits and 

these α–subunits do not form dimer(s) with other β –subunits. 

This feature of integrin dimer formation underlines integrin subdivisions into separate β –

subfamilies. Table 7 shows that β1 and β2 –subfamilies consist of 12 and four members, 

respectively. 



Discussion 74 

 

Most integrins do not exhibit unique ligand specify. Usually, each matrix protein may bind to 

several receptors and each integrin shows affinity to several of these proteins. It is hard to 

interpret the multiple ligand specify of the integrin family. Whether integrins should be 

considered only as “anchors” responsible for cell adhesion to the matrix substrate is still not 

clear. The development of the theory that integrins are components of cell signalling well 

explains this phenomenon. Certain evidence exists that integrin receptors exhibit common 

ligand specificity may transduce various intracellular signals controlling physiological 

reactions. 

Table 7 Integrins and their ligands. Please notice that only some of the integrins known today are 

displayed here. Taken from (Berman et al., 2003). 

Integrins Ligands
β subunit α subunit

α1 Native collagene, Laminin
α2 Native collagen, Laminin 
α3 Native collagen, Laminin, Fibronectin
α4 Fibronectin (splicing domain)

β1 α5 Fibronectin (RGD-containing domain)
α6 Laminin
α7 Laminin
α8 Fibronectin,Vitronectin
α9 Tenascin
α10 Collagene
α11 Collagene
αv Vitronectin, Fibronectin, Osteoponin

β2 αL ICAM-1, ICAM-2, ICAM-3
αM ICAM-1,VCAM-1,Fibrinogene, C3b
αX C3b
αD ICAM-3, VCAM-1  

The signal function of integrins can be defined as their ability to mediate the influence of 

extracellular matrix on intracellular processes modifying cell behaviour. This influence is 

mutual and intracellular biochemical reactions, which employ integrins as substrate, modify 

their conformation and, consequently, cell interaction with matrix. Thus, two pathways of 

signal transduction are generally recognised: outside- in and inside- out. 

The mechanism in which integrins are being activated is crucial to their function and should 

be therefore shortly discussed. This is mostly important on leukocytes, where integrins play a 

key role in binding of leukocytes to epithelial cells, as the first step on their way from the 

blood vessels to the periphery, due to cellular damage, inflammation etc.  
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Integrins expressed on leukocytes, such as LFA-1 (leukocytes function-associated antigene-1) 

= (CD11a/CD18), are usually in inactive state, ensuring that these cells do not bind 

inappropriately to their ligands. Two mechanisms have been proposed to explain how 

leukocytes bind their ligand. First, the integrin can undergo conformational change that 

increases affinity of individual integrins to their ligands. It has been demonstrated, that the so 

called αI domain (half of all integrins α- subunits contain an additional, “inserted” (I) domain, 

which is a nucleotide binding fold with a metal binding site), serves as the principal ligand- 

binding site for those integrins that possess it. When αI domain- containing integrins is 

activated, the conformation of this domain is altered, to expose or alter ligand-binding sites. 

Second, stimulation of leukocytes causes clustering of integrins, resulting in increased avidity 

(regardless of affinity status) providing stronger adhesion at sites of cell-cell contact. The 

clustered form of LFA-1 was shown to be essential for adhesion to ICAM-1. The exact 

mechanism of clustering remains to be fully clarified, but agents, which disrupts the 

cytoskeleton, affect clustering, indicating that cytoskeletal reorganisation is involved (Ross et 

al., 1992). Thus, the nonactive integrin is restrained by the cytoskeleton and an activating 

agonist causes release of the cytoskeleton tether, which in turn, leads to integrin mobility on 

the cell membrane and clustering.     

One of the most important features of leukocytes is their ability to adhere to other cells or to 

the extracellular matrix. For that purpose, they utilize members of three major groups of 

adhesion molecules, namely integrins, selectins, and members of the immunoglobulin 

superfamily. From the currently 8 known  β integrin subunits, only β2 and β7 are expressed 

exclusively on leukocytes. Integrin β2 seems to be an important player in the process enabling 

leukocytes (particularly Polymorphonuclear leukocytes= [PMN]) to leave the intravasal 

lumen and migrate towards the apical epithelial membrane. This occurs in three sequential 

stages-  

1. Adhesions: of PNMs to the endothelial cells in the intravasal lumen, 2. Migration: 

transendothelial migration of PMNs across the epithelia, 3. Post migration: after migration 

PMNs reach the lumen and contact the apical epithelial membrane. The initial step, which 

consists of firm adhesion of PMNs to the basolateral epithelial membrane, appears to be 

mediated exclusively by the leukocyte integrin β2 (CD11b/CD18). It was demonstrated, for 

example, that by adding integrin β2 (CD11b/CD18) monoclonal antibodies, ca. 90% of in 

vitro PMNs- migration across intestinal epithelial monolayers could be blocked. The epithelial 
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expressed basolaterally ligand for β2 (CD11b/CD18) that mediates PMN adhesion during 

early stages of migration has to be yet identified (might include multiple fucosylated 

proteoglican(s). ICAM-1, the best-characterized cellular ligand for (CD11b/CD18) is 

normally not expressed on intestinal epithelia, and as its expression is induced it is up 

regulated on the apical rather than basolateral surface.  However, it might be different in the 

airways, where epithelia can have more flattened morphology and up regulation of ICAM-1 

expression is localised at the apical region of the cell boundaries (Taguchi et al., 1998). 

Moreover, ICAM-1 expression is strongly induced by viral infections of airway epithelial 

cells (Wegner et al., 1990) in a NF-kB-dependant fashion, so that ICAM-1 may play a role in 

PMN transepithelial migration in the lungs (Jahn et al., 2000). 

During the second phase, the transepithelial migration of PMNs, integrin β2 does not appear 

to take part. 

Finally, after migrating PMNs reach the apical epithelial plasma membrane, they may destroy 

luminal pathogens. But how do PMNs retained at the apical epithelial surface? Leukocyte 

receptors, such as ICAM-1 on the apical surface (that are markedly up regulated under 

inflammatory conditions and after microbial infection), would be accessible as a ligand for 

integrin β2 (CD 11b/CD 18). Under these conditions, ICAM-1 might serve as a foothold for 

PMNs and macrophages on the luminal surface, serving to retain them in the site of 

inflammation. 

4.2.2.1 The important role of integrin β2 in disease 

The medical importance of leukocyte integrins is most evident from the clinical condition 

known as leukocyte adhesion deficiency type 1 (LAD-1), a life threatening condition, in 

which a mutation is found in the common CD18 polypeptide. LAD is characterized by the 

inability of leukocytes, in particular neutrophilic granulocytes, to emigrate from the 

bloodstream towards sites of inflammation. Infectious foci are nonpurulent and may 

eventually become necrotic because of abnormal wound healing. When the β2 integrins 

(CD11/CD18) expression on leukocytes is completely absent, patients often die within the 

first year. However, low levels of β2 expressions may result in a milder clinical picture of 

recurrent infection, which offers a better prognosis. 



Discussion 77 

 

4.2.2.2 Integrin β2 and alveolar macrophages 

A number of works investigating the influence of smoking on alveolar macrophages (AM), 

and the expression of their surface adhesion molecules (CD11/CD18), revealed some 

interesting findings. Hoogsteden et al. demonstrated increased numbers of macrophages in 

bronchoalveolar lavage (BAL) of smokers (compared with those of healthy, non smoker 

individuals), which is probably the effect of increased recruitment of blood monocytes to the 

alveoli (Hoogsteden et al., 1991). Schaberg et al. also showed that BAL of smoker individuals 

contain more AM, and that more AM (form smokers) express (CD11/CD18) adhesion 

molecules (Schaberg et al., 1992), suggesting a role for these molecules in the “fight” of AM 

against exogenous agents causing lung damage (like smoking). AM adhesion molecules and 

their ligands seem to be also involved in other diseases affecting the lungs. Striz et al. 

demonstrated a higher expression of the α chain (CD11b) and of ICAM-1 (a ligand of the 

CD11/CD18 family), on AM in active pulmonary sarcoidosis, compared with their expression 

in inactive form of the disease or with AM from healthy probands (Striz et al., 1992). 

 Laundahl et al. were also interested to find how the activation of AM influences the 

expression of their CD 11b/CD 18 complexes (Lundahl et al., 1996). They first compared the 

expression of these molecules on resting AM and blood monocytes (BMs), and demonstrated 

a higher expression of CD 11b/CD 18 on AM (although no significant difference of the 

adhesion of the two cell population was demonstrated). After cells were activated (using N-

formyl-methionyl-leucyl-phenylalanine or phorbol-12-myristate-13-acetate and ionomycin) a 

significantly higher surface expression of CD 11b/CD 18 on BMs but not on AM was 

detected. The cellular adherence of BMs, but not AM, increased after activation. These 

findings might be interpreted as a mechanism supporting the accumulation and recruitment of 

leucocytes into an affected organ through a higher expression of adhesion molecules on BMs 

supporting their migration from the blood vessels to the periphery. 

Other works dealing with the function of AM in host defence and inflammatory response 

further reveal the task of adhesion molecules. Albert et al. looked into the expression of the 

different CD11/CD18 family members in primates (Albert et al., 1992). They established that 

AM constitutively express predominantly CD11a/CD18 (=LFA-1) surface antigens and 

mRNA. Concerning the function of integrins in activated AM, they demonstrated that AM 

chemotaxis was markedly inhibited by a monoclonal antibody to CD18, and adhesion of AMs 

to an alveolar epithelial cell monolayer is partly but not completely dependant on the β2 
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integrins (CD18). Milne et al. further confirmed  the role of CD18 in the recruitment of 

leukocytes to the airways  (Milne et al., 1994). Using antibodies against CD 18, they 

decreased the number of eosinophiles in BAL from Guinea pigs exposed to an agent causing 

airway eosinophilia and bronchial hyperresponsiveness. Another work (Paine et al., 2002) 

also demonstrated the importance of the adhesion molecules for the mobility of AM and their 

phagocytic activity in the alveoli. The authors showed a significantly reduced phagocytic 

activity of AM in ICAM-1 deficient mice compared to the control, or when alveolar epithelial 

cells were treated with a neutralizing anti-ICAM-1 antibody. The study indicates that ICAM-1 

on the AEC surface promotes mobility of AM in the alveoli and is crucial for the efficient 

phagocytosis of particles by AM. ICAM-1 is an important ligand of the CD11/CD18 integrin 

receptor and this study further demonstrates the significant role of adhesion molecules in 

inflammatory response carried out by AM. 

In recent years it has become apparent that adhesion pathways not only provide a mechanism 

for translocation of leukocytes from blood to the inflammatory sites but also participate in 

intracellular signalling of leukocytes, which can result in cytokine production. Schmal et al. 

demonstrated the binding interaction between AM and soluble ICAM-1, which resulted in 

generation of two major inflammatory cytokines- Tumour Necrosis Factor-α (TNF-α) and the 

chemokine Macrophages Inflammatory Protein-2 (MIP-2) (Schmal et al., 1998). Both the 

binding interactions and the cytokines production appear to be CD 18 dependant. Mulligan et 

al. had similar results and proved a neutrophil accumulation, which is also β2 integrin-

dependant (Mulligan et al., 1992). Furthermore, the generation of these two cytokines is 

Nuclear Factor-κB (NF-κB) dependant (the promoter region of both MIP-2 and TNF-α 

contain a consensus motif for NF-κB) (Schmal et al., 1998). NF-kB is known to play a major 

role in AM mediated lung injury. On the other hand, one should also consider that the 

cytotoxicity of AM is not exclusively CD 18 dependant; Hirano et al. validated a 

lipopolysaccharide (LPS) - dependant activation of AM (Hirano, 1998). But stimulated AM 

generate NO (which mediates the tumouricidal activity of activated macrophages) in a CD- 18 

independant way  (Jungi et al., 1997). 

4.2.2.3 Integrin β2 und hypoxia 

Inflammatory responses are associated with significant changes in tissue metabolism. In 

particular, metabolic shifting during inflammation can results in significant tissue hypoxia. 
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The following association motivated scientists to look whether the function of leukocytes, and 

their expression of adhesion molecules is hypoxia induced. This mechanism was investigated 

by (Kong et al., 2004). The exposure of the promonocytic cell line U937 to hypoxia resulted 

in increased adhesion to activated endothelium, in a CD18 dependant manner. Comparable 

results regarding hypoxia- treated PMN were also described by ((Montoya et al., 1997). Using 

real-time PCR an elevation of CD18 mRNA under hypoxia was also demonstrated, as well as 

elevated CD18 protein expression (Scannell et al., 1995). In addition, the first group also 

identified a binding site for HIF-1 in the CD18 gene. In this way a mechanism of recruiting 

leukocytes to a site of inflammation/ hypoxia was revealed: hypoxia as a stress factor can 

regulate the expression of adhesion molecules on leukocytes, thus supporting their migration 

from the vessels towards this site. Again, hypoxia proves to have a very similar effect to that 

of inflammation. This data was partly supported by our findings; on the protein level a 

significant hypoxia-dependant up-regulation of integrin β2was demonstrated after a long 

period (21 days), but not for 1 day hypoxia or for the changes on the mRNA level.  

4.2.3 CD 74 antigen 

CD 74 antigen (invariant polypeptide of major histocompatibility complex, class II antigen- 

associated /Gene bank code X05430) was the only gene that demonstrated a statistically 

significant (p=0.0359) hypoxia induced regulation in the arrays analysis for 21 days (Table 6) 

and was also included in the analysis for 1 day (Table 5). For that reason it should be shortly 

mentioned. 

CD 74 is a nonpolymorphic type II integral membrane protein; it has a short N-terminal 

cytoplasmic tail of 28 amino acids, followed by a single 24 amino acids transmembrane 

region and an approximately 150 amino acids lumenal domain. Surface expression of newly 

synthesized CD 74 followed by rapid internalisation to the endomsomal pathway. CD 74 

remains on the cell-surface for a very short time. The surface  half –life of CD 74 was 

calculated to be fewer than 10 minutes. 

CD 74 was thought to mainly function as an MHC class II chaperone, which promotes 

endoplasmic reticulum (ER) exit of  MHC class II molecules, directing them to the endocytic 

compartments, preventing peptide binding in the ER, and contributes to peptide editing in the 

MCH class II compartment (Stumptner-Cuvelette et al., 2002). However, CD 74 was lately 

shown to have a role as an accessory- signaling molecule. CD 74 was reported to be a high 
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affinity binding protein for the proinflammatory cytokine macrophage migration inhibitory 

factor (MIF), providing evidence for a role in signal transduction pathways. Moreover, 

helicobacter pylori was recently shown to bind to CD 74 on gastric epithelial cells and to 

stimulate interleukin 8 production (Beswick et al., 2005). CD 74 also regulates the B-Cell 

differentiation by inducing a pathway leading to the activation of transcription mediated by 

the NF- kB p65/RElA homodimer and its coactivatior, TAFII 105 in CD 74-trasfected 293 

cells and in B-Cells.  

Starlets and coworkers have demonstrated a CD 74 induced signal cascade resulting in NF-kB 

activation, entry of the stimulated cells into the S phase, elevation of DNA synthesis, cell 

division and augmented expression of BCCL-XL, thus showing that CD 74 functions as a 

survival receptor (Lantner et al., 2007; Starlets et al., 2006) 

The results of the arrays analysis in this study suggest a hypoxia dependant regulation of this 

gene (a current literature search could not provide further evidence for this finding). 

Nevertheless, a further investigation is necessary using a larger number of samples so a 

statistically significant result can be made for 1 and not only for 21 days. Moreover, a real-

time PCR diagnosis (which was not performed in this study because of the lack of primers) 

should be performed to verify the array results. Future studies could perhaps confirm if a CD 

74 mediated activation of NF-kB exists also under hypoxia as it was demonstrated in the 

above mentioned works. 

 



Summary 81 

 

5 Summary 
The lung is an organ continuously exposed to infectious or non-infectious inflammatory 

stimuli. Hypoxia turned out to be a trigger of inflammatory reaction solely or in concert with 

other stimuli. Therefore, effective defence mechanisms are necessary for a successful 

confrontation with and repair of inflammation-mediated damages. 

AM are key players in the cellular arm of the immune system assisting the lung in fighting 

inflammation-mediated damage. Not only their direct effect of phagocytosis makes AM 

indispensable, but rather their ability to initiate an appropriate reaction by the secretion of 

many mediators, thus recruiting more AM and other player important for an efficient and fast 

response.  

To increase current knowledge about the genes involved in the hypoxia mediated- activation 

of AM, three well established techniques were applied; 1. Microarrays to screen hypoxia-

regulated genes, 2. real-time PCR for confirmation of array results and 3. 

immunohistochemistry to reveal the hypoxia- initiated changes on the protein level.  

Although nylon arrays have proven to be highly sensitive and reproducible, technical 

problems disallowed the identification of regulated genes by statistical means (as only a small 

number of samples could be used for analysis). Therefore, an alternative way for screening 

was used to extract as much information as possible from the remaining samples. 

Since hypoxia turned out to be a weak stimulus for gene expression in AM, most candidates 

selected via arrays for further validation using PCR, showed less than 2-fold differences. To 

demonstrate such a minor effect, large sample sizes would be required; due to practical 

reasons, this that was not available. Consequently, the results of the Microarrays and the PCR 

showed only a low degree of correlation.  

On the protein level, acute hypoxia (1 day) initiated a statistically significant reduction of 

vimentin expression in AM and a tendency of reduction after 21 days of hypoxia. Further 

studies will be necessary to evaluate the effects demonstrated in this work, since current 

information regarding the hypoxia- dependant regulation of vimentin (mediated via HIF-1) 

was detected in tumour cells.  

As for integrin β2, its HIF-1- mediated, hypoxia- dependant up-regulation to enhance the 

recruitment of leukocytes to the site of inflammation was demonstrated before. This finding 
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was supported by our immunohistochemistry results after long-term, but not after acute 

hypoxia.  

The data collected in this study did not allow to conclude (by statistical means) whether the 

genes tested are hypoxia-regulated or not. Future studies should rely on a larger sample sizes 

to answer this question. 
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6 Zusammenfassung 
Die Lunge ist permanent infektiösen und nicht- infektiösen entzündlichen Stimuli ausgesetzt. 

Es hat sich herausgestellt, dass auch Hypoxie- allein oder gemeinsam mit anderen 

Stimulatoren- eine solche entzündliche Reaktion hervorzurufen vermag. Um entstandene 

Schäden erfolgreich reparieren zu können, sind effektive Abwehrmechanismen erforderlich.  

AM als zellulärer Arm des Immunsystems unterstützen die Lunge in entscheidender Weise  

bei der Bekämpfung dieser Entzündungsreize. Nicht nur ihre Fähigkeit zur Phagozytose 

macht sie unverzichtbar, sondern vielmehr ihre indirekte Beteiligung an vielerlei Prozessen 

durch die Sekretion zahlreicher Mediatoren, die durch Rekrutierung anderer AM und weiterer 

wichtiger Komponenten zu einer schnellen und effizienten Reaktion führt. 

Ziel dieser Arbeit war es, den jetzigen Wissensstand über die an der Hypoxie-induzierten 

Aktivierung der AM beteiligten Gene zu vergrößern. Drei bewährte Methoden wurden hierfür 

eingesetzt: 1. Microarrays, um Hypoxie-induzierte Gene zu filtern, 2. real-time PCR zur 

Validierung der Arrays Ergebnisse 3. Immunhistochemische Färbung um die Hypoxie- 

induzierte Veränderung auf Proteinebene aufzudecken. 

Obwohl sich Nylonarrays in ihrer Anwendung bewährt haben und reproduzierbare Ergebnisse 

liefern, haben in dieser Studie technische Probleme die statistisch signifikante Identifikation 

potentiell regulierter Gene unmöglich gemacht. Um möglichst viele Informationen aus den 

erhaltenen Daten zu gewinnen, mußte hier ein anderer Weg für die Selektion von 

Kandidatengenen beschritten werden. 

Da sich Hypoxie als ein schwacher Stimulus für die Genexepression in AM erwiesen hat, 

zeigten  die meisten (anhand der Arrays ausgewählten) Kandidaten eine Regulation um 

weniger als Faktor 2. Um solche geringen Effekte mittels PCR bestätigen zu können, wäre 

eine größere Proben-Anzahl erforderlich gewesen. So ließ sich in der vorliegende Studie  nur 

eine schwache Korrelation zwischen den Array- und PCR- Ergebnissen zeigen. 

Auf Proteinebene konnte unter akuter Hypoxie (1 Tag) eine statistische signifikante 

Reduktion der Vimentin- Expression nachgewiesen werden, welche auch tendenziel unter 

chronischer Hypoxie noch vorlag (wenn auch nicht statistisch signifikant).Weitere Studien 

sind erforderlich, um die hier mittels immunhistochemischer Färbung gezeigten Effekte zu 

verifizieren, da aktuelle Studien eine andere-, HIF-1 vermittelte Regulation des Vimentins in 
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Tumorzellen nachgewiesen haben. Für Integrin β2 wurde eine HIF-1- vermittelte, Hypoxie- 

abhängige gesteigerte Leukozyten-Rekrutierung zum Entzündungsfokus jüngst publiziert. Die 

vorliegende Studie unterstützt dieses Ergebnis zumindest für die chronische Hypoxie- 

Exposition.  

Die in dieser Arbeit erhobene Daten, erlauben keine statistisch gefestigten Aussagen 

hinsichtlich der potentiellen Hypoxie-bedingten Regulation der hier untersuchten Gene. 

Künftige Studien sollten daher auf einer größeren Probenanzahl basieren.  
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