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ABSTRACT

A functional placenta is an absolute requirement for normal embryonic, fetal

and post-natal development.  During the first trimester of pregnancy,

trophoblast expands rapidly, invades the uterine wall and contributes to

placental formation.  Development of the vascular bed facilitates the

absorptive, excretory and respiratory functions of the human placenta.

Multiple cell types are present at sites of placental vascular development,

including hematopoietic stem cells, endothelial cells, trophoblast and placental

stromal fibroblasts.  Polarographic measurements made in utero have

provided precise information regarding local oxygen tensions (pO2) at the

feto-maternal interface during various stages of development.  Using these

values as a guide, a novel protocol is described that allows simulation of in

utero oxygen environments with real-time monitoring of oxygen levels.  The

impact of oxygen on hematopoietic stem/progenitor cell (HSPC) proliferation,

cell cycle status, apoptosis and differentiation was investigated.  We

demonstrate that the low oxygen environment of the developing placenta may

help maintain the HSPC stem cell phenotype, while simultaneously inducing

the differentiation of monocytes.  Locally derived factors also have effects on

HSPC in the placental microenvironment.  The chemokine SDF-1α / CXCL12

is commonly found in low oxygen environments and is known to effect

CXCR4-expressing hematopoietic cells.  Results from this investigation

indicate that SDF-1α is expressed in chorionic villi throughout gestation.

Furthermore, isolated villous stroma-enriched cell fractions secreted SDF-1α

in vitro.  HSPC expression of CXCR4 increased during coculture with

placental cells in low oxygen.  Interactions of placental-derived SDF-1α with

CXCR4 effects HSPC migration, transendothelial migration and adhesion of

HSPC.  Results indicate the involvement of SDF-1α in attracting CXCR4-

expressing HSPC to areas of placental vascular development.
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ABBREVIATIONS

°C degrees Centigrade

AGM aorta-gonads-mesonephros

APC allophycocyanin

bp base pairs

BSA bovine serum albumin

CaCl2 calcium chloride

CD cluster of differentiation

cDNA complementary deoxyribonucleic acid

CLP common lymphoid progenitors

CMP common myeloid progenitors

CO2 carbon dioxide

DMEM Dulbecco’s minimum essential media

DNA deoxyribonucleic acid

dNTP dinucleotide triphosphate

dpc days post conception

DTT 1,4-dithiothreitol

ECM extracellular matrix

EDTA ethylenediamine tetraacetic acid

ELISA enzyme-linked immunospecific assay

EPC endothelial progenitor cells

EpCAM epithelial cell adhesion molecule

ESC embryonic stem cells

FACS fluorescence activated cell sorting

FCS fetal calf serum

FGF4 fibroblast growth factor-4

FITC fluorescein isothiocyanate

Flt3L Flt3 ligand

FSC forward scatter

g grams

H2O water

HBSS Hank’s balanced salt solution

HCl hydrochloric acid

HIF hypoxia-inducible factor

HPF human placental fibroblast; placental stroma-enriched cell fraction

HPF-CM human placental fibroblast conditioned media

HSC hematopoietic stem cells

HSPC hematopoietic stem/progenitor cells

HSPC-GM hematopoietic stem/progenitor cell conditioned media

HTR human trophoblast; trophoblast-enriched cell fraction
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HTR-CM human trophoblast conditioned media

HUVEC human umbilical vein endothelial cells

ICM inner cell mass

Ig immunoglobulin

IMDM Iscove’s minimum defined media

IUGR intrauterine growth deficiency

KCl potassium chloride

kDa kilodaltons

l litres

LT-HSC long-term hematopoietic stem cells

MACS magnetic activated cell sorting

MgCl2 magnesium chloride

min minute(s)

ml millilitres

mm millimetres

mmHg millimetres mercury

MMP matrix metalloproteinase

MNC mononuclear cells

N2 nitrogen

NaCl sodium chloride

NaOH sodium hydroxide

NK natural killer cells

nM nanomolar

O2 oxygen

PBS phosphate buffered saline

PC personal computer

PCR polymerase chain reaction

PE phycoerythrin

PECAM platelet-endothelial cell adhesion molecule

PerCP peridinin chlorophyll protein

pg picograms

pH power of hydrogen

PI propidium iodide

PlGF placental-derived growth factor

pO2 partial pressure of oxygen

PS phosphotidylserine

rh recombinant human

RNA ribonucleic acid

ROS reactive oxygen species

R-PE R-phycoerythrin
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RT-PCR reverse transcriptase polymerase chain reaction

SCF stem cell factor; kit ligand

SDF-1α stromal-derived growth factor-α

SDR2 Sensor Dish Reader 2

sec seconds

SRM serum reduced media

SSC sideward scatter

TEM transendothelial migration

TPO thrombopoietin

TSC trophoblast stem cells

UCB umbilical cord blood

UV ultraviolet

VEGF vascular endothelial growth factor

VEGFR-1 vascular endothelial growth factor receptor-1; Flt-1

VEGFR-2 vascular endothelial growth factor receptor-2; KDR

VLA-4 very-late antigen-4; α4 integrin

wpc weeks post conception

YS yolk sac

µm micrometres

µM micromolar
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1 INTRODUCTION

Hypoxia is a commonly used term in medicine, especially in

reproductive medicine and biology.  But, what is hypoxia?  Hypoxia can be

defined as a pathological or abnormally low level of oxygen at a given site at a

defined point in time.  This leads logically to the term used to represent

physiologically relevant oxygen levels - normoxia.  A subtlety quite often

overlooked is what is normoxia in the system of interest.  In the field of cell

biology, this important question has been seemingly ignored.  Quite often in

vivo oxygen levels in the tissue of interest vary markedly from oxygen levels

encountered in the incubator.  Ambient oxygen during normal tissue culture is

convenient and, moreover, mimicking in vivo oxygen concentration during in

vitro culture can be time-consuming, expensive and fraught with multiple

problems.

The terms hyperoxia or superoxia are used to describe pathologically

high oxygen levels.  The mean partial pressure of oxygen (pO2) in oxygen-rich

arterial blood is equivalent to 95 mmHg, thus representing an oxygen

concentration of approximately 12% with various local and regional variations

(Balin et al., 1984).  Healthy blood circulation delivers a mean pO2 of 32

mmHg to tissues, representing an oxygen concentration of approximately 4%.

Ambient atmospheres during traditional cell culture contain around 21% O2

and, thus, represent clearly hyperoxic conditions.  The detrimental effects of

oxygen on tissues and cells have been extensively studied.

Physiological oxygen concentrations change throughout pregnancy.

The human placenta, for example, encounters different oxygen tensions at

specific periods of development.  The placenta facilitates these changes and

adapts accordingly in order to meet the needs of the developing fetus.  At

implantation, the fetal derived placenta becomes the primary organ

responsible for the transfer of gases from maternal blood to the embryo.

Obviously, oxygen levels must be tightly regulated to ensure normal

placentogenesis and embryogenesis.  Alterations in oxygen tensions during

pregnancy have been linked to different pregnancy related disorders (Mayhew

et al., 2004).
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Development of the placenta is a requirement for development of a

healthy, term baby.  Cell differentiation, trophoblast invasion and vascular

development are part of this tightly regulated process.  Aberrant development

of the placenta and associated vascular tree has been linked to early

pregnancy losses and different pregnancy-related pathologies, such as

preeclampsia and intrauterine growth retardation (IUGR).  Epidemiological

studies point out an increased risk for hypertension, diabetes and

cardiovascular diseases in adulthood in association with IUGR (Barker et al.,

1990).  Oddly enough, the precise mechanisms of early placental

vasculogenesis and angiogenesis remain unclear.

1.1 Implantation and the Blastocyst

Early embryological investigations have demonstrated that, after

fertilisation, successive cell cleavages result in two-cell, four-cell and eight-cell

embryos (Drews, U. Taschenatlas der Embryologie 1993).  At the eight-cell

stage, compaction of the embryo creates the morula.  A blastocyst arises

following further cell divisions.  The blastocyst is a multicellular stage

consisting of an inner cell mass (ICM) encased in a shell of specialised cells

called trophectoderm.  The ICM will eventually develop into an embryo, while

trophectoderm develops into a placenta.  In the oxygen-poor environment of

the female genital tract, a preimplantation blastocyst spends its first week

travelling from the site of conception to the maternal endometrium.  The

process of implantation commences six to seven days post conception (6-7

dpc).

 Successful blastocyst implantation depends on synchronisation of a

complex series of molecular and cellular events in the embryo and uterus.

Apposition, the first stage of implantation, involves the initial, unstable

adhesion of the blastocyst to the uterine wall.  Stable adhesion, revealed by

an increased contact between the uterine epithelium and trophectodermal

layer of the blastocyst, represents the next step during implantation (Figure 1).

The blastocyst then invades the uterine endometrium, creating a site where

development can proceed.  In preparation for implantation, the maternal

endometrium undergoes morphological changes, known as decidualization.
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Decidualization occurs when endometrial stromal cells proliferate and

differentiate into a distinct cell type, called decidual cells.  Maternal spiral

arteries present in the decidua also prepare for the embryo’s arrival.  Within

the uterine wall, ICM initiates a period of extensive growth and differentiation

known as embryogenesis.  Simultaneously, trophectoderm grows and

differentiates, thereby forming the extra-embryonic organ known as placenta.

A.

trophectoderm

ICM

uterine epithelium

maternal blood vessel

endometrium

B.

cytotrophoblast
YS

maternal blood vessel

decidua

syncytiotrophoblast

                                 C.

chorion

embryonic disc

placenta

allantois

Figure 1. Human blastocyst implantation and early
placentation. Implantation involves stable adhesion of blastocyst to
uterine epithelium (A).  As the blastocyst transgresses the epithelial
layer, trophectodermal cells proliferate and invade the uterine
decidua (B). The process of embryogenesis results in formation of
the embryonic disc. Extra-embryonic yolk sac (YS) also forms
during this time. Further invasion into decidua results in total
blastocyst encapsulation (C). The chorion arises through
differentiation of trophectodermal cells and will eventually consist of
cytotrophoblast and syncytiotrophoblast. In humans, fusion of the
chorion and allantois results in formation of a chorioallantoic
placenta. Figure modified from Moore, 1988.

1.2 The Human Placenta

Placentogenesis initiates as the blastocyst makes contact with the

epithelial lining of the uterus.  It results from rapid proliferation and

differentiation of trophectodermal and adjacent mesenchymal cells of extra-
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embryonic origin.  The human placenta functions during gestation as a semi-

permeable barrier and is responsible for the exchange of gases, nutrients and

wastes between the fetus and its mother.

1.2.1 Placental development and structure

The placenta is a large, multifunctional organ (Figure 2).  As an

endocrine organ, the placenta produces a multitude of hormones, growth

factors and chemokines.  These factors activate autocrine and/or paracrine

pathways, thus regulating cellular functions at the feto-maternal interface

(Lala and Hamilton, 1996).  In addition to its endocrine role, the placenta

carries out many of the fetal functions, including feeding, excretion and

respiration (Zygmunt, M. in Klinische Pathophysiologe 2006).  Furthermore,

placenta acts as a protective barrier from potentially harmful substances

found in the maternal microenvironment (Lala et al., 1983).

Placentas can be classified according to the extent of their

invasiveness into three main types: noninvasive epitheliochorial, moderately

invasive endotheliochorial, and highly invasive hemochorial (Benirschke and

Kaufmann, 1990).  Human placenta is hemochorial.  This high degree of

invasiveness is necessary for maintenance of the embryonic implantation

site and subsequent penetration of maternal blood vessels.  Concomitant

with trophoblast invasion, placental cells are proliferating thereby forming a

large cell population comprised of many cell types, including trophoblasts,

fibroblasts, vascular endothelium and immune cells.  At term (∼40 weeks

post conception (wpc)), placenta is the largest endocrine organ weighing

approximately 600 grams (Boyd and Hamilton, 1970).

Trophoblast cells of the blastocyst proliferate rapidly throughout the first

trimester.  During the first week of implantation, the placenta consists of an

inner layer of cytotrophoblast surrounded by a multinucleate

syncytiotrophoblast layer, derived by fusion of mononucleate

cytotrophoblasts (Figure 1).  Together, they form a sponge-like network

outlining spaces containing tissue fluid called lacunae.  Soon, lacunae fill

with maternal blood owing to the destruction of maternal capillaries and

arterioles within the endometrium by invasive trophoblast cells.  As these

blood-filled sinusoids expand, maternal blood surrounds finger-like
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projections comprised of cytotrophoblast cells and the multinucleate

syncytiotrophoblast.  These structures are termed chorionic villi and

represent the basic structural unit of the placenta (Moore, 1988).

Figure 2. Schematic representation of human placenta at mid-
gestation. Invasion of trophoblast cells opens up the endometrial
arteries and the placenta becomes bathed in maternal blood. The
placenta assumes a respiratory, absorptive and excretory function
and formation of the placental vascular tree facilitates the transfer
of nutrients, gases and wastes between the developing fetus and
mother. Umbilical cord, containing the umbilical vein and umbilical
arteries, connects placenta to the fetus. Figure reproduced Ross et
al., 1995.

Chorionic villi can be categorised according to structure.  Primary

chorionic villi consist of two layers - a cytotrophoblast layer surrounded by

syncytiotrophoblast.  As development proceeds, secondary chorionic villi are

formed when extra-embryonic mesoderm cells infiltrate the villous core.  The

lack of vascular structures within primary and secondary chorionic villi and

absence of maternal blood flow suggests that early placentogenesis occurs

in an oxygen-poor environment.  As the villous core becomes vascularised,

the resultant structures are called tertiary villi.  Fully functional tertiary

chorionic villi can assume two separate structures, each illustrating distinct

differentiation pathways of the villous cytotrophoblast.  Floating villi do not

attach to decidua, but instead project directly into maternal sinusoids where
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they are bathed in oxygen-rich maternal blood.  Surrounded by a

multinucleate syncytiotrophoblast layer, floating villi maintain a primarily

absorptive and endocrine role.  On the other hand, anchoring villi attach the

placenta to the pregnant uterus.  These chorionic villi contain highly

proliferative villous cytotrophoblast cells at the base that break through the

syncytium and form cell columns.  A subset of cytotrophoblast cells from the

anchoring villi, called extravillous trophoblast (EVT), migrate and invade the

uterine decidua (Aplin, 1991; Graham and Lala, 1992).  Some EVT form an

organised cell layer called the cytotrophoblastic shell, while others remain

dispersed in the decidua as interstitial trophoblasts. Yet another subset of

EVT invades and modifies maternal spiral arteries.  As EVT invade the walls

of the uterine spiral arteries, the vessels are adapted into bore conduits

capable of delivering an increased supply of oxygen-rich maternal blood to

the placenta (Zhou et al., 1997).

1.2.2 Oxygen levels in the developing placenta

From implantation and throughout the first trimester, both embryo and

placenta develop in an oxygen-poor environment.  During the first ten to

twelve weeks of gestation (10-12 wpc), the openings of uteroplacental

arteries to the intervillous spaces contain plugs of trophoblast cells.  After 10

wpc, trophoblastic plugs loosen and blood begins to seep into this space;

after 12 wpc, oxygen-rich maternal blood bathes the placenta and oxygen

levels begin to rise.  This implies that the first trimester human placenta is

not truly hemochorial - that is, chorionic cells do not contact maternal blood -

until the end of the first trimester (Jauniaux et al., 2001).

Early studies attempted to measure oxygen levels in the feto-placental

unit using a variety of techniques.  Most techniques involved the use of in

vitro gas measurements representing partial pressures of oxygen (pO2).

These measurements were often inconsistent.  Laboratory gas

measurements are fraught with a variety of pitfalls, with the fact that ambient

oxygen contains approximately 21% O2 topping the list.  Other difficulties

associated with laboratory measurements of in vitro pO2 include: the

presence of air bubbles in the sample, diffusion of gases through plastic and

changes associated with measuring samples at room temperature.  More
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recently, Jauniaux and colleagues have used multiparametic sensor probes

inserted under ultrasound guidance into the pregnant human uterus

(Rodesch et al., 1992; Jauniaux et al., 1999; Jauniaux et al., 2001).  This

technique has led to more accurate measurements of oxygen concentrations

and acid-base gradients present at the feto-maternal interface during the

course of gestation.  Polarographic probes have likewise been utilised to

assess placental and endometrial pO2 during the first trimester of pregnancy

(Rodesch et al., 1992).

In vivo gas measurements have provided further evidence that early

human placenta is not in direct contact with maternal blood.  At 8-10 wpc,

pO2 in the feto-placental unit was measured at 17.9 ± 6.9 mmHg and a

marked pO2 gradient between the decidua and placental tissue was noted.

In fact, the mean pO2 of the placenta was approximately three times lower

than that of the underlying decidua (Jauniaux et al., 2001).  After 11 wpc,

placental pO2 increased more than two-fold.  By the 12 wpc, placental pO2

levels were similar to those found in the surrounding decidua, with a mean

pO2 equivalent to 56.2 ± 3.2 mmHg (Rodesch et al., 1992).  This increase in

oxygen levels corresponds to the establishment of continuous maternal

blood flow to the placenta.  Maximum oxygen tensions (65.0 ± 3.4 mmHg)

were measured in human placentas approximately 16 wpc.  After this

maximum is reached, oxygen levels in the placenta decline until term, most

likely representing the increased oxygen consumption of the feto-placental

unit (Jauniaux et al., 1999).

1.2.3 Placental vasculogenesis and angiogenesis

The processes regulating vascular development occur, most often, in

oxygen-low environments (Coultas et al., 2005).  In fact, formation of a new

blood vessel de novo or through the extension of pre-existing vessels has

been shown to be tightly regulated by oxygen.  The human placenta is no

exception, where formation of the placental vascular tree occurs entirely in a

low oxygen environment through the processes of vasculogenesis and

angiogenesis.

Vasculogenesis involves de novo formation of blood vessels from

precursor cells whilst angiogenesis involves creation of new vessels from
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pre-existing vessels.  Migration and differentiation of endothelial progenitor

cells (EPC) to form interconnecting capillaries occurs during the process of

vasculogenesis.  Communication between endoderm and mesoderm

appears to be important during vasculogenesis as well as during subsequent

growth and stabilisation of blood vessels.  Interestingly, the close spatial

proximity of hematopoiesis and vascular development has led to the

suggestion of a multipotent cell, the hemangioblast, with the inherent

capacity for both vascular and hematopoietic developmental pathways (Park

et al., 2005).  At the second week of gestation (13-15 dpc), multipotent

hemangioblasts emerge at extra-embryonic sites in blood islands of the

developing yolk sac.  Both primitive hematopoietic and endothelial cells are

found in blood islands.  Early hematopoietic and vascular cells are also

found in temporal and spatial proximity during placental development.  The

earliest stages of placental vasculogenesis can be seen approximately ten

days later (23-26 dpc).  Angiogenesis occurs next during placental

development as early blood vessels expand and adapt to meet the needs of

the embryo.

Improper development of the placental vascular tree has been

implicated in a number of devastating pregnancy-related complications.  For

example, preeclampsia is a potentially lethal complication of the second half

of pregnancy, labour or early period after delivery.  It affects approximately

3% of women and is characterised by hypertension, abnormal levels of

protein in urine and other systematic disturbances (Redman and Sargent,

2005).  Oxygen levels in the feto-maternal unit play a key role (Kuenzel and

Kirschbaum, 1992).  Preeclampsia frequently results from the presence of a

hypoxic placenta (Burton and Jauniaux, 2004).  Early on in pregnancy, poor

placental development leads to the appearance of maternal symptoms such

as hypertension and proteinuria.  The cellular and molecular mechanisms

regulating early placental development remain largely unclear.

1.3 Hematopoietic Stem Cells (HSC)

At the earliest stages of development, the preimplantation blastocyst

has absolutely no access to the oxygenated maternal blood supply.  In the
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multicellular blastocyst, the oxygen concentration deep within the ICM is

accordingly low.  This environment is home to multipotent cells capable of

creating an entire organism and blastocysts have been used in the derivation

of a number of human stem cells, including embryonic stem cells (ESC) and

trophoblast stem cells (TSC).

Stem cells are defined as cells capable of unlimited self-renewal and

the ability to give rise to multiple cell types.  These parameters are subject to

wide interpretation and depend to some degree on whether the cells are

present in their normal environment, residing in the so-called stem cell niche,

or in an experimental setting.  Pluripotent ESC, derived from the ICM, have

unlimited self-renewal properties and give rise to all embryonic tissue types in

vitro (Thomson et al., 1998; Reubinoff et al., 2000).  However, unlimited self-

renewal is not a property of cells of the ICM in situ, where they differentiate

into various tissues thereby losing the pluripotent ESC phenotype.  Multipotent

adult stem cells, on the other hand, give rise to a wide range of progenitor and

mature cells.  Many multipotent adult stem cells have unlimited self-renewal -

their differentiated progeny have limited self-renewal.  Hematopoietic stem

cells (HSC) are prototypical multipotent adult stem cells.

Adult stem cells, including HSC, by definition must have both a

tremendous capacity for self-renewal and a large differentiation range.  In the

absence of overt injury, bone marrow-derived HSC maintain the total pool of

HSC at a roughly constant level through asynchronous divisions (Cheshier et

al., 1999).  HSC also give rise to progenitor cells, in this report referred to as

hematopoietic stem / progenitor cells (HSPC).  Differentiated progeny of

HSPC include lineage-restricted progenitor cells.  Further differentiation

produces all lineages of the hematopoietic system, including monocytes,

granulocytes, megakaryocytes and erythrocytes.  The cellular signals that

influence the choice between self-renewal and differentiation are incompletely

defined.  Therefore, a long-term goal is precise knowledge about the

molecular mechanisms associated with HSC development and lineage

decisions.  Complicating the matter is that in vitro proliferation of HSC

inevitably leads to hematopoietic differentiation or death with a subsequent

loss of multipotent, self-renewing stem cells (Kondo et al., 2003).
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1.3.1 Hematopoiesis and lineage commitment

The highly orchestrated process of blood cell production is

termed hematopoiesis.  During the life of an organism, HSC generate

multiple blood cell lineages through a successive series of intermediate

progenitors, which involves the progressive loss of developmental potential

to other lineages.

Definitive HSC are functionally defined by their capacity for extensive

self-renewal.  Also called long-term (LT)-HSC, a single cell can give rise to

multilineage reconstitution in irradiated patients (Smith et al., 1991).

Maturation of LT-HSC leads to a multipotent stem / progenitor cell

population (i.e. HSPC) with a more limited self-renewal capacity.  The

earliest lineage-potential decision that HSPC must make is whether to

become a lymphoid or myeloid cell.  This first differentiation decision

produces lineage restricted progenitor cells called common myeloid

progenitors (CMP) or common lymphoid progenitors (CLP).  The

differentiated progeny downstream of CMP and CLP are even more mature

progenitors further restricted in the number and type of lineages they can

generate.  CMP give rise to myeloid cell lineages, including monocytes,

granulocytes, megakaryocytes and erythrocytes, while CLP produce cells of

lymphoid lineages, such as B cells, T cells and natural killer (NK) cells.

Terminally differentiated cells, such as erythrocytes, are ultimately produced.

They have lost all self-renewal capacity and eventually undergo apoptosis.

Traditional knowledge has suggested that this step-wise developmental

process is linear in the sense that once a cell has made a developmental

choice it is permanent (Figure 3).  Recent interest in stem cell research has

reopened the debate as to whether the process of hematopoiesis is more

plastic than traditionally considered.
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Figure 3. Linear representation of hematopoiesis.  Long-term
hematopoietic stem cells (LT-HSC) are the most primitive HSC.
Proliferation and differentiation produces a population of
hematopoietic stem / progenitor cells (HSPC). The first lineage
decisions produces common myeloid progenitors (CMP) and
common lymphoid progenitors (CLP); subsequent differentiation of
HSPC results in more restricted progenitors (MEP, GMP). Further
differentiation produces the entire repertoire of hematopoietic cells
required during life.

1.3.2 HSC development

The primary sites of hematopoiesis change in a temporally and

spatially co-ordinated fashion during human development (Figure 4).  A

close association of endoderm with mesoderm appears to be a typical tissue

make-up at sites of hematopoiesis.  Until establishment of definitive

hematopoiesis in the bone marrow, microenvironmental cues regulate HSC

self-renewal and differentiation.  In stem cell biology, the local

microenvironment is also known as the niche.  Locally derived signals are

involved in the formation and maintenance of various HSC niches.
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AGM

Time (wpc)time

Figure 4. Developmental sites of human hematopoiesis. At
implantation, primitive hematopoiesis begins in the yolk sac.
Primitive HSC can later be found in the aorta-gonads-mesonephros
(AGM) region. Definitive hematopoiesis sites are transient during
development. Traditional knowledge states that the fetal liver is
responsible for seeding the final HSC niche – bone marrow. It
remains unclear whether the placental HSPC niche remains
throughout gestation. Figure adapted from Mikkola et al., 2005.

Primitive hematopoiesis in the blood islands of the extra-embryonic

yolk sac creates the earliest hematopoietic cells of the developing

mammalian embryo (Figure 5).  Yolk sac hematopoiesis is biased towards

erythropoiesis with primitive erythrocytes indispensable to oxygenation of

the developing embryo.  Development of a functional yolk sac occurs during

implantation of the human blastocyst at approximately 13-15 dpc (Palis and

Yoder, 2001).  The cellular components of the blood island niche consist

originally of undifferentiated mesodermal progenitor cells (i.e.

hemangioblasts) and stromal cells apposed to visceral endoderm (Tavian

and Peault, 2005).  By the time that the secondary yolk sac is formed,

mesodermal cells come in contact with cells of the chorion.  The first

appearance of blood islands is illustrated by hematopoietic and endothelial

cell aggregates in the yolk sac stroma.  Yolk sac-derived progenitors
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contribute to a transient wave of hematopoiesis, while other sites contribute

to the hematopoietic needs of the growing embryo.

A.

endodermprimary yolk sac placenta mesoderm

B.

secondary yolk sac

embryonic disc

mesoderm

endoderm

Figure 5. Human yolk sac development. Formation of primary
yolk sac occurs during implantation when extra-embryonic
mesodermal cells come in direct contact with placental cells (A).
Extra-embryonic endoderm is directly apposed to mesoderm.
Secondary yolk sac appears during embryonic disc formation (B). A
layer of extra-embryonic mesoderm surrounds the chorion while
extra-embryonic endoderm and mesoderm remain in contact.
Figure reproduced from Palis and Yoder, 2005.

The next wave of hematopoiesis can be seen during the second month

of gestation when clusters of round cells expressing several markers of HSC

are observed within major intra-embryonic and extra-embryonic arteries

(Labastie et al., 1998).  At 27 dpc, cells within the aorta-gonads-

mesonephros (AGM) region adhere firmly to the ventral endothelium of the

embryonic aorta; these HSC proliferate rapidly and totally disappear by 40

dpc (Tavian et al., 1999).  It was observed that expression of the

extracellular protein CD34 accompanies early ontogeny of both the

hematopoietic and vascular systems.  AGM is a unique example of a

localised territory where multipotent HSC transiently emerge and proliferate.

CD34-positive (CD34+) cells isolated from this region generated both

lymphoid and myeloid cells, demonstrating the presence of progenitor (e.g.

HSPC, CMP, CLP) cells (Tavian et al., 2001).  As HSC in the AGM region

are only found during a short developmental window and their number is low

at any given time, questions have been raised whether the AGM region

alone can supply all HSC in the expanding pool.  In humans, a detailed

analysis of this region has been hampered with the obvious scarcity of

healthy tissue.  Nonetheless, Tavian and colleagues (2001) have stated that

ventral periaortic mesenchymal cells produce the chemoattractant, stromal-
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derived factor (SDF)-1α, although original results remain until now

unpublished.  The early involvement of cytokines in creation of the AGM

niche remains an interesting field of investigation.

Following primitive hematopoiesis in the yolk sac and a transient stage

in the AGM, definitive hematopoiesis commences in the liver.  Definitive

hematopoiesis results in production of all hematopoietic lineages.  At

approximately 22 dpc, the fetal liver can be identified in the developing

human embryo.  HSC can be found in the developing liver around 30 dpc.

Fetal liver cannot generate its own hematopoietic cells but instead needs to

be seeded from another HSC source.  Seeding of liver by HSC appears to

involve the early fetal circulation.  The first vascular connection to fetal liver

comes from the yolk sac through the vitelline veins.   The second vascular

connection is the umbilical vein from the developing placenta. The

appearance of progenitor cells (HSPC), as identified by expression of CD34,

in embryonic liver and long-term in vitro culture of liver cells suggests the

multipotentiality of liver hematopoiesis (Labastie et al., 1998).  The

hematopoietic profile of fetal liver changes during gestation with its

repertoire increasing from erythroid differentiation to include megakaryocytic,

myeloid, and B lymphoid development.  Importantly, fetal liver provides a

supportive niche for the growing pool of HSC before they move to their adult

home.

Bone marrow is the last blood-forming tissue that develops in

ontogeny, when hematopoiesis is extinct in the yolk sac and transiently

active in the liver.  Bone marrow hematopoiesis begins around 11 wpc after

HSC originating in the fetal liver begin to seed developing long bones.

Within specialised niches, bone marrow supports self-renewal of the HSC

pool and, at the same time, differentiation of progenitor cells to the various

hematopoietic lineages.  Formation of the bone marrow niche involves the

precise interplay between microenvironmental cues, such as oxygen level,

cytokine production, and heterotypic cell-cell adhesions.  The chemokine

SDF-1α seems to play a key role in HSC homing to their bone marrow

niche.  Using transgenic technology, Nagasawa and colleagues (1996) have

demonstrated that mice lacking both copies of the SDF-1α gene had
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defective bone marrow hematopoiesis and died perinatally.  HSPC in mutant

embryos were reduced in bone marrow, demonstrating the importance of

chemokines in creating a supportive HSPC niche.

1.3.3 Hematopoiesis in the placenta

Recent investigations have demonstrated the presence of a third pre-

hepatic HSC niche.  One common characteristic of sites of hematopoiesis is

that the generation of hematopoietic cells coincides with that of endothelial

cells.  As previously mentioned, the human placenta is one of the earliest

vascularised organs during development and hematopoietic cells have been

found within early chorionic villi.  In fact, the presence of cells appearing

microscopically to be hematopoietic in origin, have been described for quite

some time.  Transmission electron microscopy demonstrated the presence

of hematopoietic cells in first trimester placental tissue (Demir et al., 1989).

Furthermore, the name hemangioblastic cord, which has been used to

describe the early site of placental vasculogenesis, suggests the

multipotentiality of stem cells found in placenta.

Placenta may serve as another supportive niche that facilitates

maturation and expansion of HSC.  In vivo studies in mice have shown that

mid-gestation placenta harbours a large pool of multipotent HSC.  Placental

HSC have the capacity to self-renew and repopulate the entire

hematopoietic system (Ottersbach and Dzierzak, 2005; Gekas et al., 2005).

Interestingly, the placental HSC pool is transient and diminishes while the

fetal liver HSC reservoir expands.  As the placenta is located directly

upstream of liver in fetal circulation, it is possible that placental cells are an

important source of HSC that eventually colonise the fetal liver.

Hemangioblastic cords appear to develop from mesodermal cells in the

chorionic villi.  However, it is possible that the growing placental HSC pool is

supplemented from sites associated with the developing vascular system

(e.g. AGM).  Both AGM and umbilical artery are immediately upstream of the

placenta in fetal circulation.  During the third trimester of pregnancy placenta

appears to lose its hematopoietic function while bone marrow develops into

the main site of hematopoiesis. Notwithstanding, the constantly changing
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placental vasculature most likely requires a constant supply of progenitor

cells.

1.3.4 Umbilical cord blood (UCB)

The umbilical cord contains blood vessels that carry oxygen and

nutrients from placenta to the embryo and wastes from the embryo to

placenta and the maternal circulation (Figure 2).  As umbilical cord is a

conduit linking the stem cell-rich placenta and the developing embryo, it

contains a large amount of HSPC throughout development.  For this reason,

stem cells isolated from UCB have been utilised successfully during

transplantation for almost twenty years (Kurtzberg et al., 2005).

UCB is typically collected ex utero following birth of the baby and

expulsion of the placenta.  This means that UCB can be considered an

ethical source of early stem cells as it can be collected without physical risk

to the mother or the baby donor.  UCB is an excellent source of HSPC and

the ethical collection of UCB has extended the availability of allogenic HSC

transplantation.  So far, HSPC isolated from UCB has been successfully

used in the treatment of patients with leukaemia, lymphoma,

hemoglobinopathies, bone marrow failure syndromes, congenital

immunodeficiency syndromes and inborn errors of metabolism (Kurtzberg et

al., 2005).  However, the use of UCB as a source of HSPC is not yet fully

optimised and many difficulties are associated with stem cells isolated from

UCB.

The use of UCB for transplantation in adults is limited by the small

number of HSPC in each graft, resulting in delayed engraftment post

transplant (Hofmeister et al., 2007).  Initial efforts to expand UCB

progenitors ex vivo have resulted in expansion of mature HSPC rather than

immature stem cells.  This is confounded by the inability to measure long-

term reconstituting cells aSccurately and reliably. The future of ex vivo

expansion should include isolation of immature hematopoietic progenitors on

the basis of function rather than surface phenotype and will employ physical

parameters, secreted factors and stroma to maintain and expand the stem

cell populations.  Improved understanding of HSPC developmental niches
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could promote HSPC ex vivo expansion with reduced differentiation and

make UCB transplantation available to more patients.
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2 OBJECTIVES

 The objectives of this study, which examined the impact of oxygen on

HSPC development and formation of a placental stem cell niche, included:

I. to establish an in vitro model of placental development and

vasculogenesis in physiological oxygen environments

II. to examine the influence of different physiological and non-

physiological oxygen concentrations on HSPC:

a) proliferation

b) cell cycle status

c) apoptosis

d) differentiation

III.       to characterise the SDF-1α - CXCR4 system during formation of

stem / progenitor cell niche in the placenta both in vivo and in

vitro.
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3 METHODS AND MATERIALS

3.1 Isolation of Primary Cells from Human Placentas

3.1.1 HSPC isolation

Human umbilical cord blood (UCB) was collected from term

pregnancies following ceasarian section as approved by the Ethics

Committee of the School of Medicine at Justus Liebig University, Giessen,

Germany.  Immediately following delivery, fetal blood was aspirated from

placental blood vessels into syringes containing heparin.  This method

resulted in an average of 53.2 ml of UCB (range 40-160 ml).  Following UCB

collection all steps were performed under sterile conditions in a laminar flow

hood.  UCB was diluted (1:4.5) in 2 µM ethylenediamine tetraacetic acid

(EDTA) in phosphate buffered saline (PBS) and 35 ml gently layered on 15

ml of 1.077 g/ml Ficoll-Paque Plus (Amersham Biosciences, Uppsala,

Sweden).  UCB was then subjected to density gradient centrifugation (400 x

g, 30 min, 20°C).  The mononuclear cell (MNC) fraction was removed and

pelleted by centrifugation (400 x g, 10 min, 20°C).  The resultant MNC pellet

was washed with 50 ml ice-cold MACS Buffer  (1X PBS, 5% Bovine Serum

Albumin (BSA), 2 µM EDTA), centrifuged (400 x g, 10 min, 4°C) and,

depending on pellet size, resuspended in 100-600 µl MACS Buffer.

To obtain pure populations of CD133 expressing MNC, Magnetic

Activated Cell Sorting (MACS) with the CD133 Cell Isolation Kit (Miltenyi

Biotech, Bergisch Gladbach, Germany) was employed.  Briefly, following

resuspension of the MNC pellet in ice cold MACS Buffer, cells were blocked

with 10 µl FcR Blocking Reagent/108 MNC (15 min, 4°C).  Cells were

subsequently labelled with 10 µl CD133 Microbeads/108 MNC and incubated

45 min on ice.  The cell suspension was then washed with 50 ml cold MACS

buffer and centrifuged (400 x g, 10 min, 4°C).  The supernatant was

removed, cells resuspended in 1 ml MACS Buffer (4°C) and the cell

suspension added to pre-rinsed MACS column placed in the magnetic field

of a VarioMACS Separator (Miltenyi).  Once the cell suspension was allowed

to pass through the MACS column, the column was washed 5 times with 4

ml ice cold MACS buffer and the flow-through collected in sterile 50 ml
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Falcon tube.  The column was removed from the magnetic field and bound

cells were eluted and flushed from the column with the supplied plunger into

a sterile 5 ml Falcon tube with 5 ml MACS Buffer (4°C).  Both collected cell

suspensions (i.e. CD133- and CD133+) were subsequently centrifuged (400

x g, 10 min, 4°C).  An aliquot of the cell suspension was removed, dead cells

were excluded using trypan blue staining and living cells were enumerated

with a hemocytometer.  This method resulted in an average retrieval of

1.0x106 CD133+ cells, for future reference labelled hematopoeitic stem /

progenitor cells (HSPC).

3.1.2 Trophoblast- and stroma-enriched cell fractions

isolation

MACS was similarly used to isolate cells from early human placental

tissue collected from elective abortions with written consent as approved by

the Ethics Committee of the Justus Liebig University School of Medicine.

The method used followed previously described protocols (Kliman et al.,

1986) with some modifications.  Tissue was thoroughly washed in Hank’s

Balanced Salt Solution (HBSS) to remove blood and chorionic villi were

removed from placental tissue and minced with a scalpel.  Enzymatic

digestion of minced chorionic villi fragments involved 3 times 20 min

incubations with trypsin-EDTA.  Following enzymatic digestion, collected

cells were subjected to magnetic cell sorting using CD326 (epithelial cell

adhesion molecule, EpCAM)-coated magnetic beads (Miltenyi Biotech).

CD326+ cells were subsequently labelled trophoblast-enriched cell fractions

(HTR).  Depleted CD326- cells resulted in a trophoblast-depleted or stroma-

enriched fraction.  Negatively selected cells are here called human placental

fibroblasts (HPF).

3.2 Cell Culture

3.2.1 HSPC expansion

Directly following isolation, HSPC were transferred to 15 ml tissue

culture flasks (TRP, Biochrom AG, Berlin, Germany) containing HSPC Growth

Media (HSPC-GM).  HSPC-GM consisted of Iscove’s Minimum Defined Media
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(IMDM) supplemented with 10% fetal calf serum (FCS), 10 ng/ml stem cell

factor (SCF), 20 ng/ml thrombopoietin (TPO) and 50 ng/ml Flt3-Ligand

(FLT3L) (all growth factors from PromoCell, Heidelberg, Germany).  Culture of

hematopoietic stem cells in this media has been shown to result in stem cell

proliferation and to maintain cells for extended culture periods (McGuckin et

al., 2003; McGuckin et al., 2004; McGuckin et al., 2005).  HSPC cell cultures

were expanded for 7 days in humidified incubators (37°C) in atmospheres

maintained with 5% CO2.  HSPC culture media was replaced every 3-4 days.

3.2.2 Adherent cell culture

Trophoblast-enriched (HTR) and placental stroma-enriched (HPF) cell

fractions were maintained in culture and used in a variety of experiments.

Directly following isolation, HTR in AmnioMax Serum-Free Media (including

penicillin/streptomycin) were allowed to attach to 15 mm2 plastic tissue

culture flasks for approximately 1 week in a humidified incubator (37°C, 5%

CO2).  On the other hand, HPF were cultured in Dulbecco’s Minimum

Essential Media (DMEM) containing 10% FCS.  HPF cultures were similarly

allowed to attach in 75 mm2 plastic tissue culture flasks for approximately 1

week.  Cell cultures were washed with warm media and unattached cells

were discarded.  HTR and HPF were first passaged when cell cultures

reached approximately 80% confluency.  Passaging was accomplished

using 5 min trypsinisation (Trypsin/EDTA, Gibco) followed by inactivation of

the enzyme with DMEM (10% FCS) and centrifugation (400 x g, 5 min).  Cell

pellets were resuspended in the appropriate media and further incubated.

This was considered passage 1 (P1).  Both HTR and HPF could be cultured

for a maximum of 6-7 passages (P6-7) before senescence.  P2-5 cells were

used during experimentation.

Conditioned media from HTR and HPF cultures was used in a variety

of experiments to test the effects of secreted factors on HSPC.  HTR or HPF

cells were expanded into 100 mm2 tissue culture flasks containing the

appropriate media (HTR: AmnioMax; HPF: DMEM (10% FCS)) and allowed

to reach ∼80 confluency.  The flasks were washed with 10 ml pre-warmed

PBS (3X) and media replaced with 12 ml serum-free IMDM (SFM).

Conditioned media was derived during 24 h cell culture.  Following cell
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culture, media was removed and subjected to high-speed centrifugation

(1000 x g, 30 min, 4°C) to pellet cells and cell debris.  Media was aspirated,

aliquoted and stored -80°C until needed.

3.2.3 Cell culture in low oxygen environments

Cell culture in environments containing low oxygen was used to

mimic physiologically relevant oxygen concentrations.  This was

accomplished by transferring cell cultures to a hermetically sealed,

humidified Modular Incubator Chamber (Billups-Rothenburg, Del Mar,

California USA) (Figure 6A).  Modular Incubator Chambers have previously

been used in multiple investigations in order to cultivate cells in low oxygen

as the air-tight seal and fast gas exchange allows for the rapid creation of a

low pO2 environment (Graven et al., 1994; Lee et al., 1997).
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A.

B.

Figure 6. Apparatus for cell culture in physiologically relevant
oxygen concentrations with concurrent real-time oxygen
monitoring. Cells were cultured in Oxyplate® 24 well plates in a
hermetically sealed, humidified cell culture chamber (A).  Plates
were placed on the Sensor Dish Reader (SDR) and the chambers

incubated at 37°C. Connection of SDR to computer (B) allowed for
real-time measurements of oxygen levels present in the cell culture
media during experimentation.

In this investigation, Modular Incubator Chambers were used to

simulate physiological oxygen tensions during cell culture.  Prior to the

experiments, all cell culture materials, including plastic cell culture plates

and dishes, media and oxygen monitoring equipment were preincubated for

2 h in appropriate oxygen concentrations.  The chamber was humidified

during the course of the experiment by placing a lidless, plastic petri dish

containing 20 ml sterile water on the bottom of the chamber.  Following



30

preincubation, cell cultures were transferred to the Modular Incubator

Chamber and the chamber sealed.  A Single Flow Meter (Billups-

Rothenburg) was attached to inflow tube, connected to the gas flask and

was used to control the flow of the gas into the chamber.  The outflow tube

was opened and the chamber flushed with appropriate gas mixtures for 4

min at a rate of 20-25 l/min.  The gas mixtures used in this reports consisted

of either 1% or 8% O2 (5% CO2 and rest N2).  Inflow and outflow tubes were

sealed following gassing, creating a hermetically sealed chamber.  The

sealed Modular Incubator Chamber was then placed in a 37°C incubator and

the atmosphere was replaced with the appropriate gas mixture 3 times daily

for the duration of the experiments.  As a control, HSPC were cultivated in

normal cell culture conditions by incubating cells in atmospheric oxygen

(21% O2, 5% CO2, rest N2) in a humidified cell culture incubator (37°C).

3.2.4 Concurrent real-time oxygen measurements

During experimentation a prototype oxygen monitoring system was

employed in order to concurrently monitor real-time oxygen tension of HSPC

culture media.  The 24-channel Sensor Dish Reader 2 (SDR2; PreSens,

Regensburg, Germany) has been developed to control important

parameters, such as pH and oxygen tension, during cell culture.  This was

accomplished by the integration of opto-chemical sensors in each well of a

sterile 24-well multidish (OxyPlates® monitor oxygen; HydroPlates® monitor

pH).  Sensors consisted of fluorescent dyes embedded in a cell culture

compatible polymer placed at the bottom of each well.  Cells in cell culture

media were then seeded into the wells and the plates placed on the SDR

plate reading device.  The SDR system was connected to a PC allowing

system control and data collection (Figure 6B).  Optical signals were

collected by the SDR at specific time points (ranging from every 10 sec to

every 30 min) and the data transmitted to PC.

The prototype SDR2 system was tested in this investigation and used

to measure oxygen tensions in our HSPC cultures.  To allow for

measurements in low oxygen environments the Modular Incubator Chamber

was modified to allow insertion of the SDR2 plate reader into the

hermetically sealed chamber.  Selection of appropriate gas mixtures allowed
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in vivo oxygen tensions to be effectively mimicked during in vitro HSPC

culture.  Similarly, this novel system allowed oxygen tensions in HSPC

culture media to be monitored during experimentation.

3.3 HSPC Proliferation Assay

Cell number was determined with a CASY® Cell Counter (Shaerfe

Systems, Reutlingen, Germany).  The CASY® Cell Counter is an established

method for determining cell number utilising the Resistance Measurement

Principle.  Briefly, 50 µl of cell suspension was removed from each of the

groups and mixed with 10 ml CASY®ton electrolyte solution (Schaerfe

Systems) and placed in the CASY® Cell Counter.  Measurement was

performed when the cell suspension was aspirated with a 150 µm capillary

and single cells passed through a pore of defined geometry at a constant flow

speed.  A pulsed low voltage electrical current was applied over the

electrolyte-filled measuring pore, representing a defined electrical resistance.

As cells passed through the measurement pore a quantity of the electrolyte

was displaced.  Living intact cells acted as insulators with the resistance

representing a dimension for cell volume.  Dead cells without an intact cell

membrane could no longer act as an electrical barrier and were therefore

recorded by the size of the cell nucleus.  Thus, living HSPC could be

discriminated from dead HSPC and debris based on relative size.

HSPC cultures were expanded for 7 days in HSPC-GM as described

above.   Attached cells were scraped with a plastic cell scraper (Cellstar,

Greiner Bio-One, Frickenhausen, Germany) and both the previously attached

and suspended cells were collected.  The cell suspension was subsequently

centrifuged (400 x g, 10 min), the supernatant removed and the cell pellet

resuspended.  Initial cell number was determined with trypan blue exclusion.

2x105 HSPC were added to each well of a 24-well plate and the plates

incubated in the specified conditions (HSPC-GM, HTR-CM, HPF-CM) in

various oxygen concentrations (1%, 8% and 21% O2).  Media was replaced

and cell number was determined with a CASY® Cell Counter on days 8, 10, 12

and 14.
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3.4 Flow Cytometry

In this investigation flow cytometry was employed to quantify cellular DNA

content, and apoptosis, as well as for immunophenotyping.

3.4.1 Flow cytometric cell cycle analysis

HSPC cell cycle status and DNA content were quantified using

propidium iodide (PI) staining of fixed cells followed by flow cytometric

analysis.  This method was based on stochiometric intercalation of PI

between the bases of double-stranded nucleic acids.   Individual cell ploidy

could be assessed with a flow cytometer.  Resting cells in G0 and cells

preparing for DNA synthesis in G1 have a 2n ploidy; cells preparing for cell

division in G2 and cells undergoing mitosis (M) have 4n.  As PI binding to

DNA was stochiometric, the measured fluorescence intensities of PI treated

cells was related to the number of DNA molecules.  Thus, G0/G1 cells have

fluorescence intensities representing one-half of G2/M cells.  Cells found

between these two peaks represent cells synthesising DNA (S phase) with

ploidy between 2n and 4n. The protocol utilised in this investigation was as

follows.

HSPC cultures were expanded for 7 days as previously described.

HSPC were plated 1.5x105 cells/ml on 12-well plates (Cellstar, Greiner Bio-

One, Frickenhausen, Germany) and incubated in environments containing

1%, 8% or 21% O2.  On Days 7, 8, 10 and 14, 1x105 HSPC were removed,

centrifuged (400 x g, 10 min, 4°C) and washed two times in ice-cold PBS.

HSPC membranes were permeabilised by overnight fixation in 70% ethanol

(-20°C).  Fixed cells were centrifuged (400 x g, 10 min), the ethanol removed

and the cell pellet resuspended in 100 µl 1% BSA in PBS.  To avoid

propidium iodide (PI) incorporation into double-stranded ribonucleic acid

(RNA), cellular RNA was digested with 100 µg/ml DNase-free RNase

(Roche Applied Sciences, Mannheim, Germany) for 20 min at 37°C.  Cells

were subsequently incubated with 10 µg/ml PI (Becton Dickinson (BD),

Heidelberg, Germany) for 1 h in the dark.  In preparation for flow cytometry,

total volume was adjusted to 500 µl and suspensions vortexed to mix the

cells.
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PI incorporation into HSPC DNA was measured with the FACSCalibur

(BD) flow cytometer with CellQuest Pro hardware (BD). Whole cells were

first gated based on their Forward Scatter (FSC) and Sideward Scatter

(SSC) properties, with particles exhibiting both low FSC and SSC excluded.

PI fluorescence intensity was demonstrated by plotting FL2-Area versus

FL2-Width.  Data was subsequently analysed with ModFit Analysis Software

(BD).

3.4.2 Flow cytometric apoptosis assay

The level of HSPC apoptosis following various treatments was

measured using the Annexin V-FITC Apoptosis Detection Kit (Becton

Dickinson).  This particular assay utilises Annexin V as a sensitive probe for

identifying apoptotic cells.  During early apoptosis, loss of the plasma

membrane is one of the earliest features.  In early apoptotic cells the

membrane phospholipid phosphotidylserine (PS) is translocated from the

inner to the outer leaflet of the plasma membrane, thereby exposing PS to

the cellular environment.  Annexin V is a phospholipid-binding protein with

high affinity for PS.  Annexin V conjugation to a fluorochrome such as FITC,

therefore, creates a sensitive probe for flow cytometric analysis of cells

undergoing apoptosis (Vermes et al., 1995).  In the Annexin V-FITC

Apoptosis Detection Kit I, PI was utilised as a marker for cells that have lost

plasma membrane integrity, such as late apoptotic or dead cells, which

further strengthened the assay.  A requirement for PI intercalation into

cellular nucleic acids is a permeabilised cell membrane that allows passage

of PI into the cell.  Therefore, PI staining could only be seen in cells that

were losing (i.e. late apoptotic cells) or had already lost (i.e. dead cells) cell

membrane integrity.  Following flow cytometric analysis of the cultures, cells

could be categorised.  Viable cells were negative for both Annexin V and PI

while cells undergoing early apoptosis were positive for Annexin V and

negative for PI.  Finally, cells that were in late apoptosis or have died as a

result of the necrotic pathway were positive for both Annexin V and PI

(Figure 7).
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Figure 7. Explanation of data obtained from HSPC apoptosis
assay.  Results from flow cytometric analysis are displayed as a
dot plot diagram. The plot is divided into four quadrants. The bottom
left quadrant represents live cells with an intact cell membrane. The
bottom left quadrant represents early apoptotic cells where Annexin
V-FITC (seen in green) binds to phosphatidylserine in the outer cell
membrane. The upper right quadrant represents late apoptotic or
dead cells where Annexin V-FITC binds the outer membrane and PI
can pass freely into the nucleus.

In this investigation, HSPC were subjected to the Annexin V-FITC

Apoptosis Detection Kit (BD).  Apoptosis levels were then tracked over a

further incubation period in different oxygen concentrations.  The supplied

protocol was used.  Following expansion of HSPC cultures, cell number was

quantified with trypan blue exclusion.  4.5x105 HSPC/treatment were

removed, divided into three groups (1.5x105 HSPC/group) and plated in one

well of a 12-well cell culture plate (Cellstar, Grener Bio-One, Frickenhausen,

Germany).  The three groups represented: i. unstained controls for setting

the flow cytometer parameters, ii. stained HSPC for the apoptosis assay and

iii. staurosporine treated HSPC (Alexis Biochemicals, Gruenberg, Germany).

In the third group, HSPC were pre-treated with the apoptosis-inducing

antiobiotic (Bertrand et al., 1994) staurosporine (30 nM, 24 h).  Plates were

then incubated at 37°C in a humidified environment containing 1%, 8% or

21% O2 as previously described.  At each time point, cells were removed

from their wells by scraping with a plastic cell scraper (TRP).  HSPC were

transferred to 12 ml tubes and retrieved from the media by centrifugation.
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2x105 HSPC were washed twice with 5 ml ice cold PBS, resuspended in 1X

Annexin V Binding Buffer (0.1 M Hepes/NaOH (pH 7.4), 1.4 M NaCl, 25 mM

CaCl2) and transferred to flow cytometry tubes (BD).  Excluding the

unstained controls, all HSPC were then incubated with 5 µl of both Annexin

V-FITC and PI (15 min, RT).  Following incubation the final volume was

adjusted to 500 µl with 1X Annexin V Binding Buffer.  Annexin V-FITC and

PI staining of HSPC was subsequently analysed with FACSCalibur (BD).

3.4.3 Immunophenotypic characterisation

Following expansion, HSPC cultures were cultured in 6-well plates

placed in 1%, 8% and 21% O2 as described previously.  HSPC were

subjected to flow cytometric immunophenotyping at days 7, 10 and 14.

Cells were removed from 6-well plates by scraping with a plastic cell scraper

followed by aspiration of culture media.  HSPC were pelleted by

centrifugation (400 x g, 10 min, 4°C) and pellets washed twice with ice cold

PBS.  Following washing, cells were resuspended in 100 µl PBS.  Incubating

HSPC with human serum for 15 min on ice blocked non-specific binding.

Cells were subsequently labelled with specific antibodies (Chart 1).  Labelled

cells were then quantified with the FACSCalibur flow cytometer and the data

analysed with CellQuest Software (BD).

Chart 1. Antibodies for flow cytometry.

Concentration
Antibody

Fluoro-
chrome

Host
Species

Ig
Subtype

Stock End

Company

Fluorochrome-Conjugated Primary Antibodies:

CD11b PE Mouse IgG2a 50 µg/ml 2.50 µg/ml BD Biosciences

CD13 APC Mouse IgG1 20µl/10
6 

cells 5 µl BD Biosciences

CD14 PerCP Mouse IgG2b 25 µg/ml 1.25 µg/ml BD Biosciences

CD18 FITC Mouse IgG1 25 µg/ml 1.25 µg/ml BD Biosciences

CD31 FITC Mouse IgG1 20µl/10
6 

cells 5.00 µl BD Biosciences

CD33 R-PE Mouse IgG1 20µl/10
6 

cells 3.00 µl BD Biosciences

CD34 FITC Mouse IgG2a 55 µg/ml 2.75 µg/ml Miltenyi Biotech

CD45 PerCP Mouse IgG1 25 µg/ml 1.25 µg/ml BD Biosciences

CD117 APC Mouse IgG1 20µl/10
6 

cells 0.80 µl BD Biosciences
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Antibody
Fluoro-
chrome

Host
Species

Ig
Subtype

Concentration Company

CD133 PE Mouse IgG1 55 µg/ml 2.75 µg/ml Miltenyi Biotech

CD140b R-PE Mouse IgG2a 20µl/10
6 

cells 5 µl BD Biosciences

Tie-2 PE Mouse IgG1 50 µg/ml 4 µg/ml R&D Systems

CXCR4 Cy5-PE Mouse IgG1 20µl/10
6 

cells 5 µl BD Biosciences

Unconjugated Primary Antibodies:

CD29/

β1 integrin
-- Mouse IgG1 25 µg/ml 1 µg/ml Serotec

CD49d/
VLA-4/

α4 integrin

-- Mouse IgG1 25 µg/ml 5 µg/ml Serotec

VEGFR-1 -- Mouse IgG1 1000 µg/ml 10 µg/ml Abcam

VEGFR- 2 -- Goat IgG 1000 µg/ml 10 µg/ml R&D Systems

Fluorochrome-Conjugated Isotype Control Antibodies:

FITC Mouse IgG1 20µl/10
6 

cells 5 µl BD Biosciences

APC Mouse IgG1 20µl/10
6 

cells 5 µl BD Biosciences

PE Mouse IgG1 50 µg/ml 4 µg/ml R&D Systems

R-PE Mouse IgG1 20µl/10
6 

cells 3 µl BD Biosciences

FITC Mouse IgG2a 20µl/10
6 

cells 5 µl BD Biosciences

PE Mouse IgG2a 20µl/10
6 

cells 5 µl BD Biosciences

PerCP Mouse IgG1 20µl/10
6 

cells 5 µl BD Biosciences

Cy5-Pe Mouse IgG1 20µl/10
6 

cells 5 µl BD Biosciences

Unconjugated Isotype Control Antibodies

- Mouse IgG1 1000 µg/ml 10 µg/ml Abcam

- Mouse IgG1 20µl/10
6 

cells 5 µl BD Pharmingen

- Mouse IgG1 20µl/10
6 

cells 5 µl Serotec

Fluorochrome-Conjugated Secondary Antibodies

APC
Goat
(anti-
mouse)

IgG 20µl/10
6 

cells 1 µl BD Biosciences

PE
Rabbit
(anti-
goat)

IgG 500µg/ml 0.5 ug/ml Dianova

3.5 Gene Expression Analysis

In this investigation, two-step reverse transcriptase-polymerase chain

reaction (RT-PCR) was employed to examine changes in gene expression

following incubation of HSPC in different oxygen concentrations.
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3.5.1 RNA isolation

HSPC were transferred to 6-well plates (CellStar) and incubated in

21%, 8% or 1% O2 for 7 days.  On days 7, 10, 12, and 14 adherent HSPC

were first scraped with a plastic cell scraper and the cells aspirated.  HSPC

were pelleted by centrifugation (400 x g, 10 min, 4°C) and washed two times

in ice cold PBS.  Cells were lysed with the QIAshredder Kit (QIAGEN,

Hilden, Germany) followed by RNA isolation utilising the RNeasy Mini Kit

(QIAGEN).  RNA isolated using this technique was then quantified with a

spectrophotometer (BioRad, SmartSpec 3000), aliquoted and stored at -

80°C until required.

3.5.2 First-strand synthesis

First strand cDNA synthesis was performed with SuperScript™ II

Reverse Transcriptase Kit (Invitrogen Corporation, Karlsruhe, Germany).

Reactions were mixed according to provided recipes.  1 µg of RNA isolated

from the previous step was mixed with 0.5 µg random primers (Promega,

Madison, Wisconsin USA) and deionized H2O to a total volume of 12 µl.

Primers consisted of random hexadeoxynucleotides and allowed for

amplification of first strand cDNA from the total cellular messenger RNA

(mRNA) pool.  The mixture of RNA, random primers and H2O was

subsequently heated to 70°C for 10 min in a PCR cycler (Eppendorf

Mastercycler Gradient) followed by cooling 2 min on ice.  To this mixture, 4

µl of 5X First-Strand Buffer (250 mM Tris-HCL (pH 8.3), 375 mM KCl, 15 mM

MgCl2), 2 µl 0.1 M DTT and 1 µl of 10 mM dNTP Mix was added.  The

resultant mixture was then heated for 2 min at 42°C.  Finally 1 µl (200 units)

of SuperScript™ RT was added and mixed by pipetting.  The final 20 µl

mixture was then incubated for 50 min at 42°C and the reaction inactivated

by heating to 70°C for 15 min.  cDNAs were stored at 4°C until required.

3.5.3 Gene-specific PCR amplification

Gene-specific primers (Chart 2) were used in combination with

AccuPrime™ Taq DNA Polymerase (Invitrogen Corporation) to examine

changes in HSPC gene expression following incubation in low oxygen.  This

particular kit includes anti-Taq DNA polymerase antibodies that inhibit
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polymerase activity, providing a “hot-start” thereby permitting room

temperature setup.  50 µl reactions were mixed according to supplied

protocol.  In 0.2 ml thin-walled PCR Tubes (Biozym Scientific GmBH,

Oldendorf, Germany), 200 ng template previously synthesised cDNA was

mixed with 10 µM primer, 5 µl of 10X AccuPrime™ PCR Buffer I or II

(depending on product length), 1 µl AccuPrime™ Taq DNA Polymerase and

distilled, deionized H2O to a 50 µl total volume.  PCR amplifications were

carried out in the PCR Cycler according to the general program (initial

denaturation at 45°C for 2 min, denaturation at 45°C for 30 sec, annealing

(see Chart 2 for specific annealing temperatures), elongation at 72°C for 1

min per kbase, 35 cycles, and final elongation at 72°C for 5 min).

Chart 2. Primers employed during RT-PCR.

Name
Primer Sequence

(5’→3’)
Product

Size
TAnneal Reference

CD117
F: ATTTTCTCTGCGTTCTGCTCCTAC
R: CGCCCACGCGGACTATTA

128bp 56°C (Uccini et al., 2005)

CD133
F: TACCAAGGACAAGGCGTTCAC
R: CAGTCGTGGTTTGGCGTTGTA

469bp 55°C (Baal et al., 2004)

FGF4
F: CTACAACGCCTACGAGTCCTACA
R: GTTGCACCAGAAAAGTCAGAGTTG

370bp 55°C (Henderson et al., 2002)

Flt1
F: GCACCTTGGTTGTGGCTGACT
R: CCCTTCTGGTTGGTGGCTTTG

655bp 60°C (Krussel et al., 1999)

GATA1
F: TCAATTCAGCAGCCTATTCC
R: TTCGAGTCTGAATACCATCC

377bp 50°C* (Chadwick et al., 2003)

GATA2
F: TGTTGTGCAAATTGTCAGACG
R: CATAGGTGCCATGTGTCCAGC

275bp 53°C (Hirasawa et al., 2002)

HIF1αααα
F: ACAAGTCACCACAGGACA
R: AGGGAGAAAATCAAGTCG

168bp 50°C (Bilton et al., 2005)

KDR
F: AGACTTTGAGCATGGAAG
R: CCATTCCACCAAAAGATG

298bp 49°C (Henderson et al., 2002)

Oct4
F: GGGCTCGAGAAGGATGTGGT
R: GGGCTCCCATAGCCTGGG

182bp 55°C
sequence supplied by
Chemicon (Temulca, USA)

Rex1
F: CAGCATCCTAAACAGCTCGCAGAAT
R: GCGTACGCAAATTAAAGTCCAGA

306bp 55°C (Henderson et al., 2002)

RUNX1
F: CCGCAGCATGGTGGAGGTA
R: AGCGATGGGCAGGGTCTTG

121bp 56°C (Taniuchi et al., 2002)

SDF-1
F: GTGTCACTGGCGACACGTAG
R: TCCCATCCCACAGAGAGAAG

263bp 55°C (Ceradini et al., 2004)

Sox1
F: CTCACTTTCCTCCGCGTTGCTTCC
R: TGCCCTGGTCTTTGTCCTTCATCC

838bp 63°C (Henderson et al., 2002)

Sox2
F: CCCCCGGCGGCAATAGCA
R: TCGGCGCCGGGGAGATACAT

448bp 60°C (Henderson et al., 2002)

VEGF165
F: AGGCCAGCACATAGGAGAGA
R: AACAAATGCTTTCTCCGCTC

123bp 54°C (Hollingsworth et al., 2005)
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3.6 Immunofluorescence Microscopy

3.6.1 Immunohistochemistry

Placental probes (gestational ages including 6, 12, and 38 wpc) were

collected and either directly embedded in Tissue-Tek OTC (Sakura,

Torrance, CA) and immersed in liquid nitrogen, or pre-fixed for 1 h in

Zamboni´s solution, washed and embedded in OTC before cryoslicing (8

µm).

Tissue slices were blocked with 10% donkey serum (Jackson

ImmunoResearch, West Grove, PA) and then incubated overnight at 4°C

either with monoclonal mouse anti-human CD34 (1:100; DakoCytomation,

Hamburg, Germany), or with monoclonal mouse anti-human SDF-1 (1:100;

R&D Systems) diluted in PBS supplemented with 1% donkey serum and

0.1% Triton X-100.  As secondary antibody, affinity-purified RhodRedX-

donkey anti-mouse IgG (Jackson ImmunoResearch), diluted 1:400, was

then applied for 1 h at room temperature.  After three washing steps, excess

mouse IgG-binding activity was blocked by 30 min incubation with 10%

mouse serum (Jackson ImmunoResearch) at room temperature.  The slices

were then incubated for 60 min with FITC-labeled monoclonal mouse anti-

human cytokeratin 7 (DakoCytomation), washed, and nuclei were

counterstained with Hoechst 33342 (5 µg/ml; Calbiochem, Darmstadt,

Germany) before mounting in ProLong Gold antifade reagent (Molecular

Probes, Invitrogen, Karlsruhe, Germany).  Further slices were first incubated

overnight at 4°C with a mixture of polyclonal goat-anti-human vimentin (S-

20; 1:200, Santa Cruz Biotechnology, Santa Cruz, CA) and anti-human

SDF-1 (1:100), and then for 1 h at room temperature with a mixture of

affinity purified FITC-donkey anti-goat IgG and RhodRedX-donkey anti-

mouse IgG.  Controls for nonspecific staining were performed by replacing

primary antibodies with mouse isotype controls.  Fluorescence was

observed with a Leica DM-LB microscope (Wetzlar, Germany) equipped with

a Leica DC-200 camera, Leica IM 1000 software and filters for blue light

(505 nm), green light (580 nm), and UV-light (400 nm) excitation.
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3.6.2 Immunocytochemistry

Immunocytochemistry was performed on placental stroma-enriched cell

fractions (HPF) cultured in either 1% or 8% O2 to examine in vitro

expression of SDF-1α protein.  HPF were added to 8-well chamber slides

(LabTek, Nunc, Wiesbaden, Germany) and allowed to attach overnight in

ambient atmospheres.  The following day, HPF were transferred to

atmospheres containing the appropriate oxygen concentrations and

incubated a further 2 days, as described above.  Following incubation,

cultures were washed with PBS and fixed for 15 min in Zamboni’s solution.

Fixed HPF were subsequently washed in PBS (3 X 5 min), blocked for 1 h in

10% donkey serum (PBS; 1% BSA, 0.1% Triton X-100) and incubated for 2

h with a 1:100 dilution of mouse monoclonal anti-human SDF-1α antibody

(R&D Systems) or the appropriate isotype-matched control.  Slides were

washed 3 times in PBS, incubated for 1 h in a 1:100 dilution of Rhodamine

Red-conjugated donkey anti-mouse IgG and washed again in PBS (3 X 5

min).  Nuclei were stained for 5 min with Hoechst 33342 (5 µg/ml).  Cover

slides were mounted with ProLong Gold antifade reagent, fluorescent cells

visualised with a Nikon fluorescence microscope (Nikon TE2000,

Duesseldorf, Germany) and images captured using NIS Elements AR v2.3

software (Nikon).

3.7 Human SDF-1αααα Immunoassay

SDF-1α protein secretion into media conditioned during culture of

mixed placental cells, Jeg3 choriocarcinoma cells, HTR and HPF cells was

determined using Quantikine® Human SDF-1α Immunoassay (R&D Systems,

Wiesbaden, Germany).  This assay employs the quantitative sandwich

enzyme immunoassay technique, in which, a specific SDF-1α monoclonal

antibody has been pre-coated onto a microplate.  Immobilised antibody binds

SDF-1α present in samples and standards while unbound substances are

washed and removed from the microplate.  A second incubation with an

enzyme-linked polyclonal antibody specific for SDF-1α facilitates colourimetric

detection of bound SDF-1α; following addition of substrate, colour develops in
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proportion to the amount of SDF-1α present.  SDF-1α ELISA was performed

according to the manufacturer’s description.  Briefly, 200 µl of standard or

sample was incubated in the provided 96-well plate for 2 h at room

temperature.  Wells were washed 3 times and further incubated with SDF-1

conjugate for an additional 2 h with shaking at room temperature.  Following

this incubation, wells were washed 3 times with wash buffer.   200 µl of

substrate solution was added and plates incubated for 30 min (RT).

Colourimetric detection determined SDF-1α levels by first measuring

absorbance at 450 nm and relating sample absorbance to specific standards.

All samples and standards were examined in triplicate.  Immunoassays were

repeated a minimum of 3 times.  In concordance with the manufacturer’s

description, intra- and interassay variability were within acceptable ranges.

3.8 In Vitro Migration Assays

Migratory capacity or the ability of HSPC to migrate through a

membrane with 3 µm pores under various treatment conditions was measured

using a modified Boyden Chamber assay.  Each well of 24-well plate

consisted of an upper insert separating the well with a membrane.  2.5x105

cells/200 µl IMDM (± 1 µg/ml AMD3100) was added in the inserts and placed

into the lower well containing 800 µl of IMDM, conditioned media (HTR-CM,

HPF-CM), or SDF-1α-supplemented IMDM (1% FCS; 0.025% BSA).  Plates

were incubated in a humidified atmosphere for the specified times at 37ºC.

Inserts were removed and migrated HSPC were quantified with a Casy® Cell

Counter (Schaerfe Biosystems).

3.8.1 Transendothelial migration

Transendothelial migration (TEM) of HSPC was assayed utilising a

similar technique.  Prior to the addition of HSPC, inserts were coated with a

monolayer of human umbilical vein endothelial cells (HUVEC, P3-4) isolated

according to established protocols.  HSPC were fluorescently stained

(PKH26 Red Fluorescent cell stain; Sigma, Munich Germany) before being

included.  TEM assays were carried out for the specified time under the

same conditions as described above.  In some cases, the effects of
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placental cell types on HSPC TEM were assayed by coculturing specific

placental cell types as monolayers coating the bottom well.  Where

specified, cocultured cells were pretreated for 24 h in different oxygen

concentrations (1% or 8% O2).  Migrated HSPC were quantified by

measuring the number of PKH+ event counts in 90 sec with FACSCalibur

(BD).

3.9 In Vitro Cell-Cell Adhesion Assay

Following expansion, the ability of HSPC to adhere to placental-derived

cells was assessed.  Briefly, HSPC were fluorescently stained (PKH26) and

2.5x105 HSPC were incubated in 24-well plates containing a human placental

cell monolayer.  After 6 h incubation in different oxygen concentrations (1%,

8% or 21% O2), non-adherent HSPC were collected, the wells washed 3 times

with cold PBS; all washes were collected.  Adherent cells were lifted with

trypsin-EDTA and collected.  The number of PKH+ HSPC in both the non-

adherent and adherent fractions was determined using FACSCalibur.  Cells

were quantified by measuring the number of HSPC events in 90 sec and the

ratio of adherent HSPC to the total number of HSPC calculated.
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4 RESULTS

4.1 Detection of CD34 Positive Cells in Early Human Placental Tissue

Human placental tissue was examined for expression of CD34 during

various stages of development (Figure 8).  Tissues were probed with specific

fluorochrome-coupled antibodies recognising human CD34 and human

cytokeratin 7.  CD34 is a common marker for both hematopoietic and

endothelial progenitor cells.  Cytokeratin is commonly used to distinguish

endodermal cells from mesenchymal cells and in the human placenta,

cytokeratin 7 specifically labels cells of the trophoblast lineage.

B.  Early Placenta (12 wpc)

Cytokeratin 7 CD34 Merge

A.  Early Placenta (6 wpc)

Cytokeratin 7 CD34 Merge

Figure 8. Immunohistochemical analysis of CD34 expression in
early human placental tissue. Unfixed human tissue from 6 wpc
and 12 wpc were labelled with anti-human CD34 (Red) and anti-
human cytokeratin 7 (Green) antibodies. Photomicrographs were
made and images merged. CD34 expression was seen on
individual cells and cord-like structures in placental villi at 6 wpc
(A). In 12 week-old placental tissue (B), CD34 labelled individual
cells and early blood vessels within the chorionic villi. Cell nuclei
were stained with Hoechst (Blue). Original magnification 200X.
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Early human placental tissue contains CD34+ cells and CD34+ cell clusters

at 6 wpc as demonstrated by immunohistochemistry (Figure 8).  CD34+ cells

did not stain positive for cytokeratin 7.  A similar staining pattern was seen in

12 week-old human placental tissue (Figure 8B).  At this time point, a greater

number of CD34+ cells were situated within the placental stroma, indicating an

increase in the number of placental blood vessels.  Some CD34+ cells could

be in found in proximity to trophoblast.

4.2 Flow Cytometric Analysis of HSPC

HSPC isolated from human UCB from term pregnancies were

characterised utilising flow cytometry analysis based on the expression of CD

(cluster of differentiation) cellular antigens (Chart 3).

Chart 3. Phenotypic characterization of HSPC (Day 0 and Day 7).

Positive Cells ( % )

CD133 / CD34 CD133 / CD117 CD45 CD11b / CD14

Day  0 87.5 84.6 98.6 1.0

Day  7 13.6 15.4 98.3 3.9

In this investigation, HSPC were isolated utilising anti-CD133 antibody

coated microbeads.  Directly following isolation (Day 0), HSPC were 88%

double positive for CD133 and CD34 demonstrating the effectiveness of this

technique in the isolation of HSPC.  The majority of CD133+ cells were also

positive for the stem cell marker CD117 (c-kit / SCF receptor) at the time of

isolation.  HSPC were also CD45+.  Only 1% of freshly isolated HSPC

expressed the combination of CD11b and CD14, commonly used as markers

for differentiated monocytes.

 In our laboratory, seven-day culture expansion was required to provide

a sufficient number of HSPC for various functional studies.  Furthermore,

following seven-day culture expansion in HSPC growth media (HSPC-GM), an

appropriate number of HSPC remained in culture.  At Day 7, HSPC remained

13.6% CD133 and CD34 double positive (Chart 3).  The majority of CD133+
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cells also expressed CD117.  Almost all cells in the HSPC expressed CD45+

(98.3%).  A significant difference was noted in the expression of monocyte

markers between Day 0 and Day 7.  The number of cells coexpressing the

monocyte markers CD11b and CD14 rose from 1% on Day 0 to 4% on Day 7.

These results demonstrate the effective isolation of HSPC expressing

CD133, CD34 and CD117.  Seven-day expansion of HSPC cultures was also

shown to be an effective method for increasing cell number while maintaining

a pool of HSPC.  In accordance with previously published results, isolated

HSPC demonstrated progenitor capabilities (Baal et al, 2004)

4.3 Placental Oxygen Tensions Can Be Effectively Mimicked In Vitro

A novel system has been used in our laboratory to measure real-time

oxygen concentrations in HSPC media during culture (see Figure 6).

Following optimisation of the procedure, three distinct atmospheric

compositions were chosen, including mixtures containing either 1% or 8% O2

(with 5% CO2) or atmospheric oxygen (21% O2).  Particular low oxygen

concentrations were chosen in order to reproduce placental oxygen tensions

previously measured in vivo and reported (Rodesch et al., 1992; Jauniaux et

al., 1999; Jauniaux et al., 2001).  Replacement of the gas mixture in the

chambers resulted in a rapid reduction in O2 level followed by a period of

equilibration (Figure 9).  During standardisation of the protocol it was

demonstrated that atmosphere replacement three times daily (1 time/h for 3 h,

4 min gas flow at 25 mm/h) was required to maintain appropriate oxygen

tensions over time.
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Figure 9. HSPC media oxygen tensions during culture in 1%,
8% or 21% O2. The SDR system concurrently monitored oxygen
concentrations during a two-day experimental period.
Representative graph is shown demonstrating in vitro oxygen
tensions (pO2) during HSPC culture in low oxygen (1% O2: open
triangles; 8% O2: black squares). An average oxygen tension of

10.2 ± 5.5 mmHg was encountered when HSPC were cultured in

1% O2. In 8% O2, the average oxygen tension was 65 ± 7.5 mmHg.
When HSPC were cultured in ambient oxygen (21% O2: grey
circles) the average oxygen tension in HSPC culture media was

157.9 ± 9.2 mmHg. Atmospheres in low oxygen environments were
changed three times daily (black arrowheads).

When HSPC were cultured in an atmosphere containing 8% O2, a

mean pO2 of 65.0 ± 7.5 mmHg was maintained.  This environment is similar to

measurements made in placental beds from pregnancies at 10-15 wpc (65.0 ±

3.4 mmHg).  When HSPC were cultured 1% O2, the mean pO2 measured was

10.2 ± 5.5 mmHg.  These oxygen tensions were similar to previously

described physiological pO2 in the fetoplacental unit at 8-10 wpc (17.9 ± 6.9

mmHg).  This clearly demonstrates the effectiveness of the described, novel

system in mimicking actual physiological oxygen tensions at different time

points during placental development.  As comparison, HPSC cultured in

ambient oxygen were similarly assessed.  HSPC grown under atmospheric

conditions encountered non-physiological, high oxygen environments (Figure

9).  A mean in vitro pO2 of 157.9 ± 9.2 mmHg was reached, illustrating that

culture in ambient oxygen results in a clearly hyperoxic environment.
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4.4 Effect of Physiological Oxygen Levels on HSPC Number

Cell number was measured with a Casy® Counter during HSPC culture

in physiological oxygen concentrations (1% and 8% O2).  The effect of low

oxygen during HSPC expansion in HSPC-GM was assayed (Figure 10).

HSPC cell number in hyperoxic conditions (21% O2) was likewise quantified.
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Figure 10. HSPC number during culture in different oxygen
concentrations.  HSPC (Day 7) were cultured with HSPC-GM in
low oxygen environments containing 1% (open triangles) or 8% O2

(black squares). HSPC number was quantified on days 10, 12, and
14. HSPC expansion in ambient oxygen (21% O2) was also
examined (grey circles). HSPC number positively correlated with
oxygen concentration.

HSPC cultivation with HSPC-GM (IMDM, 10% FCS + 50 ng/ml Flt3L,

20 ng/ml SCF, and 10 ng/ml TPO) in ambient oxygen induced expansion of

HSPC and was used to amplify HSPC cultures directly following isolation.

Results demonstrated that additional culture of HSPC beyond Day 7 with

HSPC-GM in 21% O2, resulted in a >7-fold increase in HSPC number.  In fact,

previous work in our laboratory has shown that proliferation of cultures

continued for ~30 days, after which, HSPC number could be maintained up to

60 days (Baal et al., 2004).
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The number of HSPC positively correlated with oxygen concentration

(Figure 10).  HSPC in high oxygen environments (21% O2) continued

expanding during the 7 day experimental period.  HSPC number slightly

increased in 1% and 8% O2 but did not result in substantial expansion when

compared to culture in ambient oxygen.  Minimal HSPC expansion occurred in

atmospheres containing the lowest oxygen concentration (i.e. 1%).

Approximately 3-fold and 2-fold increases in cell number were seen after 7

day culture of HSPC in 8% and 1% O2, respectively.  Cell death, as assessed

with the Casy® Counter was not affected by culture of HSPC in low oxygen

concentrations.

These results demonstrate the effects of oxygen tensions on HSPC cell

number.  Traditional cell culture conditions have been shown to result in

HSPC expansion.  However, when HSPC were grown in oxygen tensions

more effectively mimicking those found in utero, decreased culture expansion

was seen.

4.5 HSPC Cell Cycle Analysis

As culture of HSPC in 1% and 8% O2 was shown to affect cell

proliferation, further experiments examined the effects of physiological oxygen

tensions on HSPC cell cycle status.  This was accomplished using propidium

iodide (PI) staining of fixed HSPC followed by quantification of cell ploidy with

flow cytometry and ModFit® software.

Cells (Figure 11A, Region 1 (R1)) were first gated based on their size

(FSC) and granularity (SSC).  Cell aggregates resulting from the fixation

process were excluded with further gating (Figure 11B, R2).  Using this

technique, 2n cells in G2 or M phase of the cell cycle contain twice the

amount of PI as 1n cells in the G1 phase of the cell cycle or resting G0 cells.

Cells with intermediate levels of PI are considered to be in the S phase.  65%

of Day 7 HSPC were 1n and were, thus, considered G0 or G1 phase (Figure

11C).  Cells containing twice the amount of DNA (i.e. 2n) were included in

HSPC cultures with 2% of Day 7 cells in G2/M.
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Figure 11. Flow cytometric cell cycle analysis of expanded HSPC (Day 7).  Live
cells (R1) were gated based on FSC and SSC (A). Single cells (R2) were gated
excluding cell aggregates resulting from fixation (B). Cell ploidy was determined based
on the stochastic integration of PI into HSPC DNA (C). Results from this experiment
demonstrate that following expansion 65% of HSPC were 1n (G0/G1) while 2% of
HSPC were 2n (G2/M). The remaining HSPC were in the S phase of the cell cycle
(33%). A representative analysis is shown.

Flow cytometric analysis was used to determine cell cycle status of

HSPC cultured in atmospheres containing physiological oxygen

concentrations.  No significant changes were noted between treatments after

1 day (Day 8) in the different oxygen concentrations.  When cell cycle status

was examined after 3, 5 and 7 days of culture, differences were seen.  The

greatest difference between treatments was measured on Day 12, following 5

day culture in physiological oxygen concentrations.  Culture of cells in both
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low oxygen atmospheres increased the number of G0/G1 HSPC, with

subsequent reductions in G2/M and S phase cells.  This effect was dose-

dependent with the greatest increases seen when cells were cultured in 1%

O2.  On Day 12, 92% of HSPC in 1% O2 were G0/G1 compared to 85% and

78% of HSPC in 8% and 21% O2, respectively.

These results demonstrate the effects of low oxygen on HSPC cell

cycle status.  Cell culture in atmospheres mimicking early placental

development resulted in a rapid increase in resting HSPC.  The percentage of

resting cells increased with time while the percentage of S/G2/M cells

subsequently decreased.  HSPC culture in a hyperoxic environment (21% O2)

also increased the percentage of resting HSPC, although not as rapidly as low

oxygen environments.
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Figure 12. Pie diagrams generated from HSPC cell cycle
analysis during culture in different oxygen concentrations.
HSPC were grown in 1%, 8% or 21% O2 and cell cycle status
determined on days 7, 8, 10, 12 and 14.  Low oxygen dose-
dependently increased the number of resting G0/G1 HSPC over the
test period. Subsequent reductions in cycling G2/M and S cells
were measured. Experiments were repeated 5 times;
representative data is shown.
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4.6 HSPC Apoptosis Analysis

Cell culture dynamics were further investigated utilising flow cytometric

quantification of HSPC apoptosis.  Cells were stained with Annexin V-FITC

and PI in order to distinguish live cells (Annexin V-PI-) from early apoptotic

(Annexin V+PI-) and late apoptotic/necrotic (Annexin V+PI+) cells (see Figure

7).  HSPC apoptosis was measured following expansion (Day 7).  HSPC were

then cultured in low oxygen (1% or 8% O2) or ambient oxygen (21% O2) and

apoptosis levels quantified on days 8, 10, 12, and 14.

Results from this experiment demonstrated that culture in physiological

oxygen concentrations had no significant effects on HSPC apoptosis levels.

Upon examination of individual experiments minor differences were noted.

For example, when compared to culture in ambient oxygen (21%), higher

levels of total apoptosis (early and late apoptosis) were measured after 7 day

culture in 1% O2 (Figure 13).  More importantly however, no significant

differences were noted when data obtained from multiple experiments (n = 3)

was compiled (Chart 4).
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Figure 13. Flow cytometric analysis of HSPC apoptosis.
Expanded HSPC (Day 7) apoptosis levels were quantified with flow
cytometry following staining with Annexin V-FITC and propidium
iodide (PI). Cells were subsequently cultured a further 7 days in 1%
or 8% O2 and analysis performed on days 8, 10, 12 and 14.
Apoptosis was similarly quantified during culture in ambient oxygen
(21% O2). Representative results from one of three experiments are
shown.
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Chart 4. Compiled HSPC apoptosis data following culture in 1%, 8% or 21% O2.

4.7 HSPC Characterisation During Low Oxygen Culture

4.7.1 Gene expression analysis

 Alterations in HSPC gene expression during incubation in

physiological oxygen concentrations were examined with RT-PCR.  cDNA

was synthesised from extracted total cellular mRNA and probed using

primers for various genes known to be expressed during hematopoietic and

endothelial cell development.

A representative non-quantitative RT-PCR analysis following seven-

day incubation of HSPC in low oxygen (1% or 8% O2) or atmospheric

oxygen (21% O2) is illustrated (Figure 14).  A variety of hematopoietic and

endothelial cell mRNA were expressed over the entire culture period.  HSPC

genes, including CD133, CD117, GATA-1 and -2, Runx-1 and SCL/Tal-1

were expressed in all conditions.  The expression of genes associated with

vascular development, such as VEGFR-1 and VEGFA165, were also

expressed in HSPC cultures.  Interestingly, expression of VEGFR-2 was not

seen in all HSPC cultures tested.   HSPC gene expression altered during

culture in physiological oxygen concentrations.  Alterations noted in gene

expression during RT-PCR analysis necessitated further characterisation of

HSPC at the protein level.
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Figure 14. Gene expression analysis of HSPC during culture in
low oxygen. Expression of specific hemangioblast genes during 7
day HSPC culture was examined with RT-PCR. The housekeeping

gene, β-actin was utilised as a control. Differentiated cells, such as
the HSPC negative (CD133-) fraction (D0), adult mononuclear cells
(MNC) isolated from peripheral blood and endothelial cells
(HUVEC), were concurrently examined. NA: results not available.

4.7.2 Protein expression analysis

The effect of simulated placental oxygen tensions on HSPC

differentiation was assessed with flow cytometry based on expression of CD

markers.  Expanded HSPC were cultured for an additional 7 days in HSPC-

GM in either atmospheric (21% O2) or physiological oxygen concentrations

(1% or 8% O2) and analysed with flow cytometry.  Flow cytometric analysis

was performed on Day 10 and Day 14.

As shown, the majority of expanded HSPC expressed CD45

(88%), an established marker for cells of hematopoietic lineages (Chart 5).

Coexpression of CD31 and CD140b was also examined in this investigation.

Chart 5 demonstrates the low coexpression of these markers on Day 7

HSPC; no change was seen during culture of HSPC in the various

conditions.
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Chart 5. Flow cytometric characterisation of HSPC following 7 day culture in
atmospheric oxygen (21% O2) or low oxygen (8% or 1% O2).

Day 7

- 21 8 1 21 8 1

CD45 87.56% 80.44% 87.58% 79.50% 87.83% 89.97% 83.99%

CD34/CD133 10.02% 4.13% 5.07% 4.30% 2.30% 2.42% 2.56%

CD34 27.28% 8.47% 11.80% 7.29% 5.56% 5.88% 3.21%

CD117 61.64% 50.93% 48.03% 28.09% 40.42% 32.31% 19.15%

CD31 71.49% 73.69% 76.14% 86.94% 73.11% 82.82% 83.98%

CD11b/CD14 0.65% 5.01% 10.66% 12.13% 12.78% 18.46% 22.92%

CD31/CD140b 0.53% 0.42% 0.50% 0.69% 1.44% 1.16% 1.44%

MARKER

HSPC CELL AGE (Days after isolation)

Day 10 Day 14

Culture Conditions (% Oxygen)

Coexpression of CD34, CD133 and CD117 distinguishes a subset of

multipotent stem cells. Therefore, expression of these HSPC stem cell

markers was examined with flow cytometry during culture (Chart 5 and

Figure 15).  In this investigation, approximately 12% of expanded HSPC

were CD34 and CD133 double positive (Figure 15A); approximately 11%

were CD133 and CD117 double positive (Figure 15B).  Culture of HSPC in

the tested conditions resulted in a decreased percentage of cells expressing

stem cell markers.  Day 10 HSPC were less than 5% CD34+CD133+ or

CD133+CD117+ regardless of the oxygen concentration.  By Day 14, less

than 3% of the cells were either CD34+CD133+ or CD133+CD117+ double

positive.
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Figure 15. Expression stem cell markers on HSPC during low
oxygen culture. Cells were gated and expression of stem cell
markers analysed. Approximately 12% of expanded HSPC (Day 7)
coexpress CD34 and CD133 (A). Approximately 11% of Day 7
HSPC coexpress CD133 and CD117 (B). Further culture in
atmospheric oxygen (21% O2) or in physiological oxygen (8% or 1%
O2) for 3 days (Day 10) and 7 days (Day 14) resulted in a
decreased percentage of HSPC stem cell marker coexpression.
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Another interesting result obtained following flow cytometric analysis of

HSPC cultured in physiological oxygen was seen when coexpression of

monocyte markers was analysed (Figure 16).  Multiparametric flow

cytometry allowed the examination of CD11b (αM integrin) and CD14

coexpression.  Double positive cells (CD11b+CD14+) were gated.

CD11b+CD14+ cells were contained within a population of cells coexpressing

CD31 (PECAM) and CD13.  Quadruple positive cells

(CD11b+CD14+CD31+CD13+) were considered monocytes.  HSPC cultures

expanded for 7 days consisted of 1% monocytes (Figure 16A).  HSPC were

then cultured for 1 week in a hyperoxic atmosphere (21% O2) or in

physiological oxygen concentrations (1% or 8% O2).  Media was changed

and flow cytometry performed on Day 10 and Day 14.  Figure 16B illustrates

representative results obtained on Day 14.  Day 14 HSPC cultures consisted

of 5% monocytes.  Low oxygen culture increased the percentage of

monocytes in HSPC culture.  Day 14 HSPC cultures grown in 8% or 1%

consisted of 8% and 11% monocytes, respectively.

These results illustrate the heterogeneity of HSPC cultures and

demonstrate the influence of simulating physiological oxygen environments

on the cells.  The expansion protocol used in this investigation was

demonstrated to maintain a population of CD133+CD34+CD117+

stem/progenitor cells.  At the same time, proliferation and differentiation of

cells resulted in an increase in differentiated cells (e.g. monocytes).  Cells

cultured in physiological oxygen concentrations (1% or 8% O2) also

maintained a population of HSPC and simultaneously increased

differentiation.  A significant difference was seen between oxygen

concentrations when CD11b+CD14+ monocytes were quantified.  Expression

of adhesion molecules, such as CD11b (αM integrin) and CD31 (PECAM)

also appear to be affected by low oxygen.
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Figure 16. Expression of monocyte markers on HSPC
cultivated in low oxygen.  Expanded HSPC (Day 7) were
incubated with fluorescently labelled antibodies against CD11b,
CD14, CD13, and CD31 and subjected to multiparametric flow
cytometry. Live cells (A) were gated based on size (FSC) and
granularity (SSC). Cells coexpressing CD11b and CD14
(CD11b+CD14+) were further gated. The majority of CD11b+CD14+

cells were contained within a population of CD31+CD13+ cells
(monocytes). On Day 7, <1% of cells expressed all four markers.
Cells expanded a further 7 days (Day 14) were similarly gated and
analysed (B). In atmospheric oxygen (21% O2), 5% of cells
expressed monocyte markers. The percentage of monocytes
increased with decreasing oxygen concentration (8% and 11% of
cells in 8% O2 and 1% O2, respectively).

4.8 HSPC Matrix Metalloproteinase Activity

The expression of matrix metalloproteinases (MMP) has been shown in

hematopoietic stem cells, as well as, differentiated monocytes and

macrophages.  In this investigation gelatine zymography was employed to test

whether culture in low oxygen altered HSPC collagenase (MMP-2 and MMP-

9) activity.  HSPC cultured for a total of 5 days in 1% or 8% oxygen and the

ability of HSPC-derived MMP to digest gelatine was tested.  Bands

corresponding to active 72 kDa MMP-9 and 49 kDa MMP-2 were apparent in

media conditioned by HSPC.  Culture of HSPC in decreasing oxygen

concentrations (1% and 8% O2) resulted in an increase in MMP enzymatic
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activity (Figure 17).  These results demonstrate that HSPC cultures in

simulated placental oxygen tensions increased their matrix-degrading ability,

suggesting a functional activity of mixed cultures consisting of HSPC and

differentiated hematopoietic cells.
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Figure 17. Gelatine zymography following HSPC culture in low
oxygen. MMP activity was assessed utilising gel containing 10%
gelatine. Secreted proteins present in HSPC-conditioned media
were first separated, followed by enzyme reactivation; bands
appear where reactivated gelatinases (MMP-2 and MMP-9)
digested collagen present in the gel. A representative gelatine
zymogram is shown (A). HSPC-CM collected during culture in low
oxygen concentrations (1% and 8 O2) contained active MMP-9.
Conditioned media from HSPC cultured in a hyperoxic environment
(21%) was included for comparison. Densitometry was performed
on individual zymograms (n = 5) and the data compiled (B). Bars
represent standard deviation.

4.9 Placental-Derived Factors Affect HSPC Number

Reducing in vitro oxygen concentration dose-dependently decreased

HSPC culture expansion in HSPC-GM (see Figure 10).  Treatment of HSPC

cultures with serum-free conditioned media from trophoblast-enriched (HTR)

and stroma-enriched (HPF) cell cultures in physiological oxygen

concentrations (1% or 8% O2) further decreased cell number (Figure 18).  Cell

number decreased slightly when HSPC were cultured in HPF-conditioned

media (HPF-CM).  Oxygen concentration had no significant effect on HSPC

proliferation in HPF-CM.  Incubation of HSPC in HTR-conditioned media

(HTR-CM) caused an initial decrease in cell number followed by an increase
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in HSPC cell number at Day 14.  In contrast to HPF-CM, oxygen

concentration had a significant effect on HSPC proliferation in HTR-CM - the

lower the oxygen concentration, the greater the HSPC number at Day 14.

Seven-day culture of HSPC in serum-reduced media (SRM) resulted in a

significant decrease in cell number.  Analysis of cell viability demonstrated

that culture with SRM greatly reduced HSPC viability.
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Figure 18. Placental-derived factors and oxygen affect HSPC
number.  HSPC (Day 7) were cultured with serum-reduced media
(SRM) or HSPC Growth Media (HSPC-GM) in ambient oxygen
(21% O2). HSPC were simultaneously cultured in low oxygen (1%
or 8% O2) with trophoblast-conditioned media (HTR-CM) or
placental stromal cell-conditioned media (HPF-CM).  HSPC number
was quantified on Days 10, 12, and 14. HSPC number was affected
by culture in HTR-CM and HPF-CM in low oxygen. The decrease in
cell expansion was greatest in 1% O2. On Day 14, cell number
increased when HSPC were incubated in HTR-CM (8% and 1%
O2). HSPC culture in SRM resulted in decreased cell number.
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These results demonstrate that culture of HSPC in conditioned media

from early human placental cells effects HSPC number.  HSPC proliferation in

trophoblast-enriched (HTR) conditioned media appeared to be affected by

oxygen concentration, while HSPC proliferation in trophoblast-deprived (HPF)

conditioned media was not affected by oxygen concentration.  Neither HTR-

nor HPF-CM could expand HSPC cultures as effectively as traditional

methods using HSPC-GM in ambient oxygen (21% O2).

4.10 Placental-Derived Factors Affect CXCR4 Expression on HSPC

Multiparametric flow cytometry was employed to examine CD11b and

CXCR4 expression on HSPC cells.  Live cells were first gated and isotype-

matched control antibodies used to exclude non-specific antibody binding.

The percentage of CD11b+CXCR4+ cells is highlighted (black box in top right

quadrant).

Flow cytometric analysis of CXCR4 expression after HSPC expansion

(Day 7) demonstrated that only 4% of CD11b+ cells expressed CXCR4 (Figure

19A).  Further 7 day expansion in ambient oxygen increased the percentage

of CD11b+CXCR4+ cells to 7% (Figure 19B).  In comparison, coculture of

HSPC with either placental stroma-enriched (HPF) or trophoblast-enriched

(HTR) cell cultures in low oxygen (1% and 8% O2) markedly altered CD11b

and CXCR4 protein expression (Figure 19C).  HSPC coculture with HTR or

HPF increased the percentage of CD11b+CXCR4+ cells to approximately

20%.  As shown previously in this report, decreasing oxygen tension in vitro

once again increased the percentage of CD11b+ monocytes in HSPC cultures

(see Figure 16).  Different expression patterns were noted between the

different cocultures.  As opposed to coculture with HTR, HSPC coculture with

HPF does not significantly alter the number of CD11b+ cells not expressing

CXCR4 (CXCR4
-
).  Results from this investigation demonstrate that, along

with oxygen, secreted factors present in the placental microenvironment can

have significant effects of HSPC phenotype.
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Figure 19. Flow cytometric analysis of CXCR4 expression of
expanded HSPC (Day 7) and following coculture with placental
cells (HPF and HTR) in low oxygen (1% and 8%). HSPC were
subjected to flow cytometric analysis following labelling with anti-
CD11b and anti-CXCR4 antibodies.  Plots represent gated live cells
and demonstrate the percentage CD11b+CXCR4+ HSPC (box
upper right). Day 7 HSPC were 3% CD11b+CXCR4+ (A). HSPC
were subsequently cultured for a further 7 days with HSPC-GM in
atmospheric oxygen (B) or cocultured with HTR or HPF in different
oxygen concentrations (C). When compared to standard HSPC
expansion protocol, coculture resulted in significant increases in the
percentage of CD11b+CXCR4+ cells with no significant differences
noted between oxygen concentrations.
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4.11 SDF-1αααα Expression in Human Placenta

Expression of SDF-1α mRNA and protein was investigated in human

placental tissue.  RT-PCR products from two experiments illustrate SDF-1α

mRNA expression in placenta (Figure 20).  Results from this experiment

clearly demonstrate that SDF-1α is expressed at the mRNA level in early

human placental tissue.  Expression of SDF-1α mRNA in term placental

tissue appears lower than in the first trimester, although direct quantitative

analysis was not possible.

Placental tissue

β-actin β-actinSDF-1α SDF-1α -RT

21

early term early term early term early term early term

Figure 20. SDF-1αααα mRNA expression in early and late placental
tissue.  RNA was extracted from placental tissue of various

gestational ages and probed with specific SDF-1α primers. Results

from two separate PCR are shown above (1 and 2). SDF-1α mRNA

was expressed in early human placental tissue. β-actin and
reactions not containing reverse transcriptase (-RT) were used in
these investigations as controls.

SDF-1α protein expression was seen throughout human placental

tissue in both trophoblast and chorionic villous stromal cells (Figure 21).  SDF-

1α expression was seen at all time points.  Strong SDF-1α expression was

noted in a trophoblast layer surrounding the chorionic villi in the earliest tissue

sample (6 wpc).  Furthermore, SDF-1α was expressed within the chorionic

villous stromal core along with the mesodermal cell marker, vimentin.  Anti-

SDF-1α antibodies stained cell clusters or cords in areas where developing

villous blood vessels are located in six-week old placental tissue.  At 12 wpc,

trophoblast and villous stromal cells continued to express SDF-1α protein.

Perivascular regions within the villous core also labelled with SDF-1α
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antibodies.  This pattern of SDF-1α expression continued throughout

gestation.  In term placental tissue (38 wpc), vascular structures within the

chorionic villi clearly remain SDF-1α positive.

A.  Early placenta (6 wpc)
SDF-1αααα / Cytokeratin 7SDF-1αααα 

SDF-1αααα  / Vimentin SDF-1αααα  / Vimentin

B.  Early placenta (12 wpc)

SDF-1αααα SDF-1αααα / Cytokeratin 7

SDF-1αααα  / Vimentin SDF-1αααα / Cytokeratin 7

                 C.  Term placenta (38 wpc)
SDF-1 αααα / Cytokeratin 7SDF-1 αααα SDF-1 αααα / Vimentin

Figure 21. SDF-1αααα expression in human placental villous
tissue. Human placental tissue from 6, 12 and 38 wpc were

immunolabelled with anti-human SDF-1α (red). Trophoblast and
villous stromal cells were labelled with anti-cytokeratin 7 and
vimentin antibodies, respectively (both in green) and double-
positive cells can be seen in the merged images (yellow).
Multinucleate syncytiotrophoblast cells surrounding the villi

expressed SDF-1α at all time points. In the earliest tissue (6 wpc),

SDF-1α expression was also noted on vimentin-positive villous
stromal cells (A). Some double-positive cells appear in cell clumps

or cords. In later placental tissue (12 wpc), SDF-1α expression was
apparent in perivascular regions (B). Blood vessels stained positive

for SDF-1α in mature placental tissue (C). Original magnification
200X.
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4.12 Placental-Derived Cells Express SDF-1αααα In Vitro

RT-PCR and immunochemistry were once again employed to explore

expression of SDF-1α mRNA and protein.  Purified placental cells, including

trophoblast-enriched (HTR) and stroma-enriched (HPF) cell fractions, were

examined following 3 day culture in low oxygen (1% or 8% O2) or atmospheric

oxygen (21% O2).  Figure 22A illustrates results from a representative RT-

PCR using SDF-1α gene-specific primers.  Both HTR and HPF cell cultures

expressed SDF-1α mRNA after 3 day culture in a hyperoxic  (21% O2) or low

oxygen (1% O2) environment.  Consequently, immunocytochemistry was used

to investigate SDF-1α protein expression in placenta stromal cell-enriched

(HPF) fractions isolated from human first trimester placental samples.  HPF

cell cultures were incubated in either 1% or 8% O2 environments for 2 days

before being probed with monoclonal anti-human SDF-1α antibodies.  SDF-

1α expressing HPF cells (red) and HPF cell nuclei counter-stained with

Hoechst  (blue) can be seen in Figure 22B.  SDF-1α positive cell staining was

seen in when HPF cultures were incubated in either 1% or 8% O2.  Protein

expression patterns suggest cytoplasmic or extracellular expression.  HPF

cultures probed with mouse IgG1 were used to exclude non-specific labelling

of secondary antibodies.

These results demonstrate the expression of SDF-1α mRNA and

protein in stromal-derived cells isolated from first trimester human chorionic

villi.  In vitro SDF-1α protein expression was shown during culture in low

oxygen.
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Figure 22. Primary placental cell cultures express SDF-1αααα

mRNA and protein.  Trophoblast-enriched (HTR) or stroma-
enriched (HPF) were incubated for 3 days in 1% or 8% O2 or in a
hyperoxic environment (21% O2). Cellular mRNA was isolated and

probed for SDF-1α (A).  Expression of β-actin and reactions where
reverse transcriptase was excluded (-RT) were used controls. Both

HTR and HPF cultures expressed SDF-1α mRNA.

Immunocytochemistry was used to examine SDF-1α expression in
HPF cultures cultured in low oxygen (B). Fluorescently (PE)-
labelled secondary antibodies were used to recognise bound anti-

SDF-1α antibodies (red); cell nuclei were stained with Hoechst

(blue). Replacement of anti-SDF-1α antibodies with mouse IgG was
used as a control (Hoechst/IgG1). Original magnification 200X.

4.13 Placental Cells Secrete SDF-1αααα Protein

A highly sensitive SDF-1α immunoassay was utilised to determine

protein expression levels in media conditioned during culture with different

placental-derived cells.  Media collected from mixed first trimester placental

cell cultures in atmospheric oxygen contained approximately 2-fold more SDF-

1α than media conditioned by mixed term placental cells (Figure 23).

Likewise, conditioned media from primary and trophoblast tumour cell lines
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were analysed.  SDF-1α protein was secreted over a 24 h period into media

conditioned by both HTR and HPF cells (Figure 23).  However, secreted SDF-

1α protein was not detected in media conditioned by Jeg3 choriocarcinoma

cells.    Although SDF-1α protein was detected in conditioned media from

trophoblast-enriched (HTR) cell cultures (6.1 ± 0.1 pg/ml), the placental

stroma-enriched fraction (HPF) produced considerably greater levels of SDF-

1α under these conditions (452.2 ± 0.2 pg/ml).
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Figure 23. SDF-1αααα protein secretion by placental-derived cell
cultures.  Conditioned media was collected following 24-hour

incubation and secreted SDF-1α protein assessed utilising ELISA.
Media was conditioned during culture with mixed placental cell
cultures from early (8 wpc) or term placentas (37 wpc), Jeg3
choriocarcinoma cells, trophoblast-enriched (HTR) or placenta
stroma-enriched (HPF) cell fractions from first trimester placentas.

SDF-1α was produced and secreted by various placental cells with

the greatest SDF-1α production seen in media conditioned by HPF.

To examine whether in vitro oxygen level affected SDF-1α protein

secretion, placental stroma-enriched (HPF) cultures were incubated for 48 h in

low oxygen (1% and 8% O2) and conditioned media collected.  SDF-1α levels

were quantified (Figure 24).  HPF cultures in hyperoxic tissue culture

conditions (21% O2) were included for comparison.  Secretion of SDF-1α

protein into conditioned media was greatest when HPF were cultured in
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normal atmospheres (21% O2).  However, SDF-1α protein was also found

when HPF were incubated in physiological oxygen concentrations.  Media

conditioned by HPF in 8% O2 contained 895.3 ± 32.0 pg/ml SDF-1α protein;

conditioned media from HPF cultures incubated 48 h in 1% O2 contained

635.3 ± 42.0 pg/ml SDF-1α protein.
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Figure 24. SDF-1αααα protein secretion by chorionic villous
stromal cells (HPF) in low oxygen. ELISA measured secreted

SDF-1α protein in media conditioned during 48 h incubation with
HPF in low oxygen (1% or 8% O2) or atmospheric oxygen (21%

O2). The greatest amount of SDF-1α was secreted during HPF

culture in hyperoxic conditions (1059 ± 26 pg/ml). Lower levels of

SDF-1α were measured in media conditioned during culture in

simulated placental oxygen concentrations (635 ± 42 and 895 ± 32
in 1% and 8% O2, respectively). Standards and samples examined
in triplicate; error bars represent standard deviation. A
representative experiment is shown.

These results provide further evidence that cells in the developing

placenta express and secrete SDF-1α protein, suggesting a role for SDF-1α

during early placental development.  As demonstrated with RT-PCR,

immunochemistry and ELISA, placental stromal (HPF) cells express SDF-1α

protein.  In this model, HPF cells not only expressed SDF-1α in the hyperoxic

environment encountered during tissue culture, but also in simulated placental

oxygen concentrations found during early development.
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4.14 Placental-Derived Factors Stimulate HSPC Migration

HSPC in vitro migration was quantified with a modified Boyden

chamber assay.  In all experiments, migration of cells in serum-reduced media

(SRM) was considered basal HSPC migration.  When compared to basal

migration, addition of trophoblast-conditioned media (HTR-CM) to the assay

stimulated HSPC migration (Figure 25).  HTR-CM also stimulated migration

above levels induced by 50 ng/ml recombinant SDF-1α.  Treatment of HSPC

with placenta stromal cell-conditioned media (HPF-CM) also stimulated

migration above both basal levels and SDF-1α-induced levels.  No significant

differences were noted between HSPC migration towards HTR-CM or HPF-

CM.  This experiment demonstrates paracrine stimulation of HSPC migration

by both trophoblast and placenta stromal cells.  To assess SDF-1α

involvement in the stimulation of migration by HTR-CM or HPF-CM, the

specific CXCR4 inhibitor AMD3100 was included in the assay.  In this

investigation, AMD3100 was shown to inhibit SDF-1α stimulation of migration

as the combination of recombinant human SDF-1α and AMD3100 reduced

HSPC migration to basal levels.  Although no change was seen with the

combination of AMD3100 and HTR-CM, the CXCR4 antagonist did, in fact,

reduce HPF-CM stimulated migration.  This suggests the involvement of

placenta stromal-derived SDF-1α in the stimulation of HSPC migration in this

investigation.  However, SDF-1α does not appear to be the only chemotactic

stimulus in the developing placenta, as AMD3100 was unable to reduce

HSPC migration to basal levels.
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Figure 25. Effect of factors secreted by placental cells on
HSPC migration.  HSPC were cultured for 8 h and the ability of
HTR- or HPF-CM to stimulate migration quantified. Culture of
HSPC in the absence of all factors (SRM alone) was considered

basal migration. Wells containing 50 ng/ml SDF-1α were used as

positive control. The involvement of SDF-1α in the conditioned
media-stimulation of migration was examined by including the
specific CXCR4 antagonist, AMD3100. Treatments were performed
in triplicates; error bars represent standard deviations.  A
representative experiment is shown.

4.15 Placental-Derived Factors Stimulate HSPC Transendothelial

Migration

Further investigations determined whether placental stroma-derived

SDF-1α stimulated HSPC transendothelial migration.  Following 24 h

incubation in either 1% or 8% O2, HPF stimulated HSPC transendothelial

migration above basal levels (Figure 26).  Significant differences were not

seen between oxygen concentrations.  Similar levels of HSPC

transendothelial migration were seen when 50 ng/ml SDF-1α was included in

the assay.  Addition of 1 µg/ml AMD3100, along with HSPC to the upper well

of the migration chamber significantly decreased HPF-stimulated HSPC

transendothelial migration.  This suggests involvement of SDF-1α in the

induction of HSPC migration by HPF.  As shown for migration, blocking SDF-

1α - CXCR4 interactions with AMD3100 did not fully abrogate HPF stimulation
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of HSPC transendothelial migration, implying the involvement of other

placental-derived factors.
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Figure 26. Effect of placental stroma derived factors on HSPC
transendothelial migration.  Fluorescently labelled HSPC (PKH-
HSPC) were cultured for 12 h and their ability to migrate through a
HUVEC monolayer quantified. The ability of placental stromal
(HPF) cells incubated in 1% or 8% O2 to act as a migratory stimulus
was tested utilising coculture. Basal HSPC transendothelial
migration was considered the absence of all factors (SRM).

Addition of 50 ng/ml SDF-1α to the assay was used as positive

control.  Involvement of SDF-1α in the stimulation of migration was
examined by including the specific CXCR4 antagonist, AMD3100.
Treatments were performed in triplicates; error bars represent
standard deviations. A representative experiment is shown.

4.16 HSPC Adhesion to Placental Stromal Cells Involves SDF-1αααα

Coculture of fluorescently labelled HSPC with various placental-derived

cells was utilised to determine whether HSPC adhered to the various cellular

components present in developing human placenta.  HSPC adhered to mixed

placental cells isolated from early human placental tissue (8 wpc), Jeg3

choriocarcinoma cells, trophoblast-enriched (HTR) and stroma-enriched cells

when cocultured 48 h in a hyperoxic environment (Figure 27).  Relative

adhesion varied among the tested cell fractions.  Minimal cell-cell adhesion
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was measured when HSPC were cocultured with either mixed cells from early

placenta (8 wpc) or Jeg3 cells.  A significant increase in adhesion was seen

when trophoblast-enriched HTR cells were included in the assay.  The

greatest cell-cell adhesion was measured when HSPC were cocultured with

placental stroma cells (HPF).  In fact, relative adhesion of HSPC to HPF in

normal tissue culture conditions was greater than 2-fold when compared to

HSPC adhesion to HTR.
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Figure 27. HSPC cell-cell adhesion to placental-derived cells.
Fluorescently labelled HSPC were cocultured for 6 h with mixed
placental cells, Jeg3 choriocarcinoma cells, HTR or HPF. Following
coculture, nonadherent cells were removed and number of
adherent HSPC quantified utilising flow cytometry. HSPC adhesion
to wells containing no additional cells (plastic alone) was set to 1
and relative adhesion shown. HSPC adhered to all cell cultures
tested, although the greatest level of cell-cell adhesion was seen
during HPF coculture. Treatments were performed in triplicate; error
bars represent standard deviation. A representative experiment is
shown.

The effect of low oxygen on HSPC adhesion was also investigated.

The greatest number of HSPC adhesion to HTR was seen when cocultures

were performed in 1% O2 (Figure 28), demonstrating that physiological

oxygen has a positive effect on HSPC adhesion to trophoblast.  In fact, the

level of relative adhesion of HSPC to HTR in 1% O2 was similar to HSPC-HPF

adhesion.  In 8% O2, HSPC also adhered to HTR.  AMD3100 did not

significantly reduce relative HSPC-HTR adhesion.  On the contrary, adhesion

of HSPC to HPF was not affected by oxygen concentration.  Furthermore,
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addition of AMD3100 decreased the relative adhesion of HSPC to placental

stroma cells, implicating SDF-1α involvement during HSPC adhesion to

placental stromal cells.
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Figure 28. HSPC cell-cell adhesion with placental-derived cells
(HTR or HPF) in low oxygen (1% or 8% O2).  Fluorescently
labelled HSPC were cocultured for 12 h in the appropriate oxygen
concentration (1% or 8% O2) with HTR or HPF. Following coculture,
non-adherent cells were removed and number of adherent HSPC
quantified utilising flow cytometry. HSPC adhesion to wells
containing no additional cells (plastic alone) was set to 1 and
relative adhesions shown. HSPC adhesion to trophoblast cells
appeared to be affected by oxygen concentration with the greatest
HSPC-HTR adhesion seen in the lowest oxygen concentration (1%

O2).  SDF-1α did not appear to play a role in adhesion of HSPC to
HTR as no significant change was noted when the CXCR4 inhibitor
AMD3100 was included in the assay.  HSPC adhesion to HPF cells
was not affected by oxygen concentration. AMD3100 significantly
reduced HSPC adhesion to HPF. Treatments were performed in
triplicate; error bars represent standard deviation. A representative
experiment is shown.
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4.17 HSPC Integrin Expression is Altered in Low Oxygen

Alterations in HSPC adhesion (see Figure 28), as well as, changes in

CD11b (αM integrin) expression (see Figure 16) suggested that HSPC integrin

expression was affected during culture in low oxygen.  As previously

demonstrated, the expression of αM integrin subunit (CD11b) increased when

HSPC were cultured 7 days in simulated placental oxygen tensions (Figure

29); αM expression was greatest in environments containing 1% O2.  More

than 75% of HSPC expressed the β2 subunit.  No significant differences in β2

expression were noted between oxygen treatments.  Expression of α4 subunit

was also affected during culture in low oxygen environments. Conversely, 7

day culture of HSPC in 8% O2 resulted in a greater increase in α4 integrin

expression when compared to HSPC cultured 1% O2.  Almost all HSPC

expressed the β1 subunit with no differences noted between oxygen

concentrations.
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1% O2

32%
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Figure 29. HSPC integrin expression following culture in low
oxygen. HSPC were cultured for 7 days in low oxygen (1% or 8%

O2) and the expression of αM, α4, β1 and β2 integrin subunits on Day
14 examined with flow cytometry. Percentages in top right corner
illustrate positive cells. Dotted lines represent the appropriate
isotype controls.
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5 DISCUSSION

Current understanding of the development of the human feto-placental

vascular system is based, almost exclusively, on descriptive structural and

immunohistochemical studies.  In vitro approaches are under-represented due

to problems inherent to the placenta, such as ethical limitations and limited

availability of early human placental tissue.  Likewise, the recent suggestion

that the human placenta constitutes a stem cell niche has not attracted much

attention, possibly due to the same inherent problems.  We describe a novel

in vitro examination of the human placenta as a HSPC niche.  The impact of

oxygen and the involvement of SDF-1α during establishment of the placental

niche were specifically examined.

5.1 The Human Placenta as a Stem Cell Niche

Hematopoietic cells develop in the embryo in several anatomic

locations.  Co-ordinated hematopoietic sites ensure both rapid production of

differentiated blood cells for immediate needs and establishment of a large

pool of undifferentiated stem cells.  Hematopoiesis is first observed in the

human yolk sac at day 18.5 of pregnancy (Palis and Yoder, 2001).  The sites

of human hematopoiesis then change throughout embryogenesis and a

dogma exists that considers the linear movement of definitive HSC from the

aorta-gonads-mesonephros (AGM) region to the fetal liver and finally the bone

marrow (BM).  However, the ability of the yolk sac and AGM to supply all HSC

in the fetal liver has been questioned and the contribution of yet another

source of HSC has been suggested (Tavian et al., 2001).

The first evidence of transplantable hematopoietic activity in murine

placenta can be found in early transplantation studies by Till and McCulloch

(1960) and Dancis and colleagues (1968, 1977).  The ability of placental cells

to contribute to recipients’ hematopoiesis was similar to adult BM, was not

dependent on continuous blood supply to placenta and ceased by the end of

gestation.  These exciting findings in mice were not actively followed up until

recently.  In 2003, it was demonstrated that the mouse placenta contains

multi-potential clonogenic progenitors before colonisation of the liver is

initiated (Alvarez-Silva et al., 2003).  The most recent evidence has shown
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that mid-gestation murine placenta harbours a large pool of HSC with the

capacity to self-renew and repopulate the entire hematopoietic system of

irradiated mice (Gekas et al., 2005; Ottersbach and Dzierzak, 2005).  No

signs of hematopoiesis were seen before mesodermal cells originating from

the extra-embryonic allantois has fused to the chorionic plate.  It is difficult

however, to directly relate events during murine placentogenesis to humans

as placental development between both species differs significantly.

Some of the first cytological evidence for the appearance of HSC in the

human placenta were described using transmission electron microscopy

(Demir et al., 1989).  The structure of early placental tissue was examined and

the appearance of hematopoietic cells in the earliest stages of placental

development was demonstrated; expression of HSC markers was not

examined.  More recently, Challier et al. (2005) provided immunocytological

evidence for hematopoiesis in one month-old human placental tissue.  Near

the end of the first month (25 dpc) typical figures of hematopoiesis,

comparable to those described for the yolk sac of the human embryo, were

seen.  At this time point, placental tissue did not contain cells expressing the

hematopoietic marker CD45.  Similar results were shown in human placental

tissue at 6-7 wpc.  By the end of the first trimester (12-14 wpc), CD45+ cells

could be found in the human placenta.  The expression in early of early

markers of primitive and definitive hematopoiesis, such as GATA-2 and

CD117 (c-kit), further supported the concept of early placental hematopoiesis.

It was also stated that anti-CD34 antibodies did not stain chorionic villi at early

time points.

CD34 is a marker for HSPC and is commonly used during the isolation

of both hematopoietic stem cells and endothelial progenitor cells (Peichev et

al., 2000; Pomyje et al., 2003).  In this investigation, approximately 90% of

freshly isolated HSPC expressed CD34.  Immunohistochemistry also

demonstrated that the chorionic villous stroma from six-week old human

placental tissue contained CD34+ cells.  At this early developmental time

point, placental vascular development has been underway for approximately

three weeks (Demir et al., 1989).  Previous reports have also used CD34 to

distinguish early vascular cells in the developing placenta (Challier et al.,

2004; te Velde et al., 1997).  Thus, immunohistochemical investigations
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utilising only CD34 as a marker for HSPC, as reported here, cannot clearly

distinguish between HSPC and early vascular cells.  Coexpression of other

specific HSPC markers is needed.  In this investigation, the use of anti-CD133

antibodies to probe for HSPC in placental tissue was excluded due to

previous reports that trophoblast also express this marker (Potgens et al.,

2001).  Attempts to examine the coexpression of other HSPC markers in early

human placental tissue were also unsuccessful due to problems, such as non-

specific labelling of the available antibodies (e.g. CD117).  It would also be of

great interest to examine earlier tissue (i.e. >6 wpc) for the appearance of

progenitor cells, although the lack of tissue samples prohibited this in our

investigation.

5.2 Human Placental Development in Low Oxygen

Placental tissue is plastic and changes constantly throughout gestation

to meet and supply the increasing metabolic needs of the growing fetus.  The

stem cell-rich blastocyst begins as a trophectodermal cell layer surrounding

the inner cell mass.  After implantation, the human placenta reaches its

terminal size short after the end of the first trimester (12 wpc).   During this

initial period of rapid placental growth, oxygen tensions remain strikingly low.

Measurements made with polarographic electrode probes demonstrated that,

in the intervillous space prior to 8 wpc, pO2 is less than 20 mmHg; after 12

wpc placental pO2 is greater than 50 mmHg (Rodesch et al., 1992; Jauniaux

et al., 1999; Jauniaux et al., 2001).

Although the first trimester pO2 appear quite low, they represent normal

values in uncomplicated pregnancies and are relevant for that location and

time of development (Charnock-Jones et al., 2004; Kaufmann et al., 2004).

Therefore, in vitro models should take into account normal physiological pO2

present during placental development.  Concurrent measurements acquired in

this investigation during culture of both HSPC and placental cells clearly

demonstrate that normal placental oxygen tensions found during placental

development can be effectively mimicked in vitro.  The use of two different gas

mixtures, containing either 1% oxygen or 8% oxygen (5% CO2), simulated in

vivo oxygen tensions with surprising precision.  Measurements made here
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also clearly demonstrate that traditional cell culture in atmospheric oxygen

(21% O2) results in a hyperoxic environment with oxygen tensions well above

normal pO2 found in human tissues (157.9 ± 9.2 mmHg).

The use of low oxygen gas mixtures is not novel in placental research

as oxygen reduced environments have previously been used to assess

trophoblast development and function (Genbacev et al., 1997; Graham et al.,

1998; Caniggia et al., 2000).  One important difference, however, is that

previous investigations did not include real-time oxygen monitoring.  As clearly

demonstrated in this investigation, oxygen concentrations in low oxygen cell

culture systems are in a constant flux and are difficult to maintain at

physiological levels.  Accordingly, standardisation of experimental parameters

(e.g. cell number, media depth and composition, gas replacement intervals,

etc.) and extensive testing was required to ensure that actual physiological

oxygen concentrations were reached and then maintained.  Using

standardised protocols, variability between experiments was reduced.

Furthermore, and as opposed to previously published results, the SDR

oxygen monitoring system provided reliable data concerning in vitro oxygen

levels during the entire experimental period.

5.3 Low Oxygen Affects HSPC Culture Dynamics

Although tissue culture in 21% oxygen is most frequently used, there is

a growing body of evidence suggesting that the use of physiological oxygen

levels during cell culture provides a better picture of what is occurring in vivo.

The effects of low oxygen on cell proliferation and cell cycle kinetics has been

previously studied and the results appear to vary depending on oxygen

concentration and cell type (reviewed by Csete, 2005).

The exact composition of the media used during in vitro HSPC culture

varies among different laboratories and a lack of consensus exists as to which

factors are essential to maintain stem cell number while inhibiting

differentiation.  In our laboratory, the HSPC culture media consisted of IMDM

(10% FCS) supplemented with TPO, SCF, and Flt3L (HSPC-GM).  This

particular composition has been previously shown to maintain HSC in culture

(McGuckin et al., 2004; McGuckin et al., 2005).  Previous publications from
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our laboratory have also shown that HSPC culture in ambient oxygen with

HSPC-GM results in extensive expansion of HSPC cultures and can maintain

cultures for >60 days as assessed by trypan blue exclusion (Baal et al., 2004).

In this report, culture with HSPC-GM likewise stimulated HSPC proliferation in

21% oxygen during a seven-day proliferation assay.  Results from this assay

also demonstrated that when HSPC were cultured in physiological pO2 cell

proliferation was lower.  Decreased HSPC culture expansion in low oxygen

was dose-dependent with the greatest decrease noted when cells were

cultured in oxygen concentrations that mimicked early placental development

(1% O2).  The use of a Casy® Counter for this particular proliferation assay

allowed cell death to be concurrently assessed; low oxygen did not result in

significant alterations in HSPC cell death.

Similar results have been previously described.   Using CD34+ cells

isolated from adult peripheral blood, Ivanovic and colleagues (2000a, 2000b)

have demonstrated that HSPC proliferation was reduced in 1% oxygen.

Decreased HSPC culture expansion did not occur at the expense of

progenitor cell self renewal.  In fact, cd34 mRNA processing and CD34 protein

expansion was enhanced in low oxygen environments (Brunet et al., 2006).  It

was therefore suggested that the enhanced proliferation of HSC in low oxygen

may, in part, reflect the normal relatively low oxygen environment of stem cells

in their in vivo environment – the adult BM.  Models of marrow architecture

suggest that HSC normally reside in a low oxygen niche (Chow et al., 2001).

Delayed proliferative senescence in low oxygen environments with a

concurrent reduction in oxidative DNA damage could play a role, although

further investigation is needed.

Removal of cells from active cell cycling results in decreased cell

proliferation and thus, the transition of cells from G1/M/G2 to the G0 phase

can decrease cell number.  In the case of HSC, the most primitive stem cells

have been shown to be in the resting state (i.e. G0) with a G1/S progression

representing a developmental switch between HSC self-renewal and

differentiation (Szilvassy et al., 2000; Thornley et al., 2001; Stein et al., 2004).

Results in this report demonstrated the effect of placental oxygen tensions on

HSPC cell cycle status, where low oxygen rapidly increased the percentage of

G0 HSPC.  The rapid increase in the number of resting HSPC seen in
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placental oxygen concentrations may be partially responsible for the dose-

dependent decreases seen in HSPC culture expansion.  It is logical to

assume that the quicker cells remove themselves from active cycling,

decreases in HSPC number would increase over time.  In fact, a lower cell

number was seen following seven-day culture in 1% oxygen.

Cell death is another factor when determining cell number.  The toxic

effects of oxygen and more specifically, reactive oxygen species (ROS) on

HSC are well described (Ito et al., 2004; Ito et al., 2006).  It has even been

suggested that ROS may be a major factor driving cellular ageing (Harman,

1956).  In our system, HSPC culture in hyperoxic environments did not

significantly stimulate apoptosis.  HSPC apoptosis was apparently unaffected

by low oxygen culture.

The impact of physiologically low oxygen on HSPC dynamics has been

demonstrated in this investigation.  When different placental oxygen levels are

simulated in vitro, HSPC transition to resting stem cells occurs.  Over time,

this results in a reduction of total HSPC number without significantly affecting

cell death and/or apoptosis.  These results provide further proof that culture of

HSPC in physiologically relevant oxygen concentrations can better recreate

their in vivo environment, perhaps providing a better picture of HSPC

dynamics in the stem cell niche.

5.4 HSPC Differentiation in Physiological Oxygen Concentrations

Oxygen has known effects on the regulation of gene expression.  In

this report the expression of specific genes was examined to determine

whether the culture conditions tested had any effects on HSPC differentiation.

The genes examined here were chosen due to their involvement in both

hematopoiesis and vascular development.  In fact, their expression has been

noted in the hemangioblast - a common precursor during hematopoietic and

endothelial cell development (Choi et al., 1998; Chung et al., 2002; Lacaud et

al., 2002).  It must be noted, however, that the non-quantitative nature of the

RT-PCR results did not allow for solid conclusions to be made about

expression levels.  Thus, the results obtained from PCR were used simply as

a guide for gene expression and to provide clues for changes in HSPC
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differentiation.  The alterations noted in during HSPC culture in physiological

oxygen levels suggested that low oxygen effects HSPC differentiation.  These

results also suggested that a further examination of HSPC differentiation,

through the quantification of protein expression, was necessary.

Recent reports have demonstrated that culture in low oxygen can help

maintain pluripotency, a key feature of stem cells.  For example, it is well

known that ES cells cultured in atmospheric oxygen tend to differentiate

spontaneously.  However, when ES differentiation was monitored in low

oxygen (3% or 5% O2), cells expressed pluripotency-associated genes (e.g.

Oct4) and the expression of differentiation-associated genes and proteins was

reduced (Ezashi et al., 2005).  Furthermore, the ability of murine HSPC to

repopulate bone marrow was enhanced when HSPC were cultured in 1% O2

(Ivanovic et al., 2000a).  In all conditions tested, the percentage of cells

expressing stem cells markers decreased over the seven-day period.  This is

not so unexpected when considering the increases in HSPC cell number due

to cell proliferation.  Thus, a decrease in the percentage of HSPC expressing

the stem cell markers may represent dilution of the stem cells pool. It was

shown that the CD133+CD34+ and CD133+CD117+ populations were

maintained over the entire culture period.  Surprisingly, no significant changes

in HSPC marker expression between treatments were shown.  Further

investigations are needed to determine whether HSPC cultured in low oxygen

(1% and 8% O2) or hyperoxia have different functional clonogenic potential or

repopulation abilities.  Such studies were beyond the scope of this

investigation.

Sustaining a balance between self-renewal and differentiation is

another inherent property of stem cells.  During culture in physiological

oxygen tensions the HSPC pool was maintained with a relatively constant

number of cells continuing to express known stem cell markers while

undergoing low levels of proliferation.  Nonetheless, increasing cell number

suggested that a population or populations of HSPC were undergoing

differentiation.

Consistent with a major role for hypoxia in vasculogenesis and

angiogenesis, a large number of genes involved in different steps of

angiogenesis are independently responsive to hypoxia in tissue culture. The
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effect of hypoxia on the vascular endothelial growth factor (VEGF) axis has

received special interest in diverse fields such human development and

tumour biology.  Most of these studies have focussed on hypoxia-inducible

factor (HIF-1)-1α, a transcriptional activator that functions as a master

regulator of cellular and systemic oxygen homeostasis.  Low oxygen stabilises

HIF-1α, which in turn drives expression of VEGF, VEGF receptor-1 (VEGFR-

1; a.k.a. Flt-1) and a VEGF isoform, placental-derived growth factor (PlGF).

Thus, the influence of hypoxia on endothelial progenitor cells and endothelial

cells has been well established.  CD34+ cells coexpressing VEGFR-2 and the

HSPC marker CD133 have been isolated from human peripheral blood, UCB

and fetal liver (Miraglia et al., 1997; Gallacher et al., 2000).  Circulating

CD133+ cells can even be differentiated to endothelial progenitor cells (EPC)

in vitro (Peichev et al., 2000; Quirici et al., 2001; Loges et al., 2004).  In fact, it

has been shown that in vitro hypoxic culture of EPC isolated from peripheral

blood enhanced therapeutic angiogenesis (Akita et al., 2003). In this

investigation, analysis of angioblast and HSC gene expression, such as

VEGF, VEGFR-1 and -2, provided no clear pattern.  Also, flow cytometric

analysis showed no effects on protein expression when HSPC were cultured

in low oxygen (data not shown).  Several possible explanations exist for these

apparent discrepancies.   Many of the above mentioned reports involved long-

term culture (>1 month) in differentiation media containing a variety of

recombinant growth factors.  HSPC utilised in this report, on the other hand,

were included in assays following short-term culture (≤ 1 week) in exapansion

media (i.e. HSPC-GM).  Other reports used cells differentiated from the entire

mononuclear cell pool present in peripheral blood.  It remains possible that

different cell populations were used.  On the other hand, it is plausible that the

complex processes of vasculogenesis and angiogenesis require specific cell

populations at different sites and different developmental stages.

While no affects on endothelial markers could be demonstrated, HSPC

expression of monocyte-associated proteins during culture in low oxygen was

significantly affected.  Freshly isolated and expanded HSPC cultures

contained less than 1% monocytes, as quantified with multiparametric flow

cytometry.  Incubation of HSPC in low oxygen dose-dependently increased
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the percentage of monocytes.  The functional importance of monocyte

differentiation in low oxygen remains unclear.  Multiple cell types are required

in the placental niche.  Some may act as accessory cells thereby helping to

provide a receptive niche for other cells directly involved in placental

vasculogenesis and/or angiogenesis (i.e. hemangioblast).

5.5 Extracellular Matrix Degradation in the Placental HSPC Niche

Extracellular matrix (ECM) degradation is involved in a variety of

cellular functions and is primarily mediated by the matrix metalloproteinases

(MMP).  It has been shown in murine tumour models that the majority of

CD11b positive hematopoietic cells located around blood vessels express

active MMP-9 (Takakura, 2006).  Inhibition of the gelatinases MMP-2 and -9

reduces the homing of CD34+ cells from UCB (Janowska-Wieczorek et al.,

2000).  Along with their involvement during invasion, MMP have been

suggested to play a role in releasing matrix-bound growth factors and

chemokines into the microenvironment (Condeelis and Pollard, 2006).

Growth factors such as SCF, VEGF and PlGF, as well as the chemokine SDF-

1α are known to bind to various components of the ECM.  Naturally,

degradation of the ECM and release of these factors into the

microenvironment could have direct effects on formation of blood vessels.  We

have demonstrated the secretion of active MMP-9 into media conditioned

during HSPC culture with an increase in MMP-9 activity seen in low oxygen

concentrations.  These data could represent an increase in functional activity

subsequent with the induction of monocyte differentiation.  However, the cell

type responsible for MMP production remains unclear and future experiments

must clarify the source of increased gelatinase activity to fully understand the

effects of increased MMP-9 in the placental microenvironment.

5.6 HSPC Home to Hypoxia

One obvious question that arises is how a discrete population of cells

specifically traffics to hypoxic areas to take part in new blood vessel formation

and growth.  Are specific factors involved in homing progenitor cells to areas
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where they are needed?  It is known that endogenous factors home HSC to

their niche in adult bone marrow.  It remains plausible that similar regulatory

mechanisms during developmental HSPC trafficking as well as following

injury.

The chemokine SDF-1α has been shown to be critical for homing stem

cells expressing the specific receptor CXCR4 to the bone marrow.  Studies of

mutant mice with targeted gene disruption have revealed that SDF-1α-CXCR4

signalling is essential for bone marrow colonisation by HSC during ontogeny

(Nagasawa et al., 1996; Kawabata et al., 1999; Zou et al., 1998).  Lethality

caused by SDF-1α or CXCR4 gene ablation prevents immediate analysis of

their role in adult hematopoiesis and angiogenesis.  None of the described

abnormalities, however, adequately explains the nearly uniform late

gestational lethality in the SDF-1α or CXCR4 null mice.  Knock-out placental

tissue has not yet been investigated (personal communication with

Nagasawa, T.).  Among the environmental signals in these tissues that may

be involved in recruiting cells is hypoxia.

In murine bone marrow, SDF-1α has been shown to maintain HSC in

their low oxygen niche (Sugiyama et al., 2006).  Hypoxia may even play a role

in the molecular regulation of SDF-1α and/or CXCR4 expression, although

results remain relatively unclear (Hitchon et al., 2002).  In ischemic tissue,

SDF-1α expression is localised to cells in the vascular microenviroment and

acts as a signal to facilitate human HSPC adhesion (Peled et al., 2000).

Ceradini and colleagues (2004; 2005) have also demonstrated the recruitment

of CXCR4+ murine HSPC to regenerating tissue is mediated by hypoxic

gradients via HIF-1α-induced expression of SDF-1α.

5.7 SDF-1αααα in the Human Placenta

As an endocrine organ, cells in the chorionic villi produce a large

number of growth factors, hormones and chemokines; these factors can have

autocrine and paracrine effects on placental cells (McKinnon et al. 2000;

Liang et al., 2004; Zygmunt et al. 2005; Herr et al. 2007).  Placental-derived

factors are also intricately involved in development and maintenance of the
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placental vasculature tree (Zygmunt et al., 2003).   Ubiquitous angiogenic

factors, such as VEGF-A and Angiopoietin (Ang)-1 and -2 have been shown

to be locally produced in the developing placenta and implicated in both

placental vasculogenesis and angiogenesis (Geva et al., 2002).  The placenta

is also a rich source of PlGF, which has been shown to exert effects on

endothelial cells at the fetomaternal interface (Zhou et al., 2003).   A

combination of both VEGF and PlGF at hypoxic sites can recruit progenitor

cells to sites of neovasculogenesis (Li et al., 2006).

Chemokines may also play an important role in placental development.

In vitro expression of SDF-1α and CXCR4 has been previously shown in

human placenta, although analysis of expression patterns concentrated

primarily on trophoblast cells (Ishii et al., 2000; Wu et al., 2004).   In the

human placenta, SDF-1α, by signalling through CXCR4 has been

demonstrated to stimulate anti-apoptotic pathways in isolated trophoblast cells

(Jaleel et al., 2004).  Results shown in this report illustrate SDF-1α mRNA and

protein expression in early placental tissue isolated from both 6 week-old and

12 week-old pregnancies.  At the mRNA level, SDF-1α expression was noted

in all early (≤12 wpc) placental tissue samples tested.  On the other hand,

although most term tissue samples contained SDF-1α mRNA, gene

expression was not seen in all tissue examined.  Different temporal

expression patterns cannot be ruled out.  Early placenta exists in a low

oxygen environment and SDF-1α has been shown, in some cells, to be

regulated by oxygen.  Therefore, decreased SDF-1α expression would be

expected in term placenta due to the fact that oxygen tensions are higher.

However, it is possible that different SDF-1α expression patterns in term

placenta also represent patient-specific differences or differences between the

actual tissue samples as tissue samples excised for mRNA isolation consisted

of different quantities of placental cells.  In situ SDF-1α protein expression

was noted in a variety of locations in developing chorionic villi as well as in

term placental tissue.  In support of the hypothesis that SDF-1α plays a role in

early placental blood vessel development, vimentin-positive villous stroma

cells also expressed SDF-1α, with strong expression seen at sites of vascular

development.  SDF-1α expression patterns continued until the end of
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pregnancy.  The presence of SDF-1α protein in placental tissue provides the

first suggestion that this chemokine may play a role in the developing

chorionic villous niche.

5.8 SDF-1αααα Secretion by Human Placental Cells In Vitro

It is known in the field of placentology that human trophoblasts are

notoriously difficult to isolate and maintain in culture.  The difficulties

associated with obtaining early placental material, the variety of trophoblast

cell types and a lack of trophoblast specific markers have also hindered

research.  In our laboratory, a novel method has been used to isolate

trophoblast-enriched cell fractions from early placental tissue (Baal, N. et al.

manuscript in preparation).  Trophoblasts are unique epithelial cells (Bischof

and Irminger-Finger, 2005).  Thus, microbeads coated with the epithelial-

specific cell adhesion molecule (Ep-CAM, also known as CD326) were used

to isolate a trophoblast-enriched cell fraction from enzyme-digested human

abortus material.  Isolated cells were shown to express the pan-trophoblastic

marker, cytokeratin 7, and to behave like trophoblasts in vitro.  CD326+ cells

consisting of a trophoblast-enriched cell fraction were called HTR.  On the

other hand, the CD326-negative fraction, consisting of the placental stroma-

enriched cell fraction, was used as a cellular model for the chorionic villi.  This

particular cell fraction contains cells expressing the mesenchymal marker

vimentin and was called HPF.  Both HTR and HPF have recently been used in

our laboratory in an in vitro model of human placenta.

 In vitro expression of SDF-1α was subsequently analysed in different

placental cells.  SDF-1α mRNA expression was demonstrated in both HTR

and HPF during culture in 1% oxygen or in hyperoxia (21% O2) with no

differences seen between treatments.  Media conditioned by different

trophoblast cell models (Jeg3 and HTR) during a 24 h culture period

contained only minimal amounts of SDF-1α protein, demonstrating that villous

trophoblast cells do not secrete significant amounts of SDF-1α protein.

Conversely, placental stroma-enriched cell fractions were shown to secrete

large amounts of SDF-1α protein in 1%, 8% and 21% oxygen.  Reducing
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oxygen concentration decreased SDF-1α secretion from HPF cells.  These

results were puzzling due to previous reports suggesting that hypoxia HIF-1α

regulates expression of SDF-1α in synovial fibroblasts (Hitchon et al., 2002).

The reasons for these discrepancies remain unclear, however, they may

represent differences between cell types.  This report first describes SDF-1α

secretion by placental stromal cells.  Future molecular and cellular

experiments will be required to determine the mechanisms involved during

SDF-1α expression in the human placenta.  These results provide further

proof that this particular chemokine is part of the milieu of factors present in

the developing human placenta.

5.9 Secreted Placental Factors Affect HSPC CXCR4 Expression

Intense interest in HSC research has provided a body of evidence

supporting a role for paracrine regulatory mechanisms in regulating stem cell

development and maintenance.  Development of hematopoietic cells is

regulated by hematopoietic growth factors, cytokines and chemokines

secreted by accessory cells (e.g. fibroblasts, endothelial cells, macrophages

and osteoblasts) residing in the various HSC microenvironments (reviewed in

Janowska-Wieczorek et al., 2001).  Bone marrow, as the adult HSC niche,

has been the most extensively studied, however new evidence emphasises

the need to determine whether similar paracrine regulatory mechanisms are

involved extra-embryonically.

For SDF-1α to induce a response, HSPC must express the appropriate

receptor.  CXCR4 is a novel chemokine receptor due to its SDF-1α specificity.

Cell trafficking in the hematopoietic and vascular systems involves specific

progenitor cell populations expressing CXCR4 (Ceradini and Gurtner, 2005).

Previously published data has shown that >5% of CD34+ cells isolated from

peripheral blood are also positive for CXCR4 (Yamaguchi et al., 2003).

Results from our investigation were in accordance with this data, where 4% of

expanded HSPC expressed CXCR4.

An accessory role for monocytes / macrophages during angiogenesis

has been previously described and CD11b+CD14+ monocytes have been
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shown to express proangiogenic factors, such as VEGF and Ang-1 (Rehman

et al., 2003).  Furthermore, monocyte-derived macrophages can support

tumour angiogenesis through their matrix-degrading capacities, growth factor

synthesis and engulfment of apoptotic cells (Condeelis and Pollard, 2006).

Therefore, low oxygen-induced HSPC differentiation to monocytes in the

placenta could also provide angiogenic support.  SDF-1α, as a chemotactic

stimulus, could then position monocytes in areas of blood vessel

development.  In fact, coculture of HSPC with both HTR and HPF cells

increased the percentage of CD11b+CXCR4+ cells over a seven-day period in

low oxygen.  Further experiments will be needed to determine the involvement

of CXCR4+ monocytes during placental vascular development.

5.10 HSPC Migrate in Response to Placental-Derived SDF-1αααα

A mechanism is needed to stimulate movement of progenitor cells into

position around developing blood vessels.  In a tumour model, Grunewald and

colleagues (2006) demonstrated the involvement of SDF-1α in positioning

progenitor cells around developing blood vessels.  Likewise, Kaplan and

colleagues (2005) illustrated the involvement of SDF-1α in positioning

progenitor cells in a pre-metastatic niche.  In the placenta, multiple factors

have been shown to regulate migration and invasion (Chakraborty et al.,

2002).  Locally produced SDF-1α may have a similar in the low oxygen

environment of the chorionic villous stroma.  SDF-1α is a highly potent and

efficacious mononuclear cell attractant, inducing migration of many

hematopoietic cells, including monocytes (Bleul et al., 1996) and CD34+ stem

cells (Mohle et al., 1998; Voermans et al., 1999; Jo et al., 2000).

In our model, conditioned media from both HTR and HPF significantly

stimulated HSPC migration.  The bicyclam peptidomimetic CXCR4 antagonist

AMD3100 is a commonly used inhibitor of SDF-1α - CXCR4 interactions (De

Clercq, 2003).  Inclusion of AMD3100 in migration assays had no effect on

HTR-CM stimulation of migration.  On the other hand, AMD3100 inhibited

HPF-CM induced HSPC migration.  These results demonstrate that SDF-1α

locally produced in the chorionic villi stroma can stimulate migration of HSPC.
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Inhibition of CXCR4 did not completely abolish HSPC migration illustrating

that multiple migratory stimuli are present in the developing placenta.  In fact,

trophoblast cells appear to secrete a different chemotactic factor or factors.

Further investigations will be needed to determine all of the factor(s) involved

in stimulating HSPC migration in the human placenta.

In order to enter the tissue of interest, hematopoietic cells must not only

migrate but must also transgress the endothelium.  To examine whether

placental-derived factors had the capacity to stimulate HSPC transendothelial

migration an in vitro assay was employed.  A layer of endothelial cells (i.e.

HUVEC) was cultured to confluence on insert membranes, thereby creating a

cellular barrier separating HSPC from the chemotactic stimulus.  For cells to

be quantified, HSPC must first actively move through the endothelial cell

monolayer.  Stimulation of transendothelial migration was noted when HSPC

were cocultured with HPF. Twenty-four hour culture of HPF in either low

oxygen environment (1% or 8%) demonstrated no significant differences.  The

levels of HSPC transendothelial migration were similar to when exogenous

SDF-1α was used as a chemotactic stimulus and could be inhibited with

AMD3100.  As previously discussed for migration, other locally produced

factors are likely involved.  The results from this particular transendothelial

migration assay, while interesting, do not provide a clear picture of the

mechanisms involved.  For example, inclusion of multiple cell types in an

assay increases the number of variables.  It remains possible, that increased

HSPC transendothelial migration actually represents an effect of HPF cells on

the endothelial cell monolayer and not a direct interaction of these factors on

HSPC.  Nonetheless, inclusion of AMD3100 in the assay provides adequate

proof that SDF-1α acting on CXCR4+ HSPC does play a significant role.

5.11 HSPC Adhesion in the Placental Microenvironment

By bringing cells to the places where they are needed, migration is the

first step in creating a placental HSPC niche.  Once the appropriate cells are

in location, a mechanism should exist, which helps retain cells in this niche.

True enough, published data indicates that CXCR4 activation is important for

the retention of VEGFR-1+ “hemangiocytes” within the neovascular niche (Jin
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et al., 2006a).   SDF-1α - CXCR4 signalling is implicated as the principal axis

regulating migration, retention and mobilisation of HSC during steady-state

homeostasis and injury (Lapidot et al., 2005).

One of the monocyte markers examined with flow cytometry, CD11b, is

another designation given to the αM integrin.   Thus, the increased expression

of CD11b during HSPC culture in placental oxygen tensions suggested an

associated alteration in cellular adhesion.  Along these lines, the expression of

several integrin subunits was examined in our HSPC culture model utilising

flow cytometry.  The adhesive properties of integrins rely on the association of

the various α subunits with different β subunits.  Indeed, HSPC were shown to

express several important integrin subunits during culture in physiological

oxygen concentrations.  In this investigation, expression of αM and the

associated β2 subunit as well as α4 and β1 was specifically evaluated.

Differences were noted between HSPC cultured in either 1% or 8% oxygen

when the expression of αM and α4 was examined.  Once again, decreasing

oxygen concentration resulted in an increase in HSPC αM expression.

Conversely, the expression of the α4 subunit was highest when cells were

cultured in 8% O2.  Whether or not these alterations represent different

adhesive properties of HSPC in 1% oxygen versus 8% oxygen remains

unclear.  Nonetheless, the α4β1 expression has been shown to be important

during the homing of progenitor cells to sites of neovascularisation (Jin et al.,

2006b).  It would be extremely interesting to explore whether the different

physiological oxygen tensions have different effects on HSPC function during

blood vessel formation.

Besides homing HSC to their BM niche, SDF-1α can also act as a

“retention factor”, entrapping angio-competent cells at sites of vascular

development in the pre-metastatic niche (Kaplan et al., 2005) and during adult

neovascularisation (Grunewald et al., 2006).  In ambient oxygen, HSPC

adhesion was greatest when the coculture consisted of placental stroma cells.

When a similar assay was performed in low oxygen atmospheres, HSPC

adhesion to HPF was also greater than control adhesion levels.  Again,

significant differences were not seen between the two oxygen concentrations

(1% and 8% O2).  Another interesting result obtained showed significant
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increases in HSPC adhesion to trophoblast (HTR) when the assay was

performed in physiologically relevant oxygen concentrations.  In this case,

HSPC adhesion to HTR was greatest in 1% oxygen reaching levels similar to

HSPC-HPF adhesion.  In the human placenta, locally derived SDF-1α also

appears to act as a retention factor due to the fact that including the CXCR4

antagonist AMD3100 in the experiment inhibited in vitro adhesion of HSPC to

placental stromal cells.  On the contrary, completely different mechanisms

appear to be at play in the adhesion of HSPC to trophoblast; these

mechanisms remain unclear, but may be dependent on oxygen concentration.

This assay provides interesting results regarding cell-cell interactions at a

specific point of time.  They do not, however, clarify whether this adhesion

represents a static condition or part of the dynamic process of HSPC

migration.  The latter now seems more probable.  Recent live-cell imaging

experiments have shown that HSPC adhesion to placental stromal cells in

vitro is a dynamic process with a great number of adhesive cells being

constantly in a migratory state (data not shown).  At the same time, formation

of HSPC colonies also appears to take place.  Further experimentation should

determine which microenvironmental cues provide the signal for HSPC to stop

migrating and colonise the placental HSPC niche.

5.12 Study Limitations

Although this investigation provides interesting data regarding the

impact of local oxygen tensions on formation of a placental HSPC niche, an

important point should be noted.  This qualification concerns the stem /

progenitor cells isolated, utilised and reported above.  CD133+ HSPC were

isolated from term UCB.  Isolation of HSPC at this particular time point (i.e.

term) results in the culture of, so-called, adult stem cells.  These cells are

definitive hematopoietic cells by nature.  In contrast, the earliest stages of

placental development occur during a point of time before definitive

hematopoiesis is fully established.  Studies into the earliest stages of human

development are fraught with a variety of difficulties - the most important being

the relative scarcity of healthy material.  The collection of early human tissue

normally involves samples obtained from elective terminations of pregnancies.
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Compounded by the fact that most pregnancies are not discovered until after

some time has passed (∼1 month), collection of material representing the

earliest stages of pregnancy (i.e. ≤1 month) is rare.  The material obtained is

also small, adding further difficulties to such investigations.  Therefore, it was

deemed necessary that adult HSPC should be used during experimentation

as a general model for hematopoietic stem cells.

5.13 Perspectives

This report attempts to shed light on the cellular mechanisms involved

in the establishment of the placental stem cell niche and the involvement of

progenitor cells in placental blood vessel formation.  Further studies will be

needed before a full understanding of these early developmental events is

reached.  One focus for the future should be to elucidate the precise role that

HSPC play during vascular development.  A wide variety of angiogenesis

assays presently exist (e.g. network forming assay, spheroid formation,

sprouting assays).  Inclusion of HSPC in such assays in conditions mimicking

the in vitro placental microenvironment would be an interesting way to

examine whether HSPC contain intrinsic hemangioblastic potential.  However,

the suggestion that HSPC contain a hemangioblast population has not been

adequately explored.  On the other hand, present experiments suggest that

HSPC may have more of an accessory role during in vitro vessel formation.

Yet another interesting avenue for research concerns SDF-1α.  We

have shown that SDF-1α is one of the factors present in the developing

placenta and that SDF-1α regulates HSPC functions in this niche.

Nonetheless, in our model the intracellular mechanisms induced by SDF-1α

binding to CXCR4 remain unclear.  Moreover, the molecular events leading to

SDF-1α expression in placental stromal cells was also beyond the scope of

this study.  Future investigations should attempt to clarify the precise

molecular mechanisms regulating SDF-1α expression in developing chorionic

villi, as well as, explore signalling events stimulated by chemokine binding to

CXCR4+ HSPC.
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It is interesting to speculate about what other locally derived factors

regulate HSPC functions in the placenta.  This is a daunting task as the

placenta is home to a myriad of growth factors, hormones, and cytokines.

Nevertheless, such investigations could be accomplished using the

techniques described here.  Our novel in vitro model could be used in the

future to clarify specific molecular and cellular mechanisms involved during

formation of a placental stem cell niche, as well as, the involvement of stem /

progenitor cells during placental vascular development.
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6 CONCLUSIONS

Scientific investigations should make a clear distinction between true

hypoxia and physiologically low oxygen concentrations actually representing

normoxia.  For example, normoxia in the placental stem cell niche is

characterised by low oxygen.  We provide a novel model allowing for effective

simulation and monitoring of physiologically low oxygen levels in vitro.

Results from this investigation illustrate the involvement of the local oxygen

environment during creation of this HSPC niche.

Using HSPC isolated from UCB, we have demonstrated that

physiologically low oxygen plays a definite role in cell culture dynamics,

maintenance of stem cell characteristics, as well as in the induction of

differentiation.  We have shown that low oxygen culture in either 1% or 8% O2

significantly and dose-dependently decreased HSPC culture expansion,

rapidly increased the number of G0/G1 cells, and stimulated expression of

monocyte markers.

The low oxygen microenvironment of early chorionic villi is also a rich

source of placental-derived hormones, growth factors and chemokines.  Such

factors can be involved during hematopoietic and vascular cell development.

In the developing placenta, the chemokine SDF-1α appears to play an

important role (Figure 30).  Locally derived SDF-1α, produced in the chorionic

villous stroma, acts as a “homing” factor inducing migration of HSPC

expressing the specific SDF-1α receptor (CXCR4) to areas of vascular

development.  In this investigation, the direct involvement of SDF-1α during

stimulation of HSPC migration, transendothelial migration and cell-cell

adhesion was shown.  Blocking SDF-1α interactions with CXCR4 using

AMD3100 inhibited the placental stroma cell induction of cellular motility and

adhesion.  Trophoblast, as a major component of the developing placenta

also appears to play a role in the promotion of placental vasculogenesis.  A

direct link between hematopoietic cells and formation of the placental vascular

tree has yet to be proven.  However, the close developmental and spatial

proximity of HSPC and early vasculogenic cells, once again, suggests a

connection between their development.
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An important goal for future investigations should be to clarify the

precise mechanisms involved in placental formation, including growth of the

extensive placental vascular system.  Only with a better understanding of

healthy placental development will it be possible to understand the factors at

play during placental malformation and disease.
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Figure 30. SDF-1αααα in the chorionic villous microenvironment.
Early placental vasculogenesis commences before chorionic villi
become bathed in maternal blood (A). HSPC are found in the
placental blood supply and villous stroma.  Syncytiotrophoblast
(STB) and villous trophoblast (HTR) surround the villous stroma.

Box at lower left magnified in (B). SDF-1α produced by chorionic
villous stromal cells (HPF) is secreted into the microenvironment.

Attracted by local SDF-1α, CXCR4+ HSPC invade the villous
stroma. HSPC involvement during placental vasculogenesis and/or
angiogenesis is unclear.  Secreted factors, such as active MMP
may play a role. Likewise, the involvement of trophoblast in this
model remains an interesting topic for investigation.
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7 ZUSAMMENFASSUNG

Eine physiologische Entwicklung des Gefäßsystems der Plazenta und

dessen uneingeschränkte Funktion erlauben einen adäquaten Gasaustausch

sowie den Transport von Nährstoffen zwischen der Mutter und dem Fetus und

sind somit für eine normale embryonale Entwicklung von entscheidender

Bedeutung.  In der sich entwickelnden humanen Plazenta ist ein geringer

Sauerstoffpartialdruck physiologisch und für eine korrekte Entwicklung dieses

Organs von massgeblicher Bedeutung.

Im Rahmen der vorliegenden Studie konnte erstmalig ein Modell

entwickelt werden, was die Simulation dieser sauerstoffarmen Umgebung in

der Plazenta und die Messung von in vitro herrschenden

Sauerstoffpartialdrücken ermöglicht.  Mit seiner Hilfe wurde der Einfluss der

Sauerstoffkonzentration auf die Etablierung der plazentaren Nische für fetale

Stammzellen (HSPC) untersucht.  Insbesondere wurde die Proliferation,

Erhaltung ihres Stammzellphänotyps und Induktion ihrer Differenzierung

angesehen.  Dabei konnte gezeigt werden, dass die niedrige O2

Konzentration die Proliferation von HSPC hemmt, zum Anstieg von G0/G1

Zahl führt und die Induktion von monozytären Markern verursacht.

In der reduzierten O2-Atmosphäre der frühen Plazenta wird zusätzlich

eine Vielzahl von Wachstumsfaktoren, Hormonen und Chemokinen

produziert, die in hämatopoetischen sowie in vaskulo- und angiogenetischen

Vorgängen eine wichtige Rolle spielen.  Im hier etablierten Modell wurde die

Wirkung des Chemokins SDF-1α, das von plazentaren Stromazellen

produziert wird, auf CXCR4 (Rezeptor für SDF1) positive HSPC hinsichtlich

Migration, transendotheliale Migration und Adhäsion in der plazentaren

Nische untersucht.  Es konnte gezeigt werden, dass das durch die plazentare

Stromazellen produzierte SDF-1α sowohl die Migration und die

transendotheliale Migration als auch die Adhäsion von HPSC stimuliert.  Im

Gegensatz dazu führte die Zugabe von entsprechenden neutralisierenden

Substanzen (AMD3100) zur einer signifikanten Reduktion der zellulären

Adhäsion und Mobilität.
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Ein wichtiges Ziel für weitere Untersuchungen sollte es sein, die

genauen Mechanismen, die der Plazentabildung und Entstehung des

weitverzweigten plazentaren Gefässbaumes zugrundeliegen, aufzudecken.

Denn nur durch das Verständnis der physiologischen Plazentaentwicklung ist

es möglich, die krankhaften Veränderungen dieses Organes zu verstehen.



99

REFERENCES

Akita,T., Murohara,T., Ikeda,H., Sasaki,K., Shimada,T., Egami,K., and Imaizumi,T. (2003).
Hypoxic preconditioning augments efficacy of human endothelial progenitor cells for
therapeutic neovascularization. Lab Invest 83, 65-73.

Alvarez-Silva,M., Belo-Diabangouaya,P., Salaun,J., and Dieterlen-Lievre,F. (2003). Mouse
placenta is a major hematopoietic organ. Development 130, 5437-5444.

Aplin,J.D. (1991). Implantation, trophoblast differentiation and haemochorial placentation:
mechanistic evidence in vivo and in vitro. J Cell Sci 99 ( Pt 4), 681-692.

Baal,N., Reisinger,K., Jahr,H., Bohle,R.M., Liang,O., Munstedt,K., Rao,C.V., Preissner,K.T.,
and Zygmunt,M.T. (2004). Expression of transcription factor Oct-4 and other embryonic genes
in CD133 positive cells from human umbilical cord blood. Thromb Haemost. 92, 767-775.

Balin,A.K., Fisher,A.J., and Carter,D.M. (1984). Oxygen modulates growth of human cells at
physiologic partial pressures. J Exp. Med 160, 152-166.

Barker,D.J., Bull,A.R., Osmond,C., and Simmonds,S.J. (1990). Fetal and placental size and
risk of hypertension in adult life. BMJ 301, 259-262.

Benirschke,K. and Kaufmann,P. (1990). Pathology of the human placenta. (New York:
Springer-Verlag).

Bertrand,R., Solary,E., O'Connor,P., Kohn,K.W., and Pommier,Y. (1994). Induction of a
common pathway of apoptosis by staurosporine. Exp. Cell Res 211, 314-321.

Bilton,R., Mazure,N., Trottier,E., Hattab,M., Dery,M.A., Richard,D.E., Pouyssegur,J., and
Brahimi-Horn,M.C. (2005). Arrest-defective-1 protein, an acetyltransferase, does not alter

stability of HIF-1α and is not induced by hypoxia or HIF. J Biol Chem. 280, 31132-31140.

Bischof,P. and Irminger-Finger,I. (2005). The human cytotrophoblastic cell, a mononuclear
chameleon. Int. J Biochem. Cell Biol 37, 1-16.

Bleul,C.C., Fuhlbrigge,R.C., Casasnovas,J.M., Aiuti,A., and Springer,T.A. (1996). A highly
efficacious lymphocyte chemoattractant, SDF-1. J Exp. Med 184, 1101-1109.

Boyd,J.D. and Hamilton,W.J. (1970). The human placenta. (Cambridge, Eng: Heffer).

Brunet,D.L.G., Barthe,C., Lippert,E., Hermitte,F., Belloc,F., Lacombe,F., Ivanovic,Z., and
Praloran,V. (2006). Oxygen concentration influences mRNA processing and expression of the
cd34 gene. J Cell Biochem. 97, 135-144.

Burton,G.J. and Jauniaux,E. (2004). Placental oxidative stress: from miscarriage to
preeclampsia. J Soc. Gynecol. Investig. 11, 342-352.

Caniggia,I., Mostachfi,H., Winter,J., Gassmann,M., Lye,S.J., Kuliszewski,M., and Post,M.
(2000). Hypoxia-inducible factor-1 mediates the biological effects of oxygen on human

trophoblast differentiation through TGFβ3. J Clin. Invest 105, 577-587.

Ceradini,D.J. and Gurtner,G.C. (2005). Homing to hypoxia: HIF-1 as a mediator of progenitor
cell recruitment to injured tissue. Trends Cardiovasc. Med 15, 57-63.

Ceradini,D.J., Kulkarni,A.R., Callaghan,M.J., Tepper,O.M., Bastidas,N., Kleinman,M.E.,
Capla,J.M., Galiano,R.D., Levine,J.P., and Gurtner,G.C. (2004). Progenitor cell trafficking is
regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med advanced online

publication.



100

Chadwick,K., Wang,L., Li,L., Menendez,P., Murdoch,B., Rouleau,A., and Bhatia,M. (2003).
Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells.
Blood 102, 906-915.

Challier,J.C., Landi,M., Galtier,M., Bintein,T., Cortez,A., and Rabreau,M. (2004). Separation
of trophoblastic and vascular cell lineages and vascular maturation in early human placental
development. Cell Mol Biol (Noisy. -le-grand) 50 Online Pub, OL527-OL531.

Chakraborty,C., Gleeson,L.M., McKinnon,T., and Lala,P.K. (2002). Regulation of human
trophoblast migration and invasiveness. Can. J Physiol Pharmacol. 80, 116-124.

Charnock-Jones,D.S., Kaufmann,P., and Mayhew,T.M. (2004). Aspects of human
fetoplacental vasculogenesis and angiogenesis. I. Molecular regulation. Placenta 25, 103-
113.

Cheshier,S.H., Morrison,S.J., Liao,X., and Weissman,I.L. (1999). In vivo proliferation and cell
cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc. Natl Acad Sci U. S.
A 96, 3120-3125.

Choi,K., Kennedy,M., Kazarov,A., Papadimitriou,J.C., and Keller,G. (1998). A common
precursor for hematopoietic and endothelial cells. Development 125, 725-732.

Chow,D.C., Wenning,L.A., Miller,W.M., and Papoutsakis,E.T. (2001). Modeling pO2

Distributions in the Bone Marrow Hematopoietic Compartment. I. Krogh's Model. Biophys. J.
81, 675-684.

Chung,Y.S., Zhang,W.J., Arentson,E., Kingsley,P.D., Palis,J., and Choi,K. (2002). Lineage
analysis of the hemangioblast as defined by FLK1 and SCL expression. Development 129,
5511-5520.

Condeelis,J. and Pollard,J.W. (2006). Macrophages: obligate partners for tumor cell
migration, invasion, and metastasis. Cell 124, 263-266.

Coultas,L., Chawengsaksophak,K., and Rossant,J. (2005). Endothelial cells and VEGF in
vascular development. Nature 438, 937-945.

Csete,M. (2005). Oxygen in the cultivation of stem cells. Ann. N. Y. Acad. Sci 1049, 1-8.

Dancis,J., Jansen,V., Brown,G.F., Gorstein,F., and Balis,M.E. (1977). Treatment of
hypoplastic anemia in mice with placental transplants. Blood 50, 663-670.

Dancis,J., Jansen,V., Gorstein,F., and Douglas,G.W. (1968). Hematopoietic cells in mouse
placenta. Am J Obstet. Gynecol. 100, 1110-1121.

De Clercq,E. (2003). The bicyclam AMD3100 story. Nat Rev Drug Discov. 2, 581-587.

Demir,R., Kaufmann,P., Castellucci,M., Erbengi,T., and Kotowski,A. (1989). Fetal
vasculogenesis and angiogenesis in human placental villi. Acta Anat. (Basel) 136, 190-203.

Drews, U. Taschenatlas der Embryologe. (1993). (Stuttgart, Germany: Georg Thieme Verlag).

Ezashi,T., Das,P., and Roberts,R.M. (2005). Low O2 tensions and the prevention of
differentiation of hES cells. Proc. Natl Acad. Sci U. S. A 102, 4783-4788.

Gallacher,L., Murdoch,B., Wu,D.M., Karanu,F.N., Keeney,M., and Bhatia,M. (2000). Isolation
and characterization of human CD34

-
Lin

-
 and CD34

+
Lin

-
 hematopoietic stem cells using cell

surface markers AC133 and CD7. Blood 95, 2813-2820.



101

Gekas,C., Dieterlen-Lievre,F., Orkin,S.H., and Mikkola,H.K. (2005). The placenta is a niche
for hematopoietic stem cells. Dev. Cell 8, 365-375.

Genbacev,O., Zhou,Y., Ludlow,J.W., and Fisher,S.J. (1997). Regulation of human placental
development by oxygen tension. Science 277, 1669-1672.

Geva,E., Ginzinger,D.G., Zaloudek,C.J., Moore,D.H., Byrne,A., and Jaffe,R.B. (2002). Human
placental vascular development: vasculogenic and angiogenic (branching and nonbranching)
transformation is regulated by vascular endothelial growth factor-A, angiopoietin-1, and
angiopoietin-2. J Clin. Endocrinol. Metab 87, 4213-4224.

Graham,C.H., Fitzpatrick,T.E., and McCrae,K.R. (1998). Hypoxia stimulates urokinase
receptor expression through a heme protein-dependent pathway. Blood 91, 3300-3307.

Graham,C.H. and Lala,P.K. (1992). Mechanisms of placental invasion of the uterus and their
control. Biochem. Cell Biol 70, 867-874.

Graven,K.K., Troxler,R.F., Kornfeld,H., Panchenko,M.V., and Farber,H.W. (1994). Regulation
of endothelial cell glyceraldehyde-3-phosphate dehydrogenase expression by hypoxia. J. Biol.
Chem. 269, 24446-24453.

Grunewald,M., Avraham,I., Dor,Y., Bachar-Lustig,E., Itin,A., Yung,S., Chimenti,S.,
Landsman,L., Abramovitch,R., and Keshet,E. (2006). VEGF-Induced Adult
Neovascularization: Recruitment, Retention, and Role of Accessory Cells. Cell 124, 175-189.

Harman,D. (1956). Aging: a theory based on free radical and radiation chemistry. J Gerontol.
11, 298-300.

Henderson,J.K., Draper,J.S., Baillie,H.S., Fishel,S., Thomson,J.A., Moore,H., and
Andrews,P.W. (2002). Preimplantation human embryos and embryonic stem cells show
comparable expression of stage-specific embryonic antigens. Stem Cells 20, 329-337.

Herr F, Baal N, Reisinger K, Lorenz A, McKinnon T, Preissner KT, Zygmunt M. (2007). hCG
in the regulation of placental angiogenesis. Results of an in vitro study. Placenta. 28 Suppl
A:S85-93.

Hirasawa,R., Shimizu,R., Takahashi,S., Osawa,M., Takayanagi,S., Kato,Y., Onodera,M.,
Minegishi,N., Yamamoto,M., Fukao,K., Taniguchi,H., Nakauchi,H., and Iwama,A. (2002).
Essential and instructive roles of GATA factors in eosinophil development. J Exp. Med 195,
1379-1386.

Hitchon,C., Wong,K., Ma,G., Reed,J., Lyttle,D., and El Gabalawy,H. (2002). Hypoxia-induced
production of stromal cell-derived factor 1 (CXCL12) and vascular endothelial growth factor by
synovial fibroblasts. Arthritis Rheum. 46, 2587-2597.

Hofmeister,C.C., Zhang,J., Knight,K.L., Le,P., and Stiff,P.J. (2007). Ex vivo expansion of
umbilical cord blood stem cells for transplantation: growing knowledge from the hematopoietic
niche. Bone Marrow Transplant. 39, 11-23.

Hollingsworth,S.J., Drye,E.R., Tou,S.I., and Boulos,P.B. (2005). Expression of angiogenic
VEGF-A (soluble isoforms 121, 165) and lymphangiogenic VEGF-C in colorectal cancers with
micro-satellite instability. J Surg. Oncol. 92, 317-325.

Ishii,M., Hayakawa,S., Suzuki,M.K., Yoshino,N., Honda,M., Nishinarita,S., Chishima,F.,
Nagaishi,M., and Satoh,K. (2000). Expression of functional chemokine receptors of human
placental cells. Am J Reprod Immunol. 44, 365-373.

Ito,K., Hirao,A., Arai,F., Takubo,K., Matsuoka,S., Miyamoto,K., Ohmura,M., Naka,K.,
Hosokawa,K., Ikeda,Y., and Suda,T. (2006). Reactive oxygen species act through p38 MAPK
to limit the lifespan of hematopoietic stem cells. Nat Med 12, 446-451.



102

Ito,K., Hirao,A., Arai,F., Matsuoka,S., Takubo,K., Hamaguchi,I., Nomiyama,K., Hosokawa,K.,
Sakurada,K., Nakagata,N., Ikeda,Y., Mak,T.W., and Suda,T. (2004). Regulation of oxidative
stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431, 997-
1002.

Ivanovic,Z., Bartolozzi,B., Bernabei,P.A., Cipolleschi,M.G., Rovida,E., Milenkovic,P.,
Praloran,V., and Dello,S.P. (2000a). Incubation of murine bone marrow cells in hypoxia
ensures the maintenance of marrow-repopulating ability together with the expansion of
committed progenitors. Br. J Haematol 108, 424-429.

Ivanovic,Z., Dello,S.P., Trimoreau,F., Faucher,J.L., and Praloran,V. (2000b). Primitive human
HPCs are better maintained and expanded in vitro at 1% oxygen than at 20%. Transfusion
40, 1482-1488.

Jaleel,M.A., Tsai,A.C., Sarkar,S., Freedman,P.V., and Rubin,L.P. (2004). SDF-1 signalling
regulates human placental trophoblast cell survival. Mol. Hum. Reprod. 10, 901-909.

Janowska-Wieczorek,A., Majka,M., Ratajczak,J., and Ratajczak,M.Z. (2001).
Autocrine/paracrine mechanisms in human hematopoiesis. Stem Cells 19, 99-107.

Janowska-Wieczorek,A., Marquez,L.A., Dobrowsky,A., Ratajczak,M.Z., and Cabuhat,M.L.
(2000). Differential MMP and TIMP production by human marrow and peripheral blood CD34

+

cells in response to chemokines. Exp. Hematol. 28, 1274-1285.

Jauniaux,E., Watson,A., and Burton,G. (2001). Evaluation of respiratory gases and acid-base
gradients in human fetal fluids and uteroplacental tissue between 7 and 16 weeks' gestation.
American Journal of Obstetrics and Gynecology 184, 998-1003.

Jauniaux,E., Watson,A., Ozturk,O., Quick,D., and Burton,G. (1999). In-vivo measurement of
intrauterine gases and acid-base values early in human pregnancy. Hum. Reprod 14, 2901-
2904.

Jin,D.K., Shido,K., Kopp,H.G., Petit,I., Shmelkov,S.V., Young,L.M., Hooper,A.T., Amano,H.,
Avecilla,S.T., Heissig,B., Hattori,K., Zhang,F., Hicklin,D.J., Wu,Y., Zhu,Z., Dunn,A., Salari,H.,
Werb,Z., Hackett,N.R., Crystal,R.G., Lyden,D., and Rafii,S. (2006a). Cytokine-mediated
deployment of SDF-1 induces revascularization through recruitment of CXCR4+
hemangiocytes. Nat Med 12, 557-567.

Jin,H., Aiyer,A., Su,J., Borgstrom,P., Stupack,D., Friedlander,M., and Varner,J. (2006b). A
homing mechanism for bone marrow-derived progenitor cell recruitment to the
neovasculature. J Clin. Invest 116, 652-662.

Jo,D.Y., Rafii,S., Hamada,T., and Moore,M.A.S. (2000). Chemotaxis of primitive
hematopoietic cells in response to SDF-1. J. Clin. Invest. 105, 101-111.

Kaplan,R.N., Riba,R.D., Zacharoulis,S., Bramley,A.H., Vincent,L., Costa,C., MacDonald,D.D.,
Jin,D.K., Shido,K., Kerns,S.A., Zhu,Z., Hicklin,D., Wu,Y., Port,J.L., Altorki,N., Port,E.R.,
Ruggero,D., Shmelkov,S.V., Jensen,K.K., Rafii,S., and Lyden,D. (2005). VEGFR1-positive
haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820-
827.

Kaufmann,P., Mayhew,T.M., and Charnock-Jones,D.S. (2004). Aspects of human
fetoplacental vasculogenesis and angiogenesis. II. Changes during normal pregnancy.
Placenta 25, 114-126.

Kawabata,K., Ujikawa,M., Egawa,T., Kawamoto,H., Tachibana,K., Iizasa,H., Katsura,Y.,
Kishimoto,T., and Nagasawa,T. (1999). A cell-autonomous requirement for CXCR4 in long-
term lymphoid and myeloid reconstitution. PNAS 96, 5663-5667.



103

Kliman,H.J., Nestler,J.E., Sermasi,E., Sanger,J.M., and Strauss,J.F., III (1986). Purification,
characterization, and in vitro differentiation of cytotrophoblasts from human term placentae.
Endocrinology 118, 1567-1582.

Kondo,M., Wagers,A.J., Manz,M.G., Prohaska,S.S., Scherer,D.C., Beilhack,G.F.,
Shizuru,J.A., and Weissman,I.L. (2003). Biology of hematopoietic stem cells and progenitors:
implications for clinical application. Annu. Rev Immunol. 21, 759-806.

Krussel,J.S., Casan,E.M., Raga,F., Hirchenhain,J., Wen,Y., Huang,H.Y., Bielfeld,P., and
Polan,M.L. (1999). Expression of mRNA for vascular endothelial growth factor
transmembraneous receptors Flt1 and KDR, and the soluble receptor sflt in cycling human
endometrium. Mol Hum. Reprod 5, 452-458.

Kurtzberg,J., Lyerly,A.D., and Sugarman,J. (2005). Untying the Gordian knot: policies,
practices, and ethical issues related to banking of umbilical cord blood. J Clin. Invest 115,
2592-2597.

Kuenzel, W and Kirschbaum, M. (1992). Oxygen: Basis of the regualtion of vital functions in
the fetus. (Berlin, Heidelberg: Springer-Verlag).

Labastie,M.C., Cortes,F., Romeo,P.H., Dulac,C., and Peault,B. (1998). Molecular identity of
hematopoietic precursor cells emerging in the human embryo. Blood 92, 3624-3635.

Lacaud,G., Gore,L., Kennedy,M., Kouskoff,V., Kingsley,P., Hogan,C., Carlsson,L., Speck,N.,
Palis,J., and Keller,G. (2002). Runx1 is essential for hematopoietic commitment at the
hemangioblast stage of development in vitro. Blood 100, 458-466.

Lala,P.K., Chatterjee-Hasrouni,S., Kearns,M., Montgomery,B., and Colavincenzo,V. (1983).
Immunobiology of the feto-maternal interface. Immunol. Rev 75, 87-116.

Lala,P.K. and Hamilton,G.S. (1996). Growth factors, proteases and protease inhibitors in the
maternal-fetal dialogue. Placenta 17, 545-555.

Lapidot,T., Dar,A., and Kollet,O. (2005). How do stem cells find their way home? Blood 106,
1901-1910.

Lee,P.J., Jiang,B.H., Chin,B.Y., Iyer,N.V., Alam,J., Semenza,G.L., and Choi,A.M.K. (1997).
Hypoxia-inducible Factor-1 Mediates Transcriptional Activation of the Heme Oxygenase-1
Gene in Response to Hypoxia. J. Biol. Chem. 272, 5375-5381.

Li,B., Sharpe,E.E., Maupin,A.B., Teleron,A.A., Pyle,A.L., Carmeliet,P., and Young,P.P.
(2006). VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and
vessel formation at the site of tumor neovascularization. FASEB J 20, 1495-1497.

Liang,O.D., Korff,T., Eckhardt,J., Rifaat,J., Baal,N., Herr,F., Preissner,K.T., and Zygmunt,M.
(2004). Oncodevelopmental alpha-fetoprotein acts as a selective proangiogenic factor on
endothelial cell from the fetomaternal unit. J Clin. Endocrinol. Metab 89, 1415-1422.

Loges,S., Fehse,B., Brockmann,M.A., Lamszus,K., Butzal,M., Guckenbiehl,M., Schuch,G.,
Ergun,S., Fischer,U., Zander,A.R., Hossfeld,D.K., Fiedler,W., and Gehling,U.M. (2004).
Identification of the adult human hemangioblast. Stem Cells and Development 13, 229-242.

Mayhew,T.M., Charnock-Jones,D.S., and Kaufmann,P. (2004). Aspects of human
fetoplacental vasculogenesis and angiogenesis. III. Changes in complicated pregnancies.
Placenta 25, 127-139.

McCulloch,E.A. and Till,J.E. (1960). The radiation sensitivity of normal mouse bone marrow
cells, determined by quantitative marrow transplantation into irradiated mice. Radiat. Res 13,
115-125.



104

McGuckin,C.P., Forraz,N., Baradez,M.O., Navran,S., Zhao,J., Urban,R., Tilton,R., and
Denner,L. (2005). Production of stem cells with embryonic characteristics from human
umbilical cord blood. Cell Prolif 38, 245-255.

McGuckin,C.P., Forraz,N., Pettengell,R., and Thompson,A. (2004). Thrombopoietin, flt3-
ligand and c-kit-ligand modulate HOX gene expression in expanding cord blood CD133

+
 cells.

Cell Proliferation 37, 295-306.

McGuckin,C.P., Pearce,D., Forraz,N., Tooze,J.A., Watt,S.M., and Pettengell,R. (2003).
Multiparametric analysis of immature cell populations in umbilical cord blood and bone
marrow. European Journal of Haematology 71, 341-350.

McKinnon T, Chakraborty C, Gleeson LM, Chidiac P, Lala PK.  (2001). Stimulation of human
extravillous trophoblast migration by IGF-II is mediated by IGF type 2 receptor involving
inhibitory G protein(s) and phosphorylation of MAPK. J Clin Endocrinol Metab. 86:3665-3674.

Mikkola,H.K., Gekas,C., Orkin,S.H., and Dieterlen-Lievre,F. (2005). Placenta as a site for
hematopoietic stem cell development. Exp. Hematol. 33, 1048-1054.

Miraglia,S., Godfrey,W., Yin,A.H., Atkins,K., Warnke,R., Holden,J.T., Bray,R.A., Waller,E.K.,
and Buck,D.W. (1997). A novel five-transmembrane hematopoietic stem cell antigen:
isolation, characterization, and molecular cloning. Blood 90, 5013-5021.

Mohle,R., Bautz,F., Rafii,S., Moore,M.A.S., Brugger,W., and Kanz,L. (1998). The Chemokine
Receptor CXCR-4 Is Expressed on CD34

+
 Hematopoietic Progenitors and Leukemic Cells

and Mediates Transendothelial Migration Induced by Stromal Cell-Derived Factor-1. Blood 91,
4523-4530.

Moore,K.L. (1988). The developing human: clinically oriented embryology. (Philadelphia,
U.S.A: Saunders Publishing).

Nagasawa,T., Hirota,S., Tachibana,K., Takakura,N., Nishikawa,S.i., Kitamura,Y., Yoshida,N.,
Kikutani,H., and Kishimoto,T. (1996). Defects of B-cell lymphopoiesis and bone-marrow
myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382, 635-638.

Ottersbach,K. and Dzierzak,E. (2005). The murine placenta contains hematopoietic stem cells
within the vascular labyrinth region. Dev. Cell 8, 377-387.

Palis,J. and Yoder,M.C. (2001). Yolk-sac hematopoiesis: the first blood cells of mouse and
man. Exp. Hematol. 29, 927-936.

Park,C., Ma,Y.D., and Choi,K. (2005). Evidence for the hemangioblast. Exp. Hematol. 33,
965-970.

Peichev,M., Naiyer,A.J., Pereira,D., Zhu,Z., Lane,W.J., Williams,M., Oz,M.C., Hicklin,D.J.,
Witte,L., Moore,M.A.S., and Rafii,S. (2000b). Expression of VEGFR-2 and AC133 by
circulating human CD34

+
 cells identifies a population of functional endothelial precursors.

Blood 95, 952-958.

Peled,A., Kollet,O., Ponomaryov,T., Petit,I., Franitza,S., Grabovsky,V., Slav,M.M., Nagler,A.,
Lider,O., Alon,R., Zipori,D., and Lapidot,T. (2000). The chemokine SDF-1 activates the
integrins LFA-1, VLA-4, and VLA-5 on immature human CD34

+
 cells: role in

transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95, 3289-3296.

Pomyje,J., Zivny,J., Sefc,L., Plasilova,M., Pytlik,R., and Necas,E. (2003). Expression of
genes regulating angiogenesis in human circulating hematopoietic cord blood CD34

+
/CD133

+

cells. Eur J Haematol 70, 143-150.



105

Potgens,A.J., Bolte,M., Huppertz,B., Kaufmann,P., and Frank,H.G. (2001). Human
trophoblast contains an intracellular protein reactive with an antibody against CD133 - a novel
marker for trophoblast. Placenta 22, 639-645.

Quirici,N., Soligo,D., Caneva,L., Servida,F., Bossolasco,P., and Deliliers,G.L. (2001).
Differentiation and expansion of endothelial cells from human bone marrow CD133

+
 cells. Br.

J Haematol 115, 186-194.

Redman,C.W. and Sargent,I.L. (2005). Latest Advances in Understanding Preeclampsia.
Science 308, 1592-1594.

Rehman,J., Li,J., Orschell,C.M., and March,K.L. (2003). Peripheral blood EPC are derived
from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107, 1164-
1169.

Reubinoff,B.E., Pera,M.F., Fong,C.Y., Trounson,A., and Bongso,A. (2000). Embryonic stem
cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 18, 399-404.

Rodesch,F., Simon,P., Donner,C., and Jauniaux,E. (1992). Oxygen measurements in
endometrial and trophoblastic tissues during early pregnancy. Obstet. Gynecol. 80, 283-285.

Ross,M.H., Romrell,L.J., and Kaye,G.I. (1995). Histology: a text and atlas. (Baltimore:
Williams & Wilkins).

Smith,L.G., Weissman,I.L., and Heimfeld,S. (1991). Clonal Analysis of Hematopoietic Stem-
Cell Differentiation in vivo. PNAS 88, 2788-2792.

Stein,M.I., Zhu,J., and Emerson,S.G. (2004). Molecular pathways regulating the self-renewal
of hematopoietic stem cells. Exp. Hematol. 32, 1129-1136.

Sugiyama,T., Kohara,H., Noda,M., and Nagasawa,T. (2006). Maintenance of the
Hematopoietic Stem Cell Pool by CXCL12-CXCR4 Chemokine Signaling in Bone Marrow
Stromal Cell Niches. Immunity. 25, 977-988.

Szilvassy,S.J., Meyerrose,T.E., and Grimes,B. (2000). Effects of cell cycle activation on the
short-term engraftment properties of ex vivo expanded murine hematopoietic cells. Blood 95,
2829-2837.

Takakura,N. (2006). Role of hematopoietic lineage cells as accessory components in blood
vessel formation. Cancer Sci 97, 568-574.

Taniuchi,I., Osato,M., Egawa,T., Sunshine,M.J., Bae,S.C., Komori,T., Ito,Y., and Littman,D.R.
(2002). Differential requirements for Runx proteins in CD4 repression and epigenetic silencing
during T lymphocyte development. Cell 111, 621-633.

Tavian,M., Hallais,M.F., and Peault,B. (1999). Emergence of intraembryonic hematopoietic
precursors in the pre-liver human embryo. Development 126, 793-803.

Tavian,M. and Peault,B. (2005). The changing cellular environments of hematopoiesis in
human development in utero. Exp. Hematol. 33, 1062-1069.

Tavian,M., Robin,C., Coulombel,L., and Peault,B. (2001). The human embryo, but not its yolk
sac, generates lympho-myeloid stem cells: mapping multipotent hematopoietic cell fate in
intraembryonic mesoderm. Immunity. 15, 487-495.

te Velde,E.A., Exalto,N., Hesseling,P., and van der Linden,H.C. (1997). First trimester
development of human chorionic villous vascularization studied with CD34
immunohistochemistry. Hum. Reprod 12, 1577-1581.



106

Thomson,J.A., Itskovitz-Eldor,J., Shapiro,S.S., Waknitz,M.A., Swiergiel,J.J., Marshall,V.S.,
and Jones,J.M. (1998). Embryonic stem cell lines derived from human blastocysts. Science
282, 1145-1147.

Thornley,I., Nayar,R., Freedman,M.H., Stephens,D., Crump,M., Messner,H.A., and
Sutherland,D.R. (2001). Differences in cell cycle kinetics of candidate engrafting cells in
human bone marrow and mobilized peripheral blood. Exp. Hematol. 29, 525-533.

Uccini,S., Mannarino,O., McDowell,H.P., Pauser,U., Vitali,R., Natali,P.G., Altavista,P.,
Andreano,T., Coco,S., Boldrini,R., Bosco,S., Clerico,A., Cozzi,D., Donfrancesco,A.,
Inserra,A., Kokai,G., Losty,P.D., Nicotra,M.R., Raschella,G., Tonini,G.P., and Dominici,C.
(2005). Clinical and molecular evidence for c-kit receptor as a therapeutic target in
neuroblastic tumors. Clin. Cancer Res 11, 380-389.

Vermes,I., Haanen,C., Steffens-Nakken,H., and Reutelingsperger,C. (1995). A novel assay
for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic
cells using fluorescein labelled Annexin V. J Immunol. Methods 184, 39-51.

Voermans,C., Gerritsen,W.R., dem Borne,A.E., and van der Schoot,C.E. (1999). Increased
migration of cord blood-derived CD34

+
 cells, as compared to bone marrow and mobilized

peripheral blood CD34
+
 cells across uncoated or fibronectin-coated filters. Exp. Hematol. 27,

1806-1814.

Wu,X., Li,D.J., Yuan,M.M., Zhu,Y., and Wang,M.Y. (2004). The Expression of
CXCR4/CXCL12 in First-Trimester Human Trophoblast Cells. Biol Reprod 70, 1877-1885.

Yamaguchi,J., Kusano,K.F., Masuo,O., Kawamoto,A., Silver,M., Murasawa,S., Bosch-
Marce,M., Masuda,H., Losordo,D.W., Isner,J.M., and Asahara,T. (2003). SDF-1 effects on ex

vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization.
Circulation 107, 1322-1328.

Zhou,Y., Bellingard,V., Feng,K.T., McMaster,M., and Fisher,S.J. (2003). Human
cytotrophoblasts promote endothelial survival and vascular remodeling through secretion of
Ang2, PlGF, and VEGF-C. Dev. Biol 263, 114-125.

Zhou,Y., Fisher,S.J., Janatpour,M., Genbacev,O., Dejana,E., Wheelock,M., and Damsky,C.H.
(1997). Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy
for successful endovascular invasion? J Clin. Invest 99, 2139-2151.

Zou,Y.R., Kottmann,A.H., Kuroda,M., Taniuchi,I., and Littman,D.R. (1998). Function of the
chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393,
595-599.

Zygmunt,M., Herr,F., Munstedt,K., Lang,U., and Liang,O.D. (2003). Angiogenesis and
vasculogenesis in pregnancy. Eur J Obstet. Gynecol. Reprod Biol 110 Suppl 1, S10-S18.

Zygmunt M, McKinnon T, Herr F, Lala PK, Han VK. (2005). hCG increases trophoblast
migration in vitro via the insulin-like growth factor-II/mannose-6 phosphate receptor. Mol Hum
Reprod. 11:261-267.

Zygmunt, M. (2006) Chapter 17: Plazenta. pp.406-417. Klinische Pathophysiologie.
Siegenthaler, W and Blum, H. (Stuttgart, Germany: Thieme Publishing).



107

9 LEBENSLAUF

Persönliche Daten

Name: Timothy McKinnon
Adresse:  Liebigstrasse 23

D-35390 Gießen
Telefon: 49-0641-9698855
Geburtstag: 04.03.1975
Geburtsort: Sarnia, Ontario, Kanada
Staatsangehörigkeit:  kanadisch

Ausbildung

Mai 2000 Master of Science  (M.Sc.)
Anatomie und Zellbiologie 
University of Western Ontario
London, ON, Kanada

Mai 1998 Bachelor of Science  (B.Sc.)
Humangenetik
University of Western Ontario
London, ON, Kanada

Juni 1994 High School Diploma
Sarnia Collegiate Institute & Technical School
Sarnia, ON, Kanada

Auszeichnung

2006 First Prize, Trainee Oral Presentation Competition
Junge, forschende Reproduktionsmedizinerkongress

2000 Second Prize, Trainee Research Poster Competition
33

rd
 Meeting of the Society for the Study of Reproduction

1998-2000 Special University Scholarship
University of Western Ontario

1998 Pharmaceutical Manufacturers Association of Canada
Summer Studentship in Medicine

1994-1998 Bayer Higher Education Award 
1994 University of Western Ontario Entry Scholarship 

Berufserfahrung

September 1998 – Juli 2000 Research Associate/ Graduate Student
Dr. PK. Lala Labor

September 1999 – Mai 2000 Partnership Program Coordinator
Let’s Talk Science

Mai 1998 - August 1998 Summer Studentship in Medicine
Dr. PK. Lala Labor

September 1997 – April 1998 Work Study Position
Dr. H. Hobrzanska-Bialkowska Labor



108

Wissenschaftliche Schriften

1. Reisinger, K, Baal, N, McKinnon, T, Muenstedt, K, and Zygmunt, M.  The

gonadotropins: Tissue-specific angiogenic factors?  Mol Cell Endocrinol. 2007 Apr.

263:65-80.

2. Herr, F, Baal, N, Reisinger, K, Lorenz, A, McKinnon, T, Preissner, KT and Zygmunt,

M.  hCG in the regulation of placental angiogenesis.  Results of an in vitro study.

Placenta 2007 Apr. 28 Suppl. A:S85-93.

3. Zygmunt, M, McKinnon, T, Herr, F, Lala, PK, and Han, VK.  hCG increases

trophoblast migration in vitro via the insulin-like growth factor-II/mannose-6 phosphate

receptor. Mol Hum Reprod. 2005 Apr. 11:261-7.

4. Chakraborty, C, Gleeson, LM, McKinnon, T, and Lala PK.  Regulation of human

trophoblast cell migration and invasiveness.  Can. J. Physiol. Pharmacol.  2002 Feb.

116-124 (Review).

5. McKinnon, T, Chakraborty, C, Gleeson, LM, Chidiac, P, and Lala, PK.  Stimulation of

human extravillous trophoblast cell migration by IGF-II is mediated by the IGF type 2

receptor involving inhibitory G protein(s) and phosphorylation of MAPK.  J. Clin.

Endocrinol. Metab. 2001 Aug. 86:3665-3674.

6. Gleeson, LM, Chakraborty, C, McKinnon, T, and Lala, PK.  Insulin-like growth factor-

binding protein 1 stimulates human trophoblast cell migration by signaling through

alpha5-beta1 integrin via mitogen-activated protein kinase pathway.  J. Clin.

Endocrinol. Metab. 2001 June. 86:2484-2493.

Abstracts

1. McKinnon, T, Chakraborty, C, Gleeson, LM, Chidiac, P, and Lala, PK.   Insulin-like

growth factor (IGF)-II stimulates human extravillous trophoblast (EVT) migration by

signaling through IGF type II receptor, inhibiting adenylyl cyclase (AC) and stimulating

MAP kinase.  Proceedings of the 33
rd

 Annual Meeting of the Society for the Study of

Reproduction.  Biology of Reproduction (Suppl 1)#56; 2000.

2. McKinnon, T, Chakraborty, C, Gleeson, LM, and Lala, PK.  Mechanisms of insulin-like

growth factor (IGF)-II mediated stimulation of extravillous trophoblast migration.

Proceedings of the 32
nd

 Annual Meeting of the Society for the Study of Reproduction.

Biology of Reproduction (Suppl 1)#254; 1999.

3. Gleeson, LM, Chakraborty, C, McKinnon, T, and Lala, PK.  Insulin-like growth factor

binding protein (IGFBP)-1 stimulates extravillous trophoblast migration and invasion

by signaling through α5β1 integrin.  Placenta 20:A47; 1999.

4. Zygmunt, M, McKinnon, T, Lala, PK, and Han, VKM.  Human chorionic gonadotropin

(hCG) regulates IGF-II and IGF-II receptor expression in the extravillous trophoblast.

Placenta 20:A74; 1999.



109

10 ACKNOWLEDGEMENTS

I would like to give a special thanks to Prof. Dr. Marek Zygmunt, whose invitation to

join his laboratory brought me to Germany in the first place.  From our first

introduction in Canada and throughout my years here, you have taught me an

innumerable amount of things.  I will definitely cherish the friendship that has grown

over these years and I truly look forward to our future endeavours together.

I would also like to thank some very special colleagues.  A heartfelt thanks goes out

to Nelli Baal.  Without Nelli’s assistance, my thesis (and multiple others) would never

have come to fruition.  In the future, the knowledge that Nelli has passed on to me

will always remind me of my dear Russian friend and colleague.  Yet another special

thanks goes out to Bettina Gill.  Bettina’s organisation and irreplaceable skills has

kept the laboratory running efficiently.  Her constant aid, not only in the laboratory,

but also helping me get by in Germany has been of immense help to me.  I thank

both of you.

To all of my other coworkers, I thank you dearly.  The assistance I have received in

the laboratory, as well as, the interesting chats over lunch breaks, coffee breaks and

other associated breaks have made my time in Giessen quite comfortable.  For this

reason, I would like to specifically thank: Ruth Gomez, Wolfgang Pfeiffer, Freiderike

Herr, Kerstin Reisinger, Anne Lorenz, Manuela Horndasch and Desiree Howe.

To my dearest German, Dörthe, I thank you from the bottom of my heart.  Thanks for

taking the initiative to be my “tour guide” here in Hessen.  Thank you for first

introducing me to this foreign country and then showing me how beautiful life in

Germany can be.  Thanks for telling me I am wrong, no matter how much I do not

want to hear it.  But most of all, thank you for treating me like a prince.  I look forward

to the future as we explore the world together.

Last and most importantly, I would like to thank my parents.  Throughout my life, you

have offered me unconditional support - even when I dreamed of becoming a

monkey trainer.  Your efforts to get me out of the house and into the world have sent

me on this fantastic journey.  Without you, none of this would have been possible.  I

thank you for everything I have.


