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1 Preface

The doctoral thesis at hand encompasses five research papers on three subject areas. Two

manuscripts discuss the suitability of latency as measure for Internet quality across countries.

The following two are concerned with the application of topic models and automatic classifica-

tion of texts in an economic context, while the last paper suggests to combine social network

analysis with survival analysis in order to estimate the impact of centrality on professional

success.

At first glance the three research areas are very different and have little in common in

terms of content. While the study of Internet quality fits into the macro-development and

growth literature, the two papers on topic models are only similar in terms of applied method

but address questions on monetary policy and economic history respectively. Finally, the

study on social networks and success belongs in the field of labor economics, sociology or

business economics.

At second sight one may realize that there are nonetheless some issues, which are common

to the individual manuscripts: the datasets used in this analysis all consist of secondary

data. This means that they were not originally intended to be used in economic analysis.

Consequently, a lot of data preparation and cleaning was necessary before any econometric

methods could be applied. As the data had not been used for this kind of research before,

their economic analysis provides interesting new insights, which may not have been possible

with conventional data.

Further, the datasets stand out for their complexity and size. Which, along with fast-speed
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1 Preface

of change, are the classical criteria for Big Data. This made it necessary to carefully select

methods and tools to work around the associated difficulties.

The choice of the title "The Analysis of Unconventional Economic Datasets" shall emphasize

the complexity and secondary nature of the data, the latter being a feature rather than a

criterion of Big Data. Laney (2001) came up with three dimensions along which data might

be big, which could also serve as criteria for a definition of Big Data. According to Laney

(2001) the data can be changing fast, be large in size and/or of high complexity due to which

the use of conventional tools and methods will be challenging. Based on the aforementioned

criteria the manuscripts in this thesis deal with Big Data problems. However, I refrain from

including Big Data in the dissertations title, as it has become a widely used buzzword, whose

meaning has been diluted in the public perception. In addition, a comprehensive overview of

Big Data applications in economics would be beyond the scope of this thesis.

1.1 Research Area I: The use of Internet latency data in

Economic Analysis

The first area of research deals with a novel indicator for Internet quality, based on latency

times of Internet communication. I argue that the widespread use of the penetration rate

in economics might bias the results and lead to the impression that the Digital Divide was

narrowing, due to the neglect of the quality dimension of Internet service.

In a first paper (Chapter 2) I start out by comparing existing measures of Internet quality

and usage with the proposed indicator based on latency and analyze the demand and supply

dynamics at work. Therefore, I employ data from Carna Botnet (2013), who collected latency

data for every single host on the Internet and calculated per country median values. In a

second step these values serve as inputs in a simultaneous equation model, where a certain

Internet quality, respectively quantity, is explained by demand and supply. It turns out that

2



1.2 Research Area II: Quantitative Text-Analysis

there are some similarities but also notable differences between the introduced latency measure

and the conventional measures found in other datasets.

A second paper (Chapter 3) builds upon these findings and introduces the latency measure

in a growth model. As the original dataset did not have a time dimension I resorted to latency

data collected by the PingER facility at Stanford University, which originally started to provide

precise latency measures between research institutes from the field of particle physics. In

terms of methodology it builds upon Röller and Waverman (2001) and Koutroumpis (2009),

who use Telecommunication penetration and Broadband penetration rates respectively to

determine the effect of these technologies on economic growth. I found huge effects of latency

improvements on economic growth. These findings are in line with the existing literature on

broadband penetration and economic growth.

1.2 Research Area II: Quantitative Text-Analysis

The second pillar of the dissertation project is concerned with the application of topic

models for quantitative text-analysis. It consists of two separate works, both relying on topic

models (more precisely Latent Dirichlet Allocation (LDA) (Blei, Ng, and Jordan 2003)) in

terms of methodology. In topic models it is assumed that documents are generated from

a predetermined set of topics. Hence, an algorithm is used to reverse the creation process

and determine the underlying topics. These topics are generated endogenously, where the

researcher only has to supply the number of topics the algorithm is generating. As each

document is composed of words from several topics, the topics weights can be obtained and

compared across time.

The first paper (Chapter 4), a joint research project with Peter Winker, analyses 51 years

of volumes of the Journal for Economics and Statistics (Jahrbücher für Nationalökonomie

und Statistik) where we examine the interplay between the economic discourse and observed

economic data. Thereby, we try to get an impression whether economists can anticipate
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changes in key economic indicators or primarily discuss these changes after they have occurred.

One of the economic measures we examine is the inflation rate. If economists were able - by

the use of some models - to predict the future inflation rate, there should be an increase of

publications concerned with inflation prior to an increase of the inflation rate. The German

statistical office provides the long series on prices (from 1881 onward) on request, which serves

as our benchmark. Unfortunately, in the case of inflation the scientific discourse appears to

be following the actual economic developments. For other time series (e.g. unemployment

and debt) we find that the debate precedes changes in the observed data.

Chapter 5 is a joint project with Peter Tillmann in which we use LDA to dissect the

discussion regarding the Taper Tantrum period on Twitter. We analyze how the discourse

on Twitter influences a set of US asset prices, by introducing the topic weights from the

LDA estimation into a VAR model. We show that shocks to single topics have significant

effects on U.S. bond yields, exchange rates and stock prices. Hence, we can conclude that

the debate on social media matters for U.S. asset prices.

1.3 Research Area III: Network Centrality and Survival

The third area of research (Chapter 6) is concerned with the combination of social network

analysis and survival analysis. To the best of my knowledge this combination of methods is a

novel approach in econometrics.

In particular I want to use network centrality in a survival model in order to answer the

question whether being well-connected is beneficial for a career. The “connectedness” is

operationalized as a) a person’s betweenness centrality and b) the maximum centrality score

of a person’s immediate neighborhood. Thus, even if an individual is not on any shortest

path between any two nodes in a network, it counts as well-connected if one of its direct

neighbors has a high value.

As the title “Standing and Survival in the Adult Film Industry” suggests, the analysis
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utilizes data on the pornography industry obtained from the Internet Adult Film Database

(IAFD.com). The industry has the appealing features that inter-personal connections are very

visible there, while hard to observe in other industries. Moreover, collaborations tend to be of

short durations, as a consequence also changes in the career path become apparent.

The results indicate that being central in the collaborative network dramatically reduces

the risk to leave the industry. While one may question the external validity of these findings

due to “pornography” not being “just like any other job”, it confirms the findings in the

existing literature using a novel methodology and dataset.
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Abstract

The operationalization of Internet quality and availability is of great importance when

discussing the digital divide. The usage of the penetration rate (the share of Internet users in

the population) – widely used in economic analysis – can easily be misleading in this debate,

suggesting that the digital divide is narrowing. This appears to be an artifact of the data, as

some industrialized countries are already close to a penetration rate of 100%, while it is still

growing for developing countries.

I argue that one should focus on the study of Internet quality in a country rather than

the number of users. To this end, I introduce a new latency-based measure to judge the

quality of Internet, based on a novel dataset, and compare it to related measures. The

results indicate that it may indeed be useful to measure Internet quality across countries. In

particular the availability of the indicator for 247 countries and semi-autonomous regions

makes it an interesting tool for policy analysis.

The possibility to examine the effects of different determinants on individual quantiles is

particularly interesting. ICT investment appears to be strongly correlated with lower latency

(better Internet quality) in the lower part of the distribution, while there appears to be little

explained variation in the top of the latency distribution. In line with the theoretical discussion

the results indicate that population density is an important determinant of latency.
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2.1 Introduction

2.1 Introduction

The Internet is an infinite source of knowledge and an important tool of communication. It

constitutes a potential input for economic development, as ideas spread easily and transaction

costs in many fields are drastically reduced. Therefore, one could suspect that differences in

availability and usage of Internet lead to differences in economic outcomes. This phenomenon,

dubbed the “digital divide”, provoked a fair amount of research in economics and related

sciences. The studies of the consequences are related to the relationship between information

and communications technology (ICT) use and growth (Dasgupta, Lall, and Wheeler 2001;

Koutroumpis 2009; Czernich et al. 2011), inequality (DiMaggio and Hargittai 2001), and

political participation (Sylvester and McGlynn 2010) on the one hand. On the other hand,

there are important firm specific questions about the impact of ICT usage on productivity

and innovation (Bertschek, Hogrefe, and Rasel 2015).

To mitigate the potential adverse effects of the digital divide the study of its determinants

is important. One widely used approach is the study of Internet diffusion, which is based on

the share of population in a country that uses the Internet at all (penetration rate). This

measure has some weaknesses, as it disregards any information on connection quality, mean

of access and utilization of Internet.

Based on this measure one could get the idea that developing countries are somehow

catching up as suggested by Cuberes et al. (2010). The Internet penetration rate is approaching

the upper bound of 100% in industrialized countries and Internet usage in developing countries

is still increasing (indicated by the shift from t′ to t′′ in Figure 2.1). While the interpretation

that the digital divide is narrowing might be a measurement artifact due to the ratio of

Internet users in the population approaching the upper bound, it neglects important aspects

of Internet access quality in terms of speed (latency and bandwidth), as well as reliability

and availability. This is particularly troublesome as connections in developing countries tend

to be unstable and the availability of access is often limited to a few international hotels
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2 The Measurement of Internet Availability and Quality

and universities. When measuring the share of Internet users, the indicator does not reflect

whether the users have occasional or regular Internet access.

Figure 2.1: The process of Internet diffusion in an industrialized country (A) and a developing
country (B) following an S-shape

The aim of this paper is twofold: In a first step I address the question how the digital

divide should be measured. For that purpose I discuss the suitability of latency as a measure

of Internet quality and how it compares to the penetration rate and international bandwidth.

For that purpose I introduce a novel dataset constructed from Carna Botnet (2013). In

the second step I analyze the determinants of Internet provision and point out how these

determinants differ across different indicators.

The remainder of this paper is structured as follows: Section 2.2 summarizes the debate

on Internet diffusion and discusses different measures of Internet usage and quality in their

applicability in this context. Section 2.2.2 in particular explains the technological and

conceptual background of latency in relationship to (computer) networks. Moreover, I try to

disentangle the two related terms of latency and bandwidth when it comes to Internet speed.

Section 2.2.3 describes the nature of the data and the process of aggregation and closes

with some descriptive results on the distribution of latency times across countries. Finally,
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2.2 The Study of Internet diffusion

in Section 2.3 I set up a simple model of demand and supply and estimate it for different

measures of Internet quality and usage using three stage least squares (3SLS).

2.2 The Study of Internet diffusion

Research in the field of digital divide is strongly connected with the theory of technological

diffusion. The epidemic models around which the theory of technology diffusion is based are

dating back to Griliches (1957). The basic idea of these models is that exposure to a new

invention in a neighboring region will lead to the adoption of the technology in the home

region. The usage of the new technology grows exponentially at first and is later only slowly

adopted by the more conservative producers, which leads to the famous S-shape depicted in

Figure 2.1.

Examples include Chinn and Fairlie (2010), who apply Blinder-Oaxaca decomposition on

data of Internet adoption and computer ownership, finding that income differences are the

main source of the digital divide. Unfortunately, many of their explanatory variables are

correlated with GDP and there are potential issues of endogeneity (e.g. the inclusion of

electric power consumption). Other authors try to explain Internet penetration by introducing

different socio-economic explanatory variables. Cuberes et al. (2010) test for network effects

through the inclusion of lagged values of Internet usage. They try to address the resulting

endogeneity concern by using an Arellano-Bond estimator. They claim to have found evidence

of network effects, through the significant predictive power of the lagged number of Internet

users. Wunnava and Leiter (2008) try to explain Internet penetration through income

inequality (measured by a Gini-coefficient) in addition to the standard explanatory variables

like telecommunication infrastructure, constructed from telephone and computer penetration.

However, in the context of epidemic models technologies are related to narrow applications

(see Griliches (1957) original application to a new kind of hybrid corn). In contrast the Internet

is perceived as a General Purpose Technology (Harris 1996) as it is very universal in its scope
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2 The Measurement of Internet Availability and Quality

and just sets out a foundation for other technologies to be used on top. For this to function

it requires substantial investment in ICT infrastructure to yield any returns. The applications

build on-top of the infrastructure including simple technologies like Internet-based time

synchronization (via ntp - network time protocol) as well as more contemporary inventions

like Voice over IP telecommunication, BitCoin transactions and video conference systems.

The availability and the limits to the utilization of Internet, depend to a large extent on

governments and telecommunication providers. The situation is in many cases similar to road

infrastructure: I can connect my front door to the road, which is in most cases financed by

the government. Nonetheless, whether my shoes get dirty on the way to work depends more

heavily on whether the municipal road is paved, rather than on my own investment in the

three meters between pavement and doorstep.

Therefore, epidemic models do not very well reflect the provision of Internet infrastructure

in countries. A better foundation is the model underlying Röller and Waverman (2001)

and Koutroumpis (2009), where Internet provision is determined by demand and supply for

telecommunication and, respectively, broadband infrastructure to estimate the impact of ICT

on economic growth.

2.2.1 The Different Facets of the "Digital Divide"

The choice of measure of the "Digital Divide" is of great importance. Using the number of

users as a proxy for Internet infrastructure, is problematic. It omits any measure of quality

but includes users regardless of their mean of access. The latter could be important as

countries are very heterogeneous in terms of the composition of technologies used to access

the Internet. Dial-up connections are used in areas where fixed-line phones are common.

Wireless technology is - at least for telecommunication - very common in developing countries.

Each technology has its own advantages in terms of availability and reliability on the one

hand, and bandwidth and latency on the other hand. Moreover, the focus on users rather than

hardware is likely to result in an underestimation of the digital divide, as private possession of
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2.2 The Study of Internet diffusion

computers is more pronounced in industrialized countries. The mean of access differs as well

across countries. In industrialized countries, every user tends to have his or her own computer

or Internet capable device, as well as their own broadband connection. In developing countries

most users can only gain Internet access from libraries, universities, Internet cafes or at the

workplace rather than at home.

Having or not-having an uplink does not fully reflect the access to information either. In

the absence of net neutrality the flow of informationn may even be artificially constraint.

There is anecdotal evidence (Mirani 2015) that there are more Facebook users than Internet

users in developing countries, because Facebook is offering subsidized data plans which only

allow the Facebook-App to access the Internet while its data plans prohibit the use of the

free Internet.

Measuring the IT dispersion in terms of hosts or servers would result in even larger gaps -

as the majority share of infrastructure is hosted in the United States and Western Europe,

while its users, administrators and owners might be spread all over the world. Despite these

potential limitations the measure of the number of hosts is used in the literature. The number

of hosts (Kiiski and Pohjola 2002; Hargittai 1999) and the number of IPs (IP addresses)

(Miner 2015) are, in this discussion, two sides of the same coin. IPs have the additional

drawback that address space was allocated freely in the early days of Internet development

and is scarce today. As a consequence of the previous generous allocation and acquisitions,

the US company Hewlett-Packard currently holds two blocks of 16 million IP addresses

compared to 28 million IPs allocated to all of Spain.1 Depending on the actual measurement

technique this might also bias the number of hosts. In some environments every printer might

have a public IP and show up as a host, reachable from the outside. While in cases where IPs

are scarce people increasingly use network address translation, where several computers or

even households and institutions only receive one single public IPv4 address.2 This critique

1According to http://www.nirsoft.net/countryip/es.html, accessed January 2014.
2For one current example from Germany see the recent policy of the cable provider Unitymedia who do
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2 The Measurement of Internet Availability and Quality

might be more relevant in a comparison across countries, than within a single country, as

in the case of Miner (2015). But even there, it is likely that some institutions and firms

receive IPs more generously than normal users. Additionally, servers tend to have several IP

addresses, while workstations usually only have a single (often non-public) IP address.

The last dimension of interest in this discussion is the extend and way of Internet usage.

While the discussion before was centered around capabilities, at the end of the day the actual

application is what matters. On the micro-level there is one strain of literature (Pantea

and Martens 2014; Goolsbee and Klenow 2006) concerned with the time spent online as

measure of Internet availability. In these papers utility is derived from the product of time and

capital investment in IT. However, today the marginal costs of Internet usage is approaching

zero in industrialized countries and is equal for all users, due to common flat-rate tariffs.

Consequently, the variability results only from differences in time constraints. In addition,

there are countless application specific studies on the micro level measuring adoption of a

specific technology. One of these is Hitt and Tambe (2007), who study the access to different

categories of websites.

2.2.2 The Latency and Bandwidth Relationship

If one wants to measure the quality of Internet infrastructure, rather than its application, the

usage of bandwidth and latency are plausible alternatives. These two values add up to the

experienced Internet speed and are closely related. Figure 2.2 shows the relationship between

the two measures, for a download of files of the same size (D1=D2) using a hypothetical

low and a high bandwidth connection. Both horizontal bars in the diagram are hypothetical

cables with high and respectively low bandwidth. The horizontal axis shows the flow of data

through the cable over a time period t. After a user has requested data (D1/D2) time L (the

latency) passes before the data starts to arrive. The actual transmission takes transmission

no longer provide a IPv4 Address per connection for consumers http://www.onlinekosten.de/news/
artikel/51398/0/Unitymedia-Neukunden-erhalten-nur-noch-IPv6-Adressen.
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2.2 The Study of Internet diffusion

times t1 and t2, which depend on the bandwidth. All other data transfer before and after

the data blocks (D1/D2) are neglected in this example.

Figure 2.2: Transmission of equally sized data via low and high bandwidth and constant
lantency (L)

D1

 high

t

D2

L

 low

Bandwidth

b
0

b
0

t2

t1

Source: Own work loosely based on
http://zoompf.com/blog/2011/12/i-dont-care-how-big-yours-is

Latency (L) is the time for the first bit (e.g. b0) to reach its recipient, it is independent

of the bandwidth. Its determinants are the technology used for transmission, distance and

number of routers on the way and their respective load. The lower bound is given by the

speed of light in a fiber optic cable. Consequently, if one wants improvement on that end,

the only possibility are shorter, more direct cables. On the other end there are improvements

to be made by increasing router capacity, which would potentially hold packages longer if the

throughput is insufficient.

Bandwidth is the throughput of data usually measured in (mega)bits per second and

is commonly the measure associated with the term "Internet connection speed". It has

greatly expanded in recent years. Latency on the other hand has only gradually improved.

For most ordinary applications the user will receive his disutility from the sum of latency
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2 The Measurement of Internet Availability and Quality

and transmission time. Hence, improvements in latency and bandwidth are to some degree

substitutes. Improving latency is rather costly, while increasing the bandwidth is comparatively

cheap. As a consequence, latency increasingly matters for the transfer of small amounts

of data in high bandwidth networks, as the actual transmission time tends towards zero as

bandwidth increases. and only latency remains as “waiting time”, that the user experiences

when surfing the web.3

The ability to substitute these two inputs depends on the application. In particular

synchronous communication relies on (reasonable) short latency. In particular voice com-

munication relies on instant feedback for the speaker. Also for financial transactions (in

particular high-frequency trading) low latency is of uttermost importance.4 When watching a

TV stream online, it may not be important for the viewing experience itself, whether one

receives the data a few seconds later. However, hearing the neighbors (who might use a

classic terrestrial antenna for TV reception) cheer before one does even sense an attempt by

a striker in live football broadcast, might diminish one’s own enjoyment from watching the

world cup final.5

When measuring bandwidth, the method of aggregation is crucial. The international

bandwidth per country as it is used in this paper is available from the ITU (International

Telecommunication Union). It is a good measure to reflect potential technological bottlenecks,

by comparing the bandwidth between countries. The international bandwidth is important as

the majority of content providers reside in single countries (e.g. the United States or Ireland).

On the other hand, Halavais (2000) finds that a lot of connections (in his hyperlinks on the

web) are links to content in geographical proximity. Hence, for a lot of applications (e.g.

surfing the web) the rest of the world does not matter very much, while for centralized services

3The share of latency in total transmission time is L
L+t

. With technological advances the transmission time
of small amounts of data tends towards zero. Hence, the relative importance of latency approaches unity.

4Some background information are available at http://www.informationweek.com/wall-streets-quest-
to-process-data-at-the-speed-of-light/d/d-id/1054287? accessed 11.02.2015

5Zota (2014) showed the latency differences for Internet-based broadcasts in the wake of the of the 2014
Fifa World Cup.
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2.2 The Study of Internet diffusion

(i.e. YouTube) it might be of great importance. However, the relative importance of the

local hosting industry might differ between developing and developed countries. In developing

countries, where domestic hosting services are unreliable, international bandwidth is likely of

greater relative importance. This is due to the fact that users tend to use foreign provided

ICT services if the local options are limited or unreliable. One example is the popularity of

French E-Mail providers in Africa.

2.2.3 Description of the Latency Data

In the first parts of this paper the use of latency data as a proxy for Internet quality was

proposed. In order to analyze the suitability, the empirical part of this paper mainly employs

data from Carna Botnet (2013). The authors used a program to gain access to thousands of

embedded computers with trivial default passwords settings, which were used to scan the

whole Internet. The usage of compromised devices gave them access to a huge bandwidth,

which allowed to perform bandwidth intensive tests and contact every host multiple times

from different places around the earth throughout the last quarter of 2012.

This analysis focuses on the measure of ICMP6 echo-requests, which yields the latency for

a transmission between two clients. The requesting host sends out an echo-request (Ping)

and the recipient answers with an echo-reply (Pong). The measured round-trip-delay is the

latency between request and reply. It depends on the electrical signal transmit time, hence

on distance, and on queues and processing in routers on route to the destination. The target

hosts were assigned randomly and contacted multiple times from different sources. This

means that the latency between one host and one random host on the Internet, should

guarantee representative measures for the Internet as a whole. A small limitations stems

from the fact that it can not be guaranteed that ICMP, which is used for control messages is

6The Internet Control Message Protocol, is used to transmit error and control messages in an IP based
network.
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treated exactly like its TCP and UDP equivalents used for data transmission. However, it

should provide a good approximation of quality of TCP and UDP transmission.

Data Preparation and Aggregation In a first step the ICMP data has been purged of

records indicating no response from the host. This could be for two reasons, either the IP

Address is not assigned or the host was off-line at the time of the connection attempt. As

there were several attempts to connect a certain hosts, chances are that it has been reached

at least once. Nonetheless, it is likely that machines which are always on, are over-represented

in the sample. Moreover, these machines are likely to have a faster connection (e.g. at

government offices, telecommunication companies or universities) than those connected via

dial-up. As this pattern would be the case for most countries, it should not influence the

results on a cross-country basis.

I aggregated the data on a per-IP basis and using Maxmind’s GeoLite database7 linked

it to the country of origin. Out of the 594,050,059 hosts it was impossible to determine

the location of 194,415 hosts in addition to 63,000 hosts associated with Anonymous Proxy

service and no clear location. In order to reduce the number of observations to a manageable

dataset I sampled the data on a per country basis and drew a random sample of 100,000

hosts per country. For countries with fewer observations, all observations are included. The

distribution of latency in the sample is positively skewed. Hence, I used the median in the

process of aggregation to mitigate the influence of outliers.

Visualization and Descriptive Statistics The skewed distribution found within countries

(see Figure 2.5 on page 29) prevails for the country medians on inter-country level (see Figure

2.3).

The map in Figure 2.4 shows the geographical distribution of latency. As one would expect

latency is high in Africa, South America, and parts of Asia, reflecting the general level of

7http://dev.maxmind.com/geoip/legacy/geolite/ accessed June 10th 2013
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Figure 2.3: Distribution of median-Latency across countries
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economic development in these regions. More surprising is the low latency found in Western

Sahara and South Sudan. These findings coincide with a very low number of observations

for these countries. As a consequence measurement errors are likely i.e. the computers in

question might not even be located inside the border of the territories in question. Internet

quality within these countries are likely comparable to (or slightly worse than) Morocco and

respectively Sudan, who are or were controlling the territories.

Data Quality and Ethics Krenc, Hohlfeld, and Feldmann (2014) discuss data quality of

the dataset. They point out that the methodology used to collect the data, was the novel part

of the project and the reason for the media buzz, as complete scans of the Internet had been

conducted earlier. I argue that only the used random assignment and various computers used

as probes for the scan, allow to reflect the connectivity of a country to the whole Internet

rather than to single reference points.

The data quality issue which they find, might be a concern, depending on the use of the

data. In particular, they explained that it is difficult to disentangle the different waves of

scans. I believe that on an aggregate level, e.g. the comparison of country medians in this
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paper, the uneven number of scans (resulting from incomplete waves) and unequal intervals

are of minor importance. However, it remains a concern if one would pursue an analysis using

the number of ip-adresses, hosts or computers.

A last important question Krenc, Hohlfeld, and Feldmann (2014) touch upon is whether

the usage of such “illegally obtained” data might be used from an ethical point of view, and

what ethical codes of conduct apply when dealing with the data. They find that there is no

consensus on this topic yet. I feel confident that this data may be used as no harm was done

and the data is available publicly. Moreover, in the domain of econometrics of crime data

gathered by criminals appears to be publishable. A famous example is Levitt and Venkatesh

(2000), who discuss the finances of a drug selling gang. In this publication I deal with highly

aggregated per country medians, implying that the publication of the results and data used

in the analysis does not interfere with the privacy of individuals.

Comparison An interesting comparison can be made between median latency, bandwidth

per user and share of Internet users. In Table 2.1 the countries are ranked according to each

indicator and the top and bottom fifteen are shown. There are notable differences between

the three rankings. It is striking that countries in Middle America are doing well in terms of

latency, while the top twenty list for bandwidth per user is dominated by European countries.

A peculiarity is the case of Cambodia, which ranks 10th in terms of latency but has the fifth

lowest share of Internet Users. Unfortunately, there is no easy explanation for the different

performance. But there is anecdotal evidence for a governmental investment which does not

reach the majority of people yet.8 In later parts of this paper I will examine the relationship

between infrastructure and users. Of the countries with bad Internet, most are located in

Sub Saharan Africa, South Asia and the Middle East.

8The Phom Penh Post reported on the 16. July 2009 that 2/3 of the country are now covered with fiber
optical cable (See: http://www.phnompenhpost.com/business/fibre-optic-cable-links-regions-
data-networks, accessed 18.06.2014)

21

http://www.phnompenhpost.com/business/fibre-optic-cable-links-regions-data-networks
http://www.phnompenhpost.com/business/fibre-optic-cable-links-regions-data-networks


Table 2.1: Country ranking according to three indicators

“Best” Internet
Bandwidth per User Share of Users Latency

1 LUXEMBOURG ICELAND MACAO
2 HONG KONG NORWAY HONG KONG
3 MALTA SWEDEN JAPAN
4 SINGAPORE DENMARK KOREA, REPUBLIC OF
5 ICELAND NETHERLANDS MEXICO
6 SWITZERLAND LUXEMBOURG CANADA
7 SWEDEN FINLAND UNITED STATES
8 PORTUGAL NEW ZEALAND BELIZE
9 NORWAY QATAR BAHAMAS

10 UNITED KINGDOM BAHRAIN CAMBODIA
11 BELGIUM UNITED KINGDOM DOMINICA
12 DENMARK CANADA GUATEMALA
13 NETHERLANDS ANDORRA CURACAO
14 FINLAND SWITZERLAND DENMARK
15 ROMANIA UNITED ARAB EMIRATES SWITZERLAND

“Worst” Internet
Bandwidth per User Share of Users Latency

1 IRAQ MADAGASCAR OMAN
2 GHANA COTE D’IVOIRE LESOTHO
3 CAMEROON LESOTHO SOUTH AFRICA
4 NIGERIA MOZAMBIQUE SUDAN
5 MADAGASCAR CAMBODIA PARAGUAY
6 ANGOLA AFGHANISTAN SYRIAN ARAB REPUBLIC
7 UZBEKISTAN CAMEROON KUWAIT
8 AFGHANISTAN BANGLADESH SAUDI ARABIA
9 TANZANIA IRAQ INDIA

10 SUDAN RWANDA NEPAL
11 NEPAL PAKISTAN MOROCCO
12 MOZAMBIQUE LAO ANGOLA
13 LAO NEPAL SRI LANKA
14 YEMEN INDIA ZAMBIA
15 ZAMBIA NAMIBIA IRAN



2.3 Determinants of Internet Adoption

2.3 Determinants of Internet Adoption

After the discussion on the suitability of different indicators in order to measure Internet

usage and quality, as well as the introduction of the data, in the previous section, the current

section is dedicated to the determinants explaining Internet use and provision, as measured

by the different indicators. The focus of the analysis will be on the novel latency measure,

which I proposed in earlier parts of this paper.

2.3.1 A Simple Model of Demand and Supply

In order to identify the determinants of Internet infrastructure, I formulate a simple model

illustrating the effects of demand and supply factors. The two forces jointly determine the

equilibrium level of infrastructure provisioned. The scope of the model lies on providing a

framework, which can be utilized the discussed indicators and compare their determining

factors.

Demand is determined by income and access costs, which is the relative price of broadband

service with respect to income. In the literature there is a debate on other potential other

factors influencing demand. Wunnava and Leiter (2008) make a point that language barriers

and education influence the utility gained from using the Internet, as these factors influence

the understanding of online material and the amount of information available to the individual

user. Nonetheless, in simple economic models it is usually assumed that demand for a good

is independent from the utility gained from its consumption.

Assuming the simple case the demand equation only depends on prices and income and

takes the form of:

yDi = f(Incomei,Pricei) (2.1)

Supply is determined by the amount of investment and associated costs of construction,
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the revenue from selling Internet services (Price) and market structure determining the pricing

strategy of the firm. Leading to following supply equation.

ySi = g(Investmenti,Cost of Constructioni,

Pricei,MarketStructurei)
(2.2)

In equilibrium demand and supply will be equal leading to: Y ∗ = YSi = YDi, which is the

value we are likely to observe in the data.

Market Structure The market structure and the role of governments varies greatly across

countries making it difficult to reflect it accordingly in the supply equation (Röller and

Waverman 2001, p. 917). On the basis of oligopoly theory one would expect market structure

to have an impact on prices and quantities. As an example assuming Cournot competition,

oligopolists would reduce supply in order to charge a mark-up over marginal costs. With

increasing competition one would expect increased supply and lower prices. On the other hand,

a smaller number of firms in the market, might also increase the potential for governments

influence.

The government objectives of involvement might also differ across countries and across

time. In the past telecommunication had been regarded as a natural monopoly in the past,

due to its high fixed costs. Hence, only governmental investments made it possible to supply

Internet services. Only during the course of the 1990s governments began to liberalize the

telecommunication market (for an overview see DICE Database 2009), after its operation

became economically viable. Alternatively, governments may also artificially prohibit private

operators to enter the market. In particular countries with democratic deficits may want to

“control” the flow of information.

Consequently, it is convincing that government controlled monopolies differ from monopo-

lized markets with private enterprises as governments often follow policy objectives, rather
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than operate profit maximizing enterprises. Due to anti-trust regulations, common in market

based economies, and the objective of liberalization true profit maximizing monopolies are

unlikely to exist.

Röller and Waverman (2001) dummy-out the US and Canada in the supply equation

"Given the private market driven telecommunications suppliers" (Röller and Waverman 2001,

p. 917). Following their approach, I also include a dummy variable to treat liberalized and

non liberalized countries differently. The monopoly-dummy marks countries with just one

single provider in order to capture the effect of government intervention in the market.

2.3.2 Empirical Analysis

The model described above can be estimated by simultaneous equation modeling, where the

demand and supply equation are estimated jointly. In the empirical specification, demand

is determined by income (as GDP per capita) and prices, measured by the monthly charge

for broadband connectivity. Prices are considered to be endogenously determined by demand

and supply, while income is considered to be exogenous.

Turning to the supply equation, the specification is the following: Cost is reflected by a

countries population density (people per km2). The idea is that a lower population density

would lead to longer cables and, depending on the mean of access, more antennas and other

equipment to serve the same number of people. In a recent paper, Götz (2013) showed that

it may indeed be an important determinant of ICT infrastructure provision. As in the demand

equation the monthly charge for broadband connectivity is included as a measure of Internet

prices in the supply equation.

The investments in ICT infrastructure are aggregated over time, using a perpetual inventory

method. The original data from the ITU database only includes investments flows rather

than capital stocks. Certain ICT equipment deteriorates fast while some hardware remains

in use for a long time. This is reflected by the discount function e−ax. The calculation is

described in more detail in Appendix 2.A.
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2 The Measurement of Internet Availability and Quality

The data on the monthly charge for broadband connectivity, the share of Internet users in

the population and investment in ICT infrastructure originate from the World Telecommuni-

cation/ICT Indicators database 2013 (16th edition), while GDP per capita and population

density were taken from the World Development Indicators online in February 2014.

Information on the market structure is scarce and the specificities differ between countries

with respect to the number of competitors and their respective strategies. The level of

competition is approximated by the number of providers active in the data. However, the

data quality on the number of providers might not be very high.9

The following system of equations is jointly estimated by 3SLS treating the price as

endogenous, instrumenting it by the exogenous variables not present in the respective

equation. Thereby, one accounts for the fact that prices are jointly determined by demand

and supply.

YDi = α0 + α1MonthlyChargei

+ α2log(GDPCapi) + εDi

YSi = β0 + β1MonthlyCharge + β2log(PopDensity)

+ β3log(Stock) + β4log(providersi)

+ β5monopolyi + εSi

Results

Table 2.2 shows the regression results of the SEM model across the different indicators,

with OLS results provided for comparison. When comparing the regressions for the different

indicators one should keep in mind that latency is a “negative‘” measure, with 0 ms representing

instantaneous transmission. If the covariates had the same effect on the indicator, one would

9Taken from the 2008 issue of the CIA World Factbook (Central Intelligence Agency 2008), as current issues
do not include information on providers
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2 The Measurement of Internet Availability and Quality

expect the signs of the coefficients to be reversed compared to the bandwidth and Internet

penetration rate.

The price (MonthlyCharge) appears to influence Internet use and quality in a similar

manner. The effects appear to influence the results primarily from the demand side, where

the coefficients are very similar. A change of one dollar in subscription prices results in a

change of 0.3% in latency, 0.5% in bandwidth per capita and 0.4% in the penetration rate

(Users/Pop). Income has ceteris paribus no effect on effect on latency, while a 1% increase in

income leads to 0.7% higher bandwidth per capita and 0.5% increase in the penetration rate.

A significant effect of population density can only be observed on the latency, where the

coefficient is even significant at the 95% confidence level. A one percent higher population

density leads to a reduction of latency times of 0.5%.

As expected, there is a significant influence of the accumulated stock of ICT capital on

User/Pop as well as Bandwidth/User (only on the 10% level) – and the coefficient has, as

expected, the opposite sign for the model explaining latency. The magnitude of the effect

differs across the three indicators while change in 1.5% Bandwidth per User for a 1% change

in ICT capital, it is only -0,13% for latency. The difference in magnitude of two coefficients

gives some support to the fact that latency improvements are more difficult to achieve than

improvements of bandwidth.

When interpreting the penetration rate - an increase of 1.15% for a 1% increase in ICT

capital, the question of reverse causality arises. However, I am convinced that the number of

users today does have little influence on the accumulated ICT capital of the past years.

The log number of providers in a country appears to be significant in the OLS specifications.

While the monopoly dummy for a non competitive market structure is significant for two

specification. Having a monopoly or non-liberalized market leads to a 27.6% higher latency

and a hypothetical reduction of the share of Internet users in the population by -89.9%.

As the R2 is not very useful to interpret in the 3SLS estimation. One can only argue that

the R2 from the OLS estimation hints at the fact the model explains more of the variation
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2.3 Determinants of Internet Adoption

of Bandwidth per User and the User share of the population then of latency. This results

likely from the strong correlation of income with the first two measures and no significant

correlation between income and the latter measure.

Different Quantiles

It is obvious that one possibility for differences in the results between different indicators

might be a consequence of the choice of aggregation methods. While penetration rate

(User/population) and bandwidth per user are the means, I used the median to analyze the

effects on latency. This choice was necessary due to the skewed distribution of latency times

(See Figure 2.5 as an example). Hence, the question arises if the effect of the covariates on

latency differs if one regards quantiles other than the median.

Figure 2.5: Distribution of log(Latency) in the Germany
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Note: In order to improve readability, the square root is used to scale density.

The results for the 10th and 90th percentile, as well as the 1st and 3rd quartile in comparison

to the median is shown in Table 2.3. For the 3rd quartile and the 90th percentile only price
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2.4 Conclusion

remains significant. In the lower quantiles the effect of population density and the stock of

ICT capital becomes stronger compared to the median case. Moreover, the coefficient for

income becomes highly significant.

Again, it is important to bear in mind that higher percentiles, imply longer latency times

and, hence, worse Internet quality. The empirical analysis shows that the model explains

supply and demand for “‘high quality” Internet, while only prices and the intercept remain

significant for 75th and 90th percentile.

2.4 Conclusion

After a brief survey of the existing literature on investment in Internet infrastructure, I

introduced a novel measure of Internet quality based on latency. This measure has advantages

over existing ones, in particular the widespread use of the Internet penetration rate. As pointed

out, latency is closely related to infrastructure quality. Moreover, its relative importance

with respect to bandwidth increases when bandwidth becomes large, even for day-to-day

activities like surfing the web. Additional advantages include the possibility to measure it

directly over the Internet, compared to the survey-based collection of bandwidth and user

data. Having data for 247 countries and territories yielded little additional benefit as the

analysis is constraint by a large share of missing observations in the explanatory variables, in

particular ITU database. Nonetheless for descriptive purposes it is nice to have data for as

many regions as possible.

The model developed in this paper explains more of the variation of bandwidth per user and

the user share as compared to latency. There are notable differences in the correlation between

the measures of Internet availability and quality and the explanatory variables, which supports

the idea that each measure is related to a distinct aspect of Internet quality. Consequently,

the measures also differ in terms of policy implications. Latency can only be improved by

shorter fiber optic cables, which require a certain population density to be cost effective. The
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fact that bandwidth and user share are strongly correlated with income appears reasonable,

as both measures can easily be improved by additional connections to neighboring countries,

which might be the result of a higher level of competition in the market. The share of

users could be increased by supporting Internet Cafes, supporting Internet access in public

institutions or subsidizing private Internet connections. Both goals might be easy to achieve

in a country’s capital, whereas improving median latency is costly. The empirical analysis

has shown, how one could improve Internet quality for lower quantiles (e.g. where latency is

relatively low), we learn rather little about the long tail of high latency. Either these cases

are rather heterogenous or other determinants are at work which determine high latency.

It appears that low population density, which increases the infrastructure costs per household

is hindering improvements in Internet quality and as a consequence may lead to a growing

digital divide. Considering the evidence from the literature subsidizing backbone infrastructure

in less densely populated areas likely yields significant economic return. It is left for future

research to validate these findings with the newly introduced latency indicator.

Unfortunately, it is impossible to make any inference about causality in the cross section.

Nonetheless, I hope that my contribution provokes additional research in the field of measures

of Internet quality, in order to put the discussion on digital divide on a more solid footing.
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2.A Estimation of accumulated capital stock

Regarding ICT investments, the ITU database only includes the investments flows in a given

year. However, ICT capital can be used for a number of years until it is depreciated. ICT

hardware is not homogeneous, as certain equipment last only a short period of time while

others (e.g. cables) are used over several years or even decades. To reflect these features the

stock of ICT capital is estimated using the following exponential function:

Stock0 =
t=0∑
−T̄

e0.1t × Investmentt (2.3)

Ideally, one would aggregate the data from the beginning of ICT investment in order to

estimate the current capital stock. Ideally, for equation 2.3 one would set T̄ , the point in the

past from where one would calculate the capital stock, to ∞. Due to shortcomings of the

data, one has to weigh the number of included periods against the loss of observations, as in

particular in early periods the data are very scarce. For my estimation I included investment

over 10 years (T̄ = 10). If one would set no cut-off and include all countries regardless of

missing observations one would bias the results in favor of countries who have good statistical

data.

In order to mitigate the issue of missing data one has to impute the missing values or suffer

from bias or loss of observations. The following steps were undertaken to fill in the missing

data:

1. For missing observations on the current edge (as well as for the beginning of the time

series), annual investments are assumed constant since the last observation.

2. “Holes”, missing values inside a time series, were imputed linearly. In a panel analysis

one should use a multiple imputation method, as standard errors will be to small

otherwise. Nonetheless, in this static setting were only the cumulative values are used,

this issue can be neglected.
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2.B Supplementary Tables

Table 2.4: List of variables

Variable Name Description

Bandwidth/User International bandwidth per user, as available from the ITU
gdpcap GDP per Capita
Investment Investment in ICT capital per capita
latency Latency (mean and quantile as indicated) from the “Internet Census 2012”
monthlycharge monthly charge for broadband Internet
monopoly Dummy for providers=1
providers The number of providers per country
Stock/Pop The calculated accumulated stock of ICT capital
UserShare The Share of Internet users in the population (also penetration rate)

Table 2.5: Summary Statistics
Statistic N Mean St. Dev. Min Max

log(Bandwidth/User) 105 9.908 1.815 5.068 15.224
log(gdpcap) 105 8.564 1.582 5.536 11.290
log(Latency), median 105 10.650 0.481 9.912 12.338
monthlycharge 105 69.564 198.633 6.137 1,760.449
monopoly 105 0.143 0.352 0 1
log(providers) 105 2.542 1.859 0.000 8.854
PopDensity 105 −9.543 1.508 −13.243 −3.937
Stock/Pop 105 5.602 1.308 0.156 7.624
User/Pop 105 −1.086 1.069 −4.263 −0.041

Table 2.6: Correlation between Variables
(1) (2) (3) (4) (5) (6) (7) (8)

log(Bandwidth/User) (1)
log(gdpcap) (2) 0.73∗∗∗

log(Latency), median (3) −0.48∗∗∗−0.40∗∗∗

monthlycharge (4) −0.43∗∗∗−0.14 0.24∗

monopoly (5) −0.31∗∗ −0.18 0.33∗∗∗ 0.12
log(providers) (6) 0.43∗∗∗ 0.46∗∗∗−0.30∗∗ −0.19 −0.5∗∗∗

log(PopDensity) (7) 0.16 0.15 −0.26∗∗ −0.04 0.03 −0.03
log(Stock/Pop) (8) 0.62∗∗∗ 0.79∗∗∗−0.48∗∗∗−0.24∗ −0.17 0.37∗∗∗0.11
log(User/Pop) (9) 0.66∗∗∗ 0.84∗∗∗−0.40∗∗∗−0.21∗ −0.32∗∗∗ 0.46∗∗∗0.18 0.74∗∗∗
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Abstract

Given the quality of the available data on Internet access across several countries, it is

necessary to evaluate alternative measures to assess the effect of Internet access on economic

outcomes.

The research at hand builds up on an earlier paper (Chapter 2), which introduced a novel

measure of Internet quality. A logical consequence has been to introduce the new indicator

(average latency for a country) into established models of economic growth. The data used

in this analysis spans the period from 2008 to 2014 and covers 155 countries. The findings

largely confirm previous results, that Internet access is beneficial to economic growth and

emphasize the appropriateness of technical measures of Internet quality for economic analysis.

Apart from providing insight into the quality dimension these measures do not rely on survey

data, but can be obtained directly requiring only a low level of investment, making the data

collection process viable even for smaller institutions.

3.1 Introduction

The reliance on Internet connectivity has become common place in most industrialized

economies, and there is empirical evidence that broadband access contributes to economic

growth. Unfortunately, the empirical studies in this area suffer from limited data availability

to assess long-run growth effects and usually cover only small sets of countries. The aim of

this study is to introduce a novel measure for Internet quality and show that it can be used

in a conventional growth model. The latency of an Internet connection can be measured

directly and one does not rely on intergovernmental agencies for collecting the data.

Apart from the lack of availability some existing measures also have conceptual problems.

Hence, it becomes crucial to discuss the operationalization of Internet usage, availability

or quality when interpreting results in a context of economic growth or the digital divide.

For example, the penetration rate, i.e. the share of population using the technology, is
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easily available from the World Bank and therefore widely used (Czernich et al. 2011;

Koutroumpis 2009). Comparing the penetration rate across countries is dangerous as the

survey methodology differs across countries and it neglects any information about the

quality and frequency of Internet access. Moreover, the fact that the ratio is bound by 0

and 1, one may falsely “discover” that the digital divide is closing, as some (in particular

Scandinavian) countries have reached a penetration rate of close to the hundred percent

bound. Consequently, any increase in the penetration rate in a developing country will

result in a smaller “divide” between the industrialized and the developing country, despite an

increasing divide in qualitative terms.

Thus, new measures are needed to quantify the phenomenon and provide a sound foundation

for the discussion of Internet and growth, as well as the extend of the digital divide. One

possibility is the use Internet bandwidth per user (Rohman and Bohlin 2012). This provides

information to one aspect of quality, but it remains difficult to estimate. Hence, I propose

the use of latency data, which can be directly measured from every computer on the Internet.

Therefore, it is not subject to the same difficulties when aggregating data from country specific

survey sources. Bandwidth (usually referred to when discussing Internet speed) and latency

are two concepts that are best explained jointly. Bandwidth is the amount of information

which can be transported at a single point in time between two points. In contrast latency is

the actual time of transportation between two points. A shipping container full of hard disks

is an illustrative example of a very high bandwidth connection between two ports. However,

transporting the data in a truck from Melbourne to Atlanta may well take days on a cargo

vessel, before the first bit of information arrives at the destination. In contrast, transmitting

Morse codes via ham radio covers the distance within milliseconds but only providing enough

bandwidth for a few characters per minute. Modern broadband communication combines a

low latency with a high bandwidth, with slight differences depending on the technology used.

Even though, bandwidth is often perceived as the most important measure when it comes

to Internet speed. Nonetheless, latency has real implications on economic outcomes. Most
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prominent in economic research is the discussion of high-frequency trading and low latency

strategies (Hasbrouck and Saar 2013). Outside the financial industry the scientific evidence of

the effect of latency becomes scarce. However, there is anecdotal evidence from statements

by prominent figures in the IT industry, that latency has a profound effect on their business.

For example Greg Linden (back then at Amazon) reports1 about Marissa Meyer’s (back then

a Google Engineer) talk at the Web 2.0 conference stated that an increase in latency of 0.5s

lead to a reduction in traffic and revenue at Google. Linden reports similar findings from A/B

testing at Amazon: an increase in latency of as little as 100ms would result in “substantial

and costly drop in revenue”. Similar evidence has been presented by other companies at

Velocity 2009.2

After Lüdering (2015) discussed the suitability of latency as a proxy for Internet quality,

this paper tries to assess the suitability of this indicator by introducing it into a growth

model. Consequently, it contributes additional evidence on the causal relationship between

information and communications technology (ICT) infrastructure and economic growth by

combining a dataset (Zennaro et al. 2006) which is novel to economics with the established

methodology from Röller and Waverman (2001) and Koutroumpis (2009). The dataset used

here does not cover quite as many countries as Lüdering (2015) but also contains a time

dimension. The dataset used in the analysis spans a period of 6 years from 2008 to 2014.

The remainder is organized as follows. Section 3.2 provides a brief overview of the literature

on the relationship between economic growth and ICT infrastructure. Subsequently, the data

used in this paper is described in Section 3.3 while Section 3.4 elaborates on the empirical

approach. The results are discussed in Section 3.5 and Section 3.6 closes with a conclusion.

1See Linden’s blog article http://glinden.blogspot.de/2006/11/marissa-mayer-at-web-20.html ac-
cessed 2016-09-27.

2See Souders’s summary http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.
html, accessed 2016-07-27.
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3.2 Economic Growth and Telecommunication Technology

In neoclassical growth models (Solow 1956; Swan 1956) technological progress is the sole

driver of economic growth in the steady state. Endogenous growth models (Romer 1990)

endogenized the creation of new, “non-rival” technology from human capital. The utilization

of these new technologies eventually leads to economic growth. Hence, any mean, such as

Internet access and economic integration that facilitates access to new technologies is growth

enhancing.

The nature of ICT as a General-Purpose Technology implies that an investment in ICT

capital leads to improvements in productivity across many fields of the economy leading to

growth in total factor productivity. However, in order to realize the associated productivity

gains complementary investements in other capital (e.g. knowledge) are required. These

additional investments contribute to economic growth as Basu and Fernald (2007) show.

The empirical work on the relatonship between communication means and economic

development dates back to Hardy (1980), who finds evidence that landline telephones are an

important contributor to economic development. However, his results proved not to be robust

to alterations in the sample of countries. More recent work by Röller and Waverman (2001)

used an updated methodology that endogenized demand and supply for telecommunication.

The authors find strong evidence for a link between telecommunication and economic

growth. By differentiating between three levels of telecommunication infrastructure Röller

and Waverman find evidence of positive network externalities. The necessary critical mass

for increasing returns appears to be close to universal service. Sridhar and Sridhar (2007)

refine the approach and specifically address the case of developing countries. Along these

lines Lee, Levendis, and Gutierrez (2012) also conduct an empirical analysis of the impact

of telecommunication infrastructure on economic growth in developing countries. They find

that there is a particular large effect for mobile telecommunication on economic growth.
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This hints at the possibility of leap-frogging and skipping the costly investment into landline

infrastructure.

Subsequent analysis have turned towards the relationship between economic growth and

Internet. Using a simple linear estimation approach Qiang and Rossotto (2009) find a large

effect of broadband Internet connectivity on economic development. Applying the more

sophisticated simultaneous estimation approach by Röller and Waverman (2001) Koutroumpis

(2009) manages to establishes a causal link between Internet usage and economic development

using a panel of the EU-15 countries over the duration of three years. He finds significant

returns to ICT investments in particular for countries with a high initial penetration rate (e.g.

the Scandinavian countries). Czernich et al. (2011) use an instrumental variable approach

to estimate the impact of broadband adoption on economic growth. In order to solve issues

of endogeneity the authors construct a theoretical broadband penetration rate, which they

employ in the estimation. A recent contribution by Clarke, Qiang, and Xu (2015) took a

closer look on the effects of Internet usage on the level of the individual firm. They find

a robust link between Internet use and labor productivity for firms of different sizes but in

particular for small and medium enterprises.

3.3 Data

The data used in this analysis is compiled from a variety of sources. Details of the origin of

specific variables is provided in Table 3.1. While most of the variables are standard and the

data are taken from the specified sources, there are a few specificities which are illustrated in

this section.

It is a common issue in the empirical growth literature that one needs to calculate the stock

of capital. In many cases, it is sufficient to revert to databases such as the Penn World Tables

(PWT). When conducting this analysis version 9 of Penn World Tables was not yet available

with no date fixed for publication. The PWT 8.1 of the database does not cover the sample
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Table 3.1: Variables used in the analysis

Name Description Source

GDP GDP World Bank
GDPC GDP per capita World Bank
K stock of capital Penn World Tables and World Bank
L size of labor force World Bank
ICT average round trip time PingER
P Broadband Price ITU
EDU spending on education (% of GDP) World Bank
RD R&D investment (% of GDP) World Bank
Urban Urban Population (%) World Bank
ICTI ICT Investment ITU
InterPlatform Herfindahl index for inter-platform

competition
own calculation based on ITU data

period in this article. As a workaround I calculate the capital stock for the analysis period

using the initial capital stock from the Penn World Tables and add the investments available

from the Worldbank, assuming a constant deprecation rate of 4.5% (based on Berlemann and

Wesselhöft 2012) for all countries.3 Ideally, one would deduct ICT capital from the general

capital stock. However, the limited availability of data on ICT investments and the stock of

ICT capital does not permit this. As the stock of ICT capital is small in contrast to general

capital, the effects on the analysis should be negligible. If there was any effect, it would lead

to an underestimation of the effect of ICT.

As a measure for Internet quality this paper uses latency data (specifically average round-

trip-time). The data is provided by the PingER (Ping End-to-end Reporting) project (http:

//www-iepm.slac.stanford.edu/pinger/) run by SLAC National Accelerator Laboratory

at Stanford University. An introduction to the PingER facility and dataset can be found in

Zennaro et al. (2006). The average round trip time is the time that has passed between

sending a request to a remote server (usually at other renowned research institutes) and

receiving the answer at the monitoring server at Stanford University. This implies that lower

3The results appear to be not sensitive to the assumed value of the depreciation rate.
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values indicate a better Internet quality. In order to aid interpretation as Internet quality in the

regression analysis the values are multiplied by −1 after taking the logarithms, consequently

positive coefficients will imply positive influence of Internet quality.

Figure 3.1: Spatial Distribution of Average Round Trip Time in 2014

Latency [47.1,175] (175,204] (204,245] (245,311] (311,758]

There is no data (in 2014 or not at all) available for countries colored pink

The measurements are aggregated per country and year, as the data is collected for several

nodes in a single country and at an hourly frequency. The resulting dataset is available for

a large set of 165 countries (see Figure 3.1). Unfortunately these sites have been added to

Pinger consecutively. For example, there is no data on Panama and the United Arab Emirates

before 2015. Other shortcomings include that the split of "Serbia and Montenegro" has not

been incorporated into the data to date. The countries completely missing from the dataset

due to the lack of remote-sides include small countries like Suriname and Guyana, and the
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closed off or crises stricken countries Somalia, Chad, Central African Republic, South Sudan

and North Korea.

As PingER measures the latency between research institutes and universities it appears

questionable whether it really reflects the circumstances across a country. Therefore, Figure

3.2 shows the latency measure used here plotted against the data from Lüdering (2015). The

latter are per country median latency measurements of all Internet hosts in a country. Based

on the Figure one may get the idea that there is indeed a positive correlation between the

two latency datasets. Nonetheless, some countries have a rather high latency for their general

population given the low latency enjoyed at their research institutions.

Figure 3.2: Two latency measures
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Note: The CARNA Botnet latency measure (see Lüdering 2015) is the measured median latency across a

country, the PingER latency is measured between well-connected universities and research institutions only.

In order to support the argument that latency also provides some good overall summary

of Internet quality in a country Figure 3.3 and 3.4 plot latency against bandwidth and the

penetration rate respectively. From these plots one may take away that there is a positive
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relationship between (negative) latency and the other measures of Internet quality, while this

may be a little vague in the case of the penetration rate.

Figure 3.3: Relationship between latency and bandwidth per user
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Note: The negative log of latency is used in order for quality to increase along both axis.

Figure 3.4: Relationship between latency and penetration rate
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Note: The negative log of latency is used in order for quality to increase along both axis.
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3.4 Empirical Analysis

Due to the absence of direct measures of competition in the market for telecommunication (e.g.

number of companies providing Internet access), the level of competition between different

technologies to access the Internet is used as a proxy for competition. The Herfindahl index for

the inter-platform competition in the telecommunication market measures the concentration

of the industry by summing up the market shares of each considered platform. Analogous to

Koutroumpis (2009) for country i in year t it is given by:

InterPlatformit =
n∑
1

( Platformm

Total connections

)2
(3.1)

The approach in the paper at hand, differs slightly in the scope. It includes data on all

types of Internet connections where Koutroumpis (2009) is limited to broadband connections.

While the primary focus lies on FTTH (Fiber optic cable to the home / to the building), DSL

(Digital Subscriber Line) and (TV-) Cable in both cases, the “other” platform in this paper

sums up all means of Internet connections in the ITU database which includes wireless (i.e.

via Wi-Fi), satellite, dail-up and “other”. Considering all means of Internet access should also

be reflected by the used prices. Ideally one would use an aggregate price index of all access

technologies. Due to reasons of data availability prices for broadband connectivity are used

as proxy for general Internet pricing.

3.4 Empirical Analysis

Missing values in the dataset, in particular information on prices and investment into ICT

infrastructure makes it necessary to apply imputation methods. For this exercise the Amelia4

package for R is employed. After generating five imputed datasets the coefficient values are

aggregated using Rubin’s Rules (Rubin 1987). In addition one may also aggregate the R2

values for regressions on multiple imputed datasets (Harel 2009). However, since the aim of

instrumental regression lies in precise estimation of the effect of covariate x on dependent
4https://cran.r-project.org/web/packages/Amelia/
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variable y when x is correlated with the error term, goodness of fit is in general not of interest.

Moreover, in this case R2 also lacks a natural interpretation and may also become negative.

Nonetheless, R2 is reported here by convention. While it is straightforward to perform

multiple imputation on the dataset and estimate the system of equations the application of

the aggregation rules remains largely untested for simultaneous estimation procedures.

A lot of missing data is due to a small set of countries: Angola, Eritrea, Faroe Islands,

Greenland, Liechtenstein, Myanmar, French Polynesia, Puerto Rico, San Marino, Syria

contain a large amount of NA values. However, removing these countries before imputation

does not have a large effect on the results.

The empirical approach of this analysis builds up on the simultaneous estimation approach

originally developed by Röller and Waverman (2001) and later refined Koutroumpis (2009).

By following the model by Koutroumpis (2009) as close as possible I attempt to make the

results comparable and infer whether round trip time can be used as a proxy for Internet

quality. The differences that exist between the analysis at hand and Koutroumpis (2009) are

due to issues of data availability. Working with a larger sample of countries some information

was not available in a consistent manner. Consequently, the model was slightly altered. For

example Koutroumpis (2009) included a measure of regulation of the telecommunication

industry. This measure has been omitted from the model in this paper as the data is not

available for the countries and timespan used in the analysis.

The model relies on a classical aggregate production function where a country’s economic

output is determined by capital and labor. The model is augmented with a measure of

Internet quality, as an additional factor:

GDPit = f(Kit, Lit, ICTit)

K is the level of capital (not including ICT capital) L is the size of the labor force and ICT

is ICT capital.
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3.4 Empirical Analysis

Again following Koutroumpis (2009) a micro model is used to endogenize the creation of ICT

capital by modeling demand, supply and production equations of ICT capital.

The demand for Internet quality is given by

ICTit = h(GDPCit,Pit,URBit,EDUit,RDit)

stating that the Internet quality demanded depends on income per head (GDPC), prices (P),

the share of the population living in urban agglomerations (URB) and the expenditure on

education (EDU) and R&D (RD).

The supply of Internet quality consists of the investments in ICT capital which is solely

determined by prices and market structure

ICTIit = g(Pit, InterPlatformit)

and the resulting improvement in quality (production function)

∆ICTit = k(ICTIit)

. Using a log-linear approximation this model gives rise to the following system of equation:

log(GDPit) = a0 + a1 logKit + a2 log Lit − a3 log ICTit + ε1
it (3.2)

log(ICTit) = b0 + b1 logGDPCit + b2 logPit + b3EDUit + b4URBit+ b5RDit + ε2
it

(3.3)

log(ICTIit) = c0 + c1 logPit + c2InterPlatformit + ε3
it (3.4)

− log
(

ICTit
ICTi,t−1

)
= d0 + d1 log ICTIit + ε4

it (3.5)
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3.5 Results

Following Koutroumpis (2009) the empirical model is estimated applying a three-stage-least-

squares GMM approach. In addition two-stage estimates are provided. Both methods are used

to jointly estimate a system of equations, the third step takes the interdependence of the error

terms into account and provides more accurate coefficient estimates. The estimation results

are in detail provided in Table 3.2. There is a strikingly huge positive significant effect of ICT

quality on GDP. The size of the effect is huge over all specifications ranging from an increase

of 0.45% to 2.5% in GDP for a 1% increase in Internet quality. The other coefficients are not

central to this paper. The estimation of the equation system aims at providing a consistent

estimate of the effect of ICT quality on GDP growth, rather than examining the specificities

of demand and supply effects. Nonetheless, the coefficients largely have the expected signs.

Demand is reduced by prices and increased by urbanization, education and R&D investments.

Supply is reduced by a higher Herfindahl index (i.e. less inter-platform competition). The

negative sign of price in the supply equation is a little bit surprising. Similarly, in the ICT

production equation one would expect the investments in ICT effect to have a positive effect

on the change in Internet quality.

Including dummy variables for each country and each year reduces the size of the coefficient

of interest and leads to a loss of significance for many variables in the system. In particular

urbanization education spending and research and development investments are likely time-

invariant country specificities, which are completely captured by the included country specific

effects. In addition, the depressed growth rates due to the global financial crises are to a

large extent captured by the time fixed effects.

After having obtained an estimate for the coefficient one can address the question what

the economic effect of improvements in ICT quality has been over the period of six years.

52



Table 3.2: Statistical models

(1) (2) (3) (4)
2SLS 2SLS-fixed 3SLS 3SLS-fixed

Aggregate Production
(Intercept) 19.903∗∗∗ 15.349∗∗∗

(3.780) (4.294)
K 0.515∗∗∗ 0.030 0.655∗∗∗ 0.034

(0.094) (0.031) (0.111) (0.030)
L 0.326∗∗∗ 0.332∗∗ 0.169∗ 0.324∗∗

(0.074) (0.172) (0.106) (0.169)
ICT 2.502∗∗∗ 0.477∗∗ 1.902∗∗∗ 0.449∗∗

(0.440) (0.230) (0.534) (0.221)
Demand
(Intercept) −5.154∗∗∗ −5.488∗∗∗

(0.285) (0.379)
GDPC 0.008 −1.231 0.036 −4.810

(0.028) (22.069) (0.034) (23.580)
P −0.307∗∗∗ −1.118 −0.258∗∗∗ −1.098

(0.050) (3.247) (0.058) (3.023)
URBAN 0.007∗∗∗ 0.013 0.006∗∗∗ 0.069

(0.001) (0.288) (0.001) (0.293)
EDU 0.017∗∗ 0.040 0.019∗∗∗ 0.044

(0.010) (0.174) (0.006) (0.160)
RD 0.109∗∗∗ 0.107 0.105∗∗∗ 0.054

(0.021) (0.379) (0.034) (0.358)
Supply
(Intercept) 32.666∗∗∗ 32.815∗∗∗

(2.376) (2.330)
P −1.691∗∗ −0.521 −1.809∗∗∗ −0.475

(0.755) (0.491) (0.720) (0.430)
InterPlatform −11.896∗∗ 0.627 −11.478∗∗ 1.133

(6.699) (1.793) (6.444) (1.473)
Infrastructure Production
(Intercept) 0.184∗∗ 0.202∗∗

(0.095) (0.091)
ICTI −0.007∗ 0.447 −0.008∗∗ 0.657

(0.005) (0.547) (0.005) (0.675)

Adj. R2

Aggregate Production 0.750 0.996 0.838 0.997
Demand 0.397 0.435
Supply 0.829 0.835
InfraProd
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
K, L, ICT, GDPC, P, ICTI are log transformed
Model 2 and 4 include country and year dummies to control for specificities
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The growth in ICT quality is approximated by the log differences, which is multiplied by the

estimated coefficient.

GE = [(log ICT2014 − log ICT2008)× (−â3) + 1]
1
6 (3.6)

Figure 3.5 shows the average growth effects (GE) and countries GDP growth rate over the

whole period for a subset of the included countries (The results for all countries can be

found in Figure 3.7 in the appendix). Columbia had a growth rate of GDP of 3.8% annually,

while the effect of improvements in ICT had a small negative effect. For the US the lack

of improvements in ICT quality had an even stronger negative effect. This illustrates, that

economic growth is a net-effect resulting from a variety of influences. For most countries

growth contribution of ICT improvement and economic growth have the same sign: Germany,

growing 0.67% annually, had a contribution of 0.43 percentage points from ICT improvements.

However, in Spain there was a positive growth effect of 0.7% from ICT in spite of suffering

from negative economic growth during the period, due to the European sovereign debt crises.

The reported effects are very large, in terms of elasticity of GDP with respect to Internet

quality, but also in terms of the growth contribution of ICT. The effects reported here are of

the same magnitude as reported by Koutroumpis (2009). For example, the research at hand

finds a growth contribution of 0.7% of ICT for Spain, while Koutroumpis reports 0.39% for

Spain.5 Due to differences in methodology comparing the results of Czernich et al. (2011) is

not as straightforward, as the authors examine the changes in GDP per capita. They find

that a change of 1 percentage point in the broadband penetration rate leads to an increase

of annual GDP per capita growth of 0.9 to 1.5 percentage points. Which is of the same

magnitude as the median growth effect of 0.71% (mean: 1.57%) of Internet quality.

As outlined earlier the combination of simultaneous equation modeling with multiple imputa-

tion appears to be untested. In order to check the robustness of the results the approach is

5Unfortunatelly, Koutroumpis (2009) does not provide compound annual growth effects for more countries
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3.5 Results

Figure 3.5: Growth contribution of ICT
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twofold. On the one hand, regression results for complete cases and, respectively a dataset

generated by single imputation are provided in Table 3.5. In particular the single imputation

case yields coefficients of very similar size as in the multiple imputation case. As expected,

the standard errors are smaller when relying on single imputation for missing values. If one

only considers the complete cases the number of observations is substantially reduced, leading

to several differences. It is notable that the coefficient of interest to this analysis on ICT

remains similar in size and significant at the 10% level. On the other hand, the stability of the

estimation results is confined using a simulation method. The applied simulation procedure
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is outlined in greater detail in Appendix 3.B. The results indicate that the application of

multiple imputation reduces the variance of the estimated coefficient at the cost of a small

bias.

3.6 Conclusion

The preceding analysis shows that the direct measure of latency can be used as a proxy

of Internet quality. The estimation technique builds up on the methodology by Röller and

Waverman (2001) and Koutroumpis (2009) to mitigate the potential for simultaneity.

Using latency as a proxy for ICT quality makes it possible to obtain information on the

infrastructure quality on a variety of countries without relying on data collected by a country’s

authorities. This increases the number of countries on which consistent information on

Internet quality is available. Thus, the sample covers 155 countries compared to the subset

of OECD countries usually used in previous papers.

The evidence from the analysis confirms the strong effect of ICT infrastructure on economic

development established in Koutroumpis (2009) and Czernich et al. (2011). While these

previous studies have established that Internet usage is an important factor for growth, my

contributions finds that it is also the quality of the infrastructure that matters. This implies

that despite a narrowing digital divide in terms of users, the qualitative dimension is also

important.
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3.A Additional Tables

Table 3.3: Summary Statistics

Variables N Mean St. Dev. Min Max

GDP 1,082 24.396 2.069 19.999 30.325
K 936 26.230 1.932 22.080 31.441
L 1,071 15.409 1.563 12.007 20.508
ICT 933 −5.529 0.499 −7.582 −3.194
GDPC 1,082 8.239 1.611 4.989 11.356
P 986 3.330 0.932 −0.056 7.473
EDU 559 4.809 2.085 1.100 19.258
RD 473 1.057 1.025 0.013 4.387
URBAN 1,085 58.459 23.022 8.550 100.000
InterPlatform 465 0.557 0.161 0.226 1.000
ICTI 668 20.167 1.839 12.062 25.117

Note: Summary statistics calculated before imputation.
K, L, ICT, GDPC, P, ICTI are log transformed
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Table 3.4: Countries in PingER dataset

Afghanistan El Salvador Liberia Rwanda
Albania Eritrea Libya Arab Jamahiriya San Marino
Algeria Estonia Liechtenstein Saudi Arabia
Andorra Ethiopia Lithuania Senegal
Angola Faroe Islands Luxembourg Seychelles
Argentina Finland Macedonia Sierra Leone
Armenia France Madagascar Singapore
Australia French Polynesia Malawi Slovak Republic
Austria Gabon Malaysia Slovenia
Azerbaijan Gambia Maldives Solomon Islands
Bahamas Georgia Mali South Africa
Bahrain Germany Mauritania Spain
Bangladesh Ghana Mauritius Sri Lanka
Belarus Greece Mexico Sudan
Belgium Greenland Moldova Swaziland
Benin Guatemala Mongolia Sweden
Bhutan Guinea Morocco Switzerland
Bolivia Haiti Mozambique Syria
Bosnia Herzegovina Honduras Myanmar Tajikistan
Botswana Hong Kong Namibia Tanzania
Brazil Hungary Nepal Thailand
Brunei Iceland Netherlands Timor-Leste
Bulgaria India New Zealand Togo
Burkina Faso Indonesia Nicaragua Trinidad and Tobago
Burundi Iran Niger Tunisia
Cambodia Iraq Nigeria Turkey
Cameroon Ireland Norway Turkmenistan
Canada Israel Oman Uganda
Cape Verde Italy Pakistan Ukraine
Chile Ivory Coast Palestine United Arab Emirates
China Jamaica Panama United Kingdom
Colombia Japan Papua New Guinea United States
Costa Rica Jordan Paraguay Uruguay
Croatia Kazakhstan Peru Uzbekistan
Cuba Kenya Philippines Venezuela
Cyprus Korea Rep Poland Vietnam
Czech Republic Kuwait Portugal Yemen
DR Congo Kyrgyzstan Puerto Rico Zambia
Denmark Laos Qatar Zimbabwe
Dominican Republic Latvia Republic of the Congo
Ecuador Lebanon Romania
Egypt Lesotho Russia



Table 3.5: Complete cases and single imputation regression

complete cases (3SLS) single Imputation (3SLS)

Aggregate Production
(Intercept) 16.46 18.08∗∗∗

(11.68) (3.33)
K 0.83∗∗∗ 0.60∗∗∗

(0.30) (0.08)
L 0.06 0.20∗∗∗

(0.25) (0.06)
ICT 2.69∗ 2.25∗∗∗

(1.39) (0.38)
Demand
(Intercept) −4.37∗∗∗ −5.32∗∗∗

(0.85) (0.24)
GDPC 0.14∗∗∗ 0.02

(0.05) (0.02)
P −0.72∗∗∗ −0.27∗∗∗

(0.27) (0.04)
URBAN 0.00 0.01∗∗∗

(0.00) (0.00)
EDU −0.03∗ 0.01∗∗∗

(0.02) (0.00)
R&D 0.18∗∗∗ 0.13∗∗∗

(0.07) (0.02)
Supply
(Intercept) 21.61∗∗∗ 32.56∗∗∗

(2.32) (0.88)
P 1.08∗ −1.01∗∗

(0.63) (0.41)
InterPlatform −8.22∗∗∗ −15.27∗∗∗

(2.10) (2.16)
Infrastructure Production
(Intercept) 0.13 0.26∗∗∗

(0.14) (0.07)
ICTI −0.00 −0.01∗∗∗

(0.01) (0.00)

Adj. R2

Aggregate Production 0.82 0.79
Demand −0.16 0.41
Supply −0.26 −1.61
Infrastructure Production −0.02 −0.01
Num. obs. 167 1085
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
K, L, ICT, GDPC, P, ICTI are log transformed



3.B Simulation

The robustness of the estimation results is assessed by simulating the imputation process and

the subsequent estimation for 1000 times.

• Taking an imputed dataset as given and estimating coefficients which are considered to

be the “real” coefficients, a new set of dependent variables are generated. Random

errors are drawn from a normal distribution (with the covariances being estimated from

the original residuals) and added to the newly generated variables.

• In a loop a number of “holes”, equal the missing share in the original dataset, is

added to the dataset and the imputation algorithm is run to impute five datasets. The

estimation is run for each of the datasets and the coefficients are combined using

Rubin’s rules.

• The distribution of the coefficients over several simulations can be analyzed. As an

example the coefficient for ICT is shown in Figure 3.6. Note: Variance for the “real”

coefficient is obtained from original standard errors

Figure 3.6: Simulated coefficient (solid) and “real” coefficient (dashed)
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3.C Growth effects

3.C Growth effects

Figure 3.7: ICT growth effects
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Abstract

Is academic research anticipating economic shake-ups or merely reflecting the past? Exploiting

the corpus of articles published in the Journal of Economics and Statistics (Jahrbücher für

Nationalökonomie und Statistik) for the years 1949 to 2010, this pilot study proposes a

quantitative framework for addressing these questions. The framework comprises two steps.

First, methods from computational linguistics are used to identify relevant topics and their

relative importance over time. In particular, Latent Dirichlet Allocation is applied to the

corpus after some preparatory work. Second, for some of the topics which are closely related

to specific economic indicators, the developments of topic weights and indicator values are

confronted in dynamic regression and VAR models. The results indicate that for some topics

of interest, the discourse in the journal leads developments in the real economy, while for

other topics it is the other way round.
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4.1 Introduction

What drives the selection of topics in economic research? Given freedom of research in

the public higher education system, the research agenda is not a result of political decision

making. Thus, it might be driven by personal interest, perspectives of gains in reputation,

traditions handed-down from the doctoral supervisor, networks, job perspectives, tasks in

economic policy advice etc. While all listed arguments might be relevant for almost all fields

of science, empirical social sciences such as economics might be subject to a further driver

– reality. Following the financial crisis, we have seen a regained interest in financial market

stability and credit rationing (e.g., Turner et al. 2010), in the sequel, public debt came back

on the agenda (e.g., Burret, Feld, and Köhler 2013). Given the current influx of refugees in

Germany, it does not appear too far-fetched to predict that the economic analysis of causes

and effects of migration will see a renaissance in the near future.

The link between reality and economic research might be triggered by different mechanisms

including some of the aforementioned ones. We do not strive to identify these drivers

and their relative importance, but address a much more modest intellectual goal, namely

the identification of the evolution of research interests over time and its interaction with

developments in the real economy. Possibly, economists have rational expectations about

future economic developments and, consequently, focus their research on topics which are to

become relevant. Alternatively, they just observe the economic situation and try to explain it

ex post. Besides identifying relevant research topics, our aim is to find out which direction of

the links between economic science and economic reality is prevailing.

Given that the evolution and deployment of research fields takes time, such an analysis

requires a sufficiently long observation period. For the quantitative research approach taken

in this contribution, it implies that a long sample of data is required. Long time series on

key economic indicators become increasingly available (see e.g., Rahlf 2016), but have to

be treated carefully given a substantial number of structural breaks over the last 150 years.
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The task of finding quantitative information about what topics economists focused over time

or, at least, what their expectations might have been about key indicators, is even more

challenging. Besides some business cycles indicators including qualitative information about

business expectations at the individual level, such time series are not available neither at

individual nor at aggregate level.

To close this gap we employ a quantitative analysis on the discourse in scientific journals

in economics. We start with a pilot study on the debate in the Journal of Economics and

Statistics for the period between 1949 and 2010. Thereby, we assume that a foreseeable

development, in particular one which is considered as a problem, results in an increase of

scientific publications with a focus on the particular problem prior to the actual development.

This holds true if economists became aware of the problem early enough, given that there

might be a noticeable publication lag. If this is not the case, publications in economic journals

will only be published after the problem has occurred. Obviously, the latter also applies for

shocks which are hardly predictable.

Our empirical approach comprises two stages: First, we have to identify topics discussed in

the Journal of Economics and Statistics and their relative importance over time. Second, we

have to establish a link between the importance attached to certain topics and the actual

development of the economic reality which they might reflect. While the second step makes

use of standard approaches from econometric time series analysis, the first step relies on

tools from computational linguistics, which more recently, also made their way into economic

analysis. However, establishing a link between topic weights and real data appears to be a

novel contribution. To the best of our knowledge, only the recent contributions by Hansen,

McMahon, and Prat (2014) and Larsen and Thorsrud (2015) follow a similar approach.

Hansen, McMahon, and Prat analyze the impact of increased transparency on the functioning

of central banks and ultimately on monetary policy using the minutes and transcripts of the

Federal Open Market Committee. Larsen and Thorsrud examine the impact of “news” on the

business cycle, based on a Norwegian business newspaper followed over a period of 9000 days.
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In contrast to our analysis, both articles consider a rather short time span and, in the case of

Hansen Hansen, McMahon, and Prat (2014) are based on a narrowly defined text corpus.

Topic models are a mean to classify the content in a large text corpus. The algorithms

endogenously identify so called topics, which are not necessarily topics in the semantic sense,

but rather clusters of words which often appear jointly in a text. Our approach to topic

modeling closely follows Griffiths and Steyvers (2004), who also work on a corpus of scientific

literature. In their contribution, the authors introduce Gibbs sampling as an algorithm to

Latent Dirichlet Allocation (LDA). They classify articles in the Proceedings of the National

Academy of Science of the United States (PNAS) using LDA. Similarly, Hall, Jurafsky, and

Manning (2008) analyze the history of ideas in the field of computational linguistics. In

their paper, they provide a convincing visualization of the rise of probabilistic topic models

in computational linguistics. Grün and Hornik (2011) conduct an analysis for the Journal

of Statistical Software and provide the R Package topicmodels1 along with programming

examples. Our own implementation builds partly on their code.

In the second step of the analysis, we use the probabilities assigned to each volume of the

Journal for specific topics resulting from the LDA as input for dynamic regression models.

In a univariate model for explaining an economic time series related to a topic, both leads

and lags of this input variable are used as potentially explanatory variables. This allows us to

assess the dynamic dependencies between the relevance of a topic in papers of the Journal

with the development of real economic data related to the topic. As a robustness check, we

also specify and estimate bivariate VAR-models for the two variables of interest and conduct

Granger causality tests on these models.

The remainder of the paper is organized as follows. First, Section 4.2 introduces the

text corpus obtained from the Journal of Economics and Statistics and the economic time

series used for the further analysis. The following Section 4.3 provides a short explanation of

topic modeling. The application of this method and the results obtained for the Journal of

1See https://cran.r-project.org/web/packages/topicmodels/index.html
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Economics and Statistics are subject of Section 4.4. In Section 4.5, the dynamic interrelation

between the importance of topics and the respective economic time series is analyzed.

Section 4.6 provides concluding remarks and an outlook for further research.

4.2 Text Corpus and Economic Data

4.2.1 Text Corpus

For the purpose of our pilot study, we concentrate on a single economic journal with a close

link to economic science in Germany. Furthermore, in order to identify developments over

sensible time spans, a journal existing already for a long time period was required. For these

reasons, we selected the Jahrbücher für Nationalökonomie and Statistik (also Journal of

Economics and Statistics). The journal has been appearing regularly since 1863, with a

few exceptions (e.g. during the second World War). There have been 235 volumes to date

(2015), with currently one volume being published per year. Due to the effort required for

the preparation of text data used in the quantitative analysis, the analysis is restricted to the

period from 1949 to 2010. It will be left for future research to include more volumes.

An analysis of a subsample of 250 articles (5%) supports the assumption that scientists

publishing in this journal focus mainly on the German economy. Out of the 250 Articles

examined only eleven focus on other countries, while fourteen are multi-country studies

including Germany, 60 discuss only Germany. The remaining articles have a methodological

or theoretical focus and therefore are not linked to empirical findings for a particular country.

The focus of the journal on a single country simplifies the second step of the analysis.

Over the years the use of the English language in the economic discourse has been increasing.

The language use in the Journal of Economics and Statistics reflects this development, as

it accepted articles in English and German. Starting in the 1990s English language articles

became more common, but it took until the late 2000s before whole issues appeared in

English. In total 80% of the 2500+ documents are in German. For the analysis we do not
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differentiate between German and English articles, but leave it to the algorithm to differentiate

or join topics in both languages.

We had access to the scanned images of all volumes except the most recent ones via

digizeitschriften.de. The meta data regarding the volumes considered for the present

analysis are provided in Table 4.3 in Appendix 4.B. For obvious reasons, the index volumes

are excluded from the analysis. No volumes of the journal appeared in 1957 and 1974. Each

of the two years was succeeded by a year with two volumes (1958 and 1975). For the periods

1967 to 1970 and 1971 to 1973, there were volumes covering two years. To disentangle the

volumes covering multiple years, we made use of the dates on the covers of the single issues

to assign the included articles to a calender year. As a consequence, volumes 181 to 183, as

well as 186, 187, 191 and 192 were allotted on two years. It turned out that all issues of

volume 190 appeared in 1976 and volume 188 covered a period of three years. Allocating the

individual issues to calender years solved the case of missing data for 1974. Unfortunately,

this did not provide a solution for the case of missing data in 1957. The observations for

this year were later imputed by calculating the mean of the values for the preceding and

succeeding year.

The source format differed among the volumes. From the year 2000 onward, we had

access to digital publications. Older volumes were obtained only as scanned PDF files

from digizeitschriften.de. We used Abby Finereader 12 Corporate to perform Optical

Character Recognition (OCR) and turn the documents into text files as the quality of the

already existing text files was not sufficient for the purpose of our analysis. The OCR Software

retained the formatting of the headlines which we used to break the journal up into single

articles which are the units of our analysis. Finally, we used manual labor to clean the texts,

e.g. by removing tables, footnotes and equations.

A few further preparatory steps were necessary to come up with the final text corpus for the

topic modeling algorithm. For the implementation of these steps, we closely followed Grün
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and Hornik (2011) by employing the text mining infrastructure supplied in the R package

tm.2 In particular, the following steps were performed:

• The German language features a large number of grammatical forms of words. Consider-

ing every single case would greatly inflate the vocabulary (the set of words which forms

the basis for the application of LDA). By stemming of words the different grammatical

forms of the same word are reduced to an identical stem. “The stem is the part of the

word that is common to all inflected variants”, as wikipedia3 puts it. We apply the

stemming algorithms SnowballC (setting “german”) to produce final word stems. The

main feature is the removal of suffixes of words. Consequently, kaufen, kaufe, käufer

are all reduced to the stem kauf. The algorithm removes the umlaut ä and replaces it

by the vowel a as umlauts are often used in forming the plural form (Example: Ball →

Bälle). Unfortunately, these transformations come with a certain loss of information,

which to some degree is intended (e.g. removal of plural forms) but also has unintended

consequences (fordern (request) and fördern (support) become indistinguishable). The

German stemming also produces useful results for English words, as both languages

share a Germanic root.

• All superfluous blanks, newline and tabulator codes, numbers and punctuation marks

were removed.

• We removed all German stopwords, i.e. the most common words that would otherwise

dominate most of the topics without being linked to specific content. We use the list

of stopwords shown in Appendix 4.A as supplied by the R package tm.

• Finally, we only considered terms which, after stemming, consisted of five to twenty

characters to further reduce the size of the vocabulary. This measure also helped

to remove foreign language stopwords, in particular English words (e.g. he, she, it,

2See https://cran.r-project.org/web/packages/tm/index.html for details about the package.
3https://en.wikipedia.org/wiki/Word_stem, retrieved December 8th, 2015.
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you) and long compounded words (e.g. Nasenspitzenwurzelentzündung4), which could

potentially bias the result.

As output of these preparatory steps we obtain a document term matrix, providing the

number of occurrences fij of each selected term i (column) in each article j (row). In order

to only consider the most important terms in the analysis, terms are selected by their relative

importance for explaining specific articles (Blei and Lafferty 2009). The relative importance is

measured by the term frequency–inverse document frequency (tf-idf). Even though a variety

of weighting options exist we adopt the definition used in Grün and Hornik (2011):

(tf-idf)ij = tfij · idfij where (4.1)

tfij = fij∑
i
fij

(4.2)

idfij = log2

 D∑
j
I(fji > 0)

 . (4.3)

∑
i and

∑
j indicate summation over all terms i and documents j respectively. tfij is the

number of occurrences of term i in relation to the total number of occurrences of all terms

in document j. The idfij value is the logarithm to base 2 of the ratio of the total number of

documents in the corpus (D) to the number of documents containing term i, with I being

an indicator function for fij > 0 . For the analysis we select all terms which are prominent

in individual documents, rather than exhibiting a high overall frequency as measured by the

idf-value. Hence, for every term i the mean of its tf-idf ij values across all documents is

calculated. Following Grün and Hornik (2011) we use the median (in our case 0.004) over all

tf-idf ij values (∀i, j) as a cut-off and only include terms with mean values across documents

larger than this median.

For a total of D = 2 675 articles, the number of terms (word stems) considered for the
4Example for the “intractable problems of compound words” in German from the original description of the
Snowball algorithm http://snowball.tartarus.org/texts/germanic.html.
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further analysis is reduced by this selection to |V | = 22 171. The resulting matrix F = (fij)

serves as input for the topic modeling algorithm.

4.2.2 Economic Data

As will be described in more detail in Section 4.4, topic modeling results in a substantial

number of topics. While many of them can be given an intuitive interpretation as they refer

to specific economic theories or institutions, only a small number corresponds closely to some

key economic indicators which are also available as long time series, and hence qualify for the

second step of our quantitative approach. For this second step, we select data for the five

economic issues inflation, trade (net-exports), public debt, unemployment rate and interest

rates. These real-world economic time series were chosen due to their availability over a long

time period, as well as our ability to identify corresponding topics and their prominent role in

the economic debate and theory.

Inflation

The longest time series we could obtain out of these five domains is the German inflation

rate. The German statistical office compiled a very long time series of the consumer price

index (CPI), which, due to limited data quality for the early years including the run-up to

the hyperinflation after 1918, is only available on request.5 The price index data covers the

period from 1881 to 2009. Due to the period of hyperinflation, there is no price data for

1922 and 1923. In 1948, there are separate values for the first and second half of the year,

following the introduction of the D-Mark in June 1948.

Note that we make use of a traditional growth rate given that the approximation by

log-differences might deviate substantially for the periods of high inflation or hyperinflation.

Figure 4.1 provides a plot of the inflation rate. Obviously, the plot is dominated by the period

of German hyperinflation during the 1920s, which dwarfs all other spikes in inflation rates.
5Statistisches Bundesamt (2013). Preise – Verbraucherpreisindex Lange Reihe von 1881.
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However, this does by no means imply that inflation was not an issue at any other period in

time. A second period of monetary instability followed after the second world war. Afterwards,

the high inflation period in the 1970s stands out. In the early years, there have been frequent

periods of deflation, which were most pronounced in the interwar period. Since the 1940s

deflation has become very rare.

Figure 4.1: The German inflation rate 1881 – 2009
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Trade

Trade is operationalized as the German net exports, for which data are available from the

German statistical office at a yearly frequency since 1950.6 We rescaled the original data to

billion Euro in order to operate with a similar scale as for the other economic indicators. As

the data series is non-stationary, the econometric analysis will be based on the differentiated

6Außenhandel: Zusammenfassende Übersichten für den Außenhandel (Endgültige Ergebnisse) Fachserie 7
Reihe 1, Issue 2013 from December 2014.
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Figure 4.2: Real-world time series
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series. Along with debt, the unemployment rate and the interest rates, a time series plot of

net-exports is shown in Figure 4.2.

Debt

Data for the German public debt is available since 1950.7 To mitigate structural breaks

in the time series due to changes in the data collection methodology and the presence of

non-stationarity, the relative changes in total debt are used in this analysis.

Unemployment Rate

The German unemployment rates (in percent) were retrieved from the GENESIS Database

of the German Statistical Office. From 1950 to 1990, the data coverage is limited to West
7Statistisches Bundesamt Fachserie 14 Reihe 5: Finanzen und Steuern - Schulden des Öffentlichen
Gesamthaushalts Table 1.1.1.
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Germany. From 1991 onward, data for the whole of Germany are used. Since the series is

non-stationary, the first differences are used for the econometric analysis.

Interest Rates

The time series of interest rates is available from Deutsche Bundesbank.8 From July 1st,

1948 until 1998, the “Diskontzinssatz”, which widely served as a base for financial contracts,

was used. It is available at monthly frequency. With the transfer of the authority of the

monetary policy to the ECB, this rate was replaced by the so called Basiszins. It is still

available at a monthly frequency, which is only adjusted every six months. Therefore, we use

the yearly average of the interest rate for the econometric analysis.

4.3 Topic Modeling the Economic Discourse

4.3.1 Methods for Quantitative Text Classification

Methods for quantitative text classification originate from the field of information retrieval,

where these methods were developed in order to render text electronically searchable. Early

applications relied on the tf-idf (term frequency - inverse document frequency) classification,

which is still used as a preprocessing step in modern approaches. The classification is based

on a simple counting procedure to represent the importance of a term in a document (the

term frequency) in relation to the importance of the term in the entire corpus. This method

represents a text corpus comprising an arbitrary number of documents as a matrix (term-by-

document matrix), with values for any given term in a vocabulary. A standard reference for

these early methods is Salton and McGill (1986).

Modern methods also include spherical k-means (Dhillon and Modha 2001; Hornik, Feinerer,

et al. 2012) and the related mixtures of Mises-Fisher distributions (Banerjee et al. 2005;

8http://www.bundesbank.de/Navigation/DE/Statistiken/Zeitreihen_Datenbanken/
Makrooekonomische_Zeitreihen/makrooekonomische_zeitreihen_node.html retrieved 01.11.2015.
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Hornik and Grün 2014), which might be considered as problem specific clustering algorithms.

Our work is based on the widely used class of probabilistic topic models, leaving a comparison

with some of the alternatives for future research. While both approaches are unsupervised

learning algorithms clustering algorithms assign a single topic to a document instead of

determining the mixtures of topics of a single document as in the case of topic models.

In the following we will introduce the basic idea of probabilistic topic modeling in its

application to economic discourse. The method exhibits two major aspects. First, it analyzes

text without imposing a priori keywords or categories. Instead, clusters of terms appearing

together frequently (topics) emerge endogenously. Second, the method has a sound statistical

background, allowing the application of standard estimation and inference procedures. We

will briefly sketch the historical background of the method, the theoretical model, estimation

procedures and the evaluation of modeling outcomes.

Modern topic models can be traced back to Deerwester et al. (1990), who developed

Latent Semantic Analysis (LSA)9 as a sophisticated method to overcome shortcomings of

the simple tf-idf classification. Subsequently, Probabilistic Latent Semantic Analysis (pLSA)

introduced a sound statistical foundation to topic modeling (Hofmann 1999). Being based on

the likelihood principle, it also defines a generative model of the data (on term level). Building

up on pLSA, Blei, Ng, and Jordan (2003) extended the method to Latent Dirichlet Allocation

(LDA), by adding a probabilistic generative model at the level of the documents. In spite

of several extensions made in recent years, e.g. the correlated topic model (CTM) (Blei and

Lafferty 2007) allowing for correlation of topics across documents and the recent introduction

of TopicMapping by Lancichinetti et al. (2015), which adds the idea that documents can be

described as networks of terms, LDA remains the state of the art in topic modeling. The

original estimation method by Blei, Ng, and Jordan (Variational Expectation Maximization)

was rather slow, which proved to be problematic in some areas (e.g. commercial applications

9In the context information retrieval, the method is often called Latent Semantic Indexing (LSI).
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in information technology). As a consequence, Bayesian methods as suggested by Griffiths

and Steyvers (2004) became widely used.

The recent introduction of structural topic models (stm) by Roberts, Stewart, and Airoldi

(2016) represents an interesting extension to topic modeling allowing for the inclusion of

document-level meta information at the level of the generative model. This approach makes

it possible to make inference about the underlying social processes influencing the creation of

documents. While it would provide additional insight into the development of the economic

discourse, our dataset contains little in terms of consistent meta information which would

be usable for such an analysis. In future research considering a more heterogeneous set of

journals, stm might be an approach to incorporate the editor’s preferences in selecting articles

for the journal.

4.3.2 The Theoretical Model of LDA

At the core of LDA lies an abstract theoretical model which describes how documents are

created. Thereby, it is assumed that a document is “a mixed bag of words”, which implies

that the order of words within a document is ignored and just the frequencies of words

are considered. In practice, the documents are obtained from machine readable sources

(either short as a tweet or long like a journal article) and are usually altered by a preparatory

data cleaning step.10 Each document is assumed to be made up from several topics which

determine the probability of each term from the vocabulary to be included in the document.

To be more precise about this data generating mechanism, we introduce some notation.

First, we have a vocabulary V comprising all terms considered in the analysis. The size of this

vocabulary is denoted by |V |. Each document is given by a vector of terms w = (w1, . . . , wN ),

where N denotes the length of the document. We do without a document specific index, as

the following discussion will focus on a single document. Only in the final step, the results

for single documents will be aggregated for the corpus comprising all documents.
10See Subsection 4.2.1 for a description of this preprocessing step for the current application.
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It is assumed that each term in the text has its origin in some topic. Thereby, topic k,

k = 1, . . . ,K is represented by a vector of probabilities βk = (βk,1, . . . , βk,|V |) assigned to

each term in the corpus, i.e. it is characterized by some terms being more frequent than

others. For example, if the corpus includes the terms “inflation”, “debt” and “growth”, a

topic with probabilities (0.9, 0.05, 0.05) might be associated with inflation, while a topic

with probabilities (0.05, 0.6, 0.345) might be focused on the nexus between public debt and

growth. The K × |V | matrix resulting from stacking all βk vectors is denoted as β. The

vector z = (z1, . . . , zN ) denotes the vector of topics giving rise to the terms in w . All zn,

n = 1, . . . , N come from the set of all topics of size K, which is the same for all documents

in the corpus. Typically, the zn are not all different, but rather concentrate on a few topics

for a specific document. Furthermore, also the assignment of a term to a topic is not unique

as the same term might belong to several topics.

Now, the generative process of a document in the LDA model can be described as follows

(see also Grün and Hornik 2011): First, a categorial probability distribution θ = (θ1, . . . , θK) is

randomly chosen which describes the relevance of topics within the document.11 In particular,

for all k = 1, . . . ,K, θk ∈ [0, 1] and
∑K
k=1 θk = 1. Next, for each term wn, n = 1, . . . , N in

the document, a single topic zn is randomly selected according to the probability distribution

θ. Then, according to the probability distribution on the terms of zn, i.e. βzn , the term wn is

drawn.

In conclusion, given all topics and the probabilities of these topics for a document, the

random process of generating the document can be described. However, the aim of the

analysis is rather the reverse: Only the documents forming the corpus and, consequently,

the vocabulary are available, while we are interested in identifying topics and, for each

document, the relevance (probability) of each topic. How this can be achieved by adding

some assumptions on the generative process is described in the following subsection.

11In the literature on LDA modeling, this distribution is often labeled as a multinomial distribution which is
adequate assuming just the outcome of one draw.

80



4.3 Topic Modeling the Economic Discourse

4.3.3 Estimation of LDA models

The theoretical model presented in the previous subsection requires a substantial number of

parameters, namely K · |V | probabilities βk,i and the number of documents times K probabil-

ities θk. Given these parameters, the probability of the observed documents can be calculated.

However, as in a standard maximum likelihood setting, we are interested in “reversing” the

argument and obtaining estimates of the parameters given the observed documents, i.e., we

are searching those parameter settings making it most likely to observe our documents and,

consequently, determine topics and their relevance for individual documents endogenously.

Given the number of parameters and the functional interdependencies between the βk,i and

the θk, it turns out that a straightforward maximum likelihood approach is not feasible with-

out imposing additional constraints and, possibly, using alternative optimization/estimation

procedures (Griffiths and Steyvers 2004, p. 5229).

A first simplifying assumption consists in considering the categorial distribution θ as a

random draw from a uniform Dirichlet distribution with scaling parameter α, i.e., θ ∼ Dir(α)

(Blei, Ng, and Jordan 2003). Then, for given parameters α and β, the probability of observing

a specific θ, a set of N terms w and corresponding topics z is given by (Blei, Ng, and Jordan

2003, p. 996):

p(θ,w , z) = p(θ|α)
N∏
n=1

p(wn|zn,β)p(zn|θ) . (4.4)

Integrating over the random vector θ and summing over the components of z results in the

marginal distribution for a single document. Finally, by calculating the product of the marginal

properties of all documents of the corpus, the probability of the corpus is obtained. Despite

the simplification by considering θ as a random draw from Dir(α), maximum likelihood

estimation still does not appear to be feasible (Griffiths and Steyvers 2004, p 5229).

To overcome this problem, a variety of (approximate) estimation procedures have been

suggested. The original procedure is a variant of the expectation maximization (EM) algorithm,
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the so called variational expectation maximization (VEM), which is the method suggested by

Blei, Ng, and Jordan (2003) when introducing LDA. Shortly afterwards, Griffiths and Steyvers

(2004) proposed the use of Gibbs sampling, which – according to the authors – exhibits

faster convergence. This method has become widely applied and is used for our empirical

application. For a comparison of the two methods see Welling, Teh, and Kappen (2008).

The method requires using a further assumption regarding the data generating process. It

is assumed that the term distribution is a random draw from a Dirichlet distribution with

parameter δ. Using this assumption, the probability for a single document according to

Equation (4.4) could be obtained by integrating out β and θ, which might be done separately

as β appears only in the first and θ in the second term. As is shown by Griffiths and Steyvers

(2004, p 5229), the resulting expressions still do not allow for a direct calculation. Therefore,

they propose to apply a Markov Chain Monte Carlo approach. They provide details on how

the probability for each topic is updated based on the distribution for all other topics. The

Markov chain is constructed to converge to the target distribution by repeated sampling from

the target distribution.

While the sampling algorithm provides direct estimates of the association of a term to a

topic, we are interested in the predictive topic distribution across documents. After the Markov

Chain has converged, using a set of samples, as an estimate of the predictive distribution

(θ) can be obtained. The approximation relies on the number of times (ηwk ) the algorithm

associated document w with topic k:

θ̂wk = ηwk + α∑
k
ηwk +Kα

(4.5)

4.3.4 Model Validation

There are two approaches to compare topic models with respect to the choice of the number

of topics. One approach focuses on fitting the model on a subset (e.g. 90%) of data and
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evaluating the fit for the remaining data. However, Chang et al. (2009) argue that this

approach does not result in models which are appealing to human judgment.

A more convenient method is introduced by Griffiths and Steyvers (2004, p. 5231). Ideally

one would compare the different models based on the likelihood as a function of the number

of topics K, which involves summing over all possible assignments of words to topics. Griffiths

and Steyvers (2004, p. 5231) circumvent the resulting computational issue by approximating

the likelihood by the harmonic mean of a set of values which are calculated from samples

provided by the Gibbs sampling algorithm. For reasons of completeness it shall be mentioned

that there is also some criticism regarding this method of approximation. See Buntine (2009),

as well as Wallach et al. (2009) for an overview on the critique and alternative approximation

methods.

While yielding good results in our analysis, selecting a model by maximization of the

likelihood occasionally leads to an unreasonable large number of topics, which become hard

to interpret. Consequently, authors sometimes deviate from the estimated number of topics

according to the likelihood approach to allow for a more straightforward interpretation of the

topics. Nonetheless, in our case estimating the number of topics according to this method

results in topics allowing for a meaningful interpretation and stable results.

4.4 Taking LDA to the Data

Due to the size of the dataset we estimated the topics using Gibbs sampling. Repeating

the estimation for a number of topics (K) between 2 and 1000, we found K=165 to be the

optimal choice based on the harmonic mean method. Finding an optimal number of topics

through maximization is subject to some difficulties as the function is not smooth. It shall be

noted that the original application by Griffiths and Steyvers (2004) was aimed at providing a

rough estimate of the magnitude of the value for K.

Apart from K, some parameters had to be chosen a priori. We stick to α = 1/K and
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δ = 0.1, chosen according to the literature (Griffiths and Steyvers 2004). Afterwards the

Markov chain is run for 2000 iterations, which we, following Grün and Hornik (2011, p 10),

assume sufficient for it to converge. From the resulting 165 topics we select five topics that,

to our understanding, are the ones most closely related to the economic indicators introduced

in Section 4.2.2. These topics are presented in Figure 4.3, where the font sizes of the terms

indicate their relative importance within a topic. The discussion of trade (topic 1) is the only

topic that is primarily discussed using the English language, which might be explained to

some degree by the international interest in trade itself. The German language equivalent of

the topic can be found in Appendix 4.D. The topic concerned with debt (topic 22) appears

to be centered on loans given to companies and individuals. The terms describing sovereign

debt (e.g. Staatsschulden) are part of the topic but do not show up with the same frequency.

The stem arbeitslos is the single most significant term in topic 56 (unemployment), all other

somewhat significant words are compound words closely related to employment. Topic 144 is

concerned with the discussion of inflation and the inflation rate, also the term Phillipskurve

shows up prominently describing a theoretical framework in which inflation is often discussed.

The fifth and last topic considered is based around the term zinssatz [en: interest rate]. The

discussion also encompasses finance (geldmarkt [en: money market]) and macroeconomics

(Preisniveau [en: price level], Liquiditätsfalle [en: liquidity trap]).

Even though Figure 4.3 shows only a small subset of the 165 topics, each of the topics can

be attributed to a particular idea or debate in economics. Appendix 4.D shows additional

topics which appear to be closely related to the ones used here. Any further attempt to derive

the stories behind these topics in greater detail should also involve qualitative analysis, i.e. a

careful reading of those documents exhibiting high probabilities for the topic of interest.
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Figure 4.3: Identified key topics
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4 Forward or Backward Looking? The Economic Discourse and the Observed Reality

4.5 The Relationship Between Discourse and Economic Data

4.5.1 Univariate Dynamic Model

The relationship between a real economic indicator and the logarithm of the sum over

probabilities for the corresponding topic of all documents in a given year is estimated by linear

regression models. The results are shown in Table 4.1. The augmented distributed lag model

includes both leads and lags of the topic indicator as explanatory variables for the current

value of the economic indicator. Statistically significant parameters for lagged values indicate

that the scientific discussion on the topic precedes changes in the economic variable, while

statistically significant leads point at a scientific discussion following the developments of

economic indicators. The model selection procedure considers all models with lagged values

up to three years and leading values for up to three years. From all possible 1024 subsets of

these potential explanatory variables, the selected model is the one minimizing the Akaike

Information Criteria (AIC).

In case of the relationship between inflation and topic 144 the regression relationship takes

the form of:

inflt = β0 + β1 × t144t + β2 × t144t+3 + β3 × t144t−3 + β4 × infl−1 + ut (4.6)

The inflation rate inflt is explained by the weight of topic 144 (t144) at time t, t+ 3 and

t− 3. The other regressions differ with respect to the economic time-series and explanatory

topics used and the lags and leads included.

Table 1 summarizes the estimation results. Each column provides the estimated coefficients

for a particular economic variable exhibited in the row labeled "dependent variable", while the

number of the corresponding topic is shown in the next row. The row labeled topic without a

number corresponds to the parameter for the instantaneous effect. For the following rows,
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4.5 The Relationship Between Discourse and Economic Data

positive numbers in parentheses indicate leads, while negative numbers indicate lags. We

also allow for lagged values of the endogenous variables and a deterministic linear trend.

For all models, we find a link between the importance of the topic in the scientific discussion

and the observed economic indicator with the adjusted R2 ranging from 0.23 to 0.61. However,

it turns out that there are differences across models with respect to the role of lagged, leading

and contemporaneous effects. The use of logarithms for the topic probabilities allows us to

interpret the coefficients12 β as short-run semi-elasticities: A 1% percent increase in the

discussion on the topic is associated in a change by 0.01× β units of the indicator.

One needs to be careful when interpreting the time lag as indicated by the regression

analysis. While the analysis treats the time of publication and the time of writing as identical,

in reality there is, in most cases, a notable publication lag between those two dates. A long

publication lag would make it less likely that one finds evidence of the hypothesis that the

discourse leads the real-world economic time-series. Hence, our analysis may be described

as conservative as it under- rather than overestimates the support for the hypothesis that

economic discourse leads real developments.

Without taking into account a potential publication lag, the results of the dynamic regression

models in Table 4.1 allow for the following conclusions. More discussion of the topic related

to inflation in the past has no significant effect, and contemporaneous discussion appears

even negatively related to the actual inflation rate. In contrast, the link between an increase

in inflation and future discussion of the topic is statistically significant, but the absolute size

of the effect is moderate: An increase in current inflation by 0.058 percentage points would

correspond to an increase of the topic weight by 10% three years later. For net-exports, a

statistically significant positive effect of past discussion of the topic on current values is found,

while an increase in net exports today rather seems to reduce future discussion of the topic

as indicated by the statistically significant negative coefficient for Topic (1). For debt, only a

12Note: We use β by convention, it is not to be confused with the parameter of the same name from the
LDA model.
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Table 4.1: Regression results

Number (1) (2) (3) (4) (5)

Dependent Var. Inflation d(NetExp) debtt−debtt−1
debtt−1

d(unemp) d(interest)

Topic Topic 144 Topic 1 Topic 22 Topic 56 Topic 161

Constant 3.4544∗∗∗ −86.9928∗∗ 4.8936 0.8935 −0.1028
(1.2546) (40.197) (0.0478) (5.3723) (0.8609)

Topic −0.3077∗ −5.7066∗∗ 0.2593∗∗

(0.1778) (2.4449) (0.1218)
Topic (1) −5.6708∗∗ 0.2587∗

(2.1887) (0.1455)
Topic (2) 0.3052∗∗ 0.1977

(0.1172) (0.1452)
Topic (3) 0.5810∗∗∗ −0.7422

(0.1807) (2.1619)
Topic (-1) −0.3956∗∗ −0.2402

(0.1247) (0.1598)
Topic (-2) 5.2182∗∗

(2.5121)
Topic (-3) 0.1385 −2.3133∗∗∗ −0.2309

(0.1675) (0.8411) (0.1514)
Endogenous (-1) 0.5653∗∗∗ 0.5606∗∗∗ 0.7148∗∗∗ 0.1874

(0.0971) (0.1140) (0.1140) (0.1164)
Endogenous (-2) −0.3032∗∗ −0.4741∗∗∗

(0.1297) (0.1250)
lin. Trend 0.5482∗∗∗ −0.1449∗∗∗

(0.2024) (0.0492)

adj R2 0.606 0.2275 0.4024 0.4505 0.2635
F 22.174 4.299 13.7981 10.0214 4.3407
p(F) 0.0 0.002 0.0 0.0 0.0013
N 56 57 56 56 57

Note: standard errors in parenthesis
∗, ∗∗ and ∗∗∗ indicate significance at 10%, 5% and 1% levels respectively
All topic probabilities in logarithms
d() indicates first differences



4.5 The Relationship Between Discourse and Economic Data

statistically significant positive effect of past discussion of the topic (3 years ago) with its

actual change is obtained, while for unemployment again links in both directions are found.

While past discussion appears to be negatively correlated with the unemployment rate, the

nexus becomes positive for the discussion in the future. There is only a weak link between an

increase in the interest rate and an increase of the relevance of the corresponding topic in

the future.

4.5.2 Robustness Checks

In the review process two issues regarding our estimation procedure have been pointed out.

Hence, we provide additional robustness checks on the stability of our results. In the baseline

model we used natural logarithms to transform the approximately log-normal distributed topic

probabilities. This scales the values between −∞ and 0. Using instead the inverse cumulative

standard normal distribution function, providing a mapping from [0, 1] to [−∞,+∞], to

transform the data leads to results which are only marginally different in qualitative terms.

The linear relationship chosen for our univariate regression model might also be challenged.

In general, it is assumed that it represents a fairly good first order approximation for a

monotonic relationship. However, alternative functional forms might fit better if scientific

interest is raised to the same extent by negative and positive (expected) changes of an

economic indicator or negative and positive (expected) deviations from some benchmark,

respectively. As a further robustness check, we consider the squared deviation from the sample

mean for the inflation rate, and the squared (relative) differences for the other economic

indicators as dependent variables. The qualitative findings appear robust for the inflation rate,

the relative change of debt and the change of interest rates. In contrast, for the regressions

for net-exports and the unemployment rate, the significance of the coefficients of interest

disappears providing support for the linear form rather than for a symmetric reaction of

scientific interest to positive and negative (expected) changes.
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4.5.3 VAR-Model

As a robustness check for our empirical results, we also estimate VAR-models. A major

advantage of this model class is that both variables under consideration are treated as jointly

endogenous, while all explanatory variables are lagged values of these endogenous variables.

Thus, one does not need to make arbitrary choices on which of the time-series are endogenous

and exogenous. On the downside, the model does not allow for an explicit modeling of

contemporaneous dependencies, which only show up through a correlation of error terms.

Moreover, VAR models allow conducting tests for Granger causality (Lütkepohl 2007, pp 102f),

which assess the usefulness of each time-series to predict the other.

For the VAR model, we do not consider holes in the lag structure (Winker 2000) to check

whether the subset selection procedure applied for the dynamic model in Subsection 4.5.1

has a qualitative impact on the findings. The lag length for the VAR model is selected based

on the AIC with maximum lag length of six years. The lag lengths used for the VAR models

for the different variables are reported in the last row of Table 2.

The VAR model and the corresponding Granger causality tests are illustrated using the first

pair of variables from our application, i.e. inflation rate (inflt) and the weight of topic 144

(t144t) over time. The current values of both, the inflation rate and the topic weight are

modeled as depending on their own past values and the past values of the other variable.

Given that the optimum lag length according to AIC for this pair is three years, the VAR

model is given by:

inflt = α1,1t144t−1 + . . . + α1,3t144t−3 + α1,4inflt−1 + . . . + α1,6inflt−3 + ε1,t (4.7)

t144t = α2,1t144t−1 + . . . + α2,3t144t−3 + α2,4inflt−1 + . . . + α2,6inflt−3 + ε2,t (4.8)

As the explanatory variables are the same for both equations, the system of equations can be

estimated by conducting a simple OLS regression for each equation separately (Lütkepohl

2007, p 72). The estimated parameters jointly reflect the intertemporal dependencies between
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4.5 The Relationship Between Discourse and Economic Data

the two variables. Therefore, considering individual parameters and testing their statistical

significance is not very informative. Instead, tests for Granger causality are performed. A

variable A Granger-causes variable B if its lagged values have a statistical significant influence

on B beyond the dynamics of B already reflected by the lagged values of the endogenous

variable B itself. For example, in equation (4.7), testing the null hypothesis that α1,1, α1,2

and α1,3 are all zero corresponds to the statement that the past development of the topic

weights has no additional explanatory power for the current inflation rate going beyond the

information already contained in the past development of the inflation rate itself (i.e., in the

parameters α1,4, α1,5 and α1,6). This null hypothesis is labeled as “topic 144 is not Granger

causal for inflation”. It is tested by means of a Wald test. The test statistic asymptotically

follows a χ2-distribution with the number of degrees of freedom corresponding to the lag

length of the selected model. Table 2 provides the test statistics and the marginal p-values

for all variable pairs and both directions of potential Granger causality.

Table 4.2: Test for Granger Causality

(1) (2) (3) (4) (5)

Econ. Var. inflation d(netexp) debtt−debtt−1
debtt−1

d(unemp) d(interest)
Topic 144 1 22 56 161

topic → reality

χ2 3.0901 2.4045 11.416 6.2377 0.3179
p-value 0.3779 0.3005 0.0096 0.0442 0.8530

topic ← reality

χ2 9.4342 1.4324 0.882 2.5116 4.9948
p-value 0.0240 0.4885 0.8297 0.2848 0.0822

Lag length
(max. 6) 3 2 3 2 2
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Overall, the results of Granger causality testing are consistent with those found for the

single equation models with the exception of net exports. For the link between the inflation

rate and topic 144, we find a lag length of three which is identical to the one in the single

equation setting. We cannot reject the null hypothesis that scientific discussion (i.e. topic

144) does not Granger cause the inflation rate, while the reverse hypothesis has to be rejected

at the 5% level. This implies that scientific discussion is affected by developments in the

inflation rate, but not vice versa. The model for the change of net exports and topic 1 differs

from the single equation model by a lag length of two instead of three. Furthermore, for the

single equation model, a deterministic time trend and the current value of the topic weight

were found to be influential. This contemporaneous effect is reflected in a high correlation of

error terms between the two equations of the VAR model, but does not affect the Granger

causality test which might explain the missing evidence for a link in both directions. The VAR

model for the change of debt includes three lags, which is in line with the single equation

model exhibiting no leads and three lags. Nevertheless, again a significant impact of past

discussion in economic science of topic 22 on current changes in debt level in the sense of

Granger causality is found, while the actual development of debt does not exhibit Granger

causality on the discourse. For unemployment, both models suggest a lag length of two.

While the single equation model suggests dependencies in both directions, the null hypothesis

of no Granger causality could be rejected at the 5% level only for the influence of past

discussion regarding the topic on current changes of unemployment. Finally, for the interest

rate, the VAR model comprises only two lags, while the maximum lag and lead length found

in the single equation model was three. Nevertheless, the qualitative findings are again similar.

While the past discourse on the interest topic is not Granger causal for the current changes in

interest rates, the null hypothesis of no Granger causality running from interest rate changes

to the extent of scientific discussion about interest rates is rejected at the 10% level though

not at the 5% level. Two out of five times we find evidence in favor of our hypothesis that

the discussion is leading the economic development and two times the evidence is supporting
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the hypothesis that the discussion is reacting to the economic development. In the case of

net-exports we find evidence for neither hypothesis.

4.6 Conclusion

It was demonstrated, how probabilistic topic modeling of scientific publications in economics

and actual economic developments can be put in perspective. To this end, first the corpus of

articles published in the Journal of Economics and Statistics between 1949 and 2010 was

analyzed by means of LDA resulting in an endogenously created list of relevant topics. Most

of the topics found make sense from a semantic point of view and a substantial part of them

can be given an immediate interpretation related to economic theory, economic institutions

or developments of economic variables.

The second step of the analysis concentrated on those topics which are found to be closely

linked to economic indicators available for a long enough time period to allow for a dynamic

econometric modeling at annual frequency. This econometric analysis was conducted both

with single equation models allowing for lags and leads of the topic weights to have an impact

on the current value of the economic variable of interest as well as with VAR models. For all

five variables under consideration (inflation rate, net-exports, debt, unemployment rate and

interest rate), a relevant – and mostly also statistically significant – link between scientific

discussion in the journal and real developments could be found. However, the direction

of the influence along the time dimension is not uniform across the models. While a lead

of economic discussion with respect to the realization of variables is found for debt and

unemployment, the temporal dependency is the other way round for inflation and interest

rates, while the dependency appears to be most pronounced contemporaneously for trade.

Given a potential publication lag, one may interpret this as additional evidence in favor of

the discussion leading the real world developments.

While the proposed two-stage quantitative approach appears promising as an additional
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tool for analyzing the development of economic thought over time, it will have to be extended

in future work in various directions. First, the constraint on a single journal caused by

available resources for digitalization, text recognition and data preparation has to be overcome

by extending the analysis to other journals being published over a long period. Second,

although the application of a specific implementation of LDA using Gibbs sampling for the

estimation works well for the present corpus, it has been reported in the literature that the

robustness of these methods is limited. Therefore, further research should be devoted on

improving the modeling and estimation procedure, and testing alternative approaches. Third,

our econometric analysis at the second step of the analysis does not take into account the

fact that the topic weights are generated data, which might have an impact on the inference

in the second step. It does not appear obvious to us, however, how the uncertainty from the

first step might be modeled statistically without using a bootstrap approach which does not

appear to be feasible with available computational resources given the high computational

complexity of the first step. Hence, any extension in this direction poses an important

challenge for future research. Fourth, one should consider a comprehensive multivariate

analysis and consider topic correlation and cointegration at the stage of the topic model and

the subsequent regression analysis. In addition one may also introduce document level meta

data through an STM approach (Roberts, Stewart, and Airoldi 2016) in order to shed light

on the economic debate and identify potential effects of individual editors. Finally, and most

importantly, the purely quantitative approach used here does not represent a substitute to

classical hermeneutic analysis, it rather provides a complementary method to detect relevant

fields of research (topics) and how they developed over time putting them in perspective to

real economic developments.
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4.A German stopwords

The following stopwords are removed from the vocabulary. The list is supplied by the r

package tm.

aber alle allem allen aller alles als also am an ander andere anderem anderen anderer

anderes anderm andern anderr anders auch auf aus bei bin bis bist da damit dann der den

des dem die das daß derselbe derselben denselben desselben demselben dieselbe dieselben

dasselbe dazu dein deine deinem deinen deiner deines denn derer dessen dich dir du dies

diese diesem diesen dieser dieses doch dort durch ein eine einem einen einer eines einig einige

einigem einigen einiger einiges einmal er ihn ihm es etwas euer eure eurem euren eurer eures

für gegen gewesen hab habe haben hat hatte hatten hier hin hinter ich mich mir ihr ihre ihrem

ihren ihrer ihres euch im in indem ins ist jede jedem jeden jeder jedes jene jenem jenen jener

jenes jetzt kann kein keine keinem keinen keiner keines können könnte machen man manche

manchem manchen mancher manches mein meine meinem meinen meiner meines mit muss

musste nach nicht nichts noch nun nur ob oder ohne sehr sein seine seinem seinen seiner

seines selbst sich sie ihnen sind so solche solchem solchen solcher solches soll sollte sondern

sonst über um und uns unse unsem unsen unser unses unter viel vom von vor während war

waren warst was weg weil weiter welche welchem welchen welcher welches wenn werde werden

wie wieder will wir wird wirst wo wollen wollte würde würden zu zum zur zwar zwischen
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4.B Tables

4.B Tables

Table 4.3: List of volumes

Vol Year Vol Year Vol Year Vol Year Vol Year Vol Year Vol Year

1 1863 38 1882 74 1900 111 1918 147 1938 184 1970 221 2001
2 1864 39 1882 75 1900 112 1919 148 1938 185 1971 222 2002
3 1864 40 1883 76 1901 113 1919 149 1939 186 71/72 223 2003
4 1865 41 1883 77 1901 114 1920 150 1939 187 72/73 224 2004
5 1865 42 1884 78 1902 115 1920 151 1940 188 1975 225 2005
6 1866 43 1884 79 1902 116 1921 152 1940 189 1975 226 2006
7 1866 44 1885 80 1903 117 1921 153 1941 190 75/76 227 2007
8 1867 45 1885 81 1903 118 1922 154 1941 191 76/77 228 2008
9 1867 46 1886 82 1904 119 1922 155 1942 192 77/78 229 2009

10 1868 47 1886 83 1904 120 1923 156 1942 193 1978 230 2010
11 1868 48 1887 84 1905 121 1923 157 1943 194 1979
12 1869 49 1887 85 1905 122 1924 158 1943 195 1980
13 1869 50 1888 86 1906 123 1925 159 1944 196 1981
14 1870 51 1888 87 1906 124 1926 160 1944 197 1982
15 1870 r 1888 88 1907 125 1926 161 1949 198 1983
16 1871 52 1889 89 1907 126 1927 162 1950 199 1984
17 1871 53 1889 90 1908 127 1927 163 1951 200 1985
18 1872 54 1890 91 1908 128 1928 164 1952 201 1986
19 1872 55 1890 92 1909 129 1928 165 1953 202r 1986
20 1873 56 1891 93 1909 130 1929 166 1954 203 1987
21 1873 57 1891 94 1910 131 1929 167 1955 204 1988
22 1874 58 1892 95 1910 132 1930 168 1956 205 1988
23 1874 59 1892 96 1911 133 1930 169 1958 206 1989
24 1875 60 1893 97 1911 134 1931 170 1958 207 1990
25 1875 61 1893 98 1912 135 1931 171 1959 208 1991
26 1876 62 1894 99 1912 r 1931 172 1960 209 1992
27 1876 63 1894 100 1913 136 1932 173 1961 210 1992
28 1877 64 1895 101 1913 137 1932 174 1962 211 1993
29 1877 65 1895 102 1914 138 1933 175 1963 212 1993
30 1878 66 1896 103 1914 139 1933 176 1964 213 1994
31 1878 67 1896 104 1915 140 1934 177 1965 214 1995
32 1879 68 1897 105 1915 141 1935 178 1965 215 1996
33 1879 69 1897 106 1916 142 1935 179 1966 216 1997
34 1879 70 1898 107 1916 143 1936 180 1967 217 1998
35 1880 71 1898 108 1917 144 1936 181 67/68 218 1999
36 1881 72 1899 109 1917 145 1937 182 68/69 219 1999
37 1881 73 1899 110 1918 146 1937 183 69/70 220 2000

Note: The volumes marked r are index volumes, only 202 carries a volume number.
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Notes on the list of volumes

181 Issue 4 was the first to appear in 1968 (March)

182 Issue 4–5 was the first to appear in 1969 (March)

183 Issue 5 was the first to appear in 1970 (February)

184 completely appeared in 1970

185 completely appeared in 1971

186 Issue 3 was the first to appear in 1972 (February)

187 Issue 2 was the first to appear in 1973 (January)

188 Issue 1 Appeared in 1973 (December), Issue 2–5 appeared in 1974 (January to November),

Issue 6 appeared in 1975 (February)

190 All issues appeared in 1976 (contrary to the available meta data)

191 Issue 4 was the first to appear in 1977 (February)

192 Issue 5 was the first to appear in 1978
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4.C Topic Probabilities

Figure 4.4 shows the development of probabilities for the key topics between 1948 and 2010.

Figure 4.4: Topic probabilities
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4.D Further Topics

The following pages show additional topics identified by the LDA algorithm. In addition to

the key topics used in the analysis, there are further topics in the field of inflation (Figure 4.5),

trade (Figure 4.6), debt (Figure 4.7) unemployment (Figure 4.8) and interest rates (Figure

4.9). This list of of fields is far from being exhaustive. There are a variety of other topics

discussed in the journal (see examples in Figure 4.10), which are not easily operationalized as

the discussion of capitalism and Marxism (Topic 100) or may not very interesting from an

economic point of view (e.g. “terms describing a table” in Topic 165).
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While Topic 144, which we used in the analysis, is narrowly focused on inflation and

the inflation rate, there are further topics related to inflation (Figure 4.5), Topic 119 is

concerned with geldpoliti [en: monetary policy], as well as money supply and expansionary

policy. Topic 134 is concerned with shocks, with inflation being a prominent term. Topic 142

is the English language equivalent to Topic 119 (monetary policy). Figure 4.6 shows further

topics associated with international trade. The German equivalent (topic 36) to the topic we

selected (Topic 1) is centered around “ausland” and “inland” [en: foreign and domestic] and

not as narrow as the english original. Topic 44 is loosely concerned with trade, with terms

“handelspoliti” [en: trade policy] and “aussenhandelstheori” [en: theory of international trade]

popping into the eye. Price differentiation [ger: preisdifferenzier], product [ger: erzeugnis] as

well as terms relating to foreign and domestic are at the center of topic 86. Figure 4.7 and

Figure 4.8 show additional topics related to debt and unemployment respectively. Apart from

topic 191, which is concerned with interest rates in the narrow sense and consequently used

in our analysis, only Topic 120 (Figure 4.9) appears to be somewhat related but talks more

about central banking.

In the regression analysis it would be possible to combine two or more topics, which makes

the analysis broader. Prior research has shown that this does not improve our results. It can

be assumed that narrow topics are best at reflecting narrow economic ideas.
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Figure 4.5: Estimated topics related to inflation
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Figure 4.6: Estimated topics related to trade
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Figure 4.7: Estimated topics related to debt
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Figure 4.8: Estimated topics related to unemployment
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Figure 4.9: Addtional estimated topic related to interest rates

Topic 120

geldpolit
bundesbank

zentralbank
geldmeng

ni
ch

tb
an

k

geschaftsbank zinssatz

ze
nt

ra
lb

an
kg

el
dm

en
g

notenbank

kreditgeldbasis

ze
nt

ra
lb

an
kg

el
d

offenmarktpolit
kreditinstitut

liquiditat

inland

aggregatkreditpolit

preisniveau nominal

geldmarkt

sichteinlag

sozialprodukt
m

in
de

st
re

se
rv

ep
ol

it

kreditvolum

mindestreserv

monetarist
liquiditatsreserv

termineinlag
diskontsatz

wertpapi

geldangebot

preisniveaus

aktiva

bargeld

monat

monetary

spareinlag

tagesgeldsatz

zinsniveau

ba
nk

kr
ed

it

multiplikator

zinspolit

bankensyst
bankensystem

notenbankpolit
reservesatz

mindestreservesatz

liquid

ausland

brunn

wachstumsrat

te
rm

in

elastizitat

ko
nt

ra
kt

iv

reaktionsfunktion

zentralbankpolit

bargeldumlauf

indikator

restriktion

autonom

kreditmarkt

kreditangebot

monatsbericht

uberschussreserv

diskontpolit

ka
us

al
ita

t

kreditnahm

refinanzier
rediskontkontingent

zwischenziel

ba
nk

en
liq

ui
di

ta
t

geldmarktsatz

preisanstieg

ub
er

si
ch

t

expansiv

geldmengenaggregat

neubau
ei

nl
ag

ni
ch

tb
an

ke
ns

ek
to

r

umlaufrendit

ce
nt

ra
l

komponent

liquiditatspolit

geldmengenwachstum

finanzierungsrechn

konsolidiert

zinsentwickl

kreditnachfrag

quartal

ba
nk

en
gr

up
p

januar

liquiditatssaldo

volkseinkomm

zentralbanksyst

zinsniveaus
gesamtperiod

mindestreservesoll

offenmarktpapi

steuerbar

Figure 4.10: Example for “unrelated topics” estimated by the algorithm
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5 Monetary Policy on Twitter and its Effect on Asset Prices

Abstract

In this paper we dissect the public debate about the future course of monetary policy and

trace the effects of selected topics of this discourse on U.S. asset prices. We focus on the

“taper tantrum” episode in 2013, a period with large revisions in expectations about future Fed

policy. Based on a novel dataset of 90,000 Twitter messages (“tweets”) covering the entire

debate of Fed tapering on Twitter we use Latent Dirichlet Allocation, a computational text

analysis tool to quantify the content of the discussion. Several estimated topic frequencies

are then included in a VAR model to estimate the effects of topic shocks on asset prices. We

find that the discussion about Fed policy on social media contains price-relevant information.

Shocks to the frequencies of “tantrum”-, “QE”- and “evidence”-related topics are shown

to lead to significant asset price changes. We also show that the effects are mostly due

to changes in the term premium of yields consistent with the portfolio balance channel of

unconventional monetary policy.
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5.1 Introduction

5.1 Introduction

The formation of monetary policy expectations by market participants is at the core of the

monetary policy transmission process. While there is a large body of research on how central

banks communicate with financial markets (Blinder et al. 2008), there is little evidence about

how, given the communication of the central bank, the discourse about monetary policy by

market participants shapes market expectations. This lack of research is most likely due to

the lack of data about individual views on future policy.

In this paper we study the changing policy expectations of market participants and the

resulting change in forward looking financial variables such as asset prices. We focus on

an episode in recent U.S. monetary policy which has been characterized by a major shift in

market expectations: the “taper tantrum” period in 2013. After Fed chairman Ben Bernanke

mentioned an eventually exit from the Fed’s asset purchase programs in May 2013, markets

changed their assessment of the future course of policy resulting in a phase of unusual

volatility, an increase in long-term U.S. interest rates and an appreciation of the U.S. dollar.

Markets quickly coined the term “tapering” to describe the Fed’s exit from QE3 (3rd round

of quantitative easing). Given the exaggerated market reaction, this period is referred to as

the “taper tantrum”.

We analyze this episode based on a dataset that contains the entire traffic on Twitter.com,

the social media network, on Fed tapering. The dataset consists of 90,000 text messages

(“tweets”) between April and October 2013 and reflects the debate among market professionals

during the tantrum period. Twitter data offers several advantages over alternative datasets:

First, in contrast to news articles or analyst reports, which are written and read be relatively

few people, Twitter allows us to exploit the views of the crowd of financial professionals.

Second, while it is unclear whether news reports are actually read, Twitter messages appear

as push messages on mobile phones and are actively shared, discussed, endorsed or refuted.

Hence, the tweets give more reliable evidence about individuals’ views than the consumption
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5 Monetary Policy on Twitter and its Effect on Asset Prices

of news reports. Third, the high frequency of observation allows us to trace the public debate

in real time.

Since our aim is to model the changing beliefs about future monetary policy, we need

to quantify the information content of the Twitter data.1 In this paper we employ a tool

set taken from computational linguistics. Latent Dirichlet Allocation (LDA) (Blei, Ng, and

Jordan 2003) is used to extract latent topics out of the Twitter conversation on tapering.

LDA dissects a text document into different topics based on Markov Chain Monte Carlo

estimation. It estimates a certain number of different topics which, based on each topic’s

most frequent words, will be labeled manually.

Examples of topics are “tight financial conditions”, “data”, “fear”, “stimulus” and many

more. The resulting topic frequencies, which express the likelihood that a given tweet contains

this specific topic, are then included in a vector autoregression (VAR) together with a daily

series of macroeconomic fundamentals and asset prices. We show that a shock to selected

topics frequencies leads to a significant change in asset prices. This finding supports the

notion that the public debate about future monetary policy, which is reflected by the discourse

on Twitter.com, contains information that is relevant for pricing financial assets. A shock to

the likelihood of the topic describing “premature tightening”, for example, raises bond yields

and leads to an appreciation of the dollar.

This paper is closely related to the recent literature on text mining and computational text

analysis, respectively, for financial and monetary policy applications. This rapidly growing

literature is summarized by Loughran and McDonald (2016).2 For the purpose of this paper,

the existing research applying models of latent information in textual data is particularly

interesting.

1In a companion paper Meinusch and Tillmann (2016), we construct a dictionary with keywords describing
a certain policy path. The drawback of this approach is that we have to specify a list of keywords in
advance, which is likely to disregard important information from expressions not on our list of keywords.
Furthermore, we can focus on two alternative policy paths only, an early or a later tapering decision, and
have to leave out other dimensions of the discussion.

2Bholat et al. (2015) provide a survey of text mining applications relevant for central banks.
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5.1 Introduction

Hansen and McMahon (2016) apply LDA modeling to the entire history of policy statements

issued by the Federal Open Market Committee (FOMC) of the Federal Reserve. Thus, they

are able to identify at which point in time the FOMC spent time discussing a specific topic.

Selected topic frequencies are included in a Factor-Augmented VAR (FAVAR) model. The

authors find that forward guidance related topics and topics reflecting the current economic

situation affect real and financial variables.3 While our modeling framework is similar, we do

not study central bank communication but the discourse of the market about what the Fed is

likely to do.4 Hendry and Madeley (2010) and Hendry (2012) use latent semantic analysis

for the communication of the Bank of Canada. They identify “themes” of communication,

which are used to explain interest rate changes. Although they do not address a financial

application but instead focus on fluctuations in the business cycle, the paper by Larsen and

Thorsrud (2015) is also relevant for our work. They use a dataset with Norwegian newspaper

articles to construct an aggregate news index by employing topic modeling. The news indices

are related to economic activity within a Bayesian regression framework. Using a similar

methodology but covering a time horizon of 61 years Lüdering and Winker (2016) examine

whether economist anticipate changes in the state of the economy or merely discuss these

events ex-post by looking at the relationship between between economic publications and

real-world time-series. The LDA model identifies key topics for “debt”, “trade”, “Inflation”,

“Unemployment” and “interest rate”. A subsequent regression analysis finds a significant link

between the economic discussion and the time-series, only in two out of five cases (debt and

unemployment) the economic discussion precedes the economic developments, while for the

other time-series the discussion is following the economic developments.

We show that topics related to the “tantrum” notion of the tapering discussion, the

implications of “QE” and the debate about incoming “evidence” affect bond yields and

3Using the same dataset, Hansen, McMahon, and Prat (2014) model the effect of increased transparency on
the policy debate in FOMC meetings.

4Lucca and Trebbi (2009) and Schonhardt-Bailey (2013) are other recent papers on textual analysis of FOMC
communication.
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5 Monetary Policy on Twitter and its Effect on Asset Prices

exchange rates. While the effect of “tantrum”-related topics is long lasting, the impact of the

other topics is short-lived. This suggests “tantrum”-related topics indeed contain information

about the policy path, while the other topics contain mostly noisy information in the sense of

Tetlock (2007).

We also decompose yields into the expectations component and the term premium. Based

on this decomposition we show that the response of bond yields is mostly due to responses

of term premia. This findings lends support to the balance sheet channel as the transmission

channel of shifting tapering expectations.

This paper is organized as follows: In Section 2 we introduce the Twitter dataset. Section

3 gives some background on computational text analysis and presents the LDA approach used

in this paper. The estimation of a VAR model that includes asset prices and selected topics

frequencies is described in Section 4. The results and some robustness checks are discussed

in Section 5 and Section 6 draws conclusions.

5.2 The Dataset

The dataset used in this study consists of all Twitter messages containing the words “Fed”

and “taper” sent between April 15 and October 30, 2013. The data has been purchased

from Gnip.com. Because it is highly likely that any tweet on the Fed’s exit from QE contains

both filter words, we are certain to have a comprehensive dataset that reflects the entire

tapering debate on Twitter. After deleting a few tweets in languages other than English, we

are left with 87024 tweets. Re-tweets, i.e. Twitter messages forwarded by users, are left in

the dataset because a forwarded tweet is likely to be a relevant tweet and, as a result, the

forwarding of a tweet also contains information.

For each tweet we know the content, the sender and the time the tweet was sent. We

normalize the timing of each tweet to New York time. While trading hours end at 4 pm

Eastern Time, twittering continues even after markets have closed. To account for tweets sent
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after markets closed, tweets sent after 4 pm are attributed to the next trading day. Likewise,

weekends and holidays have been excluded due to the lack of asset price data. Finally, tweets

are aggregated to daily frequency.

Figure 5.1: Number of Tweets
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Notes: The vertical lines indicate the testimony of chairman Bernanke on May 22 and the subsequent

FOMC meetings.

Figure (5.1) plots the daily number of tweets and, as vertical lines, the most important

monetary policy events. Tweeting on the Fed’s tapering decision gradually picks up before

the testimony of chairman Bernanke on May 22. During this testimony, Bernanke mentioned

the possibility of exiting from QE3, a statement that triggered the markets’ subsequent

tantrum reaction. A first peak is reached prior to the June meeting of the Federal Open

Market Committee (FOMC), for which some market participants expected more detailed

information about the pace of the tapering. After the FOMC postponed the tapering decision,

the discourse among market participants intensified before each subsequent FOMC meeting.

The peak was reached before the September FOMC meeting, for which the vast majority
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5 Monetary Policy on Twitter and its Effect on Asset Prices

of Twitter users expected the decision about a reduction of monthly purchases of securities.

However, market again misjudged the Fed as the FOMC again postponed the decision. The

Fed eventually announced a reduction in its monthly asset purchases in the January 2014

FOMC meeting.

From Figure (5.1) we see that the number of tweets is systematically higher on FOMC

meeting days.5 This is not surprising given the market’s interest in monetary policy decisions.

For our empirical analysis below this implies that we should control for FOMC meeting days

and, in addition, for days on which FOMC minutes are published.

Since the monetary policy debate on Twitter captures the overall discussion among market

participants well, we will now use topic models to dissect the discussion into policy-relevant

topics. We want to see which topic was most relevant on selected days and, in particular,

how the information contained in these topics is reflected by asset prices.

The “taper tantrum” it subject to a relatively small empirical literature. Most studies, such

as Eichengreen and Gupta (2015), Aizenman, Binici, and Hutchison (2016) and Mishra et al.

(2014) ask whether the macroeconomic vulnerability of emerging market countries determines

how strongly these countries were hit in 2013. However, these authors typically do not

quantify market expectations and their revision directly. Rather, they argue that the changes

in U.S. asset prices in 2013 are appropriate indicators of shifts in expectations. Meinusch

and Tillmann (2016) use the same Twitter dataset that is used in this paper. Based on a

dictionary of words they built proxy variables for the beliefs of an early and a late tapering,

respectively. Here we extend and broaden this line of research: we use several dimensions of

the debate on Twitter, not just early or late tapering, and relate them to asset prices.

5Due to the convention of the software used, the vertical lines in Figure (5.1) are drawn at the beginning of
each day, while the bars are plotted from the beginning to the end of a given day.
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5.3 Applying Topics Models

In this section we apply topics models to dissect the discussion on Twitter regarding the

unwinding of QE in its most important parts, which we then relate to asset pricing. The recent

introduction of topic modeling into the field of economics enables researchers to automatically

classify texts and obtain underlying topics which constitute the document, given the assumed

generative process and several predetermined parameters. It should be noted that these topics

are not necessarily coherent topics in the semantic sense, but rather clusters of terms which

repeatedly appear together over several documents. Similar to clustering methods, it is up to

the researcher to make sense of the topics based on the words of which they are comprised.

For the application, we follow Grün and Hornik (2011) in using the R package tm6 for

pre-processing the data and subsequently topicmodels7 for the fitting of the topic models.

5.3.1 Preliminary Steps

Starting out with the corpus of Twitter messages described in the previous section, the first

step consists of cleaning the data to obtain the vocabulary V . The vocabulary is the set of

different terms selected from the corpus, our entire set of tweets, because the terms are well

suited to explain the content of individual documents. It is the goal to omit all terms that

are not helpful in differentiating between topics.

As topic models are only concerned with the joint appearance of words in individual

documents and are not influenced by grammar, we can remove all punctuation and redundant

space characters from the tweets. A specificity of twitter messages is the appearance of

hyperlinks and twitter usernames (i.e. @username), which we remove in their entirety. Further,

all words are decapitalized and the stemming algorithm SnowballC is applied to create word

stems. A stem is the part of a word which is common to a variety of grammatical forms.

These two measures, stemming and decapitalization, lump together different grammatical
6See https://cran.r-project.org/web/packages/tm/.
7See https://cran.r-project.org/web/packages/topicmodels/.
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forms and remove the differentiation due to a word being capitalized at the beginning of a

sentence.

Words which are frequent but add little meaning to a document are called stopwords and

are removed from the corpus and thus excluded from the vocabulary. We use the list of

English language stopwords provided by the R package tm. In addition, the terms “Fed” and

“taper” are removed from the corpus as these words have been used to select the dataset

in the first place. Hence, they should be included in each tweet. Finally, all terms with a

length between 4 and 20 characters appearing in at least five tweets are used to create the

document-term matrix F , which holds the frequencies fi,j of |V | = 5082 different terms in

D = 87024 tweets and is the basis for the subsequent LDA estimation.

In applications of topic models, it is common practice to further reduce the vocabulary by

selecting only terms which are important to describe individual documents. This is usually

done based on the tf-idf (term frequency–inverse document frequency) value (Blei and

Lafferty, 2009), which implies weighting the frequency in a single document against the overall

frequency. The particularities of Twitter messages, e.g. the choice of words and the length of

tweets limited to 140 characters, results in particularly high tf-idf values (median > 1).8 As

the importance of the individual words for explaining the different documents appears to be

particularly high and the vocabulary is rather short (5082), in particular with respect to the

number of documents in the corpus (87024), we do not remove any further terms.

5.3.2 Latent Dirichlet Allocation (LDA)

This section provides a brief overview of LDA models and the estimation method behind our

analysis. Before their recent arrival in economics, topic models have been used since the 1990s

(Deerwester et al. 1990) to address issues in the area of information retrieval. Hofmann (1999)

introduced probabilistic theory to topic models, providing a sound statistical background. His

8Other datasets, using scientific articles, result in median tf-idf values of 0.004 (Lüdering and Winker 2016)
and 0.1 (Grün and Hornik 2011).

118



5.3 Applying Topics Models

approach (probabilistic Latent Semantic Analysis) has later been extended to Latent Dirichlet

Allocation (LDA) by Blei, Ng, and Jordan (2003). Although LDA has subsequently been

refined, e.g. time varying topics have been suggested by Wang and McCallum (2006) and

the model has been extended to allow for topic correlation by Blei and Lafferty (2007), their

underlying theoretical model remains the state of art in topic modeling up to today.

In LDA the creation of documents is described by an abstract generative process. It is

assumed that all documents in a corpus are generated from a fixed set of K different topics.

The topics consist of a set of terms w from a vocabulary V . Each term w in a document w

is generated by first drawing a topic given a vector of topic probabilities θw and afterwards

drawing a term, given its probability βk in a topic. Hence, the probability of word wi is given

by

P (wi) =
K∑
j=1

P (wi|kj)P (kj). (5.1)

In order to estimate the matrices of predicted probabilities, θ̂ = K ×D and β̂ = K × |V |,

our variables of interest, an algorithm is used to reverse the generative process. Due to the

complexity of the model, standard maximum likelihood procedures do not proof suitable.

Hence, a number of sophisticated methods have been developed to estimate the model

nonetheless. In modern applications of LDA, the original estimation algorithm (variational

expectation maximization, VEM) has largely been replaced by Gibbs sampling, a Markov Chain

Monte Carlo approach suggested by Griffiths and Steyvers (2004). Instead of estimating

the topic distribution θ and the term distribution β directly, the distribution of zi, the

assignments of words to topics is estimated. Based on these assignments of words to topics,

approximations of θ and β can be computed. In order to perform the computation, it is

necessary to make the simplifying assumptions that θ and β are random draws from the

Dirichlet distributions Dir(α) and, respectively, Dir(δ). The parameters on the Dirichlet
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distributions are chosen according to the literature (Griffiths and Steyvers 2004) and set to

α = 50/K and δ = 0.1.

In applied work, the choice of the optimal number of topics K remains an important issue.

In order to obtain an estimate for K, we apply the harmonic mean method as suggested by

Griffiths and Steyvers (2004).9 It consists of taking a number of samples as estimates for

P (w|K) from the Markov Chain, and the subsequent computation of the harmonic mean

across the values. The resulting function of the relationship between K and P (w|K) is not

smooth. Thus, simple maximization does not necessarily lead to useful results.10 However,

we end up with an unreasonably large number of topics given our data. As a consequence

the obtained topics are very narrow and difficult to interpret. Hence, we follow the pragmatic

approach by Hansen, McMahon, and Prat (2014) of choosing a lower value in order to

produce topics which are more appealing to human judgment. By setting K = 30, we take

into account that Twitter messages contain 140 characters as a maximum and the tweets in

our sample have already been pre-selected to cover a specific area, the tapering decision of

the Fed.

Following Griffiths and Steyvers (2004) the Markov Chain is constructed to converge to the

“true” distribution of zi, which is the vector of assignments of words to topics. After 2000

iterations of sequential updating, from which the first 100 are discarded, the Markov Chain is

assumed to have converged. The approximation for document probabilities θ is calculated

based on the number of times document w has been associated with topic k, measured by

the count variable ηwk , relative to the sum of all associations of document w to any topic:

θ̂wk = ηwk + α∑
k
ηwk +Kα

(5.2)

Analogous the vector of topic probabilities β is approximated from the number of times

9For an alternative procedure that determines the number of topics as a result of a trade-off between the
salience of topics and the load on an given topic see Goldsmith-Pinkham, Hirtle, and Lucca (2016).

10Griffiths and Steyvers (2004) circumvent this issue evaluating K at large steps.
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that term wi has been associated with topic k as indicated by count variable ηwi
k , relative to

the sum of all associations of any word to topic k.

β̂wi
k = ηwi

k + δ∑
wi

ηwi
k + |V |δ (5.3)

The resulting matrix of term probabilities β̂ reveals the contents of the 30 different topics,

which reflect the discussion on Twitter. Table (5.1) lists the five most frequent words of each

topic.

Table 5.1: Content of topics
Topic Most frequent words Topic Most frequent words

1 will, next, announc, yellen, increas 16 meet, FOMC, minut, call, close
2 gold, price, drop, concern, future 17 high, sampp, wont, record, asia
3 market, worri, debt, want, syria 18 dollar, forex, specul, trade, boost
4 market, good, emerg, forecast, talk 19 bernank, bank, might, chairman, back
5 market, week, ahead, tantrum, caus 20 data, soon, time, economi, depend
6 economi, reason, weak, dudley, strong 21 bullard, need, octob, inflat, possibl
7 septemb, lockhart, begin, expect, goldman 22 decis, surpris, market, post, notap
8 economist, street, expect, wall, time 23 year, decemb, evan, still, like
9 like, delay, make, policy, move 24 start, today, sept, just, june

10 risk, look, take, paush, statement 25 feder, reuter, reserv, office, gain
11 bond, keep, point, refrain, plan 26 think, wont, will, back, cant
12 view, decis, federalreser, william, georg 27 month, treasuri, purchas, yield, asset
13 talk, fear, share, fall, data 28 stock, talk, investor, market, amid
14 rate, rise, mortgag,time, interest,long 29 new, delay, busi, washington, money
15 stimulus, readi, world, shock, program 30 will, report, gross, break, bubbl

5.4 The Empirical Model

In this section we relate the discussion on Twitter as reflected in a selected number of identified

topics on U.S. asset prices. For that purpose we use a VAR model in which we include

not only information from the topics but also asset prices and macroeconomic conditions.

Because we want to model a parsimonious VAR system, we cannot include all 30 topics in
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the VAR model jointly, which would leave too few degrees of freedom for estimation. Instead,

we focus on selected topics only.

5.4.1 Selected Topics

In particular, we identify three sets of topics, which are directed towards particularly important

aspects of the assessment of future monetary policy and the tapering decision, receptively.

Each set includes two topics, Topicit and Topic
j
t . The following table summarizes the topics

we use in the estimation:

Table 5.2: Selected sets of topics

set Topici
t Topicj

t

1 “tantrum” T3 T13
“premature tightening” “delayed tapering due to global risks”

2 “QE” T11 T15
“bond market” “stimulus”

3 “evidence” T17 T20
“tight financial conditions” “data”

Figure (5.2) visualizes each of the selected topics by a word cloud, where the size of each

word in the cloud reflects the significance (probability) of the word for a given topic. While

the word list in Table (5.1) gives a broad assessment of each topic, the word clouds help

interpreting the content of each topic in light of the debate about monetary policy.

The first topic set captures the notion of the market “tantrum” occurring in 2013. Topic 3

contains the discussion of a possible tightening that is considered premature in light of the

ongoing U.S. debt crisis and the conflict in Syria, see panel (a) of Figure (5.2). Therefore,

we label topic 3 “premature tightening”. Topic 13, in contrast, see panel (c) of the figure,

reflects the discussion of a tapering decision that might be delayed due to the risks in Asian
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Figure 5.2: Selected topics

(a) Topic 3: “premature tightening’
(b) Topic 11: “bond market”

(c) Topic 13: “delayed tapering due to
global risks”

(d) Topic 15: “stimulus”

(e) Topic 17: “tight financial conditions”

(f) Topic 20: “data”
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financial markets and other global considerations. We refer to this topic as “delayed tapering

due to global risks”.

The second set reflects the debate about the U.S. bond market. Topic 11, see panel (b)

in Figure (5.2) lends itself to an interpretation in terms of the state of the “bond market”.

Likewise, topic (15) is about a general monetary “stimulus”, see panel (d).

The third set includes the debate among Twitter users about evidence-based monetary

policy decisions. Topic (17), see panel (e), highlights “tight financial conditions”. Finally,

topic (20) contains the discussion of Twitter users about incoming economic data as input

for monetary policy decisions. We label this topic “data”.

We are agnostic with regard to the signs of the effects shocks to these topics have on U.S.

asset prices and rely on the VAR model introduced below to highlight the market impact of

each topic.

The importance of the topic over time can be assessed by the matrix of topic probabilities

across tweets. In order to make meaningful interpretation possible we need to account for

the fact that the number of tweets per day is not constant across the observation period.

Thus, for each topic we calculate the mean topic probability over all tweets in a single day.

These aggregate values can easily be compared over the course of the whole sample period.

Figure (5.3) shows the frequency for each topics.

Figure 5.3: Selected topic frequencies
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Figure 5.3: Selected topic frequencies (cont.)

(c) Topic 13: "delayed tapering due to global
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5.4.2 The Evolution of Topics around FOMC Meetings

To shed light on the behavior of topic frequencies, we focus on the three most important

FOMC meeting days in our sample and order each topic according to its frequency on

pre-meeting and meeting days, respectively. Figure (5.4) shows the rank of each selected

topic on both days. Thus, we can see how the relevance of each topic changes when new

information from the meeting outcome becomes available.

It can bee seen that on all three meeting days the discussion on tight financial conditions

and the bond market gains importance. This is reflecting the fact that immediately after the

press release market commentators discuss the meaning of the meeting outcome for financial

markets. Worries on a premature tightening, in contrast, fall on meeting days compared to

pre-meeting days. This is intuitive as on each meeting in our sample the eventual tapering

decision has been delayed.
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Figure 5.4: Evolution of topics on FOMC meeting days
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Notes: We order each topic according to its frequency on the pre-meeting day and the meeting day,
respectively. The graph presents the rank of each topic on both days. The selected topics used for the

empirical analysis are highlighted by colors, all other topics are shown in gray.
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5.4.3 The VAR Model

In the empirical model each selected topic is scaled by the sum of the remaining topics. The

reason for this is that all topics must add to one. An increase in one topic frequency must be

associated with a decrease in the sum of all other topic frequencies. To gauge the relative

importance of a topic, we have to normalize it by the importance of the remaining topics.

Thus, each topic Topicnt with n ∈ (i, j) is included as the odds ratio, i.e.11

Topic
n
t = Topicnt

1− Topicnt
for n = i, j and t = 1, ..., T. (5.4)

We estimate a VAR model in order to derive the dynamic responses of asset price changes

to the two summary indicators. The reduced-form representation of the VAR is

Yt = A0 +A(L)Yt +DFOMC
t + ut for E[utu′t] = Σu, (5.5)

where A(L) reflects the matrix polynomial in the lag operator of order p, Yt is a vector

of endogenous variables and ut constitutes a white noise process with variance-covariance

matrix Σu. We also add a constant, A0, to the model. To control for monetary policy events,

we include separate dummies contained in DFOMC
t for Bernanke’s testimony on May 22,

each FOMC meeting and each release date of FOMC minutes in our sample period. Most

likely many tweets comment on FOMC meeting outcomes or releases of FOMC minutes.

We control for these days in order to see whether tweets contain information even in the

inter-meeting or inter-release day period, respectively. It is important to allow for each FOMC

event to be reflected in separate dummies in order to prevent that FOMC meetings with, say,

tightening and easing policy steps cancel out. In our discussion of the results below, we show

impulse responses derived from VAR models with and without these FOMC-related dummies.

11Using the log of the odds ratio results is almost identical results.
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The vector Yt contains the following variables

Yt =
(
Y CESI
t Topic

i
t Topic

j
t AUSt

)′
. (5.6)

In this model, Y CESI
t is the daily Citigroup Economic Surprise Index (CESI) for the U.S.

economy. The CESI is defined as the weighted historical standard deviations of data surprises,

that is, actual data releases minus the median survey expectations from the Bloomberg

survey. Thus, the index captures positive and negative surprise realizations of macroeconomic

data releases. It is important to control for data releases in our empirical model as market

expectations reflected in Twitter messages also reflect macroeconomic news. The weights of

economic indicators are derived from relative high-frequency impact on spot exchange rates.

Asset prices in the U.S. are reflected by AUSt . We use two alternative asset prices: the

10-year yield and the nominal USD-EUR exchange rate. The latter two asset prices are taken

from the St. Louis Fed’s FRED database. The yield series are fitted yields from the Adrian

et al. (2013) term structure model. Note that an increase in the USD-EUR exchange rate

implies a depreciation of the dollar. The estimated VAR model includes four lags of the

endogenous variables and is estimated on daily data for T = 139.

Estimating a VAR model in order to derive impulse response functions necessitates the

identification of structural shocks from the estimated reduced form residuals. Here we

impose a Cholesky identification on our VAR system which implies that on a given day

each variable affects only those variables ordered behind it in the VAR model. The or-

dering of the variables corresponds to the order given in the description of the model, i.e.

Y CESI
t , T opic

i
t, T opic

j
t , A

US
t . This implies that a change in Topicit, for example, has an

effect on asset prices on the same day, while a change in asset prices can affect the Twitter

topics only on the following day. We believe it is important in our context to allow Twitter

messages to have a contemporaneous effect on asset prices. The attractiveness from Twitter

as a medium of exchange stems from the speed by which users can respond to news and
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interact with others. Any information contained in the Twitter exchange should be allowed

to move markets instantaneously.

At the same time, we accept the restriction that users cannot contemporaneously respond

to asset price developments on a given day. In fact, this restrictions helps us controlling our

results for those tweets that simply comments on ups and downs in asset markets and focusing

on tweets that contain views about future policy.12 In the robustness section presented below,

we will also present results based on alternative identification schemes.

5.5 Results

In the following subsections, we present the resulting impulse response functions describing the

responses to topic shocks. In each impulse response graph, we show bootstrapped confidence

bands reflecting the 16th and the 84th percentiles of the draws. We also show the responses

from a model in which we include dummies for major FOMC events (red line) and a model

without FOMC dummies (green, dotted line). We focus on the responses of asset prices,

which are the focus of this paper.

5.5.1 Baseline Results

Figures (5.5) and (5.6) report the responses of the two selected U.S. asset prices to an

unexpected increase in the frequencies of the two “tantrum” topics. An increase in the

importance of topic 3 (“premature tightening”) leads to a strong increase in bond yields,

see Figure (5.5). A one standard deviation increase raises yields by two basis points. An

increase in the frequency of topic 13 (“delayed tapering due to global risks”), however, lowers

Treasury yields by two basis points. For the shock to topic 3 both impulse responses, the one

in red based on the baseline model and the one in green coming from a model without FOMC

dummies, exhibit virtually identical dynamics. For shocks to topic 13, however, controlling
12The problem with alternative identification schemes, e.g. sign restrictions or heteroscedasticity-based

approaches, is that we lack the theory-based restrictions needed to generate reliable impulse responses.
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Figure 5.5: Response of 10-year yields
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Notes: Yields are ordered last. The red (solid) line is the baseline result from a VAR with dummies for FOMC
meetings and minutes releases and the the green (dotted) line is derived from a VAR without dummies. The

confidence band indicates the 16th and 84th percentiles.

Figure 5.6: Response of USD-EUR exchange rate
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Notes: The exchange rate is ordered last. The red (solid) line is the baseline result from a VAR with dummies
for FOMC meetings and minutes releases and the the green (dotted) line is derived from a VAR without

dummies. The confidence band indicates the 16th and 84th percentiles.
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for FOMC events is particularly important as the green line indicated a weaker response

to the shock. The US dollar appreciates following an increase in the frequency of topic 3

(“premature tightening”) and depreciates after a shock to topic 13 (“delayed tapering due to

global risks”) as shown in Figure (5.6).

These results show that a heightened discourse of the Fed’s tapering decision, which leads

to larger shares on topics 3 and 13 in the discussion, leads to high interest rate volatility.

It is important to note that these estimated effects of the discussion on Twitter on asset

prices do not stem from changes in the macroeconomic environment that could make a policy

tightening or easing more likely. Since we control for the business cycle by including the CESI

measure, the effects are driven by views of Twitter users alone. Likewise, we dummy out

the days with FOMC meetings and releases of FOMC minutes. Thus, the results are not

driven by tweets that simply reflect the information contained in official Fed communication

on these policy days.

The asset prices responses to “QE”-related topic frequencies are shown in Figures (5.7)

to (5.8). An increase in the share of topic 11 (“bond market”) or topic 15 (“stimulus”)

raises bond yields. Hence, the discussion about both topics reflects the market assessment

that the Fed is concerned about the overheated bond market and will likely reduce its

monetary stimulus. The exchange rate response is consistent with this interpretation: the

dollar appreciates following a surprise increase in topic 11 and topic 15, respectively.

The responses to “evidence”-related topic shocks, see Figures (5.9) to (5.10), give rise to a

consistent interpretation: as the Twitter discussion of topic 17 (“tight financial conditions”)

intensifies, Treasury yields increase and the dollar appreciates. Thus, this topic reflects

the public’s understanding of the Fed’s concern about overheating financial conditions. An

increase in the likelihood of topic 20 (“data”) depresses yields and leads to a depreciation of

the dollar. The more the Twitter discussion centers around the macroeconomic environment,

the less likely an early tapering decision seems to be.
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Figure 5.7: Response of 10-year yields
T11: ’bond market’
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Notes: Yields are ordered last. The red (solid) line is the baseline result from a VAR with dummies for FOMC
meetings and minutes releases and the the green (dotted) line is derived from a VAR without dummies. The
confidence band indicates the 16th and 84th percentiles.

Figure 5.8: Response of USD-EUR exchange rate
T11: ’bond market’
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Notes: The exchange rate is ordered last. The red (solid) line is the baseline result from a VAR with dummies
for FOMC meetings and minutes releases and the the green (dotted) line is derived from a VAR without
dummies. The confidence band indicates the 16th and 84th percentiles.
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Figure 5.9: Response of 10-year yields
T17: ’tight financial conditions’

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-0.01

0.00

0.01

0.02

T20: ’data’

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-0.02

-0.01

0.00

0.01

Notes: Yields are ordered last. The red (solid) line is the baseline result from a VAR with dummies for FOMC
meetings and minutes releases and the the green (dotted) line is derived from a VAR without dummies. The
confidence band indicates the 16th and 84th percentiles.

Figure 5.10: Response of USD-EUR exchange rate
T17: ’tight financial conditions’
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Notes: The exchange rate is ordered last. The red (solid) line is the baseline result from a VAR with dummies
for FOMC meetings and minutes releases and the the green (dotted) line is derived from a VAR without
dummies. The confidence band indicates the 16th and 84th percentiles.
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The results show a long-lasting response of yields and the exchange rate to the topics that

are immediately reflecting the tapering decision, that is, topic 3 and 13. This suggests that

tweets do indeed contain information about the policy path. The other topics studied here,

most notably topic 17 and topic 20, have, at best, a short-lived impact. This is in line with

Tetlock’s (2007) finding that most stock price responses to media news is driven by noise

rather than fundamental information.

5.5.2 The Contribution of Shocks

Figure 5.11: Contribution to 10-year yields

T3: ’premature tightening’
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T13: ’delayed tapering due to global risks’
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Notes: The gray bars indicate the contribution of the topic to the evolution of bond yields. The green (dotted)
line (right scale) gives the 10-year bond yield. The horizontal axis shows the numbered days in the sample.

A historical decomposition of the baseline model for 10-year bond yields shows the contri-

bution of each topic shock to the evolution of bond yields over time. Figures (5.11) to (5.13)

present the historical decomposition for each set of topics based on the long-term interest

rate. The magnitude of the contribution is relatively small such that we have to plot the

shock contribution on a separate axis in order to visualize the bars more clearly. An increase
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Figure 5.12: Contribution to 10-year yields

T11: ’bond market’
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T15: ’stimulus’
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Notes: The gray bars indicate the contribution of the topic to the evolution of bond yields. The green (dotted)
line (right scale) gives the 10-year bond yield. The horizontal axis shows the numbered days in the sample.

Figure 5.13: Contribution to 10-year yields

T17: ’tight financial conditions’
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T20: ’data’
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Notes: The gray bars indicate the contribution of the topic to the evolution of bond yields. The green (dotted)
line (right scale) gives the 10-year bond yield. The horizontal axis shows the numbered days in the sample.
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in topic 3 (“premature tightening”) explains a large fraction of the yield increase before the

September 2013 FOMC meeting. Likewise, the steep increase in bond yields prior to the

June FOMC meeting is driven by topic 13 (“delayed tapering due to global risks”). Another

interesting finding is that topic 17 (“tight financial conditions”) is responsible for the drop in

bond yields before and after the September 2013 FOMC meeting. A negative contribution

means that the increase in topic 17 is smaller than expected, leading to a negative surprise

component. Hence, compared to the tightening of market conditions in the run-up to the

September FOMC meeting, the debate about financial conditions remains subdued.

5.5.3 Decomposing Transmission Channels

The previous result shed light on the overall effects of topic shocks. The model is not able

to disentangle different transmission channels. At the same time, unconventional monetary

policy such as asset purchases is often believed to work through two main channels: first, to

the extent different asset classes are imperfect substitutes, asset purchases by the central bank

raise bond prices and, through portfolio readjustments of investors, also other asset prices.

This channel is referred to as the portfolio balance channel of asset purchases. Second, by

purchasing assets the central bank conveys information about persistently low policy rates in

the future. This affects market expectations and, as a result, asset prices. The latter effect is

known as the signaling channel of unconventional monetary policy.

Based on an estimated term structure model, any change in Treasury yields can be

decomposed into changes in expected short rates and changes in the term premium. In the

context of quantitative easing this is particularly important as changes in the term premium

are often associated with the portfolio balance channel and changes in the expectation

component are reflecting the signaling channel (see, among others, Thornton (2012), Bauer

and Rudebusch (2014), and Wu (2014)).

To shed light on the two main transmission channels of asset purchases and, as a conse-

quence, tapering, we substitute the Treasury yield used before by the estimated expectation
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component and, as a a separate variable, the estimated term premium. All three variables are

taken from the model of Adrian, Crump, and Moench (2013).13 The results for decomposed

10-year yields are shown in Figures (5.14) to (5.16). In each figure the red and green lines are

depicting the impulse responses of the term premium. The black dotted line is the response

of the expectations component of 10-year yields to a topics shock.

Figure 5.14: Response of 10-year yields with different transmission channels

T3: ’premature tightening’
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Notes: The expectations component and the term premium are ordered second last and last, respectively. The
red (solid) line plots the response of the term premium for a VAR with dummies for FOMC meetings and

minutes releases, the green (light dotted) line depicts the response of the term premium for a model without
dummies and the black (dotted) line is the response of the expectations component of yields.

We find that the effects shown before were driven by the response of the term premium,

which exhibits a significant response to the topics shocks. The expectations component shows

a very weak response only. This difference between the responses of the two components of

bond yields is most clearly visible for the “tantrum” and the “QE” topics. This finding is

intuitive as the tapering decision of the Fed, which is discussed in our Twitter data, pertains

to the exit from asset purchases under its QE3 program and not the eventual “lift-off” of

13The fitted yields, the estimated expectation component the term premium are available at https://www.
newyorkfed.org/research/data_indicators/term_premia.html.
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Figure 5.15: Response of 10-year yields with different transmission channels

T11: ’bond market’
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Notes: The expectations component and the term premium are ordered second last and last, respectively. The
red (solid) line plots the response of the term premium for a VAR with dummies for FOMC meetings and

minutes releases, the green (light dotted) line depicts the response of the term premium for a model without
dummies and the black (dotted) line is the response of the expectations component of yields.

Figure 5.16: Response of 10-year yields with different transmission channels

T17: ’tight financial conditions’
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Notes: The expectations component and the term premium are ordered second last and last, respectively. The
red (solid) line plots the response of the term premium for a VAR with dummies for FOMC meetings and

minutes releases, the green (light dotted) line depicts the response of the term premium for a model without
dummies and the black (dotted) line is the response of the expectations component of yields.
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short term interest rates. As a matter of fact, unwinding QE is a tightening policy action that

makes an eventual “lift-off” more likely, but the question of ending asset purchases clearly

dominates the tapering discussion. Thus, our results point to a reversed portfolio balance

channel during the taper tantrum episode.

5.5.4 Including the Number of Tweets

Figure 5.17: Response of 10-year yields with number of tweets
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Notes: Yields are ordered last. The red (solid) line is the baseline result from a VAR with dummies for FOMC
meetings and minutes releases and the the green (dotted) line is derived from a VAR without dummies. The
confidence band indicates the 16th and 84th percentiles. The model includes the log of the daily number of

tweets which is ordered fourth.

In the VAR models used so far, we derived impulse responses following a shock to each

topic frequency. This shock reflects an increase in the share of a given topic on a particular

day. The model does not include, however, a measure of how much Twitter activity there

is on this particular day. It should matter whether we see a shift in topic probabilities in a

day with only 100 tweets or on a day with 10.000 tweets. The number of tweets contains

information about the attention the debate receives on Twitter. To control for the number of

tweets, we include the log-level of tweets in the vector Yt. This variable is ordered fourth,
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i.e. after the topic frequencies and before the asset price. The results for 10-year yields are

shown in Figures (5.17). We find results which are broadly similar to our baseline findings.

Thus, our findings are independent from the overall number of tweets sent on a given day.

Here and in the robustness exercises below we do not show the responses to the other shocks

to save space. All other results remain also unchanged.

5.5.5 Changing the Ordering in the VAR Model

Our identification of shocks to topic frequencies is based on the assumption that on a given

day the topic frequencies affect asset prices but not vice versa. This identifying assumption is

reflected in the ordering of the endogenous variables in Equation (5.6). To corroborate the

robustness of our results, we reverse this ordering, that is, we order asset prices second, i.e.

after the macroeconomic conditions, and the topics third and fourth. If the impulse responses

do not change, our baseline results are robust with regard to the identification assumption.

Figure (5.18) reports the impulse response of 10-year yields to shocks in “tantrum”-related

topics. As in the baseline model, bond yields rise after a shock to topic 3 (“premature

tightening”) and fall after a shock to topic 13 (“delayed tapering due to global risks”). We

can conclude that using a specific ordering of the variables in our Choleski identification

scheme does not drive our findings.

5.5.6 Exogenous Fundamentals

In our baseline model the daily proxy for macroeconomic fundamentals is ordered first, that

is, changes in fundamentals have a contemporaneous effect on all other variables. However,

with a delay of one day, changes in topics or in financial conditions are also allowed to

affect fundamentals. To prevent this latter feedback effect, we estimate a model, in which

fundamentals enter as a purely exogenous variable. They still affect all other variables
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Figure 5.18: Response of 10-year yields for alternative VAR ordering

T3: ’premature tightening’
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Notes: Yields are ordered second, i.e. before topics. The red (solid) line is the baseline result from a VAR
with dummies for FOMC meetings and minutes releases and the the green (dotted) line is derived from a VAR

without dummies. The confidence band indicates the 16th and 84th percentiles.

Figure 5.19: Response of 10-year yields for exogenous fundamentals
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Notes: Yields are ordered first, i.e. before topics. The red (solid) line is the baseline result from a VARX, i.e.
a VAR with exogenous fundamentals, with dummies for FOMC meetings and minutes releases and the the
green (dotted) line is derived from a VAR without dummies. The confidence band indicates the 16th and 84th

percentiles.
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contemporaneously, but the feedback from financial conditions on fundamentals is absent.

Thus, the VAR model becomes a VARX model

Yt = A0 +A(L)Yt +DFOMC
t +AY Y

CESI
t + ut for E

[
utu
′
t

]
= Σu (5.7)

where Y CESI
t enters with a coefficient vector AY . We restrict fundamentals to affect the

endogenous variables contemporaneously, that is we do not include lags of the exogenous

regressor. The results, see Figure (5.19), suggest that our results are also robust with respect

to the treatment of the macroeconomic fundamentals.

5.6 Conclusions

The expectations about future monetary policy matter for asset prices. The process in which

expectations are formed, however, is opaque. A key contribution to expectations formation is

the public debate about future monetary policy among households and investors. This paper

dissects the debate about monetary policy for a period with large swings in policy expectations

- the “taper tantrum” episode in 2013. Based on a large dataset containing all Twitter

messages on the Fed’s unwinding of asset purchases (“tapering”) we use computational

linguistic methods (LDA) to slice the debate into different topics. The frequencies of selected

topics are then modeled in a VAR framework. We show that shocks to selected topic

frequencies have significant effects on U.S. bond yields, exchange rates and stock prices.

The results are robust to the specification of the VAR model and suggest that the discourse

about policy in social media matters for asset prices. With the help of social media we

can shed light on the black box of expectations formation, that is, how people share and

comment on information and how an aggregate market view evolves. For applications for

which expectations play an important role, such as monetary policy, asset pricing and central

bank communication, social media offers interesting opportunities. In particular, questions
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related to central bank communication and expectations management, respectively, could be

addressed by using high-frequency social media data.

In future research the cross-section or network dimension of the data can be used. The

present paper employs daily aggregates of the Twitter exchange. It might also be fruitful

to exploit the high-frequency flow of information in the network of Twitter users and the

resulting formation of expectations.
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Abstract

It is conventional wisdom that knowing the right people is essential for one’s career, which

is supported in the literature on social capital. However, the empirical evidence in this field

remains ambiguous. While the literature recognizes that “connections” certainly help finding

any job at all, it remains unclear if there are long-term career benefits.

While it is difficult to record a network structure in most industries, in the adult film

industry collaborations between performers are easily observed. Consequently, a collaborative

network can be constructed for which centrality measures can be calculated in order to

estimate the effect of a person’s centrality on individual success. Unfortunately, success is

not easily observed either. Hence, in this manuscript, the survival in the industry is used as a

proxy for professional success. This assumption is justified by the economic argument that,

in the absence of lock-in effects, performers will remain in the industry as long as it remains

profitable. The profitability will not only depend on monetary aspects, but, in addition to

economic costs, it takes potential costs from loss of reputation and personal well-being into

account.

The research at hand stands out by pioneering the use of centrality measures in duration

models which, to the best of my knowledge, is a novel approach in the field. The results

indicate that there is a strong correlation between network centrality and industry survival for

the adult film industry.
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6.1 Introduction

It is widely accepted that networking is an important aspect to get ahead within ones

career. There is a whole industry existing around the idea of facilitating networking between

individuals. Online Social Networks, in particular career oriented ones like Xing and Linkedin,

are the most visible intermediaries in this industry, which promise to formalize the social

interaction and allow people to exploit this important resource more efficiently.

The importance of a social network (in the interpersonal sense) for professional success is

an integral part of social capital theory (Lin 1999a). It has provoked a substantial amount of

research in economics and sociology. The relevant sociological literature is summarized by

Gorman and Marsden (2001), who document the empirical evidence to be inconclusive whether

networking leads to any long lasting advantages. However, in the short run networking seems

to be beneficial as it helps to find any job at all (See Granovetter (1995) for a discussion and

recent evidence by Brady (2015)). Moreover, it appears to be problematic that a majority

of studies work on cross-sectional data and make inference about dynamic developments.

Wolff and Moser (2009) who study the benefit of networking from a sociological point of

view based on longitudinal data are a noteworthy exception to this.

The early economic literature on the effects of social networks is surveyed by Ioannides

and Loury (2004). Similar to the sociological literature, the authors find ambiguous evidence

regarding the effect of using personal contacts to find a job. Their findings suggest that job

specificities may be determining the sign of the effect. More recent findings by Brown, Setren,

and Topa (2016) and Burks et al. (2015) find small positive effects on wages. Fernandez,

Castilla, and Moore (2000) find it to be particularly beneficial for the employer rather than

for the employee to utilize referrals in their hiring process.

In empirical work it appears to be a central issue that personal interactions are hard to

track in most industries and researchers therefore often rely on surveys. An exemption to

this is the film industry, where joint movie appearances are easily observed. Early examples
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of using screen credit data includes Faulkner and Anderson (1987), these information on

collaborations have subsequently been used in descriptive studies of the film industry (Ahmed

et al. 2007; Herr et al. 2007). Further, the collaborative network of the film industry has

been used to illustrate the small-world experiment, which became part of popular culture

with the advent of “Six Degrees of Kevin Bacon” 1 in 1994. An actor’s Bacon number is the

collaborative distance from Kevin Bacon. Older and more relevant for economists is the Erdös

Number, a similar measure for scientific publications. The first record of the Erdös number

dates back to Goffman (1969). A person’s Erdös number measures the collaborative distance

between himself and the Hungarian mathematician Paul Erdös.2 Despite the popularity of

these measures, the selection of Erdös and Bacon as reference points in the collaborative

networks is rather ad hoc. At least in the case of Bacon we know that he is far from

being the most central person in the actor network.3 More “sensible”, classical centrality

measures of prominence in the collaborative network in economics are provided by RePEc

(http://collec.repec.org). To my knowledge these data are still waiting to be used

in an economic publication. Research regarding the relationship between networking and

professional success in academia has to a large extent been based on the impact of co-

authorship networks on “citation performance” (Abbasi, Altmann, and Hossain 2011; Bordons

et al. 2015; Cimenler, Reeves, and Skvoretz 2014). The results indicate that centrality is

correlated with the author’s publication performance measured by their g-index (Egghe 2006).

However, in the light of the existence of so called “citation clubs” (Kostoff 1998), where the

same authors regularly cite members of their clubs due to sympathy, friendship or strategic

career considerations, problems of endogeneity become likely in these type of settings.

My contribution is primarily a methodological one, but it also uses an interesting set of

1https://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon accessed 2015-08-03.
2My own Erdös number is four, which I obtained through my recent collaboration with Peter Winker
(3). Winker had previously collaborated with Dennis K. J. Lin (2), who in turn has a joint publication
with Erdös coauthor Gutti Jogesh Babu (1). (Determined using http://www.ams.org/mathscinet/
collaborationDistance.html)

3http://www.randalolson.com/2015/03/04/revisiting-the-six-degrees-of-kevin-bacon/ ac-
cessed 2015-08-03.
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6.1 Introduction

novel data. In order to address the question whether collaborating with the “right” people

will lead to “professional success”, I combine centrality measures derived from social network

analysis with methods of survival analysis. To the best of my knowledge, this combination of

methods is a novel approach and has not been used in economics so far.

The adult film industry, which is the subject of this analysis constitutes a classical freelancer

economy. Performers are usually employed on a project basis. In that respect my research

is similar to Nadler (2016), who analyze the hiring patterns of lightning technicians and

grips (rigging technicians on a film set) on film sets. As a first step I construct a network

of the adult film industry, where personal interactions are easily observed. From this rather

descriptive exercise, the position of each performer in the industry is obtained. In a second

step these centrality measures are used as a proxy for connectedness in an empirical analysis

to address the central question whether being connected is beneficial for professional success.

Contrary to the movie industry, where statistics about box office revenues are published,

there are no information on the revenues from adult films or other direct measures of success.

Hence, this paper relies on survival in the industry as a measure of economic success and

argues that one person stays in the industry as long as (economic) benefits exceed costs.

The latter are not limited to financial burdens but also include social stigmatization and

marginalization resulting from involvement in the industry. Hence, a person will only remain

in the industry if the condition holds that expected utility is larger than expected costs:

Et(Ut+1) > Et(Ct+1). (6.1)

While there is ample evidence that individuals remain in a position longer if they obtained

the position through networking, it becomes a much better proxy for success if one considers

the whole industry and pattern of freelance employment.

The particularities of duration data require the use of specialized econometric methods:

survival analysis. The application of this method has some tradition in economics (Kiefer
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1988) and is widely used in the field of industrial dynamics (Mata and Portugal 1994; Disney,

Haskel, and Heden 2003; Buenstorf 2007), employment (Hunt 1995; Card, Chetty, and Weber

2007; Kuhlenkasper and Kauermann 2010) and education (Edwards and Ureta 2003; Gury

2011).

The remainder of the paper is organized as follows: Section 6.2 covers the theoretical

background. The adult film industry and the dataset used in the analysis are portrayed in

more detail in Section 6.3. Section 6.4.1 and 6.4.2 are concerned with the definition of the

two concepts success and being connected. In Section 6.5 the survival model is employed to

analyze the effect of centrality for success. The results are discussed and put into perspective

in Section 6.6 before Section 6.7 closes with a conclusion.

6.2 Social Networks in the Theory of Social Capital

In an early definition Bourdieu (1983, own translation) described social capital as encompassing

“the entirety of present and potential resources, which are connected to the possession of a

durable network of more or less institutionalized connections of mutual acquaintance and

recognition. In other words, these resources are derived from membership of social group.”

Subsequently, the concept of social capital has been extended by various authors to include

several means or services which a society provides for its members, including institutions, a

feeling of “belonging” as well as social interaction. Lin (1999a) is one attempt to structure

these different concepts along several dimensions.

One strain of the sociological literature, dating back to Granovetter (1973) and Granovetter

(1983), analyses the structure of a social network arguing that it is important to have a large

social network to derive the largest benefit. This kind of thinking gives rise to the “Strength

of weak ties” argument (Granovetter 1973). It says that it is the weak ties between people

that are of importance for individuals. Weak ties exist between colleagues, teachers and

students, and acquaintances. In contrast, close friends and family members are connected
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through strong ties. The argument is that individuals connected through a strong link are to

a large extent connected to the same people. However, an individual i to whom a person j is

connected through weak links only, likely has strong links to persons outside of the immediate

neighborhood of j. Hence, a single weak link between i and j increases the size of the social

network of i, and hence access to information, by a larger extent, than a single strong link to

a close friend f whose network largely overlaps.

A competing approach, the social resource theory, developed by Lin (e.g. described in

Lin 1999b), argues that resources are contained inside a social network, which enables an

individual to access the resources through the network. Consequently, it is not only important

how the network is structured but also with whom a person is connected.

Whether it is link strength or its destination, there is an agreement that social capital is a

resource on which an individual can draw upon through the usage of a social network. This

research takes up both theoretical concepts in the empirical estimation, considering not only

own centrality (Granovetter) but also the centrality of the persons in the neighborhood (Lin),

as sources for potential success.

The economic debate is concerned with the value of a social network in the narrow sense

as a mean to facilitate the exchange of information which is the basis for the research at

hand. An early application in labor economics is Montgomery (1991), who shows that in a

labor market with adverse selection, well-connected workers are better off than those without

large social networks, because firms rely on referrals for hiring to overcome adverse selection.

Hence, an individual without contacts to a company would need to exercise substantial

effort for signaling and self-marketing. More contemporaneous theoretical works include

Calvó-Armengol and Jackson (2004) and Ioannides and Soetevent (2006), who explicitly

model a network of social contacts and analyze the effect of networking on employment,

wages and resulting inequality.
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6.3 The Adult Film Industry

The adult film industry is geographically centered in San Fernando Valley, located 30km from

Los Angeles. Danta (2009) estimates that in 2009 about 71% of the adult film industry was

located in “the valley”, with an additional 12% in other parts of the US and only 2% of the

industry located abroad. The location provided excellent conditions for the industry, due to

the proximity to Hollywood (and thus access to fortune seeking young actors) and the 1988

ruling of the California Supreme Court4 that the production of adult films is protected as free

speech under the First Amendment.

Figure 6.1: Number of Films per Year
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Statistics on adult entertainment are scarce and accuracy of the available data is highly

debated. The industry’s trade journal, Adult Video News (AVN), estimated 12.8 billion US$

4The People v. Harald Freeman: see https://en.wikipedia.org/wiki/People_v._Freeman accessed
February 1st 2016.
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of retail sale in the Adult Entertainment Subsector (as cited in Edelman 2009) for the year

2006.5 The largest part of the proceeds is accounted for by “Video sales and rentals”. Still,

the revenue from video sales were 15% less than in the previous year, which is in line with

the data used in this paper, where the number of films released per year have been declining

since 2008 (see Figure 6.1).

The analysis at hand uses a dataset obtained from the Internet Adult Film Database

(iafd.com). It consists of 7001 female and 2886 male performers who appeared in 102,871

films (which excludes compilations and web scenes). A comprehensive overview on the wealth

of the data on IAFD.com can be found in Millward (2013), who goes in great detail about

the distribution of places of birth, measurements and hair color. The data used here was

downloaded in the last quarter of 2013. Despite the extraction date in 2013 there were

already three films included which were to be released in 2014. Although the first film in the

database was published in 1951, the analysis focuses on the period between 1970 and 2013,

when a sufficient number of films appeared every year. The number of films per year are

shown in Figure 6.1. One observes that the number of films released was growing from the

beginning up until 2007, when 6821 films were published. The successive demise can likely

be explained by the substitution of DVD-style releases with Internet pornography (for the

history of the interplay between pornography and technology see Coopersmith 1998), which

is not (to the same extent) captured in the database. To avoid issues of selection bias all

web scenes are excluded from the analysis.

Figure 6.2 shows the network structure in 2013. In the graph, nodes represent individual

performers which were active in that year. Two performers are connected by an undirected link

if they appeared together in at least one film in 2013. While the largest share of female (red)

performers are centered in the middle, there are a few communities of performers completely

disconnected from the main network. Moreover, it is interesting to see that there are also

5For the debate on the validity of this number see Rich (2001), Ackman (2001) and Silverstein (2006).
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Figure 6.2: Visualization of the performer network in 2013

Note: Red indicates a female performer, blue indicates a male performer. A link between two dots indicates a

joint film appearance.
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groups consisting largely of men (blue) constituting the gay pornography industry sector.

There are only very few individuals who connect the homosexual and heterosexual markets.

The question of data quality is a delicate one. In particular, information provided by the

actors and studios on performer characteristics are potentially flawed. It is not unlikely that

the year of birth is misreported for marketing purposes, as it remains questionable if performer

Rose Agree really joint the porn industry at the age of 87. In total there are 11 performers

who joined the industry above the age of 65 and 50 who were below the age of 18. The

latter cases can roughly be split in three groups. There are at least two cases were performers

were added to a film later when it was re-released on DVD, e.g. resulting in the (obviously

wrong) calculated age of 8, even though the scenes were filmed when the actress was in her

twenties. There are also the cases of Tracy Lords (born 1967) and Alexandra Quinn (born

1973) who were later confirmed to be underage at the time of making their first films, which

prompted legal action. The recent cases mostly are young Brazilian men, who state to be

younger than 18. Compared to the age, the information on which actor appeared in which

film is likely much more reliable.

Figure 6.3: Kaplan-Meier estimate for survival of male and female performers
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Figure 6.3 shows the Kaplan-Meier (Kaplan and Meier 1958) estimates of the survival

function for male and female performers, the lines indicate the share of performers remaining

in the industry after a given number of years. The graph shows that more male than female

performers drop out within the first three years. Afterwards, the “survival” of men is higher

than that of their female counterparts. A large gap arises after ten years, when only about

30% of women and 50% of men remain in the industry. There are no observations of women

who have been in the industry for more than 40 years.

6.4 Concepts of Success and Connectedness

This section will further elaborate on the two central concepts and their operationalization

in this paper. It starts out with the discussion of success and afterwards elaborates on the

metric of network centrality used in this analysis.

6.4.1 Survival as Success

Due to absence of direct measures of economic success, like sales, box-office revenues and

actors salaries, I adopt the notion that remaining in the business is a success by itself. Based

on economic intuition one would argue that a performer leaves the industry, if an activity

is no longer worthwhile economically. These changes could result from increases in costs,

reduced revenues or arising outside options. Hence, survival in the industry may serve as a

proxy for economic success.

For this argument to hold, an actor needs to be, at least to a certain extent, rational and

has to have a good understanding of the costs associated with his involvement in the adult

film industry. These are not necessarily limited to financial costs, but also include societal

costs resulting from social stigma or adverse effects on personal health.

Further, the absence of lock-in effects must be assumed. These exists in industries with

high fixed costs, which — at least financially — is not the case in the adult film industry.
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Given an imperfect labor market, lock-in effects could also stem from the lack of outside

options due to high search costs.

6.4.2 Network metrics

As outlined in the discussion on the theoretical nature of social networks, the career effects

of centrality is likely twofold. On the one hand a person can be central in the network herself

and thus be well connected. On the other hand it may also be beneficial to be linked to a

central person, without necessarily having a very prominent role on the network oneself. Both

effects are included in the analysis and measured by betweenness centrality of the performer

herself and the centrality in her neighborhood.

Betweenness centrality

The position of a performer within the network is measured by betweenness centrality. It has

a meaningful finite value for vertices being outside the network (0), as it is a measure of

the ratio of “shortest pathes” leading through a given vertex. The alternative “closeness”,

measuring the number of steps to every other vertex, would imply a value of infinity for vertices

outside the network, which would pose difficulties, when using the data in a subsequent

regression analysis.

According to Freeman (1978) the betweenness centrality (CB) of node i is given by

CB(i) =
∑

k 6=j;i/∈{k,j}

Pi(k, j)
P (k, j) (6.2)

P (k, j) is the total number of shortest paths between the nodes k and j. Pi(k, j) indicates

the number of shortest paths between k and j leading through node i. Hence the sum over

Pi/P for all k and j gives the share of shortest paths leading through node i.

Figure 6.4 (a and b) shows that betweenness centrality (CB), indicated by the size of the
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Figure 6.4: Visualization of Betweenness Centrality
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vertices, for identical shaped networks is influenced by network size. Hence, betweenness

(CB) must be normalized according to

Cnorm
B (i) = CB(i)

(n2 − 3 · n+ 2)/2 . (6.3)

The denominator is the maximum possible value for Cb, which is the betweenness value in a

star-shaped network (Freeman 1977) as a function of the number of nodes (n) in the graph.

As shown in Figure (6.4) the vertex at the center of a star-shaped network (a and d) has the

maximum betweenness score, given a constant number of nodes, compared to other shapes.

This is rather obvious if one compares (a) and (c) in Figure 6.4, which consists of four nodes

each. In the first case all shortest paths between vertex 2, 3 and 4 lead through the central

vertex 1. In (c) only two shortest paths lead through vertex 1 (3–2, 4–3).

Neighborhood

The neighborhood of a vertex i consists of all the other vertices h it has a direct connection

with. Henceforth, the maximum neighbor centrality of a vertex i (MNCi) is given by

MNCi = max
h∈N(i)

Cnorm
B (h) (6.4)
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Figure 6.5 visualizes an example of this measure in a graph. The vertices are labeled

with their normalized betweenness scores. For example, the MaxNeighborCentrality is to be

determined for the black vertex. Among the direct neighbors (grey) the square shaped vertex

has the highest value for betweenness (0.23 > 0.09 > 0.05). Hence, the MNC for the black

node is 0.23, the betweenness value of the square neighbor.

Figure 6.5: Network showing MaxNeighborCentrality
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6.5 The Relationship between Networking and Success

The empirical analysis in this section examines the relationship between the probability to

leave the industry in the next period (hazard rate), a number of variables indicating the

position of an individual in the social network and control variables for gender and age. Table

6.1 provides the descriptive statistics for the dataset. “Event” is a dummy variable indicating

if the person has left the industry yet – the mean of 0.571 tells us that about 57% of the

actors in the sample had left the industry in 2013. Year of birth indicates the year of birth,

StartAge the age at joining the industry. StartYear and EndYear show the period of activity

in the adult film industry. If the person is male, the dummy variable male is equal to 1.

Centrality, MNC and the “disconnected” dummy are measures of the performers position in

the network.
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Table 6.1: Summary Statistics

mean sd median min max

Event 0.571 0.495 1.000 0 1

Year of Birth 1977.180 10.978 1980 1900 1995

StartAge 24.488 6.671 23.000 * 87

StartYear 2001.668 7.983 2004 1951 2013

EndYear 2007.405 6.736 2010 1969 2013

male 0.265 0.441 0 0 1

Centrality 0.001 0.005 0.000 0.000 0.187

MNC 0.018 0.020 0.012 0.000 0.187

disconnected 0.033 0.179 0 0 1

Note: Variables in the top panel are constant across time, whereas the variables in the bottom panel are time

varying. For the latter ones descriptive statistics are calculated over all observations in individual and time

dimension.

*: Calculated minimal starting age is 8 (Person was added to the film years later). Confirmed minimum age

when joining the porn industry is 16 (Traci Lords, Alexandra Quinn).

In order to analyze the duration data, it is necessary to resort to methods of survival

analysis for two reasons: Duration data has a very characteristic distribution a) it is never

negative and b) it is usually not normally distributed. Additionally, the methods can be used

to deal with censored and truncated data. The most widely used model is the Cox regression

models, as it appeals to many applied researchers, because the semi parametric nature does

not require any assumptions about the functional form of the (unknown) baseline hazard.

The hazard function in a Cox model is given by:

h(t, x) = h0(t)eβ·x (6.5)
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The unobservable baseline hazard h0(t) is the risk to experience an event in the absence

of any effects of the covariates. As usual x is a vector of explanatory variables, and β is a

vector of the associated coefficients. A common approach is to interpret eβ̂x as the ratio of

hazards of two individuals differing by one unit in x.

The model makes a proportionality assumption for the hazards, which means that the effect

of a covariate can not change over time. One should note that time-varying covariates and

non-proportional hazards are two different extensions of the Cox model, even though both are

deemed “extended” Cox models. However, both extensions, allowing for time varying values

and/or time varying effects of covariates, can be incorporated in the Cox model. While it is

straightforward to introduce a duration dependence for the Xs through episode splitting, it

may sometimes be difficult to come up with the “correct” functional form for the duration

dependence of the βs if one cannot come up with a theoretical explanation for the duration

dependence. However, if the functional form is found the duration dependence is simply

introduced as an interaction effect with the function of time.

However, according to Allison (2010, p. 422) the effects of violating the proportional hazard

assumption are, depending on the research question, often not as grave. The violation of the

assumption for a specific covariate would mean that the coefficient represents “some sort of

average effect” over the period of observation.

An alternative approach, popular in applied work, to circumvent the problem of non-

proportional hazards is the use of parametric survival models. On the downside the fully

parametric survival models come with their own assumptions which are at least as restrictive

as the proportional hazard assumption of the Cox regression model. They assume that the

distribution of survival times is known, e.g. from previous research. The simplest form of

hazard function is obtained for the so called exponential model, which only depends on the

coefficients and covariate values. The more general Weibull model, allows for a parameter σ

different from 1 on the log-exponential distribution of the error terms. Hence, the hazard
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function becomes:

h(t, x,β, λ) = λγtλ−1ee−λβ1x (6.6)

with γ = e−β0/σ (6.7)

and λ = 1/σ (6.8)

The shape of the hazard function is usually reported by providing the shape (λ) and scale

(γ) parameters, which are functions of σ, “the variance-like parameter on the log-time scale”

(Hosmer, Lemeshow, and May 2008, p 261). The fully parametric nature has the advantage

that the model can be estimated by full maximum likelihood, in contrast to the partial

likelihood estimation of Cox models. Additionally, one can obtain fitted values to predict

survival times.

In Table 6.2 coefficients for five differently specified survival models are presented. The

risk to leave the industry in the following period is explained by being male, startage (age at

the time of joining the industry), MNC (the maximum centrality value among the neighbors),

a dummy to account for disconnectedness from the network, and own centrality. Column

(1) to (3) are semi-parametric Cox regression models. Model (1) is the base specification,

which is altered in Model (2) by stratification based on gender (i.e. allowing for men and

women to differ in their baseline hazard), justified by the fact that the Kaplan-Meier graph

(Figure 6.3) showed that the two groups (male and female) were affected differently. In (3)

interaction terms with time (indicated by ·t) are introduced in order to reflect the issue of

non-proportionality. The multiplication of the MNC value with the time (observation time

lies in the interval [1,42]) causes the smaller size of the coefficients. Column (4) and (5) are

fully parametric hazard models, where the functional form of survival times is assumed to

follow a Weibull and exponential distribution respectively. In order to preserve comparability

with the Cox models the parametric models are also presented in their proportional hazard

notation, thus the signs of the coefficients retain their interpretation. Using a likelihood ratio
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Table 6.2: Results (Survival Models)

Cox parametric

prop. hazards prop. hazards
strat. strat. & TT Weibull exponential

(1) (2) (3) (4) (5)

male −0.307∗∗∗ −0.337∗∗∗ −0.229∗∗∗

(0.034) (0.034) (0.034)

StartAge 0.014∗∗∗ 0.014∗∗∗ 0.025∗∗∗ 0.014∗∗∗ 0.013∗∗∗

(0.002) (0.002) (0.003) (0.002) (0.002)

MNC −20.906∗∗∗ −20.834∗∗∗ −15.238∗∗∗ −18.751∗∗∗ −20.194∗∗∗

(1.458) (1.459) (2.153) (1.427) (1.442)

centrality −1,730.909∗∗∗ −1,728.950∗∗∗ −2,117.128∗∗∗ −1,646.382∗∗∗ −1,608.111∗∗∗

(78.680) (78.723) (114.598) (76.170) (76.170)

disconnected 0.174∗∗∗ 0.162∗∗∗ 0.167∗∗∗ 0.203∗∗∗ 0.123∗∗

(0.063) (0.063) (0.063) (0.062) (0.062)

StartAge·t −0.002∗∗∗

(0.0005)

MNC·t −0.896∗∗∗

(0.285)

centrality·t 55.260∗∗∗

(10.062)

log(scale) 2.253∗∗∗

(0.040)

log(shape) 0.306∗∗∗

(0.010)

Observations 51,686 51,686 51,686 51,686 51,686
R2 0.058 0.054 0.055
Max. Possible R2 0.789 0.764 0.764
Log Likelihood −38,610.690 −35,852.540 −35,829.740 −14,829.660 −15,227.250
LR Test 3,085.291∗∗∗ 2,857.632∗∗∗ 2,903.237∗∗∗ 2,965.14∗∗∗ 2,767.36∗∗∗

(df = 5) (df = 4) (df = 7) (df = 5) (df = 5)
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors in parenthesis
strat: model uses straticiation, allowing for the baseline hazard to differ for male female performers.
TT: interaction with time is included
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test it can be shown that the Weibull model provides the better fit to the data than the

exponential model.

The coefficients in a survival model represent the conditional change in the risk to experience

an event (e.g. leaving the industry) in the following year. Both variables representing the

network (centrality and MNC) are significant and lower the probability to experience an

event (i.e. drop out of the industry) in the following period. While the centrality of the

neighbor has a rather small effect, there is a large effect of own centrality on the survival.

Being disconnected from the network increases the risk to experience an event. These results

are consistent across the different specifications of the survival model, which gives strong

support to the hypothesis that having worked with well-connected people and being central

in the network helps ones own success. As expected from the descriptive work the risk is

reduced for male performers and is increasing in startage. While the results appear robust

across all specifications, the model explains only a fraction of the variation in the hazard

rate. Potential further factors influencing entry an exit in the adult film industry include the

social background including heritage, upbringing and outside options, for which information

is scarce.

As the size of the effects appear to be similar across model specifications, the effect sizes

are discussed exemplary for model 1. Figure 6.6 shows the relative hazards for the variables

of interest. The top panel shows the relative hazard in comparison to a person with median

centrality. To aid readability in the light of the skewed distribution only the interval between

minimum and mean is shown. For a person being twice as central as the median performer

the relative hazard is reduced by about 10%. This increase in centrality is rather small.

Instead of 4× 10−5 of all connections in the network running through the node, 8× 10−5 of

all connections would run through the node. Due to the skewed distribution the median and

the mean lie rather far apart in distribution. Hence, the relative hazard at mean (0.0022)

centrality is reduced by over 90%, compared to the median.

Considering the effect of MNC in the middle panel (showing the whole interval minimum
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to maximum), the effects are strong. Increasing ones own MNC by about 3 percentage points

will reduce the hazard relative to the median to half. This is a substantial change considering

that the maximum lies at 18,7%.

The bottom panel shows the effect of the age at which the performer joins the industry.

The risk to leave the industry in the following year increases by 25% when the performer

starts at 33 instead of 18.

A potential critique concerns the question of endogeneity in the survival models employed.

It is no guaranteed that the causality runs from centrality to the likelihood to leave the

industry. Unfortunately, there is little one can do in terms of refined estimation techniques as

there is a lack of established methods for using instrumental variables in duration models.

Otherwise the position in the network could be instrumented by the film studios. However,

the problem might not be as severe as it appears on first sight. Taking a closer look at the

construction of the network one realizes that the network is not accumulated over time. The

network at any given time consists of the collaboration in that year only. Additionally, there

is a small time lag of one year between the possible event (in t+1) and the value of the

covariate value (in t).

6.6 Discussion

The results found in the empirical analysis are rather strong compared to the empirical

literature (Brown, Setren, and Topa 2016; Burks et al. 2015; Gorman and Marsden 2001).

However, several studies show that, while networking does not necessarily lead to good jobs,

it generally helps to find any job at all (Gorman and Marsden 2001, p. 485). Whether the

eventual returns are positive or negative may depend on the specific characteristics and the

“quality” of the position in question.

The evidence at hand supports the argument that social capital is indeed important for one’s

professional success. Both measures, own centrality and the centrality of the collaborators,
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Figure 6.6: Effects of Coefficients
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6.6 Discussion

have a significant negative impact on the probability to leave the industry. The effect of own

centrality is larger by several magnitudes than the effect of the position of the collaborator in

the network. These findings hint at that it is easier to utilize resources from ones own social

network rather than relying on a person in ones neighborhood, with whom one may only be

loosely connected to, for the social network.

Obviously, the measure of success used in the paper at hand differs from those used in

the literature, where the measures are usually very direct, e.g. pay rises and promotions. An

argument brought up in defense of the empirical literature in Granovetter (1995, pp. 153–154)

is that a good initial social network yields an even larger number of ties in the long-term. Thus,

the use of social ties today yields even more long-term benefits rather than the immediate

outcome. This argument is a strong point in favor of survival analysis, which looks at the

lifespan of activity rather than immediate pay-offs.

The adult film industry might be different from other industries. Long contracts are rather

unlikely and the data shows that performers appear in films produced by different studios

over their career. Hence, one should ask the question whether the results hold any external

validity. I argue that similar conditions also exists in other industries which are characterized

by a freelance structure like the “ordinary” film industry, scientific collaborations and (to

some degree) the music industry.

From a purely econometric perspective, there is no strong argument in favor of a causal

relationship. It may well be that one’s own centrality, is influenced by survival in the industry.

The argument becomes less plausible when considering the centrality of the most prominent

“partner” a performer appeared with in a movie: Does someone appear in films with more

prominent people the longer he is in the industry? I would argue that in pornography this is

not necessarily the case, as there is always a demand for new “faces” (Slattery 2001, p. 243).
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6.7 Conclusion

In this paper I have presented empirical evidence on the relationship between networking and

professional success. The study is based on a novel dataset on the adult film industry. To the

best of my knowledge, it is also the first work that combines survival analysis with methods

from social network analysis. It is a drawback of survival analysis that it is difficult to deal

with endogeneity, as no established IV-method exists for survival models. Nonetheless, there

is consistent evidence, robust over all specifications, that adult performers remain longer in

the industry, thus are more successful if they are well connected by collaboration with central

actors in the industry and/or are very central themselves. As expected the age at joining the

industry has a negative effect on the time active in the industry.

While there is strong support in favor of a positive relationship of networking and success

in the analysis, one might expect the adult film industry to be substantially different from

other industries. Consequently, one should exercise caution when discussing the external

validity of the results. While there is a large body of literature with ambiguous results on

various industries and obtained with different methods. It might be wise to consider applying

the same method to other freelance industries (e.g. academia), to confirm the findings or

determine how the adult film industry differs from other fields.
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7 Concluding Remarks

The previous five chapters constitute my research on the usage of unconventional datasets in

order to address questions arising in economic research, which are difficult or expensive to

answer when relying on official statistics or the collection of own survey data.

One cross-cutting issue of the individual papers is the complexity of the data used. In

Chapter 2 the raw data was immensely large in size, as a consequence I had to resort to

sampling, aggregation and outside-sorting. After this preparatory step the aggregated data

could be analyzed using established methods in order to replicate results from the literature.

In Chapter 4 the scanning and OCR of 60 years of a scientific journal led to long processing

times and manual cleaning. Afterwards, Latent Dirichlet Allocation was used to quantify the

content of the whole corpus of articles. The application of LDA yields topic weights which

can subsequently be employed as a variable in a conventional regression analysis. Analyzing

the network data in Chapter 6 the data is not very large in terms of size, but it is inherently

complex due to the high number of linkages between the different nodes in the network.

In terms of methodology my research pioneered the combination of methods which – to

the best of my knowledge – have not been used jointly so far. This includes the combination

of social network analysis as well as the application of simultaneous equations models to

multiple imputed datasets. Moreover, topic models have seldom been used in conjunction

with short tweets. Thus, a lot of fine tuning of parameters and procedures was necessary.

It turns out that the analysis of unconventional data offers new insights in old debates and

therefore holds a large potential for the future, requiring creativity and a good understanding

of empirical methods.
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