I F I G
RESEARCH
REPORT

Institut fiir Informatik

JLU GieBen

ArndtstraBe 2

D-35392 Giessen, Germany
Tel: +49-641-99-32141

Fax: +49-641-99-32149
mail@informatik.uni-giessen.de

www.informatik.uni-giessen.de

INSTITUT FUR INFORMATIK

@

ITERATIVE ARRAYS WITH SMALL
TiME BOUNDS

Thomas Buchholz Andreas Klein
Martin Kutrib

IFIG RESEARCH REPORT 9906
Avugust 1999

JUSTUS-LIEBIG-

UNIVERSITAT
GIESSEN

IFIG RESEARCH REPORT
IFIG RESEARCH REPORT 9906, AuGcusT 1999

ITERATIVE ARRAYS WITH SMALL TIME BOUNDS

Thomas Buchholz! Andreas Klein
Martin Kutrib?

Institute of Informatics, University of Giessen

Arndtstr. 2, D-35392 Giessen, Germany

Abstract. An iterative array is a line of interconnected interacting finite automata.
One distinguished automaton, the communication cell, is connected to the outside
world and fetches the input serially symbol by symbol. Sometimes in the literature
this model is referred to as cellular automaton with sequential input mode. We
investigate deterministic iterative arrays (IA) with small time bounds between real-
time and linear-time. It is shown that there exists an infinite dense hierarchy of
strictly included complexity classes in that range. The result closes the last gap in
the time hierarchy of TAs.

CR Subject Classification (1998): F.1, F.4.3, B.6.1, E4

'E-mail: buchholz@informatik.uni-giessen.de
2E-mail: kutrib@informatik.uni-giessen.de

Copyright (© 1999 by the authors

1 Introduction

Devices of interconnected parallel acting automata have extensively been in-
vestigated from a computational complexity point of view. The specification
of such a system includes the type and specification of the identical automata,
their interconnection scheme (which can imply a dimension to the system), a
local and/or global transition function and the input and output modes. One-
dimensional devices with nearest neighbor connections whose cells are deter-
ministic finite automata are commonly called iterative arrays (IA) if the input
mode is sequential to a distinguished communication cell.

Especially for practical reasons and for the design of systolic algorithms a se-
quential input mode is more natural than the parallel input mode of so-called
cellular automata. Various other types of acceptors have been investigated
under this aspect (e.g. the iterative tree acceptors in [8]).

In connection with formal language recognition IAs have been introduced in
[7] where it was shown that the language family accepted by real-time IAs
forms a Boolean algebra not closed under concatenation and reversal. In [6]
it is shown that for every context-free grammar a 2-dimensional linear-time TA
parser exists.

In [9] a real-time acceptor for prime numbers has been constructed. Pattern
manipulation is the main aspect in [1]. A characterization of various types
of TAs by restricted Turing machines and several results especially speed-up
theorems are given in [10, 11, 12].

Various generalizations of IAs have been considered. In [15] IAs are studied in
which all the finite automata are additionally connected to the communication
cell. Several more results concerning formal languages can be found (e.g. in
[16, 17, 18]).

In the field of computational complexity there is a particular interest in infinite
hierarchies of complexity classes defined by bounding some resources. In order
to obtain dense hierarchies one has to show that only a slight increase in the
growth rate of the bounding function yields a new complexity class.

Recently in [13] a time hierarchy for IAs has been proved. For time-computable
functions ¢’ and ¢ such that ¢ € o(t) a strict inclusion between the corresponding
complexity classes is shown. Since an IA can be sped-up from (n+7(n))-time to
(n+¢€-r(n))-time for all € > 0 but real-time is strictly weaker than linear-time
this hierarchy is dense in the range above linear-time. Here we close the gap
between real-time and linear-time. We show that there exists an infinite dense
time hierarchy in between.

Relating our main result for example to Turing machines (TM) it is known that
for deterministic one-tape TMs as well as for almost all nondeterministic TMs
real-time is as powerful as linear-time. For deterministic real-time machines
infinite hierarchies depending on the number of tapes or on the number of
heads have been shown. Moreover, for multi- or k-tape TMs (k > 2) linear-
time is known to yield strictly more powerful acceptors than real-time. For
any time complexity n + r(n) at most a speed-up to n + (¢ - r(n)) (¢ > 0), is

possible (e.g. see [19] for TM results). The remaining gap between real-time
and linear-time was filled with an infinite dense hierarchy in [5].

The basic notions and the model in question are defined in the next section.
Section 3 is devoted to the hierarchy theorem and some examples. In Section
4 the proof of the Theorem is presented with the help of two lemmas and three
tasks for the construction of a corresponding IA.

2 Preliminaries

We denote the rational numbers by Q, the integers by Z, the positive integers
{1,2,...} by N and the set N U {0} by No. The empty word is denoted by ¢
and the reversal of a word w by w®. We use C for inclusions and C if the
inclusion is strict. For a function f : Ny — N we denote its ¢-fold composition
by flIl, i € N, and define the set of mappings that grow strictly less than f by
o(f) ={g : No = N | lim,_, % = 0}. If f is strictly increasing then its
inverse is defined according to f!(n) = min{m € N| f(m) > n}. The identity
function n — n is denoted by id.

An iterative array is a bi-infinite linear array of finite automata, sometimes
called cells, where each of them is connected to its both nearest neighbors
(one to the right and one to the left). For convenience we identify the cells
by integers. Initially they are in the so-called quiescent state. The input is
supplied sequentially to the distinguished communication cell at the origin.
For this reason we have two local transition functions. The state transition of
all cells but the communication cell depends on the current state of the cell
itself and the current states of its both neighbors. The state transition of the
communication cell additionally depends on the current input symbol (or if the
whole input has been consumed on a special end-of-input symbol).

The finite automata work synchronously at discrete time steps. More formally:

Definition 1 An iterative array (IA) is a system (S, 9, 8y, so, #, A, F'), where
1. S is the finite, nonempty set of cell states,

A is the finite, nonempty set of input symbols,

F C S is the set of accepting states,

so € S is the quiescent state,

¢ A is the end-of-input symbol,

§ : 83 — S is the local transition function for non-communication cells

satisfying (s, So, S0) = So,

8o : 83 x (AU{#}) — S is the local transition function for the communi-

cation cell.

SOk

Let M be an TA. A configuration of M at some time ¢ > 0 is a description of
its global state which is a pair (w,c;) where wy € A* is the remaining input
sequence and ¢; : Z — S is a mapping that maps the single cells to their
current states. The configuration (wg,cg) at time 0 is defined by the input
word wp and the mapping ¢y(i) = sg, @ € Z, while subsequent configurations

are chosen according to the global transition function A: Let (wy,c;), t > 0, be
a configuration then its successor configuration (w41, cp+1) is as follows:

(wer1,e41) = A(wp,) <=
c1(i) = 8(ee(i — 1), (), et (i + 1)),5 € Z\ {0},
Ct+1 (0) = dp (Ct(_l)act(o)act(l)’a)

where a = #, w1 = e ifwy =¢,and a = a1, w1 = ag---a, f wp =ay -+ ay.
Thus, the global transition function A is induced by ¢ and &g.

If the state set is a Cartesian product of some smaller sets S = S1 XSy X --- X S,
we will use the notion register for the single parts of a state. The concatenation
of one of the registers of all cells respectively forms a track. A word w is
accepted by an TA if at some time ¢ during its course of computation on input
w the communication cell becomes accepting.

Definition 2 Let M = (S, 6, do, so, #, A, F') be an IA.
1. A word w € A* is accepted by M if there exists a time step 1 € N such
that ¢;(0) € F for (w;, ¢;) = All((w, cp)).
2. L(M) ={w € A* | w is accepted by M} is the language accepted by M.
3. Let t : Ng — N, t(n) > n+ 1, be a mapping and i,, be the minimal time
step at which M accepts a w € L(M). If all w € L(M) are accepted
within i,, < t(Jw|) time steps, then L is said to be of time complexity t.

The family of all languages which can be accepted by an IA with time complex-
ity t is denoted by .Z;(IA). If ¢ equals the function n + 1 acceptance is said to
be in real-time and we write .Z4+(IA). The linear-time languages .%;(IA) are
defined according to £} (IA) = Uyeqp>1 Zhn(IA).

In order to prove infinite dense time hierarchies in almost all cases honest time
bounding functions are required. Usually the notion “honest” is concretized in
terms of the computability or constructibility of the function with respect to
the device in question. Here we will use time-constructible functions in TAs.

Definition 3
1. A strictly increasing function f : N — N is IA-time-constructible iff there
exists an IA (S, 0,80, so, #, A, F') such that for all i € N

¢i(0) e F <= dneN:i= f(n)

where (g,¢;) = All((e, ¢p)).
2. The set of all IA-time constructible functions is denoted by # (IA).
3. The set of their inverses is # (IA) = {f ' | f € Z(1A)}.

Thus, an iterative array that time constructs a function f becomes accepting
on an empty input exactly at the time steps f(1), f(2),... Note that since an
f € F(IA) is strictly increasing it holds f 1(n) < n for all n > 1.

The family % (IA) is very rich. It includes id!, k%, id*, id + |/id], id + |log],
etc., where k£ > 1 is an integer. It is closed under the operations addition of

constants, addition, iterated addition, multiplication, composition, minimum,
maximum etc. [14]. In [9] the function n — p, where p,, denotes the nth prime
number has shown to be IA-time constructible. In [13] the time-constructibility
is related to the time-computability in Turing machines. Further results can be
found in [3, 4].

3 The hierarchy between real-time and linear-time

The hierarchy is proved by a specific witness language which is defined depend-
ent on a mapping h : N — N. Later on h is related to the time complexity in
question.

Ly = {$h(m)7(m+1)2+1w1$w2$ $wpmey [m €N
Ayowi € {0,171 <i <m
AI1<j<m:y=w;}

The following theorem is the main result of the paper.

Theorem 4 Letr: Ny — N and 7' : Ng — N be two functions. Ifr € F~1(IA)
and r' € o(r) then
agpid-f-r’ (IA) C a%d—f—r (IA)

The theorem is proved by Lemma 6 and Lemma 7 where it is shown that a
specific instance of Ly is not acceptable with time complexity id + r’ but is
acceptable with time complexity id + r. The inclusion %4, (IA) C L4+ (IA)
follows immediately from the definitions.

The following example for hierarchies are based on natural functions.

Example 5 Since #(IA) is closed under composition and contains 214 and id*,
k > 1, the functions log?, i > 1, and V/id are belonging to .#~!(IA)$. Therefore,
an application to the hierarchy theorem yields

Z(IA) C - C Ly nA) C Ly a(TA) C - C Z(TA)

id+log
and
ZLuw(dA) C--- C 2 i (IA) C.Z, 1 (IA) C - C.Zy(IA)
or in combinations e.g.,
Zni(TA) © ”"’S’ﬂz’d+(1og[i+ll)#1 (TA) C 2 gyt (TA) ©
gy e (TA) C 2, gyt (1A) C -+ C Zu(1A)

§ Actually, the inverses of 2/ and id* are [log] and [id%] respectively but for convenience
we simplify the notation.

4 Proof of the hierarchy

The object of the present section is to prove the lemmas from which the hier-
archy follows. At first we show that a specific instance of the language Ly
cannot be accepted in (id + r’)-time by any deterministic IA. Therefore let r
be a function in .# 1 (IA). Then there exists a function f, € .#(IA) such that
r=ft

Now let h, : Ng — N be defined as
he(n) = fr((n+1)?)

Lemma 6 Let r: Ny — N and r’' : Ng — N be two functions. If r € F~1(IA)
and r' € o(r) then
Lh, & Zidgyr (IA)

Proof. Contrarily, assume Lj, = {$h’“(m)_(m+1)2+1w1$---$wm¢y | meNA
y,w; € {0,1}™1 <4 <m A 3J1 < j < m:y = wj} is acceptable by
M =(S,6,d0, s0,#, A, F) with time complexity id + r’.

Now we consider the situation at time n — m where n denotes the length of
the input and m < n. The remaining computation of the communication
cell depends on the last m input symbols and the states of the cells —m —
r(n),...,0,...,m+7'(n) only. Due to their distance from the communication
cell all the other cells cannot influence the overall computation result.

So we are concerned with at most |S|*(m*7'(M)+1 distinct situations. Related
to Lp, where m is the length of the subword y we obtain

|S‘2-(m+r’(hr(m)))+1 < (|S|3)m+r’(hr(m)).
Since r = f,-! and h,(n) = f.((n + 1)?) we have

r(he(m)) = f7' (£ ((m+1)%) = (m +1)*.

Moreover, from ' € o(r) it follows

r'(hy(m)) € o(m?).

Now choose k € N such that 2§ > |S|3. For all sufficiently large m it holds

m2

r'(hy(m)) < =~

and further

2-m m2

(JSPymtr el < (1SP2)m 5 < (18]%) 75 < 2%

On the other hand, for all m-subsets U = {wi,...,wy} of {0,1}", m € N,
there exists a word wy such that y € U <= wyy € Ly,. (Eg wy =

$h(m)_(m+1)2+1w1$ -+ $w,,¢). Moreover, for each two distinct m-subsets U and
V of {0,1}™ there exists a word y € (U \ V) U (V \ U). Thus

wyy € Ly, <= wyy ¢ Ly,.

The number of m-subsets U of {0,1}"™ is

(27:> ~ (an; m)m Z (%)m = (2%—log(m))m S o=

for all sufficiently large m.

2
Since M can distinguish at most 2“7 different situations at time n — m there
must exist two distinct m-subsets U and V such that the situation after pro-
cessing wy and wy is identical. We conclude for y € (U \ V) U (V' \ U) that M
accepts wyy iff it accepts wyy. But exactly one of the words belongs to Ly,
what is a contradiction. i

It remains to show that Lj, is acceptable with time complexity ¢d + r. The
following results are devoted to the construction of an appropriate TA.

Lemma 7 Let r : Ng — N be a function such that r € #~'(IA) then

Proof. In what follows we construct an TA M that accepts Lp, with time
complexity id + r. Since .Zj44,(IA) is closed under intersection and contains
the regular languages we may restrict our considerations to input words of
the form $*{0,1}*${0,1}*$---${0,1}7¢{0,1}", say w = $Pu¢y where u =
wiwe -+ $wy for p >0, ¢ > 1 and wy, -+, wg,y € {0,1}*.

M is designed to perform three tasks in parallel. The first one is to check
whether |w| = h,(|y|), and similarly the second one to ensure that |u¢y| =
ly|2 + 2|y|. Finally, the third task is to verify that |wi| = --- = |w,| = |y| and
that w; = y for some 1 < j < ¢. The input is accepted if and only if all tasks
succeed.

In this case if we set m = |y| we have |u¢| = gm + ¢ and thus gm + ¢+ m =
lugy| = m? + 2m from which ¢ = m follows. Further it holds p = |w| — |u¢y| =
hy(m) —m? —2m = h,(m) — (m + 1)2 + 1 and hence w € Ly, .

Now we consider the time requirements of the three tasks mentioned above
what proves the lemma. O

Task 1. First we need to derive two constructibility properties of the functions
in question. Since & (IA) contains the functions f,, id and id? and is closed
under addition of constants and under composition, the function h, = f,((id +
1)?) belongs to .#(IA). Moreover, h' = h, + 1 and ¢’ = h, — id are [A-time-
constructible functions which is obvious for A’ and can be seen for g’ as follows.

Let m > 1. Since f, is strictly increasing it holds f,(m+k) > f.(m)+k > m+k
for all k € N. Observe that ¢’ is strictly increasing, since ¢'(m + 1) = f.((m +

2)*)=(m+1) > fr((m+1)*)+m+2 > fr((m+1)*)—m = ¢'(m) > (m+1)*~m =
m?+m+1>m.

Thus, ¢’ + id (= h,) is IA-time-constructible. The following result has been
shown in [2] (in terms of cellular spaces). Let f > id be a strictly increasing

function, then
ft+ide F(IA) = f e F(IA)

Therefore, we obtain that ¢’ is TA-time-constructible.

In order to realize the first task M basically simulates a time constructor for
¢’ and another one for i’ on two different tracks. The task succeeds if the time
constructor for ¢’ marks the communication cell at the time step it fetches the
¢ symbol from the input and the next marking is by the time constructor for
h' at the time step it fetches the first end-of-input symbol.

In such a case we have |w| = h'(m) — 1 = h,(m) for some m € N. Moreover
ly| = h'(m) — ¢'(m) — 1 = m. It remains to show that the constructors do not
interfere: Suppose M fetches ¢ at time step ¢'(m) for some m € N. For all
m' € N we have ¢'(m') < h'(m') = fr((m' +1)2) +1 < fr((m' +1)2) +m' +2 <
fr((m' +2)2) —m' —1 = g'(m' + 1) < b/(m' + 1). Tt follows that after being
marked by ¢’ the communication cell is next marked by A', then next by ¢’, and
so on alternating.

Task 2. This task is realized analogously to the previous task. We just have to
use time constructors for id? + id and (id+ 1)? which are started as soon as the
first symbol different from $ appears in the input. It follows |u¢y| = m? + 2m
for some m € N and |y| = (m+1)2 — (m? + m) — 1 = m.

Task 3. For the last task an acceptor for L = {ww-- $wedy | ¢ € N A
V1<i<qg:wj,y€{0, 1} Alwi| = =|wy| =y AIF1<j<q:w; =y}is
simulated which accepts L with time complexity 2id (see Lemma 8). Whereby
the simulation is started when the first symbol different from $ is fetched.

Hence the last task requires at most p + 2|u$y| time steps.

If all tasks succeed w is accepted at time step p + 2|u$y| = h,(m) — (m +1)2
1+2(m? +2m) = hy(m) + m? +2m < h.(m) + (m+1)? = h.(m) +r(h.(m))
|w| + r(|wl|). It follows Ly, € Zqyr(IA).

I+

Lemma 8 L = {wiws---$wedy | g e NAV1I < i< q:w;y € {0,1}F A
Jwi| == |wg| =[y| AT1 < j < q:wj =y} € Loq(IA).

Proof. Since Z;(IA) = %.;4(IA) [11] it suffices to construct an acceptor
M for L with time complexity 3 - ¢d. W.l.o.g. we may assume that the input
w is of the form {0,1}*${0,1}*$---${0,1}1¢{0,1}T, say w = u¢y with u =
wiwe - - - $wy and w, ..., we,y € {0,1}*, ¢ > 1.

Basically M stores the input symbols into successive cells to the right whereby
the ith fetched symbol is piped through the cells such that it is stored into cell
1 — 1. Additionally, during the pipe process y is compared with w;, 1 <17 < q.
The result of the comparison can verify that |y| = |w;| for all 1 < i < ¢ and
that at least one w; matches y.

The piped symbol ¢ plays a distinguished role for initiating the comparison.
The cells storing $ are used to remember partial comparison results. If the first
end-of-input symbol passes through the cell storing the symbol ¢ a leftward
moving signal is generated which collects the partial comparison results.

More precisely, the cells of M are equipped with a pipe and a store register
which are initially empty. If a cell detects that the pipe register of its left
neighbor cell is filled then it takes over the content and stores it into its own
store register if it is empty and into its own pipe register otherwise. If a cell is
passed through by the symbol ¢ its subsequent behavior depends on the content
of its store register as follows.

If its store register contains 0 or 1 it waits for the first unmarked symbol 0O
or 1 in the pipe register of its left neighbor. If this symbol is equal to the
content of its own store register then it marks its both register contents by +
and otherwise by —. In any case it takes over the symbol into its own pipe
register.

If its store register contains $ it waits for the first end-of-input symbol in the
pipe register of its left neighbor. Meanwhile it behaves as follows: If it detects
an unmarked symbol 0 or 1 (of y) in the pipe register of its left neighbor then
it marks its own store register content by —. This corresponds to the situation
that at least one symbol of y could not be compared to a symbol in the subword
w; which proceeds the occurance of that $ in w, i.e., |y| > |w;|. Additionally,
it copies the symbol in the pipe register of its left neighbor into its own pipe
register, whereby existing marks are removed. Thus subsequently the symbols
of y can be compared to the symbols of the next subword w;1.

Further, after the first end-of-input symbol has reached the cell which has stored
the symbol ¢ a signal is generated which moves leftward with maximal speed.
Each cell which is reached by this signal is turned into an accepting state iff
none of the cells already passed through contains an marked (by —) symbol $
or an unmarked symbol 0 or 1 in its store register and, additionally, at least
one sequence of cells (between two consecutive $-cells) has been passed through
in which all store registers are marked by +.

Thus the communication cell of M becomes accepting iff |w;| < |y| and |w;| >
ly| for all 1 <4 < ¢ and there is at least one word w; which matches y (i.e.
w € L).

Moreover it takes 2|u|+1 time steps to move the symbol ¢ into the store register
of cell |u|. Since the signal reaches the communication cell after at most |u|+ 1
additional time steps, in total w is accepted in 2|u|+ 1+ |u|+ 1 < 3|udy| = 3|w|
time steps. Hence , L belongs to Z3.;4(IA). O

References

[14]
[15]
[16]
[17]
[18]

[19]

Beyer, W. T. Recognition of topological invariants by iterative arrays.
Technical Report TR-66, MIT, Cambridge, Proj. MAC, 1969.

Buchholz, Th. and Kutrib, M. On the power of one-way bounded cellular
time computers. Developments in Language Theory, 1997, pp. 365-375.

Buchholz, Th. and Kutrib, M. Some relations between massively parallel
arrays. Parallel Comput. 23 (1997), 1643-1662.

Buchholz, Th. and Kutrib, M. On time computability of functions in one-
way cellular automata. Acta Inf. 35 (1998), 329-352.

Buchholz, Th., Klein, A., and Kutrib, M. Deterministic turing machines
in the range between real-time and linear-time. To appear.

Chang, J. H., Ibarra, O. H., and Palis, M. A. Parallel parsing on a one-way
array of finite-state machines. IEEE Trans. Comput. C-36 (1987), 64-75.

Cole, S. N. Real-time computation by n-dimensional iterative arrays of
finite-state machines. IEEE Trans. Comput. C-18 (1969), 349-365.

Culik II, K. and Yu, S. Iterative tree automata. Theoret. Comput. Sci. 32
(1984), 227-247.

Fischer, P. C. Generation of primes by a one-dimensional real-time itera-
tive array. J. Assoc. Comput. Mach. 12 (1965), 388-394.

Ibarra, O. H. and Jiang, T. On one-way cellular arrays. STAM J. Comput.
16 (1987), 1135-1154.

Ibarra, O. H. and Palis, M. A. Some results concerning linear iterative
(systolic) arrays. J. Parallel and Distributed Comput. 2 (1985), 182-218.

Ibarra, O. H. and Palis, M. A. Two-dimensional iterative arrays: Charac-
terizations and applications. Theoret. Comput. Sci. 57 (1988), 47-86.

Iwamoto, C., Hatsuyama, T., Morita, K., and Imai, K. On time-
constructible functions in one-dimensional cellular automata. Fundament-
als of Computation Theory 1999, LNCS 1684, 1999, pp. 317-326.

Mazoyer, J. and Terrier, V. Signals in one dimensional cellular automata.
Theoret. Comput. Sci. 217 (1999), 53-80.

Seiferas, J. I. Iterative arrays with direct central control. Acta Inf. 8 (1977),
177-192.

Seiferas, J. I. Linear-time computation by nondeterministic multidimen-
sional iterative arrays. STAM J. Comput. 6 (1977), 487-504.

Smith ITI, A. R. Real-time language recognition by one-dimensional cellular
automata. J. Comput. System Sci. 6 (1972), 233-253.

Terrier, V. On real time one-way cellular array. Theoret. Comput. Sci.

141 (1995), 331-335.

Wagner, K. and Wechsung, G. Computational Complezity. Reidel Pub-
lishing, Dordrecht, 1986.

10

