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Introduction

The structure of maximal compact subgroups in semisimple Lie groups was investigated by
Cartan and, later, Mostow: In [Mos49], Mostow gives a new proof of a Cartan’s theorem stating
that a connected semisimple Lie group G is a topological product of a maximal compact subgroup
K and a Euclidean space, implying in particular that G and K have isomorphic fundamental
groups. Subsequent case-by-case analysis provided the isomorphism types of these maximal
compact subgroups and their fundamental groups; tables can be found in [Hel78, p 518] and
[SBGT95, 94.33].

Starting in the 1940’s, Dynkin diagrams, introduced in [Dyn46|, have been used to describe
the structure of simple Lie groups. Dynkin diagrams correspond to Cartan matrices, and a
generalization of this concept led to the theory of Kac—-Moody algebras and, in particular, their
associated Kac—Moody groups, developed by Kac in [Kac85| and Tits in [Tit87]. Kac—Moody
groups endowed with the Kac—Peterson topology have been extensively investigated by K&éhl and
Hartnick, together with Glockner in [GGHI0| and with Mars in [HKMI13].

The aim of this thesis is to determine the fundamental group of any algebraically simply-
connected semisimple split real topological Kac-Moody group associated to a symmetrizable
generalized Cartan matrix. We present a uniform result which makes it possible to determine
the fundamental group of such a group — and, in particular, of any algebraically simply connected
split real simple Lie group — directly from its Dynkin diagram.

In order to fix notation so as to state the three main theorems of this thesis, let A be a symmetriz-
able irreducible generalized Cartan matrix A, IT its Dynkin diagram and Gr(A) the algebraically
simply-connected split real semisimple Kac—-Moody group associated to A, endowed with the
Kac—Peterson topology (for definitions, see Sections - .

Given the Dyukin diagram IT = (V, E) with a fixed labelling A : {1,...,n} = I — V, we
define a modified diagram IT*¥™ with vertex set V and {i*,j*} € V x V edge if and only if
e(i,j) = e(j,i) = —1, where (i, j) denotes the parity of the corresponding Cartan matrix entry.
To each connected component ™ of 129 we then assign a colour as follows: Let "™ be
coloured red (denoted by r) if it contains a vertex i* such that there exists a vertex j» € V
satisfying (i,7) = 1 and €(j,7) = —1. Let ™ be coloured green (g) if it consists only of an
isolated vertex, and blue (b) else.

One can then read off the isomorphism type of 71(Gg(A)) from the coloured diagram I1*™ as
specified in the following theorem.

Theorem. Let A be o symmetrizable irreducible generalized Cartan matriz A with Dynkin dia-
gram II. Let n(g) and n(b) be the number of connected components of TI*™ of colour g and b,
respectively. Then

m1(Gr(4)) = 2" x ¢5®).
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Example: Isomorphism types of m(Gr(A)) for the spherical Dynkin diagrams D.

I 129™ coloured by m1(G(1D))
A O @ 71(SLa(R)) = Z
Av O—0O------- O—0V &—@ - @ ® m1(SLns1(R) = Cy (> 2)
By OO 030 |0 @ @ @ Sminmnil)= { i<
2 1IN .
Ch O—Q 7777777 O%O H 777777 . @ 771(Sp(2n’ R)) ~7

D, O—O------- i—@ ® ©» I—. 71 (Spin(n,n)) = Cy  (n > 3)

m1(Ep) = Cy

» ® m(Fy) & Cy

F, O—0O=<0—20 Fy
Gy, O=0

m1(Gap) = Co

A key to the proof is the computation of the fundamental groups of generalized flag varieties —
that is, spaces of the form G/P; for a parabolic subgroup P; of G corresponding to an index
subset J C I. We prove the following theorem:

Theorem. Let G = Gr(A) for a symmetrizable irreducible generalized Cartan matriz A or let
G be two-spherical. Then a presentation of w1(G/Py) is given by

<SUZ'; ZEI|SUZ$;(17]) = X%, xk:1; i,j EI,]CG J>

We refer to [Wig98| for the analogous result in the finite-dimensional situation.

Furthermore, in [GHKWIT, Section 16|, the group Spin(Il,x) — where k denotes a so-called
admissible colouring of the vertices of the Dynkin diagram II — is defined as the canonical
universal enveloping group of a Spin(2)-amalgam A(II, Spin(2)) = {G’U,é;j | i # j € I} where
the isomorphism type of éij depends on the (i, )- and (j,7)-entries of the Cartan matrix A as
well as the values of k on the corresponding vertices.

The fundamental group of Spin(Il, k) is determined in a very similar way to the computation of

'"Dynkin diagram LaTeX styles kindly provided by Max Horn at [Hor]
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m1(GRr(A)), establishing the following theorem:

Theorem. Let A be a symmetrizable irreducible generalized Cartan matriz A with Dynkin dia-
gram I1. Let n(g) be the number of connected components of II*™ of colour g. Let n(b, k) be the
number of connected components of TI*M™ on which k takes the value 1 and which have colour b.
Then

71 (Spin(Il, k) = Z™9) x C’g(b’n).

Overview

In Chapter 1, we collect topological results from various areas (and various sources) which will
be of use later on. As we will use the CW structure of the generalized flag variety G/P; to
determine its fundamental group, we introduce CW complexes and state a result concerning the
presentations of their fundamental groups. We provide some useful facts on mappings between
topological spaces and also topological groups, such as the Open Mapping Theorem for locally
compact groups, before giving a brief introduction to fibre bundles and stating a result based
on works by Palais in [Pal61] and Hewitt/Ross in [HR63] on the existence of a long homotopy
exact sequence for locally compact Lie subgroups of Hausdorff topological groups which we will
use later to compute the fundamental group of G in the simply laced case. We introduce the k,
property for topological spaces, as we will establish later that the Kac—Peterson topology is k,,
and give some results on k, spaces by Glockner/Gramlich/Hartnick from [GGHI10]. Then the
compact-open topology is defined, which will serve as a tool to prove that spherical subgroups
carry the Lie topology. Finally, we turn to central extensions of topological groups and their
realizations via 2-cocycles, citing a result by Neeb from [Nee02]| which will be a helpful tool
providing us with lifting arguments for the study of central quotients of Kac-Moody groups.

In Chapter 2, closely following Abramenko/Brown [ABOS8]|, we give an introduction to the theory
of buildings, as the study of the buildings associated to Kac—-Moody groups will provide us with
much insight into the structure of these groups. We first define finite root systems before moving
on to Coxeter groups and their associated root systems, generalized Cartan matrices, and Dynkin
diagrams. Then we introduce buildings, twin buildings and their terminology via the W-metric
space approach. We define topological twin buildings and strong topological twin buildings as
these concepts are used by Hartnick/Ko6hl/Mars in [HKMI3] for the investigation of Kac—Moody
groups. The fact that the twin buildings associated to Kac—-Moody groups are strong topological
twin buildings gives rise to the CW decomposition of these buildings, a connection that will be of
importance later on. Finally, we introduce BN-pairs and RGD systems, again following [ABOS]
and also Caprace/Remy [CR09].

In Chapter 3, we give an introduction to Kac—-Moody groups and the Kac—Peterson topology. For
Kac—Moody groups, we follow the functor definition by Tits from [Tit87]. We define the group
that will be our main interest — the algebraically simply connected semisimple split real Kac—
Moody group G := Gr(A) associated to a symmetrizable irreducible generalized Cartan matrix
A, and state a result from [HKMI13] that associates an RGD system with a Kac-Moody group
which will enable us to apply methods from the theory of buildings to the study of Kac-Moody
groups. We then define the Kac—Peterson topology 7xp, thereby closely following [HKMI13|.
In establishing the topological properties of GG, we deviate from this source in some places,
as several of its proofs turned out to be somewhat lacking in accuracy. We first establish for
the case of 7xp being Hausdorff the properties of our main interest — such as the fact that
Tikp is a k, group topology, the universality of the topology with respect to the embeddings
of SLy(R) as fundamental rank one subgroups, and the fact that spherical subgroups carry the
Lie topology. Then we prove that the Kac—Peterson topology on the adjoint group — that is,
G/Z(G) — is in fact Hausdorff, so that it carries all these properties. This information on the
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adjoint group is then used in combination with the tools from central extension theory to finally
prove that the Kac—Peterson topology on the group G is Hausdorff as well and therefore has
the desired properties. Finally, we introduce the subgroup K of G, the fixed point set of the
Cartan-Chevalley involution, and give a result by Hartnick/Koéhl published in their appendix to
[HK19] stating that the fundamental groups of K and G are isomorphic which will allow us to
reduce the computation of the fundamental group of G to that of K.

Chapter 4 contains mainly original results by the author and Ralf Kéhl that were first published in
[HK19|. Here, we set about the task of determining the fundamental group of G. We introduce
the generalized flag variety G/P; for a standard parabolic subgroup P; of G and take note
of the fact that the Bruhat decomposition of G/Pjy is a CW decomposition since by results of
Griining/Ko6hl in an appendix to [HK19], the twin building associated to G is a strong topological
twin building, another consequence of G being Hausdorff. The CW decomposition of topological
twin buildings was first investigated by Kramer in [Kra0l], then further developed in [HKMI13].
We determine characteristic maps for the 1- and 2-cells of the CW complex and, employing a
classical result from the theory of CW complexes, use these maps to give a presentation for the
fundamental group of G/Pjy. It turns out that all 2-cells are homeomorphic to either the Klein
bottle or the torus S' x S!. Since it is our goal to determine the fundamental group of K,
we state some results which relate the generalized flag variety G/Pj to quotient spaces of K.
After these preparations, we first tackle the simply laced case, where the group G has a 2-fold
central extension Spin(II), as shown by Ghatei/Horn/Kéhl/Weiss in [GHKWI7|. By using our
knowledge about the fundamental group of the generalized flag variety and a covering argument
we prove that 71 (Spin(II)/Spin(Il;;) = 71 (K/K;j) = {1} for an Ay subdiagram II;;. Then, via a
homotopy exact sequence, we are able to establish that Spin(II) is simply connected which yields
that m1(G) = m(K) = C5y. Finally, we move on to the general case. We introduce a modified
Dynkin diagram IT*4™ and a colouring v of its connected component that depends on the edge
types of the Dynkin diagram II. We then prove that the fundamental group of the building
G /B decomposes as a product of subgroups corresponding to the connected components of IT24™
whose isomorphism types depend on the respective colours. Using a covering argument, this
allows us to determine the fundamental group of G. Finally, we introduce a generalized version
of the spin group from the simply laced case and determine its fundamental group which is done
in much the same way as in the case of m(G).



Deutsche Einleitung

Die Struktur maximal kompakter Untergruppen in halbeinfachen Lie-Gruppen wurde durch Car-
tan und spéter Mostow untersucht: In [Mos49| fithrt Mostow einen neuen Beweis fiir den Satz
von Cartan, welcher besagt, dass eine zusammenhéngende halbeinfache Lie-Gruppe G das topo-
logische Produkt einer maximal kompakten Untergruppe K und eines euklidischen Raumes ist.
Dies impliziert insbesondere, dass G und K isomorphe Fundamentalgruppen haben.

Spater wurden durch Fallunterscheidung die Isomorphietypen dieser maximal kompakten Unter-
gruppen und ihrer Fundamentalgruppen ermittelt; entsprechende Tabellen finden sich in [Hel78|
p 518 und [SBGT95, 94.33].

Seit den 1940er Jahren werden Dynkindiagramme, die in [Dyn46] eingefiihrt wurden, verwen-
det, um die Struktur einfacher Lie-Gruppen zu beschreiben. Dynkin-Diagramme kodieren die in
Cartan-Matrizen enthaltenen Informationen und eine Verallgemeinerung dieses Konzeptes miin-
dete in die Theorie der Kac—-Moody-Algebren und insbesondere der dazugehorigen Kac—Moody-
Gruppen, die durch Kac in [Kac85] und Tits in [Tit87] entwickelt wurde. Kac-Moody-Gruppen,
mit der Kac—Peterson-Topologie ausgestattet sind, sind umfangreich untersucht worden von Kohl
und Hartnick, zusammen mit Glockner in [GGHI0] und mit Mars in [HKM13].

Ziel der vorliegenden Arbeit ist es, die Fundamentalgruppe der algebraisch einfach zusammenhén-
genden halbeinfachen zerfallenden reellen topologischen Kac—-Moody-Gruppe zu einer beliebigen
symmetrisierbaren vereinfachten Cartan-Matrix zu bestimmen. Wir stellen ein einheitliches Re-
sultat vor, das es ermdglicht, die Fundamentalgruppe einer solchen Gruppe — und, insbesondere,
die Fundamentalgruppe jeder algebraisch einfach zusammenh#ngenden zusammenhéngenden zer-
fallenden reellen einfachen Lie-Gruppe zu bestimmen — direkt anhand ihres Dynkin-Diagrammes.

Wir legen zunichst die Notation fest, um die drei Hauptresultate dieser Arbeit anfiihren zu
konnen. Sei dazu A eine symmetrisierbare irreduzible verallgemeinerte Cartan-Matrix, IT ihr
Dynkin-Diagramm und Gg(A) die zu A gehorige algebraisch einfach zusammenhingenden halb-
einfache zerfallenden reellen Kac-Moody-Gruppe, ausgestattet mit der Kac—Peterson-Topologie
(fiir Definitionen sei auf Abschnitte [3.1] - 3.3| verwiesen).

Zum Dynkin-Diagramm IT = (V, E) mit einer festgelegten Nummerierungsabbildung
AA{l,...on}=1->V

definieren wir ein modifiziertes Diagramm I124™ mit Knotenmenge V und {i*, j*} € V x V Kante
genau dann, wenn (i, j) = £(j,7) = —1, wobei (7, j) die Paritét des entsprechenden Eintrages

Hadm

. . =adm . .
der Cartan-Matrix bezeichnet. Jeder Zusammenhangskomponente II von weisen wir

dann wie folgt eine Farbe zu: Sei die Zusammenhangskomponente ™ rot (bezeichnet durch
r), wenn sie einen Knoten i* so enthilt, dass ein Knoten j*» € V existiert mit (i, j) = 1 und

£(j,1) = —1. Sei T griin (g), wenn sie nur aus einem isolierten Knoten besteht und blau (b)
sonst.
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Man kan nun den Isomorphietyp von 71 (Gg(A)) dem gefirbten Diagramm I124m

der folgende Satz beschreibt.

entnehmen, wie

Satz. Sei A eine symmetrisierbare irreduzible verallgemeinerte Cartan-Matriz und 11 ihr Dynkin-
Diagramm. Seien n(g) und n(b) die jeweilige Anzahl der Zusammenhangskomponenten mit Farbe
g bzw. b. Dann gilt

m(Gr(A)) 2 79 x ci®),

Ein integraler Bestandteil des Beweises ist die Berechnung der Fundamentalgruppen von verall-
gemeinerten Fahnenvarietdten — das heift, von Rdumen der Form G/Pj fiir eine parabolische
Untergruppe Py zur Indexmenge J C I. Wir beweisen den folgenden Satz:

Satz. Sei G = Gr(A) fir eine symmetrisierbare irreduzible verallgemeinerte Cartan-Matriz A
oder sei G zwei-sphdrisch. Dann ist eine Prasentierung von w1 (G/Py) gegeben durch

<55i; ZEI|CL‘Z:L‘§(1’]) = X%, z,=1;, i,j€l, k€ J>

Fiir das analoge Resultat im endlichdimensionalen Fall sei verwiesen an [Wig98|.

Des Weiteren wird in [GHEKWI7, Section 16] die Gruppe Spin(Il, k) definiert, wobei  eine soge-
nannte zuldssige Farbung der Knoten des Dynkin-Diagrammes II bezeichnet. Hierbei handelt es
sich um die kanonische universelle einhiillende Gruppe eines Spin(2)-Amalgams A(II, Spin(2)) =
{Gij,quﬁj | i # j € I}, wobei der Isomorphietyp von C;’ij abhéngig ist sowohl von den (i, j)-
und (j,7)-Eintrgen der Cartan-Matrix A als auch von den Werten, die x auf den entsprechenden
Knoten annimmt.

Die Fundamentalgruppe von Spin(Il, ) ldsst sich in ganz dhnlicher Weise zu der von Gr(A)
bestimmen, was zum folgenden Resultat fiihrt.

Satz. Sei A eine symmetrisierbare irreduzible verallgemeinerte Cartan-Matriz und I1 thr Dynkin-
Diagramm. Sei n(g) die Anzahl der Zusammenhangskomponenten von I1*9™ mit Farbe g. Sei
n(b, k) die Anzahl der Zusammenhangskomponenten von IIPT™ | quf denen k den Wert 1 annimmt
und die Farbe b haben. Dann gilt

71 (Spin(Il, k)) = 77(9) « Cg(bvﬁ)‘
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Chapter 1

Topological Prerequisites

1.1 CW Complexes

Definition 1.1.1. Following [Rot88, Chapter 8], a CW complex is an ordered triple (X, E, x),
where X is a Hausdorff space, F is a family of cells in X, and x = {x. | e € E} is a family of
maps such that

(a) X = LleEE e.

(b) For k € N, let X*) C X be the union of all cells of dimension < k. Then for each (k + 1)-
cell e € E, the map x. : (DFt1,8%) = (eU X®) X(*)) is a relative homeomorphism,
i.e., it is a continuous map and its restriction D* \ S¥~1 — ¢ is a homeomorphism.

(c) If e € E, then its closure cle is contained in a finite union of cells in E.

(d) X has the weak topology determined by {cle | e € E}, i.e., a subset A of X is closed if
and only if ANcle is closed in cle for each e € E.

For k € N, let Ay be an index set for the k-dimensional cells, so that X*) \ X(+=1) = Llxea, €
and set x := Xe,. This map is called the characteristic map of e,.

The following Lemma is a consequence of [Mas77, Chapter 7, Theorem 2.1].

Lemma 1.1.2. Let X be a CW complex with only one 0-cell xg. For each A € Ag, let fy :
[0,1] — ST be a loop whose homotopy class generates 71 (SY) and whose image vy = xx © fa
under y» is a loop in XY starting at zo. Then

(Ixul, weM|n], A€l

is a presentation of m (X, xo), where the brackets denote the respective homotopy classes in
X0, O
1.2 Some Facts on Maps and Fibre Bundles

A topological space is o-compact if it is the union of countably many compact subspaces. By
[Str06l Remark before 7.19], every connected locally compact topological group is o-compact.

Proposition 1.2.1 (Open Mapping Theorem for locally compact groups, [Str06, 6.19]). Let
f G — H be a surjective, continuous homomorphism between locally compact topological groups.
If G is o-compact and H is Hausdorff, then f is open. O

1



CHAPTER 1. TOPOLOGICAL PREREQUISITES

Lemma 1.2.2 [Bou98| 1.9.4, Corollary 2|. Let ¢ : X — Y be a continuous, bijective map between
topological spaces. If X is compact and Y is Hausdorff, then o is a homeomorphism. O

Lemma 1.2.3. Let ¢ : X — Y be a continuous, open, surjective map between Hausdorff topo-
logical spaces. If all fibers are finite and of constant cardinality, then ¢ is a covering map.

Proof. Let y € Y and let o~ (y) = {1,...,21} € X. Since X is Hausdorff, for i = 1,...,k
there exist neighborhoods U; of x; with U; NU; = 0 for i # j. Let V := ﬂle ©(U;). Then V
is open since ¢ is open and V # ) since y € V. The preimage ¢~ !(V) is a disjoint union of
open sets U; := 0 YV) N U; and each U; is mapped bijectively to V: Surjectivity is clear; for
the injectivity let 4/ € V. Then each U; contains a preimage of y/. Since all fibers have constant
cardinality k, it follows that |U; N1 (3/)| = 1. This proves the assertion. [

Lemma 1.2.4. Let G be a topological group and Hy < Hy subgroups of G and endow G /H; with
the quotient topology. Then the following hold:

(a) The projection map m: G — G/Hy is continuous and open.

(b) The canonical map ¢ : G/Hy — G/Hs is continuous and open.

(¢) G/Hy is Hausdorff if and only if H is closed in G.
Proof. (a): Let U C G open. Since 7 is a quotient map, it suffices to show that 7= (7 (U)) is
open. But this is true since 7~ }(7(U)) = UH; = Uner, Uh is a union of translates of open sets.

(b): This follows directly from (a) and the commutative diagram

G
S
G/H, — G/Hs

(c): This follows from [Bou98| II1.2.5, Proposition 13]. [

Definition and Remark 1.2.5. A fibre bundle is a tuple (E, B, p, F') where E, B and F' are
topological spaces (E the total space, B the base space and F' the fibre) and p : E — B
is a continuous surjective map satisfying the following condition: For each z € B there exist a
neighborhood U, C B and a homeomorphism ¢, : p~1(U,) — U, x F such that the following
diagram commutes (where m; denotes projection onto the first factor):

We denote the fibre bundle by F —— F —2 B .

By |[Hat02, Proposition 4.48 and Theorem 4.41], a fibre bundle with a path-connected base space
B admits a long exact sequence

oo = (F) — mp(E) — mp(B) — 1 (F) — -+ — mo(E) — {1}. O
Definition 1.2.6. Let G be a topological group. A principal G-bundle is a tuple (G,p, X)
where X is a topological space that admits a free G-action such that the translation function

from the induced equivalence relation to G defined by (x,z.g) — g is continuous. U

2



1.3. Final Topologies

Lemma 1.2.7 |[Hus94, Example 4.2.4]|. Let H be a closed subgroup of a topological group G.
Then (G,p,G/H) is a principal H-bundle, where p denotes the canonical projection. O

Proposition 1.2.8 [Pal61, Corollary in Section 4.1|. Let H be a closed Lie subgroup of a topo-
logical group G. Then the principal H-bundle (G,p,G/H) is a fibre bundle. O

Proposition 1.2.9 [HR63, Theorem 5.11]. Let G be a Hausdorff topological group and H a
subgroup of G that is locally compact in its relative topology. Then H is closed. (I

Corollary 1.2.10. Let G be a Hausdorff topological group and H a subgroup of G that is a
locally compact Lie group in its relative topology. Then there exists a long exact sequence

o — mp(H) — mp(G) — m(G/H) — 11 (H) — -+ — mo(G) — {1}. O

1.3 Final Topologies

The main reference for this section is [Bou04} I11.5, I11.6].

Definition 1.3.1. Let G be a set and (f; : X; — G);es a family of maps from certain topological
spaces X; to G. The final topology on G with repect to (f;)ics is the finest topology on G
making each map f; continuous. If G is a group, then the final group topology on G is the
finest group topology with this property. U

Definition 1.3.2. Let I be a set with a partial order < satisfying the following property: For

each a, B € I there exists a v € I such that a < v and 8 < 7. A direct system with respect

to I is a family (Eq, f8a)a,per of sets E, and mappings fgq : Eo — Es such that the following
a<lp

hold:

(a) If o < B <, then f,q = fy8 0 faa-
(b) For each a € I, foo = idg,.

Let E be the disjoint union of the sets E,, and for each € E, let M\(z) € I be the unique index
such that x € F)(,). Define an equivalence relation ~ on E by x ~ y: <= there exists a v € I
with v > A(z) =: @ and v > A(y) =: B such that fyo(x) = fy5(y)-

The direct limit of the directed system is the set

If each E, is equipped with a topology 74, then the direct limit topology on E with respect
to the direct system (E,, faq) is the final topology with repect to the family of canonical maps
fa 1 Bq — E sending each element to its equivalence class. O

By [Bou04), Proposition II1.6.6], the direct limit E has the following universal property: For each
set F' that admits mappings uq : Eq — F (o € I) such that ugo fgq = uqo whenever a < f3, there
exists a unique mapping u : £ — F such that u, = wo f,. The following diagram illustrates
this universal property:
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We will be interested in direct limit topologies on groups arising from ascending sequences of
topological spaces. In general, such a topology does not coincide with the corresponding fi-
nal group topology, since the product lim_, E, x lim_, E, is in general not homeomorphic to
lim_, (F, x E,). However, if the spaces involved are locally k,, then these limits can be ex-
changed, as Proposition [1.4.3] states.

1.4 k,-Spaces

Definition 1.4.1. Following [GGHI0) Definition 4.1], a Hausdorff topological space X is a k-
space if there exists an ascending sequence of compact subsets K1 C Ko C --- C X such that
X = Upen Kn and U C X is open if and only if U N K, is open in K, for each n € N. A
Hausdorff topological space is locally k,, if each point has an open neighborhood which is &, in
the induced topology. O

Proposition 1.4.2 [GGHI0, Proposition 4.2]|.
(a) o-compact locally compact spaces are k.
(b) Closed subsets of ky-spaces are k,, in the induced topology.
(c) Finite products of k,-spaces are k,, in the product topology.
(d) Hausdorff quotients of k,-spaces are k.
(e) Countable disjoint unions of ky-spaces are k.
(f) Every locally compact space is locally k.
(g) Open subsets of locally k., spaces are locally k.
(h) Closed subsets of locally k.,-spaces are locally k., in the induced topology.
(i) Finite products of locally k,-spaces are locally k,, in the product topology.
(5) Hausdorff quotients of locally k. -spaces are locally k. O

Note that since every connected locally compact topological group is o-compact, it is also k.

Following [GGHIOL description before Proposition 4.7], let X3 C X9 C ... and Y7 C Y5 C ...
be ascending sequences of topological spaces with continuous inclusion maps, and let X :=
Unen Xn = lim X, and Y := (J, ey Yn = lim, Y}, equipped with the respective direct limit
topologies. Write lim_, (X, x Y},) for |J,,cn(Xn x ¥y), equipped with the direct limit topology.

Proposition 1.4.3 [GGHIO0, Proposition 4.7]. The natural map
B li_r>n(Xn xY,) — (liian) X (h_r}n Y, (z,y) — (z,y)
18 a continuous bijection. If each X, and each Yy, is locally k,,, then B is a homeomorphism. [

4
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Proposition 1.4.4 [GGHI10, Proposition 5.8|. Let G be a group and (f;)icr a countable family
of maps f; : X; — G such that each X; is a ky-space and | J;c; fi(Xi) generates G. If the final
group topology on G with respect to the family (f;)ier is Hausdorff, then the topology is k,. O

1.5 The Compact-Open Topology

We introduce the compact-open topology for sets of continuous functions. It will later be used
as a tool to prove that spherical subgroups of Kac-Moody groups carry the Lie topology. The
main reference for this section is [AGP02] 1.2], see also [Dug78, XII.1-2].

Let (X, 7x),(Y,7y) be topological spaces and denote by M(X,Y") the set of continuous maps
X =Y.

Definition 1.5.1. A topology 7 on M (X,Y") is admissible if the evaluation map
e: MX,)Y)x X =Y :(f,z)— f(x)

is continuous with respect to the product topology 7 X 7x. ]

Definition 1.5.2. For two subsets K C X and U C Y let UK := {f € M(X,Y) | f(K) CU}.
The compact-open topology 7., on M (X,Y) is the topology generated by the set

{UK | K C X compact, U CY open}. O

Lemma 1.5.3. Let Y be Hausdorff. Then 1., is Hausdorff.

Proof. Let f #g € M(X,Y) and let x € X with f(x) # g(x). Since Y is Hausdorff, there exist
disjoint open neighborhoods Uy of f(x) and Uy of g(x). Then U}x} and Ug{x} are disjoint open
neighborhoods of f and g, respectively. |

Proposition 1.5.4 [AGP02, Proposition 1.2.2]. Let 7 be an admissible topology on M(X,Y).
Then 1¢ C 7. O

1.6 Central Extensions of Topological Groups

A central extension of a group G by a group Z is a group G with Z < Z(@) such that there
exists an epimorphism G — G whose kernel is Z. Following [Nee(2, Section 1], central extensions
can be described using 2-cocycles: For a group Z and an abelian group G, a Z-valued 2-cocycle
isamap G x G — Z satisfying f(z,vy)f(xy,2) = f(x,y2)f(y,2) and f(1,z) = f(z,1) =1 for all
x,y,z € H. Denote the group of Z-valued 2-cocycles by Z2(G, Z). For f € Z*(G, Z) define the
group

Gx;Z:=GxZ where (g,2)(¢,7") = (99,27 f(g9.9)).

The group G'x s Z has neutral element (1, 1) and inverse elements (g,2) ™' = (71, 271 f(g,971) 7).
The projection G Xy Z — G is an epimorphism with kernel Z, so G Xy Z is a central extension
of G by Z. It can be shown that every central extension can be realized in this way.

Proposition 1.6.1 [Nee02, Proposition 2.2|. Let G and Z be topological groups where G s
connected, and let G be a central extension of G by Z with quotient map q : G — G. Then the
following are equivalent:
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(a) G carries the structure of a topological group such that there exists an open 1-neighborhood
U C G and a continuous map o : U — G with go o = idy.

(b) The central extension can be described by a cocycle f : G x G — Z which is continuous in
a neighborhood of (1,1) in G x G. O

Corollary 1.6.2. Let G, G, Z and q be as in Proposition , If (b) holds and if Z is discrete,
then the group topology in (a) turns q into a covering map.

Proof. Since G is a topological group, for each = € G the set zU (with U as in (a) above) is an
open neighborhood of & whose preimage ¢~ (zU) is homeomorphic to Z x U. Since Z is discrete,
it follows that ¢ is a covering map. |



Chapter 2

Buildings and Groups with RGD
Systems

2.1 Finite Root Systems

We define finite root systems and Cartan matrices and Dynkin diagrams for crystallographic root
systems. The main references for this section are [AB08], Appendix B] and [Hum78), Chapter III].

Let V be a Euclidean space with a positive definite symmetric bilinear form (-,-) and let a € V.

Then the reflection s, with respect to the hyperplane o’ is given by
2(, )
Salr) =2 — Q
Oé( ) <Oé, O[>
Define o := 2%

(a,0)
Definition 2.1.1. A subset & C V is called a finite root system if it satisfies the following
conditions:

(a) @ is finite, spans V and does not contain zero.

(b) If & € @, the only scalar multiples of o in ® are +a.

(c) @ is We-invariant where Wg 1= (so | v € D).

If, in addition, (a¥,3) € Z for all o, 3 € ®, then the finite root system ® is called crystal-
lographic. An element of ® is called root. For a root «a, the length [(«) of « is given by
I(@) := (a, a)'/2. The number dim V is called the rank of ®. The group W := Wy is called the
Weyl group of ®. A finite root system is called irreducible if ® cannot be partitioned into
two proper orthogonal subsets. O

Fix a lexicographic ordering of V' corresponding to an arbitrary ordered basis and consider an
element v € V positive if 0 < A.

Definition 2.1.2. A subset A C & is called a simple system if the following hold:
(a) A is a basis of V.
(b) Each o € ® is a linear combination of A with all coefficients in Z and of the same sign.

The elements of A are called simple roots. Simple systems always exists by [HumT78, 1.3,
Theorem|. O
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Definition 2.1.3. The Cartan matrix of a finite crystallographic root system & relative to
a simple system A with a fixed ordering of elements (av,...,ay) is given by A = (asj)1<i j<n
where a;; = (a;,a;j). The following hold (cf. [AB0S| 8.11.1]):

e q;; = 2 for all i.

® a;; € {O, -1, -2, —3} for ¢ # j.

® a;jaj; € {07 1,2,3} for i # j.

[ aijZO <~ aji:().

The Dynkin diagram of ® is a graph with n labelled vertices where for ¢ # j the ith and
Jjth vertex are joined by a;jaj; edges with an arrow pointing to the vertex corresponding to the
shorter root. g

Theorem 2.1.4 [Hum78, Theorem 11.4|. If ® is an irreducible crystallographic root system of
rank 2, its Dynkin diagram is one of the following:

An(nz1) O—O------- 0—O
By(n22) O—Or------- O>=0
Cu(n23) O—Or------- O—~<0

Example 2.1.5. Let V := R” with the standard bilinear form and let ® := {a;; := ¢; — ¢; |
iyj=1,...,n, i # j}. Then ® is a crystallographic root system. The reflection corresponding
to a;; is the transposition s;; that interchanges the ith and jth coordinates. The Weyl group of
® is the symmetric group on n letters. A simple system is given by {a; := ;41 | 1 <@ <n+1};

8
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the corresponding Cartan matrix is given by

2 -1 0 0
-1 2 -1
0o -1 2 0
1
0 0 -1 2
and the Dynkin diagram is of type A,_1. (I

2.2 The Root System Associated to a Coxeter Group

We introduce Coxeter groups, which are generalizations of finite reflection groups, and their
associated root systems, generalized Cartan matrices, and Dynkin diagrams. The main references
for this section are [Hum90, Chapter I1.5] and [ABOS], see also [CR09].

Definition 2.2.1. A Coxeter group is a group W with a presentation

(81, 5n | (si85)™),

where m;; = 1 and m;; > 2 for ¢ # j; m;; = oo is also permitted. A Coxeter system is a pair
(W, S) where W is a Coxeter group and S = {s1,..., s, } is a fixed set of generators for W. Let g
be the length function that associates to each element the (unique) length of a corresponding
reduced expression in S. Define the strong Bruhat order < on W as follows: For wy,ws € W
let wy; < ws if there exist reduced expressions s;, ... Si1g(wy) of wy and sj, S () such that
the former is a (not necessarily consecutive) substring of the latter. O

Following [Hum90, I1.5.3], every Coxeter group can be realized as a group of reflections of a real
vector space V having a basis {as | s € S} in one-to-one correspondence with S. This vector
space is equipped with a symmetric bilinear form B defined by

T
B(as¢> asj) ‘= —Cos mij
with B(asi,asj) := —1if m;; = co. For each s € S, a reflection o, : V' — V is defined by

v v —2B(as,v)as.

By [CR09, Remark 1.2], this mapping extends to an injective homomorphism o : W — GL(V)
and by [Hum90l I1.5.3|, the group o(WW) preserves the form B on V. To simplify notation, we
write w(v) instead of o(w)(v) for v € V.

Definition 2.2.2. Let (W, S) be a Coxeter system. The root system & of (W, S5) is given by
= {w(as) | w e W,s € S}. The elements a; are called simple roots. For each a € ®, there
exists a unique expression
o= chas, cs € R.
ses
Then « is positive (resp. negative) if all ¢ > 0 (resp. all ¢; < 0). Write & (resp. ®_) for
the set of positive (resp. negative) roots. By [CR09, Theorem 1.3(ii)], ® = &4 U ®_.

For a = w(as) € ®, the associated reflection s, € GL(V) is given by s, := o(wsw™!). One
has
Sa(v) =v —2B(v,a)a,

9
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80 S, does not depend on the choice of w and s.

The notions of length, rank, and irreducibility are defined as for finite root systems in Defi-

nition .1.71 O

Note that if W is finite and if for each o € ® the ounly scalar multiples of o in ® are +«, which
can always be assumed without loss of generality, then ® is a finite root system in the sense of
Definition

Example 2.2.3. Let ¥, be the symmetric group on n letters and S = {si1,...,s,-1} with
s; = (i,i+1). Then W = (S| 2, (sisi+1)3, (si87)% i —j| > 1), s0 (X5, S) is a Coxeter system.
One has

1, J =1
Blas;,as;) = ¢ —1/2, |j—i|=1,
0 else,

so the associated root system is crystallographic and we obtain the same Cartan matrix as in
Example which shows that the root system given there is equivalent to the one constructed
from the Coxeter system. O

Definition 2.2.4. A generalized Cartan matrix is a matrix A = (ai;)1<ij<n € Z™*" satis-
fying

® a;; =2,

° CLUSOIf’L#j,

oaij:0<:>aji:0. O

To a generalized Cartan matrix A = (aij)i<ij<n One associates a Coxeter system (W (A) =
(51,580 | (sis;)™4),S) with S = {s1,...,s,}, where m;; = 1 and m;; is given by the following
table (cf. [Kac85, Section 1]).

00

>4

aijaji ‘ 01 2 3
The Dynkin diagram of a generalized Cartan matrix A is defined like the Dynkin diagram
of a Cartan matrix of a finite root system with the additional requirement that for a;ja;; > 4,
there is a single edge labelled by |a;jl,|aj;| connecting the ith and jth vertex. The generalized
Cartan matrix A is called irreducible if its Dynkin diagram is connected. A Dynkin diagram is
called simply laced if a;ja5; € {0,1} for all 4, j. The Coxeter diagram of A is a graph with
n labelled vertices where for i # j the ith and jth vertex are joined by a single edge labelled by
ml-j.

2.3 Buildings

We collect the necessary basics on buildings and twin buildings. This section follows [ABOS|
Chapter 5|, see also [HKMI13| Section 2.1]

Definition 2.3.1. Let (W, S) be a Coxeter system. Following [AB08| Definition 5.1|, a building
of type (W, S) is a pair (C,0) consisting of a nonempty set C,whose elements are called chambers,
together with a map §: C x C — W, called the Weyl distance function, such that for all
C, D € C, the following conditions are satisfied:

10
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(WD1) 6(C,D)=1 + C =D.

(WD2) If §(C,D) = w and C’ € C satisfies 6(C",C) = s € S, then §(C’, D) = sw or w. I,
in addition, lg(sw) = lg(w) + 1, then §(C’, D) = sw.

(WD3) If 6(C, D) = w, then for any s € S there is a chamber C’ € C such that §(C’,C) = s
and §(C’, D) = sw.

The Coxeter group W is called the Weyl group of (C,6). For I ={1,...,n}and S={s; |i €]
define Wy for a subset J C I by Wj:= (s; | i € J). O

Where the distance function does not need to be taken into explicit account, we will often omit
it and simply denote by C the building (C, ).

A building is called spherical if W is finite, and k-spherical if W is finite for each k-element
subset J C I.

Given s € S, two chambers C, D € C are called s-adjacent if §(C, D) = s, and s-equivalent
it 6(C, D) € {1, s}. s-equivalence is an equivalence relation whose equivalence classes are called
s-panels and a panel is an s-panel for some s € S. A building is called thick (resp thin) if
each panel contains at least three (resp. exactly two) chambers. By (WD3), panels contain at
least two chambers.

For S = {s1,...,s,} and a subset J C {1,...,n}, two chambers C,D € C are J-equivalent
if 6(C,D) € Wj. One can show that J-equivalence is an equivalence relation; its equivalence
classes are called J-residues. A J-residue is called spherical if W is finite. A residue is a
subset R C C that is a J-residue for some J C S. For a chamber C € C, the J-residue containing
C is denoted by R ;(C). The collection of all J-residues in C is denoted by Res;(C). The residues
of co-rank one, i.e., the elements of Vs := Resg\ (51(C) are called s-vertices. There is a canonical
embedding

LZC‘—>HV3,

seS
C— (Rg\(s}(C))ses

mapping a chamber onto the tuple consisting of its vertices.

Let (C,d) and (C’,0") be two buildings of type (W, S) and (W', S), respectively, and let M C C
and M’ C C'. Let 0 : W — W’ be an isomorphism satisfying o(S) = S’. A o-isometry from
M to M is a map ¢ : M — M’ such that the following diagram commutes:

MxM—0 W

b I

M
It (W,S)=(W',5") and o = id, we call ¢ an isometry .

For a Coxeter system (W, S), define oy : W x W — W, (wy,ws) + wy "wz. Then it is straight-
forward to check that (W, dy ) is a thin building, the standard thin building of type (W, S).

Using the characterisation from [ABQS8| Corollary 5.67|, an apartment of a building (C,d) is a
subset ¥ C C that is isometric to W where W is taken to be the set of chambers of the standard
thin building. By [ABOS8|, Corollary 5.74], any two chambers are contained in a common apart-
ment. A system of apartments is a collection §2 of apartments such that any two chambers
are contained in a common apartment in (2.

11
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Definition 2.3.2. Let (W, 5) be a Coxeter system. Following [ABOS8| Definition 5.133|, a twin
building of type (W, S) is a triple (C+,C_,0*) consisting of two buildings (C4+,04) and (C—,0_)
of type (W, S) with disjoint C4 and C_, together with a codistance function

0 1 (C xCo)U(CoxCq) > W
such that the following conditions are satisfied for each € € {4, —}, any C € C, and any D € C_,
where w := 6*(C, D):
(Twl) 6*(C, D) = 6*(D,C)~ L.
(Tw2) If C' € C, satisfies 6.(C,C") = s with s € S and I(sw) < I(w), then §*(C’, D) = sw.

(Tw3) For any s € S, there exists a chamber C’ € C. with §.(C’,C) = s and §*(C’, D) =
sw. U

Two chambers C' € Cc and D € C_. are opposite, noted C op D, if §*(C,D) = 1. A twin
apartment of a twin building C is a pair ¥ = (X4,3_) such that for € € {+,—-}, ¥¢ is an
apartment of C,, and every chamber in ¥, U X_ is opposite precisely one chamber in ¥, UX_.
The twin building is called thick (resp. thin), if each of the buildings C; and C_ is thick (resp.
thin).

By [ABOS8| Lemma 5.149] (see also [HKM13, Section 2.1]), if R is a spherical residue of C+ and
C' is a chamber in C+, then there exists a unique chamber D € R such that ¢*(C, D) is maximal
in the set {0*(C, E) | E € R}. This chamber is called the co-projection of C onto R and is
denoted by proji(C).

For C € C+ and w € W define

Ew(C) = {D € Cy | 6=(C, D) = w},
E5(C) = {D € O+ | 6*(C, D) = w},

The sets F<,(C) and EZ, (C) are defined accordingly. Moreover, define

Co = {(C,D) € (Cy x C_) U (C_ x C.) | §*(C, D) = w).

2.4 Topological Twin Buildings

Following [HKM13l Section 3.1], let C = (C4+,C—, d*) be a thick twin building of type (W, S) such
that the Coxeter diagram of (W, S) has no isolated vertices. Then a topology 7 on C is a pair
of topologies 71 on C1. The set C+ UC_ is equipped with the direct sum topology.

Definition 2.4.1. [HKMI13| Definition 3.1], let C be a thick twin building of type (W, S) without
isolated vertices in the Coxeter diagram and 7 a topology on C. Then the pair (C,7) is called a
topological twin building if it satisfies the following axioms:

(TTB1) 7 is a Hausdorff topology.
(TTB2) For each C € C4+ and each s € S the map

E7(C)—=CiuC-
D — projE{S}(C) (D)

is continuous, where Ry (C) denotes the s-panel containing C.

12
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(TTB3) There exist chambers C+ € C4 such that Cy is the direct limit lim , F<,(Cy)
and 7 is the direct limit topology.

(TTB4) For each s € S there exists a compact s-panel in Cy.
]

Definition 2.4.2. A topological twin building C of type (W, S) is called a strong topological
twin building if it satisfies the following additional axioms:

(TTB1+) The vertex sets V¥, s € S, are Hausdorff.
(TTB2+) For each s € S the map

C — C+ UcC-
(C,D) pTOJE{S}(c)(D)

1S continuous.

(TTB5) Theset C; = {(C, D) € (C4+ xC_)U(C-xCy) | 6*(C, D) = 1} of opposite chambers
is open.

(TTB6) For every s € S, the canonical map C+ — VI is open.
O

Lemma 2.4.3 [HKM13| Proposition 3.20]. Let C be a strong topological twin building C of type
(W, S). Then the following hold:

(TTB6-+) For every J C S the canonical map C+ — Res? is open.
(TTB7) The embedding

viC [ Ve

seS
C = (Ra\(s3(C))ses

is open and therefore a homeomorphism onto its image.

2.5 DBN-Pairs

This section follows [ABO8, Sections 6.1, 6.2]. Let (C,d) be a building. A group G acts on
(W, 6) if it acts on the set C and preserves Weyl distance, that is, 6(C, D) = §(g.C, g.D) for all
C,D € C,g € G. Let A be a set of apartments of (C,0). The G-action is strongly transitive
(with respect to A) if G acts transitively on the set of pairs (C,X) where C is a chamber and
> € A is an apartment containing C.

Definition 2.5.1. Following [ABOS8| Definition 6.55|, a BN-pair is a pair of subgroups B and
N of a group G such that B and N generate G, the intersection T := BN N is normal in N,
and the quotient W := N/T admits a set of generators S such that the following two conditions
hold:

(BN1) For se€ Sand we W,

sBw C BswB U BwB.

13
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(BN2) For s € S,
sBs™! % B.

The group W is called the Weyl group associated to the BN-pair. The group B is called a
Borel subgroup and the quadruple (G, B, N, S) a Tits system. O

Example 2.5.2. [ABOS8|, 6.5] Let B be the group of upper triangular matrices in SL,(R) and let
N be the group of monomial matrices in SL,,(R). Then B and N form a BN-Pair for SL,(R).
The intersection 7" := BNN is the diagonal subgroup of SL,,(R), and W := N/T can be identified
with the symmetric group on n letters. The set S can be chosen as the standard set of generators
{s1,...,8n—1} where s; is the transposition that interchanges i and i + 1. ]

Theorem 2.5.3 [AB0O8, Theorem 6.56 (1)|. Given a BN-pair in G, the generating set S is
uniquely determined, and (W, S) is a Cozeter system. There is a thick building A = A(G, B)
that admits a strongly transitive G-action such that B is the stabilizer of a fived chamber C' and
N stabilizes a fived apartment X containing C and is transitive on its chambers. (|

The Bruhat decomposition of G is given by

G = |_| BwB := BuB
weW

where W is a representative of w in N. The standard parabolic subgroups of G are the
subgroups Py := BW;B (J C {1,...,n}) where S = {s1,...,s,} and W is the subgroup of W
generated by the corresponding subset of S. These are precisely the subgroups of G containing
B. They are self-normalizing and no two of them are conjugate.

The building A(G,B) = (C,d) can be described as follows: Let C := G/B and define § :
G/B x G/B — W by
§(9B,hB) = w : <= Bg 'hB = BuwB.

Then G acts by left translation, and N stabilizes the fundamental apartment ¥ = {wB | w €
W} and is transitive on its chambers while B stabilizes the fundamental chamber B.

Definition 2.5.4. For w € W and a chamber gB € G/B define

Cw(gB) := {hB € G/B | §(9B,hB) = w},

C<w(gB) == | Cu(gB)

and
Ccw(9B) := C<w(gB) \ Cu(gB).

In particular, one has Cy(B) = BwB/B and C<4(B) = B(5)B/B for s € S with representative
§ € N. The sets C<s(gB) are exactly the s-panels as defined above. O

Let C = (C4+,C-) be a twin building of type (W, S). Following [ABO8|, Definition 6.67|, a group
G acts on C if it acts simultaneously on the two sets C4 and C_ and preserves Weyl distance and

codistance. The G-action is strongly transitive if G acts transitively on {(C,C") € C; x C_ |
C op C'}.
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Definition 2.5.5. Following [AB08) Definition 6.78]|, let B4, B_, and N be subgroups of a group
G such that By NN =B_NN =T < N. Let W = N/T. The triple (B4, B_, N) is called
a twin BN-pair with Weyl group W if it admits a set S of generators such that the following
conditions hold for all w € W and s € S and € € {+, —}:

(TBNO) (G, B, N,S) is a Tits system.
(TBN1) If i(sw) < l(w), then BesBewB_¢ = BeswB_.
(TBN2) B,.sN B_ = 0.
The quintuple (G, B4+, B_, N, S) is called a twin Tits system. O

Proposition 2.5.6. Following [AB08, page 332], for a twin Tits system (G, By, B_,N,S) and
e =+, let (Ce, d¢) be the building associated to the BN pair (B¢, N). Define

5*Z(C+XC_)U(C_XC+)—>W

by
6*(gBe,hB_.) =w: <= ¢ 'h € BawB_..

Then (Cy,C—_, %) is a thick twin building. O

2.6 RGD Systems

Let (W,S) be a Coxeter system with S = {s1,...,s,} and ® the set of roots of (W,S) with
positive (resp. negative) set of roots &, (resp. ®_). Following [CR09) Section 1.2.2|, for a set
of roots W C & define

Wi(¥):={weW |waec Py for each a € U}.
Moreover, define
U={aecd®|Wg(¥)CWi(a)and W_(¥) C W_(a)}.
The set W is called prenilpotent if W, (V) and W_(¥) are both nonempty.
For a pair {a, B} € ® set

[, ] :={a, B} and  (a,B) = o, BI\ {Ae, pf | A, € Ry}

Definition 2.6.1. An RGD system of type (W, 5) is a triple (G, (Uy)ac®,T) consisting of a
group G, a family of subgroups U, and a subgroup T satisfying the following conditions:

(RGDO) For all o € &, U, # {1}.
(RGD1) For all a # g in ® such that {«, 5},

[Ua, Us] < Uga,p)

(RGD2) For every s; € S there is a function m; : Uy, = Uy, \ {1} — G such that for all
ue U} and a € 9,

mi(s;) € U_q,uU_,, and m;(w)Upmy(u) ™t = Us,a-
Moreover, m;(u) tm;(v) € T for all u,v € U, .
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CHAPTER 2. BUILDINGS AND GROUPS WITH RGD SYSTEMS

(RGD3) For all s5; € S,
U*Oéi ﬁ Uy,

where Uy := (U, | a € $y).
(RGD4) G=T(U, | a € D).
(RGD5) T normalizes U, for each o € @, i.e.,

T< ﬂ NG(UOé)'
acd

The groups U, are called root subgroups and the groups G, := (Uy,U—_,) are called rank
one subgroups. The rank one subgroups G; := G, (s; € S) corresponding to simple roots are
called fundamental rank one subgroups . g

Let

N :=T.(mi(u) |ue Uy, \ {1},s €8),
B+ = T.UJ,_,
B_:=TU-_.

Theorem 2.6.2 [ABO8, Proposition 8.54 (1)]. Let (G, (Uy)aca,T) be an RGD system. Then
(G,B4+,B_,N,S) is a twin Tits system with Weyl group N/(BNN)=N/T = W. O

Corollary 2.6.3 [AB08| Corollaries 8.55 and 8.78].
o No(Us) = By.
e« BLNB_=T. O

In the following, we will only be interested in the Tits system (G, By, N, S) of an RGD system.
We will therefore often denote By by B.

Example 2.6.4 [ABO8, Example 7.133|. Let G = SL,(R), let T be the set of diagonal
matrices in G, let W be the symmetric group on n letters with standard set of generators
S ={s1,...,sn}. Recall that the root system of (W, S) is given by ® := {a;; :=e€; —¢; | i,j =
1,...,n, i # j} as shown in Example For 1 <i,j <nwithi# j,let Uy, := {Eij(A) | X €
R} where F;; is the elementary matrix with A in position (4,7) and 1’s on the diagonal. Then
(G, (Us)aca,T) is an RGD system.

The maps m; are defined as follows: For uw = E;;11(\) € Uy,, the element m;(u) is the image
of <_)(\)_1 8\) € SLy(R) under the mapping that embeds SLy(R) into SL,(R) as the subgroup
that acts on the space ¢;R + ¢;R and fixes e, for k # 4,7+ 1.

The resulting BN-pair is the one given in Example 2.5.2] O

Lemma 2.6.5 [ABO8| Exercise 7.126|. For S = {s; | i € I} and any subset S; = {s; |j € J C
I}, let @5 = {was |we Wy,s€ Sy} and Gy =T Uy | € ®y). Then (Gy,(Uy)aca,,T) is
an RGD system of type (W, Sy). O
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Chapter 3

Kac-Moody Theory

3.1 Definitions

We introduce Kac—Moody groups, closely following [HKM13), 7.1] and [Mar18| 7.3].

Definition 3.1.1. Let I = {1,...,n} and A = (aij)ijer a generalized Cartan matrix. A
quintuple D= (I, A, A,{c; }ier, {hi}icr) is called a Kac—Moody root datum if A is a free Z-
module, each ¢; is an element of A, and each h; is an element of the dual AY of A such that
one has hi(cj) = a;; for all i,j7 € I. We call D free if the ¢; are Z-linearly independent in A
and cofree if the h; are Z-linearly independent in AY. We call D adjoint if the ¢; span A and
coadjoint if the h; span AY. To any Kac-Moody root datum D one can associate an adjoint
Kac-Moody root datum ad(D) by replacing A with its sublattice A generated by the ¢; and
restricting the elements h; accordingly. ]

Definition 3.1.2. By [Marl8, Example 7.11|, given a generalised Cartan matrix A = (a;j)i jer
there exists a unique Kac—-Moody root datum associated to A that is both cofree and coadjoint,
i.e. such that AV = ®;c;Zh;. It is denoted by Dﬁ and called the simply connected root datum
associated to A. O

Definition 3.1.3. Let D = (I, A, A, {c;}icr, {hi}icr) be a Kac-Moody root datum. The Kac—
Moody algebra gp of type D is the complex Lie algebra with generators hp := AV @7 C (the
Cartan subalgebra of gp), and the symbols {e;};c; and {f;}icr, together with the following
defining relations:

(6D, bp] =0,
[h,ei] = (ci,h)e; and [h, fi] = —(c,h)fi for h € bhpand i€ I,
[ei,f,-] = _5ijhi for i,j € I,
(ade,)' " %i.e; = (ady,)! "%, f; =0 for i,j € I with i # j.

For a generalized Cartan matrix A, we define gu := gpa and call it the simply connected
Kac—Moody algebra of type A over C.

It follows from the last relation that e; and f; are ad-locally nilpotent (or, equivalently, ad,,
and ady, are locally nilpotent), which means that for each g € gp there exists an m € N such
that (ade,)™.g = (ady,)™.g = 0. O

Definition 3.1.4. In [Tit87, 3.6], Tits associates with each Kac-Moody root datum D a triple
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(G,{pi}icr,m) where G is a group functor on the category of commutative unital rings, the (;
are homomorphisms SLy(R) — G(R), and 7 is a natural transformation Homg_ a4 (Z[A], =) = G
satisfying the following conditions:

(KMG1) If Kis a field, then G(K) is generated by the images of the ¢; and of n(K).

(KMG2) For every commutative unital ring R, the homomorphism Homgz_.4(Z[A], R) —
G(R) is injective.

(KMG3) Given a commutative unital ring R, i € I and r € R*, one has ¢; (6 781) =

N = ).

(KMG4) If . : R — K is an injective homoomorphism from a commutative unital ring R
to a field K, then G(¢) : G(R) — G(K) is injective.

(KMG5) There exists a homomorphism Ad : G(C) — Aut(ga) whose kernel is contained
in n(C)(Homgz_a4(Z[A], C)), such that for z € C and i € I one has

Ad <<Pz' (é i)) = exp ad ze;,
Ad (gpl- (i ?)) = expad(—zf;).

Furthermore, for every homomorphism v € Homgz_ a1, (Z[A], C), one has
Ad(n(C)(7))(ei) = (i) - eis  Ad(n(C)(7))(fi) = (=) - fi.

For a given Kac-Moody root datum D the group Gp(R) := G(R) is called a split Kac-Moody
group of type D over R. For a generalized Cartan matrix A, the group Gr(4):= Gpa(R)
is called the algebraically simply-connected semisimple split real Kac-Moody group
of type A. Denote by Z the centre of Gr(A) and define the adjoint Kac—Moody group of
type A by Ad(Gr(A)) := Gr(A)/Z. O

It is established in [Tit87, Theorem 1| that on the category of fields, the functor G is completely
characterised by the axioms above, up to some non-degeneracy assumptions concerning the maps

Pi-
Definition 3.1.5. Following [FHHK| 3D], the extended Weyl group W< Gp(R) is defined
by W= (S1,...,5n) wheres; 1= ¢; (_01 (1)

induces an epimorphism from W to W. O

) . By [Kac90, Proposition 2.1], the mapping 5; — s;

3.2 The RGD System of a Kac—Moody Group

We state a result of Rémy, reformulated by Hartnick, K6hl and Mars, which gives an RGD
system for a split Kac—-Moody group over a field.

Following [HKM13| Proposition 7.2| (see also [Rém02, Proposition 8.4.1], [Cap09, Lemma 1.4]),
let K be a field, let D = (I, A, A, {ci}ier, {hi}ier) be a Kac—-Moody root datum, and let Gp(K)
be the corresponding split Kac-Moody group of type D over K. Then Gp(K) admits an RGD
system as follows. Let (W,S) be the Coxeter system associated to A and let ® be its set of
roots. Given i € I, let U,, and U_,, be the respective images of the subgroups of strictly upper,
resp. strictly lower triangular matrices of the matrix group SL2(K) under the map ¢;. For an
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arbitrary root a = w.co; € ® with w = s;, ... s;, define U, = wU,,w I where @ := Siy -+ - Siy -

Denote by T' the image of n(K) in Gp(K).

Proposition 3.2.1 [HKMI3| Proposition 7.2]. One has T = () ce Napx)(Ua) and W
Napw)(T)/T. Moreover, (Gp(K), (Ua)aca,T') is an RGD system.

O R

The group Gp(K) is called (k-)spherical if the corresponding building is (k-)spherical, and
simply laced if the Dynkin diagram of its generalized Cartan matrix is simply laced. It is
called symmetrizable if its generalized Cartan matrix A is symmetrizable, that is, if there
exists a non-degenerate diagonal matrix D such that DA is symmetric.

By [Car92, Section 6], the RGD system of the algebraically simply-connected semisimple split
real Kac-Moody group Gr(A) is centered, that is, in (RGD4) one has the equality

Gr(4) = (Ua | a € D).

Remark 3.2.2. Since the restriction to a subset of S and the corresponding root system yields
again an RGD system by Lemma the fundamental rank one subgroups G, = (U+q,) admit
an RGD system of type A; which implies that the ¢; are isomorphisms from SLa(K) to G,,. O

Remark 3.2.3. The group T is called the standard maximal torus of Gp(K); it carries the
structure of a Lie group. In the case of an algebraically simply-connected semisimple split real
Kac-Moody group, it is generated by the images of the diagonal subgroup Ty < SLa(K) under
the maps ¢; and is therefore isomorphic to (K*)™. In the case of K = R, approaching the torus
via the theory of Kac-Moody algebras, it can be introduced as the intersection of Gp(R) with
the exponential image of the Cartan subalgebra (which lives in Gp(C)). O

Notation 3.2.4. From now on, G will always denote the group Gr(A) or a central quotient of
this group, for a symmetrizable irreducible generalized Cartan matrix A, and II the generalized
Dynkin diagram of A.

Denote by B := B, the positive Borel subgroup of the twin BN-pair of G, by T the standard
maximal torus and by W the Weyl group of G with generating set S = {s;};c;. For each 0; € S,
take §; € G to be a fixed representative for o; and recall that Bs; B := BS;B.

Unless specified more explicitly, the symbol J will always denote an arbitrary subset of the index
set I, the symbol II; the subdiagram of II corresponding to J, the symbol G the subgroup
Gr(Ay) of G where A; denotes the corresponding submatrix of A, and the symbols By and
T; the intersections Gy N B and Gy N T, respectively. Recall that by Lemma the tuple
(G, (Ua)aca,,T) is an RGD system in its own right, and so is (G.y, (Uy)acas,, 1), since Gr(A)
is centered. The positive Borel subgroup of the latter RGD system is Bj.

For one-element subsets {i} C I we use the convention G; := G;. This is consistent with the
notation for the fundamental rank one subgroups: One has GR(A{Z}) =G =Gy, O

3.3 The Kac—Peterson Topology

In this section, G denotes the group Gg(A), or a central quotient of this group, for a symmetriz-
able irreducible generalized Cartan matrix A.

We introduce the Kac—Peterson topology on the Kac-Moody group G, which will later turn out
to coincide with the final group topology with respect to the maps ;. Rather than defining it to
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be the final group topology, it is constructed as a direct limit topology with respect to a system
of products of the fundamental rank one subgroup. This makes it possible to establish certain
properties, in particular the k,, property. This section, as well as the following two, follow closely
[HKM13l Section 7], see also [Marlll 2.6,2.8,3.1]. However, some of the proofs from [HKMI13|
had to be revised which was done in collaboration with Ralf Koéhl.

Let A := {o; | i € I} be the set of simple roots of G. For a k-tuple 8 := (B1,...,0;) € AF
denote by GB = Gp, ... Gp, the subset of products of the form g; ... gx where g; € Gg;.

Note that on the set L := [J,cy AF the subtuple relation defines a partial order < and for
each pair @ < 8 € L, there is a canonical embedding fg, : Gg — GE' Since G is centered,
G = (Gq | @ € D), so the direct limit of the direct system (Ga, f3a)a,8er coincides with the set
a<p

underlying G.

Throughout this section, for any finite-dimensional real vector space V, we denote by O the
canonical product topology on V induced from R. Equip each fundamental rank one subgroup
G; with the corresponding topology induced by the isomorphism ¢; : SLa(R) — G; and denote
this topology also by O. Denote by g the Lie group topology on the torus 7.

For each tuple of simple roots 3 = (31, ..., 8x), denote by 75 the quotient topology on T'Gz with
respect to the surjective product map

pg: (T,mR) x (Gp,, 0) X -+ x (Gg,, 0) = TGg. (3.1)

Definition 3.3.1. The Kac—Peterson topology 7xp on the set G is the direct limit topology
with respect to the direct system (T'Gg, fgo) where each TGy is equipped with the topology
Ta- O]

We first make an observation on the structure of the standard maximal torus T of Gr(A). Since
T is isomorphic to (R*)" by Remark [3.2.3] it contains a unique maximal finite subgroup M of
order 2. Denote by A the connected component of T with respect to the Lie topology.

Lemma 3.3.2 [FHHK], Proposition 3.17|. Let G = Gr(A). Then multiplication induces a group
isomorphism M x A — T. If the Kac—Peterson topology is a Hausdorff group topology, then A
1s also the connected component of T with respect to the Kac—Peterson topology and this map is
an isomorphism of topological groups with respect to the Kac—Peterson topology. O

To establish — first for the Hausdorff case in the following section and eventually for the general
case — that the Kac—Peterson topology is actually a group topology, we will prove that it is k,
on the subspaces TGg in order to employ Proposition [1.4.3]

To this end, we define an algebra U associated to G that admits a certain adjoint representation
Ad : G — Autgy(U) which for each v € U admits a continous orbit map TGy — V¥ where V2
is a vector space with a Hausdorff topology. The existence of this map establishes that TGy is
Hausdorff and, consequently, k.

Following the construction due to [Tit87], as exhibited in [HKMI3| 7.2], let g be the complex
Kac—Moody algebra associated to the generalized Cartan matrix A, and let U4(g) be its universal
enveloping algebra, that is, U(g) = (®neN g”)/[ where I := ([z,y] — zy + yz).

For each u € U(g), let ul” := (n!)~ '™ and

(u> =) u(u—1)... (u—n+1).

n
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Let Q := > iy Za be the free abelian group generated by the simple roots. As in [Rém02,
7.3.1], the algebras g and U(g) admit an abstract Q-grading by declaring e; of degree a; and f;
of degree —a; and extending linearly to U(g), so that the elements of h are of degree 0.

Let Up(g) be the subring of U(g) generated by the degree-0O-elements of the form <Z> where

he b, and let U, (g) = 3, on Zel™ and Uy, (g) = 3,en ZF™. Define Us(g) to be the subring
of U(g) generated by Up(g) and {Ur.(g) | @ € A}.

Finally, define U := Uz(g) ®z R and let Autgy (U) be the group of R-linear automorphisms of U
which preserve the given QQ-grading.

Proposition 3.3.3 [HKM13, Proposition 7.6], see also [Rém02 Proposition 9.5.2]. There ezists
a morphism of groups

Ad:G — Autﬁlt(z/{)

which is characterised by the following axioms, where i € I, r € R, and h € T':

@ (o g 7)) = el on = Siz, Sl e
(b) Ad(T) fizes Uyp.
(¢) Ad(h)(e; @ 1) = h*(a))(e; ® ).

The kernel of this representation coincides with the centre of the group G. ]

Proposition 3.3.4 [IKMI3| Proposition 7.9]. Let v € U and 3 € L. Then there exists a
finite-dimensional sub-vector space VBU of U with the following properties:

(a) The image of the orbit map TGz —U: g~ g is contained in VEU'
(b) If @ < B, then V¥ < VBU
(¢) The orbit map (TGg,75) — (VBU’ O) : g — g.v is continuous.
Proof. By Proposition [3.3.3] we may disregard the finite-dimensional torus 7.

(a) and (b): We argue by induction on k, the length of 3. For k = 1, let Gz =G,

By the Gauss algorithm, SLy(R) = ULUL, where U and L denote the subgroups of upper,
respectively lower triangular matrices with 1’s on the diagonal. Hence, GG;.v is contained in

{(Ad(zi(r1)) Ad(z_;(r2)) Ad(zi(r3)) Ad(z_;(r4))).v | 7 € R},

24(r) == o4 (é 71’) and  z_i(r) = o C ?)

Using Proposition (a), we therefore define

Vi= ) <<®C}€‘?)k®1> <®j{i)l®1) (W@l) (W®1>ﬂ>.

kJlmmn

where

Since e; and f; are ad-locally nilpotent, the above sum is finite, so Vi 1s a finite-dimensional
vector space containing G;.v.
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Now, let 3 = (B1,...,5B) and set B, := (B2,...,0%). By induction, GB/.U is contained in a
finite-dimensional vector space VB”,. Let {b1,...,b,} be a basis for VB”,. Then for each j, there

exists a finite-dimensional space Vﬁblj that contains Gg,.bj. Therefore, the space VBU = Z?zl Vﬁblj
has the desired properties.

GL(V2
(c): Let pg, = Ad|G5( 5 : (Gg,,78,) — (GL(VE”),(’)). By restricting the codomain to the
1

Zariski closure of the image of pg,, one can apply the Borel-Tits theorem [BTI18, Theorem 1.5
which yields that pg, is an isogeny and therefore continuous. Hence, the orbit map (Gg,,78,) =
(VEU’ O) : g — g.v is continuous. This proves (c) for 1-tuples 8 = (51).

Now, let # have length more than 1 and decompose it as 3 = (1,7%). By induction, the orbit
map (Gy, 77) — (V5, O) is continuous, and since V3 < VEU’ so is the map ¢ : (G, 75) = (V3,0) :
g — g.v, obtained by extending the codomain.

Since the action ¢ : (GL(VB”),O) X (VB”,(’)) — (VBU’ O) is continuous, one obtains a continuous
map

eo(pp, x @) : (Gp,,18,) x (Gx,T5) = (VEU’O) :
(xﬁl’xW) = [pﬁl (zﬂl)](xV'v)

= (apyay)-0.
But this implies that the orbit map (GE’ TE) — (VE”, O) : g — g.v is continuous as well, since 5
is defined as the quotient topology with respect to the product of the Gpg,’s. |

Following [HKM13| Remark 7.12], the Kac—Peterson topology can alternatively (but equiva-
lently) be described as another direct limit topology 7 with respect to products of the root
subgroups U,. This will allow us to prove that B is closed by identifying it with the set of
common zeroes of a family of functions that are continous with respect to 7. We obtain that the
building G/B is Hausdorff.

As in the proof of Proposition for a simple root « let

a(r) i= i (é ’1"> and  z_o(r) = o <7{ ?)

For B = (B1,...,0k) € (AU —A)k, let
T RF G (ty,... 1) — xg, (t1) - xp, (tr)
and denote by Uz the image of 27 in G.

Similarly to the definition of the Kac—Peterson topology, denote by 7 the direct limit topology
on G with respect to the directed system (UB’ fBa)7 where fBa denotes the natural embedding
Ug — UE with respect to the subtuple relation, and where UB is equipped with the topology 5

induced from the topology O on RF.

The direct limit topologies 7 and 7 p are determined by the respective topologies on the spaces
Ug (where 3 is a tuple of positive or negative simple roots) and TGy (where @ is a tuple of simple
roots). But G is centered, so the torus T' can be recovered from the root groups. Therefore, the
topologies on UE and TGy are both induced by the maps ;; and since Go = U, U_,UU—_, by
the Gauss algorithm, the topologies 7 and Txp in fact coincide.

Definition 3.3.5. A function g : G — R is called weakly regular if g o Ty RF - Ris a
polynomial function for all k € N and all 5 € (AU —A)F. O
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Lemma 3.3.6 [HKMI13, Lemma 7.14|. Let g : G — R be a weakly regular function. Then g is
continuous with respect to the Kac—Peterson topology on G and the natural topology on R.

Proof. Let B C R be a closed subset. As polynomial functions are continuous, the preimage
(gowxz) is closed in (R*, O) for each B € (AU—A)*. Since this set equals the preimage of g~1(B)
under T3, its image in Ug is closed with respect to the induced topology, so the set g Y(B)
is closed in G with respect to the direct limit topology 7 introduced above. This proves the
assertion, as 7 and T p coincide. [ ]

Proposition 3.3.7 [HKMI13| Proposition 7.15|. The subgroup B is closed in G with respect to
the Kac—Peterson topology. In particular, the building G /B is Hausdorff when equipped with the
quotient topology.

Proof. Denote by U=Z° the subspace of U consisting of the non-negative vectors with respect to
the Q-grading introduced in the definition of . Since B is the stabilizer of =" in G, as can
be deduced from Proposition for each g € G'\ B one can choose a vy € U= such that
g.vg & U=". Then one can choose a vy € Ann(U=%), the annihilator of =0 in U*, such that

f”_r;v”; (g) = U;(Q-Ug) # 0. Now,

B = ﬂ {heq| fvg,v;(h) = 0}.

geG\B

Since ad., and ady, are locally nilpotent, the maps fvgw; are weakly regular, and so by Lemma
B is the intersection of the sets of zeroes of a family of continuous functions. This proves
the assertion. |

3.4 Implications of 7xp Being Hausdorff

As usual, G denotes the group Ggr(A), or a central quotient of this group, for a symmetrizable
irreducible generalized Cartan matrix A.

If the Kac—Peterson topology is Hausdorff, it has a variety of interesting and useful properties, as
we will see in this section. Later we will show that the results established here all hold for adjoint
split real Kac-Moody groups. Using the central extension G — Ad(G) for a simply connected
split real Kac-Moody group G, this will later enable us to prove that (G, 7xp) is Hausdorff as
well.

Lemma 3.4.1 [HKM13, Proposition 7.10]. If (T'Gg,75) is Hausdorff for each tuple B of simple
roots, then the Kac—Peterson topology is a k., group topology on G. In particular, this holds if
the Kac—Peterson topology is Hausdorff.

Proof. Let (TGB’ TB) be Hausdorff. Then it is a Hausdorff quotient of a finite product of k,
spaces and therefore k,, by Proposition [[.4.2]

Since the spaces TGy are k,,, Proposition implies that G x G = lim_,(TGg) x lim_,(TGx)
is homeomorphic to lim_, (TG x TGg), so multiplication can be reduced to the T'Gg pieces.

Let 8= (B1,...,8%),7 = (7,...,7) be tuples of simple roots. By definition of (8,
multiplication map Gg, . 5,) X G(y1,..v) — Gai,...,y) 18 continuous, and so is the inversion
map Gg, ... 8,) — G(s,.,8) Lhis implies that (G,Tkp) is a topological group. Since it is a
direct limit of Hausdorfl spaces, all singletons are closed in (G,7xp), so it is T1. But a T1
topological group is Hausdorff, so Proposition implies that (G, 7k p) is k. This proves the
first assertion.
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The second assertion is clear, since a set U C G is open in 7xp iff each intersection U N T GE is
open in 75, so0 Tk p being Hausdorff implies that each (T G, TB) is Hausdorff. |

If the Kac—Peterson topology is Hausdorff, it is a k., group topology by Lemma which
enables us to obtain a characterisation of 7k p as the final group topology with respect to the
maps ;. We define amalgams of groups and their universal enveloping groups and, for the
two-spherical case, state an amalgamation result which gives a concrete presentation of G as the
universal enveloping group of the amalgam of fundamental rank one and rank two subgroups in
the categories of abstract, Hausdorff topological, and k,,-groups.

Definition 3.4.2. The universal topology 7, is the final group topology with respect to the
maps

@i : SLa(R) = G, n(R) : Homz_a,(Z[A],R) — G,

where SLy(R) and Homg_,15(Z[A], R) = (R*) are equipped with their Lie group topologies. [

The following proposition is Proposition 7.21 from [HKMI13]. The alternative proof given here
is an original result by the author.

Proposition 3.4.3. Let 7xp be a group topology. Then the universal topology 7., and the
Kac—Peterson topology T p coincide. In particular, this holds if T p is Hausdorff.

Proof. Tt is clear that 7xp C 7y, since 7xp is a group topology and the maps ¢; and n(R) are
continuous with respect to Tx p by its definition, the topology g on T" being induced by the map

n(R).

To prove that 7, C 7xp, let B = (B1,...,5:) be a k-tuple of simple roots and let 75! be
the product topology on G**1. We first show that the subspace topology 7r+1 of 7/+1 on
T x Gp, x---xGpg, is coarser than the product topology of the respective Lie topologies g x OF.
For this, it suffices to show that each open 1-neighbourhood in T' x Gg, x --- x G g, with respect

k+1 contains an open 1-neighbourhood with respect to g x OF.

to T

Let U CT x Gg, x --- X Gg, be an open l-neighbourhood in 7h+1 Then there exists an open
L-neighbourhood U C (GF+1 7E+1y with U N (T x G, x --- x Gg,) = U. Hence, there exist
open l-neighbourhoods Uo,Uy,...,Us in (G, Tun) with Uy x Uy x -+ x U, CU. Since U; is open
in Tyn, its preimage ¢; *(U;) = ¢; (U; N Gy) is open in SLg(R) for each i = 1,...,n while the
preimage n(R)~!(Up) = n(R) ™' (Up N T) is open in Homgz_,¢(Z[A],R) with its Lie topology.

By definition of the Lie topologies O on G; and 7g on T', this implies that U; := U;NG; is open in
(G, O)or i = 1,...,k while Uy := UyNT is open in (T, 7g). Therefore, Ug x Uy x - -+ x Uy, is an
open 1-neighbourhood in g x O% and we have Uy x Uy x - - - x U, C UN(TxGp, x---xGpg,) =U.

This proves 7o C 7 x OF.

To prove that 7., C 7xp, let U C G be open with respect to 7y4,. Then for each k € N,

the preimage pj !, (U) under the product map pgi1 : G¥*1 — G is open in (G*+!, 7K, since

(G, Tun) is a topological group. Therefore, the intersection p,;il(U)ﬁ (T'xGga, x---xGpg,) is open

in (T x Gg, x -+ x Gpg,) with respect to the subspace topology 7+t1 for each k-tuple (81, .. ., Bk)
of simple roots. Since 7h! C 7 x OF, the set p,;il(U) N(T xGga, x---xGg,) is therefore open in

(T, mr) X (Gg,,0) x ---x (Gg,,O0). But p,;il(U) N(TxGg, x---xGg,) = p%l(UﬂTGB), where
vz = pk+1’(T><G51X'"XGBk) is the product map given in Since 5 is the quotient Eopology
with respect to pg, we therefore obtain that U N TGB is open in (TGB’ TB) for each B, which

24
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implies that U is open in 7xp. This proves the first assertion. The second assertion follows
directly from Lemma [3.4.1] |

Definition 3.4.4. Let () # J be a set. Following [GHKWIT, Section 3|, an amalgam over J
isaset A= {Gi,Gij,@j | i # j € J} such that G; and G;; are groups and qﬁ:j : G — Gy is a
monomorphism for all 7 # j € J.

An enveloping group of A is a pair (G, ) where G is a group and ¢ is a set ¢ = {15 | i # j}
of enveloping morphisms 1);; : G;; — G such that G = (¢4;(Gyj) | i # j € J) and such that
the following diagram commutes for ¢ # j #£ k € J:

_ Gij
G, G
N
Grj

A universal enveloping group of A is an enveloping group (G, 1) such that for each enveloping
group (H,') of A there is a unique epimorphism = : G — H such that ng = 7 o 1);; for all
i£ged. O

Theorem 3.4.5 (Topological Curtis-Tits Theorem) [HKMI13, Theorem 7.22|. Let G be two-
spherical and T p Hausdorff. For i # j € I let ¢§j : Gy — Gy and 5 : Gij — G be the
canonical inclusion morphisms and let 1 = {¢;; | i # j € I}. Then ((G,Tkp),?) is a universal
enveloping group of the amalgam {G;, Gy}, d)% | i # j € I} in the categories of

(a) abstract groups,
(b) Hausdorff topological groups and

(¢) ky groups.

Proof. By Lemma [3.4.1] 7xp is a k., group topology.
(a): This is the main result of [AM97].

(b): This holds since the Kac-Peterson topology coincides with the universal topology by Propo-
sition B.4.3]

(c): This follows directly from (b) by [GGH10), Corollary 5.10] [ |

We are now in the position to prove that the restriction of the Kac—Peterson topology to a
spherical subgroup coincides with its Lie group topology if 7x p is a Hausdorff group topology; in
particular, spherical subgroups are locally compact. To that end, we state an embedding result
by Griining and Kohl.

Remark 3.4.6. The following Proposition is a result by Griining and K&hl, published in their
appendix to [HK19]. It is proved there by employing the above Proposition as given in
[HKM13l, Proposition 7.21]. In [HKMI3]|, the proof of said Proposition 7.21 cites a result which
we will only be able to prove at a later stage; namely the fact that spherical subgroups carry the
Lie topology. As we have provided a different proof for Proposition [3.4.3] a circular argument is
prevented and we can safely use [HK19 Proposition B.5] as well as some its corollaries which we
will state later. (Il
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CHAPTER 3. KAC-MOODY THEORY

Proposition 3.4.7 [HK19, Appendix B by Griining and K&hl, Proposition B.5|. Any symmetriz-
able topological Kac—Moody group endowed with the Kac—Peterson topology admits a continuous
wmjective group homomorphism into a stmply laced topological Kac—Moody group with closed image
with respect to the Kac—Peterson topology.

The proof of the following Proposition 7.16(iii)(iv) from [HKMI3| was throroughly revised in
collaboration with Ralf K&hl.

Proposition 3.4.8. Let (G, 7xp) be Hausdorff and let Gy be a spherical subgroup of G, that is,
let Wy = (s; | i € J) be finite. Then the restriction of Txp to G coincides with its Lie group
topology O.

Proof. Since the Lie group topology on G is the final group topology with respect to the maps ;
(i € J), the restriction Tkplg, is coarser than O, so the identity map (G;,0) = (G, TkpPlg,)
is continuous.

To prove the proposition, we will employ a theorem by Burns and Spatzier which requires that
Gj be of rank at least two. If a rank one subgroup G is contained in a spherical subgroup
of larger rank, this requirement is no obstruction. If G; is contained in no such subgroup, we
can use Proposition The image of G; will then be contained in a spherical subgroup of
H of higher rank to which the Burns—Spatzier theorem can be applied, so that we eventually
obtain continuous bijections (G, O) — (Gi, Tkplg,) — (1(Gi), O), yielding the desired result. Tt
therefore suffices to prove the statement for spherical subgroups of rank at least 2.

Since the identity map (G, O) = (G, Tkp|g,) is continuous, the group (G, O) acts continu-
ously on Ry, the spherical J-residue of B in the building G/B, endowed with the Kac-Peterson
(quotient) topology Tk p|g . Since the kernel of the action is Z(G), we can consequently endow
Gj/Z(Gy) with the compact-open topology 7., with respect to this action. Since the evalu-
ation map (G;/Z(Gy), Tkplg,) x (R, TkPlg,) = (R, TkP|R,) is continuous, the (quotient)
topology Tkplg, on G;/Z(G) is admissible, and so by Proposition the identity map
(Gy/Z(GJ), TPlg,) = (G5/Z(G), Teo) is continuous. We therefore obtain continuous identity
maps

(G,]/Z(GJ),O) — (G,]/Z(GJ), TKP|GJ) — (GJ/Z(GJ),TCO).

Our goal is to show that the first and the last topology coincide. This will imply that the
quotient topology of Tk p|g, on G;/Z(G ) coincides with its Lie group topology, proving that
the topologies coincide on Gy as well, since Gy — G;/Z(Gy) is a covering map and covering
groups of Lie groups are Lie groups (see, e.g., [HNLI, Corollary 9.4.6]). To prove that 7., and O
coincide, we show that 7., is locally compact and employ the Open Mapping Theorem for locally
compact groups.

The action of Gy on Ry is transitive with stabilizer By, so we have a continuous surjection
(Gs/Bs,O) = (Ry, 7kplg,). But (G;/B,,0) is compact by [HKMI13, Corollary 3.13] and
(Ry, Tk P| RJ) is Hausdorff by Proposition , so the spaces are homeomorphic by Lemma
The compact-open topology 7., on G with respect to the action of (G, O0) on (Ry, Tkplg,

therefore coincides with the compact-open topology with respect to the action on the spherical
building (G /By, O).

The Burns—Spatzier theorem [BS87, Theorem 2.1] states that the topological automorphism
group Auttop(A) of a compact irreducible metric Tits building A of rank at least 2 is locally
compact in the compact-open topology. Burns—Spatzier introduce the notion of a Tits building
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as a set of parabolic subgroups of different types with a corresponding induced topology. By
[Tit74, Theorem 5.2] and Lemmal[2.4.3| (TTB7), this approach is equivalent to the one taken here
via BN-pairs and the quotient topology.

The group (G;/Z(Gy),0) acts via topological automorphisms on the building (G;/By, O).
Our goal is to establish that G;/Z(G;) is a closed subgroup of the locally compact group
(Auttop(Gy/By), Teo)-

By [Tit74, Corollary 5.10], the automorphism group Aut(G;/By) is given by Aut(G)(R), an
algebraic group whose identity component in the Zariski topology is the group Int(G)(R) which
is isomorphic to the adjoint form Ad(G;) of G;. The group Int(G;)(R) is the group of type-
preserving automorphisms of the building, which means that it induces the identity map on the
corresponding Coxeter diagram and therefore preserves Weyl distance and codistance; in particu-
lar, it contains the group G ;/Z(G ;). Being an algebraic group, Aut(G)(R) can be endowed with
a Lie topology with which it acts as the group Auttop(G;/Bjy) of topological automorphisms
of the building, while Int(G;)(R) with its Lie topology acts as the group Auttopg(Gy/By) of
type-preserving topological automorphisms.

As Auttop(G;/By) with its Lie topology is o-compact, the Open Mapping Theorem implies
that the Lie topology coincides with the compact-open topology.

By [Tit74, page 80], each automorphism of G;/B; is a product of a type-preserving automor-
phism and a Coxeter diagram automorphism. Since the Coxeter diagram of G ;/Bj is finite, the
group Auttopg(Gs/By) = Int(G;)(R) has finite index in Auttop(G;/By).

By [PR94) Proposition 3.6], any noncentral normal subgroup of Ad(G ;) = Int(Gs)(R) has finite
index. Since by [PR94] Section 2.2.3, (2.7)], there exists an exact sequence {1} — Z(G;) —
G; — Ad(Gy) — ..., it follows that the image of G; is a noncentral normal subgroup of
Ad(Gy). This proves that G;/Z(Gs) has finite index in Int(G;)(R) and, consequently, in
Auttop(Gy/By). Since finite-index subgroups of Lie groups are closed and since the Lie topology
on Auttop(G;/By) coincides with the compact open topology, it follows from the Burns—Spatzier
theorem that G;/Z(Gy) is locally compact with respect to the compact-open topology.

The Open Mapping Theorem now yields that the compact-open topology on G;/Z(G )
coincides with its Lie group topology O. This proves the assertion. |

The proof of the following Proposition 7.18 from [HKM13| was revised based on an idea by Stefan
Witzel.

Proposition 3.4.9. Let (G,7xp) be Hausdorff and let T be the Lie group topology on the
standard mazimal torus T. Then the map (T, mR) — (T, Tk p|y) is a homeomorphism.

Proof. We prove the statement for G = Ggr(A), then it automatically follows for central quo-
tients. Since G, being Hausdorff, is a topological group, Lemma yields an isomorphism of
topological groups T' = M x A, where M is finite. It therefore suffices to prove that the map
(A, mrR) = (A, Tk p|4) is @ homeomorphism. Here, 7z denotes the Lie topology on A induced from
(R*)™, so that (A, 7r) is homeomorphic to ©7_;(A;,7r). Since spherical subgroups carry the
Lie topology by Proposition T p coincides with the Lie group topology on the subgroups
A;. We obtain the following commutative diagram for ¢ =1,...,n:
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&7 (Aj, mR) —2— (A, Tiep|y) —2 (1 Aj, Trep| 4, = R)

W

(Ais TPl a, = TR)

All maps in the diagram are continuous: The map fi is continuous since its domain is home-
omorphic to (A,7r) and since Tg, being a Lie topology, is the final group topology on A with
respect to the restrictions of the maps ¢; to the connected component of SLa(R), while these
restrictions are also continuous with respect to the group topology 7xp|,. The map f> is contin-
uous since the product topology on its codomain is the coarsest topology making the projection
maps continuous; for the same reason, the projection map f3 is continuous. Finally, the inclusion
map f4 is continuous since the box topology on its codomain is the final topology with respect to
the inclusion maps. This proves that the map (A, ) = (4, Tkp|,) is @ homeomorphism. W

The following two results are given in [HK19, Appendix B by Griining and K6hl| as corollaries
to Proposition B.5, see Remark |3.4.6]

Lemma 3.4.10 [HK19, Appendix B by Griining and Kohl, Corollary B.8]. Let G be a split real
Kac—Moody group such that the Kac—Peterson topology is Hausdorff. Then the multiplication
map m : Uy xT xU_ — BLB_ is open. O

Lemma 3.4.11 [HK19, Appendix B by Griining and Kohl, Corollary B.9]. Let G be a split
real Kac—Moody group such that the Kac—Peterson topology is Hausdorff. Then the associated
building endowed with the quotient topology is a strong topological twin building. In particular,
the space By B_ is open. ]

The following result was established in collaboration with Ralf Koéhl.

Lemma 3.4.12. Let G be a split real Kac—Moody group and let Z be a finite central subgroup
of G. Consider G := = G/Z as a split real Kac-Moody group in its own right, denote by Uy,
T and By the respective subgroups corresponding to its RGD system, and endow G with the
Kac—Peterson topology Tip. If (G’,%Kp) 18 Hausdorff, then the Kac—Peterson topology on G is
Hausdorff.

Proof. To prove the statement, we will use Proposition and its Corollary to construct
a topology Teey on G that turns ¢ : G — G/Z into a covering map. We will then show that 7.4,
is coarser than the Kac—Peterson topology on G which proves that (G, 7xp) is Hausdortff since
(G, Teov) is Hausdorff, being a covering space of a Hausdorff space.

Since Z is finite, the map ¢ : T — T is a covering map when 7' and T are endowed with their
respective Lie topologies. Since by Proposition [3.4.9]the restriction of the Kac—Peterson topology
to T coincides with the Lie topology 7, there exists an open 1-neighbourhood U C (T, TKp|f =
7r) whose preimage is a disjoint union of copies of U. Let U C T be the copy containing 1lg,
let V C U be a 1-neighbourhood with V2 C U and let Vo= q(V) C U. Since q is a group
homomorphism, V is again a 1- neighborhood with V2 C U. The restriction ¢ : U — U is a
homeomorphism, and so the section o : (U, 7xp) — (T, 7r) mapping each element in U to its

preimage in U is continuous. Extend o to a section o : 7" — T

The map ¢ : G — G/Z induces a bijection b : Uy — Uy, so endowing Uy with the Kac—Peterson
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topology Tk p from Uy, one obtains a covering map
(U+,7~'Kp) X (T, TR> X (U_,’T'Kp> — (U_;_,’iN'Kp) X (T, 7~'Kp) X (U_,%Kp)
with a section

=0 xox bt (Up,7xp) X (T,7r) x (U_,7xp) = (U, 7xp) % (T, 1) % (U, 7K p)

qQ

that is continuous on the (by assumption) open 1-neighborhood W = Uy x V x U_.

Since V2 C U and V2 C U, and since ¢ maps each element of U to its unique representative in
U, one has o(v;)o(ve) = o(v1vg) for all vy, va € V. Since b is induced by a group homomorphism,
this implies that 7 ()7 (y) = @(zy) for all z,y € W. Extending & to a section & on G/Z therefore
yields a 2-cocycle f : G/Z x G/Z — Z defined by f(z,y) := &(2)o(y)o(xy) ! that is constant
and therefore continuous on W. Now, Corollary yields a group topology Tee, on G induced
from G/Z x ¢ Z such that q : (G, 7e00) = (G/Z, 7K p) is a covering map.

To prove that 7., is coarser than 7x p, we show that Tcm,’Gi coincides with the Lie group topology
O on G; for each i € I.

The fundamental rank one subgroups of G/Z are G;/(G; N Z) = G;Z/Z. By Proposition [3.4.8|
the restriction of the Kac—Peterson topology Txp to these groups coincides with the Lie group
topology.

The restriction f|g, 4/, is a 2-cocycle GiZ/Z x GiZ/Z — Z which is continuous on the set
wn G;Z/Z which is an open 1-neighbourhood in the subspace topology %KP‘GZZ/Z' Therefore,
applying Corollary yields that the topology on G; induced from G;Z/Z x fe.2/2 Z turns Gj

into a topological group such that G; — G;Z/Z is a covering map. This implies that this topology
coincides with the Lie topology O, since G;Z/Z carries the Lie topology and covering groups of
Lie groups are Lie groups (see, e.g., [HN11, Corollary 9.4.6]). But the topology induced from
G Z|Z x fla, 2z Z coincides with TCOU|Gi, since 7oy is the topology on G induced from G/Z x; Z.

Therefore, Tcov‘Gi =0.

Since Teoy is a group topology, this implies that for each tuple 8 = (841,. .., 8x) of simple roots,

the multiplication map (Gg, , TCOU\GB =0)x---x(Gg,, Tcov\Gﬁ = 0) = (G, 7o) is continuous.
1 k

By definition of 7x p, it follows that 7.0, C Tk p, proving that 7xp is a Hausdorff topology. M

3.5 The adjoint and the simply connected case

Here, G = Ggr(A) for an irreducible symmetrizable generalized Cartan matrix A. We first show
that for the adjoint form of G, the Kac—Peterson topology is a k, group topology. Using the
central extension G — Ad(G), this will in turn enable us to prove that (G, 7xp) is Hausdorff as
well, and therefore a k,, topological group by Lemma[3.4.1

Proposition 3.5.1 [GGHI10, Proposition 7.10|. Let H = Ad(G). Then the Kac-Peterson topol-
oqy is Hausdorff. In particular, it is a k., group topology on H.

Proof. Let B = (f1,...,05:) be a tuple of simple roots. We prove that (THB’ TB) is Hausdorff.
Let g # h € T'Hg. Then by Proposition H being adjoint and therefore centre-free implies
that there exists a v € U with g.v # h.v. Since the orbit map (T'Hg, 75) — (VEU’ O) is continuous
by Lemma taking preimages of disjoint open neighborhoods of g.v and h.v yields disjoint

open neighborhoods of g and h, implying that THE is Hausdorff. The assertion now follows from
Lemma [3.4.1] [}
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The following result was established in collaboration with Ralf K&hl.

Proposition 3.5.2. There exists a finite central subgroup Z of G such that G/Z is Hausdorff
when endowed with the quotient topology. In particular, the Kac—Peterson topology on G is
Hausdorff.

Proof. Let B be an invertible symmetrizable generalized Cartan matrix that contains A as a
principal submatrix and let H := Ad(Gr(B)). Then there exists a surjective group homomor-
phism f from G to the corresponding subgroup G of H. If asubset U C G is open in the subspace
topology induced by the Kac—Peterson topology on H, then in particular each intersection U ﬂég
is open in 75. Moreover, the following diagram commutes for each k-tuple 8 = (531,...,B:) of
simple roots of G:

(T, )  (SLa(R), O)F —— (T, ) x (Gp,,0) X - x (G, 0) —— (Gz,75)

| I

(T, mr) x (SL2(R),0)F —— (T, 1) x (Gp,,0) x -+ x (Gg,,0) — (G3,75)
It follows that f is continuous, since the other maps in the diagram are all continuous and open.
This implies that G/ ker f is Hausdorfl when endowed with the quotient topology.

We show that ker f is finite and central. Since G and G act on the same building with the
respective centres as kernels, ker f is contained in Z(G). Let g and h be the Kac-Moody algebras
of G and H, respectively, and let f be the injection g — b corresponding to f. There exists
a choice of Cartan subalgebra g of g that corresponds to 7', and the group (g,+) contains a
subgroup a that can be identified with A. Moreover, there exists a choice of Cartan subalgebra
b of h such that f maps g into h. Since B is invertible, the connected component of its torus is
trivial, as is pointed out in [FHHK] Section 3.7]. This implies that there is an injection h — T4.
Summing up, this yields an injection

Asgebh—Ty— H.

Since A therefore intersects trivially with ker f, it follows that ker f is finite. This proves the
first assertion.

To prove the second assertion, note that since Z(G) C T C TGE for all tuples B of simple roots,
one can check easily that the quotient topology on G/Z induced by the Kac-Moody topology
on G coincides with the Kac-Moody topology on G/Z, where G/Z is viewed as a Kac—-Moody
group in its own right. Therefore, Lemma [3.4.12] yields that G is Hausdorff. |

We collect the consequences of 7 p being Hausdorff established in the previous section.

Corollary 3.5.3. Let A be symmetrizable and irreducible and let G = Ggr(A), the algebraically
simply-connected semisimple split real Kac—Moody group of type A, endowed with the Kac—
Peterson topology. The following hold:

(a) Txp is a k, group topology.

(b) The universal topology Tun and the Kac—Peterson topology Txp coincide.
(¢) G satisfies the Topological Curtis-Tits Theorem[3.4.5

(d) The building G/B is Hausdor[f when equipped with the quotient topology.
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(e) The restriction of Tip to a spherical subgroup Gj coincides with its Lie group topology.

(f) The restriction of T p to the standard mazimal torus T coincides with its Lie group topol-
0gy.

(9) The twin building associated to G, endowed with the quotient topology, is a strong topological
twin building. O

Notation 3.5.4. In what follows, G will always denote the group Gr(A) for a symmetrizable
irreducible generalized Cartan matrix A. Moreover, G will always be endowed with the Kac—
Peterson topology, the building G/B with the corresponding Hausdorff quotient topology and
the spaces Cy,(9B) and C<,,(¢gB) with the respective subspace topologies induced by G/B. O

3.6 The Group K and the Iwasawa Decomposition

Let A be symmetrizable and irreducible and let G = Ggr(A). We introduce the group K, the
fixed point set of the Cartan-Chevalley involution, and give a result by Hartnick and K&hl which
states that the fundamental groups of K and G are isomorphic, which will allow us to reduce
the computation of the fundamental group of G to that of K.

Definition 3.6.1. By [Marl8 Exercise 7.61] (see also [KP85, Section 2]), for suitable choices
of the isomorphisms ¢; : SLy(R) — G; there exists a unique involution #: G — G satisfying
@i((z=H)T) = 0(w;(x)) for all i € I. This involution is called the Cartan-Chevalley involution
of G. Tts fixed point set is denoted by

K=G"={geqG|¢ =g}
Since 6 is continuous by definition of the Kac—Peterson topology, K is closed and therefore k,

by Proposition [1.4.2] O

As in Notation let Ky:=KnNGjy.

Recall that M denotes the unique maximal finite subgroup M of order 2" and A the connected
component of T" with respect to its Lie topology, which by coincides with the restricted
Kac—Peterson topology.

Lemma 3.6.2 [FHHK] Proposition 3.12], [FHHK| Lemma 3.20].
(a) Multiplication induces a homeomorphism M x A x Uy — B.

(b)) BANK=TNK =M. O

Theorem 3.6.3 (Iwasawa Decomposition)[FHHK] Theorem 3.24|. Multiplication induces a con-
tinuous bijection K x A x Uy — G. O

Corollary 3.6.4. Multiplication induces a continuous surjection K x B — G.

Proof. This follows directly from Lemma [3.6.2] and the Iwasawa decomposition. |

Theorem 3.6.5 [HK19, Appendix A by Hartnick and Ko6hl, Theorem A.15|. For every n > 0
the inclusion K — G induces isomorphisms

Tn(K) < 7, (G),

31



CHAPTER 3. KAC-MOODY THEORY

hence is a weak homotopy equivalence. In particular, ™ (G) = m (K). O

Lemma 3.6.6. Let s; # s; € S. Then the following hold:
(a) P =GB = K;B. In particular, C<,,(B) = K;B/B.
(b) Bsis;B = BsiBBs;B. In particular, C<s,s,(B) = K;BK;B/B

Proof. Assertions (a) and (b) follow from [ABOS, Remark 8.51] and [ABO8, Remark (2) after
Theorem 6.56], respectively, and the Iwasawa decomposition G; = K;B;. |

Lemma 3.6.7. The isomorphisms ¢; : SL(2,R) — G; are homeomorphisms. Moreover, let
Bsror) be the group of upper triangular malrices in SL(2,R), let Tsp(2,r) be the subgroup of
diagonal matrices and let Uyg denote the canonical root subgroups of SL(2,R). Then

(a) ¢i(Usp) = Usa,-
(b) ¢i(BsLr) = Bi.
(¢) pi(TsLer)) = Ti-
(d) ¢i(SO(2)) = Ki.

Proof. By definition of the Kac—Peterson topology, the maps ¢; are continuous, therefore the
Open Mapping Theorem implies that they are homeomorphisms, since the groups G; carry

the Lie topology by Proposition [3.4.8|

(a) holds by definition of U,,. By Lemma , one has Bgy,or) = Nsr(2,r)(Up) and Tgp,or) =
Ngr,2,r)(Ug) N Ngr,2,r) (U-g) which implies (b) and (c), since B; = Ng,(Ua,;) and T; = Ng, (Ua, )N
N¢,(U—_y,). (d) is clear from the definition of K, since SO(2) is the fixed point set of the transpose
inverse map on SL(2,R). [
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Chapter 4

Computing the Fundamental Groups

Throughout this chapter, G = Gr(A) for a symmetrizable irreducible generalized Cartan matrix
A (unless stated otherwise). We determine the fundamental group of G and of its covering spaces
Spin(Il, ), introduced in Section An important tool is the presentation of the fundamental
groups of the generalized flag varieties G/ Py which we determine by way of a CW decomposition.

This chapter is mainly comprised of original results by the author and Ralf K6hl which first
appeared in [HK19].

4.1 On the Topology of the Generalized Flag Varieties

Throughout this section, let J C I, and let W7 C W be a set of representatives of the cosets
in W/Wj that have minimal length. The space G/Pj is called generalized flag variety.
Generalized flag varieties admit Bruhat decompositions which, in the two-spherical case, carry
a CW structure. This makes it possible to give a presentation for their fundamental groups by
determining characteristic maps for the 1- and 2-cells.

Lemma 4.1.1 (Bruhat decomposition). One has G/P; = ||, cyys BwP;/Pj.

Proof. By [AB0O8, Theorem 6.56, Remark (1)], the group G has a Bruhat decomposition
G= || BuB= ) BuBW,;B= ] BwP,.
weW weWw weW

Since double cosets partition G, one has wiWj; = weWj if and only if Bwy Py = BwsPjy for
wy,we € W. This yields the desired disjoint decomposition of G/Pj. |

Definition and Remark 4.1.2. For w € W, define the following restrictions of the canonical
map ¢ : G/B — G/Py:

e 1, : BuB/B — BwP;/Py,
o Yy : Uypey BtB/B = U,<, BxPy/Py.

Since v is continuous by Lemma the same holds for the two restrictions. The space
Uz<w BB/ B is compact by [HKMI13, Corollary 3.10] and so ¢z is a quotient map. O

Remark 4.1.3. In [HKM13|, Proposition 5.9], based on a result by Kramer (see [Kra0l, Propo-
sition 7.9]), it is shown that the Bruhat decomposition G/B = | |, .y BwB/B is a CW decom-
position provided the twin building associated to G is a smooth strong topological twin building.
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Smooth means here that its panels are finite-dimensional real manifolds. These conditions are
satisfied since by Corollary [3.5.3|spherical subgroups carry the Lie topology and the twin building
of G is a strong topological twin building. By [HKMI13| Theorem 1], this also holds in the case of
a possibly non-symmetrizable, but two-spherical group G. The following assertions regarding the
CW structure of G/ Py are therefore also valid in the two-spherical case; this holds in particular
for Theorem which gives a presentation for the fundamental group of G/Pj. U

Lemma 4.1.4. Let w € W7. Then the canonical map 1., is a homeomorphism.

Proof. By Remark Y is a quotient map. One has ¢—'(BwP;/P;) = BuB/B: Let x < w
such that BxPy/P; = BwP;/Pj. Then x € BwP; = BwW ;B where the equality holds since by
definition of W+ one has I(ww') = I(w)+I(w') for all w’ € W which implies Buw'B = BwBw'B.
The Bruhat decomposition of G yields x € wW and hence, I(z) > [(w). This implies z = w.

Now, since the Bruhat decomposition G/B = | |, .y BwB/B is a CW decomposition by Re-
mark the set BwB/B is open in its closure |J,.,, BxB/B in G/B, and so the preceding
observations yield that v, is an injective quotient map and therefore a homeomorphism. |

Lemma 4.1.5. Let s; € S. Then the panel C<s,(B) is homeomorphic to S*(R).

Proof. The panel C<,(B) is a subbuilding of G/B corresponding to the RGD system
{Gi, Uai, U—a“T N Gl}

By Lemma one has homeomorphisms G; ~ SL(2,R), T; =~ Tgy,o,r) and U+q, =~ U+, where
Ts1,(2,r) denotes the subgroup of diagonal matrices and Ur, denote the canonical root subgroups
of SL(2,R). This implies that C<s,(B) is homeomorphic to the building SL(2,R)/Bgr,2r) =~
P;(R) ~ SY(R). [

Proposition 4.1.6. For each w € W, the set C,(B) = BwB/B is a cell of dimension [(w) that
is open in its compact closure C<,,(B) in G/B. For each subset J C I, the Bruhat decomposition
G/P; = |yews BwPy/Py is a CW decomposition.

Proof. The first statement is immediate by [HKM13, Corollary 3.10 and Proposition 5.9], see also
[KraO1, p. 170, 171]. Furthermore, [HKMI3l, Proposition 5.9] states that the Bruhat decomposi-
tion of G/B is a CW decomposition (see Remark [£.1.3). By Lemma G/ Py is composed of
cells that are homeomorphic to cells in G/B, so composing the characteristic maps of the latter
cells with the canonical map v : G/B — G/Pj yields characteristic maps for the cells in G/Pj.

For the closure-finiteness, let BwPj/Py be a cell in G/Pjy. Since v is continuous and restricts
to a homeomorphism BwB/B — BwP;/Pj, it maps cl BwB/B surjectively onto cl BwPj/Pj.
Now, cl BwuB/B = |J,<,, BxB/B, which implies that
clBwP;/P; = | | BsP;/P;= | ) BaP;/P,
z<w z<w
zeW

where the last equality holds since W; C P;. This proves that ¢l BwPjy/Py is contained in a
finite union of cells.

It remains to show that G/P; has the weak topology determined by the cell closures.

First note that for any v € W and any minimal-length representative ¢ € W+ of vWy, one has
BvP;/P; = BUP;/P;. Let e, := BuP;/P; = BoP;/Py and €, := BwB/B. Let &, = cle, =
Uxﬁfj B.%'PJ/PJ and éé} = clei) = U BZCB/B

z<v
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Let A be a closed subset of G/P; and let e,, w € W7, be an arbitrary cell. Then ¢~ '(A) is
closed in G/ B since 1 is continuous, so 9 ~!(A)Ne,, is closed in €, since G/B is a CW complex.
Now,

PHA)NE, =y (A) NPT (Ew) = YT (ANE) = ¥5 (AN Ey).
Since 9 is a quotient map by Remark [4.1.2] this implies that A N€, is closed in €,.

Now, let A be a subset of G/P; such that AN e, is closed in €, for all w € W+. Since for
each w € W one has e, = ey for any minimal-length representative @ € W of wWj, in fact
ANe, is closed in &, for all w € W. Therefore 1»—'(ANe,) is closed in €, for all w € W. Since
Y-t (ANEy,) =~ (A)NE,, the fact that G/B is a CW complex implies that 1)~!(A) is closed
in G/B. Since 1 is open by Lemma it follows that A is closed in G/P;. This proves that
G/Pjyis a CW complex. [ |

Notation 4.1.7. Define R : [0, 1] — SO(2), s s { ©05157) —sin(sm)). -
sin(sm)  cos(sm)

Lemma 4.1.8. R induces a continuous, surjective map R : [0,1] — SL(2,R)/Bsy,2,r) which
maps the interior (0,1) homeomorphically onto its image and maps the boundary {0,1} surjec-
tively onto its 1tmage.

Proof. Let {xo} = <(1 O)T> € P! where P! denotes the real projective line, modelled as the
subset of one-dimensional subspaces of R?. Since each one-dimensional subspace in P!\ {x}
contains exactly one element in the upper half circle R([0,1]) - (1 0)7 while 2o contains the
two boundary points corresponding to R(0) and R(1), one has a surjection from [0,1] onto P*
given by ¢t — (R(t) - (1 O)T> which maps (0, 1) bijectively onto P!\ {z¢}. Since SL(2,R) acts
transitively on the real projective line P' with Bsy,(2,r) being the stabilizer of xg := <(1 0)T>,
one has a bijective correspondence gB — gz between SL(2,R)/Bgy,2 gy and P!. This yields the

desired surjectivity and bijectivity properties of R. Continuity is clear, as well as the fact that
the restriction to the interior is a homeomorphism. |

Definition 4.1.9. Let D! = [0, 1] be the one-dimensional unit disc and note that D? is homeo-
morphic to D! x D!. Let p: G — G/B be the canonical projection. Define y; : D! — G/B and
X(ij) D' x D' — G/B by

o Xi(s) = p(@i(R(s))) = @i(R(s)) - B,
* X(ij)(5,1) = p(@i(R(3))p; (R(1))) = wi(R(s))p; (R(t)) - B. 0

The following lemma was inspired by [Pro07, Ch. 10, second Proposition of 6.8], see also [Kac85),
§2.6, p.198].

Lemma 4.1.10. The maps defined above are characteristic maps for the following cells:
(a) xi for Cs,(B) = Bs;B/B,
(b) X(i,5) for Csisj (B) = BSiSjB/B.

Proof. By Lemma [3.6.7] the map ¢; is a homeomorphism which maps SO(2) to Kj.

(a): One has to show that x;([0,1]) € C<s,(B) and that y; is a continuous map which maps
(0,1) homeomorphically to Cs,(B). The first assertion is clear, since by Lemma one has
C<s, = G;B/B.
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By Lemma one has Cs,(B) = {kB | k € K; \ (K; N B)}. Let k € K; \ (K; N B). Then

Hp Y (kB)) = ¢; (k) - B SL(2,R)/B B By L 4.1.8 th ist
¢, (7 (kB)) = ¢; (k) SL(2,R) € (2,R)/ SL(Q,R)\ SL(2,R)- Dy Lemma , ere exists
a unique s € (0,1) satisfying R(s)Bsp2,r) = goi_l(k)BSL(g,R). Hence, s is the unique preimage of
kB under x;. This yields the desired bijectivity property. The continuity properties are clear.
(b): Since by Lemma [3.6.6| (c) one has C<y,s,(B) = K;BK;B/B, it is clear that x; ;([0,1] x
[0,1]) € C<y,s,(B). For the injectivity of the restriction, let (s,),(5,7) € (0,1)% such that
X (i,5) (Sat) = X(l,])(gat) Then

This implies R(5)"'R(s) € Bso(a,r), since otherwise the left expression is in Cs,s,; (B), contra-
dicting Cs,s,(B)NCs, (B) = (. Since 5,5 € (0, 1), one obtains § = s. 1t follows that x;(t) = x; (#),
hence t =t by (a).

For the surjectivity, note that by LemmaW(c), one has Cy,,(B) = Bs;s;B/B = Bs;BBs;B/B.
Let x;x;B be an arbitrary element of Cs s (B) with 2; = bisibo € Bs;B and z; € Bs;B.
By (a), there exists an s € (0,1) with ¢;(R(s))B = bhis;B € Cs/(B). Hence, there ex-
ists a b € B with (¢;(R(s))b = bis;bs = z;. Again by (a), there exists a ¢t € (0,1) with
¢j(R(t))B = bx;B € Cs;(B). This yields

Xij(s,t) = pi(R(s)) - o;(R(t)) B
= {L‘ib_l . bZL‘jB

== LEZJ,‘JB

This proves that x;; maps (0,1) x (0,1) bijectively to Cs,s,(B) The continuity properties are
clear. |

Notation 4.1.11. For i,j € I, let €(4, j) := (—1)%J, where a;; is the (4, j)-entry of the generalized
Cartan matrix A. O

Lemma 4.1.12 [GHKWIT, Remark 15.4(1)]. Let e; := ¢;(—1) € G; and kj € K;. Then
eikjei = ]{;(Z’J). O

The following theorem gives a presentation for the fundamental group of G/P;. We refer to
[Wig98]| for the analogous result in the finite-dimensional situation.

Theorem 4.1.13. Let G = Gr(A) for a symmetrizable irreducible generalized Cartan matriz A
or let G be two-spherical. Then a presentation of m1(G/Py) is given by
L () 1. s
i; zeI|xej =z, xp=1; d,jelkeld).
Proof. By Lemma and Proposition [4.1.6] the Bruhat decomposition

G/P; = |_| BwP;/P;

weWwJ

is a CW decomposition where each cell BwPjy/Pjy has dimension [(w). For each 1-cell Bs;P;/P;
and 2-cell Bs;s;P;/Py, the compositions ; := s, 0 x; and X(; j) = ¥s;s; ©X(i,j) are, respectively,
characteristic maps (¢5, and 9,5, denoting the canonical homeomorphisms from Lemma [4.1.4)).
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Lemma gives a presentation of m1(G/Py). The generating elements are given by the ho-
motopy classes x; := [x;] of the characteristic maps of the 1-cells — namely, the cells Bs;P;/Py
where ¢ € I\ J. For the homotopy classes x; with k € J, note that ¢r(R(t)) € Gx C Py, and
so Xk(t) = wx(r(t)) - Py = P; which implies x, = [\x] = 1:,(g/p,)- This yields the desired
generating set as well as the trivial relation z =1 for i € J.

To obtain the set of relators, for k =1,...,4 let v : [0,1] — [0, 1] x [0, 1] where

T (t) = (£,0),
72(t) = (1,1),
v3(t) = (1 —t,1),
v4(t) = (0,1 —¢)

Then the concatenation 7 := 1 xy2%7y3%74 is a loop in the relative boundary ([0, 1] x [0,1]) ~ S*
which generates its fundamental group. Moreover, for each characteristic map x(; ;) of a 2-cell,
one has X(; )(7(0)) = X(,j)((0,0)) = ¥s;s; (X(3,5)(0,0)) = ts,s;,(B) = P; where P; is the unique
0-cell of the CW complex. Therefore, Lemma implies that the set of relators is given by
{[X(ij) © | ooy € W7, l(0:05) = 2}. Now,

[i(i,j) oq] = [f((z’,j) om]- [X(i,j) o] - [X(i,j) o3 [X(i,j) ° Y4,
where

X(ig)(8:t) = ai(R(s))a;(R(t)) - Py with R(0) = Iso@r): (1) = —Iso@er) € Bsor) which
implies

[X(ij) © 1] = Tis
[X(ig) 8] = a7 1,

[)Z(i,j) oy4] = xj_l'

Moreover,

(X(ij) © 72)() = ci(=1I)e(R(t)) - Py
Joj(R(t))as(—1) - Py, since a;(—1) € Py
= a;(R(t))*“) . P; by Lemma[f1.12

Since R(t)~" = R(1 — t), this yields [X(ij) © 72l = xj(i’j). One therefore obtains [Y(; ;) 0 7] =

gy B : _
j(”) T, L. T ! This proves the assertion. |

T; T
By [HKM13, Proposition 3.8] (see also [KraOl, p. 170, 171]), there exists a fibre bundle
(C<oi05,C<oyy 1, C<oy). Since the panels C<,, are homeomorphic to S'(R) by Lemma it
is a so-called circle bundle over a circle, that is, both base space and fibre are circles. By [Ste99,
Section 26.1], there are two types of circle bundles over circles: The torus S* x S', which is the
trivial bundle, and the Klein bottle. Hence, each 2-cell C<y,,;(B) must be homeomorphic to
one of those spaces. This observation can be specified using Lemma and the computations

in the above proof: One obtains the presentation 7m1(Co,s;(B)) = (i, 75 | xixj(i’j) = a;jx,->

which yields the following result.

Proposition 4.1.14. Let 05,05 € W. Then the following hold:
o Ife(i,j) = —1, then Cy,p;(B) is homeomorphic to a Klein botile.
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o Ife(i,j) =1, then Cy,5,(B) is homeomorphic to a torus. O
C<q,(B) C<q,(B)
C<o,(B) Co,0;(B) C<o,(B) C<o,(B) Coi0,(B) C<o,(B)
C<0:(B) C<s,(B)
Figure 4.1: Klein Bottle Figure 4.2: Torus

Lemma 4.1.15. Let G be simply laced and J # 0. Then w1 (G/Py) = Cy" 1,

Proof. For each generator xj in the presentation of Theorem one has x,% = 1: Let II be

the Dynkin diagram of G and A the labelling map I — V of the vertex set of II. Since II is

connected, one has a minimal path (iy,...,%, = h)* in II such that iy € J. If m = 1, one has

xp, = 1 by the presentation above. Let z;,,...,x;, , have order < 2. Since II is simply laced,
1,.—1 -1,_-1

g(m—1,h) = —1 = g(h,m — 1) which implies xhx;il:n; z;  =landz;, ,x, aci"hla:,:l =1.

. . . . 2 _
Multiplying these expressions yields xj = 1.

Since each generator has order < 2, the relations show that the group is abelian. One concludes
that m (G/Py) = Cy" 11, ]

The fundamental group of the generalized flag variety will be used in the next sections as a tool
to compute the fundamental group of K which is isomorphic to the fundamental group of G by
Theorem [3.6.5 To this end, we state some results which relate the generalized flag variety to
quotient spaces of K.

Lemma 4.1.16. The canonical map v : K/(K N Py) — G/Py is a homeomorphism.

Proof. Bijectivity follows from the product formula for subgroups since G = K Py by Corollary

m By Lemma [1.2.4) the map ¢ : G/(K N Py) — G/Py is continuous, so the same holds for
its bijective restriction ¢ : K/(K N Py) — G/Pj.

In order to show that v is closed, let P := Py and let P := P; N K. Consider the commutative
diagram

K/P

N

G/P —*— G/P

where ¢ denotes the canonical embedding and ¢ denotes the canonical map from G/P to G/P.
Since K is closed in G, the map ¢ is closed. By Lemma © is open.
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Let XP C K/P be a closed subset of K/P and suppose that 1)(X P) = X P is not closed in G/P.
Then the complement C;/p(X P) is not open in GG/ P, hence the complement CG/p(gp_l(XP)) =
¢ 1(Cq/p(XP)) is not open in G/P. Therefore, o~ '(XP) is not closed in G/P. This yields
that XP =)~ (X P) = 1= (¢~ (X P)) is not closed in K/P, a contradiction. [ |

Corollary 4.1.17. There ezists a homeomorphism G/P; — K/(KNT)K .

Proof. Since Py = GyB and 0(Py) N Py = G;T, one has PN K = K;(K NT). Furthermore,
Gy is normal in G T which implies K;(K NT) = (K NT)K;. The claim now follows from
Lemma [£.1.76 |

Lemma 4.1.18. The canonical map ¢ : K/K; — K/(K NT)K; is a covering map of degree
2n=1l,

Proof. By Lemma(1.2.4] v is continuous, open and surjective. The group M = (K NT) has order
2", as is pointed out in section

Note that one has Ty N Tp ; = {1}, since T is isomorphic to (R*)". Now, for & € K one has
¢_1(k(K N T)K]) = {ktKJ | t e (K N T)}, and since Ty N T[\J = {1}, one has kt; Ky # kthJ
for t; #t; € TN Kp s This yields [ ' (k(KNT)K;)| = {ktK; |t € (KNT)} = [{ktK;|te
TNKps} =|TNKps|=[TnsNEKp | = =11, Lemmanow shows that 1 is a covering
map. |

4.2 The Simply Laced Case

Throughout this section, let G be simply laced. Denote by E the edge set of the simply laced
Dynkin diagram II of G. As shown in a paper by Ghatei, Horn, Kéhl and Weiss, K has a 2-fold
central extension Spin(II). By proving that 7y (Spin(II)/Spin(IL;;) = mi (K/K;j;) = {1} for an A
subdiagram II;;, we establish via a homotopy exact sequence that Spin(II) is simply connected
which yields that 71 (G) = m(K) = Cs.

In [GHKWIT, Section 11], it is shown that in the simply laced case K is isomorphic to the
canonical universal enveloping group of an SO(2)-amalgam A(II,SO(2)) = {Hi;, ¢;; | i # j € I}
where

] S0(3), if {i,j} € E,

Y1 850(2) x SO(2), if {i,5} ¢ E,

and where for i < j, the map gbﬁj embeds SO(2) into H;; as upper left diagonal block if (¢,j) € E
and as first SO(2)-factor if (i, 7) ¢ E (for ¢ > j replace upper left by lower right and first factor by
second factor). The corresponding SO(3) and SO(2) x SO(2) subgroups of K are the intersections
of K with the fundamental rank two subgroups G;; of G, i.e., the groups Kj;; := ij.

Furthermore, again in [GHKWIT, Section 11|, the group Spin(II) is defined as the canonical
universal enveloping group of the Spin(2)-amalgam A(II, Spin(2)) = {H;j;, ¢;; | i # j € I} which
is a lift of the amalgam above in the sense that the groups f]ij are equal to either Spin(3) or to
Spin(2) x Spin(2) and the connecting homomorphisms ¢3;J are lifts of the connecting homomor-
phisms (b%- above.

Theorem 4.2.1 [GHKWI17, Theorem 11.17]. Spin(II) is a 2-fold central extension of K. O
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Since the extension Spin(Il) — K has finite kernel, the Kac—Peterson topology on K induces a
unique topology on Spin(II) that turns the extension into a covering map. The resulting group
topology on Spin(II) is called the Kac—Peterson topology on Spin(II).

Lemma 4.2.2. Let II be simply laced and let {i,5} C I be the index set of an As-subdiagram of
II. Then the spaces Spin(II)/Spin(Il;;) and K/K;; are homeomorphic.

Proof. From [GHKWIT] (exact references below) it follows that the kernel of the covering map
Spin(II) — K coincides with the kernel of the covering map Spin(Il;;) — Kj; and is equal to the
group Z := {F1gyinqm)} (for the definition of —Igpin (), see below). This is a consequence of the
following facts regarding an irreducible simply laced diagram II (all referring to [GHKW1T]):

e There is an epimorphism Spin(2) — SO(2,R) with kernel {+1gyi,(2)} (see [Theorem 6.8]).
e In Spin(II), all elements 7;; ((Zgéj(—lspin(Q))) coincide (see [Lemma 11.7]).

o Let —lgpinn) = ﬁj((]gfj(—lspin@))) for an arbitrary pair i # j € I. Then lgy,am) #
—Lgpin(rr) (see [Corollary 11.16]).

e Spin(IT) is a 2-fold central extension of K (II) (see [Theorem 11.17]).

Hence, the 2-fold covering map ¢ : Spin(Il) — K(II) induces a continuous bijective map ¢ :
Spin(II) /Spin(IL;;) — (Spin(I1)/Z)/(Spin(1li;)/Z) — K/K;;. One has a commutative diagram

Spin(Il) ——~——
Spin(H)/Spin(sz) L> K/Ki]‘

Since ¢ is open as a covering map and 7o is open by Lemma [[.2.4] it follows that ¢ is a
homeomorphism. |

Corollary 4.2.3. Let 11 be simply laced. Then K/Kj is simply connected.

Proof. K/Kj is connected since K is generated by connected groups isomorphic to SO(2,R).
Hence by Lemma [4.1.18|it is a non-trivial cover of K/(K NT)K; of degree 2" /I, The claim

now follows from Corollary 4.1.15[ and Corollary 4.1.17] |

Proposition 4.2.4. Let IT be simply laced. Then Spin(IT) is simply connected with respect to
the Kac—Peterson topology. In particular, 71 (G) = Cs.

Proof. By Corollary [1.2.10] there exists a homotopy long exact sequence

m4(Spin(IT) /Spin(Il;;)) — w3(Spin(Il;;)) — m3(Spin(II)) — 73(Spin(II)/Spin(11;;))
—  mo(Spin(Il;;)) — w2 (Spin(Il)) — mo(Spin(II)/Spin(Il;;))
—  m(Spin(IL;;)) — m (Spin(II)) — 71 (Spin(II)/Spin(11;;))

from which one extracts the exact sequence
{1} = m(Spin(IL;;)) — m1 (Spin(II)) — 1 (Spin(II)/Spin(1L;;)).

By Corollary and Lemma one has 71 (Spin(II)/Spin(Il;;)) = m (K/K;;) = {1} and so
by exactness 1 (Spin(II)) = {1}.
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The second assertion follows from the fact that m;(G) = m(K) by Theorem and the fact
that Spin(II) is a 2-fold central extension of K by Theorem [1.2.1] [ |

4.3 The General Case

Once more, we remind the reader that G = Ggr(A) for a symmetrizable irreducible generalized
Cartan matrix A.

We introduce a modified Dynkin diagram I1*™ and a colouring of the connected components of

124 which depends on the edge types of II. We then show that 71 (G/B) is isomorphic to a
direct product of groups H; that correspond to the connected components H‘}dm of T12™ and
depend on their respective colour. For each connected component H:’}dm where J := I\ J, we
obtain a commutative diagram

7T1(G) =~ 7['1(K) e Wl(K/Kj)

| |

m(K/(KNT)) —— m(K/(KNT)K5) =H,

I

H Hj, = m(G/B)

Connected
components

This allows us to piece together the group m1(G) as a product of subgroups of the H; whose
respective isomorphism types can be exactly determined by the degree of the covering K/K+ —
K/K5(KNT).

Definition 4.3.1 [GHKW17, Definition 16.2]. For the generalized Dynkin diagram II =
(V, E) of A, let II*¥™ be the graph on the vertex set V with edge set

{{i,j} eV xV]i#jele(i,j)=e(ji)=—1}

where ¢(i, j) denotes the parity of the corresponding Cartan matrix entry, as defined in Notation

HITI
An admissible colouring of I is a map « : V — {1,2} such that
(a) x(i*) = 1 whenever there exists j € I'\ {i} with £(4,7) = 1 and £(j,4) = —1.

Hadm

(b) the restriction of k to any connected component of the graph is a constant map.

Define ¢(II, ) to be the number of connected components of TI*d™ on which » takes the value
2. For a subgraph 139 of T12d™ that is a union of connected components of II*4™ let ; be the
corresponding restriction of &. ]

Definition 4.3.2. For the generalized Dynkin diagram II = (I, E) of A, let IT1*¥™ be the graph
on the vertex set I with edge set

{i, gy e IxT]i#jeli,j) =e(ii) = —1}.

Let the colouring v : I — {r, g,b} of IT1*9™ be defined as follows:
(a) The restriction of v to any connected component of the graph IT*d™ is a constant map. [
(b) (i) = r whenever there exists j € I\ {i} with €(¢,7) =1 and &(j,7) = —1.

(c) Else, v(i) = g whenever the vertex i is isolated in IT24™,
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(d) (i) = b whenever the vertex i is not isolated in IT*¥™ and case (1) does not apply to any
of the vertices in its connected component.

The notion of an admissible colouring s will not come into play until we introduce the so-called
spin group with respect to II and k.
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Example 4.3.3. A sample Dynkin diagram II with the corresponding diagram I1*™ coloured
by the map ~.

II 124m coloured by v
Oo=0—7"0| & 0@
O=>=0O= ® @

C @
EXY| g4l
O & ®
O

Notation 4.3.4. For a subset J C I let

Hj = <x ieJ et =z Qe J>. 0

Lemma 4.3.5. Let J C I be the index set of a connected component Hf}dm of TI2d™  Then the
following hold:

(a) If I39™ has colour v, then Hy = CIQJl.

b) If TIFA™ has colour g, then |J| =1 and Hy = 7.
J

¢) IfI129™ has colour b, then |Hy| = 217141,
J

Proof. (a): If I134™ has colour 7, then there exist i € J,j € I\{i} with (4, j) = 1 and e(j,7) = —1.
This implies x;xr; = z;z; and xj:ci_l = x;x; which yields x? = 1. Now, if {i)‘,k/\} is an edge in
[12dm  then xixlzlxi_lx,zl =1= xkxi_lx,:lxi_l. Multiplying these expressions shows that :1;22 =1
implies :ri = 1. Since H%dm is connected, this yields azi =1 for each k € J. Commutativity then
follows from the relations of H.

(b): By definition, two nodes 7* and j* in IT*¥™ are connected if and only if (4, j) = (j,i) = —1,

and by definition a node i has color g if and only if for each node j* this is not the case — namely,
one of (i, §) and &(j,4) is 1. Nodes of colour g are therefore isolated in IT2d™.

c): Let II% be the simply laced Dynkin diagram with vertex set J» and edge set {{i,j} € J x J
J
{i,§} edge in IT24™}

Let T := K(II¥) N T(IT%) where T(IT%}) denotes the standard maximal torus of G(I1%}). Then by
Lemma @.1.18 and P]fopositiom~ Spin(I1%) — K (II¥) — K(II%)/T is a universal covering
map where K (I1%) — K (I1%)/T has degree 2! and Spin(I1%}) — K (11%}) has degree 2 according
to [GHKW17, Theorem 11.17]. Since m (K (I1%})/T") & H; by Theorem |4.1.13|and Lemma [4.1.16},
this implies |H ;| = 27141, [

Proposition 4.3.6. Let J,U---U.J, = I be the index sets of the connected components of T124™.
Then
Wl(G/B)gHJI Xoeee XHJK.
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Proof. By Theorem m1(G/B) = H; where
H1:<mi; zGI|xl e(89) =TT, ; i,j€I>
as defined in Notation [£.3.4] For J C I, let
Ry = {zix; dw) 1 |i,j € J}, (4.1)
the set of relators of Hj. Let

C . e —1, —1
R¢ = U {zizjz; ;)
i*,j* in different
conn. components

the set of commutators of pairs of generators from different connected components. Then

k
HJ1><"'XHJkg<xi; iEI‘URJZURC>_:H

=1

Let g, and mg be the canonical homomorphisms from the free group (x;; ¢ € I) to Hy and
H, respectively. It suffices to show that Ule Rj UR® C kermy, and Ry C kermy. It is

clear that a relator m-xa(l’])x_lx_l € R; with 4" and j* in a common connected component

J J
is contained in Ul 1Ry, € kermy, so let z;x (’])x-_lxj_l € Ry with ¢* and j)‘ in different

j
connected components Then one has (e(i,j),e(4,7)) € {(1,1),(1,—-1),(—=1,1)}. If e(4,5) = 1,
e(d.7)
J

connected component Hﬁim of colour r, and by Lemma M’ (xy; ledn|Ry,)=Hy, = C'QJ”.

then x;a.""x; x l'e R® C kermy, so let (i, j) = —1 and (j,7) = 1. Then j* is contained in a

This implies that «; has order 2 in H, , hence :c? € ((RJ,,)) (w;sier), the normal closure of R,
in the free group.

Since ((Rj,,))(z;:iery C ker T, one obtains ac € kermpy. Since xjzx; 271 € R® C kermy and
e(i,7) = —1, one therefore has

e(@d),,—1, -1y _ -1, -1 e(ig) . —1,.—1y _
TrH(acixj T, T )—WH(SUjIEi:Ej T wTy T )=1g.

Conversely, it is clear that Ul 1Ry, € Ry C kermy,, so let xjzjz; l‘] € R° with i* and j*
in different connected components. As above, we can assume that £(i,7) = —1 and €(j,i) = 1.
e(4) . —1

Since xjx; T Le ker TH,, this implies

11 e@d),~1,.-1 . . —1 -1y _
T (irje; w0 ) =g, (vie g ey g ) = 1,

This proves the assertion. |

Theorem 4.3.7. Let A be a symmetrizable irreducible generalized Cartan matriz A with Dynkin
diagram I1. Let n(g) and n(b) be the number of connected components of II*™ of colour g and
b, respectively. Then

m1(Gr(A))) = 2@ x 5.

Proof. As usual, let G := Gr(A). By Theorem [3.6.5] 71(G) = 71 (K), so it suffices to prove that
71(K) is of the given isomorphism type. Let J C I. The diagram

K—F 3 K/K;

Jp [

K/(KNT) Y= K/(KNT)K,
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with all maps being the respective canonical maps, commutes. Since the maps are continuous
by Lemma [1.2.4] one obtains a commutative diagram of induced homomorphisms

m(K) —2— 1 (K/K))

2 o ,

m(K/(KNT)) —2 m(K/(KNT)Ky)

where p, and ¢, are injective. By Theorem and Lemma m(K/(K NT)) and
m(K/(K NT)Ky) can be identified with Hy = (x;; i€ 1| Ry) and (z;; i€l | RiU{xy |
j € J}), respectively (Ry as in in the above proof), where 1, corresponds to the canonical
homomorphism between these groups as the proof of Theorem shows.

For the index set J,, of a connected component of II*4™ let .J,, := I\ .J,,,. Then by Proposition

f-3.6}

k k
(i3 i€l|RiU{ay|j€ Tn})= HHJZ./HHJZ. ~ Hy .
=1 =1

Summing up, one obtains a commutative diagram

m(K) —=— m(K/K5 )

Jr [

k Tm
Hi:l HJi HJm

having replaced p, and g, from above with the correponding monomorphisms.

By Lemma {.1.18} the covering K/K5 — K/K5 (K NT) has degree on=|Tml = olJm| This
implies that H,, := qx(m1 (K/ij)) is a subgroup of Hj, of index 2l/ml The isomorphism type
of H,, is uniquely determined by this index and the isomorphism type of H, , given in Lemma

H.3 5t One has

{1}, if Hi}fnm has colour 7,
Hy, = { 2227, if II%™ has colour g,
Cy if H?im has colour b.

Again by Lemma the covering K — K/(KNT) has degree 2", so p.(m1(K)) is a subgroup
of index 2" of [[_; Hj,. The commutative diagram above implies that 7 (K) = p,(m(K)) C
7. Y(H,,). Since this holds for the index set of every connected component of IT*4™  one has
pe(m(K)) C Hy X --- x Hy,. But the latter is a subgroup of index 21711 . .... 2l/ml = on of

Hle Hj,, so equality holds. This proves the assertion. |
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Example 4.3.8 Isomorphism types of 7;(Gr(A)) for the spherical Dynkin diagrams.

I 124 coloured by y 71 (G(IT))
A1 O @ m1(SLy(R)) = Z
Ay O—0O------- O—0O @@ @ T (SLps1(R) 2 Cy  (n>2)
By O—0Or -~ >0 0@ ® O . (Spininnil)= {é iZ i 3
Cn O—O -~ =0 &o—@&------- ® O m(Sp(2n,R)) = Z

Dy O—COpeoemee i—@ o O - I—. m1(Spin(n,n)) =2 Cy  (n > 3)

m1(En) = Cy
Fy, O—CO=0—"0 R &0 00 m1(Fy) 2 Cy
G2 O5=0 oo m1(Ga2) = Cy

U

Definition and Remark 4.3.9. In [GHKWI7, Definition 16.16], the spin group Spin(Il, x)
with respect to II and « is defined as the universal enveloping group of a particular Spin(2)-
amalgam {C;’ij,qgﬁj | i # j € I} where the isomorphism type of G;; depends on the (i,5)- and
(7,1)-entries of the Cartan matrix of IT as well as the values of k on the corresponding vertices.
The group K can be regarded as (being uniquely isomorphic to) the universal enveloping group
of an SO(2,R)-amalgam {G;j, qbﬁj | i # j € I} where each Gy covers G;; via an epimorphism a;.
By [GHKWI17, Lemma 16.18] there exists a canonical central extension pry, : Spin(Il, k) — K
that makes the following diagram commute for all i # j € I:

Gij SN Spin(I1, )

laij J/PH,N

.
Gij % K
Here, 7;; and 7;; denote the respective canonical maps into the universal enveloping groups.

By [GHKW17, Proposition 3.9], one has
ker(prx) = (7ij(ker(av;)) | @ # J € Dspin(r -

Each connected component of TI*4™ that admits a vertex i* with x(i*) = 2 contributes a factor
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2 to the order of ker(pr ) so that Spin(IT, k) is a 2€*)_fold central extension of K.

In particular, this implies that the subspace topology on K defines a unique topology on Spin(II)
that turns the extension into a covering map. The resulting group topology on Spin(Il, ) is called
the Kac—Peterson topology on Spin(1l, k).

In the case of a simply laced diagram II, the only admissible colourings are the trivial colouring
and the constant colouring x : V' — {2} and Spin(II, k) = Spin(II) with Spin(II) as in Section
O

Theorem 4.3.10. Let A be a symmetrizable irreducible generalized Cartan matriz A with Dynkin
diagram I1. Let n(g) be the number of connected components of II*™ of colour g. Let n(b, k) be
the number of connected components of II*™ on which k takes the value 1 and which have colour

b. Then

71 (Spin(Il, )) = Z™9) x Ccy n(bm),

Proof. By [GHKW17, Theorem 17.1], the map pr, : Spin(Il,k) — K is a 2¢(ILK)_fold central
extension. Let J be the index set of a connected component of IT1*™ and let J := I\ J. Let

Uj = <éz] | 1 ?é JE€E J>Spin(H,n)'

Since pr(U3) € K, one has a continuous induced map pf; . : Spin(Il, k) /Spin(Il7, k) —
K /K5 making the following diagram commute, where ¢ and ¢ denote the respective canonical
maps:

Each fiber of P{I, .. has cardinality

HzUs | € ker pri s }| = | ker(pr,x)/ (U7 Nker(pm,x))|
= 2¢ILR)=c(l7:57) 1y Remark

Since pry . is open as a covering map and ¢ is open by Lemma it follows from Lemma [I.2.3]
that pﬂﬁ is a covering map.

From here the proof is analogous to the proof of Theorem after extending the commutative
diagram at the beginning of the latter proof:

Spin(1I, k) —>— Spin(1I, k)/ Uz

- b
K—*% LK/K,
lp I

K/(KNT) —2 K/(KNT)K,

One obtains that 7 (Spin(IT, x)) = []%_, H'; where each H’; is a subgroup of index gellr)—elly,, ~7,,)
of
{ 1} if TI%9™ has colour r,

if H?]‘ij“ has colour g,

if Hﬂim has colour b.

IIZ

47



CHAPTER 4. COMPUTING THE FUNDAMENTAL GROUPS

Since H%dm is the union of all connected components except H?ﬂfl, one has (I, k) —c(Il5 k7 )€

{0,1}, depending on whether & is constant 1 or 2 on H?,im. This implies

{1}, if 3™ has colour r,
zZ, if H:“]fnm has colour g,
Cy if H%‘}nm has colour b and k =1 on H?‘im,
{1}, if Hf‘,im has colour b and K = 2 on H*}‘jﬂm_

This proves the assertion. |
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Action
of group on building,

of group on twin building,

ad-locally nilpotent,
Admissible colouring,
Admissible topology,
Amalgam,
Apartment,

BN-pair,
Base space,

Borel subgroup,
Bruhat decomposition

of a building,

of a generalized flag variety,

Bruhat order
Strong, 9]

Building,
Twin,

Cartan matrix,
Generalized,
Cartan subalgebra,

Cartan-Chevalley involution,

Centered,

Central extension,
Characteristic map,
Co-projection,
Codistance,
Compact-open topology,
Coxeter diagram,
Coxeter group, [

Coxeter system, [9]

CW complex,

Direct limit,

topology,
Direct system,
Dynkin diagram,

Enveloping group,
Universal,

Fibre,

bundle,
Final group topology,
Final topology,
Fundamental apartment,
Fundamental chamber,

Generalized flag variety,

Irreducible,
Isometry,
Iwasawa decomposition,

J-equivalence,

k-spherical,
group, [I9]
k.-space,
Kac—Moody algebra,
Simply connected,
Kac—Moody group
Adjoint,
Split,
Kac—Moody root datum,
Adjoint,
Coadjoint,
Cofree,
Free,
Simply connected,
Kac—Peterson topology,
on Spin(Il, k),

Locally nilpotent,
Opposite,

Panel,

s-panel,
Prenilpotent,
Principal G-bundle,

Rank one subgroups,
Fundamental,
Reflection, [7], 0]
Relative homeomorphism,
Residue,
J-residue,



Spherical,
RGD system,
Root, [7]
subgroups,
Negative, [9]
Positive, 9]
Simple (Coxeter system), [9]
Simple (finite root system),
system, []
Root system
Crystallographic,
of a Coxeter system, [J]

s-adjacent,
s-equivalent,
s-vertices, [T]]
o-compact, [I]
Simply laced

diagram,

group, [I9]
Spherical,
Spin group,
Standard maximal torus,
Standard parabolic subgroup,
Standard thin building,
Strong topological twin building,
Strongly transitive,
Symmetrizable,
System of apartments,

Thick
building,
twin building,
Thin
building,
twin building,
Tits system,
Topological twin building,
Topology on twin building,
Total space,
Twin BN-pair,
Twin Tits system,

Universal topology,

Weyl distance,

Weyl group, [7], [T},
Extended,
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