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Introduction

The structure of maximal compact subgroups in semisimple Lie groups was investigated by
Cartan and, later, Mostow: In [Mos49], Mostow gives a new proof of a Cartan's theorem stating
that a connected semisimple Lie group G is a topological product of a maximal compact subgroup
K and a Euclidean space, implying in particular that G and K have isomorphic fundamental
groups. Subsequent case-by-case analysis provided the isomorphism types of these maximal
compact subgroups and their fundamental groups; tables can be found in [Hel78, p 518] and
[SBG+95, 94.33].

Starting in the 1940's, Dynkin diagrams, introduced in [Dyn46], have been used to describe
the structure of simple Lie groups. Dynkin diagrams correspond to Cartan matrices, and a
generalization of this concept led to the theory of Kac�Moody algebras and, in particular, their
associated Kac�Moody groups, developed by Kac in [Kac85] and Tits in [Tit87]. Kac�Moody
groups endowed with the Kac�Peterson topology have been extensively investigated by Köhl and
Hartnick, together with Glöckner in [GGH10] and with Mars in [HKM13].

The aim of this thesis is to determine the fundamental group of any algebraically simply-
connected semisimple split real topological Kac�Moody group associated to a symmetrizable
generalized Cartan matrix. We present a uniform result which makes it possible to determine
the fundamental group of such a group � and, in particular, of any algebraically simply connected
split real simple Lie group � directly from its Dynkin diagram.

In order to �x notation so as to state the three main theorems of this thesis, let A be a symmetriz-
able irreducible generalized Cartan matrix A, Π its Dynkin diagram and GR(A) the algebraically
simply-connected split real semisimple Kac�Moody group associated to A, endowed with the
Kac�Peterson topology (for de�nitions, see Sections 3.1 - 3.3).

Given the Dynkin diagram Π = (V,E) with a �xed labelling λ : {1, . . . , n} =: I → V , we
de�ne a modi�ed diagram Πadm with vertex set V and {iλ, jλ} ∈ V × V edge if and only if
ε(i, j) = ε(j, i) = −1, where ε(i, j) denotes the parity of the corresponding Cartan matrix entry.

To each connected component Π
adm

of Πadm we then assign a colour as follows: Let Π
adm

be
coloured red (denoted by r) if it contains a vertex iλ such that there exists a vertex jλ ∈ V

satisfying ε(i, j) = 1 and ε(j, i) = −1. Let Π
adm

be coloured green (g) if it consists only of an
isolated vertex, and blue (b) else.

One can then read o� the isomorphism type of π1(GR(A)) from the coloured diagram Πadm as
speci�ed in the following theorem.

Theorem. Let A be a symmetrizable irreducible generalized Cartan matrix A with Dynkin dia-
gram Π. Let n(g) and n(b) be the number of connected components of Πadm of colour g and b,
respectively. Then

π1(GR(A)) ∼= Zn(g) × Cn(b)
2 .

vii



Example: Isomorphism types of π1(GR(A)) for the spherical Dynkin diagrams 1.

Π Πadm coloured by γ π1(G(Π))

A1 g
π1(SL2(R)) ∼= Z

An b b b b π1(SLn+1(R)) ∼= C2 (n ≥ 2)

Bn b b b r π1(Spin(n, n+ 1)) ∼=

{
Z if n ≤ 2,

C2 if n > 2.

Cn r r r g
π1(Sp(2n,R)) ∼= Z

Dn b b b b

b

π1(Spin(n, n)) ∼= C2 (n ≥ 3)

En
6 ≤ n ≤ 8

b

b

b

b

b

b

π1(En) ∼= C2

F4 F4 r r b b π1(F4) ∼= C2

G2 b b π1(G2,2) ∼= C2

A key to the proof is the computation of the fundamental groups of generalized �ag varieties �
that is, spaces of the form G/PJ for a parabolic subgroup PJ of G corresponding to an index
subset J ⊆ I. We prove the following theorem:

Theorem. Let G = GR(A) for a symmetrizable irreducible generalized Cartan matrix A or let
G be two-spherical. Then a presentation of π1(G/PJ) is given by

〈
xi; i ∈ I | xixε(i,j)j = xjxi, xk = 1; i, j ∈ I, k ∈ J

〉
.

We refer to [Wig98] for the analogous result in the �nite-dimensional situation.

Furthermore, in [GHKW17, Section 16], the group Spin(Π, κ) � where κ denotes a so-called
admissible colouring of the vertices of the Dynkin diagram Π � is de�ned as the canonical
universal enveloping group of a Spin(2)-amalgam A(Π,Spin(2)) = {G̃ij , φ̃iij | i 6= j ∈ I} where
the isomorphism type of G̃ij depends on the (i, j)- and (j, i)-entries of the Cartan matrix A as
well as the values of κ on the corresponding vertices.

The fundamental group of Spin(Π, κ) is determined in a very similar way to the computation of

1Dynkin diagram LaTeX styles kindly provided by Max Horn at [Hor]
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π1(GR(A)), establishing the following theorem:

Theorem. Let A be a symmetrizable irreducible generalized Cartan matrix A with Dynkin dia-
gram Π. Let n(g) be the number of connected components of Πadm of colour g. Let n(b, κ) be the
number of connected components of Πadm on which κ takes the value 1 and which have colour b.
Then

π1(Spin(Π, κ)) ∼= Zn(g) × Cn(b,κ)
2 .

Overview

In Chapter 1, we collect topological results from various areas (and various sources) which will
be of use later on. As we will use the CW structure of the generalized �ag variety G/PJ to
determine its fundamental group, we introduce CW complexes and state a result concerning the
presentations of their fundamental groups. We provide some useful facts on mappings between
topological spaces and also topological groups, such as the Open Mapping Theorem for locally
compact groups, before giving a brief introduction to �bre bundles and stating a result based
on works by Palais in [Pal61] and Hewitt/Ross in [HR63] on the existence of a long homotopy
exact sequence for locally compact Lie subgroups of Hausdor� topological groups which we will
use later to compute the fundamental group of G in the simply laced case. We introduce the kω
property for topological spaces, as we will establish later that the Kac�Peterson topology is kω,
and give some results on kω spaces by Glöckner/Gramlich/Hartnick from [GGH10]. Then the
compact-open topology is de�ned, which will serve as a tool to prove that spherical subgroups
carry the Lie topology. Finally, we turn to central extensions of topological groups and their
realizations via 2-cocycles, citing a result by Neeb from [Nee02] which will be a helpful tool
providing us with lifting arguments for the study of central quotients of Kac�Moody groups.

In Chapter 2, closely following Abramenko/Brown [AB08], we give an introduction to the theory
of buildings, as the study of the buildings associated to Kac�Moody groups will provide us with
much insight into the structure of these groups. We �rst de�ne �nite root systems before moving
on to Coxeter groups and their associated root systems, generalized Cartan matrices, and Dynkin
diagrams. Then we introduce buildings, twin buildings and their terminology via the W -metric
space approach. We de�ne topological twin buildings and strong topological twin buildings as
these concepts are used by Hartnick/Köhl/Mars in [HKM13] for the investigation of Kac�Moody
groups. The fact that the twin buildings associated to Kac�Moody groups are strong topological
twin buildings gives rise to the CW decomposition of these buildings, a connection that will be of
importance later on. Finally, we introduce BN -pairs and RGD systems, again following [AB08]
and also Caprace/Remy [CR09].

In Chapter 3, we give an introduction to Kac�Moody groups and the Kac�Peterson topology. For
Kac�Moody groups, we follow the functor de�nition by Tits from [Tit87]. We de�ne the group
that will be our main interest � the algebraically simply connected semisimple split real Kac�
Moody group G := GR(A) associated to a symmetrizable irreducible generalized Cartan matrix
A, and state a result from [HKM13] that associates an RGD system with a Kac�Moody group
which will enable us to apply methods from the theory of buildings to the study of Kac�Moody
groups. We then de�ne the Kac�Peterson topology τKP , thereby closely following [HKM13].
In establishing the topological properties of G, we deviate from this source in some places,
as several of its proofs turned out to be somewhat lacking in accuracy. We �rst establish for
the case of τKP being Hausdor� the properties of our main interest � such as the fact that
τKP is a kω group topology, the universality of the topology with respect to the embeddings
of SL2(R) as fundamental rank one subgroups, and the fact that spherical subgroups carry the
Lie topology. Then we prove that the Kac�Peterson topology on the adjoint group � that is,
G/Z(G) � is in fact Hausdor�, so that it carries all these properties. This information on the
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adjoint group is then used in combination with the tools from central extension theory to �nally
prove that the Kac�Peterson topology on the group G is Hausdor� as well and therefore has
the desired properties. Finally, we introduce the subgroup K of G, the �xed point set of the
Cartan-Chevalley involution, and give a result by Hartnick/Köhl published in their appendix to
[HK19] stating that the fundamental groups of K and G are isomorphic which will allow us to
reduce the computation of the fundamental group of G to that of K.

Chapter 4 contains mainly original results by the author and Ralf Köhl that were �rst published in
[HK19]. Here, we set about the task of determining the fundamental group of G. We introduce
the generalized �ag variety G/PJ for a standard parabolic subgroup PJ of G and take note
of the fact that the Bruhat decomposition of G/PJ is a CW decomposition since by results of
Grüning/Köhl in an appendix to [HK19], the twin building associated to G is a strong topological
twin building, another consequence of G being Hausdor�. The CW decomposition of topological
twin buildings was �rst investigated by Kramer in [Kra01], then further developed in [HKM13].
We determine characteristic maps for the 1- and 2-cells of the CW complex and, employing a
classical result from the theory of CW complexes, use these maps to give a presentation for the
fundamental group of G/PJ . It turns out that all 2-cells are homeomorphic to either the Klein
bottle or the torus S1 × S1. Since it is our goal to determine the fundamental group of K,
we state some results which relate the generalized �ag variety G/PJ to quotient spaces of K.
After these preparations, we �rst tackle the simply laced case, where the group G has a 2-fold
central extension Spin(Π), as shown by Ghatei/Horn/Köhl/Weiss in [GHKW17]. By using our
knowledge about the fundamental group of the generalized �ag variety and a covering argument
we prove that π1(Spin(Π)/Spin(Πij) ∼= π1(K/Kij) ∼= {1} for an A2 subdiagram Πij . Then, via a
homotopy exact sequence, we are able to establish that Spin(Π) is simply connected which yields
that π1(G) ∼= π1(K) ∼= C2. Finally, we move on to the general case. We introduce a modi�ed
Dynkin diagram Πadm and a colouring γ of its connected component that depends on the edge
types of the Dynkin diagram Π. We then prove that the fundamental group of the building
G/B decomposes as a product of subgroups corresponding to the connected components of Πadm

whose isomorphism types depend on the respective colours. Using a covering argument, this
allows us to determine the fundamental group of G. Finally, we introduce a generalized version
of the spin group from the simply laced case and determine its fundamental group which is done
in much the same way as in the case of π1(G).

x



Deutsche Einleitung

Die Struktur maximal kompakter Untergruppen in halbeinfachen Lie-Gruppen wurde durch Car-
tan und später Mostow untersucht: In [Mos49] führt Mostow einen neuen Beweis für den Satz
von Cartan, welcher besagt, dass eine zusammenhängende halbeinfache Lie-Gruppe G das topo-
logische Produkt einer maximal kompakten Untergruppe K und eines euklidischen Raumes ist.
Dies impliziert insbesondere, dass G und K isomorphe Fundamentalgruppen haben.

Später wurden durch Fallunterscheidung die Isomorphietypen dieser maximal kompakten Unter-
gruppen und ihrer Fundamentalgruppen ermittelt; entsprechende Tabellen �nden sich in [Hel78,
p 518] und [SBG+95, 94.33].

Seit den 1940er Jahren werden Dynkindiagramme, die in [Dyn46] eingeführt wurden, verwen-
det, um die Struktur einfacher Lie-Gruppen zu beschreiben. Dynkin-Diagramme kodieren die in
Cartan-Matrizen enthaltenen Informationen und eine Verallgemeinerung dieses Konzeptes mün-
dete in die Theorie der Kac�Moody-Algebren und insbesondere der dazugehörigen Kac�Moody-
Gruppen, die durch Kac in [Kac85] und Tits in [Tit87] entwickelt wurde. Kac�Moody-Gruppen,
mit der Kac�Peterson-Topologie ausgestattet sind, sind umfangreich untersucht worden von Köhl
und Hartnick, zusammen mit Glöckner in [GGH10] und mit Mars in [HKM13].

Ziel der vorliegenden Arbeit ist es, die Fundamentalgruppe der algebraisch einfach zusammenhän-
genden halbeinfachen zerfallenden reellen topologischen Kac�Moody-Gruppe zu einer beliebigen
symmetrisierbaren vereinfachten Cartan-Matrix zu bestimmen. Wir stellen ein einheitliches Re-
sultat vor, das es ermöglicht, die Fundamentalgruppe einer solchen Gruppe � und, insbesondere,
die Fundamentalgruppe jeder algebraisch einfach zusammenhängenden zusammenhängenden zer-
fallenden reellen einfachen Lie-Gruppe zu bestimmen � direkt anhand ihres Dynkin-Diagrammes.

Wir legen zunächst die Notation fest, um die drei Hauptresultate dieser Arbeit anführen zu
können. Sei dazu A eine symmetrisierbare irreduzible verallgemeinerte Cartan-Matrix, Π ihr
Dynkin-Diagramm und GR(A) die zu A gehörige algebraisch einfach zusammenhängenden halb-
einfache zerfallenden reellen Kac�Moody-Gruppe, ausgestattet mit der Kac�Peterson-Topologie
(für De�nitionen sei auf Abschnitte 3.1 - 3.3 verwiesen).

Zum Dynkin-Diagramm Π = (V,E) mit einer festgelegten Nummerierungsabbildung

λ : {1, . . . , n} =: I → V

de�nieren wir ein modi�ziertes Diagramm Πadm mit Knotenmenge V und {iλ, jλ} ∈ V ×V Kante
genau dann, wenn ε(i, j) = ε(j, i) = −1, wobei ε(i, j) die Parität des entsprechenden Eintrages

der Cartan-Matrix bezeichnet. Jeder Zusammenhangskomponente Π
adm

von Πadm weisen wir
dann wie folgt eine Farbe zu: Sei die Zusammenhangskomponente Π

adm
rot (bezeichnet durch

r), wenn sie einen Knoten iλ so enthält, dass ein Knoten jλ ∈ V existiert mit ε(i, j) = 1 und

ε(j, i) = −1. Sei Π
adm

grün (g), wenn sie nur aus einem isolierten Knoten besteht und blau (b)
sonst.
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Man kan nun den Isomorphietyp von π1(GR(A)) dem gefärbten Diagramm Πadm entnehmen, wie
der folgende Satz beschreibt.

Satz. Sei A eine symmetrisierbare irreduzible verallgemeinerte Cartan-Matrix und Π ihr Dynkin-
Diagramm. Seien n(g) und n(b) die jeweilige Anzahl der Zusammenhangskomponenten mit Farbe
g bzw. b. Dann gilt

π1(GR(A)) ∼= Zn(g) × Cn(b)
2 .

Ein integraler Bestandteil des Beweises ist die Berechnung der Fundamentalgruppen von verall-
gemeinerten Fahnenvarietäten � das heiÿt, von Räumen der Form G/PJ für eine parabolische
Untergruppe PJ zur Indexmenge J ⊆ I. Wir beweisen den folgenden Satz:

Satz. Sei G = GR(A) für eine symmetrisierbare irreduzible verallgemeinerte Cartan-Matrix A
oder sei G zwei-sphärisch. Dann ist eine Präsentierung von π1(G/PJ) gegeben durch

〈
xi; i ∈ I | xixε(i,j)j = xjxi, xk = 1; i, j ∈ I, k ∈ J

〉
.

Für das analoge Resultat im endlichdimensionalen Fall sei verwiesen an [Wig98].

Des Weiteren wird in [GHKW17, Section 16] die Gruppe Spin(Π, κ) de�niert, wobei κ eine soge-
nannte zulässige Färbung der Knoten des Dynkin-Diagrammes Π bezeichnet. Hierbei handelt es
sich um die kanonische universelle einhüllende Gruppe eines Spin(2)-Amalgams A(Π,Spin(2)) =
{G̃ij , φ̃iij | i 6= j ∈ I}, wobei der Isomorphietyp von G̃ij abhängig ist sowohl von den (i, j)-
und (j, i)-Eintr�gen der Cartan-Matrix A als auch von den Werten, die κ auf den entsprechenden
Knoten annimmt.

Die Fundamentalgruppe von Spin(Π, κ) lässt sich in ganz ähnlicher Weise zu der von GR(A)
bestimmen, was zum folgenden Resultat führt.

Satz. Sei A eine symmetrisierbare irreduzible verallgemeinerte Cartan-Matrix und Π ihr Dynkin-
Diagramm. Sei n(g) die Anzahl der Zusammenhangskomponenten von Πadm mit Farbe g. Sei
n(b, κ) die Anzahl der Zusammenhangskomponenten von Πadm, auf denen κ den Wert 1 annimmt
und die Farbe b haben. Dann gilt

π1(Spin(Π, κ)) ∼= Zn(g) × Cn(b,κ)
2 .
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Chapter 1

Topological Prerequisites

1.1 CW Complexes

De�nition 1.1.1. Following [Rot88, Chapter 8], a CW complex is an ordered triple (X,E, χ),
where X is a Hausdor� space, E is a family of cells in X, and χ = {χe | e ∈ E} is a family of
maps such that

(a) X =
⊔
e∈E e.

(b) For k ∈ N, let X(k) ⊆ X be the union of all cells of dimension ≤ k. Then for each (k + 1)-
cell e ∈ E, the map χe : (Dk+1, Sk) → (e ∪X(k), X(k)), is a relative homeomorphism,
i.e., it is a continuous map and its restriction Dk \ Sk−1 → e is a homeomorphism.

(c) If e ∈ E, then its closure cl e is contained in a �nite union of cells in E.

(d) X has the weak topology determined by {cl e | e ∈ E}, i.e., a subset A of X is closed if
and only if A ∩ cl e is closed in cl e for each e ∈ E.

For k ∈ N, let Λk be an index set for the k-dimensional cells, so that X(k) \X(k−1) =
⊔
λ∈Λk

eλ
and set χλ := χeλ . This map is called the characteristic map of eλ. �

The following Lemma is a consequence of [Mas77, Chapter 7, Theorem 2.1].

Lemma 1.1.2. Let X be a CW complex with only one 0-cell x0. For each λ ∈ Λ2, let fλ :
[0, 1] → S1 be a loop whose homotopy class generates π1(S1) and whose image γλ := χλ ◦ fλ
under χλ is a loop in X(1) starting at x0. Then

〈[χµ], µ ∈ Λ1 | [γλ], λ ∈ Λ2〉

is a presentation of π1(X,x0), where the brackets denote the respective homotopy classes in
X(1). �

1.2 Some Facts on Maps and Fibre Bundles

A topological space is σ-compact if it is the union of countably many compact subspaces. By
[Str06, Remark before 7.19], every connected locally compact topological group is σ-compact.

Proposition 1.2.1 (Open Mapping Theorem for locally compact groups, [Str06, 6.19]). Let
f : G→ H be a surjective, continuous homomorphism between locally compact topological groups.
If G is σ-compact and H is Hausdor�, then f is open. �

1



CHAPTER 1. TOPOLOGICAL PREREQUISITES

Lemma 1.2.2 [Bou98, I.9.4, Corollary 2]. Let ϕ : X → Y be a continuous, bijective map between
topological spaces. If X is compact and Y is Hausdor�, then ϕ is a homeomorphism. �

Lemma 1.2.3. Let ϕ : X → Y be a continuous, open, surjective map between Hausdor� topo-
logical spaces. If all �bers are �nite and of constant cardinality, then ϕ is a covering map.

Proof. Let y ∈ Y and let ϕ−1(y) = {x1, . . . , xk} ⊆ X. Since X is Hausdor�, for i = 1, . . . , k
there exist neighborhoods Ui of xi with Ui ∩ Uj = ∅ for i 6= j. Let V :=

⋂k
i=1 ϕ(Ui). Then V

is open since ϕ is open and V 6= ∅ since y ∈ V . The preimage ϕ−1(V ) is a disjoint union of
open sets Ũi := ϕ−1(V ) ∩ Ui and each Ũi is mapped bijectively to V : Surjectivity is clear; for
the injectivity let y′ ∈ V . Then each Ũi contains a preimage of y′. Since all �bers have constant
cardinality k, it follows that |Ũi ∩ ϕ−1(y′)| = 1. This proves the assertion. �

Lemma 1.2.4. Let G be a topological group and H1 ≤ H2 subgroups of G and endow G/Hi with
the quotient topology. Then the following hold:

(a) The projection map π : G→ G/H1 is continuous and open.

(b) The canonical map ψ : G/H1 → G/H2 is continuous and open.

(c) G/H1 is Hausdor� if and only if H is closed in G.

Proof. (a): Let U ⊆ G open. Since π is a quotient map, it su�ces to show that π−1(π(U)) is
open. But this is true since π−1(π(U)) = UH1 =

⋃
h∈H1

Uh is a union of translates of open sets.

(b): This follows directly from (a) and the commutative diagram

G

G/H1 G/H2

ϕ
π

ψ

.

(c): This follows from [Bou98, III.2.5, Proposition 13]. �

De�nition and Remark 1.2.5. A �bre bundle is a tuple (E,B, p, F ) where E, B and F are
topological spaces (E the total space, B the base space and F the �bre) and p : E → B
is a continuous surjective map satisfying the following condition: For each x ∈ B there exist a
neighborhood Ux ⊆ B and a homeomorphism φx : p−1(Ux) → Ux × F such that the following
diagram commutes (where π1 denotes projection onto the �rst factor):

p−1(Ux) Ux × F

Ux

φx

p
π1

We denote the �bre bundle by F E B
p

.

By [Hat02, Proposition 4.48 and Theorem 4.41], a �bre bundle with a path-connected base space
B admits a long exact sequence

· · · −→ πn(F ) −→ πn(E) −→ πn(B) −→ πn−1(F ) −→ · · · −→ π0(E) −→ {1}. �

De�nition 1.2.6. Let G be a topological group. A principal G-bundle is a tuple (G, p,X)
where X is a topological space that admits a free G-action such that the translation function
from the induced equivalence relation to G de�ned by (x, x.g) 7→ g is continuous. �
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Lemma 1.2.7 [Hus94, Example 4.2.4]. Let H be a closed subgroup of a topological group G.
Then (G, p,G/H) is a principal H-bundle, where p denotes the canonical projection. �

Proposition 1.2.8 [Pal61, Corollary in Section 4.1]. Let H be a closed Lie subgroup of a topo-
logical group G. Then the principal H-bundle (G, p,G/H) is a �bre bundle. �

Proposition 1.2.9 [HR63, Theorem 5.11]. Let G be a Hausdor� topological group and H a
subgroup of G that is locally compact in its relative topology. Then H is closed. �

Corollary 1.2.10. Let G be a Hausdor� topological group and H a subgroup of G that is a
locally compact Lie group in its relative topology. Then there exists a long exact sequence

· · · −→ πn(H) −→ πn(G) −→ πn(G/H) −→ πn−1(H) −→ · · · −→ π0(G) −→ {1}. �

1.3 Final Topologies

The main reference for this section is [Bou04, III.5, III.6].

De�nition 1.3.1. Let G be a set and (fi : Xi → G)i∈I a family of maps from certain topological
spaces Xi to G. The �nal topology on G with repect to (fi)i∈I is the �nest topology on G
making each map fi continuous. If G is a group, then the �nal group topology on G is the
�nest group topology with this property. �

De�nition 1.3.2. Let I be a set with a partial order ≤ satisfying the following property: For
each α, β ∈ I there exists a γ ∈ I such that α ≤ γ and β ≤ γ. A direct system with respect
to I is a family (Eα, fβα)α,β∈I

α≤β
of sets Eα and mappings fβα : Eα → Eβ such that the following

hold:

(a) If α ≤ β ≤ γ, then fγα = fγβ ◦ fβα.

(b) For each α ∈ I, fαα = idEα .

Let Ẽ be the disjoint union of the sets Eα, and for each x ∈ Ẽ, let λ(x) ∈ I be the unique index
such that x ∈ Eλ(x). De�ne an equivalence relation ∼ on Ẽ by x ∼ y :⇐⇒ there exists a γ ∈ I
with γ ≥ λ(x) =: α and γ ≥ λ(y) =: β such that fγα(x) = fγβ(y).

The direct limit of the directed system is the set

E := lim
→
Eα := Ẽ/ ∼ .

If each Eα is equipped with a topology τα, then the direct limit topology on E with respect
to the direct system (Eα, fβα) is the �nal topology with repect to the family of canonical maps
fα : Eα → E sending each element to its equivalence class. �

By [Bou04, Proposition III.6.6], the direct limit E has the following universal property: For each
set F that admits mappings uα : Eα → F (α ∈ I) such that uβ ◦fβα = uα whenever α ≤ β, there
exists a unique mapping u : E → F such that uα = u ◦ fα. The following diagram illustrates
this universal property:

3
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Eα Eβ

E

F

fβα

fα

uα

fβ

uβ

u

We will be interested in direct limit topologies on groups arising from ascending sequences of
topological spaces. In general, such a topology does not coincide with the corresponding �-
nal group topology, since the product lim→Eα × lim→Eα is in general not homeomorphic to
lim→(Eα × Eα). However, if the spaces involved are locally kω, then these limits can be ex-
changed, as Proposition 1.4.3 states.

1.4 kω-Spaces

De�nition 1.4.1. Following [GGH10, De�nition 4.1], a Hausdor� topological space X is a kω-
space if there exists an ascending sequence of compact subsets K1 ⊆ K2 ⊆ · · · ⊆ X such that
X =

⋃
n∈NKn and U ⊆ X is open if and only if U ∩ Kn is open in Kn for each n ∈ N. A

Hausdor� topological space is locally kω if each point has an open neighborhood which is kω in
the induced topology. �

Proposition 1.4.2 [GGH10, Proposition 4.2].

(a) σ-compact locally compact spaces are kω.

(b) Closed subsets of kω-spaces are kω in the induced topology.

(c) Finite products of kω-spaces are kω in the product topology.

(d) Hausdor� quotients of kω-spaces are kω.

(e) Countable disjoint unions of kω-spaces are kω.

(f) Every locally compact space is locally kω.

(g) Open subsets of locally kω spaces are locally kω.

(h) Closed subsets of locally kω-spaces are locally kω in the induced topology.

(i) Finite products of locally kω-spaces are locally kω in the product topology.

(j) Hausdor� quotients of locally kω-spaces are locally kω. �

Note that since every connected locally compact topological group is σ-compact, it is also kω.

Following [GGH10, description before Proposition 4.7], let X1 ⊆ X2 ⊆ . . . and Y1 ⊆ Y2 ⊆ . . .
be ascending sequences of topological spaces with continuous inclusion maps, and let X :=⋃
n∈NXn = lim→Xn and Y :=

⋃
n∈N Yn = lim→ Yn, equipped with the respective direct limit

topologies. Write lim→(Xn × Yn) for
⋃
n∈N(Xn × Yn), equipped with the direct limit topology.

Proposition 1.4.3 [GGH10, Proposition 4.7]. The natural map

β : lim
→

(Xn × Yn)→ (lim
→
Xn)× (lim

→
Yn) : (x, y) 7→ (x, y)

is a continuous bijection. If each Xn and each Yn is locally kω, then β is a homeomorphism. �
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Proposition 1.4.4 [GGH10, Proposition 5.8]. Let G be a group and (fi)i∈I a countable family
of maps fi : Xi → G such that each Xi is a kω-space and

⋃
i∈I fi(Xi) generates G. If the �nal

group topology on G with respect to the family (fi)i∈I is Hausdor�, then the topology is kω. �

1.5 The Compact-Open Topology

We introduce the compact-open topology for sets of continuous functions. It will later be used
as a tool to prove that spherical subgroups of Kac�Moody groups carry the Lie topology. The
main reference for this section is [AGP02, 1.2], see also [Dug78, XII.1-2].

Let (X, τX), (Y, τY ) be topological spaces and denote by M(X,Y ) the set of continuous maps
X → Y .

De�nition 1.5.1. A topology τ on M(X,Y ) is admissible if the evaluation map

e : M(X,Y )×X → Y : (f, x) 7→ f(x)

is continuous with respect to the product topology τ × τX . �

De�nition 1.5.2. For two subsets K ⊆ X and U ⊆ Y let UK := {f ∈ M(X,Y ) | f(K) ⊆ U}.
The compact-open topology τco on M(X,Y ) is the topology generated by the set

{UK | K ⊆ X compact, U ⊆ Y open}. �

Lemma 1.5.3. Let Y be Hausdor�. Then τco is Hausdor�.

Proof. Let f 6= g ∈M(X,Y ) and let x ∈ X with f(x) 6= g(x). Since Y is Hausdor�, there exist

disjoint open neighborhoods Uf of f(x) and Ug of g(x). Then U{x}f and U{x}g are disjoint open
neighborhoods of f and g, respectively. �

Proposition 1.5.4 [AGP02, Proposition 1.2.2]. Let τ be an admissible topology on M(X,Y ).
Then τco ⊆ τ . �

1.6 Central Extensions of Topological Groups

A central extension of a group G by a group Z is a group Ĝ with Z ≤ Z(Ĝ) such that there
exists an epimorphism Ĝ→ G whose kernel is Z. Following [Nee02, Section 1], central extensions
can be described using 2-cocycles: For a group Z and an abelian group G, a Z-valued 2-cocycle
is a map G×G→ Z satisfying f(x, y)f(xy, z) = f(x, yz)f(y, z) and f(1, x) = f(x, 1) = 1 for all
x, y, z ∈ H. Denote the group of Z-valued 2-cocycles by Z2(G,Z). For f ∈ Z2(G,Z) de�ne the
group

G×f Z := G× Z where (g, z)(g′, z′) := (gg′, zz′f(g, g′)).

The groupG×fZ has neutral element (1, 1) and inverse elements (g, z)−1 = (g−1, z−1f(g, g−1)−1).
The projection G×f Z → G is an epimorphism with kernel Z, so G×f Z is a central extension
of G by Z. It can be shown that every central extension can be realized in this way.

Proposition 1.6.1 [Nee02, Proposition 2.2]. Let G and Z be topological groups where G is
connected, and let Ĝ be a central extension of G by Z with quotient map q : Ĝ → G. Then the
following are equivalent:
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(a) Ĝ carries the structure of a topological group such that there exists an open 1-neighborhood
U ⊆ G and a continuous map σ : U → Ĝ with q ◦ σ = idU .

(b) The central extension can be described by a cocycle f : G×G→ Z which is continuous in
a neighborhood of (1, 1) in G×G. �

Corollary 1.6.2. Let G, Ĝ, Z and q be as in Proposition 1.6.1. If (b) holds and if Z is discrete,
then the group topology in (a) turns q into a covering map.

Proof. Since G is a topological group, for each x ∈ G the set xU (with U as in (a) above) is an
open neighborhood of x whose preimage q−1(xU) is homeomorphic to Z×U . Since Z is discrete,
it follows that q is a covering map. �
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Chapter 2

Buildings and Groups with RGD

Systems

2.1 Finite Root Systems

We de�ne �nite root systems and Cartan matrices and Dynkin diagrams for crystallographic root
systems. The main references for this section are [AB08, Appendix B] and [Hum78, Chapter III].

Let V be a Euclidean space with a positive de�nite symmetric bilinear form 〈·, ·〉 and let α ∈ V .
Then the re�ection sα with respect to the hyperplane α⊥ is given by

sα(x) = x− 2〈α, x〉
〈α, α〉

α.

De�ne α∨ := 2α
〈α,α〉 .

De�nition 2.1.1. A subset Φ ⊆ V is called a �nite root system if it satis�es the following
conditions:

(a) Φ is �nite, spans V and does not contain zero.

(b) If α ∈ Φ, the only scalar multiples of α in Φ are ±α.

(c) Φ is WΦ-invariant where WΦ := 〈sα | α ∈ Φ〉.

If, in addition, 〈α∨, β〉 ∈ Z for all α, β ∈ Φ, then the �nite root system Φ is called crystal-
lographic. An element of Φ is called root. For a root α, the length l(α) of α is given by
l(α) := 〈α, α〉1/2. The number dimV is called the rank of Φ. The group W := WΦ is called the
Weyl group of Φ. A �nite root system is called irreducible if Φ cannot be partitioned into
two proper orthogonal subsets. �

Fix a lexicographic ordering of V corresponding to an arbitrary ordered basis and consider an
element v ∈ V positive if 0 < λ.

De�nition 2.1.2. A subset ∆ ⊆ Φ is called a simple system if the following hold:

(a) ∆ is a basis of V .

(b) Each α ∈ Φ is a linear combination of ∆ with all coe�cients in Z and of the same sign.

The elements of ∆ are called simple roots. Simple systems always exists by [Hum78, 1.3,
Theorem]. �
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De�nition 2.1.3. The Cartan matrix of a �nite crystallographic root system Φ relative to
a simple system ∆ with a �xed ordering of elements (α1, . . . , αn) is given by A = (aij)1≤i,j≤n
where aij = 〈a∨i , aj〉. The following hold (cf. [AB08, 8.11.1]):

� aii = 2 for all i.

� aij ∈ {0,−1,−2,−3} for i 6= j.

� aijaji ∈ {0, 1, 2, 3} for i 6= j.

� aij = 0 ⇐⇒ aji = 0.

The Dynkin diagram of Φ is a graph with n labelled vertices where for i 6= j the ith and
jth vertex are joined by aijaji edges with an arrow pointing to the vertex corresponding to the
shorter root. �

Theorem 2.1.4 [Hum78, Theorem 11.4]. If Φ is an irreducible crystallographic root system of
rank 2, its Dynkin diagram is one of the following:

An (n ≥ 1)
1 2 n− 1 n

Bn (n ≥ 2)
1 2 n− 1 n

Cn (n ≥ 3)

Dn (n ≥ 4)
1 2 n− 2 n− 1

n

En (6 ≤ n ≤ 8)

1

2

3 4 5 6 n

F4
1 2 3 4

G2
1 2

�

Example 2.1.5. Let V := Rn with the standard bilinear form and let Φ := {αij := ei − ej |
i, j = 1, . . . , n, i 6= j}. Then Φ is a crystallographic root system. The re�ection corresponding
to αij is the transposition sij that interchanges the ith and jth coordinates. The Weyl group of
Φ is the symmetric group on n letters. A simple system is given by {αi := αi,i+1 | 1 ≤ i ≤ n+1};
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the corresponding Cartan matrix is given by

2 −1 0 . . . 0

−1 2 −1
. . .

...

0 −1 2
. . . 0

...
. . . . . . . . . −1

0 . . . 0 −1 2


and the Dynkin diagram is of type An−1. �

2.2 The Root System Associated to a Coxeter Group

We introduce Coxeter groups, which are generalizations of �nite re�ection groups, and their
associated root systems, generalized Cartan matrices, and Dynkin diagrams. The main references
for this section are [Hum90, Chapter II.5] and [AB08], see also [CR09].

De�nition 2.2.1. A Coxeter group is a group W with a presentation

〈s1, . . . , sn | (sisj)mij 〉,

where mii = 1 and mij ≥ 2 for i 6= j; mij =∞ is also permitted. A Coxeter system is a pair
(W,S) whereW is a Coxeter group and S = {s1, . . . , sn} is a �xed set of generators forW . Let lS
be the length function that associates to each element the (unique) length of a corresponding
reduced expression in S. De�ne the strong Bruhat order ≤ on W as follows: For w1, w2 ∈W
let w1 ≤ w2 if there exist reduced expressions si1 . . . silS(w1)

of w1 and sj1 . . . sjlS(w2)
such that

the former is a (not necessarily consecutive) substring of the latter. �

Following [Hum90, II.5.3], every Coxeter group can be realized as a group of re�ections of a real
vector space V having a basis {αs | s ∈ S} in one-to-one correspondence with S. This vector
space is equipped with a symmetric bilinear form B de�ned by

B(αsi , αsj ) := − cos
π

mij

with B(αsi , αsj ) := −1 if mij =∞. For each s ∈ S, a re�ection σs : V → V is de�ned by

v 7→ v − 2B(αs, v)αs.

By [CR09, Remark 1.2], this mapping extends to an injective homomorphism σ : W → GL(V )
and by [Hum90, II.5.3], the group σ(W ) preserves the form B on V . To simplify notation, we
write w(v) instead of σ(w)(v) for v ∈ V .

De�nition 2.2.2. Let (W,S) be a Coxeter system. The root system Φ of (W,S) is given by
Φ := {w(αs) | w ∈ W, s ∈ S}. The elements αs are called simple roots. For each α ∈ Φ, there
exists a unique expression

α =
∑
s∈S

csαs, cs ∈ R.

Then α is positive (resp. negative) if all cs ≥ 0 (resp. all cs ≤ 0). Write Φ+ (resp. Φ−) for
the set of positive (resp. negative) roots. By [CR09, Theorem 1.3(ii)], Φ = Φ+ ∪ Φ−.

For α = w(αs) ∈ Φ, the associated re�ection sα ∈ GL(V ) is given by sα := σ(wsw−1). One
has

sα(v) = v − 2B(v, α)α,

9
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so sα does not depend on the choice of w and s.

The notions of length, rank, and irreducibility are de�ned as for �nite root systems in De�-
nition 2.1.1. �

Note that if W is �nite and if for each α ∈ Φ the only scalar multiples of α in Φ are ±α, which
can always be assumed without loss of generality, then Φ is a �nite root system in the sense of
De�nition 2.1.1.

Example 2.2.3. Let Σn be the symmetric group on n letters and S = {s1, . . . , sn−1} with
si = (i, i+ 1). Then W = 〈S | s2

i , (sisi+1)3, (sisj)
2; |i− j| > 1〉, so (Σn, S) is a Coxeter system.

One has

B(αsi , αsj ) =


1, j = i,

−1/2, |j − i| = 1,

0 else,

so the associated root system is crystallographic and we obtain the same Cartan matrix as in
Example 2.1.5 which shows that the root system given there is equivalent to the one constructed
from the Coxeter system. �

De�nition 2.2.4. A generalized Cartan matrix is a matrix A = (aij)1≤i,j≤n ∈ Zn×n satis-
fying

� aii = 2,

� aij ≤ 0 if i 6= j,

� aij = 0 ⇐⇒ aji = 0. �

To a generalized Cartan matrix A = (aij)1≤i,j≤n one associates a Coxeter system (W (A) =
〈s1, . . . , sn | (sisj)mij 〉, S) with S = {s1, . . . , sn}, where mii = 1 and mij is given by the following
table (cf. [Kac85, Section 1]).

mij 2 3 4 6 ∞
aijaji 0 1 2 3 ≥ 4

The Dynkin diagram of a generalized Cartan matrix A is de�ned like the Dynkin diagram
of a Cartan matrix of a �nite root system with the additional requirement that for aijaji ≥ 4,
there is a single edge labelled by |aij |, |aji| connecting the ith and jth vertex. The generalized
Cartan matrix A is called irreducible if its Dynkin diagram is connected. A Dynkin diagram is
called simply laced if aijaji ∈ {0, 1} for all i, j. The Coxeter diagram of A is a graph with
n labelled vertices where for i 6= j the ith and jth vertex are joined by a single edge labelled by
mij .

2.3 Buildings

We collect the necessary basics on buildings and twin buildings. This section follows [AB08,
Chapter 5], see also [HKM13, Section 2.1]

De�nition 2.3.1. Let (W,S) be a Coxeter system. Following [AB08, De�nition 5.1], a building
of type (W,S) is a pair (C, δ) consisting of a nonempty set C,whose elements are called chambers,
together with a map δ: C × C → W , called the Weyl distance function, such that for all
C,D ∈ C, the following conditions are satis�ed:
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(WD1) δ(C,D) = 1 ⇐⇒ C = D.

(WD2) If δ(C,D) = w and C ′ ∈ C satis�es δ(C ′, C) = s ∈ S, then δ(C ′, D) = sw or w. If,
in addition, lS(sw) = lS(w) + 1, then δ(C ′, D) = sw.

(WD3) If δ(C,D) = w, then for any s ∈ S there is a chamber C ′ ∈ C such that δ(C ′, C) = s
and δ(C ′, D) = sw.

The Coxeter group W is called theWeyl group of (C, δ). For I = {1, . . . , n} and S = {si | i ∈ I
de�ne WJ for a subset J ⊆ I by WJ := 〈si | i ∈ J〉. �

Where the distance function does not need to be taken into explicit account, we will often omit
it and simply denote by C the building (C, δ).

A building is called spherical if W is �nite, and k-spherical if WJ is �nite for each k-element
subset J ⊆ I.

Given s ∈ S, two chambers C,D ∈ C are called s-adjacent if δ(C,D) = s, and s-equivalent
if δ(C,D) ∈ {1, s}. s-equivalence is an equivalence relation whose equivalence classes are called
s-panels and a panel is an s-panel for some s ∈ S. A building is called thick (resp thin) if
each panel contains at least three (resp. exactly two) chambers. By (WD3), panels contain at
least two chambers.

For S = {s1, . . . , sn} and a subset J ⊆ {1, . . . , n}, two chambers C,D ∈ C are J-equivalent
if δ(C,D) ∈ WJ . One can show that J-equivalence is an equivalence relation; its equivalence
classes are called J-residues. A J-residue is called spherical if WJ is �nite. A residue is a
subset R ⊆ C that is a J-residue for some J ⊆ S. For a chamber C ∈ C, the J-residue containing
C is denoted by RJ(C). The collection of all J-residues in C is denoted by ResJ(C). The residues
of co-rank one, i.e., the elements of Vs := ResS\{s}(C) are called s-vertices. There is a canonical
embedding

ι : C ↪→
∏
s∈S
Vs,

C 7→ (RS\{s}(C))s∈S

mapping a chamber onto the tuple consisting of its vertices.

Let (C, δ) and (C ′, δ′) be two buildings of type (W,S) and (W ′, S′), respectively, and letM⊆ C
and M′ ⊆ C′. Let σ : W → W ′ be an isomorphism satisfying σ(S) = S′. A σ-isometry from
M toM′ is a map φ :M→M′ such that the following diagram commutes:

M×M W

M′ ×M′ W ′

δ

φ×φ σ

δ′

If (W,S) = (W ′, S′) and σ = id, we call φ an isometry .

For a Coxeter system (W,S), de�ne δW : W ×W → W, (w1, w2) 7→ w−1
1 w2. Then it is straight-

forward to check that (W, δW ) is a thin building, the standard thin building of type (W,S).

Using the characterisation from [AB08, Corollary 5.67], an apartment of a building (C, δ) is a
subset Σ ⊆ C that is isometric to W where W is taken to be the set of chambers of the standard
thin building. By [AB08, Corollary 5.74], any two chambers are contained in a common apart-
ment. A system of apartments is a collection Ω of apartments such that any two chambers
are contained in a common apartment in Ω.

11



CHAPTER 2. BUILDINGS AND GROUPS WITH RGD SYSTEMS

De�nition 2.3.2. Let (W,S) be a Coxeter system. Following [AB08, De�nition 5.133], a twin
building of type (W,S) is a triple (C+, C−, δ∗) consisting of two buildings (C+, δ+) and (C−, δ−)
of type (W,S) with disjoint C+ and C−, together with a codistance function

δ∗ : (C+ × C−) ∪ (C− × C+)→W

such that the following conditions are satis�ed for each ε ∈ {+,−}, any C ∈ Cε, and any D ∈ C−ε,
where w := δ∗(C,D):

(Tw1) δ∗(C,D) = δ∗(D,C)−1.

(Tw2) If C ′ ∈ Cε satis�es δε(C,C ′) = s with s ∈ S and l(sw) < l(w), then δ∗(C ′, D) = sw.

(Tw3) For any s ∈ S, there exists a chamber C ′ ∈ Cε with δε(C ′, C) = s and δ∗(C ′, D) =
sw. �

Two chambers C ∈ Cε and D ∈ C−ε are opposite, noted C op D, if δ∗(C,D) = 1. A twin
apartment of a twin building C is a pair Σ = (Σ+,Σ−) such that for ε ∈ {+,−}, Σε is an
apartment of Cε, and every chamber in Σ+ ∪ Σ− is opposite precisely one chamber in Σ+ ∪ Σ−.
The twin building is called thick (resp. thin), if each of the buildings C+ and C− is thick (resp.
thin).

By [AB08, Lemma 5.149] (see also [HKM13, Section 2.1]), if R is a spherical residue of C± and
C is a chamber in C∓, then there exists a unique chamber D ∈ R such that δ∗(C,D) is maximal
in the set {δ∗(C,E) | E ∈ R}. This chamber is called the co-projection of C onto R and is
denoted by proj∗R(C).

For C ∈ C± and w ∈W de�ne

Ew(C) := {D ∈ C± | δ±(C,D) = w},
E∗w(C) := {D ∈ C∓ | δ∗(C,D) = w},

The sets E≤w(C) and E∗≤w(C) are de�ned accordingly. Moreover, de�ne

Cw := {(C,D) ∈ (C+ × C−) ∪ (C− × C+) | δ∗(C,D) = w}.

2.4 Topological Twin Buildings

Following [HKM13, Section 3.1], let C = (C+, C−, δ∗) be a thick twin building of type (W,S) such
that the Coxeter diagram of (W,S) has no isolated vertices. Then a topology τ on C is a pair
of topologies τ± on C±. The set C+ ∪ C− is equipped with the direct sum topology.

De�nition 2.4.1. [HKM13, De�nition 3.1], let C be a thick twin building of type (W,S) without
isolated vertices in the Coxeter diagram and τ a topology on C. Then the pair (C, τ) is called a
topological twin building if it satis�es the following axioms:

(TTB1) τ is a Hausdor� topology.

(TTB2) For each C ∈ C± and each s ∈ S the map

E∗1(C)→ C+ ∪ C−
D 7→ proj∗R{s}(C)(D)

is continuous, where R{s}(C) denotes the s-panel containing C.
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(TTB3) There exist chambers C± ∈ C± such that C± is the direct limit lim→E≤w(C±)
and τ is the direct limit topology.

(TTB4) For each s ∈ S there exists a compact s-panel in C±.

�

De�nition 2.4.2. A topological twin building C of type (W,S) is called a strong topological
twin building if it satis�es the following additional axioms:

(TTB1+) The vertex sets V±s , s ∈ S, are Hausdor�.

(TTB2+) For each s ∈ S the map

C1 → C+ ∪ C−
(C,D) 7→ proj∗R{s}(C)(D)

is continuous.

(TTB5) The set C1 = {(C,D) ∈ (C+×C−)∪(C−×C+) | δ∗(C,D) = 1} of opposite chambers
is open.

(TTB6) For every s ∈ S, the canonical map C± → V±s is open.

�

Lemma 2.4.3 [HKM13, Proposition 3.20]. Let C be a strong topological twin building C of type
(W,S). Then the following hold:

(TTB6+) For every J ⊆ S the canonical map C± → Res±J is open.

(TTB7) The embedding

ι : C ↪→
∏
s∈S
Vs,

C 7→ (RS\{s}(C))s∈S

is open and therefore a homeomorphism onto its image.

2.5 BN-Pairs

This section follows [AB08, Sections 6.1, 6.2]. Let (C, δ) be a building. A group G acts on
(W, δ) if it acts on the set C and preserves Weyl distance, that is, δ(C,D) = δ(g.C, g.D) for all
C,D ∈ C, g ∈ G. Let A be a set of apartments of (C, δ). The G-action is strongly transitive
(with respect to A) if G acts transitively on the set of pairs (C,Σ) where C is a chamber and
Σ ∈ A is an apartment containing C.

De�nition 2.5.1. Following [AB08, De�nition 6.55], a BN-pair is a pair of subgroups B and
N of a group G such that B and N generate G, the intersection T := B ∩ N is normal in N ,
and the quotient W := N/T admits a set of generators S such that the following two conditions
hold:

(BN1) For s ∈ S and w ∈W ,

sBw ⊆ BswB ∪BwB.
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CHAPTER 2. BUILDINGS AND GROUPS WITH RGD SYSTEMS

(BN2) For s ∈ S,
sBs−1 � B.

The group W is called the Weyl group associated to the BN -pair. The group B is called a
Borel subgroup and the quadruple (G,B,N, S) a Tits system. �

Example 2.5.2. [AB08, 6.5] Let B be the group of upper triangular matrices in SLn(R) and let
N be the group of monomial matrices in SLn(R). Then B and N form a BN -Pair for SLn(R).
The intersection T := B∩N is the diagonal subgroup of SLn(R), andW := N/T can be identi�ed
with the symmetric group on n letters. The set S can be chosen as the standard set of generators
{s1, . . . , sn−1} where si is the transposition that interchanges i and i+ 1. �

Theorem 2.5.3 [AB08, Theorem 6.56 (1)]. Given a BN -pair in G, the generating set S is
uniquely determined, and (W,S) is a Coxeter system. There is a thick building ∆ = ∆(G,B)
that admits a strongly transitive G-action such that B is the stabilizer of a �xed chamber C and
N stabilizes a �xed apartment Σ containing C and is transitive on its chambers. �

The Bruhat decomposition of G is given by

G =
⊔
w∈W

BwB := Bw̃B

where w̃ is a representative of w in N . The standard parabolic subgroups of G are the
subgroups PJ := BWJB (J ⊆ {1, . . . , n}) where S = {s1, . . . , sn} and WJ is the subgroup of W
generated by the corresponding subset of S. These are precisely the subgroups of G containing
B. They are self-normalizing and no two of them are conjugate.

The building ∆(G,B) = (C, δ) can be described as follows: Let C := G/B and de�ne δ :
G/B ×G/B →W by

δ(gB, hB) = w :⇐⇒ Bg−1hB = BwB.

Then G acts by left translation, and N stabilizes the fundamental apartment Σ = {wB | w ∈
W} and is transitive on its chambers while B stabilizes the fundamental chamber B.

De�nition 2.5.4. For w ∈W and a chamber gB ∈ G/B de�ne

Cw(gB) := {hB ∈ G/B | δ(gB, hB) = w},

C≤w(gB) :=
⋃
v≤w

Cv(gB)

and

C<w(gB) := C≤w(gB) \ Cw(gB).

In particular, one has Cw(B) = BwB/B and C≤s(B) = B〈s̃〉B/B for s ∈ S with representative
s̃ ∈ N . The sets C≤s(gB) are exactly the s-panels as de�ned above. �

Let C = (C+, C−) be a twin building of type (W,S). Following [AB08, De�nition 6.67], a group
G acts on C if it acts simultaneously on the two sets C+ and C− and preserves Weyl distance and
codistance. The G-action is strongly transitive if G acts transitively on {(C,C ′) ∈ C+ × C− |
C op C ′}.
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De�nition 2.5.5. Following [AB08, De�nition 6.78], let B+, B−, and N be subgroups of a group
G such that B+ ∩ N = B− ∩ N =: T E N . Let W = N/T . The triple (B+, B−, N) is called
a twin BN-pair with Weyl group W if it admits a set S of generators such that the following
conditions hold for all w ∈W and s ∈ S and ε ∈ {+,−}:

(TBN0) (G,Bε, N, S) is a Tits system.

(TBN1) If l(sw) < l(w), then BεsBεwB−ε = BεswB−ε.

(TBN2) B+s ∩B− = ∅.

The quintuple (G,B+, B−, N, S) is called a twin Tits system. �

Proposition 2.5.6. Following [AB08, page 332], for a twin Tits system (G,B+, B−, N, S) and
ε = ±, let (Cε, δε) be the building associated to the BN pair (Bε, N). De�ne

δ∗ : (C+ × C−) ∪ (C− × C+)→W

by
δ∗(gBε, hB−ε) = w :⇐⇒ g−1h ∈ BεwB−ε.

Then (C+, C−, δ∗) is a thick twin building. �

2.6 RGD Systems

Let (W,S) be a Coxeter system with S = {s1, . . . , sn} and Φ the set of roots of (W,S) with
positive (resp. negative) set of roots Φ+ (resp. Φ−). Following [CR09, Section 1.2.2], for a set
of roots Ψ ⊆ Φ de�ne

W±(Ψ) := {w ∈W | w.α ∈ Φ± for each α ∈ Ψ}.

Moreover, de�ne

Ψ = {α ∈ Φ |W+(Ψ) ⊆W+(α) and W−(Ψ) ⊆W−(α)}.

The set Ψ is called prenilpotent if W+(Ψ) and W−(Ψ) are both nonempty.

For a pair {α, β} ∈ Φ set

[α, β] := {α, β} and (α, β) := [α, β] \ {λα, µβ | λ, µ ∈ R+}.

De�nition 2.6.1. An RGD system of type (W,S) is a triple (G, (Uα)α∈Φ, T ) consisting of a
group G, a family of subgroups Uα and a subgroup T satisfying the following conditions:

(RGD0) For all α ∈ Φ, Uα 6= {1}.

(RGD1) For all α 6= β in Φ such that {α, β},

[Uα, Uβ] ≤ U(α,β)

.

(RGD2) For every si ∈ S there is a function mi : U∗αi = Uαi \ {1} → G such that for all
u ∈ U∗αi and α ∈ Φ,

mi(si) ∈ U−αiuU−αi and mi(u)Uαmi(u)−1 = Usiα.

Moreover, mi(u)−1mi(v) ∈ T for all u, v ∈ U∗αi .
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(RGD3) For all si ∈ S,
U−αi � U+,

where U± := 〈Uα | α ∈ Φ±〉.

(RGD4) G = T 〈Uα | α ∈ Φ〉.

(RGD5) T normalizes Uα for each α ∈ Φ, i.e.,

T ≤
⋂
α∈Φ

NG(Uα).

The groups Uα are called root subgroups and the groups Gα := 〈Uα, U−α〉 are called rank
one subgroups. The rank one subgroups Gi := Gαi (si ∈ S) corresponding to simple roots are
called fundamental rank one subgroups . �

Let

N := T. 〈mi(u) | u ∈ Uαi \ {1}, si ∈ S〉 ,
B+ := T.U+,

B− := T.U−.

Theorem 2.6.2 [AB08, Proposition 8.54 (1)]. Let (G, (Uα)α∈Φ, T ) be an RGD system. Then
(G,B+, B−, N, S) is a twin Tits system with Weyl group N/(B ∩N) = N/T ∼= W . �

Corollary 2.6.3 [AB08, Corollaries 8.55 and 8.78].

� NG(U±) = B±.

� B+ ∩B− = T . �

In the following, we will only be interested in the Tits system (G,B+, N, S) of an RGD system.
We will therefore often denote B+ by B.

Example 2.6.4 [AB08, Example 7.133]. Let G = SLn(R), let T be the set of diagonal
matrices in G, let W be the symmetric group on n letters with standard set of generators
S = {s1, . . . , sn}. Recall that the root system of (W,S) is given by Φ := {αij := ei − ej | i, j =
1, . . . , n, i 6= j} as shown in Example 2.2.3. For 1 ≤ i, j ≤ n with i 6= j, let Uαij := {Eij(λ) | λ ∈
R} where Eij is the elementary matrix with λ in position (i, j) and 1's on the diagonal. Then
(G, (Uα)α∈Φ, T ) is an RGD system.

The maps mi are de�ned as follows: For u = Ei,i+1(λ) ∈ Uαi , the element mi(u) is the image

of

(
0 λ
−λ−1 0

)
∈ SL2(R) under the mapping that embeds SL2(R) into SLn(R) as the subgroup

that acts on the space eiR+ ejR and �xes ek for k 6= i, i+ 1.

The resulting BN -pair is the one given in Example 2.5.2. �

Lemma 2.6.5 [AB08, Exercise 7.126]. For S = {si | i ∈ I} and any subset SJ = {sj | j ∈ J ⊆
I}, let ΦJ := {wαs | w ∈ WJ , s ∈ SJ} and GJ := T 〈Uα | α ∈ ΦJ〉. Then (GJ , (Uα)α∈ΦJ , T ) is
an RGD system of type (WJ , SJ). �
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Chapter 3

Kac-Moody Theory

3.1 De�nitions

We introduce Kac�Moody groups, closely following [HKM13, 7.1] and [Mar18, 7.3].

De�nition 3.1.1. Let I = {1, . . . , n} and A = (aij)i,j∈I a generalized Cartan matrix. A
quintuple D= (I, A,Λ, {ci}i∈I , {hi}i∈I) is called a Kac�Moody root datum if Λ is a free Z-
module, each ci is an element of Λ, and each hi is an element of the dual Λ∨ of Λ such that
one has hi(cj) = aij for all i, j ∈ I. We call D free if the ci are Z-linearly independent in Λ
and cofree if the hi are Z-linearly independent in Λ∨. We call D adjoint if the ci span Λ and
coadjoint if the hi span Λ∨. To any Kac�Moody root datum D one can associate an adjoint
Kac�Moody root datum ad(D) by replacing Λ with its sublattice Λad generated by the ci and
restricting the elements hi accordingly. �

De�nition 3.1.2. By [Mar18, Example 7.11], given a generalised Cartan matrix A = (aij)i,j∈I
there exists a unique Kac�Moody root datum associated to A that is both cofree and coadjoint,
i.e. such that Λ∨ = ⊕i∈IZhi. It is denoted by DAsc and called the simply connected root datum
associated to A. �

De�nition 3.1.3. Let D = (I, A,Λ, {ci}i∈I , {hi}i∈I) be a Kac�Moody root datum. The Kac�
Moody algebra gD of type D is the complex Lie algebra with generators hD := Λ∨⊕Z C (the
Cartan subalgebra of gD), and the symbols {ei}i∈I and {fi}i∈I , together with the following
de�ning relations:

[hD, hD] = 0,

[h, ei] = 〈ci, h〉ei and [h, fi] = −〈ci, h〉fi for h ∈ hD and i ∈ I,
[ei, fi] = −δijhi for i, j ∈ I,

(adei)
1−aij .ej = (adfi)

1−aij .fj = 0 for i, j ∈ I with i 6= j.

For a generalized Cartan matrix A, we de�ne gA := gDAsc and call it the simply connected
Kac�Moody algebra of type A over C.

It follows from the last relation that ei and fi are ad-locally nilpotent (or, equivalently, adei
and adfi are locally nilpotent), which means that for each g ∈ gD there exists an m ∈ N such
that (adei)

m.g = (adfi)
m.g = 0. �

De�nition 3.1.4. In [Tit87, 3.6], Tits associates with each Kac�Moody root datum D a triple
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(G, {ϕi}i∈I , η) where G is a group functor on the category of commutative unital rings, the ϕi
are homomorphisms SL2(R)→ G(R), and η is a natural transformation HomZ−alg(Z[Λ],−)→ G
satisfying the following conditions:

(KMG1) If K is a �eld, then G(K) is generated by the images of the ϕi and of η(K).

(KMG2) For every commutative unital ring R, the homomorphism HomZ−alg(Z[Λ], R)→
G(R) is injective.

(KMG3) Given a commutative unital ring R, i ∈ I and r ∈ R×, one has ϕi
(
r 0
0 r−1

)
=

η(λ 7→ rhi(λ)).

(KMG4) If ι : R → K is an injective homoomorphism from a commutative unital ring R
to a �eld K, then G(ι) : G(R)→ G(K) is injective.

(KMG5) There exists a homomorphism Ad : G(C) → Aut(gA) whose kernel is contained
in η(C)(HomZ−alg(Z[Λ],C)), such that for z ∈ C and i ∈ I one has

Ad

(
ϕi

(
1 z
0 1

))
= exp ad zei,

Ad

(
ϕi

(
1 0
z 1

))
= exp ad(−zfi).

Furthermore, for every homomorphism γ ∈ HomZ−alg(Z[Λ],C), one has

Ad(η(C)(γ))(ei) = γ(ci) · ei, Ad(η(C)(γ))(fi) = γ(−ci) · fi.

For a given Kac�Moody root datum D the group GD(R) := G(R) is called a split Kac�Moody
group of type D over R. For a generalized Cartan matrix A, the group GR(A):= GDAsc(R)
is called the algebraically simply-connected semisimple split real Kac�Moody group
of type A. Denote by Z the centre of GR(A) and de�ne the adjoint Kac�Moody group of
type A by Ad(GR(A)) := GR(A)/Z. �

It is established in [Tit87, Theorem 1] that on the category of �elds, the functor G is completely
characterised by the axioms above, up to some non-degeneracy assumptions concerning the maps
ϕi.

De�nition 3.1.5. Following [FHHK, 3D], the extended Weyl group W̃ ≤ GD(R) is de�ned

by W̃ := 〈s1, . . . , sn〉 where si := ϕi

(
0 1
−1 0

)
. By [Kac90, Proposition 2.1], the mapping si → si

induces an epimorphism from W̃ to W . �

3.2 The RGD System of a Kac�Moody Group

We state a result of Rémy, reformulated by Hartnick, Köhl and Mars, which gives an RGD
system for a split Kac�Moody group over a �eld.

Following [HKM13, Proposition 7.2] (see also [Rém02, Proposition 8.4.1], [Cap09, Lemma 1.4]),
let K be a �eld, let D = (I, A,Λ, {ci}i∈I , {hi}i∈I) be a Kac�Moody root datum, and let GD(K)
be the corresponding split Kac�Moody group of type D over K. Then GD(K) admits an RGD
system as follows. Let (W,S) be the Coxeter system associated to A and let Φ be its set of
roots. Given i ∈ I, let Uαi and U−αi be the respective images of the subgroups of strictly upper,
resp. strictly lower triangular matrices of the matrix group SL2(K) under the map ϕi. For an
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arbitrary root α = w.αi ∈ Φ with w = si1 . . . sik de�ne Uα := w̃Uαiw̃
−1 where w̃ := s̃i1 . . . s̃ik .

Denote by T the image of η(K) in GD(K).

Proposition 3.2.1 [HKM13, Proposition 7.2]. One has T =
⋂
α∈ΦNGD(K)(Uα) and W ∼=

NGD(K)(T )/T . Moreover, (GD(K), (Uα)α∈Φ, T ) is an RGD system. �

The group GD(K) is called (k-)spherical if the corresponding building is (k-)spherical, and
simply laced if the Dynkin diagram of its generalized Cartan matrix is simply laced. It is
called symmetrizable if its generalized Cartan matrix A is symmetrizable, that is, if there
exists a non-degenerate diagonal matrix D such that DA is symmetric.

By [Car92, Section 6], the RGD system of the algebraically simply-connected semisimple split
real Kac�Moody group GR(A) is centered, that is, in (RGD4) one has the equality

GR(A) = 〈Uα | α ∈ Φ〉.

Remark 3.2.2. Since the restriction to a subset of S and the corresponding root system yields
again an RGD system by Lemma 2.6.5, the fundamental rank one subgroups Gαi = 〈U±αi〉 admit
an RGD system of type A1 which implies that the ϕi are isomorphisms from SL2(K) to Gαi . �

Remark 3.2.3. The group T is called the standard maximal torus of GD(K); it carries the
structure of a Lie group. In the case of an algebraically simply-connected semisimple split real
Kac�Moody group, it is generated by the images of the diagonal subgroup T0 ≤ SL2(K) under
the maps ϕi and is therefore isomorphic to (K×)n. In the case of K = R, approaching the torus
via the theory of Kac�Moody algebras, it can be introduced as the intersection of GD(R) with
the exponential image of the Cartan subalgebra (which lives in GD(C)). �

Notation 3.2.4. From now on, G will always denote the group GR(A) or a central quotient of
this group, for a symmetrizable irreducible generalized Cartan matrix A, and Π the generalized
Dynkin diagram of A.

Denote by B := B+ the positive Borel subgroup of the twin BN -pair of G, by T the standard
maximal torus and by W the Weyl group of G with generating set S = {si}i∈I . For each σi ∈ S,
take s̃i ∈ G to be a �xed representative for σi and recall that BsiB := Bs̃iB.

Unless speci�ed more explicitly, the symbol J will always denote an arbitrary subset of the index
set I, the symbol ΠJ the subdiagram of Π corresponding to J , the symbol GJ the subgroup
GR(AJ) of G where AJ denotes the corresponding submatrix of A, and the symbols BJ and
TJ the intersections GJ ∩ B and GJ ∩ T , respectively. Recall that by Lemma 2.6.5, the tuple
(GJ , (Uα)α∈ΦJ , T ) is an RGD system in its own right, and so is (GJ , (Uα)α∈ΦJ , TJ), since GR(A)
is centered. The positive Borel subgroup of the latter RGD system is BJ .

For one-element subsets {i} ⊆ I we use the convention Gi := G{i}. This is consistent with the
notation for the fundamental rank one subgroups: One has GR(A{i}) = Gi = Gαi . �

3.3 The Kac�Peterson Topology

In this section, G denotes the group GR(A), or a central quotient of this group, for a symmetriz-
able irreducible generalized Cartan matrix A.

We introduce the Kac�Peterson topology on the Kac�Moody group G, which will later turn out
to coincide with the �nal group topology with respect to the maps ϕi. Rather than de�ning it to
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be the �nal group topology, it is constructed as a direct limit topology with respect to a system
of products of the fundamental rank one subgroup. This makes it possible to establish certain
properties, in particular the kω property. This section, as well as the following two, follow closely
[HKM13, Section 7], see also [Mar11, 2.6,2.8,3.1]. However, some of the proofs from [HKM13]
had to be revised which was done in collaboration with Ralf Köhl.

Let ∆ := {αi | i ∈ I} be the set of simple roots of G. For a k-tuple β := (β1, . . . , βk) ∈ ∆k

denote by Gβ := Gβ1 . . . Gβk the subset of products of the form g1 . . . gk where gj ∈ Gβj .

Note that on the set L :=
⋃
k∈N ∆k, the subtuple relation de�nes a partial order ≤ and for

each pair α ≤ β ∈ L, there is a canonical embedding fβα : Gα ↪→ Gβ . Since G is centered,
G = 〈Gα | α ∈ Φ〉, so the direct limit of the direct system (Gα, fβα)α,β∈L

α≤β
coincides with the set

underlying G.

Throughout this section, for any �nite-dimensional real vector space V , we denote by O the
canonical product topology on V induced from R. Equip each fundamental rank one subgroup
Gi with the corresponding topology induced by the isomorphism ϕi : SL2(R) → Gi and denote
this topology also by O. Denote by τR the Lie group topology on the torus T .

For each tuple of simple roots β = (β1, . . . , βk), denote by τβ the quotient topology on TGβ with
respect to the surjective product map

pβ : (T, τR)× (Gβ1 ,O)× · · · × (Gβk ,O)→ TGβ. (3.1)

De�nition 3.3.1. The Kac�Peterson topology τKP on the set G is the direct limit topology
with respect to the direct system (TGα, fβα) where each TGα is equipped with the topology
τα. �

We �rst make an observation on the structure of the standard maximal torus T of GR(A). Since
T is isomorphic to (R×)n by Remark 3.2.3, it contains a unique maximal �nite subgroup M of
order 2n. Denote by A the connected component of T with respect to the Lie topology.

Lemma 3.3.2 [FHHK, Proposition 3.17]. Let G = GR(A). Then multiplication induces a group
isomorphism M × A → T . If the Kac�Peterson topology is a Hausdor� group topology, then A
is also the connected component of T with respect to the Kac�Peterson topology and this map is
an isomorphism of topological groups with respect to the Kac�Peterson topology. �

To establish � �rst for the Hausdor� case in the following section and eventually for the general
case � that the Kac�Peterson topology is actually a group topology, we will prove that it is kω
on the subspaces TGα in order to employ Proposition 1.4.3.

To this end, we de�ne an algebra U associated to G that admits a certain adjoint representation
Ad : G → Autfilt(U) which for each v ∈ U admits a continous orbit map TGα → V v

α where V v
α

is a vector space with a Hausdor� topology. The existence of this map establishes that TGα is
Hausdor� and, consequently, kω.

Following the construction due to [Tit87], as exhibited in [HKM13, 7.2], let g be the complex
Kac�Moody algebra associated to the generalized Cartan matrix A, and let U(g) be its universal
enveloping algebra, that is, U(g) =

(⊗
n∈N g

n
)/
I where I := 〈[x, y]− xy + yx〉.

For each u ∈ U(g), let u[n] := (n!)−1un and(
u
n

)
:= (n!)−1u(u− 1) . . . (u− n+ 1).

20



3.3. The Kac�Peterson Topology

Let Q :=
∑

α∈Π Zα be the free abelian group generated by the simple roots. As in [Rém02,
7.3.1], the algebras g and U(g) admit an abstract Q-grading by declaring ei of degree αi and fi
of degree −αi and extending linearly to U(g), so that the elements of h are of degree 0.

Let U0(g) be the subring of U(g) generated by the degree-0-elements of the form

(
h
n

)
where

h ∈ h, and let Uαi(g) :=
∑

n∈N Ze
[n]
i and U−αi(g) :=

∑
n∈N Zf

[n]
i . De�ne UZ(g) to be the subring

of U(g) generated by U0(g) and {U±α(g) | α ∈ ∆}.

Finally, de�ne U := UZ(g)⊗Z R and let Autfilt(U) be the group of R-linear automorphisms of U
which preserve the given Q-grading.

Proposition 3.3.3 [HKM13, Proposition 7.6], see also [Rém02, Proposition 9.5.2]. There exists
a morphism of groups

Ad : G→ Autfilt(U)

which is characterised by the following axioms, where i ∈ I, r ∈ R, and h ∈ T :

(a) Ad

(
ϕi

(
1 r
0 1

))
= exp(adei ⊗r) =

∑∞
n=0

(adei )
n

n! ⊗ rn.

(b) Ad(T ) �xes U0.

(c) Ad(h)(ei ⊗ r) = h∗(α∨i )(ei ⊗ r).

The kernel of this representation coincides with the centre of the group G. �

Proposition 3.3.4 [HKM13, Proposition 7.9]. Let v ∈ U and β ∈ L. Then there exists a
�nite-dimensional sub-vector space V v

β
of U with the following properties:

(a) The image of the orbit map TGβ → U : g 7→ g.v is contained in V v
β
.

(b) If α ≤ β, then V v
α ≤ V v

β

(c) The orbit map (TGβ, τβ)→ (V v
β
,O) : g 7→ g.v is continuous.

Proof. By Proposition 3.3.3, we may disregard the �nite-dimensional torus T .

(a) and (b): We argue by induction on k, the length of β. For k = 1, let Gβ = Gi.

By the Gauss algorithm, SL2(R) = ULUL, where U and L denote the subgroups of upper,
respectively lower triangular matrices with 1's on the diagonal. Hence, Gi.v is contained in

{(Ad(xi(r1)) Ad(x−i(r2)) Ad(xi(r3)) Ad(x−i(r4))).v | ri ∈ R},

where

xi(r) := ϕi

(
1 r
0 1

)
and x−i(r) := ϕi

(
1 0
r 1

)
.

Using Proposition 3.3.3 (a), we therefore de�ne

V v
β

:=
∑

k,l,m,n

〈(
(adei)

k

k!
⊗ 1

)(
(adfi)

l

l!
⊗ 1

)(
(adei)

m

m!
⊗ 1

)(
(adfi)

n

n!
⊗ 1

)
.v

〉
.

Since ei and fi are ad-locally nilpotent, the above sum is �nite, so V v
βi

is a �nite-dimensional
vector space containing Gi.v.
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Now, let β = (β1, . . . , βk) and set β
′

:= (β2, . . . , βk). By induction, G
β
′ .v is contained in a

�nite-dimensional vector space V v
β
′ . Let {b1, . . . , bn} be a basis for V v

β
′ . Then for each j, there

exists a �nite-dimensional space V
bj
β1

that contains Gβ1 .bj . Therefore, the space V
v
β

:=
∑n

j=1 V
bj
β1

has the desired properties.

(c): Let ρβ1 := Ad|
GL(V v

β
)

Gβ1
: (Gβ1 , τβ1) → (GL(V v

β
),O). By restricting the codomain to the

Zariski closure of the image of ρβ1 , one can apply the Borel-Tits theorem [BT18, Theorem 1.5]
which yields that ρβ1 is an isogeny and therefore continuous. Hence, the orbit map (Gβ1 , τβ1)→
(V v
β
,O) : g 7→ g.v is continuous. This proves (c) for 1-tuples β = (β1).

Now, let β have length more than 1 and decompose it as β = (β1, γ). By induction, the orbit
map (Gγ , τγ)→ (V v

γ ,O) is continuous, and since V v
γ ≤ V v

β
, so is the map ϕ : (Gγ , τγ)→ (Vβ,O) :

g 7→ g.v, obtained by extending the codomain.

Since the action ε : (GL(V v
β

),O) × (V v
β
,O) → (V v

β
,O) is continuous, one obtains a continuous

map

ε ◦ (ρβ1 × ϕ) : (Gβ1 , τβ1)× (Gγ , τγ)→ (V v
β
,O) :

(xβ1 , xγ) 7→ [ρβ1(xβ1)](xγ .v)

= (xβ1xγ).v.

But this implies that the orbit map (Gβ, τβ)→ (V v
β
,O) : g 7→ g.v is continuous as well, since τβ

is de�ned as the quotient topology with respect to the product of the Gβi 's. �

Following [HKM13, Remark 7.12], the Kac�Peterson topology can alternatively (but equiva-
lently) be described as another direct limit topology τ with respect to products of the root
subgroups Uα. This will allow us to prove that B is closed by identifying it with the set of
common zeroes of a family of functions that are continous with respect to τ . We obtain that the
building G/B is Hausdor�.

As in the proof of Proposition 3.3.4, for a simple root α let

xα(r) := ϕi

(
1 r
0 1

)
and x−α(r) := ϕi

(
1 0
r 1

)
.

For β := (β1, . . . , βk) ∈ (∆ ∪ −∆)k, let

xβ : Rk → G : (t1, . . . , tn) 7→ xβ1(t1) · · · · · xβk(tk)

and denote by Uβ the image of xβ in G.

Similarly to the de�nition of the Kac�Peterson topology, denote by τ the direct limit topology
on G with respect to the directed system (Uβ, fβα), where fβα denotes the natural embedding
Uα ↪→ Uβ with respect to the subtuple relation, and where Uβ is equipped with the topology τβ
induced from the topology O on Rk.

The direct limit topologies τ and τKP are determined by the respective topologies on the spaces
Uβ (where β is a tuple of positive or negative simple roots) and TGα (where α is a tuple of simple
roots). But G is centered, so the torus T can be recovered from the root groups. Therefore, the
topologies on Uβ and TGα are both induced by the maps ϕi; and since Gα = UαU−αUαU−α by
the Gauss algorithm, the topologies τ and τKP in fact coincide.

De�nition 3.3.5. A function g : G → R is called weakly regular if g ◦ xβ : Rk → R is a

polynomial function for all k ∈ N and all β ∈ (∆ ∪ −∆)k. �
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3.4. Implications of τKP Being Hausdor�

Lemma 3.3.6 [HKM13, Lemma 7.14]. Let g : G → R be a weakly regular function. Then g is
continuous with respect to the Kac�Peterson topology on G and the natural topology on R.

Proof. Let B ⊆ R be a closed subset. As polynomial functions are continuous, the preimage
(g◦xβ) is closed in (Rk,O) for each β ∈ (∆∪−∆)k. Since this set equals the preimage of g−1(B)

under xβ , its image in Uβ is closed with respect to the induced topology, so the set g−1(B)
is closed in G with respect to the direct limit topology τ introduced above. This proves the
assertion, as τ and τKP coincide. �

Proposition 3.3.7 [HKM13, Proposition 7.15]. The subgroup B is closed in G with respect to
the Kac�Peterson topology. In particular, the building G/B is Hausdor� when equipped with the
quotient topology.

Proof. Denote by U≥0 the subspace of U consisting of the non-negative vectors with respect to
the Q-grading introduced in the de�nition of U . Since B is the stabilizer of U≥0 in G, as can
be deduced from Proposition 3.3.3, for each g ∈ G \ B one can choose a vg ∈ U≥0 such that
g.vg /∈ U≥0. Then one can choose a v∗g ∈ Ann(U≥0), the annihilator of U≥0 in U∗, such that
fvg ,v∗g (g) := v∗g(g.vg) 6= 0. Now,

B =
⋂

g∈G\B

{h ∈ G | fvg ,v∗g (h) = 0}.

Since adei and adfi are locally nilpotent, the maps fvg ,v∗g are weakly regular, and so by Lemma
3.3.6, B is the intersection of the sets of zeroes of a family of continuous functions. This proves
the assertion. �

3.4 Implications of τKP Being Hausdor�

As usual, G denotes the group GR(A), or a central quotient of this group, for a symmetrizable
irreducible generalized Cartan matrix A.

If the Kac�Peterson topology is Hausdor�, it has a variety of interesting and useful properties, as
we will see in this section. Later we will show that the results established here all hold for adjoint
split real Kac�Moody groups. Using the central extension G → Ad(G) for a simply connected
split real Kac�Moody group G, this will later enable us to prove that (G, τKP ) is Hausdor� as
well.

Lemma 3.4.1 [HKM13, Proposition 7.10]. If (TGβ, τβ) is Hausdor� for each tuple β of simple
roots, then the Kac�Peterson topology is a kω group topology on G. In particular, this holds if
the Kac�Peterson topology is Hausdor�.

Proof. Let (TGβ, τβ) be Hausdor�. Then it is a Hausdor� quotient of a �nite product of kω
spaces and therefore kω by Proposition 1.4.2.

Since the spaces TGα are kω, Proposition 1.4.3 implies that G×G = lim→(TGα)× lim→(TGα)
is homeomorphic to lim→(TGα × TGα), so multiplication can be reduced to the TGα pieces.

Let β = (β1, . . . , βk), γ = (γ1, . . . , γl) be tuples of simple roots. By de�nition of τ(β1,...,γl), the
multiplication map G(β1,...,βk) × G(γ1,...,γl) → G(β1,...,γl) is continuous, and so is the inversion
map G(β1,...,βk) → G(βk,...,β1). This implies that (G, τKP ) is a topological group. Since it is a
direct limit of Hausdor� spaces, all singletons are closed in (G, τKP ), so it is T1. But a T1
topological group is Hausdor�, so Proposition 1.4.4 implies that (G, τKP ) is kω. This proves the
�rst assertion.
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The second assertion is clear, since a set U ⊆ G is open in τKP i� each intersection U ∩ TGβ is
open in τβ , so τKP being Hausdor� implies that each (TGβ, τβ) is Hausdor�. �

If the Kac�Peterson topology is Hausdor�, it is a kω group topology by Lemma 3.4.1 which
enables us to obtain a characterisation of τKP as the �nal group topology with respect to the
maps ϕi. We de�ne amalgams of groups and their universal enveloping groups and, for the
two-spherical case, state an amalgamation result which gives a concrete presentation of G as the
universal enveloping group of the amalgam of fundamental rank one and rank two subgroups in
the categories of abstract, Hausdor� topological, and kω-groups.

De�nition 3.4.2. The universal topology τun is the �nal group topology with respect to the
maps

ϕi : SL2(R)→ G, η(R) : HomZ−alg(Z[Λ],R)→ G,

where SL2(R) and HomZ−alg(Z[Λ],R) ∼= (R×) are equipped with their Lie group topologies. �

The following proposition is Proposition 7.21 from [HKM13]. The alternative proof given here
is an original result by the author.

Proposition 3.4.3. Let τKP be a group topology. Then the universal topology τun and the
Kac�Peterson topology τKP coincide. In particular, this holds if τKP is Hausdor�.

Proof. It is clear that τKP ⊆ τun since τKP is a group topology and the maps ϕi and η(R) are
continuous with respect to τKP by its de�nition, the topology τR on T being induced by the map
η(R).

To prove that τun ⊆ τKP , let β = (β1, . . . , βk) be a k-tuple of simple roots and let τk+1
un be

the product topology on Gk+1. We �rst show that the subspace topology τk+1
un of τk+1

un on
T ×Gβ1×· · ·×Gβk is coarser than the product topology of the respective Lie topologies τR×Ok.
For this, it su�ces to show that each open 1-neighbourhood in T ×Gβ1 × · · · ×Gβk with respect
to τk+1

un contains an open 1-neighbourhood with respect to τR ×Ok.

Let U ⊆ T × Gβ1 × · · · × Gβk be an open 1-neighbourhood in τk+1
un . Then there exists an open

1-neighbourhood Ũ ⊆ (Gk+1, τk+1
un ) with Ũ ∩ (T × Gβ1 × · · · × Gβk) = U . Hence, there exist

open 1-neighbourhoods Ũ0, Ũ1, . . . , Ũk in (G, τun) with Ũ0× Ũ1× · · · × Ũk ⊆ Ũ . Since Ũi is open
in τun, its preimage ϕ−1

i (Ũi) = ϕ−1
i (Ũi ∩ Gi) is open in SL2(R) for each i = 1, . . . , n while the

preimage η(R)−1(Ũ0) = η(R)−1(Ũ0 ∩ T ) is open in HomZ−alg(Z[Λ],R) with its Lie topology.

By de�nition of the Lie topologies O on Gi and τR on T , this implies that Ui := Ũi∩Gi is open in
(Gi,O)for i = 1, . . . , k while U0 := Ũ0 ∩ T is open in (T, τR). Therefore, U0×U1× · · · ×Un is an
open 1-neighbourhood in τR×Ok, and we have U0×U1×· · ·×Un ⊆ Ũ∩(T×Gβ1×· · ·×Gβk) = U .
This proves τk+1

un ⊆ τR ×Ok.

To prove that τun ⊆ τKP , let U ⊆ G be open with respect to τun. Then for each k ∈ N,
the preimage p−1

k+1(U) under the product map pk+1 : Gk+1 → G is open in (Gk+1, τk+1
un ), since

(G, τun) is a topological group. Therefore, the intersection p−1
k+1(U)∩(T×Gβ1×· · ·×Gβk) is open

in (T ×Gβ1×· · ·×Gβk) with respect to the subspace topology τk+1
un for each k-tuple (β1, . . . , βk)

of simple roots. Since τk+1
un ⊆ τR×Ok, the set p−1

k+1(U)∩(T×Gβ1×· · ·×Gβk) is therefore open in
(T, τR)× (Gβ1 ,O)×· · ·× (Gβk ,O). But p−1

k+1(U)∩ (T ×Gβ1 ×· · ·×Gβk) = p−1
β

(U ∩TGβ), where

pβ = pk+1|(T×Gβ1
×···×Gβk ) is the product map given in 3.1. Since τβ is the quotient topology

with respect to pβ , we therefore obtain that U ∩ TGβ is open in (TGβ, τβ) for each β, which
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3.4. Implications of τKP Being Hausdor�

implies that U is open in τKP . This proves the �rst assertion. The second assertion follows
directly from Lemma 3.4.1. �

De�nition 3.4.4. Let ∅ 6= J be a set. Following [GHKW17, Section 3], an amalgam over J
is a set A = {Gi, Gij , φiij | i 6= j ∈ J} such that Gi and Gij are groups and φiij : Gi → Gij is a
monomorphism for all i 6= j ∈ J .

An enveloping group of A is a pair (G,ψ) where G is a group and ψ is a set ψ = {ψij | i 6= j}
of enveloping morphisms ψij : Gij → G such that G = 〈ψij(Gij) | i 6= j ∈ J〉 and such that
the following diagram commutes for i 6= j 6= k ∈ J :

Gij

Gj G

Gkj

ψijφjij

φjkj
ψkj

A universal enveloping group of A is an enveloping group (G,ψ) such that for each enveloping
group (H,ψ′) of A there is a unique epimorphism π : G → H such that ψ′ij = π ◦ ψij for all
i 6= j ∈ J . �

Theorem 3.4.5 (Topological Curtis-Tits Theorem) [HKM13, Theorem 7.22]. Let G be two-
spherical and τKP Hausdor�. For i 6= j ∈ I let φiij : Gi → Gij and ψij : Gij → G be the
canonical inclusion morphisms and let ψ = {ψij | i 6= j ∈ I}. Then ((G, τKP ), ψ) is a universal
enveloping group of the amalgam {Gi, Gij , φiij | i 6= j ∈ I} in the categories of

(a) abstract groups,

(b) Hausdor� topological groups and

(c) kω groups.

Proof. By Lemma 3.4.1, τKP is a kω group topology.

(a): This is the main result of [AM97].

(b): This holds since the Kac�Peterson topology coincides with the universal topology by Propo-
sition 3.4.3.

(c): This follows directly from (b) by [GGH10, Corollary 5.10] �

We are now in the position to prove that the restriction of the Kac�Peterson topology to a
spherical subgroup coincides with its Lie group topology if τKP is a Hausdor� group topology; in
particular, spherical subgroups are locally compact. To that end, we state an embedding result
by Grüning and Köhl.

Remark 3.4.6. The following Proposition is a result by Grüning and Köhl, published in their
appendix to [HK19]. It is proved there by employing the above Proposition 3.4.3 as given in
[HKM13, Proposition 7.21]. In [HKM13], the proof of said Proposition 7.21 cites a result which
we will only be able to prove at a later stage; namely the fact that spherical subgroups carry the
Lie topology. As we have provided a di�erent proof for Proposition 3.4.3, a circular argument is
prevented and we can safely use [HK19, Proposition B.5] as well as some its corollaries which we
will state later. �
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CHAPTER 3. KAC-MOODY THEORY

Proposition 3.4.7 [HK19, Appendix B by Grüning and Köhl, Proposition B.5]. Any symmetriz-
able topological Kac�Moody group endowed with the Kac�Peterson topology admits a continuous
injective group homomorphism into a simply laced topological Kac�Moody group with closed image
with respect to the Kac�Peterson topology.

The proof of the following Proposition 7.16(iii)(iv) from [HKM13] was throroughly revised in
collaboration with Ralf Köhl.

Proposition 3.4.8. Let (G, τKP ) be Hausdor� and let GJ be a spherical subgroup of G, that is,
let WJ = 〈si | i ∈ J〉 be �nite. Then the restriction of τKP to GJ coincides with its Lie group
topology O.

Proof. Since the Lie group topology on GJ is the �nal group topology with respect to the maps ϕi
(i ∈ J), the restriction τKP |GJ is coarser than O, so the identity map (GJ ,O)→ (GJ , τKP |GJ )
is continuous.

To prove the proposition, we will employ a theorem by Burns and Spatzier which requires that
GJ be of rank at least two. If a rank one subgroup Gi is contained in a spherical subgroup
of larger rank, this requirement is no obstruction. If Gi is contained in no such subgroup, we
can use Proposition 3.4.7. The image of Gi will then be contained in a spherical subgroup of
H of higher rank to which the Burns�Spatzier theorem can be applied, so that we eventually
obtain continuous bijections (Gi,O)→ (Gi, τKP |Gi)→ (ι(Gi),O), yielding the desired result. It
therefore su�ces to prove the statement for spherical subgroups of rank at least 2.

Since the identity map (GJ ,O) → (GJ , τKP |GJ ) is continuous, the group (GJ ,O) acts continu-
ously on RJ , the spherical J-residue of B in the building G/B, endowed with the Kac�Peterson
(quotient) topology τKP |RJ . Since the kernel of the action is Z(GJ), we can consequently endow
GJ/Z(GJ) with the compact-open topology τco with respect to this action. Since the evalu-
ation map (GJ/Z(GJ), τKP |GJ ) × (RJ , τKP |RJ ) → (RJ , τKP |RJ ) is continuous, the (quotient)
topology τKP |GJ on GJ/Z(GJ) is admissible, and so by Proposition 1.5.4, the identity map
(GJ/Z(GJ), τKP |GJ )→ (GJ/Z(GJ), τco) is continuous. We therefore obtain continuous identity
maps

(GJ/Z(GJ),O)→ (GJ/Z(GJ), τKP |GJ )→ (GJ/Z(GJ), τco).

Our goal is to show that the �rst and the last topology coincide. This will imply that the
quotient topology of τKP |GJ on GJ/Z(GJ) coincides with its Lie group topology, proving that
the topologies coincide on GJ as well, since GJ → GJ/Z(GJ) is a covering map and covering
groups of Lie groups are Lie groups (see, e.g., [HN11, Corollary 9.4.6]). To prove that τco and O
coincide, we show that τco is locally compact and employ the Open Mapping Theorem for locally
compact groups.

The action of GJ on RJ is transitive with stabilizer BJ , so we have a continuous surjection
(GJ/BJ ,O) → (RJ , τKP |RJ ). But (GJ/BJ ,O) is compact by [HKM13, Corollary 3.13] and
(RJ , τKP |RJ ) is Hausdor� by Proposition 3.3.7, so the spaces are homeomorphic by Lemma 1.2.2.
The compact-open topology τco on GJ with respect to the action of (GJ ,O) on (RJ , τKP |RJ )
therefore coincides with the compact-open topology with respect to the action on the spherical
building (GJ/BJ ,O).

The Burns�Spatzier theorem [BS87, Theorem 2.1] states that the topological automorphism
group Auttop(∆) of a compact irreducible metric Tits building ∆ of rank at least 2 is locally
compact in the compact-open topology. Burns�Spatzier introduce the notion of a Tits building
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3.4. Implications of τKP Being Hausdor�

as a set of parabolic subgroups of di�erent types with a corresponding induced topology. By
[Tit74, Theorem 5.2] and Lemma 2.4.3 (TTB7), this approach is equivalent to the one taken here
via BN -pairs and the quotient topology.

The group (GJ/Z(GJ),O) acts via topological automorphisms on the building (GJ/BJ ,O).
Our goal is to establish that GJ/Z(GJ) is a closed subgroup of the locally compact group
(Auttop(GJ/BJ), τco).

By [Tit74, Corollary 5.10], the automorphism group Aut(GJ/BJ) is given by Aut(GJ)(R), an
algebraic group whose identity component in the Zariski topology is the group Int(GJ)(R) which
is isomorphic to the adjoint form Ad(GJ) of GJ . The group Int(GJ)(R) is the group of type-
preserving automorphisms of the building, which means that it induces the identity map on the
corresponding Coxeter diagram and therefore preserves Weyl distance and codistance; in particu-
lar, it contains the group GJ/Z(GJ). Being an algebraic group, Aut(GJ)(R) can be endowed with
a Lie topology with which it acts as the group Auttop(GJ/BJ) of topological automorphisms
of the building, while Int(GJ)(R) with its Lie topology acts as the group AuttopS(GJ/BJ) of
type-preserving topological automorphisms.

As Auttop(GJ/BJ) with its Lie topology is σ-compact, the Open Mapping Theorem 1.2.1 implies
that the Lie topology coincides with the compact-open topology.

By [Tit74, page 80], each automorphism of GJ/BJ is a product of a type-preserving automor-
phism and a Coxeter diagram automorphism. Since the Coxeter diagram of GJ/BJ is �nite, the
group AuttopS(GJ/BJ) ∼= Int(GJ)(R) has �nite index in Auttop(GJ/BJ).

By [PR94, Proposition 3.6], any noncentral normal subgroup of Ad(GJ) ∼= Int(GJ)(R) has �nite
index. Since by [PR94, Section 2.2.3, (2.7)], there exists an exact sequence {1} → Z(GJ) →
GJ → Ad(GJ) → . . . , it follows that the image of GJ is a noncentral normal subgroup of
Ad(GJ). This proves that GJ/Z(GJ) has �nite index in Int(GJ)(R) and, consequently, in
Auttop(GJ/BJ). Since �nite-index subgroups of Lie groups are closed and since the Lie topology
on Auttop(GJ/BJ) coincides with the compact open topology, it follows from the Burns�Spatzier
theorem that GJ/Z(GJ) is locally compact with respect to the compact-open topology.

The Open Mapping Theorem 1.2.1 now yields that the compact-open topology on GJ/Z(GJ)
coincides with its Lie group topology O. This proves the assertion. �

The proof of the following Proposition 7.18 from [HKM13] was revised based on an idea by Stefan
Witzel.

Proposition 3.4.9. Let (G, τKP ) be Hausdor� and let τR be the Lie group topology on the
standard maximal torus T . Then the map (T, τR)→ (T, τKP |T ) is a homeomorphism.

Proof. We prove the statement for G = GR(A), then it automatically follows for central quo-
tients. Since G, being Hausdor�, is a topological group, Lemma 3.3.2 yields an isomorphism of
topological groups T ∼= M × A, where M is �nite. It therefore su�ces to prove that the map
(A, τR)→ (A, τKP |A) is a homeomorphism. Here, τR denotes the Lie topology on A induced from
(R×)n, so that (A, τR) is homeomorphic to ⊕nj=1(Aj , τR). Since spherical subgroups carry the
Lie topology by Proposition 3.4.8, τKP coincides with the Lie group topology on the subgroups
Ai. We obtain the following commutative diagram for i = 1, . . . , n :
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⊕nj=1(Aj , τR) (A, τKP |A) (Πn
j=1Aj , τKP |Ai = τR)

(Ai, τKP |Ai = τR)

f1 f2

f3

f4

All maps in the diagram are continuous: The map f1 is continuous since its domain is home-
omorphic to (A, τR) and since τR, being a Lie topology, is the �nal group topology on A with
respect to the restrictions of the maps ϕi to the connected component of SL2(R), while these
restrictions are also continuous with respect to the group topology τKP |A. The map f2 is contin-
uous since the product topology on its codomain is the coarsest topology making the projection
maps continuous; for the same reason, the projection map f3 is continuous. Finally, the inclusion
map f4 is continuous since the box topology on its codomain is the �nal topology with respect to
the inclusion maps. This proves that the map (A, τR)→ (A, τKP |A) is a homeomorphism. �

The following two results are given in [HK19, Appendix B by Grüning and Köhl] as corollaries
to Proposition B.5, see Remark 3.4.6.

Lemma 3.4.10 [HK19, Appendix B by Grüning and Köhl, Corollary B.8]. Let G be a split real
Kac�Moody group such that the Kac�Peterson topology is Hausdor�. Then the multiplication
map m : U+ × T × U− → B+B− is open. �

Lemma 3.4.11 [HK19, Appendix B by Grüning and Köhl, Corollary B.9]. Let G be a split
real Kac�Moody group such that the Kac�Peterson topology is Hausdor�. Then the associated
building endowed with the quotient topology is a strong topological twin building. In particular,
the space B+B− is open. �

The following result was established in collaboration with Ralf Köhl.

Lemma 3.4.12. Let G be a split real Kac�Moody group and let Z be a �nite central subgroup
of G. Consider G̃ := G/Z as a split real Kac�Moody group in its own right, denote by Ũ±,
T̃ and B̃± the respective subgroups corresponding to its RGD system, and endow G̃ with the
Kac�Peterson topology τ̃KP . If (G̃, τ̃KP ) is Hausdor�, then the Kac�Peterson topology on G is
Hausdor�.

Proof. To prove the statement, we will use Proposition 1.6.1 and its Corollary 1.6.2 to construct
a topology τcov on G that turns q : G→ G/Z into a covering map. We will then show that τcov
is coarser than the Kac�Peterson topology on G which proves that (G, τKP ) is Hausdor� since
(G, τcov) is Hausdor�, being a covering space of a Hausdor� space.

Since Z is �nite, the map q : T → T̃ is a covering map when T and T̃ are endowed with their
respective Lie topologies. Since by Proposition 3.4.9 the restriction of the Kac�Peterson topology
to T̃ coincides with the Lie topology τ̃R, there exists an open 1-neighbourhood Ũ ⊆ (T̃ , τ̃KP |T̃ =

τ̃R) whose preimage is a disjoint union of copies of Ũ . Let U ⊆ T be the copy containing 1G,
let V ⊆ U be a 1-neighbourhood with V 2 ⊆ U and let Ṽ := q(V ) ⊆ Ũ . Since q is a group
homomorphism, Ṽ is again a 1-neighborhood with Ṽ 2 ⊆ Ũ . The restriction q : U → Ũ is a
homeomorphism, and so the section σ : (Ũ , τ̃KP ) → (T, τR) mapping each element in Ũ to its
preimage in U is continuous. Extend σ to a section σ : T̃ → T .

The map q : G→ G/Z induces a bijection b : U± → Ũ±, so endowing U± with the Kac�Peterson
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topology τ̃KP from Ũ±, one obtains a covering map

(U+, τ̃KP )× (T, τR)× (U−, τ̃KP )→ (Ũ+, τ̃KP )× (T̃ , τ̃KP )× (Ũ−, τ̃KP )

with a section

σ := b−1 × σ × b−1 : (Ũ+, τ̃KP )× (T̃ , τ̃R)× (Ũ−, τ̃KP )→ (U+, τ̃KP )× (T, τR)× (U−, τ̃KP )

that is continuous on the (by assumption) open 1-neighborhood W̃ = Ũ+ × Ṽ × Ũ−.

Since Ṽ 2 ⊆ Ũ and V 2 ⊆ U , and since σ maps each element of Ũ to its unique representative in
U , one has σ(v1)σ(v2) = σ(v1v2) for all v1, v2 ∈ Ṽ . Since b is induced by a group homomorphism,
this implies that σ(x)σ(y) = σ(xy) for all x, y ∈ W̃ . Extending σ to a section σ on G/Z therefore
yields a 2-cocycle f : G/Z × G/Z → Z de�ned by f(x, y) := σ(x)σ(y)σ(xy)−1 that is constant
and therefore continuous on W̃ . Now, Corollary 1.6.2 yields a group topology τcov on G induced
from G/Z ×f Z such that q : (G, τcov)→ (G/Z, τ̃KP ) is a covering map.

To prove that τcov is coarser than τKP , we show that τcov|Gi coincides with the Lie group topology
O on Gi for each i ∈ I.

The fundamental rank one subgroups of G/Z are Gi/(Gi ∩ Z) = GiZ/Z. By Proposition 3.4.8,
the restriction of the Kac�Peterson topology τ̃KP to these groups coincides with the Lie group
topology.

The restriction f |GiZ/Z is a 2-cocycle GiZ/Z × GiZ/Z → Z which is continuous on the set

W̃ ∩GiZ/Z which is an open 1-neighbourhood in the subspace topology τ̃KP |GiZ/Z . Therefore,
applying Corollary 1.6.2 yields that the topology on Gi induced from GiZ/Z×f |GiZ/Z

Z turns Gi
into a topological group such that Gi → GiZ/Z is a covering map. This implies that this topology
coincides with the Lie topology O, since GiZ/Z carries the Lie topology and covering groups of
Lie groups are Lie groups (see, e.g., [HN11, Corollary 9.4.6]). But the topology induced from
GiZ/Z×f |GiZ/Z

Z coincides with τcov|Gi , since τcov is the topology on G induced from G/Z×f Z.
Therefore, τcov|Gi = O.

Since τcov is a group topology, this implies that for each tuple β = (β1, . . . , βk) of simple roots,
the multiplication map (Gβ1 , τcov|Gβ1

= O)×· · ·×(Gβk , τcov|Gβk = O)→ (G, τcov) is continuous.

By de�nition of τKP , it follows that τcov ⊆ τKP , proving that τKP is a Hausdor� topology. �

3.5 The adjoint and the simply connected case

Here, G = GR(A) for an irreducible symmetrizable generalized Cartan matrix A. We �rst show
that for the adjoint form of G, the Kac�Peterson topology is a kω group topology. Using the
central extension G→ Ad(G), this will in turn enable us to prove that (G, τKP ) is Hausdor� as
well, and therefore a kω topological group by Lemma 3.4.1.

Proposition 3.5.1 [GGH10, Proposition 7.10]. Let H = Ad(G). Then the Kac�Peterson topol-
ogy is Hausdor�. In particular, it is a kω group topology on H.

Proof. Let β = (β1, . . . , βk) be a tuple of simple roots. We prove that (THβ, τβ) is Hausdor�.
Let g 6= h ∈ THβ . Then by Proposition 3.3.3, H being adjoint and therefore centre-free implies
that there exists a v ∈ U with g.v 6= h.v. Since the orbit map (THβ, τβ)→ (V v

β
,O) is continuous

by Lemma 3.3.4, taking preimages of disjoint open neighborhoods of g.v and h.v yields disjoint
open neighborhoods of g and h, implying that THβ is Hausdor�. The assertion now follows from
Lemma 3.4.1. �
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The following result was established in collaboration with Ralf Köhl.

Proposition 3.5.2. There exists a �nite central subgroup Z of G such that G/Z is Hausdor�
when endowed with the quotient topology. In particular, the Kac�Peterson topology on G is
Hausdor�.

Proof. Let B be an invertible symmetrizable generalized Cartan matrix that contains A as a
principal submatrix and let H := Ad(GR(B)). Then there exists a surjective group homomor-
phism f from G to the corresponding subgroup G̃ of H. If a subset U ⊆ G̃ is open in the subspace
topology induced by the Kac�Peterson topology on H, then in particular each intersection U∩G̃β
is open in τ̃β . Moreover, the following diagram commutes for each k-tuple β = (β1, . . . , βk) of
simple roots of G:

(T, τR)× (SL2(R),O)k (T, τR)× (Gβ1 ,O)× · · · × (Gβk ,O) (Gβ, τβ)

(T̃ , τR)× (SL2(R),O)k (T̃ , τR)× (G̃β1 ,O)× · · · × (G̃βk ,O) (G̃β, τ̃β)

f

It follows that f is continuous, since the other maps in the diagram are all continuous and open.
This implies that G/ ker f is Hausdor� when endowed with the quotient topology.

We show that ker f is �nite and central. Since G and G̃ act on the same building with the
respective centres as kernels, ker f is contained in Z(G). Let g and h be the Kac�Moody algebras
of G and H, respectively, and let f be the injection g → h corresponding to f . There exists
a choice of Cartan subalgebra g of g that corresponds to T , and the group (g,+) contains a
subgroup a that can be identi�ed with A. Moreover, there exists a choice of Cartan subalgebra
h of h such that f maps g into h. Since B is invertible, the connected component of its torus is
trivial, as is pointed out in [FHHK, Section 3.7]. This implies that there is an injection h→ TH .
Summing up, this yields an injection

A ↪→ g ↪→ h ↪→ TH ↪→ H.

Since A therefore intersects trivially with ker f , it follows that ker f is �nite. This proves the
�rst assertion.

To prove the second assertion, note that since Z(G) ⊆ T ⊆ TGβ for all tuples β of simple roots,
one can check easily that the quotient topology on G/Z induced by the Kac�Moody topology
on G coincides with the Kac�Moody topology on G/Z, where G/Z is viewed as a Kac�Moody
group in its own right. Therefore, Lemma 3.4.12 yields that G is Hausdor�. �

We collect the consequences of τKP being Hausdor� established in the previous section.

Corollary 3.5.3. Let A be symmetrizable and irreducible and let G = GR(A), the algebraically
simply-connected semisimple split real Kac�Moody group of type A, endowed with the Kac�
Peterson topology. The following hold:

(a) τKP is a kω group topology.

(b) The universal topology τun and the Kac�Peterson topology τKP coincide.

(c) G satis�es the Topological Curtis-Tits Theorem 3.4.5.

(d) The building G/B is Hausdor� when equipped with the quotient topology.
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(e) The restriction of τKP to a spherical subgroup GJ coincides with its Lie group topology.

(f) The restriction of τKP to the standard maximal torus T coincides with its Lie group topol-
ogy.

(g) The twin building associated to G, endowed with the quotient topology, is a strong topological
twin building. �

Notation 3.5.4. In what follows, G will always denote the group GR(A) for a symmetrizable
irreducible generalized Cartan matrix A. Moreover, G will always be endowed with the Kac�
Peterson topology, the building G/B with the corresponding Hausdor� quotient topology and
the spaces Cw(gB) and C≤w(gB) with the respective subspace topologies induced by G/B. �

3.6 The Group K and the Iwasawa Decomposition

Let A be symmetrizable and irreducible and let G = GR(A). We introduce the group K, the
�xed point set of the Cartan-Chevalley involution, and give a result by Hartnick and Köhl which
states that the fundamental groups of K and G are isomorphic, which will allow us to reduce
the computation of the fundamental group of G to that of K.

De�nition 3.6.1. By [Mar18, Exercise 7.61] (see also [KP85, Section 2]), for suitable choices
of the isomorphisms ϕi : SL2(R) → Gi there exists a unique involution θ: G → G satisfying
ϕi((x

−1)T ) = θ(ϕi(x)) for all i ∈ I. This involution is called the Cartan-Chevalley involution
of G. Its �xed point set is denoted by

K := Gθ = {g ∈ G | gθ = g.}

Since θ is continuous by de�nition of the Kac�Peterson topology, K is closed and therefore kω
by Proposition 1.4.2. �

As in Notation 3.2.4, let KJ := K ∩GJ .

Recall that M denotes the unique maximal �nite subgroup M of order 2n and A the connected
component of T with respect to its Lie topology, which by 3.5.3 coincides with the restricted
Kac�Peterson topology.

Lemma 3.6.2 [FHHK, Proposition 3.12], [FHHK, Lemma 3.20].

(a) Multiplication induces a homeomorphism M ×A× U+ → B.

(b) B ∩K = T ∩K = M . �

Theorem 3.6.3 (Iwasawa Decomposition)[FHHK, Theorem 3.24]. Multiplication induces a con-
tinuous bijection K ×A× U+ → G. �

Corollary 3.6.4. Multiplication induces a continuous surjection K ×B → G.

Proof. This follows directly from Lemma 3.6.2 and the Iwasawa decomposition. �

Theorem 3.6.5 [HK19, Appendix A by Hartnick and Köhl, Theorem A.15]. For every n ≥ 0
the inclusion K ↪→ G induces isomorphisms

πn(K) ↪→ πn(G),
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hence is a weak homotopy equivalence. In particular, π1(G) ∼= π1(K). �

Lemma 3.6.6. Let si 6= sj ∈ S. Then the following hold:

(a) Pi = GiB = KiB. In particular, C≤si(B) = KiB/B.

(b) BsisjB = BsiBBsjB. In particular, C≤sisj (B) = KiBKjB/B

Proof. Assertions (a) and (b) follow from [AB08, Remark 8.51] and [AB08, Remark (2) after
Theorem 6.56], respectively, and the Iwasawa decomposition Gi = KiBi. �

Lemma 3.6.7. The isomorphisms ϕi : SL(2,R) → Gi are homeomorphisms. Moreover, let
BSL(2,R) be the group of upper triangular matrices in SL(2,R), let TSL(2,R) be the subgroup of
diagonal matrices and let U±β denote the canonical root subgroups of SL(2,R). Then

(a) ϕi(U±β) = U±αi .

(b) ϕi(BSL(2,R)) = Bi.

(c) ϕi(TSL(2,R)) = Ti.

(d) ϕi(SO(2)) = Ki.

Proof. By de�nition of the Kac�Peterson topology, the maps ϕi are continuous, therefore the
Open Mapping Theorem 1.2.1 implies that they are homeomorphisms, since the groups Gi carry
the Lie topology by Proposition 3.4.8.

(a) holds by de�nition of Uαi . By Lemma 2.6.3, one has BSL(2,R) = NSL(2,R)(Uβ) and TSL(2,R) =
NSL(2,R)(Uβ)∩NSL(2,R)(U−β) which implies (b) and (c), since Bi = NGi(Uαi) and Ti = NGi(Uαi)∩
NGi(U−αi). (d) is clear from the de�nition ofK, since SO(2) is the �xed point set of the transpose
inverse map on SL(2,R). �
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Chapter 4

Computing the Fundamental Groups

Throughout this chapter, G = GR(A) for a symmetrizable irreducible generalized Cartan matrix
A (unless stated otherwise). We determine the fundamental group of G and of its covering spaces
Spin(Π, κ), introduced in Section 4.3. An important tool is the presentation of the fundamental
groups of the generalized �ag varieties G/PJ which we determine by way of a CW decomposition.

This chapter is mainly comprised of original results by the author and Ralf Köhl which �rst
appeared in [HK19].

4.1 On the Topology of the Generalized Flag Varieties

Throughout this section, let J ⊆ I, and let W J ⊆ W be a set of representatives of the cosets
in W/WJ that have minimal length. The space G/PJ is called generalized �ag variety.
Generalized �ag varieties admit Bruhat decompositions which, in the two-spherical case, carry
a CW structure. This makes it possible to give a presentation for their fundamental groups by
determining characteristic maps for the 1- and 2-cells.

Lemma 4.1.1 (Bruhat decomposition). One has G/PJ =
⊔
w∈WJ BwPJ/PJ .

Proof. By [AB08, Theorem 6.56, Remark (1)], the group G has a Bruhat decomposition

G =
⊔
w∈W

BwB =
⋃
w∈W

BwBWJB =
⋃
w∈W

BwPJ .

Since double cosets partition G, one has w1WJ = w2WJ if and only if Bw1PJ = Bw2PJ for
w1, w2 ∈W . This yields the desired disjoint decomposition of G/PJ . �

De�nition and Remark 4.1.2. For w ∈ W , de�ne the following restrictions of the canonical
map ψ : G/B → G/PJ :

� ψw : BwB/B → BwPJ/PJ ,

� ψw :
⋃
x≤w BxB/B →

⋃
x≤w BxPJ/PJ .

Since ψ is continuous by Lemma 1.2.4, the same holds for the two restrictions. The space⋃
x≤w BxB/B is compact by [HKM13, Corollary 3.10] and so ψw is a quotient map. �

Remark 4.1.3. In [HKM13, Proposition 5.9], based on a result by Kramer (see [Kra01, Propo-
sition 7.9]), it is shown that the Bruhat decomposition G/B =

⊔
w∈W BwB/B is a CW decom-

position provided the twin building associated to G is a smooth strong topological twin building.
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Smooth means here that its panels are �nite-dimensional real manifolds. These conditions are
satis�ed since by Corollary 3.5.3 spherical subgroups carry the Lie topology and the twin building
of G is a strong topological twin building. By [HKM13, Theorem 1], this also holds in the case of
a possibly non-symmetrizable, but two-spherical group G. The following assertions regarding the
CW structure of G/PJ are therefore also valid in the two-spherical case; this holds in particular
for Theorem 4.1.13 which gives a presentation for the fundamental group of G/PJ . �

Lemma 4.1.4. Let w ∈W J . Then the canonical map ψw is a homeomorphism.

Proof. By Remark 4.1.2, ψw is a quotient map. One has ψ−1
w (BwPJ/PJ) = BwB/B: Let x ≤ w

such that BxPJ/PJ = BwPJ/PJ . Then x ∈ BwPJ = BwWJB where the equality holds since by
de�nition ofW J one has l(ww′) = l(w)+l(w′) for all w′ ∈WJ which implies Bww′B = BwBw′B.
The Bruhat decomposition of G yields x ∈ wWJ and hence, l(x) ≥ l(w). This implies x = w.

Now, since the Bruhat decomposition G/B =
⊔
w∈W BwB/B is a CW decomposition by Re-

mark 4.1.3, the set BwB/B is open in its closure
⋃
x≤w BxB/B in G/B, and so the preceding

observations yield that ψw is an injective quotient map and therefore a homeomorphism. �

Lemma 4.1.5. Let si ∈ S. Then the panel C≤si(B) is homeomorphic to S1(R).

Proof. The panel C≤si(B) is a subbuilding of G/B corresponding to the RGD system

{Gi, Uαi , U−αi , T ∩Gi}.

By Lemma 3.6.7 one has homeomorphisms Gi ' SL(2,R), Ti ' TSL(2,R) and U±αi ' U±α where
TSL(2,R) denotes the subgroup of diagonal matrices and U±α denote the canonical root subgroups
of SL(2,R). This implies that C≤si(B) is homeomorphic to the building SL(2,R)/BSL(2,R) '
P1(R) ' S1(R). �

Proposition 4.1.6. For each w ∈W , the set Cw(B) = BwB/B is a cell of dimension l(w) that
is open in its compact closure C≤w(B) in G/B. For each subset J ⊆ I, the Bruhat decomposition
G/PJ =

⊔
w∈WJ BwPJ/PJ is a CW decomposition.

Proof. The �rst statement is immediate by [HKM13, Corollary 3.10 and Proposition 5.9], see also
[Kra01, p. 170, 171]. Furthermore, [HKM13, Proposition 5.9] states that the Bruhat decomposi-
tion of G/B is a CW decomposition (see Remark 4.1.3). By Lemma 4.1.4, G/PJ is composed of
cells that are homeomorphic to cells in G/B, so composing the characteristic maps of the latter
cells with the canonical map ψ : G/B → G/PJ yields characteristic maps for the cells in G/PJ .

For the closure-�niteness, let BwPJ/PJ be a cell in G/PJ . Since ψ is continuous and restricts
to a homeomorphism BwB/B → BwPJ/PJ , it maps clBwB/B surjectively onto clBwPJ/PJ .
Now, clBwB/B =

⋃
x≤w BxB/B, which implies that

clBwPJ/PJ =
⋃
x≤w

BxPJ/PJ =
⋃
x≤w
x∈WJ

BxPJ/PJ ,

where the last equality holds since WJ ⊆ PJ . This proves that clBwPJ/PJ is contained in a
�nite union of cells.

It remains to show that G/PJ has the weak topology determined by the cell closures.

First note that for any v ∈ W and any minimal-length representative ṽ ∈ W J of vWJ , one has
BvPJ/PJ = BṽPJ/PJ . Let ev := BvPJ/PJ = BṽPJ/PJ and e′v := BwB/B. Let ev = cl ev =⋃
x≤ṽ BxPJ/PJ and e′v := cl e′v =

⋃
x≤v BxB/B.
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Let A be a closed subset of G/PJ and let ew, w ∈ W J , be an arbitrary cell. Then ψ−1(A) is
closed in G/B since ψ is continuous, so ψ−1(A)∩ e′w is closed in e′w since G/B is a CW complex.
Now,

ψ−1(A) ∩ e′w = ψ−1(A) ∩ ψ−1(ew) = ψ−1(A ∩ ew) = ψ−1
w (A ∩ ew).

Since ψw is a quotient map by Remark 4.1.2, this implies that A ∩ ew is closed in ew.

Now, let A be a subset of G/PJ such that A ∩ ew is closed in ew for all w ∈ W J . Since for
each w ∈ W one has ew = ew̃ for any minimal-length representative w̃ ∈ W J of wWJ , in fact
A∩ ew is closed in ew for all w ∈W . Therefore ψ−1

w (A∩ ew) is closed in e′w for all w ∈W . Since
ψ−1
w (A ∩ ew) = ψ−1(A) ∩ e′w, the fact that G/B is a CW complex implies that ψ−1(A) is closed

in G/B. Since ψ is open by Lemma 1.2.4, it follows that A is closed in G/PJ . This proves that
G/PJ is a CW complex. �

Notation 4.1.7. De�ne R : [0, 1]→ SO(2), s 7→
(

cos(sπ) − sin(sπ)
sin(sπ) cos(sπ)

)
. �

Lemma 4.1.8. R induces a continuous, surjective map R̃ : [0, 1] → SL(2,R)/BSL(2,R) which
maps the interior (0, 1) homeomorphically onto its image and maps the boundary {0, 1} surjec-
tively onto its image.

Proof. Let {x0} :=
〈(

1 0
)ᵀ〉 ∈ P1 where P1 denotes the real projective line, modelled as the

subset of one-dimensional subspaces of R2. Since each one-dimensional subspace in P1 \ {x0}
contains exactly one element in the upper half circle R([0, 1]) ·

(
1 0

)ᵀ
while x0 contains the

two boundary points corresponding to R(0) and R(1), one has a surjection from [0, 1] onto P1

given by t 7→
〈
R(t) ·

(
1 0

)ᵀ〉
which maps (0, 1) bijectively onto P1 \ {x0}. Since SL(2,R) acts

transitively on the real projective line P1 with BSL(2,R) being the stabilizer of x0 :=
〈(

1 0
)ᵀ〉

,
one has a bijective correspondence gB 7→ gx0 between SL(2,R)/BSL(2,R) and P1. This yields the

desired surjectivity and bijectivity properties of R̃. Continuity is clear, as well as the fact that
the restriction to the interior is a homeomorphism. �

De�nition 4.1.9. Let D1 = [0, 1] be the one-dimensional unit disc and note that D2 is homeo-
morphic to D1 ×D1. Let p : G→ G/B be the canonical projection. De�ne χi : D1 → G/B and
χ(i,j) : D1 ×D1 → G/B by

� χi(s) := p(ϕi(R(s))) = ϕi(R(s)) ·B,

� χ(i,j)(s, t) := p(ϕi(R(s))ϕj(R(t))) = ϕi(R(s))ϕj(R(t)) ·B. �

The following lemma was inspired by [Pro07, Ch. 10, second Proposition of 6.8], see also [Kac85,
�2.6, p.198].

Lemma 4.1.10. The maps de�ned above are characteristic maps for the following cells:

(a) χi for Csi(B) = BsiB/B,

(b) χ(i,j) for Csisj (B) = BsisjB/B.

Proof. By Lemma 3.6.7, the map ϕi is a homeomorphism which maps SO(2) to Ki.

(a): One has to show that χi([0, 1]) ⊆ C≤si(B) and that χi is a continuous map which maps
(0, 1) homeomorphically to Csi(B). The �rst assertion is clear, since by Lemma 3.6.6 one has
C≤si = GiB/B.
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By Lemma 3.6.6, one has Csi(B) = {kB | k ∈ Ki \ (Ki ∩ B)}. Let k ∈ Ki \ (Ki ∩ B). Then
ϕ−1
i (p−1(kB)) = ϕ−1

i (k) · BSL(2,R) ∈ SL(2,R)/BSL(2,R) \ BSL(2,R). By Lemma 4.1.8, there exists
a unique s ∈ (0, 1) satisfying R(s)BSL(2,R) = ϕ−1

i (k)BSL(2,R). Hence, s is the unique preimage of
kB under χi. This yields the desired bijectivity property. The continuity properties are clear.

(b): Since by Lemma 3.6.6 (c) one has C≤sisj (B) = KiBKjB/B, it is clear that χ(i,j)([0, 1] ×
[0, 1]) ⊆ C≤sisj (B). For the injectivity of the restriction, let (s, t), (s̃, t̃) ∈ (0, 1)2 such that
χ(i,j)(s, t) = χ(i,j)(s̃, t̃). Then

ϕi(R(s))ϕj(R(t))B = ϕi(R(s̃))ϕj(R(t̃))B

⇐⇒ (ϕi(R(s̃)))−1ϕi(R(s))ϕj(R(t))B = ϕj(R(t̃))B ∈ Csj (B).

This implies R(s̃)−1R(s) ∈ BSO(2,R), since otherwise the left expression is in Csisj (B), contra-
dicting Csisj (B)∩Csj (B) = ∅. Since s, s̃ ∈ (0, 1), one obtains s̃ = s. It follows that χj(t) = χj(t̃),
hence t = t̃ by (a).

For the surjectivity, note that by Lemma 3.6.6 (c), one has Csisj (B) = BsisjB/B = BsiBBsjB/B.
Let xixjB be an arbitrary element of Csisj (B) with xi = b1sib2 ∈ BsiB and xj ∈ BsjB.
By (a), there exists an s ∈ (0, 1) with ϕi(R(s))B = b1siB ∈ Csi(B). Hence, there ex-
ists a b ∈ B with (ϕi(R(s))b = b1sib2 = xi. Again by (a), there exists a t ∈ (0, 1) with
ϕj(R(t))B = bxjB ∈ Csj (B). This yields

χi,j(s, t) = ϕi(R(s)) · ϕj(R(t))B

= xib
−1 · bxjB

= xixjB.

This proves that χi,j maps (0, 1) × (0, 1) bijectively to Csisj (B) The continuity properties are
clear. �

Notation 4.1.11. For i, j ∈ I, let ε(i, j) := (−1)aij , where aij is the (i, j)-entry of the generalized
Cartan matrix A. �

Lemma 4.1.12 [GHKW17, Remark 15.4(1)]. Let ei := ϕi(−I) ∈ Gi and kj ∈ Kj. Then

eikjei = k
ε(i,j)
j . �

The following theorem gives a presentation for the fundamental group of G/PJ . We refer to
[Wig98] for the analogous result in the �nite-dimensional situation.

Theorem 4.1.13. Let G = GR(A) for a symmetrizable irreducible generalized Cartan matrix A
or let G be two-spherical. Then a presentation of π1(G/PJ) is given by

〈
xi; i ∈ I | xixε(i,j)j = xjxi, xk = 1; i, j ∈ I, k ∈ J

〉
.

Proof. By Lemma 4.1.4 and Proposition 4.1.6, the Bruhat decomposition

G/PJ =
⊔

w∈WJ

BwPJ/PJ

is a CW decomposition where each cell BwPJ/PJ has dimension l(w). For each 1-cell BsiPJ/PJ
and 2-cell BsisjPJ/PJ , the compositions χ̃i := ψsi ◦χi and χ̃(i,j) := ψsisj ◦χ(i,j) are, respectively,
characteristic maps (ψsi and ψsisj denoting the canonical homeomorphisms from Lemma 4.1.4).
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Lemma 1.1.2 gives a presentation of π1(G/PJ). The generating elements are given by the ho-
motopy classes xi := [χ̃i] of the characteristic maps of the 1-cells � namely, the cells BsiPJ/PJ
where i ∈ I \ J . For the homotopy classes xk with k ∈ J , note that ϕk(R(t)) ∈ Gk ⊆ PJ , and
so χ̃k(t) = ϕk(r(t)) · PJ = PJ which implies xk = [χ̃k] = 1π1(G/PJ ). This yields the desired
generating set as well as the trivial relation xk = 1 for i ∈ J .

To obtain the set of relators, for k = 1, . . . , 4 let γk : [0, 1]→ [0, 1]× [0, 1] where

γ1(t) = (t, 0),

γ2(t) = (1, t),

γ3(t) = (1− t, 1),

γ4(t) = (0, 1− t).

Then the concatenation γ := γ1∗γ2∗γ3∗γ4 is a loop in the relative boundary ∂([0, 1]×[0, 1]) ' S1

which generates its fundamental group. Moreover, for each characteristic map χ̃(i,j) of a 2-cell,
one has χ̃(i,j)(γ(0)) = χ̃(i,j)((0, 0)) = ψsisj (χ(i,j)(0, 0)) = ψsisj (B) = PJ where PJ is the unique
0-cell of the CW complex. Therefore, Lemma 1.1.2 implies that the set of relators is given by
{[χ̃(i,j) ◦ γ] | σiσj ∈W J , l(σiσj) = 2}. Now,

[χ̃(i,j) ◦ γ] = [χ̃(i,j) ◦ γ1] · [χ̃(i,j) ◦ γ2] · [χ̃(i,j) ◦ γ3] · [χ̃(i,j) ◦ γ4],

where

χ̃(i,j)(s, t) = αi(R(s))αj(R(t)) · PJ with R(0) = ISO(2,R), R(1) = −ISO(2,R) ∈ BSO(2,R) which
implies

[χ̃(i,j) ◦ γ1] = xi,

[χ̃(i,j) ◦ γ3] = x−1
i ,

[χ̃(i,j) ◦ γ4] = x−1
j .

Moreover,

(χ̃(i,j) ◦ γ2)(t) = αi(−I)αj(R(t)) · PJ
= αi(−I)αj(R(t))αi(−I) · PJ , since αi(−I) ∈ PJ
= αj(R(t))ε(i,j) · PJ by Lemma 4.1.12.

Since R(t)−1 = R(1 − t), this yields [χ̃(i,j) ◦ γ2] = x
ε(i,j)
j . One therefore obtains [χ̃(i,j) ◦ γ] =

xi · xε(i,j)j · x−1
i · x

−1
j . This proves the assertion. �

By [HKM13, Proposition 3.8] (see also [Kra01, p. 170, 171]), there exists a �bre bundle
(C≤σiσj , C≤σi , p, C≤σj ). Since the panels C≤σi are homeomorphic to S1(R) by Lemma 4.1.5, it
is a so-called circle bundle over a circle, that is, both base space and �bre are circles. By [Ste99,
Section 26.1], there are two types of circle bundles over circles: The torus S1 × S1, which is the
trivial bundle, and the Klein bottle. Hence, each 2-cell C≤σiσj (B) must be homeomorphic to
one of those spaces. This observation can be speci�ed using Lemma 1.1.2 and the computations

in the above proof: One obtains the presentation π1(Cσiσj (B)) ∼=
〈
xi, xj | xixε(i,j)j = xjxi

〉
which yields the following result.

Proposition 4.1.14. Let σi, σj ∈W . Then the following hold:

� If ε(i, j) = −1, then Cσiσj (B) is homeomorphic to a Klein bottle.
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� If ε(i, j) = 1, then Cσiσj (B) is homeomorphic to a torus. �

C≤σi(B)

C≤σi(B)

C≤σj (B) C≤σj (B)Cσiσj (B)

Figure 4.1: Klein Bottle

C≤σi(B)

C≤σi(B)

C≤σj (B) C≤σj (B)Cσiσj (B)

Figure 4.2: Torus

Lemma 4.1.15. Let G be simply laced and J 6= ∅. Then π1(G/PJ) ∼= C2
n−|J |.

Proof. For each generator xh in the presentation of Theorem 4.1.13, one has x2
h = 1: Let Π be

the Dynkin diagram of G and λ the labelling map I → V of the vertex set of Π. Since Π is
connected, one has a minimal path (i1, . . . , im = h)λ in Π such that i1 ∈ J . If m = 1, one has
xh = 1 by the presentation above. Let xi1 , . . . , xim−1 have order ≤ 2. Since Π is simply laced,
ε(m− 1, h) = −1 = ε(h,m− 1) which implies xhx

−1
im−1

x−1
h x−1

im−1
= 1 and xim−1x

−1
h x−1

im−1
x−1
h = 1.

Multiplying these expressions yields x2
h = 1.

Since each generator has order ≤ 2, the relations show that the group is abelian. One concludes
that π1(G/PJ) ∼= C2

n−|J |. �

The fundamental group of the generalized �ag variety will be used in the next sections as a tool
to compute the fundamental group of K which is isomorphic to the fundamental group of G by
Theorem 3.6.5. To this end, we state some results which relate the generalized �ag variety to
quotient spaces of K.

Lemma 4.1.16. The canonical map ψ : K/(K ∩ PJ)→ G/PJ is a homeomorphism.

Proof. Bijectivity follows from the product formula for subgroups since G = KPJ by Corollary
3.6.4. By Lemma 1.2.4, the map ψ̃ : G/(K ∩ PJ) → G/PJ is continuous, so the same holds for
its bijective restriction ψ : K/(K ∩ PJ)→ G/PJ .

In order to show that ψ is closed, let P := PJ and let P̃ := PJ ∩K. Consider the commutative
diagram

K/P̃

G/P̃ G/P

ψ
ι

ϕ

where ι denotes the canonical embedding and ϕ denotes the canonical map from G/P̃ to G/P .
Since K is closed in G, the map ι is closed. By Lemma 1.2.4, ϕ is open.
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Let XP̃ ⊆ K/P̃ be a closed subset of K/P̃ and suppose that ψ(XP̃ ) = XP is not closed in G/P .
Then the complement CG/P (XP ) is not open in G/P , hence the complement CG/P̃ (ϕ−1(XP )) =

ϕ−1(CG/P (XP )) is not open in G/P̃ . Therefore, ϕ−1(XP ) is not closed in G/P̃ . This yields

that XP̃ = ψ−1(XP ) = ι−1(ϕ−1(XP )) is not closed in K/P̃ , a contradiction. �

Corollary 4.1.17. There exists a homeomorphism G/PJ → K/(K ∩ T )KJ .

Proof. Since PJ = GJB and θ(PJ) ∩ PJ = GJT , one has PJ ∩K = KJ(K ∩ T ). Furthermore,
GJ is normal in GJT which implies KJ(K ∩ T ) = (K ∩ T )KJ . The claim now follows from
Lemma 4.1.16. �

Lemma 4.1.18. The canonical map ψ : K/KJ → K/(K ∩ T )KJ is a covering map of degree
2n−|J |.

Proof. By Lemma 1.2.4, ψ is continuous, open and surjective. The groupM = (K∩T ) has order
2n, as is pointed out in section 3.6.

Note that one has TJ ∩ TI\J = {1}, since T is isomorphic to (R×)n. Now, for k ∈ K one has
ψ−1(k(K ∩ T )KJ) = {ktKJ | t ∈ (K ∩ T )}, and since TJ ∩ TI\J = {1}, one has ktiKJ 6= ktjKJ

for ti 6= tj ∈ T ∩KI\J . This yields |ψ−1(k(K ∩ T )KJ)| = |{ktKJ | t ∈ (K ∩ T )}| = |{ktKJ | t ∈
T ∩KI\J}| = |T ∩KI\J | = |TI\J ∩KI\J | = 2n−|J |. Lemma 1.2.3 now shows that ψ is a covering
map. �

4.2 The Simply Laced Case

Throughout this section, let G be simply laced. Denote by E the edge set of the simply laced
Dynkin diagram Π of G. As shown in a paper by Ghatei, Horn, Köhl and Weiss, K has a 2-fold
central extension Spin(Π). By proving that π1(Spin(Π)/Spin(Πij) ∼= π1(K/Kij) ∼= {1} for an A2

subdiagram Πij , we establish via a homotopy exact sequence that Spin(Π) is simply connected
which yields that π1(G) ∼= π1(K) ∼= C2.

In [GHKW17, Section 11], it is shown that in the simply laced case K is isomorphic to the
canonical universal enveloping group of an SO(2)-amalgam A(Π,SO(2)) = {Hij , φ

i
ij | i 6= j ∈ I}

where

Hij =

{
SO(3), if {i, j} ∈ E,
SO(2)× SO(2), if {i, j} /∈ E,

and where for i < j, the map φiij embeds SO(2) into Hij as upper left diagonal block if (i, j) ∈ E
and as �rst SO(2)-factor if (i, j) /∈ E (for i > j replace upper left by lower right and �rst factor by
second factor). The corresponding SO(3) and SO(2)×SO(2) subgroups ofK are the intersections
of K with the fundamental rank two subgroups Gij of G, i.e., the groups Kij := Gθij .

Furthermore, again in [GHKW17, Section 11], the group Spin(Π) is de�ned as the canonical
universal enveloping group of the Spin(2)-amalgam A(Π,Spin(2)) = {Ĥij , φ̂

i
ij | i 6= j ∈ I} which

is a lift of the amalgam above in the sense that the groups Ĥij are equal to either Spin(3) or to
Spin(2)× Spin(2) and the connecting homomorphisms φ̂iij are lifts of the connecting homomor-
phisms φiij above.

Theorem 4.2.1 [GHKW17, Theorem 11.17]. Spin(Π) is a 2-fold central extension of K. �
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Since the extension Spin(Π) → K has �nite kernel, the Kac�Peterson topology on K induces a
unique topology on Spin(Π) that turns the extension into a covering map. The resulting group
topology on Spin(Π) is called the Kac�Peterson topology on Spin(Π).

Lemma 4.2.2. Let Π be simply laced and let {i, j} ⊆ I be the index set of an A2-subdiagram of
Π. Then the spaces Spin(Π)/Spin(Πij) and K/Kij are homeomorphic.

Proof. From [GHKW17] (exact references below) it follows that the kernel of the covering map
Spin(Π)→ K coincides with the kernel of the covering map Spin(Πij)→ Kij and is equal to the
group Z := {±1Spin(Π)} (for the de�nition of −1Spin(Π), see below). This is a consequence of the
following facts regarding an irreducible simply laced diagram Π (all referring to [GHKW17]):

� There is an epimorphism Spin(2)→ SO(2,R) with kernel {±1Spin(2)} (see [Theorem 6.8]).

� In Spin(Π), all elements τ̃ij(φ̃iij(−1Spin(2))) coincide (see [Lemma 11.7]).

� Let −1Spin(Π) := τ̃ij(φ̃
i
ij(−1Spin(2))) for an arbitrary pair i 6= j ∈ I. Then 1Spin(Π) 6=

−1Spin(Π) (see [Corollary 11.16]).

� Spin(Π) is a 2-fold central extension of K(Π) (see [Theorem 11.17]).

Hence, the 2-fold covering map ϕ̃ : Spin(Π) → K(Π) induces a continuous bijective map ϕ :
Spin(Π)/Spin(Πij)→ (Spin(Π)/Z)/(Spin(Πij)/Z)→ K/Kij . One has a commutative diagram

Spin(Π) K

Spin(Π)/Spin(Πij) K/Kij

ϕ̃

π1 π2

ϕ

.

Since ϕ̃ is open as a covering map and π2 is open by Lemma 1.2.4, it follows that ϕ is a
homeomorphism. �

Corollary 4.2.3. Let Π be simply laced. Then K/KJ is simply connected.

Proof. K/KJ is connected since K is generated by connected groups isomorphic to SO(2,R).
Hence by Lemma 4.1.18 it is a non-trivial cover of K/(K ∩ T )KJ of degree 2n−|J |. The claim
now follows from Corollary 4.1.15 and Corollary 4.1.17. �

Proposition 4.2.4. Let Π be simply laced. Then Spin(Π) is simply connected with respect to
the Kac�Peterson topology. In particular, π1(G) ∼= C2.

Proof. By Corollary 1.2.10, there exists a homotopy long exact sequence

π4(Spin(Π)/Spin(Πij)) −→ π3(Spin(Πij)) −→ π3(Spin(Π)) −→ π3(Spin(Π)/Spin(Πij))

−→ π2(Spin(Πij)) −→ π2(Spin(Π)) −→ π2(Spin(Π)/Spin(Πij))

−→ π1(Spin(Πij)) −→ π1(Spin(Π)) −→ π1(Spin(Π)/Spin(Πij))

from which one extracts the exact sequence

{1} = π1(Spin(Πij)) −→ π1(Spin(Π)) −→ π1(Spin(Π)/Spin(Πij)).

By Corollary 4.2.3 and Lemma 4.2.2 one has π1(Spin(Π)/Spin(Πij)) ∼= π1(K/Kij) = {1} and so
by exactness π1(Spin(Π)) = {1}.
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The second assertion follows from the fact that π1(G) ∼= π1(K) by Theorem 3.6.5 and the fact
that Spin(Π) is a 2-fold central extension of K by Theorem 4.2.1. �

4.3 The General Case

Once more, we remind the reader that G = GR(A) for a symmetrizable irreducible generalized
Cartan matrix A.

We introduce a modi�ed Dynkin diagram Πadm and a colouring of the connected components of
Πadm which depends on the edge types of Π. We then show that π1(G/B) is isomorphic to a
direct product of groups HJ that correspond to the connected components Πadm

J of Πadm and
depend on their respective colour. For each connected component Πadm

J where J := I \ J , we
obtain a commutative diagram

π1(G) ∼= π1(K) −−−−−→ π1(K/KJ)y y∏
Connected
components

HJi
∼= π1(G/B) ∼= π1(K/(K ∩ T )) −−−−−→ π1(K/(K ∩ T )KJ) ∼= HJ

This allows us to piece together the group π1(G) as a product of subgroups of the HJ whose
respective isomorphism types can be exactly determined by the degree of the covering K/KJ →
K/KJ(K ∩ T ).

De�nition 4.3.1 [GHKW17, De�nition 16.2]. For the generalized Dynkin diagram Π =
(V,E) of A, let Πadm be the graph on the vertex set V with edge set

{{i, j} ∈ V × V | i 6= j ∈ I, ε(i, j) = ε(j, i) = −1},

where ε(i, j) denotes the parity of the corresponding Cartan matrix entry, as de�ned in Notation
4.1.11.

An admissible colouring of Π is a map κ : V → {1, 2} such that

(a) κ(iλ) = 1 whenever there exists j ∈ I \ {i} with ε(i, j) = 1 and ε(j, i) = −1.

(b) the restriction of κ to any connected component of the graph Πadm is a constant map.

De�ne c(Π, κ) to be the number of connected components of Πadm on which κ takes the value
2. For a subgraph Πadm

J of Πadm that is a union of connected components of Πadm let κJ be the
corresponding restriction of κ. �

De�nition 4.3.2. For the generalized Dynkin diagram Π = (I, E) of A, let Πadm be the graph
on the vertex set I with edge set

{{i, j} ∈ I × I | i 6= j, ε(i, j) = ε(j, i) = −1}.

Let the colouring γ : I → {r, g, b} of Πadm be de�ned as follows:

(a) The restriction of γ to any connected component of the graph Πadm is a constant map. �

(b) γ(i) = r whenever there exists j ∈ I \ {i} with ε(i, j) = 1 and ε(j, i) = −1.

(c) Else, γ(i) = g whenever the vertex i is isolated in Πadm.
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(d) γ(i) = b whenever the vertex i is not isolated in Πadm and case (1) does not apply to any
of the vertices in its connected component.

The notion of an admissible colouring κ will not come into play until we introduce the so-called
spin group with respect to Π and κ.
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Example 4.3.3. A sample Dynkin diagram Π with the corresponding diagram Πadm, coloured
by the map γ.

Π Πadm coloured by γ

r r r

r r g

r g r

b r r

b b b

b

Notation 4.3.4. For a subset J ⊆ I let

HJ :=
〈
xi; i ∈ J | xixε(i,j)j = xjxi, ; i, j ∈ J

〉
. �

Lemma 4.3.5. Let J ⊆ I be the index set of a connected component Πadm
J of Πadm. Then the

following hold:

(a) If Πadm
J has colour r, then HJ

∼= C
|J |
2 .

(b) If Πadm
J has colour g, then |J | = 1 and HJ

∼= Z.

(c) If Πadm
J has colour b, then |HJ | = 2|J |+1.

Proof. (a): If Πadm
J has colour r, then there exist i ∈ J, j ∈ I\{i} with ε(i, j) = 1 and ε(j, i) = −1.

This implies xixj = xjxi and xjx
−1
i = xixj which yields x2

i = 1. Now, if {iλ, kλ} is an edge in
Πadm, then xix

−1
k x−1

i x−1
k = 1 = xkx

−1
i x−1

k x−1
i . Multiplying these expressions shows that x2

i = 1
implies x2

k = 1. Since Πadm
J is connected, this yields x2

k = 1 for each k ∈ J . Commutativity then
follows from the relations of HJ .

(b): By de�nition, two nodes iλ and jλ in Πadm are connected if and only if ε(i, j) = ε(j, i) = −1,
and by de�nition a node iλ has color g if and only if for each node jλ this is not the case � namely,
one of ε(i, j) and ε(j, i) is 1. Nodes of colour g are therefore isolated in Πadm.

(c): Let Πsl
J be the simply laced Dynkin diagram with vertex set Jλ and edge set {{i, j} ∈ J×J |

{i, j} edge in Πadm}.

Let T̃ := K(Πsl
J )∩ T (Πsl

J ) where T (Πsl
J ) denotes the standard maximal torus of G(Πsl

J ). Then by
Lemma 4.1.18 and Proposition 4.2.4, Spin(Πsl

J ) → K(Πsl
J ) → K(Πsl

J )/T̃ is a universal covering
map where K(Πsl

J )→ K(Πsl
J )/T̃ has degree 2|J | and Spin(Πsl

J )→ K(Πsl
J ) has degree 2 according

to [GHKW17, Theorem 11.17]. Since π1(K(Πsl
J )/T̃ ) ∼= HJ by Theorem 4.1.13 and Lemma 4.1.16,

this implies |HJ | = 2|J |+1. �

Proposition 4.3.6. Let J1t· · ·tJk = I be the index sets of the connected components of Πadm.
Then

π1(G/B) ∼= HJ1 × · · · ×HJK .

43



CHAPTER 4. COMPUTING THE FUNDAMENTAL GROUPS

Proof. By Theorem 4.1.13, π1(G/B) ∼= HI where

HI =
〈
xi; i ∈ I | xixε(i,j)j = xjxi, ; i, j ∈ I

〉
as de�ned in Notation 4.3.4. For J ⊆ I, let

RJ := {xixε(i,j)j x−1
i x−1

j | i, j ∈ J}, (4.1)

the set of relators of HJ . Let

Rc :=
⋃

iλ,jλ in di�erent
conn. components

{xixjx−1
i x−1

j },

the set of commutators of pairs of generators from di�erent connected components. Then

HJ1 × · · · ×HJk
∼=

〈
xi; i ∈ I |

k⋃
l=1

RJl ∪R
c

〉
=: H.

Let πHI and πH be the canonical homomorphisms from the free group 〈xi; i ∈ I〉 to HI and
H, respectively. It su�ces to show that

⋃k
l=1RJl ∪ Rc ⊆ kerπHI and RI ⊆ kerπH . It is

clear that a relator xix
ε(i,j)
j x−1

i x−1
j ∈ RI with iλ and jλ in a common connected component

is contained in
⋃k
l=1RJl ⊆ kerπH , so let xix

ε(i,j)
j x−1

i x−1
j ∈ RI with iλ and jλ in di�erent

connected components. Then one has (ε(i, j), ε(j, i)) ∈ {(1, 1), (1,−1), (−1, 1)}. If ε(i, j) = 1,

then xix
ε(i,j)
j x−1

i x−1
j ∈ Rc ⊆ kerπH , so let ε(i, j) = −1 and ε(j, i) = 1. Then jλ is contained in a

connected component Πadm
Jm

of colour r, and by Lemma 4.3.5, 〈xl; l ∈ Jm | RJm〉 = HJm
∼= C

|Jl|
2 .

This implies that xj has order 2 in HJm , hence x
2
j ∈ 〈〈RJm〉〉〈xi;i∈I〉, the normal closure of RJm

in the free group.

Since 〈〈RJm〉〉〈xi;i∈I〉 ⊆ kerπH , one obtains x2
j ∈ kerπH . Since xjxix

−1
j x−1

i ∈ Rc ⊆ kerπH and
ε(i, j) = −1, one therefore has

πH(xix
ε(i,j)
j x−1

i x−1
j ) = πH(xjxix

−1
j x−1

i · xix
ε(i,j)
j x−1

i x−1
j ) = 1H .

Conversely, it is clear that
⋃k
l=1RJl ⊆ RI ⊆ kerπHI , so let xixjx

−1
i x−1

j ∈ Rc with iλ and jλ

in di�erent connected components. As above, we can assume that ε(i, j) = −1 and ε(j, i) = 1.

Since xjx
ε(j,i)
i x−1

j x−1
i ∈ kerπHI , this implies

πHI (xixjx
−1
i x−1

j ) = πHI (xjx
ε(j,i)
i x−1

j x−1
i · xixjx

−1
i x−1

j ) = 1HI .

This proves the assertion. �

Theorem 4.3.7. Let A be a symmetrizable irreducible generalized Cartan matrix A with Dynkin
diagram Π. Let n(g) and n(b) be the number of connected components of Πadm of colour g and
b, respectively. Then

π1(GR(A))) ∼= Zn(g) × Cn(b)
2 .

Proof. As usual, let G := GR(A). By Theorem 3.6.5, π1(G) ∼= π1(K), so it su�ces to prove that
π1(K) is of the given isomorphism type. Let J ⊆ I. The diagram

K K/KJ

K/(K ∩ T ) K/(K ∩ T )KJ

ϕ

p q

ψ

,
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with all maps being the respective canonical maps, commutes. Since the maps are continuous
by Lemma 1.2.4, one obtains a commutative diagram of induced homomorphisms

π1(K) π1(K/KJ)

π1(K/(K ∩ T )) π1(K/(K ∩ T )KJ)

ϕ∗

p∗ q∗

ψ∗

,

where p∗ and q∗ are injective. By Theorem 4.1.13 and Lemma 4.1.16, π1(K/(K ∩ T )) and
π1(K/(K ∩ T )KJ) can be identi�ed with HI = 〈xi; i ∈ I | RI〉 and 〈xi; i ∈ I | RI ∪ {xJ |
j ∈ J}〉, respectively (RI as in (4.1) in the above proof), where ψ∗ corresponds to the canonical
homomorphism between these groups as the proof of Theorem 4.1.13 shows.

For the index set Jm of a connected component of Πadm, let Jm := I \ Jm. Then by Proposition
4.3.6,

〈
xi; i ∈ I | RI ∪ {xJ | j ∈ Jm}

〉 ∼=
 k∏
i=1

HJi

/
k∏
i=1
i 6=m

HJi

 ∼= HJm .

Summing up, one obtains a commutative diagram

π1(K) π1(K/KJm
)

∏k
i=1HJi HJm

ϕ∗

p∗ q∗

πm

,

having replaced p∗ and q∗ from above with the correponding monomorphisms.

By Lemma 4.1.18, the covering K/KJm
→ K/KJm

(K ∩ T ) has degree 2n−|Jm| = 2|Jm|. This

implies that H̃m := q∗(π1(K/KJm
)) is a subgroup of HJm of index 2|Jm|. The isomorphism type

of H̃m is uniquely determined by this index and the isomorphism type of HJm , given in Lemma
4.3.5: One has

H̃m
∼=


{1}, if Πadm

Jm
has colour r,

2Z ∼= Z, if Πadm
Jm

has colour g,

C2 if Πadm
Jm

has colour b.

Again by Lemma 4.1.18, the covering K → K/(K∩T ) has degree 2n, so p∗(π1(K)) is a subgroup
of index 2n of

∏k
i=1HJi . The commutative diagram above implies that π1(K) ∼= p∗(π1(K)) ⊆

π−1
m (H̃m). Since this holds for the index set of every connected component of Πadm, one has
p∗(π1(K)) ⊆ H̃1 × · · · × H̃m. But the latter is a subgroup of index 2|J1| · · · · · 2|Jm| = 2n of∏k
i=1HJi , so equality holds. This proves the assertion. �
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Example 4.3.8 Isomorphism types of π1(GR(A)) for the spherical Dynkin diagrams.

Π Πadm coloured by γ π1(G(Π))

A1 g
π1(SL2(R)) ∼= Z

An b b b b π1(SLn+1(R)) ∼= C2 (n ≥ 2)

Bn b b b r π1(Spin(n, n+ 1)) ∼=

{
Z if n ≤ 2,

C2 if n > 2.

Cn r r r g
π1(Sp(2n,R)) ∼= Z

Dn b b b b

b

π1(Spin(n, n)) ∼= C2 (n ≥ 3)

En
6 ≤ n ≤ 8

b

b

b

b

b

b

π1(En) ∼= C2

F4 F4 r r b b π1(F4) ∼= C2

G2 b b π1(G2,2) ∼= C2

�

De�nition and Remark 4.3.9. In [GHKW17, De�nition 16.16], the spin group Spin(Π, κ)
with respect to Π and κ is de�ned as the universal enveloping group of a particular Spin(2)-
amalgam {G̃ij , φ̃iij | i 6= j ∈ I} where the isomorphism type of G̃ij depends on the (i, j)- and
(j, i)-entries of the Cartan matrix of Π as well as the values of κ on the corresponding vertices.
The group K can be regarded as (being uniquely isomorphic to) the universal enveloping group
of an SO(2,R)-amalgam {Gij , φiij | i 6= j ∈ I} where each G̃ij covers Gij via an epimorphism αij .
By [GHKW17, Lemma 16.18] there exists a canonical central extension ρΠ,κ : Spin(Π, κ) → K
that makes the following diagram commute for all i 6= j ∈ I:

G̃ij Spin(Π, κ)

Gij K

τ̃ij

αij ρΠ,κ

τij

Here, τ̃ij and τij denote the respective canonical maps into the universal enveloping groups.

By [GHKW17, Proposition 3.9], one has

ker(ρΠ,κ) = 〈τ̃ij(ker(αij)) | i 6= j ∈ I〉Spin(Π,κ).

Each connected component of Πadm that admits a vertex iλ with κ(iλ) = 2 contributes a factor
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2 to the order of ker(ρΠ,κ) so that Spin(Π, κ) is a 2c(Π,κ)-fold central extension of K.

In particular, this implies that the subspace topology on K de�nes a unique topology on Spin(Π)
that turns the extension into a covering map. The resulting group topology on Spin(Π, κ) is called
the Kac�Peterson topology on Spin(Π, κ).

In the case of a simply laced diagram Π, the only admissible colourings are the trivial colouring
and the constant colouring κ : V → {2} and Spin(Π, κ) = Spin(Π) with Spin(Π) as in Section
4.2. �

Theorem 4.3.10. Let A be a symmetrizable irreducible generalized Cartan matrix A with Dynkin
diagram Π. Let n(g) be the number of connected components of Πadm of colour g. Let n(b, κ) be
the number of connected components of Πadm on which κ takes the value 1 and which have colour
b. Then

π1(Spin(Π, κ)) ∼= Zn(g) × Cn(b,κ)
2 .

Proof. By [GHKW17, Theorem 17.1], the map ρΠ,κ : Spin(Π, κ) → K is a 2c(Π,κ)-fold central
extension. Let J be the index set of a connected component of Πadm and let J := I \ J . Let
UJ := 〈G̃ij | i 6= j ∈ J〉Spin(Π,κ).

Since ρΠ,κ(UJ) ⊆ KJ , one has a continuous induced map ρJΠ,κ : Spin(Π, κ)/Spin(ΠJ , κJ) →
K/KJ making the following diagram commute, where ϕ̃ and ϕ denote the respective canonical
maps:

Spin(Π, κ) Spin(Π, κ)/UJ

K K/KJ

ϕ̃

ρΠ,κ ρJΠ,κ

ϕ

Each �ber of ρJΠ,κ has cardinality

|{xUJ | x ∈ ker ρΠ,κ}| = | ker(ρΠ,κ)/(UJ ∩ ker(ρΠ,κ))|
= 2c(Π,κ)−c(ΠJ ,κJ ) by Remark 4.3.9

Since ρΠ,κ is open as a covering map and ϕ is open by Lemma 1.2.4, it follows from Lemma 1.2.3
that ρJΠ,κ is a covering map.

From here the proof is analogous to the proof of Theorem 4.3.7, after extending the commutative
diagram at the beginning of the latter proof:

Spin(Π, κ) Spin(Π, κ)/UJ

K K/KJ

K/(K ∩ T ) K/(K ∩ T )KJ

ϕ̃

ρΠ,κ ρJΠ,κ

ϕ

p q

ψ

.

One obtains that π1(Spin(Π, κ)) ∼=
∏k
i=1H

′
Ji
where eachH ′Jm is a subgroup of index 2c(Π,κ)−c(ΠJm ,κJm )

of

H̃m
∼=


{1}, if Πadm

Jm
has colour r,

2Z ∼= Z, if Πadm
Jm

has colour g,

C2 if Πadm
Jm

has colour b.
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Since Πadm
Jm

is the union of all connected components except Πadm
Jm

, one has c(Π, κ)−c(ΠJm
, κJm) ∈

{0, 1}, depending on whether κ is constant 1 or 2 on Πadm
Jm

. This implies

H ′m
∼=


{1}, if Πadm

Jm
has colour r,

Z, if Πadm
Jm

has colour g,

C2 if Πadm
Jm

has colour b and κ ≡ 1 on Πadm
Jm

,

{1}, if Πadm
Jm

has colour b and κ ≡ 2 on Πadm
Jm

.

This proves the assertion. �
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of group on building, 13
of group on twin building, 14

ad-locally nilpotent, 17
Admissible colouring, 41
Admissible topology, 5
Amalgam, 25
Apartment, 11

BN -pair, 13
Base space, 2
Borel subgroup, 14
Bruhat decomposition

of a building, 14
of a generalized �ag variety, 33

Bruhat order
Strong, 9

Building, 10
Twin, 12

Cartan matrix, 8
Generalized, 10

Cartan subalgebra, 17
Cartan-Chevalley involution, 31
Centered, 19
Central extension, 5
Characteristic map, 1
Co-projection, 12
Codistance, 12
Compact-open topology, 5
Coxeter diagram, 10
Coxeter group, 9
Coxeter system, 9
CW complex, 1

Direct limit, 3
topology, 3

Direct system, 3
Dynkin diagram, 8

Enveloping group, 25
Universal, 25

Fibre, 2

bundle, 2
Final group topology, 3
Final topology, 3
Fundamental apartment, 14
Fundamental chamber, 14

Generalized �ag variety, 33

Irreducible, 10
Isometry, 11
Iwasawa decomposition, 31

J-equivalence, 11

k-spherical, 11
group, 19

kω-space, 4
Kac�Moody algebra, 17

Simply connected, 17
Kac�Moody group

Adjoint, 18
Split, 18

Kac�Moody root datum, 17
Adjoint, 17
Coadjoint, 17
Cofree, 17
Free, 17
Simply connected, 17

Kac�Peterson topology, 20
on Spin(Π, κ), 47

Locally nilpotent, 17

Opposite, 12

Panel, 11
s-panel, 11

Prenilpotent, 15
Principal G-bundle, 2

Rank one subgroups, 16
Fundamental, 16

Re�ection, 7, 9
Relative homeomorphism, 1
Residue, 11

J-residue, 11
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Spherical, 11
RGD system, 15
Root, 7

subgroups, 16
Negative, 9
Positive, 9
Simple (Coxeter system), 9
Simple (�nite root system), 7
system, 7

Root system
Crystallographic, 7
of a Coxeter system, 9

s-adjacent, 11
s-equivalent, 11
s-vertices, 11
σ-compact, 1
Simply laced

diagram, 10
group, 19

Spherical, 11
Spin group, 46
Standard maximal torus, 19
Standard parabolic subgroup, 14
Standard thin building, 11
Strong topological twin building, 13
Strongly transitive, 13
Symmetrizable, 19
System of apartments, 11

Thick
building, 11
twin building, 12

Thin
building, 11
twin building, 12

Tits system, 14
Topological twin building, 12
Topology on twin building, 12
Total space, 2
Twin BN -pair, 15
Twin Tits system, 15

Universal topology, 24

Weyl distance, 10
Weyl group, 7, 11, 14

Extended, 18
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