I F I G
RESEARCH
REPORT

Institut fiir Informatik

JLU GieBen

ArndtstraBe 2

D-35392 Giessen, Germany
Tel: +49-641-99-32141

Fax: +49-641-99-32149
mail@informatik.uni-giessen.de

www.informatik.uni-giessen.de

INSTITUT FUR INFORMATIK

@

UNARY LANGUAGE OPERATIONS
AND THEIR NONDETERMINISTIC
STATE COMPLEXITY

Markus Holzer Martin Kutrib

IFIG RESEARCH REPORT 0107

NovEMBER 2001

JUSTUS-LIEBIG-

UNIVERSITAT
GIESSEN

IFIG RESEARCH REPORT
IFIG RESEARCH REPORT 0107, NOVEMBER 2001

UNARY LANGUAGE OPERATIONS AND THEIR
NONDETERMINISTIC STATE COMPLEXITY

Markus Holzer!

Institut fur Informatik, Technische Universitat Miinchen

Arcisstrafle 21, D-80290 Miinchen, Germany

Martin Kutrib?

Institut fiur Informatik, Universitat Giessen

Arndtstr. 2, D-35392 Giessen, Germany

Abstract. We investigate the costs, in terms of states, of operations on infinite and
finite unary regular languages where the languages are represented by nondetermin-
istic finite automata. In particular, we consider Boolean operations, concatenation,
iteration, and A-free iteration. Most of the bounds are tight in the exact number of
states, i.e. the number is sufficient and necessary in the worst case. For the comple-
mentation of infinite languages a tight bound in the order of magnitude is shown.

CR Subject Classification (1998): F.1, F.4.3

IE-mail: holzer@informatik.tu-muenchen.de
2E-mail: kutrib@informatik.uni-giessen.de

Copyright (©) 2001 by the authors

1 Introduction

Finite automata are used in several applications and implementations in soft-
ware engineering, programming languages and other practical areas in computer
science. They are one of the first and most intensely investigated computa-
tional models. Nevertheless, some challenging problems of finite automata are
still open. An important example is the question how many states are suffi-
cient and necessary to simulate two-way nondeterministic finite automata with
two-way deterministic finite automata. The problem has been raised in [14]
and partially solved in [17]. A lower bound and an interesting connection with
the open problem whether DLOGSPACE equals NLOGSPACE or not is given
in [1].

Since regular languages have many representations in the world of finite au-
tomata it is natural to investigate the succinctness of their representation by
different types of automata in order to optimize the space requirements. It is
well known that nondeterministic finite automata (NFA) can offer exponential
saving in space compared with deterministic finite automata (DFA), but the
problem to convert a given DFA to an equivalent minimal NFA is PSPACE-
complete [7]. Since minimization of NFAs is also PSPACE-complete, conver-
sions from nondeterministic to deterministic variants are of particular interest.
Concerning the number of states asymptotically tight bounds are O(n") for
the two-way DFA to one-way DFA conversion, 0(2"2) for the two-way NFA to
one-way DFA conversion, and 2" for the one-way NFA to one-way DFA con-
version, for example. For finite languages over a k-letter alphabet the NFA to
DFA conversion has been solved in [15] with a tight bound of O(kb&%). A
valuable source for further results and references is [2].

Related to these questions are the costs (in terms of states) of operations on
regular languages with regard to their representing devices. For example, con-
verting a given NFA to an equivalent DFA gives an upper bound for the NFA
state complexity of complementation. In recent years results for many oper-
ations have been obtained. For DFAs state-of-the-art surveys can be found
in [20, 21]. The general nondeterministic case has been studied in [4].

When certain problems are computationally hard in general, a natural question
concerns simpler versions. To this regard promising research has been done for
unary languages. It turned out that this particular case is essentially different
from the general case. For example, the minimization of NFAs becomes NP-
complete instead of PSPACE-complete [6, 18]. The problem of evaluating the
costs of unary automata simulations has been raised in [17]. In [3] it has been
shown that the unary NFA to DFA conversion takes e®(V712(n) giates, the
NFA to two-way DFA conversion has been solved with a bound of O(n?) states,
and the costs of the unary two-way to one-way DFA conversion reduces to
e®(VmIn(n)) - Several more results can be found in [10, 11].

State complexity results concerning operations on unary regular languages rep-

resented by DFAs are covered by the surveys [20, 21]. Estimations of the average
state complexity are shown in [12].

Here we investigate the costs (in terms of states) of operations on infinite and
finite unary regular languages represented by NFAs. In particular, we consider
Boolean operations and catenation operations. The reversal of a unary language
is trivial. Most of the bounds are tight in the exact number of states, i.e. the
number is sufficient and necessary in the worst case. For the complementation
of infinite languages a tight bound in the order of magnitude is shown. The
technical depth of our results varies from immediate to more subtle extensions
to previous work. Indeed the technique to prove minimality for DFAs is not
directly applicable to the case of NFAs. Therefore, we mostly have to use
counting arguments to prove our results on NFA minimality with respect to the
number of states.

In the next section we define the basic notions and present preliminary results.
Section 3 is devoted to the study of infinite languages. The NFAs for finite
unary languages essentially have a simple structure. By this observation the
results for finite languages are derived in Section 4.

2 Preliminaries

We denote the positive integers {1,2,...} by N, the set NU {0} by Np, and the
powerset of a set S by 25. The empty word is denoted by \. For the length
of w we write |w|. We use C for inclusions and C if the inclusion is strict. By
ged(zy, . . .,) we denote the greatest common divisor of the integers x4, . .., T,
and by lem(z1,...,x,) their least common multiple. If two numbers z and y
are relatively prime (i.e. ged(z,y) = 1) we write z L y.

Definition 1 A nondeterministic finite automaton (NFA) is a system
A=(S,A,d,sg,F), where

. S is the finite set of internal states,

2. A is the finite set of input symbols,

3. sg € S is the initial state,
4
5

~

. F C S is the set of accepting states, and
. 6:8 x A— 25 is the transition function.

The set of rejecting states is implicitly given by the partitioning, i.e. S\ F.

An NFA is called unary if its set of input symbols is a singleton. Throughout
the paper we use A = {a}. In some sense the transition function is complete.
W.lo.g. we may require § to be a total function, since whenever the operation
of an NFA is supposed not to be defined, then ¢ can map to the empty set
which, trivially, belongs to 2°. Thus, in some sense the NFA need not be
complete. However, throughout the paper we assume that the NFAs are always
reduced. This means that there are no unreachable states and that from any
state an accepting state can be reached. An NFA is said to be minimal if its
number of states is minimal with respect to the accepted language. Since every
n-state NFA with A-transitions can be transformed to an equivalent n-state
NFA without A-transitions [5] for state complexity issues there is no difference

between the absence and presence of A-transitions. For convenience, we consider
NFAs without A-transitions only.

As usual the transition function § is extended to a function A : S x A* — 2°
reflecting sequences of inputs as follows: A(s,wa) = [J,/¢ Adsw) d(s',a), where
A(s,\) ={s} fors€ S, a € A, and w € A*.

Let A = (S, A,J,s0,F) be an NFA, then a word w € A* is accepted by A if
A(sg,w) N F # (. The language accepted by A is:

L(A) = {w € A* | w is accepted by A}

The next preliminary result involves NFAs directly. It is a key tool in the
following sections, and can be proved by a simple pumping argument.

Lemma 2 Let n > 1 be an arbitrary integer. Then n+ 1 resp. n states are suf-
ficient and necessary in the worst case for an NFA to accept the language {a™}*

resp. {a"}*.

3 Operations on Regular Languages

3.1 Boolean Operations

We start our investigations with Boolean operations on NFAs that accept unary
regular languages. At first we consider the union. Due to the lack of suited
tools and methods such as unique minimization etc. the proof of the lower
bound refers specifically to the structures of the witness automata.

Theorem 3 For any integers m,n > 1 let A be a unary m-state and B be a
unary n-state NFA. Then m+n+ 1 states are sufficient for an NFA C to accept
the language L(A) U L(B).

Proof. To construct an (m + n + 1)-state NFA for the language L(.A) U L(B),
we simply use a new initial state and connect it to the states of A and B
that are reached after the first state transition. During the first transition, C
nondeterministically guesses whether the input may belong to L(A) or L(B).
Subsequently, A or B is simulated. Obviously, L(C) = L(A) U L(B) and |S| =
|Sal+ 1Sl +1=m+n+1 0

Theorem 4 Let m,n > 1 be two integers such that neither m is a multiple
of m nor n is a multiple of m. Then there exist a unary m-state NFA A and
a unary n-state NFA B such that any NFA C accepting L(A) U L(B) needs at
least m + n + 1 states.

Proof. W.l.o.g. we may assume m > n. Since m is not a multiple of n we
obtain n > ged(m,n).

Let A be an m-state NFA that accepts the language {a™}* and B be an n-state
NFA that accepts {a"}*. Let C be an NFA with initial state sy for the language

4

L(A)UL(B). In order to prove that C has at least m +n + 1 states assume that
it has at most m + n states.

At first we consider the input a”™*" and show that it does not belong to L(C).
Since 2m > m + n > m the input does not belong to L(A). If it would belong
to L(B), then there were a constant ¢ > 2 such that m + n = ¢ - n. Therefore,
m = (¢ — 1) - n and, thus, m would be a multiple of n what contradicts the
assumption of the theorem.

The next step is to show that each of the states so - s1 -+ F Sy—1 - Sy Which
are passed through when accepting the input a™ either is not in a cycle or is in
a cycle of length m. To this end assume contrarily some state s; is in a cycle of
length x # m, i.e. s; is reachable from s; by processing z input symbols. Due
to the number of states we may assume x < m + n.

By running several times through the cycle a™*®, ¢™+2% and o™ 13

cepted.

are ac-

We observe m + z is not a multiple of m. If it is not a multiple of n we are
done. Otherwise, z cannot be a multiple of n since m is not a multiple of n.
Moreover, now we observe m + 2z is not a multiple of n since m + z is and =
is not. If m + 2z is not a multiple of of m we are done.

Otherwise we consider m+ 3z which now cannot be a multiple of m since m+2x
is and z is not. If m + 3z is not a multiple of n we are done.

Otherwise we summarize the situation: m + 3z and m + = are multiples of n
which implies 2z is a multiple of n. Since m + 2z is a multiple of m we conclude
that 2z is a multiple of m, too. Moreover, x is neither a multiple of m nor of n.

From z < m+n < 2m = 2z < 4m we derive 2z € {m,3m}. If 2z = m,
then m is a multiple of n, a contradiction. So let 22z = 3m. Since 2z is a
multiple of n there exists a constant ¢ € N such that 3m = cn. Fromz < m+n
follows %m < m + n. Therefore %m < n which together with n < m implies
c € {4,5,6}.

It holds %m = n. On the other hand, m +z = m + %m = gm is a multiple
of n. Therefore %/% = % must belong to N for ¢ € {4,5,6}. Thus ¢ = 6, but
in this case %m =n = m = 2n and m is a multiple of n what contradicts the
assumption of the theorem.

In order to complete the proof of the theorem now we come back to the sequence
of states so - 81 F - -+ F 8;m—1 F Sm passed through when accepting the input a™.

Correspondingly let sp - s} - --- - s,,_; I s}, be an accepting sequence for a™.

Since L(C) is an infinite language C must contain some cycle. If a s; from
80,---,8m 18 in a cycle, then its length is m states. State s; may not be in the
sequence g - 8| -+ - s/, because in this case a™ '™ would be accepted. In
order to accept a” but to reject al,...,a"! in any case, the states sg, s}, ..., s},

must be pairwise different. Altogether this results in at least n 4+ 1 4 m states.

If on the other hand a s; from sg,s),...,s), is in a cycle, then it may not be
in sg,s1,...,8m. Otherwise the cycle length must be m and o™ would be
accepted. Concluding as before this case results in at least m + n + 1 states,

too.

Finally, if neither a state from sg, s1,..., sy, nor a state from sj,..., s, is in
a cycle, then obviously sy, ..., s, must be pairwise different, but all states s;-
may or may not appear in So, ..., Sy,. This takes at least m + 1 states. So there
remain at most n — 1 states for a cycle. Therefore, the cycle length x is at
most n — 1. Now we consider an accepting computation for the input a”". It
must have run through the cycle. Running once more through the cycle leads
to acceptance of a™"*® which does not belong to L(C).

So in any case we obtain a contradiction to the assumption that C has at most
m + n states. |

Next we are going to prove a tight bound for the intersection. The upper
bound is obtained by the simple cross-product construction. The lower bound
requires m L n. In [13] unary languages are studied whose deterministic state
complexities are not relatively prime.

Theorem 5 For any integers m,n > 1 let A be a unary m-state and B be a
unary n-state NFA. Then m - n states are sufficient for an NFA C to accept the
language L(A) N L(B). If m L n, then there exist a unary m-state NFA A and
a unary n-state NFA B such that any NFA C accepting L(A) N L(B) needs at
least m - n states.

Proof. As witness languages consider L(A) = {a™}* and L(B) = {a"}*. Since
m L n the intersection L(A) N L(B) is {a”"}*. Due to Lemma 2 any NFA
accepting the intersection needs at least m - n states. O

For complementation of unary NFAs a crucial role is played by the function
F(n) = max{lem(z1,...,zx) | z1,...,2k € NA z1 + -+ + 2 = n} which gives
the maximal order of the cyclic subgroups of the symmetric group of n symbols.
For example, the first seven values of F' are F(1) = 1, F(2) = 2, F(3) = 3,
F(4) =4, F(5) =6, F(6) =6, F(7) =12 due to the sums 1 =1,2 =2, 3 = 3,
4=4,5=24+3,6=1+2+3(or6=6) and 7=3 +4.

Since F' depends on the irregular distribution of the prime numbers we cannot
expect to express F'(n) explicitly by n. The function itself has been investigated
by Landau [8, 9] who has proved the asymptotic growth rate

In(F(n))

lim ———F= =
n—oo n - ln(n)

A bound immediately derived from Landau’s result is:
In(F'(n)) € ©(v/n - 1n(n))

For our purposes the implied rough estimation F(n) € W) guffices.

Shallit and Ellul [16] pointed out that the bound F(n) € O(eV™™™) which is
claimed in [3] is not correct. They deduced finer bounds from a result in [19]
where the currently best known approximation for F' has been proved. Never-
theless, in [3] it has been shown that for any unary n-state NFA there exists an
equivalent O(F(n))-state deterministic finite automaton.

This upper bound for the transformation to a deterministic finite automaton
is also an upper bound for the costs of the unary NFA complementation, since
the unary deterministic complementation neither increases nor decreases the
number of states (simply interchange accepting and rejecting states). The next
theorem is an immediate consequence.

Theorem 6 For any integer n > 1 the complement of a unary n-state NFA
language is accepted by an O(F(n))-state NFA.

This expensive upper bound is tight in the order of magnitude.

Theorem 7 For any integer n > 1 there exists a unary n-state NFA A such
that any NFA accepting the complement of L(A) needs at least Q(F(n)) states.

Proof. Let z1,...,z; € N be integers such that z1 + -+ = n — 1
and lem(zq,...,25) = F(n — 1). If one of the integers x; may be factorized as
x; = y-zsuchthat y,z > 1 and y L z, then x; can be replaced by y,2,1,1,...,1
where the number of ones is y - z — (y + z). Obviously neither the sum nor the
least common multiple is affected. So we may assume that all z; are powers of
prime numbers. If two of the integers are powers of the same prime number,
then the smaller one is replaced by a corresponding number of ones. Again
neither the sum nor the least common multiple is affected. But now we may
assume without loss of generality that all z; are relatively prime, i.e. z; L x;
for i # j.

Now define for 1 < i < k the languages L; = {a® }* and consider the union of
their complements: L = L U Ly U --- U Ly,

Since L; is acceptable by a z;-state NFA A; the language L is acceptable by an
NFA A with at most 1 + z1 + +++ + x; = n states. To this end we introduce a
new initial state and connect it nondeterministically to the states of the A; that
are reached after their first state transition. Since all z; are relatively prime
the complement of L is L = {alcm(fcl"“’“’k)}*. Therefore, the complement of the

n-state language L needs lem(z1,...,z;) = F(n — 1) states. Since F(n) is of
order 2V (M) it follows F(n — 1) is of order Q(F(n)). O

3.2 Catenation Operations

The lower bound of the concatenation misses the upper bound by one state. It
is an open question how to close the gap by more sophisticated constructions
or witness languages.

Theorem 8 For any integers m,n > 1 let A be a unary m-state NFA and B be
a unary n-state NFA. Then m + n states are sufficient for an NFA C to accept
the language L(A)L(B). Moreover, there exist a unary m-state NFA A and a
unary n-state NFA B such that any NFA C accepting L(A)L(B) needs at least
m +n — 1 states.

Proof. The upper bound is due to the observation that in C one has simply
to connect the accepting states in A with the states in B that follow the initial
state.

Let A= (Sa,{a},04,50.4,F4) and B = (Sp,{a}, 0B, s0,8, Fp) such that Sy N
Sp =0, then C = (S, {a}, 9, so, F) is defined according to S = S4 U Sp, so =
50,4, F'=F4UFp if A € L(B), F = Fp otherwise, and for all s € S:

da(s,a) ifseSa\Fa
d(s,a) = ¢ 6a(s,a) Udp(so,B,a) if s € Fy
6B(s,a) if se Sp

Let L(A) be the m-state language {a* | k = m — 1 (mod m)} and L(B) be the
n-state language {a* | k =n — 1 (mod n)}.

The shortest word in L(A) respectively L(B) is a™ ! respectively a”~!. There-
fore the shortest word in L(C) is a™*"~2. Assume contrarily to the assertion
the NFA C has at most m + n — 2 states. Let C accept the input a”1"~2 by
running through the state sequence so - s; F -+ F $p4n_2 Where all states
except Sm4n—2 are non-accepting. Due to the assumption at least one of the
non-accepting states s; must appear at least twice in the sequence. This implies
that there exists an accepting computation that does not run through the cycle
8; F -+ F s;. So an input whose length is at most m +n — 3 would be accepted,
a contradiction. O

The constructions yielding the upper bounds for the iteration and A-free iter-
ation are similar. The trivial difference between both operations concerns the
empty word only. Moreover, the difference does not appear for languages con-
taining the empty word. Nevertheless, in the worst case the difference costs one
state.

Theorem 9 For any integer n > 2 let A be a unary n-state NFA. Then n + 1
resp. n states are sufficient and necessary in the worst case for an NFA to accept
the language L(A)* resp. L(A)™.

Proof. Let A= (Sa,{a},d4,50,4,Fa) be an n-state NFA. Then the transition
function of an n-state NFA C = (S,{a},d,s0, F') that accepts the language
L(A)" is for s € S defined as follows:

5(s.a) = da(s,a) if s¢ Fy
54 = da(s,a)Uda(so,a,a) if s€ Fy

The other components remain unchanged, i.e., S = S4, so = 59,4, and F' = F4.

If the empty word belongs to L(.A) then the construction works fine for L(.A)*
also. Otherwise an additional state has to be added: Let s; ¢ Sa and define
S =85aU{sp}, so =50, F =F4aU{sp} and for s € S

04(s,a) if s ¢ FaU{sy}
d(s,a) = ¢ da(s,a) Uda(so,a,a) if s € Fy
d4(80,4,0) if s = s,

In order to prove the tightness of the bounds for any n > 2 consider the n-state
language L = {a* | k =n — 1 (mod n)}.

At first we show that n + 1 states are necessary for C = (S,{a},d, so, F) to
accept L(A)*.

Contrarily, assume C has at most n states. We consider words of the form a’
with 0 < 4. The shortest four words belonging to L(A)* are A, a"!, a®"2,
and a?"~1. Tt follows so € F. Moreover, for a® ! there must exist a path
so Fs1 - F S,_2 + s, where s, € F and s1,...,s,_2 are different non-
accepting states. Thus, C has at least n — 2 non-accepting states.

Assume for a moment F' to be a singleton. Then sy = s, andfor 1 <i<n-—3
the state so must not belong to §(s;,a). Processing the input a?"~! the NFA
cannot enter sq after 2n — 2 time steps. Since a! ¢ L(A)* the state so must not
belong to d(so, a)-

On the other hand, C cannot enter one of the states si,...,s,_3 since there
is no transition to sg. We conclude that C is either in state s,_o or in an
additional non-accepting state s, 1. Since there is no transition such that
Sp—2 € 0(sp—2,a) in both cases there exists a path of length n from sg to so.
But a™ does not belong to L(.A)* and we have a contradiction to the assumption
|F| = 1.

Due to our assumption |S| < n we now have |F| = 2 and |S| — |F| = n — 2.
Let us recall the accepting sequence of states for the input a® !: so F s1
-+« Sp—o F 8. Both sy and s, must be accepting states. Assume s, # $p.
Since a®™~2 belongs to L(A)* there must be a possible transition sy F s; or
sp F s1. Thus, a®®2 is accepted by s,. In order to accept a?"~! there must
be a corresponding transition from s,, to s, or from s, to sg. In both cases the
input ¢™ would be accepted. Therefore s,, = sg.

By the same argumentation the necessity of a transition for the input symbol a
from sq to sg or from sg to s, follows. This implies that a'! is accepted. From
the contradiction follows |S| > n.

As an immediate consequence we obtain the tightness of the bound for L(A)*.
In this case sg € F is not required. Thus, just one accepting state is necessary.
O

4 Operations on Finite Languages

The situation for finite unary languages is easier since essentially the structure
of the corresponding NFAs is simple.

In [15] it is stated that every finite unary n-state NFA language is acceptable by
some complete deterministic finite automaton with at most n+1 states. A little
bit more sophisticated, one observes that the minimum NFA for a finite unary
language L has n + 1 states if the longest word in L is of length n. Otherwise
the NFA would run through a cycle when accepting o™ and, thus, L would be
infinite. Now we can always construct a minimum NFA A = (S, {a}, 4, so, F)

for L as follows: S = {sg,s1,...,8n}, 0(8i,a) = {sit1} for 0 <i <n—1, and
F={si|a" €L}

From the construction it follows conversely that a minimum (n + 1)-state NFA
for a non-empty finite unary language accepts the input a”. An immediate
consequence is that we have only to consider the longest words in the languages
in order to obtain the state complexity of operations that preserve the finiteness.

Theorem 10 For any integers m,n > 1 let A be a unary m-state NFA and B
be a unary n-state NFA. If L(A) and L(B) are finite, then max(m,n), min(m, n)
respectively m+n — 1 states are sufficient and necessary in the worst case for an
NFA C to accept the language L(A)UL(B), L(A)NL(B) respectively L(A)L(B).

The complementation and iteration applied to finite languages yield to infinite
languages. So in general for the lower bounds we cannot argue with the simple
chain structure as before.

Theorem 11 For any integer n > 1 let A be an n-state NFA. If L(.A) is finite,
then n + 1 states are sufficient and necessary in the worst case for an NFA C to
accept the complement of L(.A).

Proof. W.lo.g. we may assume that A has the simple chain structure with
states from sy to s,—1 as mentioned before. By interchanging accepting and
non-accepting states we obtain an NFA that processes all inputs up to a length
n —1 as required. But all longer words a¥, k > n, are belonging to the comple-
ment of L(A). So it suffices to add a new accepting state s, and two transitions
from s, 1 to s, and from s, to s,, in order to complete the construction of C.
The tightness of the bound can be seen for the n-state NFA language L = {a” |
0 <k <n —1}. Since a” is the shortest word belonging to the complement of
L from the proof of Theorem 8 follows that C has at least n + 1 states. O

The state complexity for the iterations in the finite language case is as for
infinite languages if the iteration is A-free. If not the costs are reduced by two
states.

Lemma 12 For any integer n > 1 let A be a unary n-state NFA. If L(A) is
finite, then n — 1 resp. n states are sufficient and necessary in the worst case
for an NFA to accept the language L(A)* resp. L(A)™.

Proof. For the upper bounds we can adapt the construction of Theorem 9.
The accepting states are connected to the states following the initial state. That
is all for A-free iterations.

For iterations we have to provide acceptance of the empty word. The following
two observations let us save two states compared with infinite languages. First,
the initial state is never reached again after initial time. Second, since the
underlying language is finite and the accepting automaton is reduced there must
exist an accepting state sy for which the state transition is not defined. We

10

can

take sy as new initial state and delete the old initial state what altogether

leads to an (n — 1)-state NFA for the iteration.

The bound for the A-free iteration is reached for the language L = {a™ '}
which requires n states. For the accepting LT = {a" 1}T at least n states are
necessary.

The bound for the iteration is reached for the language L = {a™} that requires

n+

For

1 states. Clearly, in order to accept {a”}* at least n states are necessary. 0O

the sake of completeness the trivial bounds for the reversal are adduced in

Table 1. The results concerning DFAs are covered by [20, 21].

NFA DFA
finite ‘ infinite finite ‘ infinite

U || max{m,n} | m+n+1 max{m,n} mn
~ n+1 e®(y/nn(n)) n n
N || min{m,n} mn min{m,n} mn
R n n n n

m+n—1 1| O(m+n) m+n—2 mn
* n—1 n+1 n?—Tn+13 | (n—1)2+1
+ n n

Table 1: Comparison of unary NFA and unary DFA state complexities.

References

[1]

Berman, P. and Lingas, A. On the complexity of regular languages in terms
of finite automata. Technical Report 304, Polish Academy of Sciences,
1977.

Birget, J.-C. State-complezity of finite-state devices, state compressibility
and incompressibility. Mathematical Systems Theory 26 (1993), 237-269.
Chrobak, M. Finite automata and unary languages. Theoretical Computer
Science 47 (1986), 149-158.

Holzer, M. and Kutrib, M. State complezity of basic operations on nonde-
terministic finite automata. Implementation and Application of Automata
(CIAA '02), 2002, pp. 151-160.

Hopcroft, J. E. and Ullman, J. D. Introduction to Automata Theory, Lan-
guage, and Computation. Addison-Wesley, Reading, Massachusetts, 1979.
Hunt, H. B., Rosenkrantz, D. J., and Szymanski, T. G. On the equiva-
lence, containment, and covering problems for the regular and context-free
languages. Journal of Computer and System Sciences 12 (1976), 222-268.
Jiang, T. and Ravikumar, B. Minimal NFA problems are hard. SIAM
Journal on Computing 22 (1993), 1117-1141.

11

8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

Landau, E. Uber die Mazimalordnung der Permutationen gegebenen
Grades. Archiv der Math. und Phys. 3 (1903), 92-103.

Landau, E. Handbuch der Lehre von der Verteilung der Primzahlen. Teub-
ner, Leipzig, 1909.

Mereghetti, C. and Pighizzini, G. Two-way automata simulations and
unary languages. Journal of Automata, Languages and Combinatorics 5
(2000), 287-300.

Mereghetti, C. and Pighizzini, G. Optimal simulations between unary au-
tomata. STAM Journal on Computing 30 (2001), 1976-1992.

Nicaud, C. Awverage state complexity of operations on unary automata.
Mathematical Foundations of Computer Science (MFCS ’99) LNCS 1672,
1999, pp- 231-240.

Pighizzini, G. and Shallit, J. O. Unary language operations, state com-
plexity and Jacobsthal’s function. International Journal of Foundations of
Computer Science 13 (2002), 145-159.

Sakoda, W. J. and Sipser, M. Nondeterminism and the size of two way
finite automata. ACM Symposium on Theory of Computing (STOC ’78),
1978, pp- 275-286.

Salomaa, K. and Yu, S. NFA to DFA transformation for finite languages
over arbitrary alphabets. Journal of Automata, Languages and Combina-
torics 2 (1997), 177-186.

Shallit, J. O. and Ellul, K. Personal communication, October 2002.
Sipser, M. Lower bounds on the size of sweeping automata. Journal of
Computer and System Sciences 21 (1980), 195-202.

Stockmeyer, L. J. and Meyer, A. R. Word problems requiring exponen-
tial time. ACM Symposium on Theory of Computing (STOC ’73), 1973,
pp- 1-9.

Szalay, M. On the mazimal order in S, and S;;. Acta Arithm. 37 (1980),
321-331.

Yu, S. State complexity of regular languages. Journal of Automata, Lan-
guages and Combinatorics 6 (2001), 221-234.

Yu, S. State complexity of finite and infinite regular languages. Bulletin of
the EATCS 76 (2002), 142-152.

12

