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1 INTRODUCTION

1.1 Pulmonary Circulation

The lung vasculature is comprised of both bronchial and pulmonary circulation. Being an integral
part of systemic circulation, bronchial circulation is mainly involved in meeting the nutrient and
oxygen demand of the lungs. In contrast, pulmonary circulation transports the deoxygenated blood
from the heart and oxygenates it before dispersing it back into systemic circulation [1]. The
pulmonary circulation can be divided into three anatomic compartments: the arterial tree, the
venous tree, and the capillary bed. To facilitate the flow of blood in huge volumes, pulmonary
circulation maintains a low pressure (15mmHg) in comparison to systemic circulation and low
resistance by forming many capillaries running in parallel [2]. Furthermore, it ensures efficient
gaseous exchange by providing a large surface area by forming a capillary network and a small
diffusion distance through the thin capillary walls (0.3um) [2, 3]. To perform these complex
functions, the pulmonary vasculature requires a defined cellular composition. As such, the
pulmonary artery is comprised of three defined layers: the intimal layer comprising endothelial
cells, the medial layer comprising mainly smooth muscle cells, and the adventitial layer comprising
fibroblast [4] (Figure 1.1). Apart from these cellular components, the vasculature is made up of
various extracellular matrix components like collagen, elastin, fibronectin, and proteoglycans,

which are required to maintain elasticity, tensile strength, and cell migration [5].

//g— — o
s Z ;f L= ‘-\\\\'\ FZL
/ / SMCs
/ ECISEL

Healthy
Pulmonary artery

Figure 1.1. Pulmonary artery cellular arrangement (modified from ref [6]). FBs- fibroblasts, SMCs- smooth

muscle cells, ECs- endothelial cells, EEL- external elastic lamina, IEL- internal elastic lamina.

A complex interplay between various dynamic processes mediates pulmonary vasculature's
physiological response to various respiratory and metabolic demands. An unbalance in these events
leads to the induction of pathophysiological conditions such as Pulmonary artery atresia,
pulmonary artery aneurysm, and pulmonary hypertension [7]. This study focuses on one such
disorder- pulmonary hypertension.
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1.2 Pulmonary Hypertension

Pulmonary hypertension (PH) is a progressive and multifactorial disease of the pulmonary
vasculature. Recently, the 6th World Symposium on Pulmonary Hypertension (WSPH) task force
has recommended defining all forms of pre-capillary PH as the presence of mean pulmonary artery
pressure (MPAP) >20mmHg, pulmonary capillary wedge pressure (PAWP)< 15, and pulmonary
vascular resistance (PVR) >3 Wood units. PH groups are classified based on their similar clinical
presentation, pathophysiological mechanism, hemodynamic characteristics, and therapeutic
management (Table 1.1). PH consists of five major groups (G), G1: pulmonary arterial
hypertension (PAH); G2: PH due to left heart disease; G3: PH due to lung disease and/or hypoxia;
G4: PH due to pulmonary artery obstructions and G5: PH with unclear and/or multifactorial

mechanisms [8].

Table 1.1: Clinical Classification of Pulmonary Hypertension [8]

1. Pulmonary Arterial Hypertension (PAH)
1.1 Idiopathic PAH (IPAH)

1.2 Heritable PAH

1.3 Drug and toxin-induced PAH

1.4 PAH associated with:

1.4.1 Connective tissue disease
1.4.2 HIV infection
1.4.3 Portal hypertension
1.4.4 Congenital heart disease
1.45 Schistosomiasis
1.5 PAH long term responders to calcium channel blockers
1.6 PAH with overt features of venous/capillaries (PVVOD/PCH) involvement

1.7 Persistent PH of the newborn syndrome

2. PH due to left heart disease
2.1 PH due to heart failure with preserved LVEF
2.2 PH due to heart failure with reduced LVEF

2.3 Valvular heart disease

2|Page
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2.4 Congenital/acquired cardiovascular conditions leading to post-capillary PH

3. PH due to lung diseases and/or hypoxia

3.1 Obstructive lung disease

3.2 Restrictive lung disease

3.3 Other lung disease with mixed restrictive/obstructive pattern
3.4 Hypoxia without lung disease

3.5 Developmental lung disorders

4. PH due to pulmonary artery obstructions
4.1 Chronic thromboembolic PH

4.2 Other pulmonary artery obstructions

5. PH with unclear and/or multifactorial mechanism

5.1 Hematological disorders
5.2 Systemic and metabolic disorders
5.3 Others

5.4 Complex congenital heart disease

1.2.1 Pathophysiology of Pulmonary Hypertension

Irrespective of clinical classifications, every group of PH exhibits pulmonary vascular constriction,

pathological remodeling of vessels, and right ventricular dilation.

1.2.1.1 Pulmonary vascular remodeling

The pathological remodeling of pulmonary vessels is mainly characterized by the muscularization
of peripheral arteries, medial hypertrophy of muscular arteries, neointima formation, and plexiform
lesion formation [9] (Figure 1.2). The events observed in the muscularization of peripheral arteries
are usually preceded by the development of dysfunctional pulmonary artery endothelial cells
(PAECs) and the differentiation of pericytes into smooth muscle cells (SMCs). Previous studies
have demonstrated that PAECs isolated from IPAH patients have increased secretion of factors like
serotonin and FGF2 which promote SMC proliferation [10, 11], as well as diminished production
of factors like apelin which inhibits SMC proliferation [12]. The medial hypertrophy of muscular
arteries and neo-intimal formation can be majorly driven by the hyperproliferation and migration
of pulmonary artery smooth muscle cells (PASMCs) and pulmonary artery adventitial fibroblast

3|Page
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(PAAFS) [13]. Furthermore, in the later stage of the disease, aberrant vascular channels develop
due to the monoclonal expansion of apoptosis-resistant endothelial cells leading to plexiform lesion
formation [14]. Apart from the resident vascular cells, many inflammatory cells like macrophages,

B cells, and T cells play critical roles in vascular remodeling, which is noteworthy [15].

PAH Vascular Pathogenesis

Peripheral artery muscularization Medial hypertrophy

Pericyte

Proliferation of
fibroblasts
and SMCs

Swelling of ECs
Fragmented elastin

EC

Adv. fibroblast

Neointima formation

Inflammatory cell

Smooth muscle-like cells Endothelial channel
encroach on lumen formation
Inflammation

Figure 1.2. Pathological events in the remodeling of the vasculature (Modified from ref [9]): EC-Endothelial
cells, SMC-Smooth Muscle Cells, Adv. - Adventitial.

1.2.1.2 Pulmonary vasoconstriction

Under physiological conditions, vasoconstriction is a controlled response to decreased alveolar
oxygen levels and low oxygen partial pressure in pulmonary arterioles [16]. The increased PVR
and mPAP that are observed in PH can also be partially caused by excessive vasoconstriction of
the pulmonary vessels [17]. Endothelial cells play a major role in maintaining vascular tone under
physiological conditions [18]. The vasoconstriction observed in high altitude-PH patients is an
adaptive mechanism, as a result of hypoxia [19]. An increase in shear stress or endothelial

dysfunction leads to excessive vasoconstriction due to an imbalance in the vasodilators and
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vasoconstrictors composition in the vascular system (Figure 1.3). Previous studies have revealed
that a reduction in the vasodilators like prostacyclin and an increase in the vasoconstrictors like
thromboxane [20].

vasoconstriction vasodilation
[ ——————— ——————————————

' PH Stimuli

e e

Constricted PH vessel

Healthy vessel

Figure 1.3. Vasoconstriction in pulmonary hypertension (Modified from ref [21])

1.2.1.3 Right ventricular failure

Patient survival in PH greatly depends on the response of the right ventricle (RV) to the increased
afterload [22, 23]. Under physiological conditions, the RV maintains a crescentic geometry in
comparison to the cone-like left ventricle (LV), and the RV is thin-walled in comparison to the
thicker LV wall [24] (Figure 1.4). In PH, chronic pressure overload leads to RV hypertrophy and
if persistent leads to RV failure (RVF). Right ventricle failure (RVF) is clinically defined as the
inability of the RV to adequately perfuse the lung circulation to maintain LV filling [25].
Assessment of the RV function is based on both invasive like right heart catheterization and
noninvasive methods like magnetic resonance and echocardiographic imaging [24]. At the cellular
and molecular level, RVF results from increased cell death, fibrosis, and decreased angiogenesis

due to inflammation, oxidative stress, metabolic dysfunction, and impaired calcium handling [26].
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Crescent shaped Circular shaped
Right Ventricle Right Ventricle

oY

CC

Figure 1.4. Right ventricular failure in pulmonary hypertension (modified from ref [27]): RV-right ventricle,
LV- left ventricle, PAH- Pulmonary artery hypertension.

1.2.2 Molecular Modulators of PAH pathogenesis

The phenotypical alterations observed in PAH are mediated by various dysregulated signaling
pathway modulators like transcription factors, growth factors, epigenetic modulators, metabolic
regulators, and non-coding RNAs. Understanding these altered signaling pathways is important for

exploring therapeutic options for treating PH.

1.2.2.1 Transcription factors

Transcription factors (TF) are DNA binding proteins that are capable of controlling the
transcription process. Transcription factors are categorized as general transcription factors that are
involved in basic transcription and regulatory or gene-specific TF which is involved in differential
gene expression. Previous studies have demonstrated that TFs play an important role in mediating
pathological events in PAH [28]. The TFs induce PH/PAH disease phenotypes includes hypoxia-
inducible factor 1A (HIF1A), hypoxia-inducible factor 2A (HIF2A), single transducer and activator
of transcription 3, nuclear factor-kappa B (NF-KB), twist basic helix-loop-helix transcription factor
1(TWIST1), GATA binding protein 6 (GATA-6) and octamer-binding transcription factor 4
(OCT4) [29-36]. The TFs that negatively regulate disease pathogenesis includes forkhead box
protein 1 (FOXO1), tumor protein 53 (TP53), myocyte enhancer factor 2 (MEF2), kruppel like
factor 4 (KLF4) and peroxisome proliferator activated receptor gamma 1 (PPARGL1) [37-41].
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Among these TFs, FOXO1 was discovered as one of the central players in regulating the
hyperproliferative and apoptosis-resistant phenotype of the PASMCs, which is a pathological
hallmark of PAH. FOXO1 inactivation due to hyperphosphorylation was observed exclusively in
PASMCs in both, patients with PAH and experimental PAH models. Stimulation with growth
factors and inflammatory cytokine led to the phosphorylation of FOXOL1 at ser256 and Thr24 and
exclusion from the nucleus, which suggests that FOXO1 acts as a central downstream molecule of
pro-proliferative and pro-inflammatory PH stimuli. Importantly, in vitro and in vivo loss of FOXO1
specifically in SMCs was sufficient to induce PH. These results suggest that FOXO1 as a central
player in PAH pathogenesis [38]. Thus, TFs-based therapeutic approaches can be an effective
means for treating PAH.

1.2.2.2 Epigenetic modulators

Epigenetics is defined by the study of chemical modifications of DNA and its associated chromatin
proteins without direct modifications of the sequence [42]. The epigenetic modifications can be de
novo or may be inherited, it alters the chromatin organization and dictates the cell phenotype [43].
The known epigenetic modifications are DNA methylation, ATP-dependent chromatin remodeling,
histone post-translational modifications, the replacement of canonical histones with variants, and
altered 3D nuclear architecture [44, 45].

Recent studies have shown that aberrant DNA methylation in PH. Hypermethylation of the CpG
Island in the promoter region of superoxide dismutase (SOD) 2 gene was observed in the lungs and
PASMCs isolated from the fawn hooded rats, a spontaneous PH model, leading to the epigenetic
silencing of the SOD2 gene. This silencing leads to an activation of HIF1 and the hyperproliferative
phenotype [46]. Post-translational modifications (PTMs) of histones are also known to play
important roles in PH pathogenesis, the most commonly known PTMs are acetylation and
methylation. These PTMs regulate transcriptional regulation, chromatin condensation, and genetic
imprinting [47]. The histone acetylation is tightly regulated by histone acetyltransferases (HAT)
and histone deacetylases (HDAC). Increased acetylation of H3 and H4 at the promoter region of
endothelial nitric oxide synthase (eNOS) has been observed in PAECs isolated from persistent
pulmonary hypertension of newborn (PPHN) rat model. This study shows histone acetylation of
eNOS plays an important role in the pathogenesis of PPHN [48]. It has also been observed that
HDAC1, HDAC2, and HDAC3 were increased in the distal pulmonary arteries of chronically
hypoxic hypertensive calves [49]. It has been observed that the activity of TF myocyte enhancer
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factor 2(MEF2) was restored in PAECs derived from PAH patients upon inhibition of HDAC4 and
HDACS, leading to decreased cell migration and proliferation [40]. Several ongoing studies are

currently exploring the therapeutic viability of targeting epigenetic modifiers in PH.

1.2.2.3 Growth factors

Growth factors (GF) are proteins that modulate cell survival, differentiation, proliferation, tissue
repair, and inflammation. Several GFs like platelet-derived growth factor (PDGF), epidermal
growth factor (EGF), and vascular endothelial growth factor (VEGF) have been shown to induce
hyper-proliferation, migration, and apoptosis-resistance in pulmonary artery vascular cells
(PAECs, PASMCs, PAAFs), which are phenotypical hallmarks of PAH pathology [50-53]. It has
been observed that VEGF was highly expressed in PAECs found in the PAH patient’s plexiform
lesions [54]. Furthermore, in PAH lesions, EGF was observed to be colocalized with an
extracellular matrix component tenascin C that is required for EGF dependent proliferation and
migration of SMCs [55]. An increased expression of PDGF-A, PDGF-B, and PDGF receptors was
observed in pulmonary arteries of IPAH patients, and treatment with tyrosine kinase inhibitor has
shown beneficial effects in both rat PAH models and clinical trials [51, 56, 57].

1.2.2.4 Non-coding RNAs

Recent studies have shown that non-coding RNAs such as microRNAs (miR) and long noncoding
RNA (IncRNA) play a major role in maintaining the physiological balance in several organs.
Several miRNAs such as miR-21, miR-214, miR-130/301, and miR-125a were upregulated in
pulmonary hypertension [58]. miR-130/301 family has to play an important role in PH by
modulating the STAT3-miR-204 signaling in endothelial cells and apelin-miR424/503-FGF2
signaling in SMCs [59, 60]. LncRNAs are non-coding transcripts of more than 200 nucleotide
length, they are studied in PH as molecular regulators, circulating biomarkers, and therapeutic
targets [61]. LncRNAs such as MALAT1, MYOSLID, and TYKRIL was observed to be
upregulated in pulmonary hypertension [62-64]. Several IncRNA such as MANTIS, MEGS3,
LISPR1, and CASC2 were down-regulated, and IncRNA H19 was found to be upregulated in
patients with severe PH [64-68]. My recent work demonstrated that LncRNA TYKRIL regulates
the proliferation and migration of both human PASMCs (hPASMCs) and lung pericytes by acting
as a p53 decoy and by regulating the expression of PDGFRP. It has been also shown that targeting
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TYKRIL in ex vivo precision-cut lung slices derived from IPAH patients, reversed the vascular

remodeling, suggesting it as a therapeutic option for the treatment of PH [64].

1.3 Cyclic adenosine 3", 5"-monophosphate (CAMP) signaling pathway

The cAMP is a secondary messenger that aids in mediating cellular responses to various
extracellular stimuli. Thus, i