I F I G
RESEARCH
REPORT

Institut fiir Informatik

JLU GieBen

ArndtstraBe 2

D-35392 Giessen, Germany
Tel: +49-641-99-32141

Fax: +49-641-99-32149
mail@informatik.uni-giessen.de

www.informatik.uni-giessen.de

INSTITUT FUR INFORMATIK

@

FAsT ONE-WAY
CELLULAR AUTOMATA

Andreas Klein Martin Kutrib

IFIG RESEARCH REPORT 0106

SEPTEMBER 2001

JUSTUS-LIEBIG-

UNIVERSITAT
GIESSEN

IFIG RESEARCH REPORT
IFIG RESEARCH REPORT 0106, SEPTEMBER 2001

FAST ONE-WAY CELLULAR AUTOMATA

Andreas Klein!

Institut fiur Mathematik, Universitat Kassel
Heinrich Plett Strafle 40, D-34132 Kassel, Germany

Martin Kutrib?

Institute fur Informatik, Universitat Giessen

Arndtstr. 2, D-35392 Giessen, Germany

Abstract. Space-bounded one-way cellular language acceptors (OCA) are investi-
gated. The only inclusion known to be strict in their time hierarchy from real-time
to exponential-time is between real-time and linear-time! We show the surprising
result that there exists an infinite hierarchy of properly included OCA-language
families in that range. A generalization of a method of Terrier is shown which pro-
vides a tool for proving that languages are not acceptable by OCAs with small time
bounds. The hierarchies are established by such a language and a translation result.
In addition, a notion of constructibility for CAs is introduced, along with some of
its properties. We prove several closure properties of the families in the hierarchy.

CR Subject Classification (1998): F.1, F.4.3, B.6.1, E4

!E-mail: klein@mathematik.uni-kassel.de
2E-mail: kutrib@informatik.uni-giessen.de

Copyright © 2001 by the authors

1 Introduction

Linear arrays of interacting finite automata are models for massively parallel
language acceptors. Their advantages are simplicity and uniformity. It has
turned out that a large array of not very powerful processing elements operating
in parallel can be programmed to be very powerful.

One type of system is of particular interest: the cellular automata whose ho-
mogeneously interconnected deterministic finite automata (the cells) work syn-
chronously at discrete time steps obeying one common transition function. Here
we are interested in a very simple type of cellular automata. The arrays are
real-space bounded, i.e., the number of cells is bounded by the number of input
symbols, and each cell is connected to its immediate neighbor to the right only.
Due to the resulting information flow from right to left such devices are called
one-way cellular automata (OCA). If the cells are connected to their both im-
mediate neighbors the information flow becomes two-way and the device is a
(two-way) cellular automaton (CA).

Although parallel language recognition by (O)CAs has been studied for more
than a quarter of a century some important questions are still open. In partic-
ular, only little is known about proper inclusions in the time hierarchy. Most of
the early languages known not to be real-time but linear-time OCA-languages
are due to the fact that every unary real-time OCA-language is regular [3].
In [10] and [9] a method has been shown that allows proofs of non-acceptance for
non-unary languages in real-time OCAs. Utilizing these ideas the non-closure
of real-time OCA-languages under concatenation could be shown.

Since for separating the complexity classes in question there are no other general
algebraic methods available, specific languages as potential candidates are of
particular interest. In [4] several positive results have been presented. Surpris-
ingly, so far there was only one inclusion in the time hierarchy from real-time to
exponential-time known to be strict. It is the inclusion between real-time and
linear-time languages. In [1] the existence of a non-real-time OCA-language
which is acceptable in (n + log(n))-time has been proved yielding a lower upper
bound for the strict inclusion. Another valuable tool for exploring the OCA
time hierarchy is the possible linear speed-up [6] from n + r(n) to n + ¢ - r(n)
for € > 0.

One contribution of the present paper is to show that there exists an infinite
time hierarchy of properly included language families. These families are lo-
cated in the range between real-time and linear-time. The surprising result
covers the lower part of the time hierarchy in detail. Another contribution is
the investigation of several closure properties of the language families in the
hierarchy.

The paper is organized as follows: In Section 2 we define the basic notions and
the model in question. Since for almost all infinite hierarchies in complexity
theory the constructibility of the bounding functions is indispensable, in Sec-
tion 3 we present a new notion of constructibility in OCAs and prove that it
covers a wider range of functions than the usual approach. Section 4 is devoted

to a generalization of the method in [9] to time complexities beyond real-time.
This key tool is utilized to obtain a certain language not acceptable with a
given time bound. In Section 5 the corresponding proper inclusion is extended
to an infinite time hierarchy by translation arguments. Finally, in Section 6
some closure properties are investigated.

2 Basic notions

We denote the positive integers {1,2,...} by N and the set NU {0} by Ny. The
empty word is denoted by A and the reversal of a word w by w®. For the length
of w we write |w|. We use C for inclusions and C if the inclusion is strict. For
a function f : Ng — N we denote its i-fold composition by flil, i € N. If f is
increasing then its inverse is defined according to

f7 (n) = min{m € N | f(m) > n}.

As usual, we define the set of functions that grow strictly less than f by o(f) =
{g: No = N | limy, 500 % = 0}. In terms of orders of magnitude f is an upper
bound of the set O(f) ={g:Nog = N |Ing,c e N:Vn>np:g(n) <c-f(n)}

Conversely, f is a lower bound of the set Q(f) = {g:Ng = N | f € O(g)}-

A one-way resp. two-way cellular automaton is a linear array of identical deter-
ministic finite state machines, sometimes called cells, which are connected to
their nearest neighbor to the right resp. to their both nearest neighbors. The
array is bounded by cells in a distinguished so-called boundary state. For con-
venience we identify the cells by positive integers. The state transition depends
on the current state of each cell and the current state(s) of its neighbor(s). The
transition function is applied to all cells synchronously at discrete time steps.
Formally:

Definition 1 A one-way cellular automaton (OCA) is a system (S, 0, #, A, F')
where

1. S is the finite, nonempty set of cell states,

2. #¢ S is the boundary state,

3. A C S is the nonempty set of input symbols,

4. F C S is the set of accepting (or final) states, and

5. 6:(SU{#})? — S is the local transition function.

e e K e Kl e Bien Bl]

Figure 1: A one-way cellular automaton.

If the flow of information is extended to two-way the resulting device is a (two-
way) cellular automaton (CA) and the local transition function maps from
(SU{#}) to S.

A configuration of a cellular automaton at some time ¢t > 0 is a description of
its global state, which is actually a mapping ¢; : {1,...,n} — S for n € N.

* s p st 4

Figure 2: A (two-way) cellular automaton.

The configuration at time 0 is defined by the initial sequence of states. For
a given input w = a1---a, € AT we set ¢y (i) = a; for 1 < ¢ < n. During
a computation the (O)CA steps through a sequence of configurations whereby
successor configurations are computed according to the global transition func-
tion A:

Let ¢; for ¢ > 0 be a configuration, then its successor configuration is as follows:

Cti1 = A(ct) =
cv1(1 (# ci(1)
crr1(i) = (et z—l i),c(i+1)),i€4{2,...,n—1}
ci1(n) = d(ci(n — 1)a t(n)a#)

for CAs and correspondingly for OCAs. Thus, A is induced by 4.

If the state set is a Cartesian product of some smaller sets S = Sy x Sy x--- X .S,
we will use the notion register for the single parts of a state.

An input w is accepted by an (O)CA if at some time ¢ during its course of
computation the leftmost cell enters an accepting state.

Definition 2 Let M = (S, 4, #, A, F) be an (O)CA.
1. An input w € AT is accepted by M iff there exists a time step i € N such
that ¢;(1) € F holds for the configuration ¢; = All(cy,,).
2. L(IM) ={w € A" | w is accepted by M} is the language accepted by M.
3. Let t : N — N, t(n) > n, be a mapping. If all w € L(M) can be accepted
with at most t(|w|) time steps, then L is said to be of time complexity t.

The family of all languages that are acceptable by some OCA (CA) with time
complexity ¢ is denoted by .Z;(OCA) (Z,(CA)). If t equals the identity function
id(n) = n, acceptance is said to be in real-time, and if ¢ is equal to k - id for an
arbitrary rational number k£ > 1, then acceptance is carried out in linear-time.
Correspondingly, we write Z,+((O)CA) and .Z3;((O)CA).

In the following we are going to prove our main result:

Theorem 3 Let 1,72 : N — N be two increasing functions.
If rolog(rs) € o(r1) and r;* is constructible, then

gn-l—rz(n)(OCA) - gn-}-m(n)(OCA)

Example 4 Let 0 < p < ¢ < 1 be two rational numbers. Clearly, n?-log(n?) is
of order o(n?). In the next section the constructibility of the inverse of n? will
be established. Thus, an application of Theorem 3 yields the strict inclusion

gn_|_np (OCA) C $n+nq (OCA)

Example 5 Let ¢ < j be two positive integers, then log[j] -log[j"'l] is of order
o(logl!l). Again, in the next section the constructibility of the inverse of logl?
will be established. Thus, an application of Theorem 3 yields the strict inclusion

Z +10g[j](OCA) C Zn

n

Hlogli] (OCA)

3 Constructible Functions

For the proof of Theorem 3 it will be necessary to control the lengths of words
with respect to some internal substructures. The following notion of construc-
tibility expresses the idea that the length of a word relative to the length of a
subword should be computable.

Definition 6 A function f : N — N is constructible if there exists an \-free
homomorphism h and a language L € 4,;(OCA) such that

hL) = {7 | n e N}

Since constructible functions describe the length of the whole word dependent
on the length of a subword it is obvious that each constructible function must
be greater than or equal to the identity. At a first glance this notion of con-
structibility might look somehow unusual or restrictive. But A-free homomor-
phisms are very powerful such that the family of (in this sense) constructible
functions is very rich, and is, in fact, a generalization of the usual notion. The
remainder of this section is devoted to clarify the presented notion and its
power.

The next lemma states that we can restrict our considerations to length pre-
serving homomorphisms. The advantage is that for length preserving homo-
morphisms each word in L is known to be of length f(m) for some m € N.

Lemma 7 Let f : N — N be a constructible function. Then there exists a
length preserving A-free homomorphism h and a language L € .%,,(OCA) such
that

h(L) = {af™="b" | n € N}

Proof. Since f is constructible there exists an A-free homomorphism A’ and
a language L' € .%;(OCA) such that h/(L') = {a/™~"p" | n € N}. In order
to prove the assertion it suffices to construct a language L € .£,+(OCA) and
a length-preserving A-free homomorphism h with h(L) = h'(L'). Let L' be
defined over an alphabet A = {a1,...,an,} and A’ according to

W(a1) =bia-bipn,, h'(az) =boi- bopy, ..o h(am)=bmi- bmnm

where the symbols b;; are not necessarily different. We introduce an alpha-
bet B = {b11,...,b1n15---,0mpn,, } of different symbols and define the length
preserving A-free homomorphism h by

h(bs ;) = b

forl1<i<mand1<j<n;.
In order to construct L we define a homomorphism £ by

~

h(l_)i,l) = a; and B(EZ,J) =A
for 1 <i<mand2<j<mn; and set
L=h"Y(LYN{biy-- bin | 1<i<m}*

By construction h'(L') = h(L) follows. Since .%,+(OCA) is closed under inverse
homomorphisms and intersection with regular sets L belongs to .Z:(OCA).
a

Given an increasing constructible function f : N — N and a language L, C A™
acceptable by some OCA with time complexity n + r(n), where r : N — N,
we now define a language that plays an important role in the sequel. Let
the language Ly C BT be a witness for the constructibility of f, i.e., Ly €
Z4(0OCA) and h(L;) = {a/™ 5" | n € N} for a length preserving A-free
homomorphism h. The language

L1(Lay Ly) € (AU{u)) x B)*

is constructed as follows:
1. The second component of each word w in Ly (Lg, Ly) is a word of Ly that
implies that w is of length f(m) for some m € N.
2. The first component of w contains exactly f(m) — m blank symbols and
m non-blank symbols.
3. The non-blank symbols in the first component of w form a word in L,.

The following proposition is used in later sections. Besides, it is an example
that demonstrates how to use constructible functions. In Lemma 16 we will
prove that the shown bound for the time complexity of L; is minimal.

Proposition 8 The language L1(Lg, Ly) is acceptable by some OCA with time
complexity n + r(f1(n)).

Proof. We construct an OCA A with three registers that accepts L; obeying
the time complexity n + r(f~1(n)).

In its first register A verifies that the second component of each word in L; is
a word of L. By definition of L; this can be done in real-time.

In its second register A checks that the first component of L; contains exactly
f(m) —m blank symbols. Because it can be verified that the second component
of Ly belongs to Ly, we know that the first f(m) — m symbols of the second
component are mapped to a’s and the last m symbols of the second component
are mapped to b’s. The task is to check that the number of a’s in the second
component is equal to the number of blank symbols in the first component.
Therefore, A shifts the blank symbols from right to left. Each symbol a in the
second component consumes one blank symbol. A signal that goes from the
right to the left with full speed can check that no blank symbol has reached the

leftmost cell and that each letter a has consumed one blank symbol, i.e., that
the number of a’s is equal to the number of blank symbols. The test can be
done in real-time.

In order to verify that the non-blank symbols in the first component form a
word of L, the automaton A simulates the OCA that accepts L,. But for
every blank symbol A needs one time step in addition as illustrated below.
Therefore, A needs m +r(m) + (f(m) —m) steps for the simulation (m + r(m)
time steps for the simulation itself and f(m) — m time steps delaying time).
Substituting m = f~!(n) completes the proof. O

The basic idea for accepting words with OCAs that have blank cells is as follows
(cf. Figure 3). Initially, the blank cells are marked as transportation cells. At
every time step they simply store the state of their right neighbors in some
register. All non-blank cells can be blocked or not. A cell gets blocked if its
neighbor is blocked or if its neighbor transports a blocked or blank symbol.
A blocked cell gets released if its neighbor is released or transports a released
symbol. Blocked cells keep their states and released cells work as usual.

It is easily seen that the total delay of a computation equals the number of
blank cells.

n

1o 20 u u 30 u u u 4 u

. o [e T[]]T,
" 1, 2y u 30 30 u u 4 4, #

M L] L] — | <o L] | | <o — M
11 2q 30 30 30 u 4 49 4 #

" . ‘o | <o (] | e | — "
1 2 30 30 30 4, 4 4 49 #

2 . <o | <o o | — | — — #
19 | 29 | 30 | 30 | 31 | 4 | 4 4y | 43 #

2 L] L] o | — [| — #
1y 2 30 31 31 4, 44 43 4y #

M L] L] — | <o — | | — — 2
19 2 31 31 32 4y 43 4, 45 #

. | o | — — [[+ =1,
19 2, 31 32 33 43 4y 45 46 #

. PR R — py— — [— [— =1,
13 29 39 33 34 4, 45 4q 4, #

. | — [+— — [— [— =1,
13 23 33 34 35 45 4g 47 4g #

. — [+— — [[+ —1
14 2y 34 35 36 4g 4, 4g 49 #

Figure 3: Transportation cells are marked by <—. The bullet indicates a blocked
cell.

Now we prove that the family of constructible functions is very rich. In par-
ticular, all Fischer-constructible functions are constructible in the sense of Def-
inition 6. A function f is said to be Fischer-constructible if there exists an
unbounded two-way CA such that the initially leftmost cell enters a final state
at time ¢ € N if and only if i = f(m) for some m € N. Moreover, the CA starts
with a configuration in which all cells except the leftmost one are quiescent.
Thus, the Fischer-constructibility is an important notion that meets the intu-
ition of constructible functions. For a detailed study of these functions see [7]
where also the name has been introduced according to the author of [5].

For example, n* for k € N, 27, n!, and p,,, where p,, is the nth prime number, are
Fischer-constructible. Moreover, the class is closed under several operations.

Lemma 9 If a function f : N — N is Fischer-constructible, then it is con-
structible in the sense of Definition 6.

Proof. Let f be a Fischer-constructible function. In a first step we prove that
{b"afM)=" | n € N} is a real-time CA-language.

The leftmost cell of the CA starts the construction of f, i.e., it distinguishes the
time steps f(1), f(2),... The rightmost cell send a signal to the left. The CA
accepts a word of the form b*a* if and only if this signal reaches the leftmost
cell at time step f(n) for some n € N and the number of b’s is equal to n.

Now a language L C ({a,b} x {a,b,u}?)* is constructed as follows:

1. The first component of each word w € L belongs to {a/™~"p" | n € N}.
2. The second component is the first component compressed by a factor 2
followed by (pairs of) blank symbols.

L is a real-time OCA-language. A corresponding OCA can easily verify that
the first component is of the form a*b* and that the second component contains
the compressed first component. In addition, it simulates the real-time CA for
{b"af™=" | n € N} on the left part of its second track. This is possible since
Z+(CA)E = %.,(OCA). Due to the compression the OCA works in real-time.

Together with the A-free homomorphism that maps a word to its first component
this proves that f is constructible in the sense of Definition 6. |

Theorem 10 The class of constructible functions is closed under addition,
multiplication and composition.

Proof. Let f; and fo be two constructible functions. Further let L1, Lo €
Z+(OCA) and hy, ha be two length preserving homomorphisms with h;(L;) =
{afit)=mpn | n € N}, 1 < i < 2. Without loss of generality we assume that L,
and Ly are defined over disjoint alphabets.

In order to prove that fi(n)+ f2(n) is constructible a real-time OCA-language
is constructed by the following description of an acceptor. It performs the
following tasks in parallel:
1. It checks that the input is of the form wiws with w; € L;, 1 < i < 2. This
is possible because L; and Lo are defined over disjoint alphabets.

2. It computes hy(wi) = a0 and ho(wy) = a2~y and verifies
n = m. A OCA can compare two numbers because {a"b" | n € N} €
Z1(OCA).

Together with the homomorphism that maps w; to af! (") and wsy to af2(m)—npn
this proves that fi(n)+ f2(n) is constructible. (The homomorphism utilizes the
fact that Ly and Lo are defined over disjoint alphabets.)

In order to prove that fi(n)f2(n) is constructible, again, a real-time OCA-
language is described by an accepting OCA. It works on an input tape with
two registers and verifies that:

1. The first track has the form a;u"asu™ - - - a,,,u™, where u is a special symbol
not belonging to the alphabets of L; and Ly. (Once again the OCA has
to compare numbers.)

2. ajag---ay is a word in L;. (The OCA can ignore the blank characters.)

. The second track has the form v ---uwy with we € Ls.

4. The non-blank part of the second track has length n + 1, i.e., the first
component of the non-black part is an,u”.

5. n1 = ng after computing hi(aijas---ap) = af1(m)—nipn1 and he(ws) =
af2(n2)—napna

w

Together with the homomorphism that applies hs to the second track and maps
all blank symbols on the second track to a this proves that fi(n)f2(n) is con-
structible.

In order to prove that fi(f2(n)) is constructible the accepting real-time OCA
verifies that:

1. The first component of its input is a word w; € Lj.
2. The second component has the form wu- - - Lws with we € Lo.
3. |wy| = n after computing hy (w;) = /1) —"pn,

By the same homomorphism as in the previous part we see that fi(f2(n)) is
constructible. O

4 Equivalence Classes

To prove lower bounds for the time complexity we generalize a lemma, shown
in [9] which gives a necessary condition for a language to be real-time acceptable
by a OCA. At first we need the following definition:

Definition 11 Let L be a language and X and Y be two sets of words. Two
words w and w' are equivalent with respect to L, X and Y (in short (L, X,Y)-
equivalent) if and only if

zwy € L < zuw'y € L

forallr € X andy €Y.

Let Ly € {0,1,(,),|}T be a language whose words are of the form

z(xi|yr) - (2n|yn)y

where z, z;,y,y; € {0,1}* for 1 <i <mn,and (z|y) = (z;|y;) for at least one
i€{l,...,n}.

The language Ly can be thought of as a dictionary. The task for the OCA is to
check whether the pair (x| y) appears in the dictionary or not.

Proposition 12 Let X =Y = {0,1}*. Two words w = (z1|y1) - (Zn | Yn)
and w' = (2 |yy)--- (2, |y.,) are equivalent with respect to Ly, X and Y if

and only if {(z1|y1),- -, (@n|yn)} = {(21[01);- - (20 | Y) }-

Proof. First assume that the two sets are equal. Let x € X and y € Y, then
zwy € Ly implies (z|y) = (x;|y;) for some i. Since the two sets are equal
we have (z|y) = (2 |y}) for some j. Therefore, zwy € Ly implies zw'y € Lq
and vice versa, i.e., w and w' are (L4, X,Y)-equivalent.

Now assume the two sets are not equal. Without loss of generality we can
assume that there exist z € X and y € Y with (z|y) = (z;|y;) for some i,
but (z|y) # (27 |y;) forall j = 1,...,m. Then zwy € L, but zw'y ¢ Lq and,
thus, w and w’ are not (Lg4, X,Y)-equivalent. |

Now we are prepared to formulate the lemma we are going to use in order to
prove lower bounds for the time complexities.

Lemma 13 Let r : N — N be an increasing function, L € £, ,(,)(OCA) and
X =A{a1,...,ap}™ and Y = {b1,...,by}"™ be two sets of words for positive
integers p,q,m1 and ms. There exists an integer s € N such that the number
N of (L, X,Y)-equivalence classes of the words at most of length n. — my — ms

is bounded by
N < 5/ X g(matr(n))Y]

Proof. Let s be the minimal number of states needed by a OCA to accept L
in n + r(n) time steps. Let A be such a OCA with state set S.

We consider the computation of A4 on the word zwy for some z € X and
y € Y. After |w| time steps the interesting part of the configuration of A can
be described by fy,(x)f.,(y) where (cf. Figure 4)

1. fw(z) € S* and fl (y) € S*.

2. |fw(z)] = |z| and |f),(y)] = y + r(n). During the remaining |zwy| +
r(|lzwy|) — |w| < |z| + |y| + r(n) time steps the result of the computation
of A depends only on the states of the |z| + |y| 4+ r(n) leftmost cells.

3. fl,(y) depends only on w and y since no information can move from left
to right.

4. fy(x) depends only on w and z since during |w| time steps only the
leftmost |z| + |w]| cells can influence the states of the leftmost |z| cells.

If fuw(z) = fw(x) and f,(y) = fi,(y) for all z € X and y € Y, then w and v’
are equivalent with respect to L, X and Y. Thus, if w and w’ are not equivalent,

then fu, # fur or fl, # fly-

10

r(|zwyl)

fu(®)| /fu(y)

Figure 4: OCA computation in the proof of Lemma 13.

Now we count the number of functions f,, and f;,. Since f}, maps Y into the set
S§m2+7(n) which contains 3277 elements, the number of different functions
f! is bounded by (5™m2+7()I¥],

We can utilize the nature of OCAs to give a more precise upper bound for
the number of different functions f,, that map X into the set ™. If a word
T = Ty, -+ 21 is mapped to s, ---s; then due to the one-way information
flow s; depends on ;- --z; only. Thus, for s; there are at most 57" different
(sub-)functions. It follows that the number of different functions f,, is bounded

by
mi
_mb _pym1+1
Hsp < 8P
i=1
— . _om1+1 m
For s = 57 we obtain 3#"!" = sP"! = glXI.

Since s > s and each upper bound on the number of pairs (fy, f;,) is also an
upper bound on the number of (L, X, Y)-equivalence classes the lemma follows.
O

In the previous lemma the sets of words X and Y are in some sense complete
with respect to the underlying alphabets. In the general case where X and Y
are arbitrary sets of words we obtain a slightly weaker bound:

Lemma 14 Let r : N — N be an increasing function, L € £, ,(,)(OCA) and
X and Y be two sets of words. Let s be the minimal number of states needed
by an OCA to accept L in n + r(n) time steps.

If all words in X are of length my and all words in Y are of length ms, then
the number N of (L, X,Y)-equivalence classes of the words at most of length
n — my — me is bounded by

N < gmilX| glmatr@)]Y]

For the special case L € £.;(OCA) the lemma has been shown in [9].
Now we apply the lemma to the language L.

11

Proposition 15 Let 7 : N — N be an increasing function. If r(n)log(r(n)) €
o(n), then Ly is not acceptable by any OCA with time complexity n+ r(n) but
L, belongs to £ (OCA).

Proof. For fixed m; € N and my € N we investigate all words of the form
(z1|y1) - (xk |yr) with z; € {0,1}™ and y; € {0,1}™ for all i € {1,...,k}
and (z;|y;) # (z;|y;) for ¢ # j. We call this words of type (m1, m2).

Since there are at most 2™ ™2 different pairs the length of words of type
(m1,mo) is at most 212 . (mq + mso + 3).

As it has been shown in Proposition 12 two words are equivalent iff the sets
of subwords are equal. Thus, there are 22" ™2 words of type (m1,m2) which
belong to different equivalence classes with respect to Ly, X = {0,1}" and
Y = {0,1}"2. (For each subset of X x Y there exists one equivalence class.)

Assume L4 belongs to 2, 1,»n)(OCA), then an accepting OCA must be able
to distinguish all these equivalence classes. By Lemma 13 there must exist a
number s such that

92M1 M2 - 2™ (ma+tr(n))27™2

for n = 2M*M2 . (my + my + 3) + my + mo.
In order to obtain a contradiction we proceed as follows:

Approximating the order of n we obtain
n € O(2™ ™2 . (my + ms))
Since 7(n) log(r(n)) € o(n) it holds
r(2™FM2 (my + ms)) log(r(2™172 (my 4+ ma))) € 0(2™11™2 (my + my))
Observe, 2M M2 Jog(2M1+M2) — 2M1+M2(m, 4 my). Therefore, r(271 172 (my +
ms)) and, hence, r(n) must be of order o(2™™2). Tt follows:
VeIMVYn>M: r(n) <e2mtm

In particular
VmaVe'IMVYmy > M : r(n) < g'2mtm

Choosing ¢’ = 555 yields

VmeVedMVmy >M: r(n) <e2™

On the other hand,

VmeVedMVmis>M: mo<e2™
Together we obtain VmoVedMVmy > M :
§2™M g(ma+r(n))2m2 - (2™ (ma+e2™1)2Mm2 - 2™ (262M12M2

— 2™ G222 212272 42¢) _ 92™1 ™2 log(s) (272 +2¢)

12

If we choose mo such that 27™2 < 3108 (s) and ¢ such that 26 < 52—, then

1
(21})\%5 2log(s)
there exists M such that for all m; > M:

my
52

g(matr(n))2m2 22’"1+m2-10g(s)-(2_m2+2€) < 22m1+m2

This is a contradiction, thus, L is not acceptable by an OCA in (n+7(n))-time.

To see that L is acceptable in linear-time, we construct an appropriate OCA.
Starting with an input word of the form z (z1|y1) - (Zm |Ym)y the OCA
shifts the subword y with full speed to the left. During the first n time steps
the OCA marks all pairs (z; | y;) with y; = y. Each marked pair starts moving
to the left with half speed. Each time a pair (z;|y) reaches the left hand
side the OCA checks whether z; = z. The pairs of the form (x;|y) reach the
leftmost cell sequentially because y moves with full speed but the pairs of form
(z;|y) with half speed only. This guarantees that the OCA has sufficient time
to check whether x = z;. Figure 5 illustrates the computation. The basic task
for the OCA is to check whether y = y;. This is equivalent to the acceptance
of the real-time OCA-language {wew | w € {0,1}T}. 0

g (o)z | y2) vy

y2 = y?

T =x"

Figure 5: Linear-time acceptance of L;. The black triangles mark the areas
where a check of the form y; = y takes place. It is easy to see that the black
triangels are disjoint, i.e., the checks can be done one after the other with a
finite number of states.

5 Time Hierarchies

The section is devoted to the proof of the result stated in Theorem 3. The next
step towards the proof is a translation lemma which allows to extend a single
proper inclusion to a time hierarchy.

13

Lemma 16 Let t1,t3 : N — N be two functions and L, be a (n + t1(n))-time
OCA-language that is not acceptable by any OCA within n + o(ta(n)) time
since its equivalence classes are not bounded according to Lemma 13. Further
let f : N — N be a constructible function and 1,79 : N — N be two functions
such that r1(f(n)) € Q(t1(n)) and ro(f(n)) € o(ta(n)). Then

gn—km(n)(OCA) - ‘i’ﬂn—l—h(n)(OCA)

Proof. For f(n) € O(n) we have r9(O(n)) € o(t2(n)) what implies ro(n) €
o(t2(n)) and, thus, L, ¢ £, 4,,(n)(OCA). Conversely, r1(O(n)) € Q(t1(n))
and, therefore, r1(n) € Q(t1(n)). It follows L, € £ 4r (n)(OCA) and, hence,
the assertion.

In order to prove the lemma for n € o(f(n)) let Ly be a language that proves
the constructibility of f in Lemma 7. At first we show that we can always find
such an Ly whose words are of the form a"wb" with |w| = f(n) — 2n.

By w/3 we denote the word w compressed by the factor 3, i.e., one symbol of
w/3 is interpreted as three symbols of w.

Now define Ly such that af () -n—5f®) (w/3)b™ € Ly iff w € Ly. Clearly, the
words of Ly are of the desired form since n € o(f(n)). Moreover, there exists
a trivial A-free, length preserving homomorphism that maps L; to {af()=npn |
n € N}. Also, Ly belongs to .%+(OCA) since an OCA can verify in real-time
that an input w

1. belongs to Ly,

2. the length of the word af M —n—3f() (w/3)b" € Ly is equal to the length

of w, and
3. that n is equal to the number of b’s in h(w) where h denotes the homo-
morphism that maps L; to {a/(™="b" | n € N}.
Thus, from now on we may assume w.l.o.g. that the words of Ly are of the
form a"wb"™ with |w| = f(n) — 2n. From Proposition 8 follows that the lan-
guage Ly = Li(Lg, Ly) belongs to £, 4 (s-1(n))(OCA). By the assumption
on r1(f(n)) we obtain r1(n) = r1(f(f *(n))) € Qt1(f 1(n))) and, therefore,
Ly € gn—km(n)(OCA)'
It remains to show that Ly ¢ £, ., (OCA).
Since ro(f(n)) € o(t2(n)) and L, is not acceptable within n + o(t2(n)) time by
any OCA, the language L, is not acceptable within n + ro(f(n)) time by any
OCA, either. Due to the assumption, by Lemma 13 for every s € N there must
exist sets X and Y and an n € N such that all words in X are of length m;, all
words in Y are of length mg, and the number of (L,, X, Y)-equivalence classes of
the words at most of length n —m1 —ms is not bounded by s/X!g(m2+r2(F(n))IY]
Define
X'={(z1,a0) (Tmy,a) | T =21 ... Ty, € X}

and
Y ' ={(y1,0) -+ (Yms:0) | Yy =y1---Ymy, €Y}

14

and for every word v = v1 -+ - Up_m,—m, & word v’ by

v' = (v, w1) * (V-1 —mas Wn—ma—ma) (0 Wn—my—mat1) -~ (1, wf(n)fmlfmz)
where @™ w1 -+ We(n)—my —m, 0™ is @ word of Ly. (Remember that each word
in Ly starts with n symbols a and ends with n symbols b and m; + ma < n.)
For z € X and y € Y let z' and 3 denote the corresponding words in X’ and
Y’

By construction zvy € L, iff z'v'y’ € Ly. (The word z'v'y’ belongs to L; if
the second component of z'v'y’ is a word in L, which is always true, and the
first component of z'v'y’ is a word in L, concatenated with some blank sym-
bols, i.e., zvy € L,.) Thus, the (L,, X, Y)-equivalence classes have correspond-

ing (L1, X', Y')-equivalence classes and the number of (L, X', Y’)-equivalence

classes under the words whose length is at most f(n) —mj —ms is not bounded
by slXlg(ma+ra(f(n))IY]

Applying Lemma 13 with L1, X', Y’ and f(n) in place of L,, X, Y and n yields
that Ly ¢ £, 1,,(n)(OCA). This completes the proof. |

Finally the main Theorem 3 is just a combination of the preceding lemmas:

Theorem 3. Let r;,72 : N — N be two increasing functions. If r5log(rs) €
o(r1) and r' is constructible, then

$n+7‘2(n) (OCA) C gn—l—m (n) (OCA)

Proof. Proposition 15 shows that the previously defined language L, is accept-
able in linear-time but is not acceptable in n+r(n) time if r(n) log(r(n)) € o(n).
Now set t1(n) = m and ty such that t3(n)log(tz(n)) = m. Inserting yields

r(n)log(r(n)) € o(t2(n)log(t2(n)))-
We conclude r(n) € o(t2(n)) and, thus, L, is not acceptable in n+o(t2(n)) time.
In order to apply Lemma 16 we consider the constructible function f = r; L

Clearly, 1 (f(n)) = n € Q(n) = Q(t1(n)).
Since r2(n) log(ra2(n)) € o(ri(n)) we have

ra(f(n))log(ra(f(n))) € o(r1(f(n))) = o(n) = o(t2(n) log(ta(n)))
We conclude r2(f(n)) € o(ta(n)).

Now all conditions of Lemma 16 are satisfied and an application proves the
assertion &, 1, (n) (OCA) C & 1r (n)(OCA). O

6 Closure Properties

In the following we are exploring some of the closure properties of the OCA-
language families in the range between real-time and linear-time.

Our first results in this section deal with Boolean operations. Since the OCAs
are space-bounded deterministic devices the positive properties are natural.

15

Lemma 17 Let r : N — N be a function, then £, 1 ,,)(OCA) is closed under
union and intersection.

Proof. Using the same two chanel technique of [4] and [8] the assertion can
easily be seen. Each cell consists of two registers in which acceptors for both
languages are simulated in parallel. O

The closure under complement is expected for deterministic devices. But here
an input is rejected by not entering an accepting state. So in order to accept
the complement of a language the OCA has to calculate the latest time step at
which the input would have been accepted. With other words, it has to calculate
the time step n + r(n). The corresponding functions are called computable [2].

Lemma 18 Let r : N — N be a computable function, then £, ,,)(OCA) is
closed under complement.

Proof. Let A be some (n + r(n))-time OCA. A OCA A’ that accepts the
complement of L(.A) works as follows. On its first track it computes the function
n 4 r(n). On its second track A’ simulates A for at most n + r(n) time steps.
If during the simulation A would become accepting, then the leftmost cell of
A’ changes to a distinguished state from which no accepting state is reachable.
So A’ rejects the input.

If, on the other hand, A would not become accepting until time step n + r(n),
then A’ simply accepts its input. O

Now we turn to more language specific closure properties. The families are
closed under marked concatenation but are not closed under concatenation.

Lemma 19 Let 7 : N — N be an increasing function, then £, ,,)(OCA) is
closed under marked concatenation and marked iteration.

Proof. Let A and A’ be two (n + r(n))-time OCAs. A OCA A” that accepts
the marked concatenation L(A)L(A') with time complexity n + 7(n) has two
tracks. Initially all inner cells start to simulate A and A’ in parallel. The
rightmost non-border cell identifies itself and starts to simulate A’ only. This
behavior proceeds to the left such that the cells between the right border and
the mark are successively identified.

Analogously, the cell whose right neighbor contains the mark can identify itself.
It starts to simulate A only and signals this behavior to the left.

Let n = n1 + 1+ ng be the length of the input where the first n; symbols form a
word from L(A) and the last ny symbols form a word from L(A’). In between
the words there is exactly one marking symbol. Then the simulation of A takes
n1+7(n1) time steps and the simulation of A’ takes ny+7(n2) time steps. Since
the latter result has to move into the leftmost cell the time complexity of A" is

max{ni + r(n1),n2 +r(n2) + n1} +1

In both cases A” obeys the time complexity n + r(n).

16

The generalization to an arbitrary number of concatenated input words and,
thus, to marked iteration is straightforward. O

Lemma 20 Let r : N — N be an increasing function. If r(n)log(r(n)) € o(n),
then £, ,(n)(OCA) is not closed under concatenation.

Proof. Let us consider the language L; whose words are of the form

w(z1|yr) - (@nlyn) (2|

where z,z;,y; € {0,1}* for 1 <4 < n. Since {wew | w € {0,1}} is a real-
time OCA-language L; is a real-time OCA-language. The same holds for the
language L, whose words are of the form

y) (zrfyn) - (@nlyn)y

where y, z;,y; € {0,1}* for 1 < i < n.

It follows L; and L, are (n + r(n))-time OCA-languages. But the concate-
nation I;L, equals the language L; which has been proven not to belong to
Z4r(n)(OCA) in Propostion 15. O

Corollary 21 Let r : N — N be an increasing function. If r(n)log(r(n)) €
o(n), then £, .,y (OCA) is not closed under iteration.

Proof. A word of the form

z(xi|yr) - (2n|yn)y

where z,z;,y,y; € {0,1}T for 1 < 5 < n belongs to L, if and only if it be-
longs to (L; U L,)*. Since the structure of the words in L, is regular the
structure is a real-time OCA-language. Since £, {,(,)(OCA) is closed under
intersection with regular sets and union the closure under iteration would im-
Ply Lq € £ 4,(n)(OCA) what contradicts Proposition 15. O

Now some closure properties concerning homomorphisms are shown.

Lemma 22 Let r : N — N be an increasing function. If r(O(n)) C O(r(n)),
then £, ,(n)(OCA) is closed under inverse homomorphisms.

Proof. Let L € £, ,,(»(OCA) be a language over some alphabet A and
h : B* — A* be a homomorphism. A (n + r(n))-time OCA A which accepts
the language h (L) works as follows.

Let k = max{|h(b)| | b € B} be the maximal length of the symbol images of h.
Then A has k registers.

Basically, each cell of A maps its input symbol according to h, stores the image
into its registers and simulates the acceptor for L.

Let n be the length of the input w of A and m be the length of h(w). We are
concerned with two cases.

17

If some input symbol is mapped to A, the resulting empty registers of the
corresponding cell cause a delay until the necessary information for the next
simulation step is available (cf. proof of Proposition 8). So the total delay is
bounded by the number of empty cells.

On the other hand, if some symbol is mapped to more than one symbol, the
registers of the corresponding cell and the registers of its left neighbor can
simulate more than one transition during one time step.

The leftmost cell of A has to simulate at least m + r(m) transitions. Since it
may happen that the rightmost non-empty cell contains only one symbol, A has
to simulate this cell for r(m) time steps, i.e., r(m) transitions. After time r(m)
the state of this cell will not influence the overall computation result of the
simulated acceptor. Since all the cells on the left simulate as many transitions
per time step as possible (depending on the number of filled registers and the
number of simulated steps of the right neighbor), .4 needs another n time steps
to complete the simulation. Altogether the simulation takes n + r(m) time
steps.

If m < n then A works fine and trivially obeys the time complexity n + r(n).
In the second case we have m > n. Since m is linearly bounded by n, i.e., m <
Ek-n for the constant k, n+r(k-n) is an upper bound of the time complexity. Due
to the assumption there exists a constant &' such that n+r(k-n) < n+k"-r(n).
By the well-known result in [6] the computation can be sped-up linearly from
n+k"-r(n)ton+e-r(n) for e > 0. 0

Lemma 23 Let r : N — N be an increasing function. If r(n)log(r(n)) € o(n),
then %, (n)(OCA) is not closed under \-free homomorphisms.

Proof. Construct a language L C ({u,e} x {0,1,(,),|})* as follows:
1. The second component of each word in L is of the form

z(z1|y1) - (Tnlyn)y

2. The first component is such that exactly one pair (z;|y;), 1 <i < mn, is
marked by e. All the other registers contain w.
3. The components of the marked pair match z and y, respectively. I.e.
z =ux; and y = y;.
Clearly, L is a real-time OCA-language. But the image of L under the A-free
homomorphism A : ({u,e} x {0,1,(,),|})* = {0,1,(,),|}*, h(a,b) = b, that
maps a pair to its second component is the language L; which does not belong

to $n+r(n)(OCA).

Acknowledgements

The authors are greatful to Véronique Terrier whose valuable comments im-
proved the upper bound in Lemma 13 and thus the tightness of the hierarchy.

18

References

1]

[9]

[10]

Th. Buchholz, A. Klein, M. Kutrib, On tally languages and generalized
interacting automata, in: G. Rozenberg, W. Thomas (Eds.), Develop-
ments in Language Theory IV. Foundations, Applications, and Perspec-
tives, World Scientific Publishing, Singapore, 2000, pp. 316-325.

Th. Buchholz, M. Kutrib, On time computability of functions in one-way
cellular automata, Acta Inf. 35 (1998) 329-352.

C. Choffrut, K. Culik II, On real-time cellular automata and trellis au-
tomata, Acta Inf. 21 (1984) 393-407.

C. R. Dyer, One-way bounded cellular automata, Inform. Control 44 (1980)
261-281.

P. C. Fischer, Generation of primes by a one-dimensional real-time iterative
array, J. Assoc. Comput. Mach. 12 (1965) 388-394.

O. H. Ibarra, M. A. Palis, Some results concerning linear iterative (systolic)
arrays, J. Parallel and Distributed Comput. 2 (1985) 182-218.

J. Mazoyer, V. Terrier, Signals in one dimensional cellular automata, The-
oret. Comput. Sci. 217 (1999) 53-80.

A. R. Smith ITT, Real-time language recognition by one-dimensional cellular
automata, J. Comput. System Sci. 6 (1972) 233-253.

V. Terrier, Language not recognizable in real time by one-way cellular
automata, Theoret. Comput. Sci. 156 (1-2) (1996) 281-287.

V. Terrier, On real time one-way cellular array, Theoret. Comput. Sci. 141
(1995) 331-335.

19

