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Outline

The work is divided into two parts. The first part is dedicated to the investigation of light

and heavy scalar tetraquarks in a four-body approach within the Dyson-Schwinger/Bethe-

Salpeter (DSE/BSE) framework.

The second part of the work deals with a novel approach to describe light q̄q mesons with a

‘beyond rainbow-ladder’ truncation. That part is entirely based on the already published

paper [1], a combined work of the author of this thesis, T. Göcke and C.S. Fischer.

The first part is motivated by the old idea that the lightest scalar nonet in the hadron

spectrum is in fact a tetraquark nonet instead of an ordinary q̄q nonet. Additionally,

recent findings of charged charmonia, which can be interpreted as a ‘smoking gun’ for

tetraquarks, rekindled the interest in tetraquarks in general.

The approach used in this work was already applied successfully in the meson sector

(two-body equation) and the nucleon sector (three-body equation), and therefore it is in-

teresting to apply similar techniques to the four-body equation that describes tetraquark

bound states. Within our framework, the equal-mass tetraquarks are investigated and be-

sides shedding some light on the enigmatic nature of the σ-particle, we will also investigate

all-charm/strange tetraquarks.

The second part deals with a general framework to describe q̄q bound states beyond the

frequently used rainbow ladder approximation for the quark-gluon interaction inside the

meson. At the first glance, this is unrelated to the first part that deals with tetraquarks,

except for some overlap of the theoretical and numerical framework used. But on a second

look, the nature of the scalar particle can only be understood, if its q̄q̄qq and q̄q component

are well under control.

Following this argument, in the first part of this thesis the DSE/BSE-framework is applied

for the first time to study scalar tetraquarks in the four-body picture, improving and

supplementing our previous studies of scalar tetraquarks in the two-body picture, whereas

the second part of this thesis is dedicated to obtain a better description and understanding

of the q̄q-mesons in general and the scalar meson in particular.



Part A.

Tetraquarks
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1. Introduction

In this chapter we will provide arguments found in literature for the existence of tetraquarks,

in particular scalar tetraquarks. For a review of scalar mesons and their long and winding

story through the history of hadron physics, see ref. [2].

1.1. Light tetraquarks and the quark model

Since the introduction of the quark model in the 60’ [3], the bulk properties of the hadron

spectrum are related to multiplets formed by quarks in the flavour SU(3)-fundamental

representation. The mesons, described as qq̄-states, can be ordered into nonets by the

SU(3) relation

3⊗ 3̄ = 8⊕ 1, (1.1.1)

and the baryons reside in multiplets formed by

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1. (1.1.2)

Even when taking into account that the flavour SU(3) symmetry is explicitly broken by the

different quark masses, the model is very successful in explaining the plethora of different

mesons and baryons in the hadron spectrum and provides insight into the origin of their

mass splittings.

Figure 1.1.: Lowest nonet in the 0−+ and 1−− channel. The electrical charge is denoted by Q,

the strangeness by S and the number of strange and anti-strange quarks by #s. For the η mesons,

#s is not well defined, because the mixing angle between them is not zero. All masses are rounded

and taken from the PDG [4].

As examples, the vector nonet and the pseudo scalar nonet are shown on the left and right

side of figure 1.1 respectively, including the tabulated masses of its members. The mass

hierarchy is closely tied to the quark content. The much heavier strange quark causes
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Figure 1.2.: Lowest nonet in the 0++ channel. The first and second column show the s-quark

content in the q̄q and q̄q̄qq picture respectively. The red and green colour highlight the striking

discrepancy of the q̄q̄qq and qq̄ picture.

the increased masses of the K∗ and the Φ in the vector nonet and a similar argument

also explains the increased masses of the K, η and η′ in the pseudo scalar nonet. The

large mass splitting between η and η′ is attributed to the anonymously broken axial U(1)

symmetry [5, 6].

State JPC L S

Pseudo scalar 0−+ 0 0

Scalar 0++ 1 1

Vector 1−− 0 1

Axial vector 1++ 1 1

Pseudo vector 1+− 1 0

Table 1.1.: L-S-decomposition of the scalar, pseudoscalar, vector and axial vector mesons in the

q̄q picture.

In the case of the scalar q̄q nonet, the quark model has some difficulties to explain the

masses of its members. Before going into details, some basic facts concerning multiplets

are provided.

Multiplets are denoted by their quantum numbers, written as JPC , where J is the total

angular momentum obtained from coupling the spin S to the orbital angular momentum

L. In the quark model, the parity P of a two-quark bound state is related to L via

P = (−1)L+1 and the C-parity C is related to S and L via C = (−1)L+S . In table 1.1

we collected all the possible multiplets in the q̄q-picture with J = 0, 1 and provided the

corresponding L and S quantum numbers.

Similar to classical quantum mechanics, one associates orbital angular momentum with

excitations and therefore expects a higher mass for higher L. In the same way, a state

with spin S = 0 is presumed to have a lower mass than a state with S = 1. For example,

the 1−− has orbital angular momentum L = 0 and spin S = 1 whereas the 1++ nonet has

L = 1 and S = 1. Looking at the mass of the neutral isospin triplet meson in the vector

nonet, the ρ0, which has a mass of 0.775GeV and comparing it to the mass of the neutral
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isospin triplet meson in the axial vector nonet, the a0
1, which has a mass of 1.26GeV , we

see that the nonet with the higher L features indeed larger masses.

For the q̄q scalar nonet which has an orbital angular momentum of L = 1 and a spin of

S = 1, one would predict that the masses of the members of the scalar nonet lay above the

vector nonet. Interestingly, this is not the case as can be seen by comparing the masses

of the scalar nonet, shown on the right side of figure 1.2, with the masses of the pseudo

scalar and vector nonet; the scalar nonet in the q̄q picture is located between the pseudo

scalar and the vector nonet.

Another peculiarity in the q̄q scalar nonet is the breakdown of the quark model to explain

the mass ordering. The a0(980) and the f0(980) are much heavier than the σ and the

κ. Whereas in the q̄q picture the f0(980) contains two s-quarks, explaining its large mass

compared to the σ and κ which contain zero and one s-quarks respectively, the a0(980) has

no s-quark content. According to the quark model, predicting an a0 that is much lighter

than both the f0 and the κ, a heavy a0 is a completely counter intuitive result.

But already in the 70’, it was realized that a combination of four quarks, does not only

yield a colour singlet state, necessary by confinement, but also reproduces the mass or-

dering in the scalar nonet nicely [7]. In detail this ‘improved’ mass ordering is shown in

the table on the right side of figure 1.2. In the four quark picture the a0 contains two

s-quarks and the large mass is a direct consequence of the quark content. At the same

time, the s-quark content of the κ, f0 and σ is not changed in the q̄q̄qq, so that the mass

order within the scalar nonet can be explained by the quark content only. It also turns

out that the orbital angular momenta and the spin of the scalar tetraquark nonet are all

zero [8]. According to the argument that small L and S lead to a small mass, the lightness

of the scalar nonet finds a natural explanation.

In general, the most appealing feature of the four quark picture for the light scalars is

the ‘conservation of simplicity’ of the quark model: gross features, decay patterns and

mass splittings can be understood by simply investigating the structure of the multiplet

and the quark content with no additional unexpected mechanisms necessary. Besides the

valid question, ‘if tetraquarks exist in general’, the applicability of the quark-model to ex-

plain the masses of the scalar nonet was the beginning of the rising interest in tetraquarks.

Besides the masses, also some of the decay patterns and the width of the light scalar

mesons can be explained by the four-quark picture [7, 9]: The σ has an enormous width

of about 0.35GeV which is of the same order as its pole mass of about 0.45GeV [10]. On

a qualitative level, the decay patterns of hadrons can be understood by considering the

OZI-rule [11, 12, 13] which states that that the more internal gluon lines a decay contains,

the more the process is suppressed. The dominant decay of the σ is the σ → ππ channel

[14]. In terms of a q̄q meson, this involves at least one internal gluon, whereas in the four

quark picture, the decay would be facilitated by a gluon-less breakup into two pions, giving

a natural explanation for the enormous width of the particle and its dominant decay into

two pions. Regarding the other mesons of the nonet, the dominant decay of a0 into πη

would find its explanation in the quark content of the four quark picture, whereas in the
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two quark picture this decay would be yet another puzzle.

Concluding this section, we summarize that adhering to the simplicity of the quark model,

the four quark picture is a much more ‘natural’ candidate to explain the lowest laying scalar

nonet than the q̄q picture.

1.2. Tetraquarks in large Nc

A useful tool to investigate certain aspects of QCD is the 1/Nc expansion [15, 16]. Here

Nc specifies the the number of colours of the theory which reads Nc = 3 in the case of

QCD. In the limit of Nc → ∞, a hierarchy of contributing Feynman diagrams can be

established with 1/Nc as expansion parameter. According to an argument by Coleman

[17], tetraquarks disappear from the spectrum for Nc →∞. As to whether or not Nc = 3

is a large number, this argument was turned around to regard tetraquarks as unlikely

states. Upon a closer inspection by Weinberg [18], it was found that the argument by

Coleman [17] was flawed.

At this point we will provide a short sketch of the arguments, based on the review in ref.

[19]. Introducing the quark/anti-quark bilinear

Bi(X) = q̄ Γi q (1.2.1)

with Γi some spin-flavour object, the four two-quark/two-anti-quark operator Q can be

expanded as

Q(x) =
∑
ij

CijBi(x)Bj(x), (1.2.2)

with Cij some expansion coefficients. Investigating the correlator

〈T [Q(x)Q(y)†]〉 =
∑
ijkl

CijCkl 〈T [Bi(x)Bk(y)†]〉〈T [Bj(x)Bl(y)†]〉

+〈T [Bi(x)Bj(x)†Bk(y)Bl(y)†]〉+O(N0
c ), (1.2.3)

one finds that the first term, corresponding to freely propagating q̄q mesons, scales as

N2
c , and the second term, related to a genuine interacting four quark state, scales as

Nc. Thus Coleman concluded that the tetraquark does not exist because it is suppressed

by a factor of 1/Nc compared to two non-interacting mesons. Weinberg pointed out

that this correlator is the wrong object to look at and one should rather investigate the

decay amplitude of a tetraquark into two mesons, which is proportional to the following

expression:

1

N
3/2
c

〈T [Q(x)Bn(y)Bm(z)]〉 =
1

N
3/2
c

∑
ij

Cij〈T [Bi(x)Bn(y)]〉〈T [Bj(x)Bm(z)]〉

+
1

N
3/2
c

〈T [Q(x)Bi(y)Bn(y)]〉con +O(1/Nc). (1.2.4)
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The first term on the right hand side is the disconnected part, corresponding to two freely

propagating meson. Furthermore, this term is the leading one in a 1/Nc expansion. Upon

further calculations that can be found in the review of ref. [19], the decay width obtained

from this term scales with Nc. One would therefore conclude that the tetraquark becomes

an infinitely broad state in the Nc →∞ limit. But as pointed out by the authors in [19],

before taking the limit Nc → ∞, one has to ‘amputate’ the quark legs, by projecting on

the quark poles. This eliminates the disconnected first part and promotes the second part

to be the leading term in an 1/Nc expansion. Because the decay width obtained from

the second term scales with 1/Nc, one concludes on the contrary that the tetraquark is a

narrow state in the large Nc limit. Therefore, from a large Nc point of view, there is no

reason that tetraquarks are not a part of the hadron.

1.3. Experimental situation and tetraquarks in other frameworks

The literature on light scalars is vast and spans more than four decades of combined ex-

perimental and theoretical effort to elucidate their nature. In this short chapter we will

just outline the experimental status in general.

The scalar sector is a notoriously difficult channel for experiments. In contrast to the vec-

tor channel 1−, which can be studied directly by e−e+ colliders, the scalar channel is only

accessible via secondary processes, for example in nucleon-pion scattering experiments.

The early analysis of data from Nπ-scattering [20, 21] have large uncertainties and were

contradictory, so that the σ or f0(500) as bound-state or resonance was excluded from the

PDG and was instead interpreted as a ππ-scattering state.

Only later experiments, studying heavy meson decays [22] and kaon decays [23] could

establish the σ as a physical particle, leading ultimately to its reappearance in the PDG

but without solving the puzzle of q̄q vs q̄q̄qq.

Besides the search for the σ pole in heavy meson decays, dispersive approaches using the

Roy equations [24] to describe the ππ-scattering were able to establish the f0(500) as

complex poles in the scattering matrix. Besides using the data of scattering experiments

as input, these dispersive approaches utilize unitarity, analyticity and crossing symmetries

as constraints. One much cited result for the σ is mσ = 441+16
−8 , Γσ = 544+18

−25MeV [10]

which is also backed up by a more recent calculations [25, 26, 27].

Besides the σ, the other particles of the scalar nonet are also assumed to be established.

Using the Roy equations, the κ or K∗(800) was found in πK-scattering [28] and in J/Ψ-

decays [29] and also the f0 and the a0 are found by dispersive methods, see refs. [25, 30].

Even if the experimental situation regarding the existence of the light scalar can be seen

as more or less solved, it is difficult for experiments to gain insight into the structure of

the scalar nonet and answer the question whether particles are q̄q states or tetraquarks.

Therefore, it is the task of theory to give an answer to this question. In the following we

will provide a short list of various approaches that investigated light scalars in general and

scalar tetraquarks in particular.
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A hint to the non ordinary nature of the light scalar mesons is given by its Regge-behavior.

Different to the vector meson, a pure q̄q state, that develops a linear Regge-trajectory, the

σ was found to show a non-linear behavior with a reduced slope [31], strongly indicating

that the σ is more than an ordinary q̄q meson.

Also studies in the large Nc limit employing unitarized Chiral Perturbation Theory, sug-

gest a strong non q̄q component for the σ, as do studies employing an instanton induced,

six-fermion effective Lagrangian [32].

In ref. [33] the scalar tetraquark nonet and the scalar q̄q nonet was investigated in a QCD

sum rule approach. The authors found the tetraquark nonet to have masses below 1GeV

whereas the q̄q nonet featured masses well above 1GeV . A similar result that identifies

the low-lying scalars with tetraquarks and finds the scalar q̄q nonet to be much heavier

was obtained in ref. [34] using a linear σ-model. Also in a relativistic diquark-diquark

model, see ref. [35], the scalar tetraquark nonet was found to be light.

The situation on the lattice is still inconclusive. The authors in [36] found a non-zero

q̄q̄qq contribution for the σ and κ, whereas an earlier calculation from the same group

did not show such a contribution [37]. A recent study [38] investigated the influence of

disconnected diagrams and found that the σ is maybe a molecular ππ-state.

The κ and a0 were also investigated in ref. [39] and in contrast to [36], the κ was found to

have no tetraquark component. In summary, a final answer from the lattice on the nature

of the light scalars and their tetraquark contributions is not available yet, but there exist

hints that non q̄q parts are present.

Heavy tetraquarks Because of technical limitations, this work will focus on the 0++

quantum numbers with equal mass quarks and we will mention the case of heavy-light

tetraquarks only briefly. The most prominent examples of charmonia that show a behavior

that is difficult to understand in the usual q̄q-picture are the XY Z-states. The forerunner

of the so called XY Z-states is the X(3872) discovered by Belle [40], an extremely narrow

resonance at the D∗0D̄∗0 threshold. The closeness to the threshold, coupled to a small

width and its puzzling decay patterns make it a potential candidate for a tetraquark. Some

recent lattice calculations [41] find the tetraquark contribution to be small, but a definite

answer to the nature of the X(3872) is still missing. Another interesting charmonium

state is the Z+
c (3900) that was discovered at Bell [42]. This state cannot be a pure q̄q

state because of its charge, and therefore is most likely a tetraquark. A compilation and

discussion of the various other XY Z-states can be found in refs. [43, 44].
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2. Theoretical framework

In this chapter we will give the basic concepts and tools used to describe and calculate

Green functions and bound-states in a non-perturbative framework. First we will introduce

the Lagrangian of quantum chromodynamics (QCD) and provide a glimpse of effective

action techniques to derive the equation of motions (EOM). Then we will introduce two-

body and four-body bound-state equations. In the last part, we discuss the details of the

truncation and the results for the quark-propagator.

2.1. Green functions and the generating functional

The starting point of quantum field theory (QFT) is the generating functional in the

path integral formulation, see the textbooks [45, 46] for a pedagogical introduction. The

generating functional in euclidean space time ZE can be written in a shorthand notation

as

ZE [J ] =

∫
D[Φ] exp (−S[Φ] + 〈J,Φ〉) . (2.1.1)

Here the super field Φ includes all elementary particles of the theory. In QCD these fields

are quarks (Ψ, Ψ̄), gluons (Aa,µ) and ghosts (cā,ca). In the same way J = {η, η̄, ja,µ, σa, σ̄a}
is a super source of the field Φ. The scalar product 〈J,Φ〉 is understood as integration∫
d xJ(x)Φ(x) over the space time point x ∈ R4 and summation over all other quantum

numbers as colour and flavour. Whenever understandable from the context, the brackets

will be omitted and we write J Φ. The path integration measure D is the usual integration

over all fields at all space times:∫
D[Φ] = lim

N→∞

∫ ∏
i∈N

dΦ(xi). (2.1.2)

Besides the generating functional Z[J ], the generating functional of the connected Green

functions plays an important role. It is defined as

W [J ] = lnZ[J ]. (2.1.3)

Physical observables can be extracted from the correlation functions of the theory also

called Green functions. These Green functions are defined as vacuum expectation values

of the time ordered product of the various fields. Abbreviating a product of operators O
as P[O], the Green function of n fields can be written as

13



Gn,P[Φ](x1, . . . , xn) := 〈0|T [P[Φ(x)]]|0〉 =

=

∫
D[Φ] Φ(x1) . . .Φn(xn) exp (−S[Φ])∫

DΦ exp (−S[Φ])

=
1

Z[0]
P
[
δ

δJ

]
J=0

Z[J ]

=: 〈P[Φ(x)]〉J=0 , (2.1.4)

with δ/δJ the functional derivative in respect of the various sources.

To calculate the Green functions we follow a functional approach which establishes rela-

tions between all Green functions present in the theory and truncates the ensuing tower

of equations to a tractable form.

2.2. The QCD-Lagrangian

In order to utilize the generating functional, we need the Lagrangian of the investigated

theory. The euclidean QCD Lagrangian reads in short hand notation

L[Ψ, Ψ̄, A] = ψ̄( /D +m)Ψ +
1

4
F a,µνF a,µν , (2.2.1)

Here /D = (∂µ − igAa,µta)γµ denotes the covariant derivative acting on the quark spinor

Ψ, F a,µν is the field tensor

F a,µν = ∂µAa,ν − ∂νAa,µ + gfabcAb,µAc,ν (2.2.2)

and Aa,µ is the gauge field of the gluon. The generators ta of the Lie algebra su(3) in the

fundamental representation can be written in terms of the Gell-Mann matrices ta = λa

2 .

The algebra is given by the Lie bracket [ta, tb] = ifabctc and the total antisymmetric struc-

ture constants fabc. The coupling is denoted by g. The Lie-bracket in the field tensor

introduces quartic and cubic self-interactions of the gauge-field, rendering the theory non-

abelian and leading to phenomena as anti-screening which are absent in an abelian theory

such as quantum electrodynamic (QED).

In order to have a uniquely defined theory, the gauge degree of freedom has to be fixed.

This can be done by the standard Fadeev-Popov mechanism [47] that introduces auxiliary

fields called ghosts (c, c̄) that are not part of any physical observable.

Furthermore QCD is a renormalizable theory. This means that the fields and vertices ap-

pearing in 2.2.2 develop divergences which can be captured by a finite number of counter-

terms and therefore lead to a finite number of renormalization constants.

The full gauge fixed Lagrangian of QCD can now be written as
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SQCD =

∫
x
ZΨΨ̄(/∂ + Zmm)Ψ +

ZA
2
Aa,µ[−∂2δµν + (1− 1

ξ
)∂µ∂ν ]Aa,ν + Zcc̄∂

2c−

− iZΨAgΨ̄ /AΨ + gZcAf
abcc̄a∂µ(Ac,µcb) +

+ gZ3Af
abc(∂µAa,ν) +

g2

4
Z4Af

abcfadeAb,µAc,νAd,µAe,ν , (2.2.3)

with ZΨ the quark wave function, Zm the quark mass, ZA the gluon wave function, Zc

the ghost wave function, ZcA the ghost-gluon vertex, ZΨA the quark-gluon vertex and

Z3/4A the four- and three gluon-vertex renormalization constant. The vertex renormaliza-

tion constants are defined in such a way that they are the product of the wave function

renormalization constants and the charge renormalization constant Zg. The last one is

necessary because the charge or coupling g has also to be renormalized. Each constant for

each field comes with a power of 1/2. This gives the relations

ZcA = Z2
gZ

2
A ZΨA = ZgZΨZ

1/2
A Z4A = z2

gZ
2
A Z3A = ZgZ

3/2
A . (2.2.4)

Additionally the renormalization constants are related by the so called Slavnov-Taylor

identities (STI) [48, 49] which follow from a residual symmetry after gauge fixing, called

Becchi-Rouet-Stora-Tyutin symmetry (BRST)[50]:

Z4A

Z3A
=
Z3A

ZA
=
ZcA
Zc

=
ZΨA

ZΨ
. (2.2.5)

Additionally, we work in Landau gauge (ξ = 0) which gives rise to the condition

ZcA = 1. (2.2.6)

2.3. Effective action and Dyson-Schwinger equations

In order to arrive at the equation of motions for the Green functions, we introduce the so

called 1PI-effective action. This object can be deduced from the generating functional for

the connected Green functions by Legendre transformation:

Γ[φ̃] := W [J ] +

∫
dx J(x)φ̃(x)⇒ W [J ] = Γ[φ̃]−

∫
dx J(x)φ̃(x). (2.3.1)

Note that the source J is not set to zero yet. The ‘new’ field φ̃ is the so called averaged

field in the presence of a source J . This can be seen by expressing φ̃ in terms of a derivative

in respect of J and using eq. (2.1.3):

φ̃ = −δW [J ]

δJ(x)
=

1

Z[J ]

δZ[J ]

δJ(x)

(2.1.4)
= G1,P[Φ̃](x). (2.3.2)

To derive the Dyson-Schwinger equations we assume that the generating functional falls

off quickly enough for large space-time points:∫
D[Φ]

δ

δΦ
exp(−S + JΦ) = Surface [exp(−S + JΦ)] = 0. (2.3.3)
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We can now perform the derivative on the left hand side in eq. (2.3.3)

0 =

∫
D[Φ]

− δS
δΦ

∣∣∣∣∣
Φ=δ/δJ

+ J

 exp(−S + JΦ) =

− δS
δΦ

∣∣∣∣∣
Φ=δ/δJ

+ J

Z[J ]. (2.3.4)

We made use of the fact that S is polynomial in the fields and Φ = δJ exp(−S + JΦ).

Employing the identities

exp(−W [J ])
δ

δJ
exp(−W [J ]) =

δW [J ]

δJ
+

δ

δJ
(2.3.5)

δ

δJ
=
δ2W

δJδJ

δ

δφ̃
(2.3.6)

one arrives at the master equation of all Dyson-Schwinger (DSE) equations:

− δS

δΦ

∣∣∣∣∣
Φ=φ̃+∆Jδ/δφ̃

+
Γ

δφ̃
= 0 (2.3.7)

The object ∆J is in this case the full two-point Green function (Propagator) in presence of

a source. To translate this compact notation into equations, one performs the derivative

of S. The resulting equation is the generating DSE for the 1PI Green function δΓ/δΦ̃. By

performing derivatives in respect of φ̃ one can generate equations for all Green functions,

which will depend on each other. This will yield the afore time mentioned infinite tower of

coupled integral equations. A detailed algorithm using mathematica to derive the DSEs

can be found in ref. [51]. For a general overview of DSEs in hadron physics see also refs.

[52, 53]. An very pedagogical introduction to functional methods and DSEs can be found

in ref. [54].

The usual procedure to deal with an infinite tower of equations is to truncate them.

This is usually done by using ansätze for some Green functions except the ones that are

solved self consistently. This ansätze are guided by symmetries that have to be fulfilled

and by phenomenological observables and perturbative results that have to be reproduced.

2.4. The quark DSE

The quark propagator in momentum space reads:

S(p) =
B(p2, µ2)− i/pA(p2, µ2)

A2(p2, µ2)p2 +B2(p2, µ2)
(2.4.1)

Here A,B are momentum dependent dressing functions and µ is the renormalization scale.

The Dyson-Schwinger equation for the quark reads in an explicit form:

S−1(p, µ) = ZΨ(Λ, µ)(−i/p+M(Λ))+

+g2(Λ, µ)ZΨA(Λ, µ)Cf

∫ Λ

0
dq Dµν(q, µ)Γµ(p+ q, p, µ)S(p+ q, µ). (2.4.2)
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The Casimir Cf stems from the implicit colour trace and evaluates to 4/3 for SU(3).

The objects Dµν ,Γµ are the fully dressed gluon propagator and quark-quark-gluon vertex

which in principle have their own DSE equations. Their tensor decomposition reads

Dµν =

(
δµν − kµkν

k2

)
Z(k2)

k2
=: Tµν

Z(k2)

k2

Γµ(p, k) =

12∑
i=1

fi(p, k)Tµi . (2.4.3)

and the tensor structure of the vertex can be written as

Tµ ∈ {γµ, pµ, kµ} ⊗ {1, /p, /k, [/p, /k]}. (2.4.4)

The parameter Λ is the cutoff parameter that renders the divergent integrals finite. To

properly renormalize, we use the renormalization conditions

A(µ) = 1 M(µ) = mq, (2.4.5)

where mq is the current mass of the quark at a scale µ. In principle, a similar procedure

has to be carried out for the vertex and the gluon. We will see in the following chapter

that in our model, only the quark is determined dynamically and the gluon and the vertex

are treated as given, modeled quantities, and therefore we only have to solve the quark

DSE of eq. (2.4.2).

2.5. Bound state equations in QCD

Figure 2.1.: General homogeneous n-body BSE. The dots stand for the (n-2) legs of a n-body

equation. Note that the lines between K and Γ are fully dressed propagators (G0).

The bound-state equation in relativistic theories can be calculated by solving the Bethe-

Salpeter equation (BSE) [55]. The general form of an n-body bound-state equation reads

Γ(P 2) = λ(P 2)KG0Γ(P 2), (2.5.1)

where P 2 is the mass of the bound-state, K is the interaction kernel, G0 is the product of

n fully dressed propagators, in our case quarks, and Γ is the amplitude of the bound-state.

The parameter λ(P 2) is artificial and evaluates to 1, but will play an important role in

the numerical treatment of the equations.

The homogeneous bound-state equation, depicted in figure 2.1, can be derived from the

scattering equation (T -matrix equation)
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T = K ′ +KG0 T, (2.5.2)

shown in figure 2.2. This T-matrix itself is defined as the connected part of the general

2n-point Green function G:

G = G0 +G0 T G0. (2.5.3)

To derive the homogeneous equation we note that the T-matrix can exhibit poles at

P 2 = −M2 where P is the sum of all external incoming momenta pi and M is the bound

state mass.

Figure 2.2.: Upper panel: General inhomogeneous n-body scattering equation. Lower panel:

Decomposition of the T-matrix into a singular part and a regular part. Insertion into the inhomo-

geneous equation yields the homogeneous equation depicted in figure 2.1.

Following the prescription in ref. [56], a projection on the pole at P 2 = −M2 via the

Cauchy residue theorem yields the homogeneous equation of eq. (2.5.1). This can be

easily seen by decomposing the T-matrix into a regular and singular part (lower panel

in figure 2.2 ) and inserting this decomposition into the equation on the upper panel of

figure 2.2. Subsequently, identifying the singular part on the left and right hand side of

the T-matrix equation yields the homogeneous bound state equation. A solution to this

homogeneous equation corresponds to a bound state if P 2 is purely real or a resonance if

P 2 develops a imaginary part [57]. All scattering states get eliminated by the projection

procedure and cannot spoil the calculation. This distinguishes the DSE/BSE framework

from other approaches, such as lattice QCD or sum rule approaches, where both scattering

states and bound states appear in the calculation.

The interaction kernel K is not arbitrary but has a close connection to the effective

action. Form the 2PI-effective action, the kernel for the quark-antiquark bound-state can

be calculated from the interacting part of the effective action:

K
(2)
2 = −

δ2Γ
(2)
int

δSδS
, (2.5.4)

see ref. [58] for details. The subscript int below Γ denotes the interaction part of the

effective action and the superscript denotes the n of the effective action. The subscript

of K specifies that K is a two-body kernel. If the effective action is not known then a

derivative of the quark-self-energy Σ is also an option to obtain an interaction [59]:
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Σ =
δΓ

(2)
int

δS
(2.5.5)

K
(2)
2 = − Σ

δS
. (2.5.6)

2.5.1. Tetraquark bound-state equation

Omitting an explicit derivation of the four-body bound state equation, we refer to refs.

[60, 61, 62, 63] for the computational details and will present the final result only.

The general four-body interaction kernel K has the following form

K = K12S
−1
3 S−1

4 +K34S
−1
1 S−1

2 −K12K34 +K13S
−1
2 S−1

4 +K24S
−1
1 S−1

3 −K13K24

+K14S
−1
2 S−1

3 +K23S
−1
1 S−1

4 −K14K23

+K123S
−1
4 +K124S

−1
3 +K234S

−1
1 +K134S

−1
2 +K1234. (2.5.7)

The subscripts represent the legs that the object is attached to. Here the Kij are the two-

body irreducible, the Kijk are the three-body irreducible and the Kijkl are the four-body

irreducible kernel. S−1 is the fully dressed inverse quark propagator. A more easy to read

graphical form is given in figure 2.3.

Figure 2.3.: Four-body interaction kernel. Three- and four-body forces are neglected. Note the

compensation diagram that comes with a minus sign. Permutations are suppressed.

The term Kpair in figure 2.3 contains all irreducible two-body interactions. Because our

model does not contain genuine three and four body forces, we will drop them from the

equation. A graphical representation of the final equation that is solved in this thesis is

shown in figure 2.4. The spirals connecting the quark lines are the effective gluons intro-

duced in chapter 2.9.

It is interesting to note that the four-body kernel has terms that are of the form−KijKkl, i 6=
j 6= k 6= l. These terms are necessary to prevent double counting in the T -matrix equation.

For example, take a simple T-matrix equation of the form

T = K12 +K34 +K12T +K34T, [K12,K34] = 0. (2.5.8)

Because K12 and K34 commute, an iteration of this equation will produce double counting.

By adding a term of the form −K12K34, called compensation term, the double counting

can be removed order by order.
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Figure 2.4.: Tetraquark BSE in the rainbow ladder truncation.

We want to make an additional comment concerning the derivation of the tetraquark

bound state equation from an effective action. In ref. [64] a four-body BSE is derived

for a Φ4-theory starting from a five-loop 4PI effective action. The resulting BSE features

structurally similar compensation terms than the ones given in eq. (2.5.7) and addition-

ally contains expressions that mix the four-body with the two-body bound states. So in

principle, a mixing between tetraquarks, ordinary q̄q mesons and glueballs can be derived

in a canonical way with a suitable loop-truncated 4PI (or higher) effective action. Well

beyond the scope of this work, such an approach points the direction of how to include

mixing of the different states in future works. A similar discussion of how to mix glueballs

and q̄q mesons can already found in ref. [65].

2.6. Normalization of the homogeneous BSE

As in any eigenvalue problem, the normalization, or better the phase of the BSE-eigenvector,

is not fixed and one needs an additional condition to also fix the normalization. In the

case of the homogeneous BSE, the normalization of the eigenvectors can be fixed by the

condition [66] (
d ln(λ(P 2))

dP 2

)−1 ∣∣∣
P 2=−M2

!
= Γ̄G0Γ (2.6.1)

Here λ is the eigenvalue (curve) of the bound-state problem. The object Γ represents the

charge conjugated amplitude. The product on the right side is understood as integral

over all relative momenta and sum over all colour and flavour indices. This normalization

condition holds for any BSE, regardless of the number of particles.
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2.7. Solving strategies - Quark-DSE

In order to solve the Quark DSE, one can directly start with eq. (2.4.2). After projection

on the Dirac structures 1 and /p, the equation can be solved by standard non-linear solvers.

In the case of the Quark-DSE even a naive fixed point iteration is sufficient to obtain a

solution. Renormalization is achieved by simultaneously solving eq. (2.4.5). For later

application to the BSE, the quarks have to be continued into the complex plane. The

reason for the complex continuation is caused by the momentum routing in the BSEs.

The total momentum P reads in the rest frame of the bound state

P = (0, 0, 0, iM), (2.7.1)

with M the mass of the bound state. Generically, the momentum that flows through a

quark in a BSE reads

pq = p+ P (2.7.2)

with p a real, euclidean vector. Upon squaring p2
q becomes complex, necessitating a com-

plex continuation of the quark propagator which has to be evaluated at p2
q . As can be seen

in figure 3.2 and eq. (3.2.3), in the case of the tetraquark there are three relative momenta

flowing through each quark line. This will change the momentum routing compared to

eq. (2.7.2), but it it will be still necessary to know the quark propagator in the complex

plane.

To perform the complex continuation we follow a technique first used in the context of

bound states in ref. [67], based on the method of ref. [68]. The key idea is a momentum

routing for the DSE with the external momentum p flowing through the quark, as shown

explicitly in eq. (2.4.2). After squaring, the momentum pq at which the quark inside the

self energy is evaluated, reads

p2
q = p2 + q2 + 2p · q, (2.7.3)

where the momentum q denotes the loop momentum. For fixed p, the square p2
q constitutes

a parabolic shaped object. It can be shown that for all p2 that itself lay on a (closed)

parabola C, parametrized as

p2 = x− 1

4
M2 ± iM

√
x x ∈ {0,Λ2 +

1

4
M2}, (2.7.4)

the momenta p2
q lay inside this parabola if Re(p2

q) < Λ2+ 1
4M

2 =: Λ̃2. Here M parametrizes

the apex of the parabola and Λ is the cutoff that was used to regularize the quark self

energy. The parabola is closed by connecting the two branches at x = Λ̃2 with a vertical

line. Defining the dressing function on such a contour makes it possible to use Cauchy’s

integral theorem

f(p2) =
1

2πi

∮
C

f(q2)

q2 − p2
dq2, (2.7.5)

to determine the quark dressing function on the inside of the closed parabola C.
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By picking appropriate weights wj and nodes p2
j that correspond to a quadrature along

the contour C, the formula

f(p2) =

∑
j

wjf(q2
j )

q2
j−p2∑

j
wj

q2
j−p2

, (2.7.6)

is the discretized version of the Cauchy representation in eq. (2.7.5). The most important

point in this representation is the denominator, which evaluates to 2πi. Writing the

denominator in this elaborate form has the advantage that numerical errors that occur

for interpolations close to the nodes q2
j cancel out [68]. This method is particular valuable

when dealing with vertex models that depend explicitly on the quark, as is the case in the

second part of this work. In this case one cannot solve the DSE in the complex plane by

continuing the gluon instead of the quark and one has to use a complex continuation of

the quark dressing function.

As a side remark, we mention that this method to represent a function in the complex

plane is closely connected to the barycentric interpolation formulas on the real line, see

refs. [69, 70, 71]. Throughout this work we used these barycentric interpolation rules on

the real line to interpolate the dressing functions of the tetraquarks.

In the Maris-Tandy model, the quark propagator exhibits complex poles [72] which is,

corresponding to ref. [73], consistent with the confinement of quarks. The parameter M

is chosen such that the poles are outside of the contour. The apex of the parabola (1
4M

2)

restricts the calculation of the BSE to masses below M , at least for the two-body BSE.

In the four-body BSE we can go up to 2M . In principle this restriction can be lifted by a

proper treatment of the poles and the use of contour deformation techniques, see ref. [74],

but such a treatment is technical involved and demands an analytical continuation of the

bound state amplitude itself which is beyond the scope of this work.

The quark will be probed outside of the contour on the right side of the parabola because

the parabola is closed at x = Λ̃2. In principle one should extrapolate the dressing functions

beyond the contour. To avoid an explicit numeric extrapolation, we interpolate

σs =
B(p2)

A2(p2)p2 +B(p2)
σv =

A(p2)

A2(p2)p2 +B(p2)
(2.7.7)

instead of A and B. These functions decay with 1/p2, so that we extrapolate them by 0

whenever probed outside of the contour on the right-side of the parabola, see figure 2.5.

Because this extrapolation happens at large momenta, namely whenever Re(p2
q) > Λ̃2 ≈

104GeV 2 holds, such an extrapolation introduces only a tiny error. We tested this by using

different extrapolation methods and found the results to change only on the sub-promille

level.
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Figure 2.5.: Contour of Cauchy interpolation. The shaded area is the region that can be in-

terpolated by the Cauchy-formula. The vertical line on the right side of the parabola closes the

contour.

2.8. Solving strategies - BSE

The solution strategy for the BSE is straightforward. The homogeneous bound state

equation of eq. (2.5.1) reads

Γ(P 2) = λ(P 2)KG0Γ(P 2), . (2.8.1)

After discretized the amplitude by choosing a suitable functional basis, the amplitude can

be indexed by the super index

I = (pi, Ti, Ci, Fi). (2.8.2)

Here pi indexes the functional basis, Ti indexes the tensor structures, Ci is doing the

same for the colour and Fi for the flavour structure. The multiplication in eq (2.8.1)

involves an integral which is a linear operation and can also be discretized, for example

by a Gauss-Legendre quadrature rule. Thus the whole equation can be written as

ΓI(P
2) = KI,JΓJ(P 2), (2.8.3)

which is now an ordinary eigenvalue equation. Because this matrices are sparse but can get

large for the tetraquark (beyond 106×106) we use the library SLEPc [75], which facilitates

matrix free algorithms. We strongly advise the use of an external library for the solution

for standard eigenvalue problems because of the plethora of well implemented methods

and the overall much better performance and usability compared to hand-crafted methods.

To determine the mass and the amplitude we solve eq. 2.8.3 for different P 2 until the

largest eigenvalue becomes 1. The corresponding P 2 is identified with the mass and the

corresponding eigenvector with the amplitude of the tetraquark bound state.

Extrapolation For the case that there is a threshold, caused by a pion or quark pole,

that prevents us from directly solving the BSE at some P 2, we linearly extrapolate the

function

fλ(P 2) :=
1

λ(P 2)
− 1, (2.8.4)

and search for the zero crossing of the extrapolant. The function λ is the eigenvalue curve

up to the threshold. The justification for this method is given in [76]. Therein the author

shows for a two-body bound-state equation, that close to pole the following relation holds:

fλ(P 2) ≈ (P 2 −M2), (2.8.5)
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where M2 denotes the mass of the bound-state. Therefore we assume that this extrapola-

tion will be also applicable for the tetraquark, although we will use a quadratic extrapo-

lation to deduce the masses. As one can see in appendix A.1, a quadratic extrapolation is

a reasonable fit for most of the curves. For a detailed discussion see also the result section

chapter 5.

2.9. Truncation

As elaborated in the section before, the Dyson-Schwinger formalism entails a tower of

infinitely many coupled non-linear integral equations. From these equations, or from the

(if available) underlying effective action, one can derive Bethe-Salpeter equations that

determine the bound states of the theory. Because the number of DSEs is infinite, this

tower of equations has to be truncated. A truncation will in general introduce the breaking

of various symmetries and identities that are present in the full tower of equations. In our

case the most important identity that can be broken is the axial Ward-Takahashi identity

that ensures that in the case of a zero current quark mass the pion becomes a mass-less

Goldstone boson. Thus a potential truncation should be constructed in such a way that

at least this identity is preserved.

2.9.1. Rainbow ladder truncation - Quark

Figure 2.6.: DSE and BSE kernel in the rainbow-ladder truncation. The yellow blob symbolizes

the combination of the Maris-Tandy coupling with the bare gluon to an effective gluon. The white

blobs denote bare inverse propagators and vertices and the red blob stands for the dressed quark

propagator.

A very simple but successful truncation is the Maris-Tandy model [77]. This model trun-

cates the DSE tower to just the quark DSE. All other quantities, as the quark-gluon vertex

Γµ and the gluon Dµν are modeled and given as closed expressions. Furthermore the 12

tensor structures of the full vertex are reduced to the dominant γµ. We will denote this

remaining vertex dressing with ΓMT and the gluon dressing function with Z(k2).

From this DSE, the BSE kernel can be acquired by performing a functional derivative of

the self-energy in respect of the quark. Because the vertex and the gluon are given as

closed expression, no further derivative is necessary. This will ensure that the AXWTI is

preserved. A diagrammatic presentation of the DSE and the interaction kernel can be seen
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in figure 2.6. The guiding principle for the Maris-Tandy interaction are the recovery of the

perturbative running coupling, the provision of ‘enough’ strength in the mid-momentum

range to facilitate dynamical chiral symmetry breaking (DCSB) and multiplicative renor-

malizability. This is achieved by the following expression [77]:

k2G(k2) :=
g2Z(k2)ΓMT (k2)

ZcZΨ
=

4π

(
π

ω6
Dk2 exp(−k2/ω2) +

2πγm(1− exp(−k2/(4m2
t )))

ln(e2 − 1 + (1 + k2/Λ2
QCD))

)
. (2.9.1)

The parameters read: mt = 0.5GeV , γm = 12/(33 − 2Nf ), ΛQCD = 0.234GeV , ω =

0.4GeV , D = 0.93GeV 2. The second term of the interaction provides logarithmic running

for large momenta k2 >> Λ2
QCD

g2Z(k2)Γµ(k2) −→ 4π
πγm

ln(k2/Λ2
QCD)

= 4παs(k
2) (2.9.2)

with αs the strong running coupling. The parameter γm is the anomalous dimension of

the quark mass, important in the perturbative regime, where the mass runs as

m(k2) =

(
αs(k

2)

αs(µ2)

)γm
m(µ) (2.9.3)

for some scale µ [78, 79].
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Figure 2.7.: Maris-Tandy coupling, eq. (2.9.1), for different ω values. The enhancement in the

mid-momentum regime is responsible for dynamical chiral symmetry breaking. The shape of the

enhancement has a strong influence on the exited meson spectrum, but is not so important for

ground state properties. The parameters D and ω are fixed to reproduce the pion decay constant

fπ = 0.131GeV and the pion mass mπ = 0.138GeV .

The functional form of the Maris-Tandy interaction is shown in figure 2.7. The shape

is strongly dependent on ω, but the influence of ω on ground state properties is small

[67, 80]. The interaction vanishes in the infrared. Besides a numerical simplification, the

influence of the deep infrared properties of the interaction on meson observables is mild
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[81]. The renormalization constants in front of eq. (2.9.1) are necessary to give the correct

renormalization properties. Starting from the identities in eq. (2.2.4), one finds

ZΨA = ZΨ
1

ZΨZc
. (2.9.4)

This property has two consequences. First, we immediately see that the self-energy behaves

as Z2
ψ, and second, the expression on the left hand side in eq. (2.9.1) is seen to be

renormalization group independent, by using eq. (2.9.4) and eq. (2.2.4):

g2Z(k2)ΓMT (k2)

ZcZΨ
≈

1/Z2
gZ/ZAZΨA

ZcZΨ
= 1. (2.9.5)

This is the reason for the ghost renormalization in eq. (2.9.1), which by itself is not

obtainable in this model, but necessary to preserve renormalization group properties.

Inserting the Maris-Tandy of eq. (2.9.1) into eq. (2.4.2), one arrives at the following form

of the DSE

S−1(p, µ) = ZΨ(Λ, µ)(−i/p+M(Λ)) + Z2
ΨCf

∫ Λ

0
dq Tµν(q)G(q2)γµS(p+ q, µ). (2.9.6)

We use a typical scale µ of 19GeV [77] and a Λ2 = 104GeV 2. With the renormalization

conditions

A(µ) = 1 M(µ) = mq, , (2.9.7)

and the complex continuation in chapter 2.7, the quark can be calculated self consistently.
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Figure 2.8.: The quark mass functions M(p2) in the Maris-Tandy model. The lines represent

(from top to bottom) c, s, u/d quarks respectively.

The solution for the quark mass functions M(p2) can be seen in figure 2.8. The dominant

feature is the dynamical chiral symmetry breaking, visible by the acquisition of mass in

the infrared. The UV -behavior is logarithmic, as could be expected from the logarithmic

tail in eq. (2.9.1).

Using a different momentum routing than in eq. (2.9.6), by sending the complex mo-

mentum p through the gluon, the quark propagator can also be calculated in the whole

26



q mq condition

u 0.00405GeV mπ = 0.138GeV

s 0.0105GeV mK = 0.495GeV

c 0.89GeV ηc = 2.95GeV

Table 2.1.: Quark masses used in this work. The masses are fixed to reproduce the mesons given

in the table. The Maris-Tandy parameters (D,ω) are fixed to reproduce the pion mass and decay

constant.

complex plane. This continuation leads to problems further away from the real axis, be-

cause the exponential in the Maris-Tandy coupling diverges and the logarithms introduce

spurious cuts for complex momenta, see eq. (2.9.1). Nonetheless this momentum routing

can be used to investigate the analytical structure of the quark not to far away from the

real axis.
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ImIp 2M
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Figure 2.9.: The absolute value of the quark dressing function σs in the complex plane of p2.

In figure 2.9 the result for the absolute value of the scalar dressing function σs can be seen.

The two poles emerging in the complex plane are responsible for DCSB by causing the

raise of the mass function on the real axis. A thorough review of the analytical properties

of quarks within different vertex models can be found in ref. [72].

2.9.2. Rainbow ladder truncation - Two-body kernel

The kernel of the two-body bound-state is derived via a functional derivative of the quark

self-energy by ‘cutting’ a quark line, see figure 2.6. Performing such a derivative, the

expression of the two-body kernel in the Maris-Tandy reads

Kab,cd(q) = G(q2)

(
λi

2

)
AB

(
λi

2 CD

)
(iγµcd)T

µν (iγνab). (2.9.8)

Here we distinguish between Dirac indices denoted by a, b, c, d and colour indicesA,B,C,D;

The momentum q is the momentum of the gluon.
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Because the kernel is derived by taking a functional derivative of the self-energy in re-

spect of the quark, the axial Ward-Takahashi identity (AXWTI)[82] is preserved [83]. The

AXWTI relates the interaction kernel to the quark self-energy, stressing the close connec-

tion of the kernel and the quark self-energy. The diagrammatic and analytical form of the

AXWTI reads [84]:

γ5Σ(−p−) + Σ(p+)γ5 = −
∫
K(q)(γ5S(−q−) + S(q+)γ5), (2.9.9)

K K

. (2.9.10)

The subscripts +,− on the momenta are to be understood as addition or subtraction of
1
2P with P the momentum of the bound-state.

This rather simple model has been successfully applied to calculate various hadron ob-

servables. Light quark meson masses with J up to three [78, 85, 77, 67], charmonium and

bottomonium spectra [85, 86, 87], strong decays [88], ππγ transition form factors [89],

weak decays [89] and scattering lengths [90]. The same model was also applied to the

nucleon properties, as the nucleon spectrum [91, 92], the masses of the Ω and ∆ [93],

the octet and decuplet masses of the nucleon [94], the electromagnetic form factors of the

baryons [95, 96] and nucleon-compton scattering [97].

Besides the physical qq̄ mesons, the Maris-Tandy interaction also produces qq bound-states

in the colour triplet channel (diquarks). These unphysical bound-states are associated with

truncation artifacts that are resolved by inclusion of beyond rainbow-ladder corrections,

namely the crossed ladder contributions, as the investigation of the authors in ref. [98] has

shown. Besides the unphysical nature of the diquarks, their emergence as bound-states

made it possible to include diquarks explicitly in a two-body approach [99], a previous

work of the author of this thesis.

Beyond Rainbow ladder - comments At this point we want to make a few comments

regarding beyond simple rainbow-ladder truncations.

Normally, any approach beyond rainbow ladder dresses the quark-quark-gluon vertex in

some way.

One approach is, to directly use a vertex model for the quark DSE. In this case, the

corresponding effective action is unknown. If one uses such an explicit model for the

vertex, there is one caveat. The vertex (model) has to transform in the same way as the

quark. Especially it has to chirally transform in the same way, see ref. [59]. Violating

the transformation properties will break the Axial-Ward-Takahashi identity (AXWTI) and

therefore never yield a light pion. This is especially important if the vertex model depends

explicitly on the quark. The collaborators in ref. [100] resolved the problem by solving

the quark DSE and some vertex equations with the AXWTI as explicit constraint. The
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authors in ref. [1] solved the problem for a related vertex model, based on ref. [59], by

employing a vertex that already fulfills all transformation properties. The details and all

results of the latter approach are provided in the second part of this work. In yet another

approach in refs. [101, 102, 103], certain diagrammatic unquenching effects for the vertex

were taken into account in an AXWTI preserving fashion.

A different way to tackle the problem would start with a truncated effective action and

derive all DSEs and BSE-kernels from this effective action. All global symmetries would

then be fulfilled by construction [58]. Some details connected with this idea and how to

use them in the meson and baryon sector are outlined in [104].
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3. Constructing a symmetric amplitude for

tetraquarks

The tetraquark amplitude is subject to various symmetries. Two of them, the Pauli princi-

ple and charge conjugation, are manifest as permutations of the quark- and antiquark-legs

of the tetraquark amplitude and their corresponding quantum numbers. The underlying

symmetry group for these permutations is the S4 permutation group, see ref. [105] for

a concise overview of the S4 symmetry. It is therefore useful to formulate the problem

and more precisely the amplitude, in terms of objects that respect this symmetry. The

tetraquark amplitude consists of:

• Dirac matrices, called the spin-part.

• Lorentz-vectors, which form the orbital-angular-momentum part.

• Scalar dressing functions, dependent on all Lorentz invariant scalars that are present

in the tetraquark.

• A colour-indexed object, which is a singlet.

• A flavour-indexed object.

Each part has to transform in such a way that the entire amplitude respects the desired

permutation symmetries. When constructing the colour and flavour part of the amplitude

in the corresponding sections, we will see that the SU(3)-multiplets already transform

symmetric or antisymmetric under the relevant S4-permutations. Therefore the symmetry

of the spin-orbit part and the scalar dressing functions is fixed. In order to construct these

parts we will heavily use the tools and notations developed in ref. [106] which will soon be

published. Parts of the tools can already be found in ref. [107]. First we will give a short

summary of the key-points and tools of ref. [106] and then use them in the subsequent

sections to construct the necessary parts of the amplitude.

3.1. General considerations

The S4 symmetry group has 24 members that can be grouped into two singlets (S,A), a

doublet Dj and two triplets (T +
i , T

−
i , i ∈ {1, 2, 3} ). The corresponding Young-diagrams

read:

The doublet Dj with j ∈ {1, 2} and the two triplets (T +
i , T

−
i ) with i ∈ {1, 2, 3} transform

under different irreducible representations. The singlets fall into two classes. S is totally
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Figure 3.1.: Young diagrams of the S4 permutation group.

symmetric and A is totally antisymmetric. Given the elements of a set that the S4-group

acts on, the corresponding multiplets can be constructed following the construction prin-

cipals in ref. [106]. To close this brief overview we provide the irreducible representation

matrices and there action on the multiplets. The transpositions, or permutations, of two

indices will be denoted as Pij . Usually the transpositions P12, P23, P34 are used to span

the S4 group. Any other element of the group can be represented by chaining these three

group elements.

M =

(
−1 0

0 1

)
M ′ =

1

2

(
1 −

√
3√

3 1

)
(3.1.1)

H =

1 0 0

0 1 0

0 0 1

 H ′ =
1

2

1 0 0

0 −1 −
√

3

0 −
√

3 1

 H ′′ =
1

2

 −1 −
√

8 0

−
√

8 1 0

0 0 3

 (3.1.2)

P12Di = MDi P12T ±i = ±HT ±i
P23Di = M ′Di P23T ±i = ±H ′T ±i
P34Di = MDi P34T ±i = ±H ′′T ±i (3.1.3)

3.2. Phase space

Figure 3.2.: Tetraquark amplitude. The pi represent the momenta, the ci and fi are colour and

flavour indices respectively and the Greek indices stand for Dirac-indices. The black arrow specifies

the direction of the spin line.

Equipped with construction principals of S4, we will start to investigate the phase space.

We chose to define the relative momenta (p, q, k) and the total momenta (P ) in the fol-

lowing way:
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p =
(p1 + p4)− (p2 + p3)

2
(3.2.1)

q =
(p1 + p3)− (p2 + p4)

2

k =
(p1 + p2)− (p3 + p4)

2

P = p1 + p2 + p3 + p4.

The inversion of the momenta reads:

p1 =
−p+ q + k

2
+

1

4
P (3.2.2)

p2 =
p− q + k

2
+

1

4
P

p3 =
p+ q − k

2
+

1

4
P

p4 =
−p− q − k

2
+

1

4
P.

For future reference the momenta p1, p2, p3, p4 are attached to the tetraquark amplitude as

depicted in figure 3.2. We want to point out that the relative momenta p, q, k contain the

total momenta of the sub-cluster. With sub-cluster we mean any combination of two quark

lines. The physical implication of the appearance of this sub-cluster will be investigated

in chapter 4.

Because it will play an important role later on, we also give the permutation properties

of the relative momenta and their scalar products, see table 3.1. Additionally we provide

some notation and definitions concerning the momenta.

P12 P34 P13 P24 P14 P23 P12,34 P13,24 P14,23

p q -q k -k p p - p -p p

q p -p q q -k k - q q -q

k k k p -p -q q k -k -k

p · q p · q p · q q · k -q · k -p · k p · k p · q -p · q -p · q
p · k q · k -q · k p · k p · k -p · q p · q -p · k p · k -p · k
q · k p · k -p · k p · q -p · q q · k q · k -q · k -q · k q · k

Table 3.1.: Permutation properties of the relative momenta and their scalar products.

Notation For the angles we use the notation:

ω1 = q · k ω2 = p · k ω3 = p · q

η1 = P · p η2 = P · q η3 = P · k (3.2.3)
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A quantity with a hat denotes that the vector is normalized and a subscript T that the

vector is transversal to P :

pT = p− (p · P )
P

P 2
ω′1 = qT · kT

qT = q − (q · P )
P

P 2
ω′2 = pT · kT (3.2.4)

kT = k − (k · P )
P

P 2
ω′3 = pT · qT

The tetraquark depends on ten independent Lorentz invariants. One of them is the mass

of the tetraquark, leaving nine unfixed. The set of Lorentz invariants will be denoted by

Ω:

Ω = {k2, p2, q2, ω1, ω2, ω3, η1, η2, η3}. (3.2.5)

For practical calculations we also need the relative momenta expressed via hyper-spherical

coordinates:

P =
√
P 2


0

0

0

1

 k =
√
k2


0

0

c̄3

c3



p =
√
p2


0

c̄1 z̄

c̄1 z

c1

 q =
√
q2


c̄2 z̄
′ sinα

c̄2 z̄
′ cosα

c̄2 z
′

c2

 . (3.2.6)

The radial variables k2, p2, q2 are real and positive and the variables c1, c2, c3, z, z
′, α are

hyper-spherical angles or their cosines:

k2, p2, q2 ∈ R+, {c1, c2, c3, z, z
′} ∈ [−1, 1] α ∈ [0, 2π]. (3.2.7)

Quantities with a (̄·) are defined as

(̄·) := +
√

1− (·)2, (3.2.8)

such that, for example, z̄ =
√

1− z2.

Phase space multiplets First we construct the following S4 triplets:

T +
LV =

1

2


1√
3
(p+ q + k)

1√
6
(p+ q − 2k)
1√
2
(q − p)

 T +
1 =

1

2


1√
3
(η1 + η2 + η3)

1√
6
(η1 + η2 − 2η3)

1√
2
(η2 − η1)

 . (3.2.9)

The triplet T +
LV still contains Lorentz-vectors whereas the triplet T +

1 is build up by Lorentz

scalars. By using S4-multiplications of appendix A.5, the triplet T +
LV can be transformed

into a triplet, a doublet and a singlet that contain Lorentz-scalars only:
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S0 := T +
LV · T

+
LV =

p2 + q2 + k2

4
(3.2.10)

D0 := T +
LV ∗ T

+
LV = S0

(
a

s

)

T0 := TLV + ∨ TLV + = S0

uv
w



T1 := T +
1 =

√
S0 P 2

u
′

v′

w′

 .

The doublet variables are related to the set Ω by,

a =
√

3
q2 − p2

4S0
, s =

p2 + q2 − 2k2

4S0
, (3.2.11)

the variables in T0 read

u = −ω1 + ω2 + ω3

4S0
v = −

√
2
ω1 + ω2 − 2ω3

4S0
w =

√
6
ω1 − ω2

4S0
, (3.2.12)

and the variables in T1 have a similar form

u′ = −η1 + η2 + η3√
12
√
S0 P 2

v′ = −η1 + η2 − 2η3√
24
√
S0 P 2

w′ =
η1 − η2√
8
√
S0 P 2

. (3.2.13)

In the doublet and the triplets we factored out the singlet S0 and
√
S0 P 2 to render these

multiplets dimensionless. The only dimensionfull variable is therefore S0. In the following

short sections we give more details concerning the properties of the phase-space multiplets.

3.2.1. Doublet

Defining the doublet variables as in eq. (3.2.11), the corresponding geometrical object in

the a− s plane is a equilateral triangle with a side of length 2
√

3, see figure 3.3.

Figure 3.3.: Doublet triangle. The shaded area specifies the physical, space-like region.
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The corners, the sides and the middle of the triangle correspond to special momentum

configurations.

The sides are sampled if the magnitude of one of the relative momenta is zero:

p2 = 0 q2 = 0 k2 = 0. (3.2.14)

Along the lines connecting the corners with the center of the triangle, the modulus of two

of the relative momenta are equal:

p2 = q2 p2 = k2 k2 = q2. (3.2.15)

Therefore in the center all momenta are equal and have the length

p2 = q2 = k2 =
4S0

3
. (3.2.16)

In general p2, q2, k2 ≥ 0 holds in the inside of the triangle, whereas on the outside of the

triangle, some of the momenta are negative.

In order to parametrize this triangle we choose a mapping to a circle

D0 = S0 r(ϕ)max r̂

(
sinϕ

− cosϕ

)
(3.2.17)

ϕ ∈ [0, 2π] r̂ ∈ [0, 1] (3.2.18)

r(ϕ)max =
1

sin
[
ϕ+ π

6

(
1− 4b3ϕ

2π c
)] . (3.2.19)

The function rmax(ϕ) represents the boundary of the triangle and is invariant under S4

transformations. Also the variable r̂ is invariant under S4 transpositions. The only variable

affected by a permutation is therefore the angle ϕ. In geometrical terms, a S4 operation

rotates the triangle by n 2π
3 , n ∈ N and therefore exchanges the sides of the triangle.

In anticipation of chapter 4 we draw the attention to the boundary of the triangle that is

defined when any of the relative momenta is zero: p2 = 0, q2 = 0 , k2 = 0. For example, if

P · p = P · q = P · k = 0, possible two-body bound-states with mass mp,q,k can appear on

any of the sites at

p2 = −1

4
P 2 −m2

p q2 = −1

4
P 2 −m2

q k2 = −1

4
P 2 −m2

k, (3.2.20)

see eq. (4.1.1) in chapter (4). If m2
p,q,k + 1

4P
2 is sufficiently small, the poles will be close

to the boundary that is defined by p2 = 0, q2 = 0 , k2 = 0 and cause the amplitude to rise

considerably. Additionally, the poles can even appear inside the triangle for large enough

tetraquark mass MT if P 2 +m2
p,q,k = −M2

T +m2
p,q,k < 0 holds.

Because the triangle is scaled by 1/S0, the two-body poles will come closer to the boundary

for larger S0, so that we expect these effects to not show up in the infrared region of S0

but for larger values, depending on the mass of the two-body bound-state. A detailed

analysis of this feature and its physical and numerical implications on the tetraquark are

discussed in chapter 4. Finally we give the connection between r̂, ϕ and p2, q2, k2:
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p2 =
4S0

3

(
1 + r(ϕ)max r̂ cos

(
ϕ+

2π

3

))
q2 =

4S0

3

(
1 + r(ϕ)max r̂ cos

(
ϕ− 2π

3

))
k2 =

4S0

3
(1 + r(ϕ)max r̂ cos (ϕ)) (3.2.21)

3.2.2. Triplet T0

According to ref. [106], the triplet T0 has the geometrical form of a tetrahedron, see figure

3.4.

Figure 3.4.: Triplet tetrahedron. The shaded area specifies the physical, space-like region.

This can be seen by rewriting the triplet T0:

T0 =
1

4

 x1 + x2 + x3 − 3x4

−
√

2(x1 + x2 − 2x3)√
6(x1 − x2)

 (3.2.22)

xi = (pi −
1

4
P )2 i ∈ {1, 2, 3, 4}. (3.2.23)

If allowing all space-like xi ≥ 0, the object is a full tetrahedron. The four corners of the

tetrahedron are given by

C1 = (1,−
√

2,
√

6) C2 = (1,−
√

2,−
√

6)

C1 = (1, 2
√

2, 0) C2 = (−3, 0, 0) (3.2.24)

with xi = 4S0 and xj 6=1 = 0. The four faces Ai have the property that xi = 0 holds. In

the center of the tetrahedron all xi have the same value xi = S0.

Similar to the doublet triangle, we could expect effects of poles with mass m located at

xi = −m2, (3.2.25)
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influencing the amplitude at the boundary of the tetrahedron for large S0. Because the

quark in the Maris-Tandy model has complex-conjugated poles [108] which are far away

from the real axis, this effect is suppressed and we expect the overall dependence of the

tetraquark on this triplet to be rather weak. Different to the doublet-triangle, these poles

stay outside of the tetrahedron for all P used in our calculation, and so do not produce

any threshold effects.

Similar to the doublet we parametrize the triplet in spherical coordinates:

T0 = S0 R(Ω)max R̂

 − cos θ

sin θ cosφ

− sin θ sinφ

 = S0 R(Ω)max R̂


cosαr cos ΦR z̄R−sinαr zR

ZR
sinαr cos ΦR z̄R+cosαr zR

ZR
sin ΦR
ZR


ZR =

√
1 +

1

2
z2
R(1− cos 2ΦR) (3.2.26)

R̂ ∈ [0, 1], θ ∈ {0, π}, φ ∈ {0, 2π} (3.2.27)

ΦR ∈ {−π, π}, zR ∈ {−1, 1} (3.2.28)

αr =
cos−1(1/3)

2
≈ 0.615π. (3.2.29)

The angle 2αr is the ‘tetrahedral angle’ and the variable Rmax is similar to rmax in the

doublet, providing the mapping from a sphere to a more complicated object.

We use the rather complicated Lorentz-invariants R̂, zR,ΦR to describe and interpolate the

dressing functions. The reason is the nice S4 transformation property of these variables:

P12(ΦR) = −ΦR (3.2.30)

P34(ΦR) = −ΦR + π

P34(zR) = P12(zR) = zR.

A grid defined on these variables is much easier to symmetrize than a grid defined on the

spherical coordinates θ, φ. The only symmetry transformation that is ‘difficult’, even in

this parametrization, is the charge-conjugation operations P13,24 and P14,24 which rotate

the triplet variables in a non-trivial way.

In geometrical terms, any S4-permutations exchange the faces of the tetrahedron. In fu-

ture works, this feature could be exploited by replacing the spherical parametrization with

a definition on a triangulated sphere, with the vertices defined in such a way that either

the vertices or the faces, defined by the vertices, are permuted when performing an S4

operation. Natural candidates would be the spherical polyhedra of the tetrahedral group

and their duals with a spherical barycentric interpolator defined on the vertices [109].

There is another complication present in the triplet variables that is absent in the doublet.

In order to fill a complete tetrahedron, the variables xi have to be independent. This is

not the case because of the condition:
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4∑
i=1

xi = 0. (3.2.31)

Geometrically, this restriction can be deduced from the Lorentz-vectors in eq. (3.2.6). The

three angular variables z, z′, α are restricted to the interval [−1, 1]. Setting one of them

to the maximal or minimal value and letting the other two vary in the interval [−1, 1] will

define a surface in the three-dimensional space spanned by u, v, w. We found this surface

to be defined by the S4 invariant condition:

k2 p2 k2 P 2 = P 2( p2 ω2
1 + k2 ω2

3 + q2 ω2
2) − 2P 2ω1 ω2 ω3

+ ( k2 q2 η2
1 + k2 p2 η2

2 + p2 q2 η2
3 )

+ 2( ω1 ω2 η1 η2 + ω3 ω2 η1 η3 + ω2 ω3 η2 η3 )

− ( ω2
1 η

2
1 + ω2

2 η
2
2 + ω2

3 η
2
3 )

− 2( k2 ω3 η1 η2 + p2 ω1 η2 η3 + q2 ω2 η1 η3 ). (3.2.32)

The such defined geometrical object is a complicated structure contained in the full tetra-

hedron spanned by the xi. Finally, we provide the relation between ωi and the spherical

triplet variables R̂, θ, φ:

ω1 =
2S0

3
R̂ Rmax(Ω)

(
cos θ +

√
2 sin θ cos

(
φ+

2π

3

))
(3.2.33)

ω2 =
2S0

3
R̂ Rmax(Ω)

(
cos θ +

√
2 sin θ cos

(
φ− 2π

3

))
ω3 =

2S0

3
R̂ Rmax(Ω)

(
cos θ +

√
2 sin θ cosφ

)
.

Inserting eq. (3.2.34), eq. (3.2.21) and eq. (3.2.39) into eq. (3.2.32), a cubic equation for

Rmax(Ω) can be derived. In the appendix A.2 we give a more detailed account of how to

solve the cubic equation encountered in the calculation of Rmax.

3.2.3. Triplet T1

The phase space of the T1 triplet forms a cuboid with vertices at (see figure 3.5)

C1,2 = (∓
√

2

3
, 0, 0) C3,4 = (∓ 2

3
√

3
,∓4

3

√
2

3
, 0)

C5,6 = (∓ 2

3
√

3
,∓2

3

√
2

3
,
2
√

2

3
) C7,8 = (∓ 2
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). (3.2.34)

The vertices correspond to the limits

η1 = ±4

3

√
S0P 2 η2 = ±4

3

√
S0P 2 η3 = ±4

3

√
S0P 2, (3.2.35)

and the symmetric point in the center of the cube is sampled when all relative momenta

are orthogonal to P .
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Figure 3.5.: Triplet cuboid. The shaded area specifies the physical, space-like region.

In contrast to the tetrahedron and the triangle, we do not expect poles outside of the space-

like cuboid, because the variables ηi are not connected to the square of any momenta. Thus

we assume a weak dependence on this triplet, at least for the tetraquark ground states.

Similar to the triplet T0, we can parametrize the triplet in spherical variables T1,

T1 =
√
S0P 2 ρ ρmax(Ω)

 − cosϑ

sinϑ cos ξ

− sinϑ sin ξ

 =
√
S0P 2 ρ ρmax(Ω)


cosαr cos Φρ z̄ρ−sinαr zρ

Zρ
sinαr cos Φρ z̄ρ+cosαr zρ

Zρ
sin Φρ
Zρ


Zρ =

√
1 +

1

2
z2
ρ(1− cos 2Φρ) (3.2.36)

ρ̂ ∈ [0, 1], ϑ ∈ {0, π}, ξ ∈ {0, 2π} (3.2.37)

Φρ ∈ {−π, π}, zρ ∈ {−1, 1} (3.2.38)

As in the case of T0, we map the triplet variables on a sphere and subsequently use ρmax(Ω)

to map this sphere on the cube. We also remark that the phase space of the cuboid is not

restricted as the tetrahedron in the case of T0.

As long as P = (0, 0, 0, iM), the phase space variables ηi are purely imaginary, and

ρ can be rendered purely real by factoring out an i. When one introduces a width

P = (0, 0, 0, iM + Γ), the phase space gets truly complex. In that case, it is sufficient

to define just ρ to be complex, whereas the singlet S0, doublet D0 and the triplet T0 can

be rendered purely real by replacing p, q, k with pT , qT , kT .

Finally, the relations between ηi and ρ, ξ, ϑ are provided:
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η1 =
2√
3
iρ ρmax

√
S0 P 2

(
cosϑ+

√
2 sinϑ cos

(
ξ +

2π

3

))
(3.2.39)

η2 =
2√
3
iρ ρmax

√
S0 P 2

(
cosϑ+

√
2 sinϑ cos

(
ξ − 2π

3

))
η3 =

2√
3
iρ ρmax

√
S0 P 2

(
cosϑ+

√
2 sinϑ cos ξ

)
.

3.3. Flavor structure

We investigate the tetraquarks for quarks in the SU(3) flavour representation. Quarks

with charm quantum number are treated as flavour singlets. The tetraquark consists of

two quarks and two antiquarks, which have to be coupled to form flavour multiplets:

3̄f ⊗ 3̄f ⊗ 3f ⊗ 3f = 1f ⊕ 8f ⊕ 10f ⊕ 1̄0f ⊕ 27f . (3.3.1)

To perform the SU(3) coupling and to obtain the Clebsch-Gordon coefficients one can

use the tables found in refs. [110, 111]. A very nice overview of the tetraquark structure,

including the tetraquark flavour amplitude, is provided in ref. [8]. We also want to mention

the program based on ref. [112], which is capable of performing SU(N) Clebsch-Gordon

decompositions. We assume that the tetraquarks obey the ideal mixing hypothesis, which

means that the mesons have a defined s-Quantum number.

Because our interaction is isospin- and flavour-blind, we restrict our focus on the neutral

particles of the light scalar nonet. There are four different kinds of particles, with different

symmetries:

f0(500) The f0(500) has two flavour components, stemming from a singlet in the 3̄⊗ 3

and 6̄⊗ 6 flavour channel:

f0(500)3̄⊗3 =
1

2
(ūd̄ud− d̄ūud+ ūddu+ d̄udu)

f0(500)6̄⊗6 =
1

2
√

3
(ūd̄ud+ ūd̄du+ ūddu+ d̄uud− 2ūūuu− 2d̄d̄dd). (3.3.2)

The symmetry of both amplitudes can be summarized as seen in fig 3.2

State P12 P34 P13,24 P14,23

f0(500)3̄⊗3 − − + +

f0(500)6̄⊗6 + + + +

Table 3.2.: Symmetry of the different flavour components of the fo(500).

Both amplitudes are orthogonal to each other. Because our model is flavour-blind, the

interaction cannot mix these two states, and we obtain actually two different f0(500).

These two states will form one state if one allows flavour changing contributions.

In the case, where all quarks are of the same flavour

40



c̄c̄cc s̄s̄ss (3.3.3)

the flavour amplitude is a singlet under any permutation. In this case there is only one

state with a defined symmetry.

K∗
0(800) This particle is the equivalent to the Kaon in the pseudo-scalar q̄q nonet.

As the neutral Kaon, the K∗0 (800) and the K̄∗0 (800) have no defined charge conjugation

quantum number. This problem can be alleviated by forming linear combinations, denoted

as K∗L(800) and K∗S(800), which resembles the famous ‘K long’ and ‘K short’ in the pseudo-

scalar nonet:

K∗S(800) =
1

2
√

2
(ūs̄ud− ūs̄du+ s̄ūud− s̄ūdu+ d̄ūsu− ūd̄su+ d̄ūus− ūd̄us)

K∗L(800) =
1

2
√

2
(ūs̄ud− ūs̄du+ s̄ūud− s̄ūdu− d̄ūsu+ ūd̄su− d̄ūus+ ūd̄us) (3.3.4)

The symmetries are given in figure 3.3. Different to the σ, the K∗L(800) and K∗S(800) do

not transform with a global sign change under P12 and P34. We denote this behaviour by

± in the table 3.3.

State P12 P34 P13,24 P14,23

K∗S(800) ± ± − +

K∗L(800) ± ± + −

Table 3.3.: Symmetry of the different flavour components of the K∗(800).

State P12 P34 P13,24 P14,23

a0(980)3̄⊗6̄ + − mixed mixed

a0(980)6⊗3 − + mixed mixed

Table 3.4.: Symmetry of the different flavour components of the a0(980).

a0(980) The a0(980) is an isospin triplet and comes in three charges. We will only

consider the neutral particle. Similar to the rest of the nonet, the a0(980) has two flavour

amplitudes with different symmetries.

a0(980)3̄⊗6̄ =
1

2
√

2
(d̄s̄ds+ ūs̄us+ s̄d̄ds+ s̄ūus− d̄s̄sd− ūs̄su− s̄d̄sd− s̄ūsu)

a0(980)6⊗3 =
1

2
√

2
(−d̄s̄ds− ūs̄us+ s̄d̄ds+ s̄ūus− d̄s̄sd− ūs̄su+ s̄d̄sd+ s̄ūsu). (3.3.5)

As can be seen in table 3.4, charge conjugation is not a ‘good’ symmetry of the flavour

amplitude. That means that the flavour amplitude does not transform with a definite

global plus or minus. In order to have a well defined charge conjugation quantum num-

ber, the flavour components have to be combined individually with appropriate tensor
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structures in such a way, that the charge conjugation operation always yields a definite

sign. This procedure is always possible. For example, a charge conjugation + state can

be constructed by multiplying all flavour components that transform with a minus by

P · k. (3.3.6)

According to table 3.1, this momentum combinations has the right properties to change

just the charge conjugation from + to − without changing the transformation under P12

and P34.

f0(980) The f0(980) mirrors the f0(500). There are two contributions from the 3̄ ⊗ 3

and 6̄⊗ 6 flavour channel with different symmetries.

f0(980)3̄⊗3 =
1

2
√

2
(−s̄ūsu+ ūssu+ s̄ūus− ūs̄us+ d̄s̄ds− s̄d̄ds− d̄s̄sd+ s̄d̄sd)

f0(980)6̄⊗6 =
1

2
√

2
(−ūs̄us− s̄uus− ūs̄su− s̄ūsu+ d̄s̄ds+ s̄d̄ds+ d̄s̄sd+ s̄d̄sd)

(3.3.7)

State P12 P34 P13,24 P14,23

f0(980)3̄⊗3 − − + +

f0(980)6̄⊗6 + + + +

Table 3.5.: Symmetry of the different flavour components of the fo(980).

3.4. Color structure

Because of confinement, the bound-states have to be colour singlets. As in the case of the

construction of the flavour amplitude, we couple two quarks and two antiquarks:

3̄c ⊗ 3̄c ⊗ 3c ⊗ 3c = 1c . . . (3.4.1)

Different from the nucleon and the qq̄-mesons, we get two colour-singlet structures. Be-

cause the Maris-Tandy interaction contains Gell-Mann matrices, the interaction will mix

the colour singlets. Here we provide the full colour singlet amplitudes. In this case the

characters u, d, s stand for the three colours r, g, b.

3⊗ 3̄S =
1

2
√

3
(udūd̄− udd̄ū− duūd̄+ dud̄ū

+ sus̄ū− suūs̄− uss̄ū+ usūs̄

+ dsd̄s̄− dss̄d̄− sdd̄s̄+ sds̄d̄) (3.4.2)
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and

6⊗ 6̄S =
1

2
√

6
(2ddd̄d̄+ dsd̄s̄+ dss̄d̄

+ sdd̄s̄+ sds̄d̄+ 2sss̄s̄+ dud̄ū

+ duūd̄+ udd̄ū+ udūd̄+ sus̄ū

+ suūs̄+ uss̄ū+ usūs̄+ 2uuūū). (3.4.3)

The colour factors for each diagram can now be readily calculated, because all ingredients

are known explicitly and can be found in appendix A.3.

3.5. Tensor structure

The tetraquark amplitude (wave function) in the quark picture is an object with four

internal legs and one external leg. The internal legs carry each a flavour index, a colour

index, a Dirac index and a momentum. These internal legs are connected to quarks.

The external leg carries a Lorentz index, a colour index, a flavour index and the total

momentum of the bound-state. These external indices specify the quantum numbers of

the bound-state: JPCf,c .

In this notation, J denotes the angular momentum, P the parity, C the charge parity,

f specifies in which flavour multiplet the tetraquark resides and c specifies the colour

multiplet of the bound-state. Because all bound-states in QCD are colour singlets, this

index will be suppressed. In a graphical representation, the wave function is depicted as:

(3.5.1)

The single capital P on the right hand denotes the total momentum. It should be clear

from the context if the parity or the total momentum is meant. The leg momenta are

labeled p1, p2, p3, p4. The red arrow specifies the flow direction of these momenta and the

black arrow specifies the spin-line of the attached quarks. The indices {c1, c2, c3, c4} ∈
{1 . . . 3} represent the colour indices of each leg and {f1, f2, f3, f4} ∈ {1 . . . 3} the flavour

indices. Because the underlying group structure of both flavour and colour is SU(3), the

indices run over the interval {1 . . . 3}. The last index set is formed by the Dirac indices

{a, b, c, d} ∈ {1 . . . 4}. The upper two legs are attached to anti-quarks and the lower two

legs to quarks.

In the following chapters, permutation operations will play an important role and some

notations will be introduced beforehand. The permutation of any two legs i, j, including

momenta and all attached indices, will be denoted by Pij .

The general structure of the tensor structure of the tetraquark, with flavour and colour

related indices suppressed, reads:
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Γ
{µν... }
abcd =

∑
i

T
{µν... },i
abcd (p1, p2, p3, p4,Ω) f i(Ω) (3.5.2)

T
{µν... },i
abcd =

(
τ i1,ab ⊗ τ i2,cd

){µν... }
(p1, p2, p3, p4,Ω). (3.5.3)

Here the index i runs over the different tensor structures and Ω stands for a set of nine

Lorentz invariants formed from p1, p2, p3, p4. The index set {µν . . . } encodes the total

angular momentum (J) of the state. A scalar/pseudo-scalar tetraquark has no such index,

a vector/axial-vector state carries one etc.

The scalar dressing functions are denoted by f i(Ω). Suppressing any Lorentz index, the

direct tensor product τ i1,ab(Ω) ⊗ τ i2,cd(Ω) carries the full Dirac structure. There are three

different choices to pair up the indices.

(ab), (cd) : (D) (3.5.4)

(ac), (bd) : (MI) (3.5.5)

(ad), (bc) : (MII) (3.5.6)

Transformations between the different composition are achieved by means of Fierz trans-

formations. The first of the three combinations (D) combines two quark legs and two

anti-quark legs and is therefore identified with a diquark-(anti-)diquark decomposition.

The other two combinations (MI), (MII) pair a quark and an anti-quark leg and are thus

classified as meson-meson decompositions. The amplitudes can be expressed in the (D)

and in the (MI,MII) decomposition without losing any information because a transfor-

mation between them is always possible. In the rest of this work the (D) is chosen because

the Pauli principle is much easier to establish in this decomposition. In the following we

will consider the scalar tetraquark only.

3.5.1. Quantum numbers

The tetraquark is characterized by its quantum numbers J , C (charge conjugation) and

P (parity), subsumed in the notation JPC . In order to construct a tensor structure that

respects the symmetries connected with the quantum numbers, we first introduce the

corresponding operators and then perform the construction.

Parity The action of the parity operator P on the tetraquarks tensor structure can be

written as:

P[T
{µν... },i
abcd (p1, p2, p3, p4,Ω) f i(Ω)] =(

γ4τ
i
1 ⊗ γ4τ

i
2

){µν... }
(Λp1,Λp2,Λp3,Λp4,Ω9)f i(Ω). (3.5.7)

Here Λ = Diag(−1,−1,−1, 1) multiplies the spatial part of a Lorentz four-vector with −1

and γ4 is one of the euclidean gamma matrix. The set of Lorentz invariants Ω is invariant

under a parity transformation.
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Charge Conjugation The charge conjugation operator CC13,24 exchanges quarks and di-

quarks and multiplies the tensor structure with C = γ2γ4:

CC13,24[T
{µν... },i
abcd (p1, p2, p3, p4,Ω) f i(Ω)] =(

Cτ i1CTcd ⊗ Cτ i2CTab
){µν... }

(p3, p4, p1, p2,ΩCC)f i(ΩCC). (3.5.8)

The Lorentz invariants are not invariant under a charge conjugation and the new set is

named ΩCC . Besides the momenta, charge conjugation also permutes the Dirac indices.

As can be seen in (3.5.8), this interchange is equivalent to a permutation of the structures

τ1 and τ2.

There is another possible charge conjugation operation which interchanges the legs 1, 4 and

2, 3. This charge conjugation can be written as a combination of CC13,24 and a subsequent

permutation P34. Because the tensor structure is symmetric or anti symmetric under P34

by construction, it is sufficient to consider CC13,24.

Time reversal The Time reversal operator reads in euclidean space:

T [T
{µν... },i
abcd (p1, p2, p3, p4,Ω) f i(Ω)] = (3.5.9)(

γ5C(τ i1)∗γ5CTcd ⊗ γ5C(τ i2)∗γ5CTab
){µν... }

(p∗1, p
∗
2, p
∗
3, p
∗
4,Ω)f i(Ω)∗,

with the ∗ denoting a complex conjugation. Because the euclidean total momentum vector

reads P = (0, 0, 0, iM), the phase space variables ηi transform as η1 → −ηi under T . In

terms of the variables introduced in sec. 3.2.3, this transformation reads:

zρ → −zρ
Φρ → Φρ + π. (3.5.10)

Because the combined symmetry CPT is a good symmetry, yielding a minus if the object

carries an odd number of Lorentz indices and a plus if the number is even, instead of

charge conjugation, a time reversal operation combined with a parity operation can be

applied. Because the time reversal in eq. (3.5.10) does not involve an interpolation on Ω

when choosing a suitable grid, this operation is numerically considerably cheaper to carry

out.

Pauli principle The Pauli principle is not related to a quantum number, but an impor-

tant property of the complete tetraquark wave function.

The Pauli principle states that under exchange of any two quarks, equivalent to P34, or

antiquarks, equivalent to P12, the amplitude picks up a minus sign. The exchange of two

quarks involves the interchange of all flavour, colour and Dirac indices, and also an ex-

change of the momenta associated with the two quarks. Because the colour and flavour

structures have a definite transformation property under P34 and P12, see chapter 3.4 and
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3.3, the transformation property of the Dirac-structure is also fixed.

Before we construct the amplitudes, we give in the next section a short argument why

there are 256 linear independent tensor structures.

Number of tensor structures The number (256) of linear independent tensor structures

can be determined from its quantum numbers and a bit of γ-matrix technology.

First one combines the 16 elements of the Clifford-algebra, formed by the Dirac γ-matrices,

with the 4 momenta p1, p2, p3, p4 into two sets of tensors with Dirac indices:

I = {1, /pi, [/pi, /pj ]} II = {γ5, γ5/pi} i, j ∈ {1 . . . 4}, i > j. (3.5.11)

The first set has positive parity and the second set has a negative one. These two sets can

be combined via a direct product to form a object with four Dirac indices. This tensor

product can be again grouped into a set of two sets with different parity:

TI = {I ⊗ I, II ⊗ II}, TII = {I ⊗ II, II ⊗ I}. (3.5.12)

The set TI has positive parity and the set denoted by TII carries a negative parity. If the

second or first set is combined with the negative parity factor

εµνλη pµ1 p
ν
2 p

λ
3 p

η
4, (3.5.13)

both sets have the same parity respectively, denoted by the superscript±. Barring collinear

kinematic configurations, the four 4-vectors pi can be orthogonalized and it follows that

all elements in T±I and T±II are orthogonal to each other. The total number count is thus

256. This is also the maximal number of linear independent tensor structures with four

Dirac indices that can be constructed from the Dirac matrices in four dimensions.

It is important to point out that the set of tensor structures TI , TII , introduced in this

chapter, are not a good choice for actual calculations because important symmetries, such

as the Pauli principle, interrelate the different amplitudes in a complicated manner. A

better suited basis is constructed in the following sections.

Consideration for higher J In order to construct the tetraquark amplitude for J = 1, we

need structures that carry one open Lorentz-index and are transversal to P . A possible

choice for such structures are the three orthogonal momenta

p̃µi . (3.5.14)

Here the tilded momenta are some linear combinations of pi that are transverse to the

total momentum P = 1
4

∑4
i=1 pi. Such a combination of momenta are for example the

relative momenta
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pT , qT , kT . (3.5.15)

This momenta can be combined with the 256 structures of T±I and T±II so that we can

conclude that the J = 1 tetraquark has 3×256 = 768 linear independent tensor structures.

Instead of using three orthogonal momenta as basis for the Lorentz-index carrying struc-

ture, we can alternatively use the following structures that maximize the number of mo-

mentum independent tensor structures:

γµT (3.5.16)

31wµ − /wγ
µ
T (3.5.17)

uµ/v + vµ/u, (3.5.18)

with the momenta u, v, w defined as in eq. (3.5.34). The orbital angular momentum L of

each structure reads 0, 1, 2 from top to bottom. These three tensors would be the natural

starting point for the construction of a complete J = 1 amplitude, respecting all relevant

symmetries.

3.5.2. LS-decomposition

For J = 0, the tensor structures transform as Lorentz scalars. The angular momentum

J can be furthermore decomposed into its spin S and orbital angular momentum L. In

general, these are not good quantum numbers because they are not Lorentz invariant and

thus frame dependent. But the bound-state equation is formulated in the rest frame of the

tetraquark, which does not change during the calculation, and so for calculation purposes,

a partial wave decomposition of the tensor structure is worthwhile. Especially taking into

account that studies investigating the ground state properties of the nucleon and ∆ have

shown that the tensor structures with L > 0 are subleading [93]. Assuming that a similar

mechanism also applies for the tetraquark, we will drop all tensor structures from the

actual calculation that have L > 0. But to be able to ignore all structures with L > 0, we

first have to perform the complete LS-decomposition of the tetraquark amplitude.

A similar decomposition was performed for the nucleon in refs. [96, 113] and we will follow

the same prescription given there to construct the LS-decomposition for the tetraquark.

The first ingredient in an LS-decomposition is the Pauli-Lubanski operator in the rest

frame, and the eigenvalues of its square :

Wµ =
1

2
εµναβP̂ νJαβ = Sµ + Lµu + Lµv + Lµw. (3.5.19)

W 2 → J(J + 1) (3.5.20)

In this notation, the total momentum P̂ is normalized to 1, indicated by the hat ˆ. The

vectors u, v, w are assumed to be ortho-normal. The eigenvalue of the Pauli-Lubanski
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operator determines the total angular momentum of the tetraquark. The spin operator

Sµ and the orbital angular momentum operators Lµu,v,w that appear on the right-hand side

read

Sµ =
1

4
εµναβP̂ ν

(
σαβ ⊗ 1⊗ 1⊗ 1+ perm

)
(3.5.21)

Lµ(y) =
i

2
εµναβP̂ ν

(
yα∂βy − yβ∂αy

)
1⊗ 1⊗ 1⊗ 1, (3.5.22)

where y represents any four-vector, and σαβ is defined as

σαβ = − i
2

[γα, γβ]. (3.5.23)

In order to construct the eigenvectors of W 2, the products of these operators are needed:

S2 = 3 (1⊗ 1⊗ 1⊗ 1) +
1

4

(
σαβT ⊗ σ

αβ
T ⊗ 1⊗ 1+ perm

)
(3.5.24)

L2
(y) = 2yT · ∂y +

(
yαT y

β
T − y

2
TT

αβ
P

)
∂αy ∂

β
y (3.5.25)

L(y) · L(z) =
(
yαT z

β
T − yT · zTT

αβ
P

)
∂βy ∂

α
z . (3.5.26)

The definition of the transverse projector TαβP and the transverse σαβT -matrices is given by

TαβP = δαβ − P̂αP̂ β (3.5.27)

σαβT = − i
2

[γαT , γ
β
T ] (3.5.28)

γαT = TαβP γβ = γα − P̂α /̂P . (3.5.29)

As shown in section 3.5.1, there are 256 linear independent tensor structures. Using a

different decomposition, this space can be factorized into 8 sets which are orthogonal to

each other:

(1± /P )⊗ (1± /P ).{R1 ⊗R2} := (1± /P )R1 ⊗ (1± /P )R2 (3.5.30)

γ5(1± /P )⊗ γ5(1± /P ).{R1 ⊗R2} := γ5(1± /P )R1 ⊗ γ5(1± /P )R2. (3.5.31)

Here any permutation of the signs ± is allowed, the dot . denotes an ordinary matrix

multiplication of all tensors on the right and left side of ⊗ respectively, and the set {R1⊗
R2} stands for the ‘rest’ of the tensor structure. Because γ5 and 1 ± /P have an orbital

angular momentum of L = 0, the set {R1 ⊗ R2}, containing 32 elements, will carry all

the orbital angular momentum. The momenta u, v, w, P , appearing in eq. (3.5.19), are

assumed to be orthonormal.

The vectors u, v, w can be constructed by combination of the three vectors pT , qT , kT

introduced in eq. (3.2.2):
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vector P12 P34 P13,24/P14,23

u u u -u

v -v -v v

w -w -w -w

Table 3.6.: Transformation properties of the vectors u, v, w.

u := kT (3.5.32)

v := pT (qT · kT )− qT (pT · kT ) (3.5.33)

w := uT × vT = (kT × pT )(qT · kT )− (kT × qT )(pT · kT ). (3.5.34)

Orthogonality of these three momenta to each other is immediately clear, as is the orthog-

onality to P . The S4-transformation properties of these three vectors are given in table

3.6. The final result for the 32 amplitudes that, together with the factors in eq. (3.5.31),

span the whole tetraquark amplitude space, is given in table 3.7.

3.5.3. Construction of symmetric tensor structures

The LS-decomposition is a first step in constructing a proper basis that reflects all the

symmetries of the tetraquark. In the next step, one has to linear combine the structures in

table 3.7 within the s-wave (L=0), p-wave (L=1) and d-wave (L=2) channels, to get tensor

structures that have a defined transformation property under parity, charge conjugation

and an exchange of two quarks and two anti-quarks.

In table 3.8, this procedure was done for the momentum independent s-waves. The columns

denoted by C,P, T provide the transformation property under CPT . The abbreviation

F specifies the sign, that the amplitude picks up when performing a Fierz-transformation

as detailed in section 3.6. If amplitudes do not transform automorphically, the amplitude

into which they transform is provided in brackets.

As an example, we show the explicit calculation to obtain the transformation properties

for the first amplitude in table 3.8:

Quark exchange P12

(CTγ5)2,1 ⊗ (γ5C)3,4
P12−−→ (CTγ5)1,2 ⊗ (γ5C)3,4 =

= (γT5 C)2,1 ⊗ (γ5C)3,4 = (CCTγT5 C)2,1 ⊗ (γ5C)3,4 =

= (Cγ5)2,1 ⊗ (γ5C)3,4 = −(CTγ5)2,1 ⊗ (γ5C)3,4 (3.5.35)

Charge conjugation C13,24

(CTγ5)2,1 ⊗ (γ5C)3,4
C13,24−−−−→ (CCTγ5CT )4,3 ⊗ (Cγ5CCT )1,2 =

= (γ5CT )4,3 ⊗ (Cγ5)1,2 = (CγT5 CTC)3,4 ⊗ (CCTγT5 C)2,1 =

= (γ5C)3,4 ⊗ (CTγ5)2,1 (3.5.36)
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Here we used the properties of the charge conjugation matrices

CTC = 1, CT = −C (3.5.37)

and the charge conjugation properties of the Dirac-matrices, see ref. [114]. Additionally

the following property is useful to derive the transformations:

γµT /P = −/PγµT . (3.5.38)

3.6. Amplitude conventions and Fierz transformations

Figure 3.6.: Index convention for the (D)-decomposition on the left-hand side and (MI/II)-

decomposition on the right-hand side. The charge conjugation matrices, that are part of the

tensor structure, are explicitly drawn at the quark line, denoted by the number, they are attached

to. The arrow specifies the spin-line of the tensor structure. When performing a matrix-matrix

product all involved quantities are supposed to have an index ordering against the spin-line.

Figure 3.7.: Index convention for a Fierz-transformation from (D)-decomposition to the (MI)-

decomposition. The red arrow denotes the tensor structure that has to be transposed.

We adopt the index convention as depicted in figure 3.6 for the tetraquark amplitude. The

choice we took has no particular benefit but it is of utmost importance to stick to the chosen

convention when performing projections, Fierz-transformation etc. When performing a

matrix-matrix product all involved quantities (quarks, vertices, tensor structures) are

supposed to be traced against the spin-line. This means that for any matrix object Aij ,

the index i is located at the front of the spin-line arrow and j at the rear. For a matrix-

matrix product, all pairwise summed indices are supposed to be adjacent. Whenever this

is not the case, an appropriate transposition of the matrix is performed.

50



This is the case for the Fierz-transformation in figure 3.7: The lower tensor structure of

the (MI)-decomposition has to be transposed. The red arrow denotes the structure that

has the wrong spin-line direction. Together with the C, CT on both sides of the amplitude,

this amounts to a charge conjugation of the tensor structure.

3.7. Polynomial representation and interpolation

The scalar dressing functions of the tetraquark are defined on a cartesian grid which we

call the external grid. In order to calculate the BSE we have to integrate over these scalar

dressing functions. The grid points of the integration grid constitute the so-called internal

grid. The points of both grids do not coincide for all diagrams. Therefore, in order to

evaluate the dressing functions under the integral, we have to interpolate these dressing

functions. We employ an interpolation rule that is constructed as the tensor product

of nine one-dimensional polynomial interpolation rules. The complete nine-dimensional

interpolation rule reads

f(S0, r, R, ρ, ϕ, zR,ΦR, zρ,Φρ) =

NS0∑
i1=1

wi1
(S0)i1 − S0

Nr∑
i2=1

wi2
(r)i2 − r

NR∑
i3=1

wi3
(R)i3 −R

Nρ∑
i4=1

wi4
(ρ)i4 − ρ

Nϕ∑
i5=1

wi5
(ϕ)i5 − ϕ

NzR∑
i6=1

wi6
(zR)i6 − zR

NΦR∑
i7=1

wi7
(ΦR)i7 − ΦR

Nzρ∑
i8=1

wi8
(zρ)i8 − zρ

NΦρ∑
i9=1

wi9
(Φρ)i9 − Φρ

×

× f
(

(S0)i1, (r)i2, (R)i3, (ρ)i4, (ϕ)i5, (zR)i6, (ΦR)i7, (zρ)i8, (Φρ)i9

)
, (3.7.1)

with N(·) specifying the number of points in each dimension and wi and (·)i denoting

the weights and nodes of the one-dimensional rules respectively. For each dimension a

Chebyshev rule was used and the corresponding weights and nodes were taken from ref.

[70]. The nodes in each dimension are defined on the domains as specified in chapter 3.2.
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# L R1 ⊗R2 Norm factor

1 0 1⊗ 1 1

2 0 γµT ⊗ γ
µ
T

√
3

3 0 1⊗ [(/u/v − /v/u)/w + (/v /w − /w/v)/u+ (/w/u− /u/w)/v] 6

4 0 γµT ⊗ γ
µ
T [(/u/v − /v/u)/w + (/v /w − /w/v)/u+ (/w/u− /u/w)/v]

√
108

5 1 3/u⊗ 1− γµT ⊗ /uγ
µ
T

√
6

6 1 3/v ⊗ 1− γµT ⊗ /vγ
µ
T

√
6

7 1 3/w ⊗ 1− γµT ⊗ /wγ
µ
T

√
6

8 1 3/v /w ⊗ 1− γµT ⊗ /v /wγ
µ
T

√
12

9 1 3/u/w ⊗ 1− γµT ⊗ /u/wγ
µ
T

√
12

10 1 3/u/v ⊗ 1− γµT ⊗ /u/vγ
µ
T

√
12

11 1 /uγ
µ
T ⊗ γ

µ
T

√
3

12 1 /vγ
µ
T ⊗ γ

µ
T

√
3

13 1 /wγ
µ
T ⊗ γ

µ
T

√
3

14 1 /P/v/uγ
µ
T ⊗ γ

µ
T

√
3

15 1 /P/v /wγ
µ
T ⊗ γ

µ
T

√
3

16 1 /P /w/uγ
µ
T ⊗ γ

µ
T

√
3

17 1 /u⊗ 1 1

18 1 /v ⊗ 1 1

19 1 /w ⊗ 1 1

20 1 /v/u⊗ 1 1

21 1 /v /w ⊗ 1 1

22 1 /w/u⊗ 1 1

23 2 2/v ⊗ /v − /u⊗ /u− /w ⊗ /w
√

6

24 2 /u⊗ /u− /w ⊗ /w
√

2

25 2 /u⊗ /w − /w ⊗ /u
√

2

26 2 /u⊗ /v − /v ⊗ /u
√

2

27 2 /w ⊗ /v − /v ⊗ /w
√

2

28 2 /v ⊗ [/v/u− /u/v]− 1
2γ

µ
T ⊗ [γµT /u− /uγ

µ
T ]

√
2

29 2 /v ⊗ [/v /w − /w/v]− 1
2γ

µ
T ⊗ [γµT /w − /uγ

µ
T ]

√
2

30 2 /w ⊗ [/w/v − /v /w]− 1
2γ

µ
T ⊗ [γµT /v − /vγ

µ
T ]

√
2

31 2 −2/v ⊗ [/w/u− /u/w] + /u⊗ [/v /w − /w/v] + /w ⊗ [/u/v − /v/u]
√

24

32 2 −2/vγ
µ
T ⊗ γ

µ
T [/w/u− /u/w] + /uγ

µ
T ⊗ γ

µ
T [/v /w − /w/v] + /wγ

µ
T ⊗ γ

µ
T [/u/v − /v/u]

√
24

Table 3.7.: L-S decomposition of the tetraquark structure. Divide by N to normalize the tensor

structure to 1.

52



# Structure P12 P34 C T F Norm

1 (CTγ5)2,1 ⊗ (γ5C)3,4 -(1) -(1) + + +(1) 1

2 CTγ5 /P ⊗ γ5C + CTγ5 ⊗ γ5 /PC -(2) -(2) + + +(2)
√

2

3 CTγ5 /P ⊗ γ5C - CTγ5 ⊗ γ5 /PC -(3) -(3) - + +(3)
√

2

4 CTγ5 /P ⊗ γ5 /PC -(4) -(4) + + +(4) 1

5 CTγµT ⊗ γ
µ
TC +(5) +(5) + + -(5)

√
3

6 CTγµT /P ⊗ γ
µ
TC + CTγµT ⊗ γ

µ
T
/PC +(6) +(6) + + -(6)

√
6

7 CTγµT /P ⊗ γ
µ
TC - CTγµT ⊗ γ

µ
T
/PC +(7) +(7) - + -(7)

√
6

8 CTγµT /P ⊗ γ
µ
T
/PC +(8) +(8) + + -(8)

√
3

9 CT1⊗ 1C -(9) -(9) + + +(9) 1

10 CT /P ⊗ C - CT ⊗ /PC +(11) -(11) - + +(10)
√

2

11 CT /P ⊗ C + CT ⊗ /PC +(10) -(10) + + +(11)
√

2

12 CTγµT /P ⊗ γ
µ
T
/PC +(12) +(12) + + +(12) 1

13 CTγµTγ5 ⊗ γµTγ5C -(13) -(13) + + +(13)
√

3

14 CTγµTγ5 /P ⊗ γµTγ5C + CTγµTγ5 ⊗ γµTγ5 /PC +(15) -(15) - + +(15)
√

6

15 CTγµTγ5 /P ⊗ γµTγ5C - CTγµTγ5 ⊗ γµTγ5 /PC +(14) -(14) + + +(14)
√

6

16 CTγµTγ5 /P ⊗ γµTγ5 /PC +(16) +(16) + + +(16)
√

3

Table 3.8.: Symmetrized and momentum independent s-wave tensor structures. For details see

chapter 3.5.3. The subscripts in the first line denote the Dirac index labeling of the amplitude,

with the number specifying the quark leg the index is attached to. Divide by N to normalize the

tensor structure to 1.

53



4. Singularity structure and threshold effects

As mentioned in chapter 3.2, the tetraquark BSE contains two-body poles inside and

outside of the doublet triangle. In this chapter we investigate the nature of these poles

from two different points of view. First of all we elucidate the origin of the poles and

show that they entail a threshold condition. In the next we show numerical results that

demonstrate the emergence of the poles and investigate the influence on the spectrum and

the shape of the tetraquark amplitudes. We also explain the numerical difficulties that

these poles pose and how we (partially) solved them.

4.1. Phase space arguments

There are several kinds of singularities that can appear in the tetraquark bound-state

equation. One can distinguish between singularities of the static components and dynam-

ical singularities which are ‘created’ during iterations.

Static singularities The static singularities are known beforehand and lead to restric-

tions on the phase space. In this work the objects that have known singularities are the

quarks and gluons.

The quark propagator in the Maris-Tandy model develops poles in the complex plane, see

chapter 2.7. These poles are never probed as long as the total mass P in the tetraquark

BSE stays below a critical value of the order of 2GeV for light quarks (mq ≈ 4MeV ) and

7GeV for heavy quarks (mq ≈ 0.9GeV ).

The gluon has a kinematic singularity for relative momenta pg = 0. This singularity ap-

pears only at the integration boundary and is integrable.

Dynamical singularities The dynamical singularities are not obvious from the tensor

structure but ‘hide’ in the phase space of the relative variables. The right-hand side of

the combinations

A : (k +
1

2
P )2 = (p1 + p2)2, (k − 1

2
P )2 = (−p3 − p4)2 (4.1.1)

B : (q +
1

2
P )2 = (p1 + p3)2, (q − 1

2
P )2 = (−p2 − p4)2

C : (p+
1

2
P )2 = (p1 + p4)2, (p− 1

2
P )2 = (−p2 − p3)2
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is the total momentum squared of two quark/antiquark lines respectively. Two-body

bound states will appear whenever these ‘subclusters’ go on-shell.

Putting the lowest pseudo-scalar mass mπ for combination A and B and the lowest scalar

diquark mass mD for combination D into eq. (4.1.1), yields three threshold conditions:

−m2
π = p2 +

1

4
P 2 ± i η1 (4.1.2)

−m2
π = q2 +

1

4
P 2 ± i η2

−m2
D = k2 +

1

4
P 2 ± i η3

Whenever any of these equation is fulfilled for p2 ≥ 0, q2 ≥ 0 or , k2 ≥ 0, the dressing

functions of the tetraquark acquire poles at this location. The quantities η1,2,3 are the

angles between the relative momenta p, q, k and the total momentum P , see eq. (3.2.9).

Focusing on the condition for p2, eq. (3.2.21) can be inserted into eq. (4.1.1) and can be

solved for the variable r̂:

r̂singp =
3

4S0
(−m2

π + 1
4M

2 + 2 iΓ± iη1)− 1

fp(ϕ)
(4.1.3)

fp(ϕ) := rmax(ϕ) cos(ϕ+
2π

3
) (4.1.4)

P 2 = M2 + 2 iΓ. (4.1.5)
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Figure 4.1.: Function fp(ϕ) found in eq. (4.1.3).

The function fp(ϕ) has the value −1 in the range ϕ ∈ [0, 2π
3 ], see figure 4.1. For generalities

sake we introduced the width Γ which is the imaginary part of P 2, the complex T-matrix

pole of the tetraquark.

Investigating r̂singp further, there are two general cases that can be distinguished:

55



M < 2mπ For simplicities sake we assume that Γ = 0 and η1 = 0. The numerator is

always negative with magnitude larger than 1. Because fp ≥ −1, the following inequalities

hold:

r̂singp > 1 if fp < 0 (4.1.6)

r̂singp < 0 if fp > 0.

If η1 6= 0, r̂singp has always non-zero imaginary part, and thus is never inside the doublet-

triangle.

M > 2mπ Take for example fp = −1 and S0 = 4
3 . The numerator is now negative but

with a magnitude smaller than 1. Because fp = −1, the pole at r̂singp is now inside the

phase space triangle:

0 < r̂singp < 1 (4.1.7)

It is clear that for a fp 6= −1 and Γ 6= 0, one can always find a ϕ ∈ [0, 2π] and a S0 ≥ 0 so

that 0 ≤ r̂singp ≤ 1 holds.

The appearance of poles in the phase space of r̂ for M > 2mπ is the first evidence that

the system exhibits thresholds.

4.2. Numerical evidence - Shape of amplitudes

Besides this analytical reasoning, the emergence of poles can also be seen by solving

the bound-state equation and investigating the amplitudes, see figure 4.2. These figures

were calculated at the two-pion threshold (M2 = 0.26GeV, mπ = 0.138). To resolve the

structure of the tetraquark amplitude inside the doublet triangle, a larger number of points

along the ϕ (16)- and r- direction (20) were used. As a side remark we mention that a

simple power method to solve the eigenvalue problem was not sufficient and the use of

the advanced library SLEPc [75] was necessary to get any result at all. There are three

distinctive features that can be interpreted physically.

Real
Imag

Real
Imag

Figure 4.2.: Dominant γ5 ⊗ γ5 amplitude along the ϕ − r direction. The left figure at S0 ≈
10−5GeV shows no structure. In the right figure at S0 ≈ 0.1GeV , the bend of the amplitude

towards the boundary is attributed to the close-by poles. The discontinuity in the ϕ-direction is

caused by the difference between diquark and pion mass.
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• The first feature is the bending of the amplitude towards r = 1, as can be seen in

the right panel of figure 4.2. This is attributed to a pole close-by.

• The second feature is the (almost) discontinuity along the ϕ direction, also seen in

figure 4.2. Geometrically, the discontinuity appears at angles ϕ where the meson

side meets the diquark side: ϕ = 2/3π, 4/3π. This sharp drop in the amplitude

can be understood from the mass difference of the pion (mπ ≈ 0.138GeV ) and the

diquark mD ≈ 0.88GeV . The pole of the diquark is further away and the amplitude

does not ‘feel’ the influence of the diquark pole as strongly as the pion pole.

• The amplitude is essentially flat for small S0, see left panel of figure 4.2. All potential

poles that could give rise to a more complicated structure are far outside of the

doublet triangle: (r̂singp >> 1).

In light of the threshold condition derived beforehand, these aspects are perfectly under-

standable and a welcomed physical feature. Unfortunately, these poles introduce a lot

of numerical problems and restrict the actual calculation to masses below the two-pion

threshold.

We want to mention, that one can naively calculate above threshold. However, going

beyond the threshold worsens the numerical stability. The eigenvalue spectrum acquires

complex, grid dependent contributions; additionally the spectrum becomes dense and the

overall convergence is bad. Thus all further calculations will be restricted to masses below

threshold.

Remark It is interesting to note that the formation of two-body clusters seems to be a

feature of the phase-space, and more precisely of the doublet-triangle, and not so much a

feature of the tensor-decomposition. That means that the two-pion poles, seen as bending

of the amplitude towards the boundary of r̂, appear in the γ5⊗γ5, γµ⊗γµ, Cγ5⊗γ5CT etc.

amplitudes. This seems counter intuitive to the naive picture, that the tensor-structure

should correspond to the poles, e.g. the γ5 ⊗ γ5 structure should contain the π − π poles,

the γµ⊗γµ the ρ−ρ poles and so on. However, taking into account Fierz-transformations

explains why the poles appear in all tensor structures. All amplitudes in the different

decompositions (D,MI ,MII), see sec. 3.5, are related via Fierz-transforms. Poles that

appear for example in the γ5⊗ γ5 amplitude in the (MI) decomposition will be mixed via

Fierz-transformation into the γµ ⊗ γµ and γ5 ⊗ γ5 structures in the (MII) decomposition.

The pole position is not changed because the Fierz-transformation acts only on the Dirac-

indices of the amplitude and not on the phase space of the dressing functions.

Besides the Dirac-structure, the same argument holds for the colour structure: The poles

appearing in the amplitudes in the three different colour -decompositions (D,MI ,MII)

are the same. As for the Dirac-tensor case, the colour amplitudes are related via Fierz-

transforms that only act on the colour indices.

57



In the case of the flavour structure, there is an important complication. The kernel

explicitly depends on the flavour when taking into account the quarks that are also part

of the kernel.

To investigate how the flavour structure is related to the pole structure, we look at the

a0(980) flavour amplitude [8]:

a0 ∝ |dsd̄s̄〉 − |sdd̄s̄〉+ |dss̄d̄〉

+ |uss̄ū〉 − |sds̄d̄〉 − |suūs̄〉

+ |usūs̄〉 − |sus̄ū〉. (4.2.1)

Taking the red printed part as example, we can make the following observations: Com-

bining the flavour indices (1, 3) and (2, 4)

d̄ s̄ds, (4.2.2)

we could associate this amplitude with an πη. From eq. (4.1.1) we know that poles in the

momentum combination (p1 + p3)2 = −m2
π and (p2 + p4)2 = −m2

η will appear on the right

side of the doublet triangle (figure 3.3). But we could also combine the flavour indices

(1, 4) and (2, 3),

d̄ s̄d s, (4.2.3)

and associate the same flavour amplitude with a KK. But from eq. (4.1.1) we already

know that poles in the momentum combination (p1 + p4)2 = −m2
K and (p2 + p2)2 = −m2

K

will appear on the left side of the doublet triangle. The third way to combine the flavour

indices is to combine two quarks and two anti-quarks:

d̄s̄ ds . (4.2.4)

This amplitude is subsequently identified with a diquark-diquark bound state and the

poles in the momentum combination (p1 + p2)2 = −m2
Dds

and (p3 + p4)2 = −m2
Dds

will

appear on the upper side of the doublet triangle.

We finally arrive at the following picture: Each flavour structure has its own dressing func-

tion that features meson poles and diquark poles which are located at the corresponding

site of the doublet triangle. Charge conjugation operations and quark exchange operations

relate all flavour amplitude to each other by exchanging the poles. For example |dsd̄s̄〉
turns under a P12 transformation up to minus sign into the |sdd̄s̄〉 amplitude by exchang-

ing the KK poles on the left side of the triangle with the πη poles on the right side and

vice versa.
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4.3. Numerical evidence - Eigenvalue spectrum

Besides the the shape of the amplitudes, the eigenvalue spectrum and its dependence on the

radial variable r̂ was also investigated. In order to do a systematical study, we calculated

the first three eigenvalues of the scalar tetraquark for a light quark mq = 0.00405GeV

and a heavy quark mq = 0.89GeV . The tetraquark mass in both cases was kept below

the two-mπ/mηc threshold. To investigate the r̂-boundary effects we used three different

setups. The first setup employed a larger number of points (14) along the r̂ direction

over the full range I = [0, 1]. In the second one, the radial variable r̂ was restricted to

the interval I = [0, 0.5]. A constant extrapolation of the value at the boundary was used

whenever r̂ 6∈ I. This setup is meant to estimate the effect of excluding the boundary

region in a crude ad-hoc fashion.

In the third setup, the interval was restricted to I = [0.8, 1] to over-emphasize the boundary

region with the same extrapolation scheme as in setup two.

We want to stress that these setups are not to be taken as full-fledged calculations to

estimate the tetraquark mass, but as means to estimate the gross effect of two-body

bound-state correlations on the tetraquark (mass). The treatment in terms of the three

described setups may be crude but in the light of the findings in the previous section,

that two-body bound-state correlations hide at the boundary, we think it justified to do

so, and that the results can be used to get a rough idea of how these effects influence the

tetraquark.

4.3.1. Light quarks
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Figure 4.3.: Left figure: Eigenvalue curve r̂ ∈ [0, 1]. Middle figure: Eigenvalue curve for probing

r̂ ∈ [0, 0.5]. Right figure: Eigenvalue curve for probing r̂ ∈ [0.8, 1]. All three setups used a light

quark (mq = 0.00405GeV MeV ).

The results for the setups that used light quarks can be seen in 4.3. In the following we

will provide a detailed analysis of each setup:

Setup I The left panel shows the eigenvalue curve for the first setup. The eigenvalue

corresponding to the ground state is quite flat and has a small imaginary part. The second

eigenvalue is quite close and even decreases, as is the third one. This is not the typical

behavior of the eigenvalue spectrum of the Maris-Tandy model in the meson sector [85].

The magnitude of the ground state eigenvalue is close to 1, and using a linear extrapola-

59



tion indicates a tetraquark mass of somewhere around 0.480GeV .

Setup II The second panel shows the result for the second setup. In this setup the effect

of exclusion of the boundary r̂ was investigated. The separation of the eigenvalues is much

more pronounced. This immediately had also a positive effect on the convergence rate of

the eigenvalue equation. However, the biggest difference to setup I is the extrapolated

mass. Using a linear extrapolation for the largest eigenvalue, we read off a mass of about

2.6GeV . This is much heavier than the mass obtained from setup I and a clear indicator

of the importance and influence of the boundary effects included in setup I.

Setup III In the third panel we see the effect when over-emphasizing the boundary

region. The first two eigenvalues are as close as in setup I, but at least the third one is not

decreasing anymore. The convergence of the system was comparable with setup II. The

interesting aspect is again the extrapolated mass of around 0.6GeV , which is larger than

in setup I, but in the same ball park and definitely smaller than the mass of setup II.

Summary The main conclusion is the importance of the two-body correlations. Without

these, the mass of the tetraquark rises well above 1GeV . Including them pushes the mass

down to values well below 1GeV . This is also the mass-region where the experimental

value for the f0(500) is located [14]. We thus conclude that the formation of pions in the

0++-tetraquark is of attractive nature and the dominant mechanism to ensure a light mass

of the tetraquark. The diquark correlation, as could already be seen from the shape of the

amplitude in sec. 4.2, plays a minor role. This is quite expected, when taking the large

mass (mD = 0.88GeV ) of the diquark into account. This is also in line with previous

investigations were the tetraquark was modeled as a bound-state of off-shell pions [99] and

the contributions of the diquark was found to be sub-leading.

4.3.2. Heavy quarks

A similar investigation was performed for a quark in the charm quark region with a current

mass of mq = 0.89GeV . We choose the same prescription to investigate the influence of

the boundary effects and the results are depicted in figure 4.4.

Setup I The left panel shows the eigenvalue curve for the first setup. The eigenvalue

corresponding to the ground state is much better separated from the second eigenvalue

than in the light quark case. Also the curve rises more steeply. Employing a linear ex-

trapolation we extracted a mass of 5.3GeV for the tetraquark.

Setup II The second panel shows the result for the second setup. In this setup the effect

of exclusion of the boundary r̂ was investigated. In comparison with the light quark case,
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Figure 4.4.: Left figure: Eigenvalue curve r̂ ∈ [0, 1]. Middle figure: Eigenvalue curve for probing

r̂ ∈ [0, 0.5]. Right figure: Eigenvalue curve for probing r̂ ∈ [0.8, 1]. All three setups used a heavy

quark (mq = 0.89GeV ).

the difference between setup I and II is not so pronounced when looking at the separation

of eigenvalues. And we also do not see a mass shift as in the light quark case. The mass

reads off as 5.3GeV , the same value as in setup I.

Setup III In the third panel we see the effect when over-emphasizing the boundary re-

gion. The first and second eigenvalues are slightly further apart than the eigenvalues in

setup I and II. The linear extrapolated mass is around 6.2GeV . This is a clear shift of

the mass to higher values, and a exactly opposite to setup III in the light quark case.

Summary Comparing the light and heavy quark case, we see two distinctions.

The heavy quark case is numerically much better behaved. The eigenvalues are better

separated and the slope of the curves is noticeable compared with the light quark case.

This can be readily understood from the mass of the corresponding two-body bound-

states. In the light quark case, the threshold is defined by two times the mass of the

pion, 2mπ = 0.274GeV . This is very close to the r̂ boundary, even below threshold and

for moderately small S0. In the heavy quark case, the threshold is determined by two

times the ηc mass, 2mηc = 5.9GeV . For the same So, the pole is further away from the

boundary and does not cause so many problems as in the light quark case.

However, the biggest difference is the shift of the mass. Setup II was employed to deter-

mine the effect of neglecting the boundary effects. In the light quark case this leads to an

increase of the mass. In the heavy quark case this is reversed. The same inversion is seen

when switching off the boundary effects. In the light quark case, the mass is not changing

by much but in the heavy quark case the over-emphasizing of the boundary effects leads

to a much heavier tetraquark.

This difference could be related to the role of the diquark. In the heavy quark case, the

diquark is not so much heavier than the ηc, so that the diquark influence on the boundary

is not so small. If the diquark produces a repulsive effect, such an effect would be stronger

in the heavy quark case, because the mass of ηc and the scalar diquark are comparable.

Another explanation could be, that the boundary effects in total do not play the domi-

nating role as they do in the light quark case, because both ηc and the diquark are quite

heavy. This conclusion is bolstered by the observation that apparently the mass of the
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heavy tetraquark is determined by the opposite boundary r̂ = 0, where pole effects below

threshold are suppressed. In physical terms this could be boldly interpreted as a hint

that in the light quark sector the tetraquark is more a molecule like object, where the

physics is determined by the pion-pion correlations inside the tetraquark, whereas in the

heavy quark sector the tetraquark behaves more like a four-quark core with sub-leading

ηc − ηc/diquark-diquark correlations. However, as mentioned before, these observations

should be taken with a grain of salt because the numerical means to distill them are still

quite crude.

Concluding this numerical section we want to make a remark regarding the dense and

complex eigenvalues that afflicted this work for a long time. In the literature continu-

ous spectra and complex eigenvalues are not unknown. The continuous spectra in QED

plagued the Bethe-Salpeter approach from the very start [115] and was coined the ‘Gold-

stein problem’. Also complex eigenvalues were a topic that sparked much debate about

the physical significance of such solutions in the (spinor-spinor)-BSE [116].

Generically, continuous spectra are connected with some critical value for the coupling

constant of the system and complex eigenvalues are identified with abnormal states, cor-

responding to unphysical excitations in the relative time of the two bound particles. See

refs [117, 118, 119] and references therein for a thorough discussion. Furthermore ref.

[120] proves that a divergence of the Bethe-Salpeter amplitude in the infrared causes a

continuous spectrum that can ‘hide’ an additional discrete spectrum.

All the examples in literature that investigate the spectral properties of BSEs in the ladder-

kernel approximation treat simplified two-body problems. There exists no investigation of

three- and four-body problems.

In the light of our numerical findings, we draw the heuristic conclusion, that a close-

by (dynamical) pole in the BSE-amplitude pollutes the numerics and leads to potential

spurious complex eigenvalues and a squeezing of the spectrum and not any of the above

mentioned cases found in literature. Additionally, with the dynamic pole ansatz that will

be introduced in the next section to handle the two-body correlations below threshold,

the ground state eigenvalue becomes real and the second eigenvalue is pushed away. The

spectrum is still not as clean as in the two-body case but we think this is mostly attributed

to the larger phase-space (nine-dimensional) and the larger tensor-basis (256 structures)

which increases the potential numerical noise.

4.4. Pole ansatz

Having shown the numerical and phase-space arguments for the dynamical emergence of

threshold effects in the form of two-body poles, we will proceed and construct a suitable

parametrization for this poles to improve the numerical stability. We choose the following

parametrization:

62



f(Ω̄, r̂) = a(Ω̄) +
b(Ω̄)

(r̂ − r̂s+)(r̂ − r̂s−)
(4.4.1)

r̂s± = − 3

4S0

(
−m±(ϕ)2 − 1

4
P 2 ± ΛP (ϕ)

)
+ 1 (4.4.2)

m±(ϕ) =


m±ps,1 if ϕ ∈ [0, 2π

3 ]

m±D if ϕ ∈ [2π
3 ,

4π
3 ]

m±ps,2 if ϕ ∈ [4π
3 , 2π]

(4.4.3)

ΛP (ϕ) =


P · p if ϕ ∈ [0, 2π

3 ]

P · k if ϕ ∈ [2π
3 ,

4π
3 ]

P · q if ϕ ∈ [4π
3 , 2π]

. (4.4.4)

We will give the reasons and justifications for this particular choice in the following para-

graphs.

Figure 4.5.: Position of the two-body poles in the doublet-triangle for fixed S0 and ΛP (ϕ) = 0.

The physical region is bounded by the blue triangle, the poles are located at the red lines and the

shaded area corresponds to the sector the pole contributes to.

Segmentation In eq. 4.1.3, the pole of a two-body bound-state is defined for the whole

doublet-triangle and therefore for ϕ ∈ [0, 2π]. Because we are mostly interested in the

effects of the bound-state pole at the boundary r̂ = 1, we restrict the poles to the region

in ϕ where fp,q,k = −1. This is precisely the case for the segmentation chosen in eq.

(4.4.3). Each segment, which coincides with the sides of the doublet-triangle, is associated

with bound-states in the momentum combinations A,B,C of eq. (4.1.1). A graphical

representation of this segmentation is shown in figure 4.5. This segmentation coincides also

with our observation that the amplitude develops an almost discontinuous jump between

the segments, see figure 4.2. For a tetraquark containing more than one quark species,

for example the a0(980), we pick one representative of the flavour amplitude and fix the
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masses m±ps,1,m
±
ps,2,m

±
D. In the case of the |dsd̄s̄〉 as an example, this yields:

|dsd̄s̄〉 :

m+
ps,1 = mπ, m−ps,1 = mss̄

m+
ps,2 = mK , m−ps,1 = mK

m+
D = mDds , m− = mDūs̄ . (4.4.5)

All other elements of the flavour amplitude are related to the chosen representative by

S4-permutations.

Parametrization The parameters a(Ω̄) and b(Ω̄) depend on each Lorentz invariant except

r̂, denoted by Ω̄. That means the amplitude is defined on a nine-dimensional grid with

two points in the r̂-direction. The constants a(Ω̄), b(Ω̄) can always be reconstructed for

fixed Ω̄ from the dressing-function values at these two points. We choose two points close

to the boundaries 0 and 1. The regular part, parametrized by a, is mostly determined

by the value close to r̂ = 0 and the singular part, parametrized by b, is determined by

the value close to r̂ = 1. This parametrization can easily be generalized by replacing the

constants a, b by polynomials in r̂ and by adding more singular terms for each possible

bound-state in the two-body sub-cluster. Because the amplitude will be dominated by the

lowest laying two-body bound-states and its pole, the restriction to one pole structure is a

reasonable truncation. A further advantage of this pole ansatz is the reduction of points

needed to represent the tetraquark amplitude.

Besides numerical stability, the pole-ansatz has the advantage to be interpreted in physical

terms. This parametrization can be understood as decomposition into a pure four-quark

amplitude, captured by a(Ω̄), and a molecular like meson-meson/diquark-antidiquark part,

encoded in b(Ω̄).

Analytical structure The simplest choice for a singular function is a simple pole, with a

residue b(Ω̄):
b(Ω̄)

(r̂ − r̂s+)(r̂ − r̂s−)
. (4.4.6)

We chose the product of two poles instead of the the sum of two poles in each segment. This

reduces the number of singular terms, and therefore the number of dynamical parameters.

Physically, this can be motivated by the assumption that in a tetraquark, the meson-

meson correlations, represented by a product, should be more dominant than the single

meson/diquark-correlations, associated with a sum of the form 1
r̂s−r̂ .
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5. Results

After having laid the the foundations for calculating the tetraquark in the four-body

picture, we come to the presentation of our results. In the first section we investigated

the dependence of the tetraquark mass on the various Lorentz invariants. The results of

chapter 4 are also repeated in the first section. The result for the tetraquark mass curve

are presented and the values calculated for κ and a0/f0 tetraquarks are provided in the

last two sections.

5.1. Comparing Lorentz invariants

λ

0.80.8

0.850.85

0.90.9

0.950.95

11

1.051.05

0 20 2 0 40 4 0 60 6 0 80 8 11 1 21 2 1 41 4

SS00
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r and r and φφ
zzRR

ρρ
zzρρ

Figure 5.1.: Eigenvalue λ in dependence of the different Lorentz invariants as functions of the

tetraquark mass MT . The mass MT at which an eigenvalue crosses the dashed line λ = 1 corre-

sponds to the bound state mass.

The scalar dressing functions of the tetraquark depend on the nine Lorentz invariants of

chapter 3.2. Because of the large number of dimensions d = 9 it is not feasible to use

a large number of points for all of them. For example, using a cartesian grid with 10

points for each Lorentz invariant, the number of grid points for just one dressing function

would be of the order of 109 points. In order to reduce the size of the problem we had to

drastically reduce the number of points in some directions. To gauge the numerical error

of such a truncation, we first investigated the dependence of the eigenvalue on each of the
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nine Lorentz invariants separately.

To investigate each Lorentz invariant separately, we switched on one Lorentz invariant af-

ter the other by using a 12 interpolation rule in that specific direction and using one-point

rules for the rest of the Lorentz invariants. The only exception was the variable S0 which

was always taken with 20 points, because otherwise the BSE did not converge. We also

note that for the the variables ΦR and Φρ a one-point rule was used in all cases. The

same calculation for 16 points along the tested Lorentz invariants was repeated, and the

deviations found to be less than five percent. A similar result was found for the variation

of the points along the ΦR and Φρ direction.

Employing the construction principle for the complete nine-dimensional interpolation rule

of chapter 3.7, the tetraquark BSE was solved for a range of tetraquark masses MT and

the largest eigenvalue was tracked. The mass MT at which the eigenvalue curve (or its

linear extrapolant) crosses the dashed line corresponds to the mass of the bound state.

The final result for a current quark mass of mq = 0.00405GeV is shown in figure 5.1.

The legend on the left side of the figure denotes the Lorentz invariant(s) investigated. As

stated above, all other Lorentz invariants except S0 are approximated by one-point rules.

The relevance of a Lorentz invariant can be deduced from the deviation between its as-

sociated curve and the curve that contains the S0 variable only. Because the crossing of

the ‘1’ is associated with a bound-state, an increased eigenvalue directly corresponds to a

lowering of the bound-state mass and a decrease of the eigenvalue raises the bound-state

mass.

It is immediately clear that the r, ϕ and R variables are the most important ones because

the eigenvalue curves change considerably compared to the S0 curve. The other variables

are of lesser importance, as can be seen from the fact that their curves lay almost on-top

of the S0 curve.

Comparing the r − ϕ and the R curve, we make the following observations:

• The variables r and ϕ are the most important ones. They strongly reduce the

tetraquark mass leading to a light σ-tetraquark and change the shape of the eigen-

value curves considerably. These variables are connected with pion-pion and diquark-

diquark correlations, emerging as poles in the doublet triangle, as was elaborated in

chapter 4. Because the influence of these variables is so large compared to the other

ones, we think it justified to state that our calculations support the notion that the

σ tetraquark is dominantly a molecular state, in the sense that the two-body corre-

lations play the dominant role. At this point we want to stress, that by ‘molecular’

we mean only the dominance of two-body correlations within the phase space of

the four -body tetraquark amplitude. We do not make any statement about the size

of the object or about effective forces between the mesons and diquarks which are

usually used to differentiate the molecular from the four-quark picture.

• Extrapolating the eigenvalue curves of the other variables, including R, yields much
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heavier masses for the σ, above or around 1GeV . Because an exclusion of the r, ϕ

variables amounts to an exclusion of any two-body correlations, the only poles that

can dominate the tetraquark are the (complex) quark poles. As we discussed in

chapter 3.2.2, these quark poles are connected with the triplet T0 and will reside

outside the associated (deformed) tetrahedron. Because the surface of this tetrahe-

dron is probed for R ≈ 1, it is conceivable that the four-quark correlations will show

up when taking into account the Lorentz invariant R. Similar to the interpretation

of the meson-meson correlations as the molecular part of the tetraquark, we identify

the four-quark correlations with a ‘four-quark’ part.

We conclude that the two-body correlations for an equal mass tetraquark do not only

play the dominant role but also favour a light σ below 1GeV , whereas the four-quark

correlations are only subleading and feature a heavy tetraquark above 1GeV . To further

support this conclusion, we also included r, ϕ and R at the same time. The resulting

eigenvalue curve was very close to the case of r and ϕ only. Because the inclusion of all

three variables r, ϕ,R is part of the main result that is presented in chapter 5.2, this case

was omitted from figure 5.1.

Additionally, we established that all other Lorentz invariants except r, ϕ,R and S0 can be

approximated by one point rules without yielding a too large error.

Because the pion poles, or meson poles in general, spoil the calculation even below thresh-

old, all following calculations included the variables r and ϕ by the pole ansatz found in

chapter 4.4.

The main results of chapter 4 are repeated and put into context with the rest of our

findings.

In chapter 4 we found out that the four-body tetraquark dressing functions feature poles

inside and outside of the doublet triangle that represents the variables r, ϕ. The pion poles

can be seen graphically as rise of the dressing function towards the border of the triangle.

Figure 5.2 shows a contour plot of the dominant γ5 ⊗ γ5 dressing function in the doublet

triangle for an S0 of about 0.1GeV .

The dark shaded area at the left and right side of the triangle, the so-called meson-sides,

indicate that the dressing function ‘feels’ an structure outside of the triangle. This struc-

ture was identified in chapter 4 with pion poles. On the upper side of the triangle, the

diquark side, the magnitude of the dressing function is much smaller. The difference of

the magnitude between meson and diquark sides is easily conceivable from the mass dif-

ference of the pion and the diquark. The diquark pole is further way from the border of

the triangle, yielding a smaller rise than the pion poles which are much closer to the border.

As early as chapter 4 it was argued that this behaviour of the amplitude close to the

border justifies a pole approximation, leading to an improved convergence of the BSE.

But besides the numerical stabilization, the poles are physically relevant:
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Figure 5.2.: Contour plot of the dominant γ5 ⊗ γ5 dressing function in the doublet triangle. The

darker the plot, the larger is the modulus of the dressing function. The left and right side are

called the meson sides because pion poles appear at that side of the triangle, whereas the upper

side is called the diquark side.

Meson-meson and diquark-diquark correlations are an intrinsic part of the four-body

tetraquark amplitude and manifest themselves as poles in the doublet triangle of the

tetraquark. In chapter 4.3.2 we investigated the influence of these meson and diquark

poles on the mass spectrum of the scalar tetraquarks, by including and excluding the

boundary region of the doublet triangle. We found that the inclusion of the boundary

yielded a smaller tetraquark mass in the case of light u/d quark masses, whereas in the

case of quark masses in the charm region, the boundary effects increased the mass of the

tetraquark.

Besides the difference in quark masses, the mass of the resulting pseudo scalar meson and

scalar diquark distinguishes both cases from each other.

In the case of light quarks, the mass of the pseudo scalar reads mπ = 0.138GeV and the

mass of the scalar diquark mD = 0.789GeV . The pion pole is much closer to the boundary

than the diquark one and the effect of the diquark is expected to be small. However, in

the case of the charm quark, the scalar diquark has a mass mD of about 3.5GeV , com-

parable with the mass of the pseudo-scalar meson with a mass mηc of about 2.95GeV .

Because both poles have a comparable distance to the boundary, the effect of the diquark

is presumed to be larger.

Because the inclusion and exclusion of the boundary involves cutoffs in the doublet tri-

angle and relies on simple constant extrapolations (see chapter 4.3), a statement cannot

be made that strong diquarks-diquark correlations in general lead to higher tetraquarks

masses and strong pseudoscalar-pseudoscalar correlations lead in general to lower masses,

but the results are a strong indication in this direction.

Finally, we conclude that all effects caused by two-body correlations scale with the mass

of the associated bound states. Therefore, we can speculate with some confidence that

in the case of the σ, the influence of the ρ-meson in form of poles outside of the doublet
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triangle is eclipsed by the much closer pion poles. However, in the case of the all charm

tetraquarks this argument is expected to be weaker because the mass of the ηc and the

J/Ψ are comparable.

5.2. Mass curve

mq[GeV ] mπ[GeV ] mD[GeV ] 2mπ[GeV ] mT [GeV ] lin mT [GeV ] quad

0.00405 0.138 0.789 0.276 0.335 0.361

0.035 0.428 0.987 0.856 0.891 0.878

0.065 0.593 1.14 1.186 1.21 1.219

0.105 0.77 1.33 1.54 1.6 1.6

0.2 1.11 1.63 2.236 2.352 2.362

0.3 1.42 1.99 2.84 3 3.09

0.4 1.71 2.28 3.42 3.637 3.725

0.5 2 2.57 4 4.251 4.395

0.55 2.13 2.716 4.26 4.34 4.61

0.6 2.25 2.85 4.512 4.731 5.017

0.625 2.32 2.91 4.64 4.9 4.83

0.65 2.38 2.975 4.76 4.83 4.9

0.7 2.51 3.09 5.02 5.037 5.101

0.89 2.95 3.5 5.9 5.771 5.771

Table 5.1.: Tabulated values of figure 5.3. The last two columns contain the tetraquark masses

obtained by quadratic and linear extrapolation respectively. See the appendix A.1 for the plots.

We now come to the main result of this work, the quark mass dependence of the tetraquark

mass, as depicted in figure 5.3. We used the pole ansatz from chapter 4.4, and used a

grid with 20 points in the S0 direction and 12 points in the R direction. All other Lorentz

invariants were approximated by one-point rules, which, according to the discussion in

chapter 5.1, introduces only a small error but reduces the demand on memory and compu-

tation time noticeably. For the integration we used a Gauss-Legendre rule with 30 points

in the radial direction and 10 points in all three angular directions.

The two-pion threshold puts a limit on the tetraquark mass that can be used as input for

the BSE. It turned out that for a large range of quark masses the tetraquark is heavier than

two-pions, so that it was necessary to extrapolate the eigenvalue curves below threshold

to higher quark masses. We follow the prescription of eq. (2.8.4) and extrapolate the

quantity

fλ(M2
T ) =

1

λ(M2
T )
− 1, (5.2.1)

with λ representing the eigenvalue curve of the BSE as function of M2
T . To obtain the

bound state mass, we extrapolate the quantity in eq. (2.8.5) as function of M2
T and search
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Figure 5.3.: Mass curves of the pion (mπ), diquark (mD) and σ-like tetraquark (MT ) in depen-

dence of the quark mass. The green line denoted by m2π represents the 2mπ threshold.

for the zero crossing of the extrapolant. Finally, the mass corresponding to the zero cross-

ing is identified with the bound state mass.

For mesons, the quantity in eq. (5.2.1) is approximately linear [76], so that a linear ex-

trapolation is a valid choice. But in the case of tetraquarks, the curves show some small

curvature, see appendix A.1. Therefore, in order to extract a mass from the eigenvalue

curves, we used a linear and a quadratic extrapolation and compared both. The difference

of the two extrapolation prescriptions is noted in table 5.1 and the curves and their extrap-

olants are given explicitly in the appendix A.1. Except for quark masses around 0.6GeV ,

both extrapolation prescriptions agree roughly on the five-percent level. However, around

the a quark mass of 0.6GeV the curves are clearly non linear and also the quadratic ex-

trapolation prescription breaks down because the curves bend upwards and do not cross

the zero. We still extracted a mass by taking the peak of the quadratic extrapolant as

mass. Therefore, the tetraquark masses in that quark mass range should be taken with a

grain of salt. To conclude this technical remarks, we mention that figure 5.3 depicts the

tetraquark masses obtained from a quadratic extrapolation.

We come now to the discussion of figure 5.3 make the following observation:

The pion curve (yellow triangles) follows the Gell-Mann-Oakes-Renner relation [121]

m2
π ∝ mq, (5.2.2)

because it is the Goldstone boson, associated with the spontaneous break-down of the

chiral symmetry. This is a well understood result and is closely connected to the ax-
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ial Ward-Takahashi identity which is preserved by the Maris-Tandy interaction and the

corresponding Bethe-Salpeter kernel.

The diquark (blue triangles), which is not a Goldstone boson, does not show such a be-

havior, but develops a finite part for vanishing quark masses. Interestingly, the pion and

the diquark curve have the same shape, seemingly shifted by a constant. This is under-

standable from the fact that for the Maris-Tandy interaction, the scalar diquark BSE and

the pion BSE differ by a colour factor 1
2 only.

The tetraquark (red squares) shows a completely different behavior. For quark masses

around the physical mass, the tetraquark is lighter than the diquark but above the two

pion threshold (green line). With increasing quark mass the tetraquark stays above this

threshold with a slope that is steeper than the curves of the diquark and the pion. For a

quark mass mq of about 0.625GeV the mass curve develops a cusp. Behind the cusp the

slope is reduced and for a quark mass of about 0.7GeV the tetraquark mass ultimately

drops below the two pion threshold. Around the cusp, the quadratic extrapolation pre-

scription, which was used to extract the tetraquark mass, becomes ambiguous and the

extracted masses around the cusp should be seen as ‘guide for the eye’. Nonetheless, we

conclude that the mass curve of the σ changes fundamentally for quark masses of about

0.625GeV .

It is worthwhile to note that the authors of ref. [122] also find a mass curve for the σ that

features a cusp, albeit located at a lower quark mass. In this reference, the cusp originates

in the T-matrix pole of the σ which for small quark masses comes as complex conjugated

pair in the second Riemann sheet (resonance). With increasing quark mass the poles move

closer together and one of the poles appears in the first sheet on the real axis (bound state)

whereas the other one moves to the real axis of the second sheet (virtual particle). In a

future work, it would be interesting to investigate this cusp more thoroughly by taking

the threshold caused by the pion poles explicitly into account.

Besides the general form of the mass curve, we can extract two states that correspond to

an all charm and all strange state respectively:

ms̄s̄ss = 1.6GeV (5.2.3)

mc̄c̄cc = 5.7GeV. (5.2.4)

They are close to the values ms̄s̄ss = 1.3GeV and mc̄c̄cc = 5.3GeV found in a previous

work [99] employing a two-body approach, but a recent lattice study [123] that looked for

the all charm state could not verify a tetraquark of that mass. However, the all charm

tetraquarks were investigated by the authors in refs. [124, 125] which used a parametrized

hamiltonian approach and a hadron string model to calculate the tetraquark. Both au-

thors found the the all charm tetraquark to be around 6GeV , much closer to the 2ηc

threshold.

Furthermore, we can speculate that our all strange state is in the right mass region to be
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be related to the f0(1500) and/or f0(1710) which are candidates for states with a sizable

tetraquark component [126].

To improve the calculations of tetraquarks in the DSE/BSE framework, further investiga-

tions could follow two directions: First, improving the truncation and the model to probe

the effect of those improvements on the tetraquark spectrum and secondly, developing and

implementing a method in the BSE approach that can deal with poles and thus could be

used to calculate tetraquarks beyond the 2mπ threshold. Especially the deduction of a

width, related to decays into mesons, would be one of the first things one could learn by

going beyond the 2mπ threshold.

Because the analytical structures in form of two-body poles in the phase space is a feature

of the tetraquark and thus will prevail in all truncations, a proper treatment of these

poles should be investigated before improving the truncation and even before including all

tensor structures and all Lorentz invariants.

We point out that a lot of the numerical problems in the beginning of this thesis, even

for tetraquark masses below the 2mπ threshold, originated in the improper treatment of

the pion poles in the phase space and were only solved by the pole ansatz introduced

in chapter 4.4. One can therefore hope that by dealing with the poles above threshold,

not only interesting quantities such as the width become calculable, but also the overall

numerical stability will improve.
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Figure 5.4.: Mass curves of the σ in the two-body approach [99] and in the four-body approach.

Comparison to previous works In our previous work, published in ref. [99], we approx-

imated the four body equation with an effective two-body equation by employing pions

and diquarks as constituents which interacted via a quark exchange. Within the two-body

approach we calculated a mass curve for the equal mass 0+ tetraquarks that looks qual-
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itatively similar to the curve obtained in the four-body approach. A comparison of the

four-body and two-body calculations is shown in figure 5.4. The curves agree for low quark

mass but show some deviations for higher quark masses. It is interesting that we did not

find a cusp like structure in the case of the two-body approach. Ignoring the deviations

in the mid-mass range, it is striking that the two-body calculation that features different

constituents and a different interaction agrees so well with the four-body calculation. We

attribute this agreement to the fact that both approaches contain the pion which we found

to dominate the σ. In the two-body approach they are included explicitly as (off-shell)

particles whereas in the four-body equation they appear as poles in the phase space. In

this sense, the more fundamental and consistent four-body calculation gives validity to the

approximations employed in the two-body framework. It is also interesting to note that

the main unresolved problem in the two-body approach is the same two-pion threshold

that plagues the four-body calculation. Therefore, it would be advantageous to first solve

the threshold problem in the numerical easier two-body framework and apply the methods

to the numerical more involved four-body equation.

5.3. Masses of the scalar nonet

State mT [GeV ] PDG[14] [GeV ]

σ 0.35 0.4− 0.55

κ 0.64 0.682± 0.029

a0/f0 0.89 f0 : 0.990± 0.02 a0 : 0.98± 0.02

Table 5.2.: Masses of the scalar tetraquark nonet. Calculated values are shown in the second

column and values taken from the PDG are shown in the third column.

Besides the mass curve for tetraquarks with quarks with the same mass, we solved the BSE

for the κ and a0/f0 respectively. Right now, we do not include the full flavour amplitude

as shown in chapter 3.3, but treat the κ as a σ with one quark replaced by an s–quark and

the a0 and f0 as a σ with two quarks replaced by an s–quark. Because of the inclusion

of quarks with a higher mass and the appearance of pion poles in the phase-space at the

same time, the accessible tetraquark mass is much further away from the mass shell than

in the case of the σ, see appendix A.1. This amounts to an extrapolation that is much

further away from the calculated values, rendering the deduced values to be taken with

some grain of salt.

The result is shown in table 5.2. Comparing these values with the candidates in the PDG

[14], the masses in the Maris-Tandy model are generically too low. In the case of the

κ and a0/f0 this could be partially related to larger extrapolation errors but from our

experience in the two-body approach [99], which also yielded a mass for the σ in the

range of 0.35− 0.4GeV , we suspect the low mass of the tetraquarks to be a feature of the

Maris-Tandy model.
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6. Conclusion and outlook

Bound states and their properties are an inherent non-perturbative feature of QCD. More-

over, QCD is a confining theory so that instead of the elementary quarks and gluons

themselves, only colourless bound states formed of these elementary particles are directly

measurable. One non-perturbative framework to describe QCD are the Dyson-Schwinger

equations, which interrelate all Green functions of the theory by an infinite tower of in-

tegral equations, and the corresponding Bethe-Salpeter equations that define the bound

states of the theory. To reduce the infinite tower to a tractable form, the equations have

to be truncated. In this thesis, see chapter 2.9, we used a so-called ‘rainbow ladder’ trun-

cation that reduces the quark-gluon vertex to the bare vertex and replaces the gluon by an

effective modeled one so that the only Green function that has to be solved, is the quark

propagator. This truncation preserves the important axial Ward-Takahashi-identity and

the Gell-Mann–Oakes–Renner relation. For the effective gluon we used the Maris-Tandy

gluon/interaction that is modeled to reproduce the pion mass and decay constant. To-

gether, the truncation and the interaction model are well investigated in the meson and

baryon sector and are known to yield a good description of various meson and baryon

ground state properties.

Starting from this well-established truncation, the four-body tetraquark Bethe-Salpeter

equation was constructed in chapter 2.5. Within this truncation, there are no irreducible

three- or four-body interactions but only two-body ones, appearing in the form of one-gluon

exchange diagrams. As elaborated in chapter 2.5.1, it turned out that for the tetraquark

bound state equation, the one-gluon exchange diagrams have to be supplemented by two-

gluon exchange diagrams to remove double counting which is absent in three-body and

two-body Bethe-Salpeter equations.

To solve the tetraquark Bethe-Salpeter equation, a fully covariant basis for the tetraquark

amplitude is necessary. Additionally, the basis has to reflect the quantum numbers of the

tetraquark and has to fulfill the Pauli principle. The construction of such a basis was

performed in chapter 3 for all parts of the amplitude: The Dirac-tensor structure, the

phase space, the colour and the flavour tensor structure.

Upon solving the tetraquark bound state equation, dynamical poles in the tetraquark am-

plitude phase space appeared which are discussed in chapter 4. On one hand these poles

caused major problems in solving the Bethe-Salpeter equation but on the other hand these

poles reflect the actual physics that determines the tetraquark:

The tetraquark is dominated by two-body correlations which manifest themselves as poles

in the phase space. It is especially noteworthy that these two-body correlations in form of

poles are of a dynamical nature and are not put in by hand. Additionally, these two-body
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poles in the four-body equation can be interpreted as connection between the more fun-

damental four-body picture, where four quarks bind together, and the two-body picture,

where the tetraquark is pictured as a bound state of two mesons and/or diquarks. In

accordance with previous studies in a two-body framework, the pion-pion correlations are

found to be much more dominant than the diquark-diquark correlations.

Guided by the result that the tetraquark is dominated by poles in the phase space, an

explicit pole ansatz for the amplitude was constructed in chapter 4.4. This procedure

improved the numerical stability considerably.

Subsequently, in chapter 5 the Bethe-Salpeter equation was solved for tetraquarks with

the quantum numbers 0++. For physical u/d-quark masses, we calculated the masses of

the σ (mσ = 0.35GeV ), the κ (mκ = 0.64GeV ) and the f0/a0 (mσ = 0.89GeV ), with the

corresponding masses given in brackets. Compared with the values of the experimental

candidates, the masses are generically too low, probably caused by truncation artifacts.

According to the success of the Maris-Tandy model to describe ground state properties

of mesons and baryons, our result is a strong indication that the lowest scalar nonet has

indeed a considerable tetraquarks component.

We also investigated the quark mass dependence of the σ and found candidates for an all

strange tetraquark around 1.6GeV and an all charm tetraquark around 5.7GeV . These

findings agree qualitatively with our former results from a two-body approach. We also

found that the mass curve features an interesting cusp at a quark mass of about 0.65GeV .

Such cusps are known in the literature to be related to whether the T-matrix pole corre-

sponds to a bound-state, a resonance or a virtual state.

In this work a four-body tetraquark equation in the DSE/BSE framework was solved for

the first time. Therefore, there are a some unresolved issues but also great opportunities

to gain more insight into the nature of tetraquarks that make it worthwhile to further

develop our approach.

Besides the incorporation of all tensor structures and Lorentz invariants to reduce the

systematic numerical uncertainty, there are other interesting properties that could be

investigated in future investigations. We will provide a small list and sketch how our

framework could be used to achieve these goals. Moreover, we will outline the major

problems and limitations one has to overcome.

Other quantum numbers The application of our framework to other quantum numbers

is possible, as the construction principle for the tetraquark amplitude was laid down in

chapter 3 for angular momentum J = 1 and parity P = ± states. A future investigation

of these quantum numbers would be of high interest because some of the recently discov-

ered charged charmonia states, which are most likely tetraquarks, have J > 0 quantum

numbers. From experience in the meson and baryon sector, the weak dependence of the

tetraquark (mass) on some of the Lorentz invariants, see chapter 5.1, is expected to be-

come stronger for J 6= 0 states and the reduction of the nine dimensional phase space to

a four dimensional one, see also chapter 5.1, would be no longer possible. Additionally,
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the number of tensor structures will increase by a factor of three. Besides this increase in

numerical complexity, the mass of these tetraquarks will be higher than the mass of the

already calculated 0++ states. To obtain a mass, the eigenvalue curve has to be extrapo-

lated even further, increasing the systematic uncertainty of the extrapolation prescription.

To avoid such an extrapolation, a proper incorporation of the two-meson poles that we

found in the tetraquark amplitude is of high importance.

Width, decays and beyond Besides the mass of the tetraquark, the width, decays and

various form-factors would provide valuable insight into the physics of tetraquarks. In

order to calculate these properties, the amplitude has to be known on the mass-shell,

which excludes the extrapolation prescription that was employed to deduce the mass in

this thesis. The main reason that forced us to use an extrapolation prescription, was the

appearance of two-meson poles in the phase space. The limitations caused by these poles

are especially severe for tetraquarks that contain light quarks because the pion is so light.

A proper treatment of the poles would render the extrapolation obsolete and would make

it possible to search directly for poles in the complex plain of P 2, automatically yielding

a width and providing the bound-state (or resonance) amplitude for further calculations,

such as form factor calculations.

The pole expansion that was used for some of the Lorentz invariants, see chapter 4.4,

points into one direction how to include threshold effects caused by poles in the phase

space. Instead of using a pole ansatz for some of the variables, the whole scalar dressing

function could be expanded in terms of meson poles. Besides an unambiguous complex

continuation of the tetraquark amplitude, this expansion would make it possible to use

contour deformation techniques to calculate the integrals of the BSE beyond the limitations

posed by the various two-meson/diquark thresholds.

Mixing Although there exist various investigations of (scalar) mesons [80, 127, 128] and

glueballs [65, 129] within the DSE/BSE approach, the mixing of these states is not in-

vestigated yet. Especially in the scalar 0++ channel, the mixing of q̄q mesons, glueballs

and tetraquarks is still an open issue, experimentally and theoretically. Therefore, it

would be of high interest to solve a system of DSEs and BSEs that takes into account

q̄q mesons, glueballs and tetraquarks at the same time, providing a consistent description

of the mixing of these states. To achieve this goal within the DSE/BSE framework, one

would certainly have to go beyond the rainbow ladder truncation employed in this work

and the truncations used in the above mentioned references.
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Part B.

Beyond Rainbow ladder
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7. Introduction

Understanding the spectrum of light and heavy hadrons is an important task on our way

towards a full understanding of QCD. In order to identify states that can be accounted

for as quark-antiquark bound systems and separate them from more complex ones such as

tetraquarks, meson molecules or glueballs one needs to develop a framework that makes

contact to the details of the underlying quark-gluon interaction. Lattice QCD is one such

approach, the functional method using Dyson-Schwinger

equations (DSEs) and Bethe-Salpeter equations (BSEs) is another.

In the latter approach, the construction of an approximation scheme that yields an inter-

action consistent with chiral symmetry and its breaking patterns is a necessary require-

ment for the description of light mesons. Only then, the Goldstone boson nature of the

pseudo-scalar bound-states are preserved resulting in a massless pion in the chiral limit

[130, 59, 131]. This requirement can most easily be met with the rainbow-ladder trun-

cation which has been widely applied for QCD phenomenology [132, 133, 134, 92]. This

truncation has, however, limitations. These become visible for excited states [135, 136],

states with finite width, or mesons with axial-vector or scalar quantum numbers, where

the rainbow-ladder approach does not provide results in agreement with experiment. On

a fundamental level, going beyond simple models for the quark-gluon interaction requires

a dynamical treatment of the Yang-Mills sector of QCD as well as a treatment of the

quark-gluon vertex that includes beyond rainbow-ladder structures [137].

There have been many efforts to go beyond rainbow-ladder. One promising route is to

use explicit diagrammatic approximations to the DSE of the quark-gluon vertex [98, 138,

139, 140, 141, 142, 143, 102]. This allowed to explicitly study the effects of the gluon

self-interaction [143] as well as pion cloud effects [102] on the spectrum of light mesons.

Another promising approach uses explicit representations of selected tensor structures of

the quark-gluon vertex [144, 100, 145, 127]. Most of these approaches have in common

that they rely on techniques based on the two-particle-irreducible (2PI) representation

of the effective action. In this language the interaction kernel is given as the functional

derivative of the quark self-energy with respect to the quark propagator as is detailed in

Refs. [130, 59].

In this work we use a similar idea. The difference is, though, that instead of employing a

diagrammatic representation of the quark-gluon vertex, we use representations of the ver-

tex that depend on the quark propagator explicitly and perform a systematic derivation of

the corresponding Bethe-Salpeter kernel. Our approach is similar in spirit but technically

different from the one outlined in [100, 145, 127] and therefore serves as a complementary

tool. In particular it has the advantage, that not only the mesons’ masses but also their
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Bethe-Salpeter wave functions can be obtained. This opens up the possibility for future

studies of structural information such as form factors and distribution amplitudes beyond

the mere calculation of meson spectra. In this respect, our approach improves upon the

previous ones.
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8. Theoretical foundation

In this section we discuss the general principles that are at the heart of the techniques

used in this work. This will also serve to make some basic definitions and to introduce

our notation.

Our starting point is the definition of the quark anti-quark interaction Kernel K as the

functional derivative of the quark self-energy Σ with respect to the dressed quark propa-

gator S

Kcd
ab(x, y, z, z

′) =
δΣcd(x, y)

δSab(z, z′)
, (8.0.1)

where a, b, c and d are Dirac indices and we work in coordinate space. In a similar fashion,

the quark self-energy is obtained from the 2PI effective action. The technique given

by Eq. (8.0.1) is often called ’cutting’ since in a graphical language it corresponds to

the cutting of a quark line. A good reason to use this technique is that it guarantees

symmetries. The 2PI formalism allows for a closed representation of a truncated effective

action in terms of a loop expansion [83, 146]. This has the advantage that the validity of

symmetries, such as chiral symmetries, can be checked on the level of the effective action,

i.e. the symmetries are manifest. The cutting procedure then generates equations that

respect the consequences of the given symmetry. It has to be emphasized, however, that

cutting alone is not sufficient. The quark gluon vertex also needs to behave correctly

under chiral transformations [59]. An appropriate tool to investigate the transformation

properties of the vertex in the momentum space representation is the axial-vector Ward

Takahashi identity (AXWTI) which, if fulfilled, guaranties a massless pion in the chiral

limit [131]. In the chiral limit this identity reads

iPµΓ5µ(P, k) = S−1(k+)γ5 + γ5S
−1(k−), (8.0.2)

where Γ5µ(P, k) is the axial-vector vertex, depending on the total and relative quark

momenta P and k, and S−1(k±) the inverse quark propagator with k± = k ± P . The

axial-vector vertex has an exact representation via a Bethe-Salpeter equation (BSE)

Γab5µ(P, k) = −
∫
q
[S(q+)Γ5µ(P, q)S(q−)]cdKab

cd (P, q, k), (8.0.3)

where K is the Fourier transform of the exact kernel defined through Eq. (8.0.1) and∫
q =

∫
d4q/(2π)4. To proceed we have to define the quark self-energy in the exact form

Σ(k) = g2Z1FCF

∫
q
γµS(q)Γν(q, k)Dµν(q − k), (8.0.4)
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Figure 8.1.: A graphical representation of the AXWTI shown in Eq. (8.0.6). The Grey dots are

the dressed quark-gluon vertices, Grey boxes denote the kernels and the crossed dots represent

γ5’s.

with the Casimir CF = (N2
c − 1)/(2Nc), the vertex renormalization factor Z1F , the gluon

propagator Dµν and the dressed quark-gluon vertex Γν depending on the incoming and

outgoing quark momenta. The self-energy appears in the quark DSE

S−1(k) = [S0(k)]−1 + Σ(k). (8.0.5)

with inverse bare propagator [S0(k)]−1 = Z2(−ik�+m) including the quark wave function

renormalization factor Z2. The AXWTI from Eq. (8.0.2) can be rewritten in the form

[Σ(k+)γ5 + γ5Σ(k−)]ab =

−
∫
q
[S(q+)γ5 + γ5S(q−)]cdKab

cd (P, q, k), (8.0.6)

This representation is obtained upon inserting the BSE Eq. (8.0.3) in the AXWTI Eq. (8.0.2)

and using the Dyson-Schwinger equation of the quark Eq. (8.0.5). A graphical represen-

tation of the resulting expression can be found in Fig. 8.1.

Before we apply the derivative of Eq. (8.0.1) to a given vertex representation we make a

short mathematical detour. The space of Euclidean Dirac-matrices1 is spanned by the 16

dimensional basis Ti = {γµ, 11, γ5, γ5γµ, σµν}, with σµν = i/2[γµ, γν ]. The elements obey
2TiTi = 11 and 1/4 tr[TiTj ] = δij . Thus in general, the fully dressed quark propagator and

inverse propagator can be represented by

S(p) =
16∑
i=1

Tiτi(p
2) , S−1(p) =

16∑
i=1

TiAi(p2) , (8.0.7)

where the quark dressings τ and A depend on the quadratic momentum only. The physical

quark propagator has the structure S(p) = ip�σV (p2) +σS(p2) but in the process of taking

the derivative the representation of Eq. (8.0.7) is necessary for reasons of completeness.

1We use {γµ, γµ} = 2δµν .
2No summation of indices here.
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In particular we wish to maintain

δac δbd δ
(4)(p− q) !

=
δSab(p)

δScd(q)

=
16∑
i=1

δτi(q)

δScd(q)

δ

δτi(q)

16∑
j=1

T abj τj(p)

=

16∑
i=1

1

4
T dci T

ab
i δ

(4)(p− q), (8.0.8)

which, as a completeness relation, can only be valid with the full basis. We used δτi/δS
cd =

1/4[T dci ]−1 = 1/4T dci and δτj(p)/δτi(q) = δijδ
(4)(p− q).

The functional derivative onto the quark self-energy (8.0.4) acts on the quark itself, the

vertex and the gluon. For simplicity, in the following we disregard derivatives of the

gluon propagator. Since the gluon depends on the quark only implicitly via closed loops,

contributions from derivatives wrt. the quark only show up in kernels of flavour-singlet

mesons. The following discussion is therefore directly applicable only in non-flavour-singlet

channels but can be easily generalized to include also the flavour-singlet case.

Although the cutting rule is probably best defined in coordinate space, let us first work

in momentum space. On the one hand, this serves illustrational purposes, on the other

hand this is necessary for vertex models such as the Ball-Chiu construction [147], which

are derived in momentum space. Later on we will demonstrate that the cutting procedure

is much simpler in coordinate space and elaborate on a vertex construction (the Munczek

vertex [59]) that has a corresponding representation. Cutting the quark propagator, we

obtain the modified ladder-like contributions (called type I in the following)

δΣab

δScd

∣∣∣∣
I

= γacµ DµνΓdbµ . (8.0.9)

This corresponds to a nonperturbative one-gluon exchange. However, in contrast to the

usual ladder kernels one of the quark-gluon vertices is dressed.

For brevity, the kinematic dependences in Eq. (8.0.9) are suppressed. On a diagrammatic

basis the correct kinematics are easily determined. Yet on a strict mathematical basis the

quark is an arbitrary function in the 2PI formalism. Translational invariance cannot be

assumed before relaxing the quark to the physical point. Thus in general one has to allow

the quark and the self-energy to depend on different ingoing and outgoing momenta. It

will be seen below in sections 9.1 and 9.2, that this introduces some complications in the

kinematic dependencies of our kernels. These problems are easily overcome when working

in coordinate space as will be shown in section 9.3.

Note that with a pure kernel of type I the AXWTI from Eq. (8.0.6) is fulfilled in the

limit P → 0 only if {Γµ, γ5} = 0. This is because the terms on the right side of the

AXWTI assume the form of self-energies for type I kernels. The γ5 has to be moved

past the vertices, however. This is trivial for the bare vertex, but non-trivial for more

elaborate vertex constructions, pointing towards the necessary appearance of a further

type of contributions.
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Indeed, a second type of contributions to the interaction kernel contain the variation of

the quark-gluon vertex

δΣab

δScd

∣∣∣∣
II

=

∫
q
[γµS(q)]aa

′ δΓa
′b
µ (q, p)

δScd(s)
Dµν(p− q), (8.0.10)

which is referred to as type II contribution. In our notation the variation of the vertex

can be decomposed as

δΓabµ
δScd

=
∑
i

1

4
T dci

δΓabµ
δτi

(8.0.11)

where the Dirac indices {c, d} are the ones connecting to the incoming quarks. Thus the

appearance of certain Dirac structures in the interaction kernel is dictated by whether a

corresponding functional variation of the vertex evaluates to zero or not. We will come

back to this in the following sections where different vertex representations are considered.

The main observables that we will study to underline our theoretical considerations and

test the approach are masses of light mesons in the (pseudo-)scalar and (axial-) vector

channels. Their generic Bethe-Salpeter equation for the meson amplitude Γ
(ν)
M is given by[

Γ
(ν)
M

]ab
(P, k) =

−
∫
q
[S(q+)Γ

(ν)
M (P, q)S(q−)]cdKab

cd (P, q, k), (8.0.12)

with kernel K and the total momentum satisfies P 2 = −m2
M with mM the mass of the

meson in question. For pseudo-scalar mesons, like the pion, the amplitude has the decom-

position

Γπ(P, k) =

γ5 [E(P, k) + iP�F (P, k) + ik�G(P, k)− [P�, k�]H(P, k)] . (8.0.13)

Similar decompositions for the other mesons are given e.g. in ref. [148]. Furthermore we

quote here the Gell-Mann–Oakes–Renner relation (GMOR) [121]

f2
πm

2
π = 〈ψ̄ψ〉µm(µ), (8.0.14)

which will be a tool to test the chiral properties in our numerical treatment in section 10.

Here fπ is the pion decay constant, 〈ψ̄ψ〉µ the chiral condensate and m(µ) the running

quark mass at renormalization point µ.
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9. Constructing the kernel

In the following we show explicitly, how our formalism serves to construct the kernel,

once a representation of the quark-gluon vertex in terms of the quark dressing functions

is known. For the longitudinal part of the vertex such a representation can be derived

(approximately) from its Slavnov-Taylor identity [149]. It reads

pµ3 Γ(p1, p2) = G(p2
3)× (9.0.1)

×
[
H(p1, p2)S−1(p2)− S−1(p1)H(p1, p2)

]
in terms of the inverse quark propagator S−1, the ghost dressing function G and a ghost-

quark scattering kernel H. The momenta p1, p2 correspond to the quark legs of the vertex,

whereas p3 = p2−p1 denotes the momentum from the gluon leg. Assuming that H(p1, p2)

can be approximated by a function H̃(p2
3) depending on the gluon momentum only, the

STI can be converted into a Ward-Takahashi identity with an extra factor GH̃ on the

right hand side. It is then solved by the Ball-Chiu construction [147] supplemented with

the product GH̃

ΓBCµ (p1, p2) = G(p2
3)H̃(p2

3)

[
γµ
A(p2

1) +A(p2
2)

2
(9.0.2)

+2k�kµ
A(p2

1)−A(p2
2)

p2
1 − p2

2

− i2kµ
B(p2

1)−B(p2
2)

p2
1 − p2

2

]
,

where k = (p1 + p2)/2 and vector dressing A and scalar dressing B of the inverse quark

propagator

S−1(p) = ip�A(p2) + 11B(p2) . (9.0.3)

Within the quark-DSE the functions G(p2
3)H̃(p2

3) can then be combined with the gluon

propagator into an effective gluon (cf. Appendix B.3) and the vertex has an Abelian

structure. As a result one has a representation of the vertex in terms of the quark dressing

functions. In general, this construction can be supplemented by transverse terms that

are not restricted by the STI/WTI and can be either modeled or extracted from explicit

solutions of (approximations of) the vertex-DSE. However, for the purpose of this work

we restrict ourselves to the Ball-Chiu part of the vertex since it serves nicely to illustrate

the merits of our formalism.

In the following we will first treat the first two terms of this vertex (’2BC vertex model’),

then deal with the third term in addition (’Ball Chiu vertex model’) and finally work with

a different solution of the WTI (the ‘Munczek vertex model’) that is suited to explore the

cutting procedure in coordinate space.
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+ Type II

Figure 9.1.: Bethe-Salpeter equation for mesons including kernel contributions of type I (dressed

one-gluon exchanged) and type II (see text).

9.1. The 2BC Vertex model

Here we consider the first two terms of the parts of the Ball-Chiu vertex Eq. (9.0.2)

with tensor structures γµ and k�. Note that these structures correspond to four different

structures in the notation of Eq. (8.0.7). In order to carry out the cutting for type II

kernels along the lines of Eqs. (8.0.10) and (8.0.11) we therefore write

γµA→ γµAµ k�A→
∑
α

kαγαAα µ, α ∈ {1, 2, 3, 4}, (9.1.1)

where no summation over the index µ is performed. The functions obey Aµ = Aµ/(−ipµ),

i.e. they represent the subset of the A functions, defined in section 8, that correspond

to the γµ structures of the Dirac algebra. Via Eq. (9.0.2) the Aµ functions are explicitly

given in terms of the τ -dressings of the quark in the notation of Eq. (8.0.7).

The vertex model Eq. (9.0.2) is defined on the physical point of Dirac space and we call the

four contributing basis structures γi the physical directions in Dirac-space. However, the

actual cutting procedure Eq. (8.0.1) has to be performed in all directions of Dirac-space,

i.e. also in the unphysical ones. In analogy to ordinary functions a functional that is zero

at a given point may nevertheless have a non-vanishing functional derivative. Thus the

cutting-procedure may very well pick up contributions from the unphysical directions. In

order to completely specify a vertex model and the corresponding Bethe-Salpeter kernel it

is therefore not sufficient to define the model on the physical point, but we need additional

information on its behavior in the unphysical directions of Dirac-space.

This is irrelevant for the type I contribution of the kernel obtained from cutting the quark

line in the quark-DSE. The resulting expression is afterwards set to the physical point and

represents the modified dressed one-gluon exchange shown in Fig. 9.1. The situation is

different, however, for the type II contributions involving the functional derivative of the

vertex.

Let us assume for the moment that our 2BC vertex model away from the physical point still

has the reduced functional dependence Γ2BC
µ [Aµ[τ1...4]] corresponding to T1...4 = γ1...4 and

the unphysical directions in Dirac space are identical to zero. This then yields δΓµ/δτi =

0,∀i > 4 such that the external legs of the kernel that will connect to the internal quark

lines in the Bethe-Salpeter equation have a restricted tensor structure. In this case, type

II contributions to the kernel will appear, but due to their restricted tensor structure they

contribute neither to the AXWTI nor to the Bethe-Salpeter equation for pseudo-scalar

(and axial-vector) mesons. This is because of the γ5 contained on the right hand side of the
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AXWTI Eq. (8.0.6) and in the meson amplitudes of the Bethe-Salpeter equation (8.0.12)

which lead to zero traces. The explicit form of these type II contributions, relevant for

scalar and vector mesons, is discussed in appendix B.1.

In the AXWTI we thus have to consider only the modified ladder type contributions. Both

vertex structures in the first two terms of Eq. (9.0.2) anti-commute with γ5 so that for

this particular vertex model the AXWTI Eq. (8.0.6) is fulfilled in the limit P → 0. For

the pseudo-scalar bound-states the modified ladder contributions are all that remains and

lead to a massless pion in the chiral limit. This finding will be confirmed by our numerical

results in section 10.

Note, however, that the AXWTI is only satisfied in the limit P → 0. This is because

the left and right side of the equation, although similar on the diagrammatic level, need

a momentum shift to be absolutely identical. This momentum shift becomes impossible

due to the momentum dependence of the first two terms in the vertex (9.0.2). In the limit

P → 0, however, the diagrams become equal. For physical pions, a simple vertex model

such as the 2BC-vertex cannot be the full story and corrections from unphysical directions

in Dirac space are necessary. In principle, the requirements of chiral symmetry via the

AXWTI allow for a systematic procedure to construct such extensions thus completing

a given vertex model. We will perform this exercise in the next section. Allowing the

functions Aµ to depend on τ1...16, non-vanishing contributions of type II in the AXWTI

and the pseudo-scalar BSEs are generated which can be used to restore the requirements of

chiral symmetry also away from the chiral limit. This emphasizes again that a truncation

is not uniquely fixed by the vertex model on the physical point.

9.2. The Ball-Chiu vertex model

In addition to the first two terms of the Ball-Chiu type vertex in Eq. (9.0.2) we will also

consider the third term, which is proportional to the scalar basis element T5 = 11 in Dirac

space. Since this term does not anti-commute with γ5 it cannot fulfill the AXWTI (8.0.6)

on the level of a pure type I ladder kernel. This can, however, be cured by allowing

for type II contributions to the kernel that couple to the pseudo scalar channel. In

order to generate these in a systematic way, we allow the vertex to depend on unphysical

components that will be set to zero in the end, but will contribute during the cutting

procedure. Therefore, we write the quark generically as

S(p) =

i 4∑
j=1

σj pj γj

+ σS 11 + σ5 γ5

S−1(p) =

−i 4∑
j=1

Aj pj γj

+B 11 + C γ5 , (9.2.1)

with σ5 = 0, C = 0, σj = σV and Ai = A on the physical point. The functions obey

σj = τj/ipj ,∀i ≤ 4, σS = τ5 and σ5 = τ6. The reason why we need only six instead of

the full sixteen tensor structures in Dirac space is that we will assume a certain functional
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dependence of the vertex on the quark dressings as in the preceding section. Our vertex,

called ABC-vertex from now on, reads

ΓABCµ = ΓBCµ + i2 γ5 kµ
C(k2

+)− C(k2
−)

k2
+ − k2

−
. (9.2.2)

This vertex corresponds to the Ball-Chiu construction for a quark with C 6= 0 6= σ5 as

given in Eq. (9.2.1). Thus we assume that the vertex does depend only on the quark

dressings A, B and C, limiting the possible structures in the type II part of the kernel.

We furthermore generalize the A function as discussed in Eq. (9.1.1). This fully determines

the Ball-Chiu type of vertex construction for a quark of the form shown in equation (9.2.1).

Now we have laid the basis to explicitly derive the type II kernel for the vertex of Eq.

(9.2.2). The complete set of these kernels is treated in appendix B.1. It turns out,

however, that the application of Eq. (8.0.11) generates only one single type II kernel that

contributes to the AXWTI and the pion BSE after relaxing all dressings to the physical

case. Only the derivative with respect to σ5, being accompanied by the γdc5 structure (see

Eq. (8.0.11)), will give a non-zero contribution upon tracing with the additional γ5 as

present in the AXWTI (8.0.6) and the pion BSA (8.0.13).

The relevant piece of Eq. (8.0.11) evaluates to

1

4
γdc5

δΓabν (l, k)

δσ5(q)
=

1

4

i(l + k)ν
l2 − k2

[
δC(l2)

δσ5(q)
− δC(k2)

δσ5(q)

]
γdc5 γab5 , (9.2.3)

with

δC(l2)

δσ5(q)

∣∣∣∣
phys

= −1

4

1

σ2
V (l)l2 + σ2

S(l)
δ(4)(l − q). (9.2.4)

The corresponding kernel is then generated by insertion into Eq. (8.0.10). The resulting

expression is provided in appendix B.2 where we also prove that the AXWTI is fulfilled

in the limit of vanishing total momentum.

We would like to emphasize that we make a non-trivial observation here. We nicely see

how type I and type II contributions cancel each other exactly in the AXWTI as is

shown explicitly in appendix B.2. This gives deep insight into the way chiral symmetry is

at work in beyond rainbow-ladder truncations in general. In fact it is no coincidence that

the generalized Ball-Chiu vertex from equation (9.2.2) has the correct behavior. Following

the arguments of ref. [59] a quark-gluon vertex model that transforms under local chiral

transformations as an inverse quark should leave chiral symmetry intact in every possible

relation derived from the 2PI effective action. A vertex that fulfills the vector WTI, as the

BC vertex does, is thus at least a very good candidate for a vertex model. We show here,

how these formal arguments are realized explicitly in a Bethe-Salpeter interaction kernel.

There is, however, an additional subtle point here. The momentum space representation

of Eq (8.0.1), if written as K = δΣ(p)/δS(l), depends only on two momenta, p and

l. As a four-point function K should depend on three independent momenta in general

K(P, p, l) as is the case for the type I interaction KI(P, p, l) = γµDµν(p− l)Γν(l, p+). As
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argued above, from our cutting procedure this is not plain obvious, instead we complete

the kinematic dependence on the diagrammatic level. For the type II kernels this is,

however, not so simple since these have no representation as Feynman-diagrams. We

choose the kinematics such that the potential dangerous singular structure of Eq. (9.2.3)

stays harmless. This is also detailed in appendix B.2.

9.3. The Munczek vertex model

Finally we treat a vertex model that has been formulated in coordinate space. We will

see, that this choice leads to unique kinematics in the derived kernel and provides for a

simple and elegant kernel. The vertex ansatz has been given by Munczek in ref.[59] and

reads in coordinate space:

Γµ(z;x, y) = iS−1(x, y)× (9.3.1)

×
∫

d4q

(2π)4

[
eiq·(z−y) − eiq·(z−x)

] xµ − yµ
q · (x− y)

.

Because of the unusual form of this vertex, we repeat a few arguments for this particular

choice of vertex, given in [59]:

This vertex transforms under local chiral transformations in the following way:

Γν(z;x, y)→ e−iγ5τ lθl(x)Γν(z;x, y)e−iγ5τ lθl(y) (9.3.2)

similar to the inverse quark

S−1(x, y)→ e−iγ5τ lθl(x)S−1(x, y)e−iγ5τ lθl(y). (9.3.3)

This ensures that the 2PI effective action is invariant under a local chiral transformation

which is necessary for the pion to be a Goldstone boson. As in the Ball-Chiu case,

this vertex ansatz is free of kinematic singularities and compatible with the vector Ward

identity (WTI) in coordinate space:

∂

∂zµ
Γµ(z;x, y) = i [δ(y − z)− δ(x− z)]S−1(x, y). (9.3.4)

From a technical point of view, the biggest advantage of this vertex, in comparison to the

Ball-Chiu one, is the fact, that a representation in coordinate space is available. All the

problems of the ambiguous momentum routing, that plagued the cutting procedure for the

Ball-Chiu vertex are resolved when applying the cutting procedure to the self-energy in

coordinate space. After the cutting, a transformation back to momentum space is possible

and yields a closed expression for the interaction kernel and the vertex. For more technical

details we refer to appendix B.4, presenting here only the results.

With the definition [
Ŝ−1

]µ
:=

∂

∂kµ
S−1(k)

∣∣∣
k=kr+α(kl−kr)

(9.3.5)
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the vertex reads

Γµ(kl, kr) = i

1∫
0

[
Ŝ−1

]µ
dα. (9.3.6)

Here the momentum kl specifies the incoming left momenta and kr the outgoing right

momenta. They are connected via k = kl − kr where k is the outgoing gluon momentum.

For the kernel we introduce some shorthand notations:[
Γ̂π

]ν
:=

∂

∂pν
Γπ(p;P )

∣∣∣
p=p̃+α(p̃−p)

(9.3.7)

Γ̃π := S(p+)Γπ(P, p)S(p−), , (9.3.8)

with P the total and p the relative momenta of the two-body bound-state and p± = p±P/2.

The resulting kernel can be written down in a closed form as linear operator. Inserted

into the right hand side of the Bethe-Salpeter equation we obtain∫
[KII Γ̃π]ab =

i

2

∫
p̃

d4p̃

1∫
0

dα
[
Γ̂π

]ν
b′b
Sa′b′(p̃−)γµaa′D

µν(p̃− p)

+
[
Γ̂π

]ν
aa′
Sa′b′(p̃+)γµb′bD

µν(p̃− p). (9.3.9)

This expression is already symmetrized as explained in appendix B.4. The Latin indices

represent the Dirac matrix indices. All other additional factors as colour etc. are sup-

pressed. It is interesting to see that the self-energy of the quark, Eq. (8.0.4) with Eq.

(9.3.6) as vertex, and the type II contribution to the BSE, Eq. (9.3.9), have the same

structure. The only difference, modulo momentum dependence, is the replacement of[
Ŝ−1

]µ
with

[
Γ̂π

]µ
. Upon inserting the kernel in Eq. (8.0.6) and working out the details

it can be seen, that the AXWTI is fulfilled and that the structural similarity plays an

important role in doing so.

These findings can be summarized in the following way:

• In order to meet the transformation property of Eq. (9.3.2) a vertex model is chosen

that depends linearly on S−1 with the transformation properties of Eq. (9.3.3).

• The additional terms on the rhs of Eq. (8.0.6), stemming from the cutting proce-

dure have the same structure as a quark self-energy because the vertex is linear

dependent on S−1.

• This additional terms that look like quark self-energies cancel other terms on the rhs

of Eq. (8.0.6). This happens in a similar fashion as for the ABC vertex, cf. appendix

B.2.

As shown in ref. [59] this comes with no surprise: If the vertex transforms in the proper

way, the determination of the kernel via cutting of the quark self-energy yields a interaction
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that preserves the AXWTI. The linearity on S−1 is not necessary, but one has to work

much harder to preserve the correct transformation behavior if the vertex is nonlinear

in S−1. In the result section we check the GMOR explicitly for this particular choice of

vertex.

We make a last comment regarding the similarity between the Munczek vertex and the

BC vertex. Despite the unusual form of the vertex in Eq. (9.3.9), this vertex has a striking

resemblance with the Ball-Chiu vertex in momentum space. This can be seen by carrying

out the derivative in Eq. (9.3.6) explicitly

Γµ(pl, pr) =

1∫
0

dα
[
2pµA′(p2)p� (9.3.10)

+ γµA(p2)− i2pµB′(p2)
]
p=pr+α(pl−pr)

.

Where the BC vertex has terms that look like finite differences, the Munczek vertex has

derivatives smeared by the α integral.
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10. Numerical results

For our numerical analysis the quark DSE Eq. (8.0.5) was solved for complex momenta

following a contour method, described in ref. [67]. The BSE is solved as an eigenvalue

problem with standard numerical methods.

We solved the BSE for the different Ball-Chiu vertex models described in the sections

before. Our first main result is shown in Fig. 10.1. For the 1BC and 2BC vertices, the

cutting of the vertex yields no additional contribution to the kernel of the pion, so that

the kernel is purely of type I. As argued before, the 1BC and 2BC vertex models have

only vector contributions that are proportional to γµ and thus cause no problems in the

AXWTI. As one can see in Fig. 10.1 the GMOR-relation (8.0.14) is satisfied: the squared

pion mass scales linearly with the quark bare mass and goes through the origin.

The results for the full BC vertex are much more intricate. As described above, setting

the BC vertex to its physical form before the cutting procedure yields no contribution

of type II to the pion BSE. Since the scalar parts of the vertex proportional to 1 spoil

the AXWTI, the resulting equations are not in accord with the requirements of chiral

symmetry. This directly translates to a severe violation of the GMOR with a heavy pion

of 400 MeV in the chiral limit. Adding ’unphysical’ directions to the vertex before cutting,

however, solves the problem as elaborated in section 9.2. With the resulting ABC-vertex

the GMOR-relation is satisfied, and the corresponding curve in Fig. 10.1 again describes

a Goldstone boson.

Our results for the Munczek vertex model from section 9.3 are displayed in Fig. 10.2.

Again we find that the pion becomes a Goldstone boson in the chiral limit. The main

difference as compared to the Ball-Chiu vertex is that we did not have to add terms

along unphysical directions. This nicely underlines the main message of ref. [59]: having

the right chiral transformation property already on the level of the vertex representation

ensures a massless pion in the chiral limit, provided the kernel is properly constructed.

The Munczek vertex preserves all symmetries by design and produces the correct type II

kernel contributions for the pion automatically.

It is also interesting to discuss the physical implications of such a type of vertex. The

Munczek vertex possesses a structure that is proportional to 1 and the derivative of the

scalar quark dressing function. Such a structure is not present in the chirally symmetric

theory and thus represents an important addition to the structure of the vertex that is

mainly generated by the dynamical effects of chiral symmetry breaking. This structure is

also not present in a usual ladder approximation with a vertex proportional to γµ. In the

Munczek vertex, this term plays a similar role than the corresponding scalar contribution

to the Ball-Chiu vertex. In ref. [100] this term has been interpreted as being responsible
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Figure 10.1.: This figure depicts the quark mass behavior of the pion mass in the BC-vertex

models. Here ’1BC’ corresponds to a vertex, where only the first term of the Ball-Chiu vertex has

been taken into account, ’2BC’ to the vertex treated in section 9.1, ’BC’ is the physical Ball-Chiu

vertex dealt with in section 9.2 and ’ABC’ is its completion with unphysical directions before

cutting, Eq. (9.2.2). The quark mass mq is evaluated at a renormalization point of µ = 19 GeV.
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Figure 10.2.: This figure depicts the quark mass behavior of the pion mass in the Munczek-vertex

model.

for a dramatic increase in the mass splitting between the scalar and the pseudo-scalar

ground state and was interpreted as a repulsive spin-orbit force.
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Figure 10.3.: Meson ground state masses in dependence of the details of the quark-gluon inter-

action with Munczek vertex. In the left panel Λ = 0.376 is held fixed, in the right panel η = 1.315.

92



Λ η fπ [GeV] Λ η fπ [GeV]

0.376 1.315 0.094 0.376 1.315 0.094

0.376 1.415 0.103 0.476 1.315 0.118

0.376 1.515 0.109 0.676 1.315 0.165

Table 10.1.: Pseudo-scalar decay constants in dependence of the details of the quark-gluon inter-

action with Munczek vertex.

We investigated the Munczek vertex for a similar behavior. In order to assess the model

dependence of our results we varied the parameters η and Λ in the ansatz for the effective

interaction, see Eq. (B.3.2). For each value of the parameters we adjusted the bare quark

mass to obtain roughly the physical pion mass of mπ = 0.137 GeV. We then calculated

the pion decay constant on the pion mass shell, see [131] for numerical details, and the

masses for the pion, the scalar, the vector and the axial-vector ground states. Our results

are shown in Fig. 10.3 and in Tab. 10.1.

In general, the pion mass serves to fix the input quark mass, whereas the pion decay

constant is sensitive to the scale of the interaction. In pure rainbow ladder calculations

it has been observed that once the scale is fixed via Λ, there is a whole range of values

for η which leave the pion decay constant untouched. It has also been established, that

the masses of the scalar and vector meson bound-states are almost insensitive to these

variations [128]. This is no longer true, when the vertex is non-trivial as can be seen

from Fig. 10.3. Varying the parameters of the interaction one clearly finds a great impact

onto the meson mass spectrum. This comes with an increase of the splitting between

pseudo-scalar and scalar channels as well as vector and axial-vector channels. Thus in

principle, by variation of the model parameters one could drive the masses of the scalar

and axial-vector states in a region around and above 1 GeV, where they could be identified

with physical states such as the f0(1370) and the a1(1260).

Λ η fπ mπ mσ mρ ma1

RL 1.797 0.094 0.093 0.137 0.65 0.73 0.83

MV 0.376 1.315 0.094 0.134 0.46 0.58 0.71

Table 10.2.: Meson masses and decay constants (in units of GeV) for Rainbow ladder (RL)

compared with our results using the Munczek vertex (MV).

However, with the construction at hand this would be stretching the model much too

far: as can be seen from Tab. 10.1 also the pion decay constant increases with increased

spin-orbit splitting, clearly indicating that one is no longer working with acceptable model

parameters. Indeed, when we compare the rainbow-ladder result (RL) with the improved

approximation scheme using the Munczek vertex (MV) in Tab. 10.2 with model parameters

adjusted such that the pion decay constant comes out right we even observe a decrease of

the spin-orbit splitting. Similar results can be obtained with the improved Ball-Chiu vertex
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(ABC) of section 9.2. We thus find, that a Ward-Identity improved vertex alone is not

enough to reproduce the size of the spin-orbit splitting that is suggested from experiment.

Note that we do not put much emphasis on the fact, that the mass of the quark-antiquark

bound-state in the scalar channel using the MV-vertex is even in the right ballpark for

the f0(500). As noted in ref. [127] there are indeed transverse parts of the vertex that do

increase the spin-orbit splitting by a substantial amount thus making the identification

with the f0(1370) more likely. This also ties in with findings of Refs.[99].
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11. Conclusions

Following the time-honored concept of taking functional derivatives to obtain an interac-

tion kernel, we extended this technique to vertex models which explicitly depend on the

quark propagator and it’s dressing functions. This enabled us to derive closed expressions

for the interaction kernel beyond the rainbow-ladder approximation. Our technique is very

general, and in principle applicable to any vertex that is given in terms of quark dressing

functions. As an improvement over previous approaches [100, 145, 127] our technique

allows to determine not only the masses of the bound-states but also their Bethe-Salpeter

wave functions. Certainly, these are indispensable when it comes to the calculations of

form factors, structure functions, or decay widths of the states in question.

As examples, we applied this technique to two type of vertices, the Ball-Chiu vertex and

the Munczek vertex that both respect the constraints due to the vector Ward-Takahashi

identity. For the Ball-Chiu vertex we find that we have to amend the vertex by additional

parts along unphysical directions in Dirac space. These do not contribute to the Dyson-

Schwinger equation for the quark propagator, but generate important additional terms

into the interaction kernel of Bethe-Salpeter equations necessary to respect the axial Ward-

Takahashi identity. The resulting pion is then a Goldstone boson in the chiral limit. For

the Munczek vertex, such additional contributions are not necessary.

Using the Munczek vertex we performed a calculation of the masses of pseudo-scalar,

scalar, vector and axial-vector mesons and confirm the findings of ref.[100]: the additional

gauge related structure in the vertex is dominated by dynamical effects of chiral symmetry

breaking and capable to generate substantial spin-orbit forces. However, these structures

alone are not sufficient to generate a physical spectrum of light mesons while keeping the

pion properties intact. Additional transverse pieces in the vertex are necessary to improve

this situation.

Connection to tetraquarks The beyond-rainbow ladder study part of the thesis was fin-

ished before the tetraquark part. Therefore we will conclude this work by a few remarks

regarding the scalar tetraquarks calculated in the first part of this thesis and the scalar q̄q

mesons calculated in the second part. Using the Munczek vertex, we obtained a scalar me-

son of the order of 0.5GeV , whereas for the tetraquark we get a mass of around 0.350GeV .

Even taking into account that the tetraquark is calculated in the Maris-Tandy model so

that a direct comparison to the scalar mesons in the Munczek model is not possible, we

see a trend that the mass of the light scalar tetraquark and the scalar q̄q meson is not so

different. A similar low mass scalar q̄q meson is found in a beyond rainbow ladder study

employing a vertex model that takes into account parts of the skeleton-expanded vertex
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DSE [150] (soon to be published) and is also found when using the plain Maris-Tandy

model, see ref. [80] for just one reference.

This light mass is in contrast to the findings in [127], where the authors used a Ball-Chiu

like vertex, reinforced by transverse pieces associated with the anomalous chromomag-

netic moments of the quark, that yielded a mass for the scalar of about 1.2GeV . Also

the authors in [101] found a somewhat higher mass of about 0.8GeV for the scalar meson

including pion back-reaction effects. Consequently, the question of the position of the q̄q

only meson in the hadron spectrum within a DSE/BSE approach stays open.

In the case of the tetraquark we draw a different conclusion. Because we found the light,

scalar tetraquark being dominated by the pion, we suspect that this feature will prevail in

truncations beyond the Maris-Tandy model. Our reasoning is summarized in the following

two points:

• Because the pion is a Goldstone boson, its mass is small. This feature should be

maintained by any sensible truncation.

• The pion appears as a phase space singularity in the tetraquark and dominates its

properties. Because of the low pion mass this will be the case for any sensible

truncation.

Thus we hypothesize that the pion dominance, combined with the Goldstone nature of the

pion, will ensure a low mass scalar tetraquark in all truncations. After resolving the issue

of threshold effects, this hypothesis could be further tested explicitly in future studies by

calculating q̄q and tetraquarks in a beyond rainbow ladder truncation, taking into account

mixing effects.
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A. Appendix - Tetraquarks

A.1. Eigenvalue curves

To obtain the masses of the tetraquarks we extrapolated the curves

1

λ
− 1 (A.1.1)

and searched for the crossing with zero. For this we employed a linear and parabolic

extrapolation. The curves and the extrapolation can be seen in the plots below. The

linear extrapolation took only into account the last few points to the left, because the

curves are clearly not linear. Still this procedure is justified when taking into account that

the calculated points do not vary so much in magnitude and the crossing is quite close to

the last calculated point. The parabolic fit is much better, but in the region of the cusp, a

crossing is not visible because the curves bend up beforehand. To still deduce a mass, we

take the maximum of the curve as ‘bound-state mass’. From a technical point of view this

is not satisfactory, but from a physical point of view we are only interested in the gross

features of the spectrum, putting extrapolation errors and small inconsistencies around

the cusp at a lower priority.
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Figure A.8.: mq = 0.5GeV
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Figure A.9.: mq = 0.55GeV

mq=0.6 GeV
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Figure A.10.: mq = 0.6GeV

mq=0.625 GeV

λ'

−0.1

−0.05

0

0.05

0.1

0.15

0.2

M2
T[GeV]

−24 −22 −20 −18 −16 −14

λ' curve
Parabolic fit
Linear fit

ml = 4.90 GeV
mp = 4.83* GeV

Figure A.11.: mq = 0.625GeV

mq=0.65 GeV
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Figure A.12.: mq = 0.65GeV

mq=0.7 GeV
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Figure A.13.: mq = 0.7GeV

mq=0.89 GeV
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Figure A.14.: mq = 0.89GeV
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Figure A.15.: mu = 0.00405GeV ,

ms = 0.105GeV .
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A.2. Phase space supplements

The radial variable is factorized into a permutation group invariant part and a bounded

variable R̂ ∈ {0, 1}:

R = R̂ Rmax

Because the four-vectors p1,2,3,4 are not independent, the phase space is a complicated

geometrical object captured in the dependence of Rmax on all other Lorentz invariants.

To reconstruct Rmax, the following procedure is applied:

The triplet T0 in spherical coordinates is equated with the triplet expressed in ω′i of eq.

(3.2.4):

R

 − cos θ

sin θ cosφ

− sin θ sinφ

 =

 −ω′
1+ω′

2+ω′
3

2S0

−
√

2
ω′

1+ω′
2−2ω′

3
4S0√

6
ω′

1−ω′
2

4S0

 .

After inserting the momenta of eq. (3.2.6), this equation can be solved for the angles

z, z′, y.

z′ = R

(√
3T0|3 −A

)√
2
9

Ω̄23
:= a1R (A.2.1)

z = R

(
−
√

3T0|3 −A
)√

2
9

Ω̄13
:= a2R

y = R
−a3 −

(
a1 Ω̄23 + a2 Ω̄13 + a1a2R

2 Ω̄12

)
Ω̄12

√
1− a2

1R
2
√

1− a2
2R

2

with

T0|1 = − cos θ, T0|2 = sin θ cosφ, T0|3 = − sin θ sinφ (A.2.2)

A =
√

2T0|1 + T0|2

Ω̄12 =
1

S0M2

√
M2p2 + ρ1

2
√
M2q2 + ρ2

2

Ω̄23 =
1

S0M2

√
M2q2 + ρ2

2
√
M2k2 + ρ3

2

Ω̄13 =
1

S0M2

√
M2p2 + ρ1

2
√
M2k2 + ρ3

2

a1 =

(√
3T0|3 −A

)√
2
9

Ω̄23

a2 =

(
−
√

3T0|3 −A
)√

2
9

Ω̄13

a3 = 2T0|1.

The equations for z, z′ can be immediately solved for Rmax by setting z = ±1 and z′ =

±1. The equation for y can be transformed into a cubic equation, which can be solved
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analytically. The resulting cubic equation is of the form

aR3
max + bR2

max + cRmax + d = 0, (A.2.3)

with

a = −Ω̄12 (A.2.4)

b = 0

c = (a2
1 + a2

2) Ω̄2
12 + (a3 + a2 Ω̄13 + d Ω̄23)2

d = 2a1a2Ω̄12(a3 + a2Ω̄13 + a1 Ω̄23).

There are some special cases:

a=0 The cubic equations reduces to a quadratic one and can be solved as such:

R1,2 =
−c±

√
c2 − 4b d

2 b
(A.2.5)

Otherwise the cubic equation is solved by

R1,2,3 = 2
√
|p|/3 y1,2,3 −

1

3
b/a (A.2.6)

yn = cos(1/3 cos−1(C) + (2n)2/3π)

p = 3 c/a− (b/a)2

3

q =
9 (c/a) (b/a)− 27 d/a− 2 (b/a)2

27

C =
1

2
q (3/|p|)3/2

Two of these three solutions turn out to be negative. We choose the one which is positive.

Rmax is the minimum of the three calculated (Rmax)z,z′,y, because the phase space bound-

ary is defined by the property that at least one of the angles z, z′, y is maximal or minimal

that means ±1.

A similar procedure is used to calculate the maximal radius ρmax.

The triplet T1 in spherical coordinates is equated with the triplet expressed in ηi:

ρ

 − cosϑ

sinϑ cos ξ

− sinϑ sin ξ

 =


η1+η2+η3

2
√

3
√
S0 M2

η1+η2−2η3

2
√

6
√
S0 M2

η2−η1

2
√

2
√
S0 M2

 .

After inserting the momenta of eq. (3.2.6), this equation can be solved for c1, c2, c3(3.2.6):
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c1 =
−
(
2
√

3 cosϑ−
√

6 sinϑ cos ξ − 3
√

2 sinϑ sin ξ
)
ρ

3r1
(A.2.7)

c2 =
−
(
2
√

3 cosϑ−
√

6 sinϑ cos ξ + 3
√

2 sinϑ sin ξ
)
ρ

3r2

c3 =
−
(
2
√

3 cosϑ+ 2
√

6 sinϑ cos ξ
)
ρ

3r3

with

r1 =

√
4

3
(1 + r rmax cos(ϕ+ 2π/3)) (A.2.8)

r2 =

√
4

3
(1 + r rmax cos(ϕ− 2π/3))

r3 =

√
4

3
(1 + r rmax cos(ϕ)).

To find ρmax we set c1,2,3 to ±1 and calculate ρ. The minimum of the three possible ρmax

is the correct one because the phase space boundary is defined by the surface on which at

least one of the angles is ±1.

A.3. Color traces

We provide the explicit colour traces needed in the calculations of this work. We will

denote the colour singlet in the different decompositions as 3D, 6D, 1MI
, 8MI

, 1MII
, 8MII

.

The subscripts denote the decompositions introduced in chapter 3.5.

For example, 3D is the singlet that can be formed by first coupling the two fundamental

triplets 3 to a anti-triplet 3̄, coupled with the triplet formed by the coupling of the two

anti-fundamental triplets:

(3⊗ 3)⊗ (3̄⊗ 3̄) = 3̄⊗ 3⊕ 6̄⊗ 6⊕ · · · = 13̄⊗3 ⊕ 16̄⊗6 ⊕ · · · =: 3D ⊕ 6D ⊕ . . .

(3̄⊗ 3)13 ⊗ (3⊗ 3̄)24 = 1⊗ 1⊕ 8⊗ 8⊕ · · · = 11⊗1 ⊕+18⊗8 ⊕ · · · =: 1MI
⊕ 8MI

⊕ . . .

(3̄⊗ 3)14 ⊗ (3⊗ 3̄)23 = 1⊗ 1⊕ 8⊗ 8⊕ · · · = 11⊗1 ⊕+18⊗8 ⊕ · · · =: 1MII
⊕ 8MII

⊕ . . .
(A.3.1)

The two possible ways to combine 3 and 3̄ is denoted by the subscripts. The important

numerical factors are the colour traces of the different diagrams and the Fierz-factors to

change from one decomposition to the other. Each diagram is calculated in the colour

decomposition that is the most suitable one. That means if the diagram connects the

quark line 1 and 3, we use the MI decomposition and so on. In this decompositions, the

diagrams are diagonal in the colour space.

The Fierz table for the three different colour decompositions reads
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Diagram Structure Factor

12/34 3D −2/3

12/34 6D 1/3

13/24 1MI
4/3

13/24 8MI
−1/6

14/23 1MII
4/3

14/23 8MII
−1/6

Table A.1.: Color factors of the different diagrams. Numbers in the diagram column specify

the quark lines that are connected by a gluon. Each diagram is diagonal in one of the three

decompositions. To change from one decomposition to the other see the Fierz table below.

3D =

√
1

3
1MI

+

√
2

3
8MI

(A.3.2)

6D = −
√

2

3
1MI +

√
1

3
8MI (A.3.3)

1MI =

√
1

9
1MII

+

√
8

9
8MII

(A.3.4)

8MI =

√
8

9
1MII

−
√

1

9
8MII

(A.3.5)

A.4. Momentum routing and S4 relations

In this section we provide the details of the momentum routing and some computational

technicalities. The kernels depicted in figure A.17, can be discretized and stored as ma-

trices. The calculation of the right hand side of the BSE is therefore nothing else than a

matrix-vector multiplication. We call the application of these matrices ’overlap’, and the

appropriate matrices overlap matrices.

Figure A.17.: The left panel specifies the momentum routing for the Diagram I1,3 and the right

panel the momentum routing for the diagram I1,2. The momentum kg denotes the momentum

of the gluon, the tilded momenta contain the loop momentum l. The black arrows specify the

direction of the momentum flow and the red arrows the direction of the quark spin-line.

The six one-loop diagrams Ii,j (see figure 2.4 ), labeled by the number of quark lines that

are connected by gluons, use the following momentum routing:
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Diagram I1,2 The gluon momentum kg and the internal relative momenta p̃, q̃, k̃ read

kg = l + q − p (A.4.1)

p̃ = q + l (A.4.2)

q̃ = p− l (A.4.3)

p̃ = k. (A.4.4)

The momentum l is the integration momentum. Beware that the spin line of the quarks

has the opposite direction of the momentum flow direction.

Diagram I3,4 Under a P13,24 permutation, this diagram has the same structure and mo-

mentum routing than I1,2. We exploit this feature by applying this transformation to the

full amplitude structure (tensor, colour, flavour). After this transformation we can reuse

the precalculated kernel of the I1,2 diagram. Afterwards, the result has to be back trans-

formed by applying the same P13,24 transformation. For the two-loop diagram denoted

by I1,2;3,4, we us the factorization of the loops. Each loop can be calculated independent

of the other one. So first we calculate the I1,2 diagram with its corresponding overlap

matrix. Subsequently, we perform a P13,24 transformation on the result and multiply this

transformed amplitude with the overlap matrix of the I1,2 diagram. Afterwards we back

transform the result. Thus we only need to store the I1,2 matrix.

The transformations are easily performed because of the inherent symmetry of the tensor

structure and the phase space: In the case of the tensor structures, a P13,24 transformation

changes the sign as can be deduced from table 3.8 and in the case of the phase space vari-

ables, this symmetry operation amounts to an interpolation in zR,ΦR, zρ,Φρ only. The

rest of the variables are invariant.

Diagram I1,3 The following momentum routing is used for the I1,2 diagram

kg = l + k − p (A.4.5)

p̃ = k + l (A.4.6)

q̃ = q (A.4.7)

p̃ = p− l. (A.4.8)

Diagram I1,4 This diagram can be calculated with the same overlap matrix of the

I1,3 diagram. The necessary transformation operations are the P34 permutation. This

transformation is again a simple transformation when using the tensor structure given in

table 3.8 and phase space variables provided in chapter 3.2.

Diagram I2,4 The transformation to relate this diagram to the overlap matrix of I1,3 is

P12,34.
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Diagram I2,3 The transformation to relate this diagram to the overlap matrix of I1,3 is

P12.

The same factorization procedure that was used to calculate the two-loop diagram I1,2;3,4,

can be used to calculate the other two-loop diagrams I1,2;2,4 and I1,4;2,3.

A.5. S4 toolbox

In this chapter we collect the different multiplets of S4 and products between them. This

chapter is entirely based on ref. [106] and will be published soon.

Construction of multiplets

A triplet T ± and a doublet D are elements of the three or two dimensional vector space

on which the corresponding representations of the S4 group act on. They will be denoted

by

T ± =

uv
w

 D =

(
a

s

)
. (A.5.1)

To construct them, we start from the 24 elements of S4, denoted by

fijkl i, j, k, l ∈ {1, 2, 3, 4}. (A.5.2)

Any transposition Pij exchanges the corresponding indices, e.g.,

P13f2314 = f2134. (A.5.3)

We collect them into three objects

f (1) =


f1234

f3412

f2143

f4321

 f (2) =


f3241

f1423

f4132

f2314

 f (3) =


f4213

f2431

f3124

f1324

 . (A.5.4)

With P± := 1± P12, one can form the combinations

ψ±i = P±

4∑
k=1

f ik, i ∈ {1, 2, 3}. (A.5.5)

With these objects at hand, the singlet S and antisinglet A of the S4 group can be

constructed:

S = (ψ+
1 + ψ+

2 + ψ+
3 )

A = (ψ−1 + ψ−2 + ψ−3 ). (A.5.6)
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They transform with a plus or minus respectively under any group operation Pij . The

doublets can be constructed with the help of the same objects:

D1 =

(
(ψ−2 − ψ

−
3 )

− 1√
3
(ψ+

2 + ψ+
3 − 2ψ+

1 )

)

D2 =

(
1√
3
(ψ−2 + ψ−3 − 2ψ−1 )

(ψ+
2 − ψ

+
3 )

)
. (A.5.7)

With the additional definitions

a±i := P±

(
f

(i)
1 − f

(i)
2 + f

(i)
3 − f

(i)
4

)
b±i := P±

(
f

(i)
1 − f

(i)
2 − f

(i)
3 + f

(i)
4

)
(A.5.8)

c±i := P±

(
−f (i)

1 − f
(i)
2 + f

(i)
3 + f

(i)
4

)
and

(Φ1)±1 := ±a±1 (Φ1)±2 := a±2 (Φ1)±3 := a±3

(Φ2)±1 := ±b±1 (Φ2)±2 := b±2 (Φ2)±3 := b±3 (A.5.9)

(Φ3)±1 := ±c±1 (Φ3)±2 := c±2 (Φ3)±3 := c±3

we can construct the two triplets

T +
i =


√

2
3(Φ+

1 + Φ+
2 + Φ+

3 )√
1
3(Φ+

2 + Φ+
3 − 2Φ+

1 )

(Φ−2 − Φ−3 )



T −i =


√

2
3(Φ−1 + Φ−2 + Φ−3 )√

1
3(Φ−2 + Φ−3 − 2Φ−1 )

(Φ+
2 − Φ+

3 )

 . (A.5.10)

With the representation matrices M,M ′, H,H ′, H ′′ found in [105] 1 the action of a group

member Pij on the doublets and triplets can be written as a matrix-vector multiplication

1Slightly different notation as found in [105].
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of the matrices with the doublets and triplets constructed beforehand:

M =

(
−1 0

0 1

)
M ′ =

1

2

(
1 −

√
3√

3 1

)
(A.5.11)

H =

1 0 0

0 1 0

0 0 1

 H ′ =
1

2

1 0 0

0 −1 −
√

3

0 −
√

3 1

 H ′′ =
1

2

 −1 −
√

8 0

−
√

8 1 0

0 0 3

 (A.5.12)

P12Di = MDi P12T ±i = ±HT ±i
P23Di = M ′Di P23T ±i = ±H ′T ±i
P34Di = MDi P34T ±i = ±H ′′T ±i (A.5.13)

All other transpositions in S4 can be constructed by chaining P12, P23, P34 or by repeated

multiplication of the matrices M,M ′, H,H ′, H ′′.

Products in S4

From the doublets and triplets of S4 one can construct again doublets, triplets and (anti)-

singlets by appropriate combinations/multiplications.

Doublets The star product ∗ between doublets and triplets is defined as follows

D ∗ D′ :=

(
as′ + sa′

aa′ − ss′

)

T ∗ T ′ :=

(
vw′ + wv′ +

√
2(uw′ + wu′)

ww′ − vv′ +
√

2(uv′ + vu′)

)
. (A.5.14)

With the help of this product one can form new doublets by multiplying the following

objects

Di ∗ Dj , T ±i ∗ T
±
j , ε

(
T ±i ∗ T

∓
j

)
(A.5.15)

with the additional matrix

ε :=

(
0 1

−1 0

)
. (A.5.16)

Triplets Triplets can be obtained from the two products denoted ∨ and ∧

T ∧ T ′ :=

vw
′ − wv′

wu′ − uw′

uv′ − vu′

 T ∨ T ′ :=

 vv′ + ww′ − 2uu′

uv′ + vu′ +
√

2 (vv′ − ww′)
uw′ + wu′ −

√
2 (vw′ + wv′)



T ∧ D :=


va− ws

ua−
√

1
2 (va+ ws)

−us−
√

1
2 (vs+ wa)

 T ∨ D :=


vs+ wa

us−
√

1
2 (vs− wa)

ua+
√

1
2 (va+ ws)

 . (A.5.17)
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The following combinations are possible to form triplets T +

ST +, AA−, T + ∧ D, T − ∨ D, T ± ∧ T ±, T ± ∨ T ∓. (A.5.18)

Singlets Singlets can be formed by the standard scalar product, denoted by ’·’, in three

and two dimensions

Di · Dj , T ±i · T
±
j . (A.5.19)

Additionally, the products of singlets and antisinglets can also yield a singlet

SS, AA. (A.5.20)

Antisinglets With the help of the product ’∧’ between doublets, defined as

D ∧D′ := as′ − sa′, (A.5.21)

the antisinglets can be build from the following combinations

SA, Di ∧ Dj , T ±i · T
∓
j . (A.5.22)
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B. Appendix - Beyond rainbow ladder

B.1. Constructing beyond ladder kernels

Here we detail the construction of type II kernels in order to provide a self-contained

definition that should help the reader who is interested in the numerical implementation.

We consider in particular the ABC vertex construction from Eq. (9.2.2). The quark

dressing functions are taken to be the ones from Eq. (9.2.1).

The kernels are of the form

δΣab(k)

δScd(q)

∣∣∣∣
II

=

∫
l
[γµS(l)]aa

′ δΓa
′b
µ (l, k)

δScd(q)
Dµν(l − k), (B.1.1)

where the vertex from Eq. (9.2.2) using the generalization from Eq. (9.1.1) is written as

ΓABCµ (l, k) = γµ
Aµ(l) +Aµ(k)

2

+ (l + k)µ

4∑
α=1

(l + k)αγα
1

2

Aα(l)−Aα(k)

l2 − k2
(B.1.2)

+ i (l + k)µ
B(l)−B(k)

l2 − k2
+ i γ5 (l + k)µ

C(l)− C(k)

l2 − k2
,

which is the analog of the Ball-Chiu construction for the quark shown in Eq. (9.2.1). The

cutting is now explicitly done as

δ

δScd(q)
=

4∑
j=1

γdcj
i 4 qj

δ

δσj(q)
+

11dc

4

δ

δσS(q)
+
γdc5

4

δ

δσ5(q)
(B.1.3)

The functional derivatives that occur are of the form

δAi(p)

δσj(q)
=
∂Ai
∂σj

(p) δ(4)(p− q), (B.1.4)

and similar for the B and C functions. We need to specify A, B and C in terms of the

σ-dressings. The quark and its’ inverse defined as in Eq. (9.2.1) are related by

Ai =
σi∑4

i p
2
iσ

2
i + σ2

S − σ5

→ σV
p2σ2

V + σ2
S

B =
σS∑4

i p
2
iσ

2
i + σ2

S − σ5

→ σS
p2σ2

V + σ2
S

(B.1.5)

C = − σ5∑4
i p

2
iσ

2
i + σ2

S − σ5

→ 0,

where the expressions after ’→’ are the ones after σ1...4 → σV and σ5 → 0, i.e. the

physical ones that are used in all numerical calculations. The ’unphysical’ expressions in
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Eq. (B.1.5) are only needed for the cutting procedure during the derivation of the type

II kernels. The coefficient matrix from Eq. (B.1.4) evaluates to

∂(Ai|B|C)

∂σj
=

1

N 2



D1 ΣV
2 ΣV

3 ΣV
4 ΣV S 0

ΣV
1 D2 ΣV

3 ΣV
4 ΣV S 0

ΣV
1 ΣV

2 D3 ΣV
4 ΣV S 0

ΣV
1 ΣV

2 ΣV
3 D4 ΣV S 0

ΣV S
1 ΣV S

2 ΣV S
3 ΣV

4 DS 0

0 0 0 0 0 −N


, (B.1.6)

with

N = p2σ2
V + σ2

S Di = σ2
V

((∑
j 6=i

p2
j

)
− p2

i

)
+ σ2

S

DS = p2σ2
V − σ2

S ΣV
i = −2σ2

V p
2
i (B.1.7)

ΣV S
i = −2σV σSp

2
i ΣV S = −2σV σS .

Note that momentum p in the equations above will be evaluated as l or k in equation

(B.1.2). The type II kernel for the vertex model from Eq. (9.2.2) is now almost fully

specified. In addition we adjust the momentum dependence in order to take into account

the flow of the total momentum of the bound-state through the kernel. This procedure is

explained in appendix B.2 for the case of the δC/δσ5 part.

B.2. Massless pion and BC vertex

In this appendix we show how the Ball-Chiu vertex (Eq. (9.0.3)) can yield a massless pion

in the chiral limit via the extended structure of the vertex from Eq. (9.2.2). The only

type II term in the kernel originating from cutting the ABC vertex of Eq. (9.2.2) and

contributing to the AXWTI (8.0.6) and the pion BSE (8.0.12) evaluates to (see appendix

B.1)

δΣcd(k)

δSab(q)
= −γba5 /4 (B.2.1)

×

[
[γµS(q)γ5]cd

i(q + k)ν
q2 − k2

Dµν(q − k)

q2σ2
V (q2) + σ2

S(q2)

−
∫
l
[γµS(l)γ5]cd

i(l + k)ν
l2 − k2

Dµν(l − k) δ(4)(q − k)

k2σ2
V (k2) + σ2

S(k2)

]
.

We mentioned already in section 8 that the kinematics of the kernels generated is not

automatically given by the cutting procedure. The self-energy Σ(k) expects the same

incoming and outgoing momenta. The kernel that is generated from its derivative should

have different momenta k+ and k− to match the kinematics needed in the bound-state

equation (8.0.12). If the cutting were carried out in coordinate space, this ambiguity would

not arise. In order to arrive at a fully specified kernel one should use Eq. (8.0.1) without

assuming translational invariance but only relaxing all Green functions to physical ones
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in the end. We were, however, so far unable to write down the Ball-Chiu construction

(9.0.3) for a quark with different in- and out-going momenta, or, probably preferable, in

coordinate space. In our numerical calculation we thus work with a momentum-shifted

version of Eq. (B.2.1) which reads

KABC
II (P, q, k)cdab = −γba5 /4 (B.2.2)

×

[
[γµS(q)γ5]cd

i(q + k+)ν
q2 − k2

+

Dµν(q − k)

q2σ2
V (q2) + σ2

S(q2)

−
∫
l
[γµS(l)γ5]cd

i(l + k+)ν
l2 − k2

+

Dµν(l − k) δ(4)(q − k)

k2
+σ

2
V (k2

+) + σ2
S(k2

+)

]
.

Our reasoning for this expression is twofold. First of all it does respect the fact that the

total momentum P that should be part of the kernel, as explained above. Second, the

singular terms of the form 1/(q2−k2) are potentially dangerous in the integration. This is

regularized due to the replacement k → k+ = k+P/2, where P is imaginary (P 2 = −m2
π).

It turns our that with this momentum routing a cancellation between the two types of

structures present in Eq. (B.2.2) occurs. This cancellation mechanism resembles the vertex

structure from Eq. (9.2.2), where the same type of denominator occurs. However, since

the quotient approaches a form that is reminiscent of a derivative dC(k2)/dk2 the zero-

momentum limit is well defined.

We will now show that the AXWTI, Eq. (8.0.6), is fulfilled in the limit of P → 0. For

the case of the type I contribution to the kernel, only the third term of the Ball-Chiu

vertex, Eq. (9.0.3), is a problem (cf. section 9.1). This is because the γ5’s on the right

hand side of equation (8.0.6) have to anti-commute with the vertices to give an additional

minus sign to match the left side of the equation (cf. Fig. 8.1). This works out for the

first two components of the BC vertex: {Γ2BC
µ , γ5} = 0. The third component generates

a term with the wrong sign since [Γ3rdBC
µ , γ5] = 0. It turns out, however, that the type

II contributions to the kernel, Eq. (9.2.3), remedy the problem: they equal to twice the

same contribution but with opposite sign and therefore effectively switch the sign.

In order to be explicit we will start to check the AXWTI, Eq. (8.0.6) for the case of

a bare vertex Γµ(q, p) = γµ in Eq. (8.0.9), i.e. the rainbow-ladder case. The essential

manipulation in Eq. (8.0.6) is

−
∫
q
[S(q+)γ5]cdKab

cd (P, q, k) (B.2.3)

= −
∫
q
γµS(q+)γ5γνDµν(k − q)

=

∫
q
γµS(q)γνDµν(k+ − q)γ5 = Σ(k+)γ5,

which then matches a corresponding term on the left side of equation (8.0.6). For the case
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of a generic vertex that fulfills {Γµ(q, k), γ5} = 0 we find

−
∫
q
[S(q+)γ5]cdKab

cd (P, q, k) (B.2.4)

= −
∫
q
γµS(q+)γ5Γν(q−, k−)Dµν(k − q)

=

∫
q
γµS(q)Γν(q− − P/2, k−)Dµν(k+ − q)γ5

P→0→
∫
q
γµS(q)Γν(q, k)Dµν(k − q)γ5 = Σ(k)γ5,

such that the AXWTI is fulfilled at P = 0. For a vertex component, such as the third

term of the BC part in Eq. (9.0.3) that obeys [Γµ, γ5] = 0 the contribution has the wrong

sign, such that even at P = 0 the AXWTI is not fulfilled.

We will see that this problem can be cured by including a contribution of type II. Using

the definition fν(q, k) = (q+k)ν/(q
2−k2), the self-energy for the third BC component on

the left hand side of the AXWTI reads∫
q
γµS(q)fν(q, k+)

(
B(q)−B(k+)

)
Dµν(k+ − q)γ5. (B.2.5)

The corresponding diagram on the right side of the AXWTI has the opposite sign as

already stated above. Therefore we consider now the contribution of the type II kernel

from Eq. (B.2.1). The corresponding C part of the vertex (9.2.2) is zero and does not

contribute to the self-energies on the left side of the AXWTI. For simplicity we will use

the function fν again and also the function N from Eq. (B.1.7).

−
∫
q
[S(q+)γ5]cdKab

cd (P, q, k) =
1

4

∫
q

Tr [S(q+)γ5γ5]×[
γµS(q)γ5

fν(q, k+)

N (q)
Dµν(q − k)

−
∫
l
γµS(l)γ5

fν(l, k+)

N (k+)
Dµν(l − k)δ(q − k)

]

=

∫
q
γµS(q)fν(q, k+)

σS(q+)

N (q)
Dµν(q − k)γ5

−
∫
l
γµS(l)fµ(l, k+)

σS(k+)

N (k+)
Dµν(l − k)γ5

=

∫
q
γµS(q)fµ(q, k+)

[
σS(q+)

N (q)
− σS(k+)

N (k+)

]
Dµν(k − q)γ5

P→0→
∫
q
γµS(q)fµ(q, k)(B(q)−B(k))Dµν(k − q)γ5. (B.2.6)

Here Tr[S] = 4σS was used as well as the definition of the B function in Eq. (B.1.5). We

see that the last line corresponds to Eq. (B.2.5) in the P → 0 limit. In fact the second

contribution on the right side of the AXWTI (8.0.6) differs by S(k+)γ5 → γ5S(k−) such

that in the P → 0 limit it yields the same contribution. Thus we have the contribution

of Eq. (B.2.6) twice. Due to the global minus sign that comes from the definition of C

in Eq. (B.1.5) we subtract the BC term from Eq. (B.2.5) twice such that the AXWTI is

fulfilled in the P → 0 limit.
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B.3. Gluon model

In this work we use a model for the effective gluon propagator Dµν that was given in

ref. [151]. In general the gluon is given in Landau gauge as

D̃µν(k) =

(
δµν −

kµkν
k2

)
Z(k2)

k2
, (B.3.1)

where the non perturbative content is hidden in the dressing function Z(k2). In the Dyson-

Schwinger equation for the quark propagator this dressing function appears together with

the fully dressed non-Abelian quark-gluon vertex. Since all explicit vertices used in this

work are constructed along the Abelian Ward-Takahashi identity, the following model for

the effective gluon represents a product of the gluon propagator with the remaining non-

Abelian dressing effects GH̃ in the vertex, cf. the discussion around Eq. (9.0.3). The

model is given by

αeff(k2) =
g2

4π
Z1FZ(k2)G(k2)H̃(k2)

= πη7

(
k2

Λ2

)2

e−η
2 k2

Λ2

+
2πγm

(
1− e−k2/Λ2

t
)

ln[e2 − 1 + (1 + k2/Λ2
QCD)2]

, (B.3.2)

where for the anomalous dimension of the quark we use γm = 12/(11Nc − 2Nf ) = 12/25,

corresponding to Nf = 4 flavours and Nc = 3 colours, we fix the QCD scale to ΛQCD =

0.234 GeV and the scale Λt = 1 GeV is introduced for technical reasons and has no

impact on the results. The interaction strength is characterized by an energy scale Λ and

the dimensionless parameter η controls the width of the interaction. The precise form of

this model does not matter in this work. Ultimately we aim to replace this with a self-

consistently calculated gluon propagator, see e.g. ref. [137], and an appropriate expression

for the non-Abelian parts of the vertex.

z

y,p

x      y

x,p '

p
P

x,p y,p
1 2

Figure B.1.: From left to right: Vertex, Propagator, Amplitude. x, y, z letters denote space time

positions, p letters denote the corresponding momentum.
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B.4. Munczek model

To cut the quark self-energy of the Munczek model, a formulation in position space is

necessary. The building blocks read as following:

Γµ (z;x, y) =

∫
p′,p

e−ip
′(x−z)−ip(z−y) Γµ

(
p′, p

)
S (x, y) /Dµν (x, y) =

∫
p

e−ip(x−y) S/Dµν (p)

A (x, y;P ) =

∫
p1,p2

e−ip1x+ip2y A(p1, p2;P ). (B.4.1)

The first line represents a vertex in position space, the second a quark or gluon propagator

and the third one the Bethe-Salpeter amplitude or wave function with total momentum

P . We denote two further relations that play a role in the derivations:

1∫
0

dα eiqα(x−y)eiq(z−x) =
eiq(z−y) − eiq(z−x)

iq · (x− y)
, (B.4.2)

and

δ

δS(l, l′)
S−1(x′, y) = −S−1(l′, y)S−1(x′, l). (B.4.3)

The first one is already used to represent the Munczek vertex model in [59], the second

one denotes the functional derivative of an inverse propagator. With all tools at hand the

Munczek vertex in momentum space is readily derived from Eq. (9.3.1):

Γµ(p′, p) =
∂

∂pµ

1∫
0

S−1(p+ α(p′ − p)) dα. (B.4.4)

Taking the functional derivative of the quark self-energy yields

δΣ(x1, x2)

δS(l, l′)
=

∫
y,z

γµS(x1, y)
δΓµ(z; y, x2)

δS(l, l′)
Dµν(z, x1)

=

∫
y,z

γµS(x1, y)Dµν(z, x1)

∫
q

eiq(z−y)−iq(z−x2)

× (x2 − y)µ

iq · (x2 − y)

δ

δS(l, l′)
S−1(y, x2).

This expression is now traced with the Bethe-Salpeter wave function from Eq.(B.4.1) (as

demanded by the Bethe-Salpeter Equation in coordinate space) and Eq.(B.4.3) is inserted

for the derivative of the inverse quark propagator. Additionally the α-trick from Eq.(B.4.2)

is applied resulting in the following expression

δΣ(x1, x2)

δS(l, l′)
= −

∫
y,z
l,l′,q

1∫
0

dα γµS(x1, y)Dµν(z, x1)eiqα(x2−y)

× eiq(z−x2) (x2 − y)µ S−1(l′, x2)Γ̃(l′, l;P )S−1(y, l), (B.4.5)
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where Γ̃ is the wave function (see Eq. (9.3.8)). Inserting the expressions for the ver-

tex, propagators and amplitudes from Eq.(B.4.1) and replacing (x2 − y)µ by appropriate

derivatives of momenta in the exponentials of the Fourier modes, one finally arrives at the

expression for the type II momentum space contribution:

[Γ×KII ] (P, p)|ab = −
∫
q

1∫
0

dα γµacScd(q −
1

2
P )

×Dµν(q − p)
[
∂

∂qν
(Γdb(q + α(q − p);P ))

]
. (B.4.6)

Color factors and renormalization constants are suppressed. In this case Γ denotes the

wave function. and instead of the two momenta p1 and p2, we use the relative momentum

p = (p1 − p2)/2 to describe the wave function. We included the Dirac indices to clarify

the structure.

There is an asymmetry in this type II kernel as one can see in the quark momentum. This

can lead to an imaginary part of the BSE eigenvalues at least in the form of numerical

noise. The source for this is the asymmetry of the quark self-energy that contains only

one dressed vertex. If one would start with a symmetrized self-energy

Σ(p) =
1

2

∫
γµS(q)Γν(q, p)Dµν(p− q) (B.4.7)

+
1

2

∫
Γµ(p, q)S(q)γµDµν(p− q) (B.4.8)

this problem disappears and there is second type II contribution containing a quark with

momentum q + 1
2P :

[Γ×KII ] (P, p)|ab = −
∫
q

1∫
0

dα

[
∂

∂qν
(Γac(q + α(q − p);P ))

]

×Scd(q +
1

2
P )γµdbD

µν(q − p). (B.4.9)

Both contributions will come with a factor 1
2 .
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richten. Aus einer Idee in der Teeküche ist dank unserer gemeinsamen Anstrengungen die

spannende Arbeit über den Munczekvertex entstanden.

Dr. Richard Williams und Dr. Helios Alepuz danke ich für die Erörterung spannender

physikalischer Fragen, die vielen hilfreichen Diskussionen und dafür, dass ihr Büro und ihr
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