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Introduction

Motivation

Let g be a Kac-Moody Lie algebra and let ω be the Cartan-Chevalley involution of

g. Then g decomposes as k⊕ p where k is the +1 eigenspace and p is the -1 eigenspace.

It is clear that k is the maximal compact subalgebra of g and the commutator [k, p] lies

in p, i.e., there is an action of k on p. In addition, letG be the adjoint group of g and Kω

be the subgroup of G consisting of elements that commute with ω. Then both k and p

are stable under the action of Kω and in particular the latter defines a representation

Kω → Autp. One question is how one may interpret this representation and further

study the orbits. This has been studied in [?], [?], etc. for the finite-dimensional

case. However, for infinite-dimensional Kac-Moody Lie algebras, this question still

remains unclear. As a particular case, we focus on the hyperbolic Kac-Moody Lie

algebra e10. We concentrate on e10 for the following reasons.

(a) All simply-laced hyperbolic Kac-Moody algebras can be embedded into e10 [?].

(b) e10 is of significant importance in physics: it "knows all" about maximal super-

symmetry. A coset model based on the hyperbolic Kac-Moody algebra e10 has

been conjectured to underly 11-dimensional supergravity and M theory [?] [?].

(c) There is a deep connection between supersymmetry and the four normed di-

vision algebras over R. Most simply, the connection is visible from the fact

that classical superstring theories and minimal super-Yang-Mills theories live

in Minkowski spaces of dimension 3, 4, 6 and 10, which is isometric to h2(K)

with K = R, C, H, and O, respectively.

xi
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In order to examine the infinite-dimensional Kac-Moody Lie algebra e, it suffices

to study the hyperbolic root system E10, which serves as the main object of this

dissertation.

Methodologies, and objectives

In [FF83] Feingold and Frenkel came up with a very insightful way to study

the structure of the rank 3 hyperbolic root system AE3 by realizing the AE3 root

system as the set of 2× 2 symmetric integral matrices X with det(X) > −1. In this

context, each element M ∈ W(AE3) acts on the root space h2(R) via X 7→MXM>. It

was also mentioned in [FF83] that this methodology could be applied to two other

(dual) rank 4 hyperbolic root systems whose Weyl groups both contain as an index 4

subgroup the Picard group PSL2(G). Moreover, in [KMW] Kac, Moody and Wakimoto

generalized the structural results to the hyperbolic root system E10 = E++
8 . There has

been very little new insight into the structure of the Weyl groups of hyperbolic root

systems until Feingold, Kleinschmidt, and Nicolai presented in [FKN09] a coherent

picture for many higher rank hyperbolic Kac-Moody root systems which was based

on the relation to modular groups associated with lattices and subrings of the four

normed division algebras over R. Explicitly, their results are shown in the following

table.

K Root system Φ W(Φ) W+(Φ++)

R A1 2 ≡ Z2 PSL2(Z)

C A2 Z3 o 2 PSL2(E)

C B2 ≡ C2 Z4 o 2 PSL2(G)o 2

C G2 Z6 o 2 PSL2(E)o 2

H A4 S5 PSL(0)
2 (I)

H B4 24 o S4 PSL(0)
2 (H)o 2

H C4 24 o S4 P̃SL
(0)
2 (H)o 2

H D4 23 o S4 PSL(0)
2 (H)

H F4 25 o (S3 × S3) PSL2(H)o 2

O D8 27 o S8 PSL(0)
2 (O)

O B8 28 o S8 PSL(0)
2 (O)o 2

O E8 2·O+
8 (2)·2 PSL2(O)
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In the table, C = A·B means that the group C contains A as a normal subgroup with

quotient C/A isomorphic to B. Such a group C is called an extension of A by B. It

can happen that the extension is a semi-direct product, so that B is a subgroup of C

which acts on A via conjugation as automorphisms, and in this case the product is

denoted by AoB. Additionally, Sn denotes the symmetric group on n letters.

The results in [FKN09] are in analogy with the generators and relations descrip-

tion of the W(E10) as products of fundamental reflections (and also in analogy with

the description of the continuous Lorentz group SO(9, 1; R) via octonionic 2× 2 ma-

trices in [MS93]). However, it still remained an outstanding problem to find a more

manageable realization of this group directly in terms of 2× 2 matrices with Octavian

entries.

About the dissertation

Outline and results

I will start by exploring the relationships between number systems R, C, H and

O via Cayley-Dickson process (Chapter 1). In Chapter 2 I will include the idea in

[Sud84] about how to define the Lie algebra sl2(O) such that it generalizes the lower

dimensional cases sl2(R), sl2(C), and sl2(H). There will be a description of Lie groups

GL2(O) and SL2(O) in Chapter 3, which can be found in [MS93] and [MD99]. In

particular, every matrix in SL2(O) is similar to some matrix of the form

α 1

0 β

 orα 0

0 β

 , which is called the Jordan canonical form and will be useful in classifying

the conjugacy classes of PSL2(O).

In the second part, I will first specify a subgroup of the octonionic Möbius group

that is isomorphic to PSL2(O) and then classify the conjugacy classes of PSL2(O).

[Theorem 4.3.2; Chapter 4] The conjugacy classes of PSL2(O) are given by

(i) Parabolic classes:

{

a 1

0 a

 | ‖a‖ = 1}

with uniqueness up to the similarity of a. Here a,b ∈ O are similar if there

exists h ∈ O such that a = hbh−1.
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(ii) Elliptic classes: a 0

0 a−1

 | ‖a‖ = 1}

with uniqueness up to the similarity of a in O.

(iii) Loxodromic classes:

{

λa 0

0 λ−1d

 | λ > 1, ‖a‖ = ‖d‖ = 1, λa � λ−1d}

with uniqueness up to the similarity classes of λa and λ−1d and order of the

diagonal entries.

(iv) Hyperbolic classes: λ 0

0 λ−1

 | λ > 1}

with uniqueness up to the order of the diagonal entries.

In Chapter 5 and Chapter 6, I will explicitly give the generating sets for some

modular groups defined over integral lattices inside those normed division algebras

over R. In particular, we have

PSL2(E) = 〈

0 −1

1 0

 ,

1 1

0 1

 ,

1 ω

0 1

〉 Equation 5.2

PSL2(L) = 〈

0 −1

1 0

 ,

1 1

0 1

 ,

1 i

0 1

 ,

1 j

0 1

〉 Equation 5.1.2

PSL∗2(H) = 〈

0 −1

1 0

 ,

1 1

0 1

 ,

1 i

0 1

 ,

1 j

0 1

 ,

1 h

0 1

〉 Equation 5.4

PSL∗2(O) = 〈

0 −1

1 0

 ,

1 εi

0 1

 | 1 6 i 6 8〉 Equation 5.6.

Note that all these modular groups are generated by upper triangular matrices of the

form

1 x

0 1

 , plus a common generator

0 −1

1 0

 .

In the third part, I will first define projective lines using formally real Jordan

algebras (Chpater 7), which will be used in Chapter 8 to prove that projective Mo-

ufang sets are local Moufang sets and are special. Thus, there will be a simplified



CONTENTS xv

expression of µ-maps, which would gives rise to Equation 8.80 −x̄

x 0

 =

1 x̄

0 1

 0 1

−1 0

1 x

0 1

 0 1

−1 0

1 x̄

0 1

 .

This will be significantly important in studying hyperbolic Weyl groups.

As for the last part, I will introduce in Chapter 9 some basics of root systems and

Coxeter systems. Afterwards in Chapter 10, I will illustrate the relationships between

modular groups previously defined and hyperbolic Weyl groups arising from over-

extending finite root systems in those four normed division algebras over R. Propo-

sition 10.4.1 says that W+(D++
4 ) ∼= PSL∗2(H), which follows that PSL∗2(H) = PSL(0)

2 (H)

since it has been shown in [FKN09] that PSL∗2(H) ∼= W+(D++
4 ). More importantly, it

is proved in Theorem 10.5.1 that W+(E10) ∼= PSL∗2(O).

Open questions

1. It has been proved in Theorem 10.5.1 that W+(E10) is isomorphic to the

group PSL∗2(O). This is different from the expression in [Equation 6.24; [FKN09]]

which says that W+(E10) ∼= PSL2(O). Thus, it seems like it should be the case that

PSL∗2(O) = PSL2(O). However, this is kind of counter-intuitive because we have

PSL2(H)/PSL∗2(H) ∼= Z3.

2. We have already found a concise description of the Weyl group W(E10). Then a

natural question is to examine the action of PSL∗2(O) on h2(O) and classify the orbits

of this action.
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CHAPTER 1

Normed Division Algebras Over R

1.1 Normed division algebras

1.1.1 Quadratic spaces

Let V be a finite dimensional vector space over R. A map q : V → R is called a

quadratic form on V if it satisfies:

(i) q(tv) = t2q(v) for all t ∈ R, v ∈ V ; and

(ii) the symmetric pairing

Bq : V × V → R; (v, w) 7→ 1
2
[
q(v + w) − q(v) − q(w)

]
(1.1)

is bilinear.

The ordered pair (V , q) is then called a quadratic space.

It is easy to see that Bq(v, v) = q(v). Actually, the map q→ Bq gives rise to a one-

to-one correspondence between quadratic forms on V and symmetric bilinear forms

on V .

A vector v ∈ V such that q(v) = 0 is called a null vector. Let Q denote the set of

all null vectors in V , i.e.,

Q = {v ∈ V | q(v) = 0}.

Q is called the quadric of q. When Q = {0}, the quadratic form q is said to be

anisotropic. Otherwise, q is isotropic, in which case the non-zero vectors in Q are

also said to be isotropic.

3



4 CHAPTER 1. NORMED DIVISION ALGEBRAS OVER R

Suppose that the quadratic space V is n-dimensional and has a basis {vi}ni=1. We

write aij := Bq(vi, vj) and define A := (aij) ∈ Matn(R). Since Bq is symmetric, we

have aij = aji, and hence A is an symmetric matrix. For any v =
∑n
i=1 xivi ∈ V , we

have

q(v) = Bq(v, v)

= Bq(

n∑
i=1

xivi,
n∑
i=1

xivi)

=

n∑
i=1

Bq(vi, vi)x2
i +

∑
i<j

[
Bq(vi, vj) +Bq(vj, vi)

]
xixj

=

n∑
i=1

aiix
2
i +

∑
i<j

2aijxixj (1.2)

= x>Ax, (1.3)

where x = (x1, . . . , xn). Expression 1.2 implies that q can be characterized as a homo-

geneous polynomial of degree two in n variables with coefficients in R.

On the other hand, it follows from Expression 1.3 that the quadratic form q is de-

termined by the matrix A. Thus, we define the positive or negative (semi)definiteness,

or indefiniteness of q to be equivalent to the same property of the matrix A. In partic-

ular, (V , q) is called a normed vector space if q is positive-definite, i.e., A is a positive-

definite matrix. In this case, q is a norm on V and q(v) is usually written as ‖v‖2 for

all v ∈ V .

1.1.2 Normed division algebras

An algebra is a finite dimensional real vector space A equipped with a bilinear

map m : A × A → A called multiplication. Unless otherwise specified, we always

assume that A is unital, which means there exists a nonzero element 1A ∈ A called

unit such thatm(1,a) = m(a, 1) = a. We do not require our algebras to be associative.

The multiplication m(a,b) is, as usual, abbreviated as ab.

Let la : x 7→ ax and ra : x 7→ xa denote the left and right multiplication by a ∈ A,

respectively. If, for all nonzero a ∈ A, the operations la and ra are invertible, then

A is called a division algebra. If A is a normed vector space with ‖ab‖ = ‖a‖‖b‖ for

all a,b ∈ A, then A is called a normed division algebra. Obviously, a normed division

algebra is always a division algebra with ‖1A‖ = 1.
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1.2 Quaternions

The quaternions H are a number system that extends the complex numbers. It is a

4-dimensional associative algebra with basis 1, i, j, and k. Formally, every quaternion

could be expressed in the form

x0 + x1i + x2j + x3k

where the coefficients x0, x1, x2, and x3 are all real numbers and the basis vectors i, j

and k satisfy

• i2 = j2 = k2 = −1; and

• ij = k, ji = −k.

This rule is better summarized in a picture as follows:

Moreover, given a quaternion a = x0 + x1i + x2j + x3k, the conjugate of a is

ā = x0 − x1i − x2j − x3k,

and the norm of a is

‖a‖2 := x2
0 + x

2
1 + x

2
2 + x

2
3.

It is straightforward to check that (H, ‖ · ‖) is a normed division algebra.

1.3 Octonions

Let e0, e1, e2, e3, e4, e5, e6, and e7 denote the unit base octonions in O, where

e0 = 1 is the scale element. That is, every octonion x can be written in the form

x = x0 + x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7

with xi ∈ R for all i = 0, . . . , 7.

The algebra of octonions, O, is neither commutative nor associative. The products

of unit octonions can be summarized by the relations:
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• eiej = −δije0 + εijkek, where εijk is a completely antisymmetric tensor with

value +1 when ijk = 123, 145, 176, 246, 257, 347, 365;

• eie0 = e0ei = ei for i = 1, . . . , 7.

We then obtain the following multiplication table.

Table 1.1: Unit Octonion Multiplication Table

e1 e2 e3 e4 e5 e6 e7

e1 −1 e4 e7 −e2 e6 −e5 −e3

e2 −e4 −1 e5 e1 −e3 e7 −e6

e3 −e7 −e5 −1 e6 e2 −e4 e1

e4 e2 −e1 −e6 −1 e7 e3 −e5

e5 −e6 e3 −e2 −e7 −1 e1 e4

e6 e5 −e7 e4 −e3 −e1 −1 e2

e7 e3 e6 −e1 e5 −e4 −e2 −1
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The above definition though is not unique, but is only one of 480 possible defi-

nitions for octonion multiplication with e0 = 1. The others can be obtained by per-

muting and changing the signs of the non-scalar basis elements. The 480 different

algebras are isomorphic to one another [Cox46]. Actually, any nontrivial product,

say e1e5 = e6, together with the following two rules is enough to recover the whole

multiplication table.

• Index cycling: eiej = ek ⇒ ei+1ej+1 = ek+1.

• Index doubling: eiej = ek ⇒ e2ie2j = e2k.

Note that all indices are to be taken modulo 7.

The definition above does not seem very enlightening, especially when we are

multiplying two octonions. Fortunately, we can use the Fano plane to remember the

products of unit octonions more conveniently and comfortably.

Figure 1.1: Fano plane
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The "lines" of the Fano plane are the sides of the triangle, its altitudes, and the

circle containing all the midpoints of the sides. The seven points correspond to the

seven standard basis elements of ImO, the set of pure imaginary octonions. Each

pair of distinct points lies on a unique line and each line runs through exactly three

points. The lines are oriented as shown by the arrows. Explicitly, if (ei, ej, ek) is an

ordered triple lying on a given line with the order specified by the direction of the

arrow, then we have

eiej = ek, and ejei = −ek.

These rules together with

e0 = 1, e2
1 = · · · = e2

7 = −1

completely defines the algebra structure of the octonions. Moreover, each of the seven

lines generated a subalgebra of O isomorphic to the quaternions H.

Given an octonion x = x0 +
∑7
i=1 xiei ∈ O, the conjugate of x is defined as

x̄ = x0 − x1e1 − x2e2 − x3e3 − x4e4 − x5e5 − x6e6 − x7e7.

Direct calculation shows that xy = ȳx̄. The norm of x is defined as

‖x‖2 = xx̄ = x2
0 + x

2
1 + x

2
2 + x

2
3 + x

2
4 + x

2
5 + x

2
6 + x

2
7.

Clearly, the only octonion with norm zero is 0, and every nonzero octonion has a

unique inverse, namely x−1 =
x̄
‖x‖2 . It is then clear that O is a normed division

algebra.

Even though the algebra O is not associative, it is alternative [CS03], that is, prod-

ucts involving no more than two independent octonions do associate. Moreover, we

have the following Moufang identities as consequences of the alternativity [dra]:

(xyx)z = x
(
y(xz)

)
,

z(xyx) =
(
(zx)y

)
x,

(xy)(zx) = x(yz)x.
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1.4 Cayley-Dickson process

1.4.1 Cayley-Dickson construction

An algebra A is said to be conic if there exists a quadratic form q : A → R such

that

x2 − 2Bq(x, 1A)x+ q(x)1A = 0, ∀x ∈ A.

Here Bq is the symmetric bilinear form associated to q. Actually, q is uniquely de-

termined by the above condition [GP11] and (A, q) is a normed vector space. In

addition, we define the conjugation map of A as

x̄ := 2Bq(x, 1A)1A − x,

which has order 2 and is characterized by the conditions

1̄A = 1A, xx̄ = q(x)1A, ∀x ∈ A.

Let A ′ = A⊕Aj be the direct sum of two copies of A as vector spaces and ε ∈ R\{0}

be a non-zero scalar. Then the following product gives rise to a conic algebra structure

on A ′

(u1 + v1j)(u2 + v2j) := (u1u2 + εv̄2v1) + (v2u1 + v1ū2)j.

The norm and conjugation of A ′ are respectively given by

q(u+ vj) = q(u) − εq(v),

u+ vj = ū− vj.

The resulted algebra is denoted Cay(A, ε) and called the Cayley-Dickson construction

from (A, ε). Note that A can be embedded into A ′ as a unital conic subalgebra

through the first summand; we always identify A ⊆ A ′ accordingly.

Inductively, we would obtain

A(m) , Cay(A; ε1, · · · , εm) := Cay(Cay(A; ε1, · · · , εm−1))

by iterating the Cayley-Dickson construction starting from A. It is a conic algebra of

dimension 2mdimR(A). We say A(m) arises from A and ε1, · · · , εm by means of the

Cayley-Dickson process.
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1.4.2 Normed division algebras

A conic algebra A is said to be real if a = ā for all a ∈ A; is nicely-normed if

a+ ā ∈ R and aā > 0 for all a ∈ A\{0}. The following proposition shows the effect

of repeatedly applying the Cayley-Dickson construction:

Proposition 1.4.1 ([Bae02]). (i) A ′ is never real;

(ii) A is real (and thus commutative) ⇐⇒ A ′ is commutative;

(iii) A is commutative and associative ⇐⇒ A ′ is associative;

(iv) A is associative and nicely-normed ⇐⇒ A ′ is alternative and nicely normed (which

implies A ′ is a normed division algebra);

(v) A is nicely-normed ⇐⇒ A ′ is nicely normed.

It is clear that

C = Cay(R;−1),

H = Cay(C;−1) = Cay(R;−1,−1),

O = Cay(H;−1) = Cay(C;−1,−1) = Cay(R;−1,−1,−1).

As a result of Proposition 1.4.1, we have

R is real, commutative, associative and nicely normed

⇒ C is commutative, associative and nicely normed

⇒H is associative and nicely normed

⇒ O is alternative and nicely normed

and, in particular, R, C, H, and O are all normed division algebras.

Theorem 1.4.2 (Hurwitz Theorem; [CS03]). Up to isomorphism, there are only four

normed division algebras over R (which are also known as Euclidean Hurwitzian algebras):

the real numbers R, the complex numbers C, the quaternions H, and the octonions O.

In the following, K is always understood to be one of the four normed division

algebras over R, and its dimension is r := dimRK.
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1.5 Integral lattices of K

1.5.1 Lattices and orders

A lattice Λ of rank n is a free abelian group isomorphic to Zn, equipped with a

symmetric bilinear form 〈·, ·〉. We may assign a matrix, called Gram matrix, to Λ; its

entries are 〈ai,aj〉with the elements ai being a basis of Λ. Especially, the determinant

of the Gram matrix is referred to as the determinant of the lattice.

The lattice Λ is

◦ integral if the bilinear form 〈·, ·〉 takes values in Z;

◦ unimodular if its determinant is 1 or -1;

◦ even or of type II if all norms 〈a,a〉 are even, otherwise odd or of type I.

Lattices are often embedded in a real vector space with a symmetric bilinear form.

The signature of a lattice is the signature of the form on the vector space. Thus, the

lattice is called positive definite, Lorentzian, etc. if the corresponding vector space is.

A subring O of a ring A is called an order if the following hold:

(i) the ring A is a finite-dimensional algebra over the rational number field Q;

(ii) O is a lattice in A; and

(iii) O spans A over Q.

The last two conditions can be stated in less formal terms: O is a free abelian group

generated by a basis for A over Q. An order O is said to be maximal if it is not properly

contained in any other orders.

1.5.2 Integral lattices of K

Clearly, Z is an integral lattice in R with respect to the standard norm of R. If

we restrict the Cayley-Dickson construction Cay(R;−1) = C to Z, we would obtain

Cay(Z;−1) = Z[i], which is an order in C. Let

G := Z[i] = {m+ni | m, n ∈ Z}.
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The elements of G are commonly called Gaussian integers. Clearly, G has four units

{±1, ±i}.

Meanwhile, the Eisensteinian integers also form an order of C,

E := {m+nω | m,n ∈ Z, ω =
−1 +

√
3i

2
}.

Similarly, restricting the Cayley-Dickson construction H = Cay(C;−1) to G gives rise

to the Lipschitzian integers

L := Cay(G;−1)

= {n0 +n1i +n2j +n3k | n0, n1, n2, n3 ∈ Z}

= Z[i, j, k]

with units {±1, ±i, ±j, ±k}.

In addition, restricting the previous Cayley-Dickson construction to E yields the

Eisensteinian quaternionic integers

EisH := Cay(E,−1)

= {n0 +n1ω+n2j +n3ωj | n0, n1, n2, n3 ∈ Z}

= Z[ω, j].

It has 12 units:

±1, ±ω, ±ω2, ±j, ±ωj, ω2j.

Note that L is an order but not a maximal order in HQ = {x0 + x1i+ x2j+ x3k | xi ∈ Q}

since Lipschitzian integers are contained in the ring of Hurwitzian integers

H = {n0 +n1i +n2j +n3k | n0, n1, n2, n3 either all belong to Z

or all belong to Z +
1
2
},

which constitute a maximal order in HQ. There are precisely 24 Hurwitzian units,

namely the eight Lipschitzian units ±1, ±i, ±j, ±k, and the 16 others: ±1
2
± 1

2
i±

1
2

j± 1
2

k. They form a subgroup in the unit quaternions.

Notice that if we write h =
1
2
(1 + i + j + k). Then it is clear that

H = Zh⊕Zi⊕Zj⊕Zk.

Thus, H is a free abelian group and is isomorphic to the F4 lattice in R4.
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We can generalize this process to the octonions and get the order of Gravesian

integers:

Gra := Cay(L;−1)

= {n0 +

7∑
i=1

niei | ni ∈ Z for all i = 0, 1, . . . , 7}

= Z[e1, e2, e3, e4, e5, e6, e7],

the Eisensteinian octaves:

EisO := Cay(EisH;−1),

and the Hurwitzian octaves:

HurO := Cay(H;−1).

Note that the Gravesian integers Gra is not a maximal order. As described in [Cox46],

there are exactly seven maximal orders containing Gra. These seven maximal orders

are all equivalent under automorphisms. Once a choice of one maximal order of O is

specified, we will call it octaves and denote it by O. The elements of O are said to be

Octavian. In this thesis, we fix O to be
8
⊕
i=1

Zεi with

ε1 =
1
2
(1 − e1 − e5 − e6), ε2 = e1,

ε3 =
1
2
(−e1 − e2 + e6 + e7), ε4 = e2,

ε5 =
1
2
(−e2 − e3 − e4 − e7), ε6 = e3,

ε7 =
1
2
(−e3 + e5 − e6 + e7), ε8 = e4.

The octaves O has some unusual properties [CS03]:

(1) Every ideal in O is 2-sided.

(2) Any 2-sided ideal Λ in O is the principal ideal nO generated by a rational

integer n.

There are 240 Octavian units in O, which are listed in [CS03]. An Octavian unit ring

is a subring of O generated by units. In particular, it is worth mentioning that

1 = 2εi + 3ε2 + 4ε3 + 5ε4 + 6ε5 + 4ε6 + 2ε7 + 3ε8. (1.4)
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Theorem 1.5.1 (Theorem 5; [CS03]). Up to isomorphism, there are precisely four types of

integer rings generated by odd-order elements: Z, E, H, O, from which all of the Octavian

unit rings can be obtained by Cayley-Dickson process.

R −−−−→ C −−−−→ H −−−−→ O

Z −−−−→ G −−−−→ L −−−−→ Gra

E −−−−→ EisH −−−−→ EisO

H −−−−→ HurO

O
Each arrow (A→ B) refers to a Cayley-Dickson construction B = Cay(A;−1).



CHAPTER 2

Special Linear Lie Algebra sl2(K)

Let Matn(K) denote the set of n× n matrices over K, which can be decomposed

into

Matn(K) = an(K)⊕ hn(K),

where

an(K) := {X ∈ Matn(K) | X† = −X}

hn(K) := {X ∈ Matn(K) | X† = X}.

Here X† := X̄> is the conjugate transpose of X. The elements of an(K) are called

skew-hermitian and those of hn(K) are said to be hermitian.

When K is associative, both an(K) and Matn(K) are Lie algebras with the Lie

bracket given by the commutator. Conventionally, we denote by gln(K) the Lie al-

gebra Matn(K). The Lie algebras an(K) and gln(K) each have a center consisting of

multiples of the identity matrix; the quotient by this center will be denoted by san(K)

and sln(K), respectively.

Unfortunately, the above process does not hold true for the non-associative case

K = O. One way to handle this issue is, as suggested in [Sud84], to think of elements

in san(K) and sln(K) as derivations of Jordan algebras hn(K). From this perspective

we may extend our definition to include the non-associative case when n = 2 or 3. We

will focus on 2× 2 matrices only because our purpose is to study modular groups.

15
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2.1 Jordan algebras and Lie multiplication algebras

An algebra J is called a Jordan algebra if it is commutative and satisfies the Jordan

identity

a ◦ (b ◦ (a ◦ a)) = (a ◦ b) ◦ (a ◦ a) (2.1)

for all elements a and b. An ideal in the Jordan algebra is a subspace I ⊆ J such that

b ∈ I implies a ◦b ∈ I for all a ∈ J. If a Jordan algebra has no nontrivial ideal, then it

is said to be simple. If a Jordan algebra can be written as a direct sum of simple ones,

then it is semisimple.

Given an associative algebra over R, we may define a Jordan algebra structure via

the quasi-multiplication:

x ◦ y =
1
2
(xy+ yx). (2.2)

All such Jordan algebras, as well as their subalgebras, are called special Jordan alge-

bras. A Jordan algebra that is not special is then said to be exceptional.

Let J be a Jordan algebra. If a linear transformation D : J→ J satisfies

D(x ◦ y) = (Dx) ◦ y+ x ◦ (Dy),

then it is called a derivation of J. Let DerJ denote the set of derivations of J. It is

straightforward to verify that DerJ is a Lie algebra with respect to the Lie bracket

[D1,D2] := D1D2 −D2D1, where the multiplication is understood as the composition

of derivations. Moreover, let Rx be the right multiplication Rx : y 7→ yx. It is easy to

check that for a linear map D :

D ∈ DerJ ⇐⇒ [Rx,D] = RD(x), ∀x ∈ J. (2.3)

On the other hand, using the Jordan identity 2.1 we can show that

[Ra, [Rb,Rc]] = RA(b,a,c), (2.4)

where A(b,a, c) = (ba)c− b(ac) is the associator. Note that the Jordan algebra J is

commutative, which implies

A(b,a, c) = (ab)c− (ac)b = a[Rb,Rc].

Hence, Equation 2.4 becomes

[Ra, [Rb,Rc]] = Ra[Rb,Rc]. (2.5)



CHAPTER 2. SPECIAL LINEAR LIE ALGEBRA SL2(K) 17

This, together with Equation 2.3, indicate that [Rb,Rc], or, x 7→ A(b, x, c) is a deriva-

tion. Such derivations are called inner derivations of J. The set of inner derivations is

denoted Inn(J). In particular, for semisimple Jordan algebras, we have

Proposition 2.1.1 (Theorem 2; [Jac49]). Every derivation of a semisimple Jordan algebra

with a finite basis over a field of characteristics 0 is inner.

Consider the Lie subalgebra of gl(J) generated by all the right multiplication maps

Rx. (Of course, it can also be defined over left multiplication maps.) We call this

enveloping Lie algebra the Lie multiplication algebra of J and denote it by L(J). (It also

appears in some papers under the name of structure algebra of J.) Note that Equation

2.5 indicates that {Ra} is a Lie triple system of linear transformations. From [Sud84] we

obtain

L(J) = R(J)⊕ Inn(J).

Particularly, when J is semisimple, we obtain from Proposition 2.1.1 that DerJ =

Inn(J), and hence, L(J) = R(J)⊕ DerJ.

As an example, from [JJ49] we know that the Jordan algebra h2(K) is semisimple.

(Note that h2(O) is a spin factor, which will be explained later.) Therefore, we have

L(h2(K)) = R(h2(K))⊕ Der h2(K).

2.2 Der h2(K) and sa2(K)

When K is associative, it is known that every derivation D ∈ Der h2(K) must be

of the form ad(A) for some skew-hermitian matrix A ∈ a2(K). Here ad refers to the

adjoint representation. Using the Jacobi identity

[A, [X, Y]] = [[A,X], Y] + [X, [A, Y]] (2.6)

it is easy to see that ad(A) = 0 if and only if A = λI2 with λ ∈ K and I2 being the

2× 2 identity matrix, or equivalently, A ∈ Z(a2(K)), the center of a2(K). This implies

that, as Lie algebras,

Der h2(K) ∼= a2(K)/Z(a2(K)) = sa2(K). (2.7)

We would like to define a Lie algebra structure on sa2(O) such that it generalizes

Equation 2.7.
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We first examine the Lie algebra Der h2(O). Obviously, derivations of O act as

derivations of h2(O) by acting on the entries in the matrices. Meanwhile, from

[Sud84] we know that Equation 2.6 still holds true for O when A ∈ a2(O). Thus,

ad(A) is a derivation of h2(O) as long as A ∈ a2(O). According to [Jac49], these are

all the derivations of h2(O), which implies

Der h2(O) = ad(a2(O)) + DerO. (2.8)

We may further decompose a2(O) as

a2(O) = a ′2(O)⊕O ′I2,

where a ′2(O) is the subspace of traceless matrices, and O ′ is the subspace of O or-

thogonal to R. Note that ad(a ′2(O)) ∼= a ′2(O) since h2(O) is an irreducible set. For

x ∈ O ′, ad(xI2) acts on h2(O) by acting as Cx on each entry in the matrix; thus,

ad(O ′I2) ∼= C(O ′). Here Cx is the commutator map Cx(y) = xy− yx. Hence, we get

ad(a2(O)) ∼= a ′2(O)⊕C(O ′),

where C(O ′) is the set of all commutator maps Cx. Replacing this into Equation 2.8

we obtain

Der h2(O) = a ′2(O) +C(O ′) + DerO.

Note that, as illustrated in [Sud84], we have so(O ′) = DerO +C(O ′), which leads to

Der h2(O) ∼= a ′2(O) + so(O ′).

Explicit calculations show that it is actually a direct sum, i.e.,

Der h2(O) ∼= a ′2(O)⊕ so(O ′). (2.9)

Define the vector space

sa2(O) := a ′2(O)⊕ so(O ′).

It remains to construct an appropriate Lie algebra structure on this space such that

it is isomorphic to Der h2(O) as Lie algebras. Recall that the Lie bracket of sa2(K) is

given by the matrix commutator for associative K; this is a consequence of the Jacobi

identity (Equation 2.6). However, this identity is no longer true for the octonions due

to the lack of associativity. Actually, we have

[[A,B],X] − [A, [B,X]] − [B, [A,X]] =
∑
ij

A(aij,bji,X), (2.10)
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which generally differs from 0. Nevertheless, we have the following result for some

restricted classes of matrices.

Lemma 2.2.1 ([Sud84]). When A, B ∈ a ′2(O) and X ∈ h2(O),
∑
ijA(aij,bji,X) in Equa-

tion 2.10 can be written as Ω(A,B)X for some Ω(A,B) ∈ so(O ′).

This gives rise to a bilinear map

a ′2(O)× a ′(O)→ so(O ′), (A,B) 7→ Ω(A,B), (2.11)

which enables us to define a Lie algebra structure on a ′2(K)⊕ so(K ′) in the following

way:

• so(O ′) is contained as a subalgebra, that is, the Lie bracket on so(O ′) is retained;

• the Lie bracket of T ∈ so(O ′) and a matrix A ∈ a ′2(O) is given by the action of T

on the entries in A; and

• the Lie bracket between two matrices in a ′2(O) is defined via

[A,B] = (AB−BA− xI2)⊕ (Cx +Ω(A,B))

where x =
1
2

Tr(AB−BA) and Ω comes from Equation 2.11.

It is straightforward to show that

Proposition 2.2.2. Equipped with the Lie bracket defined above,

sa2(O) ∼= Der h2(O) as Lie algebras.

2.3 sl2(K) and L(h2(K))

Recall that the Lie multiplication algebra over the Jordan algebra h2(K) can be

decomposed into

L(h2(K)) = R(h2(K))⊕ Der h2(K)

∼= h2(K)⊕ Der h2(K). (2.12)

Obviously, the multiples of the identity element all belong to the center of L(h2(K)).

We factor out this ideal and write the resulting algebra as L ′(h2(K)). Then we have

L ′(h2(K)) ∼= sh2(K)⊕ Der h2(K),
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where sh2(K) = h2(K)/KI2.

In last section we have already defined the Lie algebra sa2(O) so that sa2(K) ∼=

Der h2(K) for all normed division algebras K. This means for all K we have

L ′(h2(K)) ∼= sh2(K)⊕ sa2(K). (2.13)

We define the special linear algebra as

sl2(O) := L ′(h2(O)).

This is compatible with the associative cases. In fact, when K is associative we have

Mat2(K) = a2(K)⊕ h2(K), and hence

sl2(K) = sa2(K)⊕ sh2(K) ∼= L ′(h2(K)).

In order to define the Lie algebra structure on sl2(O), we recall that sa2(O) = a ′2(O)⊕

so(O ′), which indicates that

sl2(O) = L ′(h2(O)) ∼= sh2(O)⊕ a ′2(O)⊕ so(O ′).

Write gl ′2(K) , sh2(K)⊕ a ′2(K). It suffices to define Lie brackets on gl ′2(K)⊕ so(K ′)

as we did for sa2(K) :

• so(K ′) remains to be a subalgebra of sl2(K);

• the Lie bracket of T ∈ so(K ′) and a matrix A ∈ gl ′2(K) is again given by the

action of T on the entries in A; and

• similar to Lemma 2.2.1 we define an analogous bilinear map Ω for gl ′2(O), with

which we may define the Lie bracket

[A,B] = (AB−BA− xI)⊕ (Cx +Ω(A,B))

for matrices A,B ∈ gl ′2(O). Here x =
1
2

Tr(AB−BA) as before.

It is straightforward to verify that sl2(O), equipped with the Lie bracket defined

above, is a Lie algebra.

Furthermore, recall that for associative K, we have

sl2(K) ' so(r+ 1, 1)

with r = dimRK. This also holds for the Lie algebra sl2(O) [Sud84], that is

sl2(O) ' so(9, 1).
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(Projective) Special Linear Lie groups

3.1 Special linear groups over commutative K

When K is commutative, i.e., K = R or C, the special linear Lie group SLn(K)

can be characterized as the commutator subgroup:

SLn(K) = [GLn(K), GLn(K)],

which is a normal subgroup of GLn(K).

On the other hand, the determinant map det : GLn(K) → K× is a surjective

group homomorphism, whose kernel is exactly SLn(K), i.e., SLn(K) = ker(det).

Here K× is referred to as the multiplicative group of K. Therefore, we get

GLn(K)/SLn(K) ∼= K×.

3.1.1 SL2(R)

It is known that the group SL2(R) acts on its Lie algebra sl2(R) by conjugation,

which induces a homomorphism from SL2(R) to Aut
(
sl2(R)

)
; it is called the ad-

joint representation and commonly denoted Ad. Note that all elements in Ad
(
SL2(R)

)
preserve the Killing form, thus are of signature (2, 1) or (1, 2). Those two types ac-

tually yield the same group of isometries. As a consequence, we obtain a group

homomorphism Ad : SL2(R) → O(2, 1). Moreover, since SL2(R) is connected, this

homomorphism actually maps SL2(R) onto the connected component containing the

identity in O(2, 1), which is exactly the Lorentz group SO0(2, 1). It is easy to see that

ker Ad = {±I2}, which indicates that SL2(R) is a double cover of SO0(2, 1).

21
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On the other hand, it is known that the Lorentz group SO0(2, 1) has a double

cover, Spin(2, 1), which is called the spin group and has certain representations called

spinor representations [Mei13]. Therefore, we obtain

SL2(R) ∼= Spin(2, 1).

3.1.2 SL2(C)

Consider the action of SL2(C) on the Minkowski space-time that is isometric to

h2(C) :

SL2(C)× h2(C)→ h2(K) : (P,X) 7→ PXP†.

This action preserves the determinant, i.e., det(PXP†) = det(X). Especially, it yields

a homomorphism, called the spinor map, from SL2(C) to SO0(3, 1). The kernel of the

map is the two-element subgroup {±I2}. Therefore, the group SL2(C) is a double

cover of SO0(3, 1), that is,

SL2(C) ∼= Spin(3, 1).

3.2 Special linear group over quaternions

Things become more complicated for the quaternions H.. The main obstacles,

as expected, come from the non-commutative multiplication of quaternions: H is a

skew-field.

Let Matn(H) be the set of n× n quaternionic matrices. A matrix A ∈ Matn(H)

is invertible if there exists a matrix B such that AB = In or BA = In. Even though

H is non-commutative, it is still true that given any invertible matrix, its left inverse

and right inverse coincide [Zha97]. We denote by GLn(H) the set of all invertible

quaternionic matrices.

Let Eij be the elementary matrix with 1 at the (i, j)th entry and 0 elsewhere. To

every quaternion x ∈H we associate some quaternionic matrices

Bij(x) = In + xEij for i 6= j.

We define SLn(H) to be the subgroup of GLn(H) generated by these matrices

SLn(H) := 〈Bij(x) | x ∈H, 1 6 i, j 6 n and i 6= j〉. (3.1)

The following lemma defends the definition of SLn(H).
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Lemma 3.2.1 ([Asl96]). (i) SLn(H) is the commutator subgroup of GLn(H), that is,

SLn(H) = [GLn(H), GLn(H)].

(ii) Every matrix A ∈ GLn(H) can be written in the form A = D(x)B with D(x) =

diag(1, · · · , 1, x) for some x ∈ H and B ∈ SLn(H). Even though neither x nor B is

unique, the coset x[H×, H×] ∈H×/[H×, H×] is uniquely determined.

(iii) D(x) is a commutator in GLn(H) if and only if x is a commutator in H×, that is,

D(x) ∈ SLn(H) ⇐⇒ x ∈ [H×, H×].

Here H× is the multiplicative group of H.

Recall that for the real and complex cases, SLn(K) is exactly the kernel of the

determinant function. However, the universal notion of a determinant does not work

well for non-commutative division rings. Actually, the question of the definition of

a unique determinant of a square matrix in the general non-commutative case does

not make sense if we consider determinants with values in the ring. Especially, there

does not exist such a determinant for quaternionic matrices that extends the usual de-

terminant of real and complex matrices. An alternative notion of quasi-determinants

is used for non-commutative algebras, which can be found in [GGRW05].

For quaternions H, the most commonly used "determinant" is the Dieudonné

determinant [Art11].

Theorem 3.2.2 ([Die43]). Let F be a skew-field and n > 2. Then the commutator subgroup

SLn(F) is normal. In addition, there exists a natural isomorphism

D : GLn(F)/SLn(F)→ F×/[F×, F×]

that is uniquely defined by the property that for any invertible diagonal matrix X = diag(x1, · · · , xn)

D(X) =

n∏
i=1

ximod[F×, F×].

Moreover, let p : GLn(F)→ GLn(F)/SLn(F) denote the canonical projection. The Dieudonné

determinant is defined as follows:

Det : Matn(F)→ F×/[F×, F×]∪ {0}
Det(X) := D

(
p(X)

)
when X is invertible;

Det(X) := 0 when X is not invertible.



24 CHAPTER 3. (PROJECTIVE) SPECIAL LINEAR LIE GROUPS

For F = H, it follows from Lemma 3.2.1 and Theorem 3.2.2 that

DetA = x[H×, H×] for A = D(x)B ∈ GLn(H).

In particular, it is obvious that

ker Det = SLn(H).

Furthermore, we have

Lemma 3.2.3 ([VP91]). [H×, H×] ' U(H), the set of quaternions of length one. This

enables us to identify H×/[H×, H×] with the multiplicative group R>0 via

ω : H×/[H×, H×] → R>0

x[H×, H×] 7→ ‖x‖ :=
√

x̄x.

Thus, the (normalized) Dieudonné determinant for H becomes

Det : Matn(H)→ R>0
DetA = 0, when A is not invertible;

DetA = ‖x‖, when A is invertible and hence A = D(x)B

with x[H×, H×] being uniquely determined.

Because our focus is on modular groups, it is important to study 2 × 2 hermitian

quaternionic matrices. Every matrix in h2(H) can be be written as

s x

x̄ t

 for some

x ∈H and s, t ∈ R; hence we can define a quadratic form

M : h2(H) → R (3.2)s x

x̄ t

 7→ xx̄ − st.

It is easy to see that M has signature (5, 1) and can be negative, whereas the the

Dieudonné determinant Det must be non-negative.

Lemma 3.2.4.

SL2(H) = {A ∈ GL2(H) | M(A†A) = −1}.
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Proof. For every 2× 2 hermitian matrix

s x

x̄ t

 we have

1 0

ā 1

s x

x̄ t

1 a

0 1

 =

 s sa + x

sā + x̄ sāa + x̄a + āx + t

 ,

which leads to

M
(1 0

ā 1

s x

x̄ t

1 a

0 1

) = (sa + x)(sā + x̄) − s(sāa + x̄a + āx + t)

= x̄x − st

= M(

s x

x̄ t

) (3.3)

Similarly, we can prove that

M
(1 b̄

0 1

s x

x̄ t

1 0

b 1

) = M(

s x

x̄ t

). (3.4)

On the other hand, recall that every matrix A ∈ GL2(H) can be written as A = D(x)B,

where D(x) =

1 0

0 x

 and according to the definition 3.1 B ∈ SL2(H) is a product

of matrices of the form

1 a

0 1

 or

1 0

b 1

 . Thus, we have

A†A = B†D(x̄)D(x)B = B†D(x̄x)B. (3.5)

Applying 3.3 and 3.4 to 3.5 gives rise to

M(A†A) = M(D(x̄x)) = M(

1 0

0 x̄x

 = −x̄x.

Therefore, we see that

M(A†A) = −1 ⇐⇒ x̄x = 1 ⇐⇒ A ∈ ker Det = SL2(H).

Consider the action of SL2(H) on the 6-dimensional Minkowski space R5,1 that is

isometric to (h2(H), M) :

SL2(H)× h2(H), (M,X) 7→MXM†.

Clearly, Lemma 3.2.4 guarantees that Det(MXM†) = Det(X), that is, the action above

preserves the Dieudonné determinant. Therefore, we have
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Proposition 3.2.5.

SL2(H) ∼= Spin(5, 1),

which is a double cover of SO0(5, 1).

The following proposition will be useful later.

Proposition 3.2.6. The group SL2(H) is generated bya 0

0 b

 ,

1 1

0 1

 , and

0 −1

1 0

 (3.6)

where a, b ∈H satisfying that ‖ab‖ = 1.

Proof. It is clear from Proposition 3.2.4 that the generating matrices in 3.6 all belong

to SL2(H). On the other hand, assuming a 6= 0 with a1/2 being one square root of a,

we have 1 a

0 1

 =

a1/2 0

0 a−1/2

1 1

0 1

a−1/2 0

0 a1/2

 ,

and 1 0

a 1

 =

0 −1

1 0

1 −a

0 1

 0 1

−1 0

 .

Note that  0 1

−1 0

 =

0 −1

1 0

−1

and

1 −a

0 1

 =

1 a

0 1

−1

.

Hence, matrices of the form

1 a

0 1

 or

1 0

b 1

 can be expressed as products of

generators in 3.6. Recall that, as demonstrated in 3.1, SL2(H) is generated by those

fundamental matrices. Thus, every matrix in SL2(H) can be generated by those ma-

trices in 3.6.

It is worth noting that negative real quaternions have infinitely many square roots

while all others have just two (or one in the case of 0). For example, there are infinitely

many square roots of -1: the quaternion solution for the square root of -1 is the unit

sphere in R3.
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3.3 Special linear group over octonions

Due to the lack of commutativity and associativity, it is impossible to define the

Lie group GLn(O) as we did early on. For example, given an "invertible" matrix, the

left inverse is not necessarily equal to the right inverse. Since we are, as explained

earlier, interested in modular groups, we will only consider 2× 2 octonionic matrices.

To every matrix M ∈ Mat2(O) we assign a linear transformation

M̃ : h2(O) −→ h2(O), M̃(X) =
1
2
[
(MX)M† +M(XM†)

]
. (3.7)

Obviously, the composition of such transformations is associative. Moreover, these

transformations generate a free monoid. The subset of all invertible transformations

form the largest group contained in the monoid, which is defined to be the group

GL2(O). The product is understood via

M̃N(X) = M̃
(
Ñ(X)

)
.

Consider Equation 3.7. When (MX)M† =M(XM†) holds true, we simply write it as

MXM† without specifying the parentheses. In this case, we get M̃(X) = MXM† ∈

h2(O). However, it is, in general, unlikely that (MX)M† and M(XM†) are equal,

unless we impose some additional constraints on M.

Lemma 3.3.1 ([MS93]). The following statements are equivalent:

(i) (MX)M† =M(XM†) for all X ∈ h2(O).

(ii) The imaginary part of M, ImM, contains only one octonionic direction.

(iii) The columns of ImM are real multiples of each other.

Similar to the quaternion case, there does not exist a "determinant" on Mat2(O)

that generalizes the real and complex determinants. This requires us to find an

alternative way to define the group SL2(O). First, we extend the quadratic form 3.2

to the space h2(O) :

M : h2(O) → Rs x

x̄ t

 7→ xx̄ − st.
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It is clear that (h2(O), M) has signature (9,1).

Recall that for K = C or H the action of SL2(K) on h2(K) preserves the quadratic

form M. As for the octonionic case, given a matrix A ∈ GL2(O) that satisfies any of the

conditions in Lemma 3.3.1, in which case both Ã(X) = AXA† and AA† are hermitian,

we have

Lemma 3.3.2 ([Vei14]). Write A =

a b

c d

 . Then M
(
AXA†

)
= M(AA†)M(X) only for the

following cases:

(i) a = 0, and [b, c, x] = 0 for all x ∈ O;

Analogously, when b = 0 and [a, d, x] = 0; c = 0 and [a, d, x] = 0; or d = 0 and

[b, c, x] = 0.

(ii) [u, v, x] = 0 for any u, v ∈ {a, b, c, d}, x ∈ O.

Especially, in either of these cases, we have M(AA†) = ‖ad − bc‖2.

It is then natural to define

SL2(O) := {Ã ∈ GL2(O) | M(AA†) = 1; (AX)A† = A(XA†) ∀X ∈ h2(O)}

so that every Ã ∈ SL2(O) preserves the quadratic form M:

M
(
Ã(X)

)
= M(X), ∀X ∈ h2(O).

Moreover, we have

Theorem 3.3.3 ([Vei14]). SL2(O) is a Lie group and its algebra is exactly sl2(O).

The following is a characterization of elements in SL2(O), which can be derived

from Lemma 3.3.1 and Lemma 3.3.2.

Proposition 3.3.4. For every element Ã ∈ SL2(O) with A =

a b

c d

 , there exists a pure

imaginary unit q such that

a, b, c, d ∈ R⊕Rq.

Here q is a pure imaginary unit means that q ∈ ImO and q2 = −1.
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Note that R⊕Rq ∼= C is a commutative and associative subalgebra of O.

On the other hand, for any C ∈ SL2(C) we can find some matrix P ∈ SL2(C) such

that

PCP−1 =

λ1 1

0 λ2

 or

λ1 0

0 λ2

 ,

which is actually the Jordan canonical form of C. Clearly, this can be generalized to

R⊕Rq. Explicitly, there exists a matrix U ∈ SL2(O) with all entries belonging to

R⊕Rq such that

UAU−1 =

α 1

0 β

 or

α 0

0 β

 , (3.8)

where α,β ∈ R⊕Rq and satisfy ‖αβ‖2 = 1. Analogously, we call the resulting upper

triangular matrix

α 1

0 β

 or

α 0

0 β

 the Jordan canonical form of A.

Furthermore, according to the definition of SL2(O), the action

SL2(O)× h2(O), (M,X) 7→ M̃(X)

is obviously determinant-preserving. Analogous to previous cases, we have

Proposition 3.3.5 ([dra]).

SL2(O) ∼= Spin(9, 1).

3.4 Projective Special Linear Groups

3.4.1 PSL2(K)

It is well known that the center of SL2(K) is {±I2} when K = R, C, or H. We claim

that it is also true for the octonions O. In fact, assume that A ∈ Z
(
SL2(O)

)
, the center

of SL2(O). Then for any B ∈ SL2(O)

ÃB(X) = B̃A(X), ∀X ∈ h2(O).

That is,

(AB)X(AB)† = (BA)X(BA)† ∀X ∈ h2(O).

As a result of Proposition 3.3.4, the matrices A and B each contains one unique

imaginary unit. Then the expression above is essentially quaternionic! Thus, we get

A ∈ {±I2}, and hence, Z
(
SL2(O)

)
= {±I2}.
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The projective special linear group is then defined as

PSL2(K) := SL2(K)/Z
(
SL2(K)

)
≡ SL2(K)/{±I2}.

We have already shown that

SL2(K) ∼= Spin(r+ 1, 1)

for all four normed division algebras over R. Here r is the dimension of K over R.

Recall that the Spin group is a double cover of the Lorentz group SO0(r+ 1, 1). Thus,

it follows that

PSL2(K) ' SO0(r+ 1, 1). (3.9)

In particular, PSL2(K) are all simple Lie groups because the Lorentz groups SO0(n, 1)

are simple when n > 2.

3.4.2 Polar decomposition of Lorentz groups

Consider so(n, 1), the Lie algebra of the Lorentz group SO0(n, 1). Let κ be the

Cartan involution, namely,

κ(A) = −A>, ∀A ∈ so(n, 1).

Then κ has two eigenvalues, 1 and -1. Denote by kn and pn the eigenspace of 1 and

-1, respectively. It is clear that

so(n, 1) = kn ⊕ pn.

This is called the Cartan decomposition of so(n, 1). Explicitly, we have

so(n, 1) = {

 B u

u> 0

 ∈ Matn+1(R) | u ∈ Rn, B> = −B},

kn = {

 B 0

0> 0

 ∈ Matn+1(R) | B> = −B} ∼= so(n),

pn = {

 0 u

u> 0

 ∈ Matn+1(R) | u ∈ Rn}.

Let exp : so(n, 1) → SO0(n, 1) denote the exponential map. It is surjective and Kn ,

exp kn ∼= SO(n) is the maximal compact subgroup of SO0(n, 1) [Kna13]. Moreover,

we have the following decomposition, which is called the polar decomposition of Lie

group SO0(n, 1) :

SO0(n, 1) = Kn exp pn. (3.10)
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3.4.3 Relations between PSL2(K)

The polar decomposition 3.10 gives rise to a canonical map

ηn : SO0(n, 1) = Kn exp(pn) → SO(n)×RnQ 0

0 1

 · exp

 0 u

uᵀ 0

 7→ (Q, u).

This map enables us to embed SO0(n, 1) into SO0(m, 1) when n 6 m. Explicitly, we

first define a map

ιn,m : SO0(n, 1) → SO0(m, 1)

A 7→

Im−n 0

0 A

 .

Consider the following diagram

SO0(n, 1)
ηn−−−−→ SO(n)×Rnyιn,m

y
SO0(m, 1)

ηm−−−−→ SO(m)×Rm

(3.11)

The embedding SO(n)×Rn ↪→ SO(m)×Rm is obvious:

(Q, u) 7→ (

Im−n

Q

 ,

0m−n

u

).

We claim that Diagram 3.11 commutes, or equivalently,

ηm(

Im−n

A

) = (

Im−n

Q

 ,

0(m−n)×1

u

).

It is sufficient to prove that

Im−n

A

 =


Im−n

Q

1

 · exp


0 0 0

0 0 u

0 uᵀ 0

,

which is true because the polar decomposition for any non-singular matrix is unique.

Furthermore, we claim that the map ιn,m is a group homomorphism. In fact, for

any A, B ∈ SO0(n, 1),

ιn,m(AB) =

Im−n

AB

 =

Im−n

A

Im−n

B

 = ιn,m(A)ιn,m(B).
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Therefore, when n 6 m, the group SO0(n, 1) can be viewed as a subgroup of SO0(m, 1).

Especially, following from

SO0(2, 1)
ι2,3
↪→ SO0(3, 1)

ι3,5
↪→ SO0(5, 1)

ι5,9
↪→ SO0(9, 1),

we obtain

PSL2(R) 6 PSL2(C) 6 PSL2(H) 6 PSL2(O). (3.12)
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CHAPTER 4

Möbius Transformations

In general, let R̂n , Rn ∪ {∞} ' Sn be the one-point compactification of the n-

dimensional Euclidean space. A Möbius transformation on R̂n is the composition of

an even number of inversions through spheres or hyperplanes. In this chapter we

will study the complex (n = 2), quaternionic (n = 4), and octonionic (n = 8) Möbius

transformations.

Throughout the thesis, every matrix from SL2(K) is written as

a b

c d

 with

parentheses around; its quotient image in PSL2(K) will be denoted

a b

c d

 in brack-

ets.

4.1 Complex Möbius transformations

4.1.1 Complex Möbius group

A complex Möbius transformation is an invertible function from the extended

complex plane Ĉ , C∪ {∞} to itself, defined by four complex numbers a, b, c, d with

ad− bc 6= 0 as follows:

f(z) =



az+ b

cz+ d
if z 6= ∞ and cz+ d 6= 0

a

c
if z = ∞

∞ if cz+ d = 0,

(4.1)

where if c = 0 we use the convention f(∞) = ∞.

35
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Let Möb(C) denote the group of complex Möbius transformations, which is called

the complex Möbius group. Clearly, to every matrix A ∈ GL2(C) we may assign a

complex Möbius transformation fA as in Equation 4.1. In fact, the map A→ fA gives

rise to a surjective homomorphism from GL2(C) to Möb(C), whose kernel is C∗I2

with C∗ := C\{0}. Thus, we obtain

PGL2(C) ∼= Möb(C). (4.2)

On the other hand, given any complex Möbius transformation f, let A ∈ GL2(C) be a

representing matrix of f, that is, such that f = fA. Let D =
1√

det(A)
I2 ∈ Z(GL2(C)),

the center of GL2(C). Then it follows from the identification 4.2 that fDA = fA. Notice

thatDA ∈ SL2(C). This actually gives rise to a surjective homomorphism from SL2(C)

to Möb(C), whose kernel is Z(SL2(C)) = {±I2}. Therefore, we obtain

PSL2(C) ∼= Möb(C).

Especially, we have

PGL2(C) = PSL2(C).

Furthermore, it is well-known that the complex Möbius group Möb(C) is finitely

generated. Explicitly, every f ∈ Möb(C) can be written as a composition of the

following simple complex Möbius transformations:

(i) Translations: tx(z) = z+ x for some x ∈ C.

(ii) Dilations: Sr(z) = rz with r ∈ R.

(iii) Rotations: Rθ(z) = eiθz.

(iv) Inversion: J(z) =
1
z

.

4.1.2 Types of complex Möbius transformations

Let f be a non-trivial complex Möbius transformation. Then it is clear that f has

at most two fixed points in Ĉ. Specifically,

• if f has a unique fixed point in Ĉ, which is exactly ∞, then it is called parabolic;

in this case f is conjugate to the transformation z 7→ z+ 1.
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• If f has two fixed points in Ĉ, then it must be conjugate to a transformation of

the form z 7→ λz.

◦ If |λ| = 1, then f is said to be elliptic. Note that if write λ = eiθ, then it is

obvious to see that f is a rotation.

◦ If |λ| 6= 0, 1, then f is called loxodromic. Especially, when λ ∈ R is positive,

f is called hyperbolic.

Clearly, a loxodromic transformation can always be written as a composition of an

elliptic transformation and a hyperbolic transformation: z 7→ |λ|λ0z, where λ0 is the

directional unit of λ.

Since the Möbius group Möb(C) can be identified as PSL2(C), it is sufficient to

examine the representing matrices to classify Möbius transformations. We will say

a matrix is parabolic, elliptic, loxodromic, or hyperbolic whenever the associated

Möbius transformation is.

Note that the trace function is invariant under conjugation, that is, tr(MAM−1) =

trA. Moreover, we have the following result.

Lemma 4.1.1 ([GY08]). Two non-trivial matrices M, N ∈ PSL2(C) are conjugate if and

only if tr2M = tr2N.

The following lemma comes from explicit computations.

Lemma 4.1.2. Consider a matrix A ∈ PSL2(C).

(i) A is parabolic when tr2(A) = 4.

(ii) A is elliptic when tr ∈ R and 0 6 tr2A < 4.

(iii) A is loxodromic when tr2A is not in range [0, 4]. In particular, A is hyperbolic when

A is loxodromic and tr ∈ R.

It then follows that (for the details, see [GY08])

(a) Every parabolic matrix in PSL2(C) is conjugate to

1 1

0 1

 .

(b) Every non-parabolic matrix is conjugate to

λ 0

0 λ−1

 for some λ ∈ C\{0,±1}.

Specifically,
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◦ when |λ| = 1, it is elliptic, in which case it is common to write λ = eiθ;

◦ when |λ| 6= 1, it is loxodromic;

◦ when λ ∈ R+ and λ 6= 1, it is hyperbolic.

4.2 Quaternionic Möbius transformations

4.2.1 Quaternionic Möbius group

A quaternionic Möbius transformation is an inverse function from Ĥ , H ∪ {∞}

to itself of the form

f(z) =
az + b

cz + d
, with a, b, c, d ∈H.

Here f is subject to the same constraints as in the complex case in Equation 4.1. Note

that
az + b

cz + d
is understood as (az + b)(cz + d)−1 with

(cz + d)−1 =
cz + d

‖cz + d‖2 .

Let Möb(H) denote the group of quaternionic Möbius transformations. Similar to

Möb(C), there exists a surjective homomorphism GL2(H)→ Möb(H), whose kernel

is exactly Z
(
GL2(H)

)
, that is, R∗I2. Hence, we get

PGL2(H) ∼= Möb(H). (4.3)

On the other hand, given any quaternionic Möbius transformation f, let A ∈

GL2(H) be a representing matrix of f such that f = fA. Clearly, DetA > 0, where Det

is the Dieudonné determinant. Consider the matrix Ã :=
1√
Det

A. It is obvious that

DetÃ = 1, thus Ã ∈ SL2(H). At the same time, since
1√
Det

∈ R, we conclude that

fÃ = fA. Thus, we obtain a surjective homomorphism SL2(H) → Möb(H) : Ã 7→ f,

whose kernel is Z(SL2(H)) = {±I2}. Therefore, we get

PSL2(H) ∼= Möb(H). (4.4)

In particular, the two isomorphisms 4.3 and 4.4 indicate that

PSL2(H) = PGL2(H).
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4.2.2 Types of quaternionic Möbius transformations

Given a non-trivial quaternionic Möbius transformation f,

◦ f is said to be parabolic if it has exactly one fixed point in Ĥ;

◦ f is said to be elliptic if it has two fixed points in Ĥ and is conjugate to a rotation,

i.e., a transformation of the form z 7→ λz with ‖λ‖ = 1;

◦ f is said to be hyperbolic if it has two fixed points in Ĥ and is conjugate to a

dilation, i.e., a transformation of the form z 7→ kz, where k 6= 1 and k ∈ R>0;

◦ f is said to be loxodromic if it has exactly two fixed points in Ĥ and is conjugate

to a transformation z 7→ λz with ‖λ‖ 6= 0, 1.

Clearly, a hyperbolic transformation must be loxodromic. Moreover, every loxo-

dromic transformation can be written as a composition of elliptic and hyperbolic

transformations.

Furthermore, a matrix A ∈ PSL2(H) is parabolic, elliptic, hyperbolic, or loxo-

dromic whenever the associated fA ∈Möb(H) is.

To every matrix A =

a b

c d

 ∈ Mat2(H) we associate the following quantities

βA = Re[(ad− bc)ā+ (da− cb)d̄],

γA = |a+ d|2 + 2Re[ad− bc],

δA = Re[a+ d].

It follows from [For04] that the functions β, γ and δ are constant on conjugacy classes

in SL2(H).

Lemma 4.2.1 (Theorem 1.3; [PS09]). Two matrices A,B ∈ PSL2(H) are conjugate if and

only if the following two conditions hold:

(i) either both of them or neither of them belong to PSL2(R);

(ii) βAδA = βBδB, γA = γB, and δ2
A = δ2

B.
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Moreover, we define the following two functions that take the roles of "determi-

nant" and "trace," respectively.

σA =



cac−1d− cb, when c 6= 0,

bdb−1a, when c = 0, b 6= 0,

(d− a)a(d− a)−1d, when b = c = 0, a 6= d,

aā, when b = c = 0, a = d;

τA =



cac−1 + d, when c 6= 0,

bdb−1 + a, when c = 0, b 6= 0,

(d− a)a(d− a)−1 + d, when b = c = 0, a 6= d,

a+ ā, when b = c = 0, a = d.

Proposition 4.2.2 (Theorem 1.4; [PS09]). Consider a matrix A ∈ PSL2(H).

(a) If σA = 1 and τA ∈ R, then βA = δA, γA = δ2
A + 2 and the following trichotomy

holds.

◦ If 0 6 δ2
A < 4, then A is elliptic.

◦ If δ2
A = 4, then A is parabolic.

◦ If δ2
A > 4, then A is loxodromic.

(b) If βA = δA and either τA /∈ R or σA 6= 1, then the following trichotomy holds.

◦ If γA − δ2
A < 2, then A is elliptic.

◦ If γA − δ2
A = 2, then A is parabolic.

◦ If γA − δ2
A > 2, then A is loxodromic.

(c) If βA 6= δA, then A is loxodromic.

By using these functions we can classify the conjugacy classes of PSL2(H) as

follows.

Proposition 4.2.3 ([For04]). The conjugacy classes of PSL2(H) are given by

(i) Parabolic classes:

{

a 1

0 a

 | ‖a‖ = 1}
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with uniqueness up to the similarity of a. Note that two quaternions a and b are called

similar, or a ∼ b, if there exists q ∈H such that a = qbq−1.

(ii) Elliptic classes: a 0

0 a

 | ‖a‖ = 1}

with uniqueness up to the similarity of a in H.

(iii) Loxodromic classes:

{

λa 0

0 λ−1d

 | λ > 1, ‖a‖ = ‖d‖ = 1, λa � λ−1d}

with uniqueness up to the similarity classes of λa and λ−1d and order of the diagonal

entries.

(iv) Hyperbolic classes: λ 0

0 λ−1

 | λ > 1}

with uniqueness up to the order of the diagonal entries.

4.3 Octonionic Möbius transformations

4.3.1 Octonionic Möbius group

Analogous to the complex and quaternionic cases, we define an octonionic Möbius

transformation as an inverse function from Ô , O∪ {∞} to itself of the form

f(z) =
az + b

cz + d
, with a, b, c, d ∈ O.

Here we adopt the same conventions as in Equation 4.1. Also,
az + b

cz + d
is understood

as (az + b)(cz + d)−1 with

(cz + d)−1 =
cz + d

‖cz + d‖2 .

Let Möb(O) be the group generated by octonionic Möbius transformations. It is

tempting to claim that the map A→ fA gives rise to a homomorphism from GL2(O)

to Möb(O). Due to the non-associativity of O, however, it is not at all obvious that
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fAfB = fAB holds. Nevertheless, as illustrated in [MD99] and [MS93], the compo-

sition rule holds if we restrict ourselves to SL2(O), where the elements satisfy the

"compatibility condition," i.e., Equation ??. Hence, the map A → fA does induce

a group homomorphism from SL2(O) to Möb(O). Clearly, the kernel of this map is

Z(SL2(O)) = {±I2}. We then obtain an injective homomorphism

PSL2(O) ↪→Möb(O).

It is not clear whether this homomorphism is surjective or not. In order to stay

consistent with the complex and quaternionic cases, we consider the subgroup of the

octonionic Möbius group

Möb∗(O) := {fA | A ∈ PSL2(O)} 6 Möb(O)

such that

Möb∗(O) ∼= PSL2(O).

Note that the composition is closed within Möb∗(O) :

4.3.2 Types of octonionic Möbius transformations

Definition 4.3.1. Let f ∈Möb∗(O) be an octonionic Möbius transformation. Then

• fA is parabolic if it has exactly one fixed point in Ô;

• f is elliptic if it has two fixed points in Ô and is conjugate to a rotation z 7→ λz with

‖λ‖ = 1;

• f is hyperbolic if it has two fixed points in Ô and is conjugate to a dilation z 7→ kz

with k ∈ R>0 and k 6= 1;

• f is loxodromic if it has exactly two fixed points in Ĥ and is conjugate to a transfor-

mation z 7→ λz with ‖λ‖ 6= 0, 1.

Also, a matrix in PSL2(O) is parabolic, elliptic, hyperbolic, or loxodromic when-

ever the associated octonionic Möbius transformation is. Therefore, in order to clas-

sify octonionic Möbius transformations, it is sufficient to examine the conjugacy

classes of group PSL2(O).

Theorem 4.3.2. The conjugacy classes of PSL2(O) are given by
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(i) Parabolic classes:

{

a 1

0 a

 | ‖a‖ = 1}

with uniqueness up to the similarity of a. Here a,b ∈ O are similar if there exists

h ∈ O such that a = hbh−1.

(ii) Elliptic classes: a 0

0 a−1

 | ‖a‖ = 1}

with uniqueness up to the similarity of a in O.

(iii) Loxodromic classes:

{

λa 0

0 λ−1d

 | λ > 1, ‖a‖ = ‖d‖ = 1, λa � λ−1d}

with uniqueness up to the similarity classes of λa and λ−1d and order of the diagonal

entries.

(iv) Hyperbolic classes: λ 0

0 λ−1

 | λ > 1}

with uniqueness up to the order of the diagonal entries.

Proof. Given any matrix A ∈ PSL2(O), it suffices to consider the Jordan canonical

form of A. Following from Equation 3.8, we may simply assume that A =

α 1

0 β

 orα 0

0 β

 , where α,β ∈ R⊕Rq satisfy ‖αβ‖2 = 1 and q ∈ O is a pure imaginary unit.

Write α = u + vq, β = m + nq with u, v,m,n ∈ R and let k = 0 or 1. Then

determining fixed points of matrix

α k

0 β

 is identical to solving the equation

αx + k

β
= (αx + k)β−1 = x,

or equivalently

αx + k = xβ.
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Write x = s+ tl with s, t ∈ R and l being the imaginary unit of x. Then the above

equation can be rewritten as

(u+ vq)(s+ tl) + k = (s+ tl)(m+nq),

that is,

s(u−m) + k+ s(v−n)q + t(u−m)l + tvql − tnlq = 0. (4.5)

(i) If A is parabolic, then fA, the associated Möbius transformation, has a unique

fixed point in Ô that is exactly ∞. This indicates that k = 1 and A =

α 1

0 β

 .

Additionally, we claim that α = β. Otherwise, let l = q, in which case Equation

4.5 becomes

s(u−m) − t(v−n) + 1 + [s(v−n) + t(u−m)]l = 0,

which implies 
s(u−m) − t(v−n) = −1

s(v−n) + t(u−m) = 0,

or u−m n− v

v−n u−m

s
t

 =

−1

0

 . (4.6)

Since α 6= β we see that det

u−m n− v

v−n u−m

 = ‖α− β‖2 6= 0. Thus Equation

4.6 has a solution s̃
t̃

 =

u−m n− v

v−n u−m

−11

0

 .

Obviously, s̃+ t̃q is a fixed point of fA. This contradicts with the assumption

that fA is parabolic. Hence, we have α = β and

A =

α 1

0 α

 with ‖α‖2 = 1.

(ii) If A is elliptic, then fA fixes 0 and ∞. Thus, we have k = 0 and A =

α 0

0 β

 .

In addition, fA is conjugate to a rotation z 7→ eqθz, which indicates that A =



CHAPTER 4. MÖBIUS TRANSFORMATIONS 45

eqθ/2 0

0 e−qθ/2

 . Therefore, we conclude that

A =

α 0

0 α−1

 with ‖α‖ = 1.

(iii) If A is hyperbolic, then similar to the elliptic case we may obtain A =

λ 0

0 λ−1


with λ > 1.

(iv) As for the loxodromic case, keep in mind that the transformation z 7→ az is a

product of a hyperbolic transformation z 7→ ‖a‖z and an elliptic transformation

z 7→ a0z. Here a = ‖a‖a0 with a0 being the imaginary unit of a.





CHAPTER 5

Modular Groups

A modular group is a group of linear fractional transformations whose coefficients

are integers in some basic system. In this chapter we will examine the modular

groups defined over those integral lattices listed in Diagram 1.5.1, which are discrete

subgroups of the projective special linear groups PSL2(K).

5.1 Generators of modular groups

5.1.1 Real modular groups

The classical modular group PSL2(Z) is a Fuchsian group, that is, a discrete sub-

group of PSL2(C) with respect to the standard topology of PSL2(C). It is well known

that

PSL2(Z) = 〈

0 −1

1 0

 ,

1 1

0 1

〉.

5.1.2 Complex modular groups

Recall that in Diagram 1.5.1 there are two integral lattices inside C :

• Gaussian integers: G = Z⊕Zi; and

• Eisensteinian integers E = Z⊕Zω, where ω =
−1 +

√
3i

2
.

47
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Gaussian modular group

PSL2(G), the modular group defined over G, is commonly called Picard group and

is the most widely studied Bianchi group. (A Bianchi group is a group of the form

PSL2(Od) where d is a positive square-free integer and Od = Q(
√
−d).) Additionally,

the modular group PSL2(G) is generated by the following elements [Fin89]:0 −1

1 0

 ,

0 i

i 0

 ,

1 1

0 1

 , and

1 i

0 1

 .

Note that if we apply Equation 8.8 to x = i, we would get0 i

i 0

 =

1 i

0 1

0 −1

1 0

1 −i

0 1

0 −1

1 0

1 i

0 1

 .

This implies that

PSL2(G) = 〈

0 −1

1 0

 ,

1 1

0 1

 ,

1 i

0 1

〉. (5.1)

The Eisensteinian modular group

It follows from [Swa71] that the group SL2(E) is generated by the following ma-

trices 0 −1

1 0

 ,

1 1

0 1

 ,

1 ω

0 1

 ,

−1 0

0 −1

 , and

ω̄ 0

0 ω

 .

As a result, the Eisensteinian modular group PSL2(E) is generated by0 −1

1 0

 ,

1 1

0 1

 ,

1 ω

0 1

 , and

ω̄ 0

0 ω

 .

Proposition 5.1.1.

PSL2(E) = 〈

0 −1

1 0

 ,

1 1

0 1

 ,

1 ω

0 1

〉. (5.2)

Proof. Denote by K the group on the right hand side of 5.2. Applying Equation 8.8 to

x = ω gives rise to 0 −ω

ω̄ 0

 =

1 ω

0 1

0 −1

1 0

1 ω̄

0 1

0 −1

1 0

1 ω

0 1

 .
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Notice that 1 ω̄

0 1

 =

1 −1 −ω

0 1

 =

1 −1

0 1

1 −ω

0 1


=

1 1

0 1

−1 1 ω

0 1

−1

∈ K,

which implies

 0 −ω

ω̄ 0

 ∈ K, and hence

ω̄ 0

0 ω

 =

0 −1

1 0

 0 −ω

ω̄ 0

 ∈ K.

5.1.3 Quaternionic modular groups

As for quaternions, it has three integral lattices in Diagram 1.5.1:

• Lipschitzian integers: L = Z⊕Zi⊕Zj⊕Zk.

• Eisensteinian quaternionic integers: EisH = Z⊕Zω⊕Zj⊕Zωj.

• Hurwitzian integers: H = Zh⊕Zi⊕Zj⊕Zk.

Lipschitzian modular group

It has been shown in [Theorem 6.4; [JW99b]] that PSL2(L) is generated by0 −1

1 0

 ,

1 1

0 1

 ,

1 0

0 i

 , and

1 0

0 j

 .

Alternatively, it could also be generated by parabolic matrices together with

0 −1

1 0

 ,

as illustrated in the following proposition.

Proposition 5.1.2.

PSL2(L) = 〈

0 −1

1 0

 ,

1 1

0 1

 ,

1 i

0 1

 ,

1 j

0 1

〉.
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Proof. Write K = 〈

0 −1

1 0

 ,

1 1

0 1

 ,

1 i

0 1

 ,

1 j

0 1

〉. It is clear that

1 0

0 i

 ∈ PSL2(G) ⊂ K.

Analogously, we have

1 0

0 j

 ∈ K. Thus, PSL2(L) 6 K.

On the other hand, we have1 i

0 1

 =

1 0

0 i

1 −1

0 1

1 0

0 −i


=

1 0

0 i

1 1

0 1

−1 1 0

0 i

−1

∈ PSL2(L).

Similarly, 1 j

0 1

 =

1 0

0 j

1 1

0 1

−1 1 0

0 j

−1

∈ PSL2(L).

Then we get K 6 PSL2(L), and hence, PSL2(L) = K.

Hurwitzian modular group

Speaking of the modular group over Hurwitzian integers, we have

Proposition 5.1.3 (Theorem 8.2; [JW99b]). PSL2(H) is generated by the following matrices0 −1

1 0

 ,

1 1

0 1

 ,

1 0

0 u

 , and

1 0

0 v

 ,

where

u =
1
2
(1 − i − j + k), v =

1
2
(1 + i − j − k).

This group has yet another set of generators:

Proposition 5.1.4.

PSL2(H) = 〈

0 −1

1 0

 ,

1 1

0 1

 ,

1 i

0 1

 ,

1 j

0 1

 ,

1 0

0 h

〉. (5.3)
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Proof. Denote by K the group on the right side. According to the definition of SL2(H)

in Lemma 3.2.4, it is easy to check that

1 i

0 1

 ,

1 j

0 1

 , and

1 0

0 h

 ∈ PSL2(H), and

hence K 6 PSL2(H).

Conversely, we first observe that1 h

0 1

 =

1 0

0 h̄

1 1

0 1

1 0

0 h


=

1 0

0 h

−1 1 1

0 1

1 0

0 h

 ∈ K.

Notice that u = h − i − j, which implies1 u

0 1

 =

1 h

0 1

1 i

0 1

−1 1 j

0 1

−1

∈ K

and then 1 ū

0 1

 =

1 1 − u

0 1

 =

1 1

0 1

1 u

0 1

−1

∈ K.

This, together with Equation 8.8, yieldsu 0

0 ū

 =

1 u

0 1

0 −1

1 0

1 ū

0 1

0 −1

1 0

1 u

0 1

0 −1

1 0

 ∈ K.

Meanwhile, it is clear thati 0

0 1

 =

0 −1

1 0

1 0

0 i

0 −1

1 0

 ∈ K, and

h̄ 0

0 h̄

 =

0 −1

1 0

1 0

0 h

−1 0 −1

1 0

1 0

0 h

−1

∈ K.

Therefore, we obtain 1 0

0 v

 =

i 0

0 1

h̄ 0

0 h̄

u 0

0 ū

 ∈ K.

This last identity holds becausei 0

0 1

h̄ 0

0 h̄

u 0

0 ū

 h=ūv̄
===

i 0

0 1

vu 0

0 vu

u 0

0 ū


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=

i 0

0 1

vu2 0

0 v


u2=−ū
===

i 0

0 1

−vū 0

0 v


vū=i
===

i 0

0 1

−i 0

0 v


=

1 0

0 v



Similarly, we can prove that

1 0

0 u

 ∈ K. Therefore, we have PSL2(H) 6 K, which

completes the proof.

Proposition 5.1.5 (Theorem 9.2;[JW99b]). PSL2(H) contains PSL2(L) as a subgroup of

index 30.

Next we consider the subgroup of PSL2(H) generated by all the parabolic matrices1 x

0 1

 with x ∈ H, plus

0 −1

1 0

 . It is called the Hurwitzian modular group and

denoted PSL∗2(H). Recall that we have H = Zh⊕Zi⊕Zj⊕Zk, it is then obvious that

the group PSL∗2(H) is generated by0 −1

1 0

 ,

1 1

0 1

 ,

1 i

0 1

 ,

1 j

0 1

 ,

1 k

0 1

 , and

1 h

0 1

 .

Note that 1 k

0 1

 =

1 0

0 −j

1 0

0 −i

1 1

0 1

1 0

0 i

1 0

0 j

 ,

which implies

PSL∗2(H) = 〈

0 −1

1 0

 ,

1 1

0 1

 ,

1 i

0 1

 ,

1 j

0 1

 ,

1 h

0 1

〉. (5.4)

Meanwhile, let C := H[H, H]H be the two-sided ideal in H generated by the commu-

tators [a,b] = ab− ba for all a, b ∈ H. Then H/C consists of the following elements

0, 1, −h, and h − 1,
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which form the finite field F4 whose nonzero elements form the cyclic group of order

3 [FKN09]. Define

PSL(0)
2 (H) := {

a b

c d

 ∈ PSL2(H) | ad− bc ≡ 1 (mod C)}. (5.5)

It follows from [FKN09] that PSL2(H)/PSL(0)
2 (H) ' Z3 and PSL(0)

2 (H) is generated by

the following matrices 0 −1

1 0

 ,

1 1

0 1

 ,

a 0

0 b

 ,

where a,b are both Hurwitzian units satisfying ab ≡ 1 (mod C).

Proposition 5.1.6.

PSL(0)
2 (H) = PSL∗2(H).

Proof. From the definitions in Equation 5.4 and Equation 5.5 it is obvious that

PSL∗2(H) 6 PSL(0)
2 (H).

Meanwhile, we have

PSL(0)
2 (H) ∼=W+(D++

4 ) ∼= PSL∗2(H).

The first isomorphism can be found in [FKN09] while the second one comes from

Proposition 10.4.1. We thus obtain

PSL(0)
2 (H) = PSL∗2(H).

Eisensteinian quaternionic modular group

PSL2(EisH) is isomorphic to a subgroup of a hypercompact Coxeter group oper-

ating in H5 :

PSL2(EisH) ' 4[1+, 6, (3, 3, 3, 3)+, 6, 1+].

The notation on the right hand side will be explained at the end of this chapter.



54 CHAPTER 5. MODULAR GROUPS

5.1.4 Octonionic modular groups

Recall that in the context of this thesis we fix the subring of octaves to be O =∑8
i=1 Zεi with

ε1 =
1
2
(1 − e1 − e5 − e6), ε2 = e1,

ε3 =
1
2
(−e1 − e2 + e6 + e7), ε4 = e2,

ε5 =
1
2
(−e2 − e3 − e4 − e7), ε6 = e3,

ε7 =
1
2
(−e3 + e5 − e6 + e7), ε8 = e4.

Due to non-associativity of O, it is too difficult to describe the modular group PSL2(O).

But, in accordance with the real, complex and quaternionic cases, we define the Oc-

tavian modular group as the group

PSL∗2(O) := 〈

0 −1

1 0

 ,

1 1

0 1

 ,

1 εi

0 1

 | 1 6 i 6 8〉.

Recall that Equation 1.4 says that

2εi + 3ε2 + 4ε3 + 5ε4 + 6ε5 + 4ε6 + 2ε7 + 3ε8 = 1,

which implies that1 ε1

0 1

2 1 ε2

0 1

3 1 ε3

0 1

4 1 ε4

0 1

5 1 ε5

0 1

6 1 ε6

0 1

4 1 ε7

0 1

2 1 ε8

0 1

3

=

1 1

0 1

 .

Therefore, we obtain

PSL∗2(O) = 〈

0 −1

1 0

 ,

1 εi

0 1

 | 1 6 i 6 8〉. (5.6)

5.2 Construction via quadratic forms

An algebraic group is a group that is a variety as well such that the group operations

are morphisms between varieties. Recall that an affine variety V is a subspace of Rn

defined by a set of polynomial equations:

V = {x ∈ Rn | Pi(x) = 0, i ∈ I}.
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If all the polynomials Pi, i ∈ I are rational polynomials, then V is said to be defined

over Q. An algebraic group is defined over Q if the variety is defined over Q and the

group operations are morphisms defined over Q.

Assume that H ⊆ GLn(R) is a linear semisimple Lie group. According to [The-

orem 8.23; [Kna02]], there exists a left-invariant Haar measure µ on H, which is

induced from a left-invariant n-form and is unique up to strictly positive scalar mul-

tiples. Let Γ be a discrete subgroup of H. Then from [Proposition 4.1.3;[Mor15]] we

know that the Haar measure µ induces a unique (up to a scalar multiple) σ-finite,

H-invariant Borel measure ν on H/Γ . Especially, if ν(H/Γ) <∞, we say H/Γ has finite

volume; in this case, the subgroup Γ is called a lattice in H.

Let G be an algebraic group. Then we may embed G into the linear Lie group

GLn(R). Define

G(Z) = G∩GLn(Z).

Lemma 5.2.1 (Theorem 5.1.11; [Mor15]). If the algebraic group G is defined over Q, then

G(Z) is a lattice in G.

A typical example is that SLn(Z) is a lattice in SLn(R).

Definition 5.2.2. Let G be an algebraic group. A subgroup Γ of G called an arithmetic

subgroup if it is commensurable with G(Z), i.e., the intersection Γ ∩G(Z) has finite index

in both Γ and G(Z). In particular, G(Z) and its subgroups of finite index are arithmetic

groups.

We have shown in Equation 3.9 that PSL2(K) ' SO0(r+ 1, 1) with r = dimR K.

Thus, we may embed modular groups as discrete subgroups of the Lorentz groups,

which can be constructed by taking the integral points in SO0(r+ 1, 1) associated to

the quadratic form defined over K. From [Section 6.4; [Mor15]] we know that those

subgroups obtained in this way are arithmetic subgroups of SO0(r + 1, 1). It thus

follows that

Proposition 5.2.3. The previously defined modular groups are arithmetic subgroups of the

Möbius groups.
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5.3 Realization of modular groups via reflection groups

A group of symmetries is called a reflection group if it can be generated by finitely

many reflections in some Euclidean space. A Coxeter group P is is a reflection group

generated by reflections ρ0, ρ1, · · · , ρn in the facets of a polytope P, each of those

dihedral angles is a submultiple of π. If the angle between the ith and jth facets is

π/pij, the product of reflections ρi and ρj is a rotation of period pij. The Coxeter

group P is thus defined by the relations

(ρiρj)
pij = 1, i, j = 0, 1, . . . ,n.

In particular, we have pii = 1 for all i.

When P is a orthoscheme, that is, a simplex whose facets may be ordered so that

any two that are not consecutive are orthogonal, we have

pij = 2 for j− i > 1.

If we abbreviate pj−1,j as pj, then the group P can be characterized by those integers

pjs. Thus, we may denote the Coxeter group P by the Coxeter symbol

[p1, . . . ,pn].

When P is not an orthoscheme, the group P may likewise be given a Coxeter symbol.

For instance, the group whose fundamental domain is the closure of a triangle (p,q, r)

with acute angles π/p, π/q, π/r is denoted by the symbol [(p,q, r)] or, if p = q = r,

simply by [p[3]].

A Coxeter group is compact if each subgroup generated by all but one of the reflec-

tions is spherical (see Chapter 10 for "spherical subgroups"). If each such subgroup

is either spherical or Euclidean, including at least one of the latter, it is paracompact.

If at least one such subgroup is hyperbolic, it is hypercompact. A Coxeter group is

crystallographic if it leaves invariant some (n+ 1)-dimensional lattice.

Denote by P+ the direct subgroup of P, that is, the index 2 subgroup of P whose ele-

ments are products of an even number of reflections. Let the generators ρ0, ρ1, . . . , ρn

of P (relabeled if necessary) be partitioned into sets of k+ 1 and n− k, where 0 6

k 6 n, so that for each pair of ρj and ρl with 0 6 j 6 k < l 6 n the period pjl

is even (or infinite). Let Q be the distinguished subgroup of P generated by reflec-

tions ρ0 through ρk. Then Q has a direct subgroup Q+ generated, if k > 1, by even
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transformations τij = ρiρj (0 6 i < j 6 k). Then the group P has an index 2 sub-

group generated by the even transformations τij (0 6 i < j 6 k), the reflections ρl

(k < l 6 n), and the conjugate reflections ρjlj = ρjρlρj (0 6 j 6 k < l 6 n). This is a

halving subgroup if k = 0, a semidirect subgroup if 0 < k < n, or the direct subgroup

P+ if k = n. Such a subgroup is denoted by affixing a superscript plus sign to the

Coxeter symbol for P so that the resulting symbol contains the symbol for Q+, minus

the enclosing brackets.

For example, the group [p,q, r], generated by reflections ρ0, ρ1, ρ2, ρ3, satisfying

the relations

ρ2
0 = ρ2

1 = ρ2
2 = ρ2

3 = (ρ0ρ1)
p = (ρ1ρ2)

q = (ρ2ρ3)
r = 1,

has a direct subgroup [p,q, r]+, generated by the rotations σ1 = τ01, σ2 = τ12, and

σ3 = τ23, with the defining relations

σ
p
1 = σq2 = σr3 = (σ1σ2)

2 = (σ2σ3)
2 = (σ1σ2σ3)

2 = 1.

If r is even, the semidirect subgroup [(p,q)+, r], generated by the rotations σ1 and σ2

and the reflection ρ3, is defined by the relations

σ
p
1 = σq2 = ρ2

3 = (σ1σ2)
2 = (σ−1

2 ρ3σ2ρ3)
r/2 = 1.

Applying the Coxeter symbols to those modular groups defined earlier shows that

Theorem 5.3.1 ([JW99a]; [JW99b]).

PSL2(Z) ∼= [3,∞]+,

PSL2(G) ∼= [3, 4, 1+, 4]+, PSL2(E) ∼= [(3, 3)+, 6, 1+],

PSL2(L) ∼= [3, 4, (3, 3)+, 4]+, PSL2(H) ∼= [(3, 3, 3)+, 4, 3+],

PSL2(EisH) ∼= 4[1+, 6, (3, 3, 3, 3)+, 6, 1+].





CHAPTER 6

Actions of Modular Groups

6.1 Minkowski spaces and hyperbolic n-spaces

6.1.1 Minkowski spaces

Consider the indefinite nondegenerate symmetric bilinear form 〈·, ·〉 on Rn+1

given by

〈x, y〉 :=
n∑
i=1

xiyi − xn+1yn+1,

where x = (x1, · · · , xn+1). We call 〈·, ·〉 a Minkowski bilinear form, and the pair Rn,1 ,

(Rn+1, 〈·, ·〉) is called the (n+ 1)-dimensional Minkowski space. We will occasionally

use the physical terminology and say that a vector x is lightlike if 〈x, x〉 = 0, is timelike

if 〈x, x〉 < 0, and is spacelike if 〈x, x〉 > 0. In addition, the subset of lightlike vectors is

the light-cone

L n := {x ∈ Rn,1 | 〈x, x〉 = 0}.

The following subspace is a two-sheeted hyperboloid and is geometrically significant:

H n := {x ∈ Rn,1 | 〈x, x〉 = −1},

Consider its upper sheet

H n
+ := {x ∈ Rn,1 | 〈x, x〉 = −1, xn+1 > 0}. (6.1)

The hypersurface H n
+ is smooth, connected, and simply-connected. It is actually the

hyperboloid model of the hyperbolice n-space.

59
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Recall that h2(K) is (r+ 2)-dimensional and the quadratic form M has signature

(r+ 1, 1). Thus, we can identify (h2(K), M) with the Minkowski space Rr+1,1. In this

case, we have

H r+1 = {A ∈ h2(K) | M(A) = −1},

H r+1
+ = {A ∈ h2(K) | M(A) = −1 and s > 0, t > 0}.

6.1.2 Hyperbolic spaces

The hyperbolic n-space, denoted Hn, is the maximally symmetric, simply con-

nected, n-dimensional Riemannian manifold with a constant negative sectional cur-

vature. It can be constructed using different models.

If we use the hyperboloid model, then the hyperbolic n-space is exactly H n
+ as

defined in Equation 6.1. Especially, from [Esc97] we know that H n
+ is homeomor-

phic to the symmetric space SO(n+ 1, 1)/SO(n+ 1). Another model for describing

hyperbolic spaces is the half-plane model, which will be explained below.

For more about hyperbolic geometry and more details on different analytic mod-

els of hyperbolic spaces, see [CFK+97].

6.1.3 Hyperbolic orbifolds

A hyperbolic manifold is an n-dimensional manifold equipped with a complete

Riemannian metric of constant sectional curvature -1. Denote by Isom(Hn) the group

of hyperbolic isometries of Hn. Then any hyperbolic manifold M can be obtained as

the quotient of Hn by a torsion-free discrete subgroup Γ of Isom(Hn) :

M = Hn/Γ .

If we allow more generally the discrete group to have elements of finite order, then

the resulting quotient space O = Hn/Γ is called a hyperbolic n-orbifold. A hyperbolic

n-orbifold Hn/Γ is said to be cusped if Γ contains at least one parabolic element.

Recall that an isometry is called parabolic if it has exactly one fixed point.

We can descend the volume form from Hn to O and integrate it over the quotient

space. This defines the hyperbolic volume of O. It follows from [KM68] that the

spectrum of the volumes of cusped complete hyperbolic n-orbifolds has a minimal
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element. In Chapter 10 we will find out the discrete subgroup Γ0 of Isom(Hr+1) such

that the corresponding hyperbolic (r+ 1)-orbifold Hr+1/Γ0 has the minimal volume.

6.2 Generalized upper half planes

The generalized upper half plane associated with K is defined as

H(K) := {u + te | u ∈ K and t ∈ R>0}.

Here e is a new imaginary unit that is not contained in K. Clearly, H(K) is contained

in a hyperplane in the Cayley-Dickson double K⊕ eK and has real dimension r+ 1.

By applying the conjugation map inherited from the Cayley-Dickson construction

we get u + te = ū − te, which indicates that u + te parametrizes the corresponding

"lower half plane" H.

The line element (or arclength element) in H(K) is ds2 =
|du|2 + dt2

t2 . The geodesics

are given by straight lines parallel to the "imaginary" (= t) axis, or by half circles

whose starting point and ending point both lie on the boundary t = 0 of H(K)

[KNP+12].

The generalized upper half plane H(K) is isometric to H r+1
+ , the hyperboloid

model of hyperbolic (r+ 1)-space. Explicitly, define

S : H(K) → H r+1
+

u + te 7→

t+ t−1‖u‖2 t−1u

t−1ū t−1

 .

It is inverse; the inverse map is given by

S −1 : H r+1
+ → H(K)s x

x̄ t

 7→ t−1x + t−1e.

It is easy to show that S is an isometry.

6.3 Action of modular groups on H(K)

Given any matrix A =

a b

c d

 ∈ PSL2(K), let fA ∈ Möb(K) be the associated

Möbius transformation, which can be obtained from the isomorphism PSL2(K) '
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Möb(K). Recall that fA is essentially an inverse map from the extended plane K̂ to

itself. We can extend fA to be an isometry of H(K). Explicitly, define f̃A : H(K) →

H(K) by requiring

z = u + te 7→ az + b

cz + d
=
au + b+ ate
cu + d+ cte

,

where
au + b+ ate
cu + d+ cte

is understood as (au + b+ ate)(cu + d+ cte)−1 and

(cu + d+ cte)−1 =
cu + d+ cte
‖cu + d+ cte‖2 .

It is tedious but straightforward to show that f̃A ∈ Isom(H(K)) and is orientation-

preserving. Therefore, we obtain an action of PSL2(K) on H(K) :

A(z) := f̃A(z). (6.2)

Next we will examine the actions of those modular groups on the generalized upper

half plane.

6.3.1 Action of PSL2(Z) on H(R)

The classical modular group PSL2(Z) is generated by S =

0 −1

1 0

 and T =1 1

0 1

 . It acts faithfully on the upper half-plane H(R) by linear transformations, as

given in Equation 6.2. Specifically, for any z ∈ H(R), we have

S(z) = −
1
z

, T(z) = z + 1.

It is well-known that the typical fundamental domain for this action is the hyperbolic

triangle

◊ = {z ∈ H(R) : |z| > 1 and |Re(z)| 6
1
2
}

= {u+ te | u2 + t2 > 1, |u| 6
1
2

, t > 0},

which is the shaded area in the picture below.
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6.3.2 Actions of complex modular groups on H(C)

Action of PSL2(G) on H(C)

It follows from Equation 5.1 that the Gaussian modular group

PSL2(G) = 〈S =

0 −1

1 0

 , T =

1 1

0 1

 , Ui =

1 i

0 1

〉.
Concerning the action of PSL2(G) on H(C), it is clear that

S(z) = −
1
z

, T(z) = z + 1, and Ui(z) = z + i.

Let BG denote the set of elements u + te ∈ H(C) such that

‖αu +β‖2 + t2‖α‖2 > 1

for all α,β ∈ G satisfying αG+βG = G. Then it can be derived from [Swa71] that the

set

DG := {u + te ∈ BG : |Re(u)| 6
1
2

, 0 6 Im(u) 6
1
2

, t > 0}

is a fundamental domain for the action of PSL2(G) on H(C).

Note that DG can be rewritten as

{u + te ∈ H(C) : uū + t2 > 1, |Re(u)| 6
1
2

, 0 6 Im(u) 6
1
2

, t > 0}. (6.3)

Action of PSL2(E) on H(C)

According to Equation 5.2, we have

PSL2(E) = 〈S =

0 −1

1 0

 , T =

1 1

0 1

 , Uω =

1 ω

0 1

〉.
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The generators act on H(C) via

S(z) = −
1
z

, T(z) = z + 1, and Uω(z) = z +ω.

Let BE denote the subset consisting of elements u + te such that

‖αu +β‖2 + t2‖α‖2 > 1

for all α,β ∈ E satisfying αE+βE = E.

Proposition 6.3.1 ([EGM13]). The set

DE := {u + te ∈ BE : t > 0, 0 6 Re(u) 6
1
2

,

−

√
3

3
Re(u) 6 Im(u) 6

√
3

3
(1 − Re(u))}

is a fundamental domain for the action of PSL2(E) on H(C).

6.3.3 Actions of quaternionic modular groups on H(H)

Action of PSL2(L) on H(H)

As shown in Proposition 5.1.2, the Lipschitzian modular group PSL2(L) is gener-

ated by

S =

0 −1

1 0

 , T =

1 1

0 1

 , Ui =

1 i

0 1

 , and Uj =

1 j

0 1

 .

Speaking of the action of PSL2(L) on the upper half-plane H(H), it is obvious that

S(z) = −
1
z

, T(z) = z + 1, Ui(z) = z + i, and Uj(z) = z + j.

Analogous to Equation 6.3, we have

Proposition 6.3.2. For an vector u ∈H we write u = u0 + u1i + u2j + u3k. The set

DL := {u + te ∈ H(H) : uū + t2 > 1, |u0| 6
1
2

, 0 6 u,u2,u3 6
1
2

, t > 0}

is a fundamental domain for the action of PSL2(L) on H(H).
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Action of PSL∗2(H) on H(H)

We have proved in Equation 5.4 that the Hurwitzian modular group PSL∗2(H) is

generated by the following matrices:

S =

0 −1

1 0

 , T =

1 1

0 1

 , Ui =

1 i

0 1

 , Uj =

1 j

0 1

 , and Uh =

1 h

0 1

 .

In particular, we have Uh(z) = z + h for all z ∈ H(H).

On the other hand, notice that 1, i, j, and h form a basis of the space H. Then

each element u ∈H could be written in the form u = ũ0 + ũ1i + ũ2j + ũ3h.

Proposition 6.3.3. The set

D∗H := {u + te ∈ H(H) : uū + t2 > 1, |ũ0| 6
1
2

, 0 6 ũ1, ũ2, ũ3 6
1
2

, t > 0}

is a fundamental domain for the action of PSL∗2(H) on H(H).

6.3.4 Action of octonionic modular groups on H(O)

As illustrated in Equation 5.6, the Octavian modular group PSL∗2(O) is generated

by

S =

0 −1

1 0

 and Uεi =

1 εi

0 1

 for 1 6 i 6 8.

Regarding the action of PSL∗2(O) on the upper half-plane H(O), it follows from Equa-

tion 6.2 that Uεi(z) = z + εi for all elements z ∈ H(O).

It is clear that {εi}8i=1 form a basis of O. Thus, every element u ∈ O can be written

in the form u =
∑8
i=1 uiεi with coefficients ui ∈ R.

Proposition 6.3.4. The set

D∗O := {u + te ∈ H(O) : uū + t2 > 1, |u0| 6
1
2

, 0 6 u1, . . . ,u7 6
1
2

, t > 0}

is a fundamental domain for the action of PSL∗2(O) on H(O).
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CHAPTER 7

Projective Geometry

7.1 Projective spaces

A projective space can be defined axiomatically as a set P (the set of points), together

with a set L of subsets of P (the set of lines), satisfying the following axioms:

(a) Each two distinct points p and q are in exactly one line.

(b) Any line has at least three points on it.

(c) If a, b, c, d are distinct points and the lines through ab and cd meet, then so

do the lines through ac and bd.

Given a subset S of P, denote by Span(S) the smallest subset T ⊆ P containing S

such that if a and b lie in T , so do all points on the line ab. Then we can define the

dimension of the projective space P as

min{|S|− 1 : Span(S) = P}.

Here |S| refers to the cardinality of S.

As an example, given any field k of characteristic 0, we can construct an n-

dimensional projective space where the points are lines through the origin in kn+1,

the lines are planes through the origin in kn+1, and the relation of ’lying on’ is in-

clusion. This construction works even when k is a skew field. In fact, as illustrated

in [Bae02], every projective n-space (n > 2) can be constructed in this way for some

skew field k.
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In particular, the real projective space of dimension n, RPn, is essentially

RPn := (Rn+1\{0})/ ∼,

where ∼ is the equivalence relation defined by:

(x0, x1, . . . , xn) ∼ (y0,y1, . . . ,yn) ⇐⇒

(x0, x1, . . . , xn) = (λy0, λy1, . . . , λyn) for some λ 6= 0.

Analogously, we can define the complex projective space CPn and the quaternionic

projective space HPn. As for the non-associative normed division algebra O, we

need to be careful because it is impossible to produce any kind of OPn for n > 3.

The octonionic projective line OP1 will be introduced latter in this section while the

detailed construction of OP2 (which is called the Cayley plane) can be found in [dra].

7.2 Projective line over K

A one-dimensional projective space is commonly called a projective line. Let K be

one of the four normed division algebras over R. When K is associative, the projective

line KP1, as described earlier, can be defined as the set of lines in K2 passing through

the origin. Note that such lines are always of the form

[x, y] := {(αx,αy) | α ∈ K}. (7.1)

Thus, it is easy to observe that

KP1 = {[1, x] | x ∈ K}∪ {[0, 1]} for K = R, C, or H. (7.2)

However, for the non-associative case K = O, Equation 7.1 does not always hold true.

Actually, the line in O2 through the origin containing (x, y) can be expressed as:
{(α(y−1x),α) : α ∈ K}, when x 6= 0

{(α,α(x−1y)) : α ∈ K}, when y 6= 0.

Nevertheless, such a line is always a real vector space isomorphic to O. Moreover,

similar to Equation 7.2, we still have

OP1 = {[1, x] | x ∈ O}∪ {[0, 1]}. (7.3)

As a result of Equation 7.2 and Equation 7.3, we have
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Theorem 7.2.1. KP1 is a smooth manifold and is homeomorphic to K ∪ {∞}, the one-point

compactification of K.

Additionally, K ∪ {∞} is homeomorphic to the r-sphere Sr, where r = dimR K.

Consequently, we obtain

KP1 ' Sr.

7.3 Constructing projective spaces from formally real Jor-

dan algebras

Let A be a Jordan algebra, i.e., A is commutative and satisfies the Jordan identity

a ◦ (b ◦ (a ◦ a)) = (a ◦ b) ◦ (a ◦ a).

If, in addition, it satisfies

a1 ◦ a1 + · · ·ak ◦ ak = 0 ⇐⇒ a1 = · · · = ak = 0

for all k ∈ N and a1, . . . ,ak ∈ A, then A is called a formally real Jordan algebra. Every

formally real Jordan algebra is a direct sum of simple ones; and simple formally real

Jordan algebras are classified as follows.

Theorem 7.3.1 ([JvNW93]). The simple formally real Jordan algebras consist of four infinite

families and one exception:

(i) hn(R) with the product A ◦B =
1
2
(AB+BA)

(ii) hn(C) with the product A ◦B =
1
2
(AB+BA)

(iii) hn(H) with the product A ◦B =
1
2
(AB+BA)

(iv) Rn ⊕R with the product (v, s) ◦ (w, t) = (sw + tv, 〈v, w〉+ st)

(v) h3(O) with the product A ◦B =
1
2
(AB+BA).

Those in the fourth family are called spin factors or Jordan algebras of Clifford

type, and (h3(O), ◦) is exceptional and is usually called the Albert algebra.

It is worth noting that h2(O) is also a simple formally real Jordan algebra. Ac-

tually, it is isomorphic to the spin factor R9 ⊕R because
(
h2(O), M

)
has signature

(9,1).
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Let J be a formally real Jordan algebra. An element p ∈ J is called a projection if

p2 = p. Denote by P(J) the set of projections of J. We may define a relation in P(J) :

p 6 q ⇐⇒ Ran(p) ⊆ Ran(q),

where Ran(p) means the range of p, which is a closed subspace of J. Since the set of

closed subspaces is partially ordered with respect to inclusion, the above relation 6 is

obviously a partial order. Especially, we can always construct a chain of inequalities

of projections:

0 = p0 < p1 < · · · < pm = p.

The largest possible such m is called the rank of p in J.

We may define a projective space using projections in P(J). Explicitly, the points

are rank-1 projections, the lines are rank-2 projections, and the inclusion is derived

from the partial order 6 . That is, given a rank-1 projection p1 and a rank-2 projection

p2, we say the point p1 is on the line p2 provided p1 < p2.

Applying this construction to hn(R), hn(C), and hn(H) with n > 2 yields the

projective spaces RPn−1, CPn−1 and HPn−1, respectively. Carried out in the spin

factors Rn ⊕R with n > 2, one obtains a series of 1-dimensional projective spaces

related to Lorentzian geometry. The exceptional Jordan algebra h3(O) produces the

Cayley plane OP2, which was first discovered by R. Moufang [Mou33].

As an example, consider the application to h2(K). Note that K = O is also in-

cluded here. It is easy to see that all the nontrivial projections in P
(
h2(K)

)
are of the

form x̄

ȳ

(x y
)
=

x̄x x̄y

ȳx ȳy

 (7.4)

where (x, y) ∈ K2 satisfies ‖x‖2 + ‖y‖2 = 1. These nontrivial projections all have rank

1, so they are the points of the projective line KP1. Conversely, given any nonzero

element (x, y) ∈ K2, we can normalize it and set (x ′, y ′) =
1

‖x‖2 + ‖y‖2 (x, y). Applying

Equation 7.4 to (x ′, y ′) we then obtain a rank-1 projection, and thus a point in KP1.

We denote such a point as [x, y]. This gives rise to an equivalence relation on nonzero

elements of K2 :

(x, y) ∼ (x ′, y ′) ⇔ [x, y] = [x ′, y ′].

Each equivalence class will be called a line through the origin in K2. The set of lines

through the origin in K2 is then identical to the set of equivalence classes. This
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coincides with Equation 7.2 and Equation 7.3, which demonstrate that for all four

normed division algebras over R we have

KP1 = {[1, x] | x ∈ K}∪ {[0, 1]}. (7.5)





CHAPTER 8

Projective Moufang Sets

8.1 Moufang sets

Definition 8.1.1. A Moufang set is a set X (with |X| > 3) together with a collection of

groups {Ux|x ∈ X} satisfying the following two properties:

M1) For each x ∈ X, Ux 6 Sym(X) fixes x and acts regularly (i.e., sharply transitively) on

X\{x}.

M2) For all x ∈ X, Ux permutes the set {Uy|y ∈ X} by conjugation.

The Moufang set is then denoted M =
(
X, (Ux)x∈X

)
; the groups Ux are called the root

groups of M, and the group G := 〈Ux | x ∈ X〉 is called the little projective group of M.

Note that G acts doubly transitively on X, and that Uφx = Uxφ for all x ∈ X and

all φ ∈ G. Here we adopt the convention in [DMS09] that permutations of X act from

the right side and xy := y−1xy for x, y ∈ G.

Let U be a group with composition + and identity 0. The operation + is not

necessarily commutative. Let X = U∪̇{∞} denote the disjoint union of U with a new

symbol ∞ (i.e., ∞ /∈ X). For each element a ∈ U, we may define a permutation of X

as follows:

ta : X→ X


x 7→ x+ a when x ∈ U,

∞ 7→∞.

Clearly, the map a 7→ ta is essentially the right regular representation of the group

U. Set

U∞ := {ta |a ∈ U}.
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Let τ be a permutation of U∗, where U∗ := U\{0} consists of nontrivial elements in U.

We can extend τ to be an element of Sym(X) (which is still denoted τ) by requiring

0τ = ∞ and ∞τ = 0. Define

U0 := Uτ∞, (8.1)

Ua := Uta0 ∀a ∈ U. (8.2)

In particular, we define

M(U, τ) :=
(
X, (Ux)x∈X

)
(8.3)

G := 〈U∞,U0〉 ≡ 〈Ux | x ∈ X〉.

Note that this construction does not always give rise to a Moufang set, but every

Moufang set can be obtained in this way [DMS09].

In order to determine when M(U, τ) defined in 8.3 forms a Moufang set, we need

to consider the following maps:

ha := τtaτ
−1t−(aτ−1)τt−(−(aτ−1))τ ∈ Sym(X), ∀a ∈ U∗.

Such a map ha is called a Hua map. It is convenient to agree that h0 := 0.

Theorem 8.1.2 ([DMW06]). The M(U, τ) defined in Equation 8.3 is a Moufang set if and

only if the restriction of each Hua map to U is contained in Aut(U), i.e.,

(a+ b)hc = ahc + bhc, ∀a,b ∈ U, c ∈ U∗.

Furthermore, for any a ∈ U∗ we define a µ-map

µa := τ−1ha = taτ
−1t−(aτ−1)τt−(−(aτ−1))τ,

which is the unique permutation in U∗0taU
∗
0 that interchanges 0 and ∞ [DMS09]. It

is easy to see that

µ−1
a = µ−a.

In particular, we have the following fact from [DMW06]:

M(U, τ) = M(U,µa), ∀a ∈ U∗.

Additionally, the group

H := 〈µaµb |a,b ∈ U∗〉
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is called the Hua subgroup of the Moufang set M(U, τ). This group coincides with the

point-wise stabilizer of 0 and ∞, that is,

H = G0,∞.

8.2 Local Moufang sets

Suppose (X, ∼) is a set with an equivalence relation ∼ . Let Sym(X, ∼) be the group

of equivalence-preserving permutations of (X, ∼). We denote the equivalence class of

x ∈ X by x̄, and the set of such equivalence classes by X̄. In addition, for any element

g ∈ Sym(X, ∼), denote by ḡ the corresponding element in Sym(X̄).

Definition 8.2.1 ([DMW06]). A local Moufang set consists of a set with an equivalence

relation (X, ∼) such that |X̄| > 2, and a family of root groups Ux 6 Sym(X, ∼) for all x ∈ X.

We denote Ux̄ := Ux = Im
(
Ux → Sym(X̄)

)
for the permutation group induced by the action

of Ux on the set of equivalence classes. The group generated by the root groups is called the

little projective group, and is usually denoted G := 〈Ux|x ∈ X〉. Furthermore, we demand the

following:

(LM1) If x ∼ y for x,y ∈ X, then Ux̄ = Uȳ.

(LM2) For x ∈ X, Ux fixes x and acts sharply transitively on X\x̄.

(LM2’) For x̄ ∈ X̄, Ux̄ fixes x̄ and acts sharply transitively on X̄\{x̄}.

(LM3) For x ∈ X and g ∈ G, we have Ugx = Uxg.

(LM3’) For x̄ ∈ X̄ and g ∈ G, we have Ugx̄ = Uxg.

Note that (LM2’) and (LM3’) precisely state that (X̄, {Ux̄}x̄∈X̄) is a Moufang set.

A natural question is: given a group U and a permutation τ, both acting faithfully

on a set with an equivalence relation, is it possible to construct a local Moufang set

like we did in the previous section? Obviously, we need some additional conditions

on U and τ.

Suppose (X, ∼) is a set with an equivalence relation satisfying |X̄| > 2, U 6

Sym(X, ∼) is a subgroup and τ ∈ Sym(X, ∼). We require that

(C1): U has a fixed point, denoted by ∞, and acts sharply transitively on X\∞.
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(C1’): The induced action of U on X̄ is sharply transitive on X̄\∞.

(C2): ∞τ �∞ and ∞τ2 = ∞. We write 0 := ∞τ.

For x �∞, let αx be the unique element of U that maps 0 to x. We generally write

−x := 0α−1
x and define

U∞ := U, U0 := Uτ∞, Ux :=


Uαx0 for x �∞,

U
γ
xτ−1∞ for x ∼ ∞.

Here γx := ατx maps ∞ to xτ. Moreover, write Ux̄ for the induced action of Ux on X̄,

i.e.,

Ux̄ := Im (Ux → Sym(X̄)).

For any element x ∈ X, we call x a unit if x � 0 and x � ∞. For such a unit, we can

define the µ-map as

µx := γ(−x)τ−1αxγ−(xτ−1).

Theorem 8.2.2 ([DMR16]). M(U, τ) as defined above is a local Moufang set if and only if

one of the following equivalent conditions holds:

(1) U
γ
xτ−1∞ = Ux for all units x ∈ X;

(2) Uµx0 = U∞ for all units x ∈ X;

(3) U0 = Uµx∞ for all units x ∈ X.

Given a local Moufang set M, let x be a unit in X. Define

∼ x :=
(
− (xτ−1)

)
τ.

M is said to be special if ∼ x = −x for all units x ∈ X, or equivalently, if

(−x)τ = −(xτ)

for all units x ∈ X.

Lemma 8.2.3 ([DMS09]). Then the following statements are equivalent:

(i) M is special;

(ii) ∼ x = −x for all units x ∈ X.

(iii) (−x)µx = x for all units x ∈ X.
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8.3 Projective Moufang sets over K

Obviously, K is an abelian group with respect to the addition operation. Let

K̂ = K∪ {∞} and K∗ = K\{0}. First we define

τ : K∗ → K∗ : x 7→ −x−1

and then extend it to Sym(K̂) by requiring that

0τ = ∞ and ∞τ = 0.

In addition, we define K∞ to be the group of translations ta, a ∈ K :

ta : X→ X


x 7→ x + a

∞ 7→∞.

Similar to Equation 8.1, we set

K0 := Kτ∞,

Kx := K
tx
0 ∀ x ∈ K∗.

We thus get the following construction in the same way as in Equation 8.3:

M(K, τ) :=
(
K̂, (Kx)x∈K̂

)
.

By using Theorem 8.1.2 it is straightforward to check that M(K, τ) is a Moufang set.

It is called the projective Moufang set over K and simply denoted M(K) when there is

no ambiguity about τ.

Additionally, let G(K) be the little projective group of the projective Moufang set

M(K). We have

Proposition 8.3.1.

G(K) ' PSL2(K).

Proof. Recall that the extended plane K̂ can be viewed as the projective line KP1

through the bijection

ξ : K̂→ KP1,


x 7→ [1, x]

∞ 7→ [0, 1].
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This map induces an isomorphism

Ξ : Sym(K̂)→ Sym(KP1) : ρ 7→ ρξ.

Consider the restriction of Ξ to G(K) 6 Sym(K̂). Direct calculations show that

• Ξ(ta) ∈Möb(K) with representing matrix

1 a

0 1

 ∈ PSL2(K).

• Ξ(τ) ∈Möb(K) with representing matrix

0 −1

1 0

 ∈ PSL2(K).

Thus, Ξ maps G(K) to Möb(K) when K = R, C, H and to Möb∗(O) when K = O.

Recall that the Möbius group Möb(K) (Möb∗(O) in the case K = O) can be identified

with PSL2(K). We then obtain a map, still denoted Ξ, from G(K) to PSL2(K). From

the calculations above it is clear that Ξ is a group isomorphism.

Furthermore, there is a canonical equivalence relation within KP1 defined as:

[1, x] ∼ [1, y] ⇐⇒ x = y,

and

[0, 1] � [1, x] for any x ∈ K.

Theorem 8.3.2. The projective Moufang set M(K), equipped with the equivalence defined

above, is a local Moufang set.

Proof. According to Theorem 8.2.2, it suffices to prove that K
µx
0 = K∞ for all x ∈ K∗.

Let V0 := Ξ(K0) and V∞ := Ξ(K∞). Then it is sufficient to show that

V
Ξ(µx)
0 = V∞, ∀x ∈ K∗.

It is easy to see that

V∞ = {

1 x

0 1

 : x ∈ K} and V0 = {

1 0

x 1

 : x ∈ K}.

In addition, we have Ξ(tx) =

1 x

0 1

 and Ξ(τ) =

0 −1

1 0

 . Then from µx = txτ
−1t−(xτ−1)τt−(−(xτ−1))τ

we calculate that

Ξ(µx) =

 0 −x

x−1 0

 .
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In order to prove VΞ(µx)
0 = V∞, we first notice that 0 −x

x−1 0

1 0

y 1

 0 x

−x−1 0

 =

1 −xyx

0 1

 , (8.4)

which implies VΞ(µx)
0 ⊆ V∞.

On the other hand, for every element z ∈ K, we have1 z

0 1

 =

 0 −x

x−1 0

 1 0

−x−1zx−1 1

 0 x

−x−1 0

 ∈ Vνx
0 , (8.5)

which indicates that V∞ ⊆ VΞ(µx)
0 . Note that Equation 8.4 and Equation 8.5 also hold

for O because of the alternativity of O.

Proposition 8.3.3. The projective Moufang set M(K) is special.

Proof. It is sufficient to prove that

(−x)µx = x, ∀x ∈ K∗,

or equivalently,

(−[1, x])Ξ(µx) = [1, x], ∀x ∈ K∗.

Note that −[1, x] = [1,−x] and Ξ(µx) =

 0 −x

x−1 0

 . Hence, we have

(−[1, x])Ξ(µx) = [1,−x]

 0 −x

x−1 0

 = [−1,−x] = [1, x],

which completes the proof.

Since the projective Moufang sets are local Moufang sets and are special, the µ-

maps can be simplified as

µx = txτ
−1t−(xτ−1)τt−(−(xτ−1))τ

= txτ
−1t−(xτ−1)τtx.

Applying the isomorphism Ξ to both sides gives rise to 0 −x

x−1 0

 =

1 x

0 1

0 −1

1 0

1 x−1

0 1

0 −1

1 0

1 x

0 1

 . (8.6)
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In particular, when x is of norm one, we have x−1 =
x̄
‖x‖2 = x̄. In this case, Equation

8.6 becomes 0 −x

x̄ 0

 =

1 x

0 1

 0 1

−1 0

1 x̄

0 1

 0 1

−1 0

1 x

0 1

 . (8.7)

Alternatively, we have0 −x̄

x 0

 =

1 x̄

0 1

 0 1

−1 0

1 x

0 1

 0 1

−1 0

1 x̄

0 1

 . (8.8)

Note that Ξ(τ) =

0 −1

1 0

 = Ξ(µ1), which implies τ = µ1 is a µ-map. Thus, the

Hua subgroup of M(K) becomes

H = 〈µaµb : a, b ∈ K∗〉 = 〈τµa : a ∈ K∗〉.

In particular, we have

Ξ(H) = 〈

−x 0

0 x−1

 | x ∈ K∗〉.
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CHAPTER 9

Root Systems and Weyl Groups

9.1 Root systems

9.1.1 Finite root systems

Let V be a finite dimensional Euclidean space, i.e., a finite dimensional real vector

space with inner product 〈·, ·〉 : V ×V → R which is bilinear, symmetric, and positive

definite. For any non-zero element v ∈ V , the hyperplane perpendicular to v is

Hv = {w ∈ V | 〈w, v〉 = 0}.

Define the reflection in Hv by

sv : V → V , w 7→ w−
2〈w, v〉
〈v, v〉

v.

An important observation is that each sv leaves the inner product invariant, that is,

〈sv(w), sv(w ′)〉 = 〈w,w ′〉, ∀w,w ′ ∈ V .

For the purpose of simplicity, we write v∨ :=
2
〈v, v〉

v for all v ∈ V . Thus, sv becomes

sv(w) = w− 〈v∨,w〉v for all w ∈ V .

Definition 9.1.1. A finite subset Φ ⊆ V is a root system for V if the following hold:

(a) 0 /∈ Φ and SpanR(Φ) = V ;

(b) if α ∈ Φ and λα ∈ Φ with λ ∈ R, then λ ∈ {±1};

(c) sα(β) ∈ Φ for all α,β ∈ Φ;
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(d) 〈α∨,β〉 ∈ Z for all α,β ∈ Φ.

The dimension of V , dimR V , is called the rank of Φ. Note that each sα permutes

Φ, and −Φ = Φ.

A root system Φ is reduced if

α ∈ Φ⇒ 2α /∈ Φ,

and irreducible if there is not a non-trivial partition Φ = Φ1 ∪Φ2 with

〈α,β〉 = 0, ∀α ∈ Φ1,β ∈ Φ2.

Definition 9.1.2. Let Φ be a root system for V . A subset Π ⊆ Φ is a root basis of Φ if the

following hold:

(a) Π is a vector space basis for V ; and

(b) every α ∈ Φ can be written as α =
∑
β∈Π kββ, where kβ are integers all of the same

sign.

The roots in Π are called simple roots of Φ and their corresponding reflections are

called simple reflections. Clearly, Q = SpanZ(Π) is a free abelian group; it is called the

root lattice of Φ. In addition, let

Φ+ := {α =
∑
β∈Π

kββ ∈ Φ | kβ ∈N ∀β ∈ Π}

Φ− := {α =
∑
β∈Π

kββ ∈ Φ | − kβ ∈N ∀β ∈ Π}.

Then elements in Φ+ are called positive roots and those in Φ− are called negative

roots. Especially, we have −Φ− = Φ+ and Φ = Φ+ ∪Φ−.

Moreover, there exists a partial order 6 on the root system Φ, called the dominance

order and defined by

w 6 v ⇐⇒ v−w =
∑
β∈Π

kββ with all kβ ∈N.

A maximal element in Φ with respect to the dominance order is called the highest root

of Φ. It follows from [Bou02] that every irreducible root system has a unique highest

root.

Definition 9.1.3. The Weyl group of the root system Φ is the subgroup of GL(V) generated

by all the simple reflections, i.e.,

W(Φ) := 〈sα |α ∈ Π〉.
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9.1.2 Affine root systems

Let V be a finite dimensional Euclidean space with inner product 〈·, ·〉. A function

f : V → R is said to be affine linear if there exist α ∈ V and a constant m ∈ R such that

f(x) = 〈α, x〉+m, ∀x ∈ V .

Let F be the set of all affine linear functions on V . Clearly, we have the direct sum of

vector spaces F = V ⊕Rδ, where δ ∈ F is the constant function with value 1. Let D be

the projection of F into V . Then Df = α is the gradient of f such that f = Df+ f(0).

We extend the inner product 〈·, ·〉 to F by defining

〈Df+ cδ,Dg+ dδ〉 := 〈Df,Dg〉.

This bilinear form is symmetric and degenerate with kernel Rδ.

Moreover, it is easy to see that Hf = {x ∈ V | f(x) = 0} is an affine hyperplane. Let

sf denote the orthogonal reflection through Hf. That is,

sf(x) = x− f
∨(x)Df = x− f(x)Df∨,

where f∨ :=
2f
〈f, f〉

. Notice that sf is an affine linear isometry of V depending only on

the hyperplane H = Ha and not on the choice of a.

Let F∗ be the group of invertible affine linear transformations in F. F∗ acts on F via

the transposition:

F∗ × F→ F, (g, f) 7→ fg−1.

Applying to sf gives rise to

sa · f = f− 〈a∨, f〉a.

Naturally, a translation tv : V → V , x 7→ x+ v, for some v ∈ V , is an affine transfor-

mation of V . We have

tv · f = f− 〈v,Df〉δ.

Definition 9.1.4. An affine root system in V is a subset S ⊆ F such that

(a) S consists of non-constant functions and spans F;

(b) sa · S ⊆ S for all a ∈ S;

(c) 〈a∨,b〉 ∈ Z for all a,b ∈ S;
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(d) the group W(S) := 〈sa |a ∈ S〉 acts properly on V .

The group W(S) is called the Weyl group of the affine root system S.

An affine root system is reduced if

a ∈ S⇒ 1
2
a /∈ S,

and irreducible if there is not a non-trivial partition S = S1 ∪ S2 such that

〈a,b〉 = 0, ∀a ∈ S1,b ∈ S2.

The following proposition provides examples of affine root systems.

Proposition 9.1.5 ([Bou02];[Kac94]). Let Φ be an irreducible finite root system spanning a

real finite-dimensional vector space V , and let 〈·, ·〉 be a positive-definite symmetric bilinear

form on V , invariant under W(Φ), the Weyl group of Φ. Then

S(Φ) := {fα,k = 〈α,−〉+ k | α ∈ Φ,k ∈ Z such that
1
2
α /∈ Φ}

is a reduced irreducible affine root system on V .

This proposition has the following implications:

Corollary 9.1.6. (i) The Weyl group of S(Φ)

W(S(Φ)) ' Γ oW(Φ),

where Γ is the group of translations generated by all tα∨ for α ∈ Φ.

(ii) Let Π denote the root basis of Φ and θ be the highest root of Φ. Then {1 − θ} ∪Π is a

root basis of S(Φ).

9.2 Coxeter systems

9.2.1 Coxeter systems and Coxeter diagrams

A Coxeter system is a pair (W,S) consisting of a group W and a set of generators

S ⊂W, subject to relations

(ss ′)m(s,s ′) = 1,
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where 
m(s, s) = 1,

m(s, s ′) = m(s ′, s) > 2, if s 6= s ′.
(9.1)

Conventionally, m(s, s ′) = ∞ if no relation occurs for a pair (s, s ′). The cardinality of

S, |S|, is called the rank of (W,S). The group W is a Coxeter group.

Let M be a symmetric matrix indexed by S with entires m(s, s ′) ∈N∪ {∞} subject

to the relations 9.1. Obviously, the Coxeter system (W,S) can be characterized by

the finite set S and such a symmetric matrix M. The matrix M is called the Coxeter

matrix, which can be conveniently encoded by a Coxeter diagram. Explicitly, given a

Coxeter system (W,S), the corresponding Coxeter diagram is a undirected graph Γ

with S as its vertex set, joining vertices s and s ′ by an edge labeled m(s, s ′) whenever

this number (∞ allowed) is at least 3. If distinct vertices s and s ′ are not joined,

it is understood that m(s, s ′) = 2. Conventionally, the label m(s, s ′) = 3 may be

omitted. The Coxeter system (W,S) is said to be irreducible if the underlying Coxeter

diagram Γ is connected. We also call the corresponding Coxeter group W irreducible.

Throughout this thesis, we only focus on irreducible Coxeter groups.

Let W be an irreducible Coxeter group. Then W is finite (or spherical) when the

Coxeter matrix M is positive definite, is affine when M is semi-positive definite of

rank n− 1, and is hyperbolic when M has signature (n− 1, 1). Here n = |S| is the rank

of (W,S).

A Coxeter group W is said to be simply-laced if the entries of the Coxeter matrix

M are either 2 or 3.

9.2.2 Geometric representation of Coxeter groups

Let (W, S) be a Coxeter system and V be a vector space over R of dimension

n := |S|. Denote by {αs | s ∈ S} a basis of V that is in one-to-one correspondence with

the set S. We define a bilinear form on V by requiring

〈αs,αs ′〉 = − cos
( π

m(s, s ′)
)
, (9.2)

where by convention
π

m(s, s ′)
= 0 if m(s, s ′) = ∞.

For each s ∈ S we may define a reflection of V with respect to this bilinear form:

σs : V → V (9.3)
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x 7→ x− 2〈x, αs〉αs.

According to [Hum92], σs preserves the bilinear form 〈−,−〉 on V , and the group

homomorphism σ : W → O(V), s 7→ σs is unique. We call (V ,σ) the geometric

representation of W. Note that W acts on V in the natural way: w(x) = σ(w)(x), ∀x ∈

V .

9.2.3 Root systems of Coxeter groups

Let (W,S) be a Coxeter system and V be the geometric representation of W with

basis {αs}s∈S. Then it is straightforward to show the set

Φ := {ω(αs) | w ∈W, s ∈ S}

is a finite root system with root basis {αs}s∈S. Obviously, the root basis is in one-to-

one correspondence with S. Moreover, the Weyl group of Φ is generated by all simple

reflections σs defined in Equation 9.3. It is isomorphic to the Coxeter group W under

σ. Especially, generators of W(Φ) are subject to the same relations in Equation 9.1.

Therefore, the Coxeter diagram of (W,S) could also be used to describe the root

system Φ, hence is also referred to as the Coxeter diagram of Φ. In particular, if Φ

is irreducible, then the root system is finite when the Coxeter matrix M is positive

definite, is affine when M is semi-positive definite of rank n− 1, and is hyperbolic

when M has signature (n− 1, 1). Here n refers to the rank of Φ.



CHAPTER 10

Hyperbolic Weyl Groups of Rank dimR K

10.1 Over-extension of root systems in K

10.1.1 Root systems in K

Clearly, the norm ‖ · ‖ of K gives rise to a positive-definite inner product:

〈a, b〉 = 1
2
(ab̄ + bā).

Equipped with this inner product, K can be identified with the root space of some

finite root system Φr of rank r = dimR K. Let αi (i = 1, . . . , r) be the simple roots of

Φr. Then the associated simple reflections can be expressed as

sαi(x) = x −
2〈x,αi〉
〈αi,αi〉

αi

= x −
xᾱi +αix̄
‖αi‖2 αi

= −
αix̄αi
‖αi‖2 . (10.1)

Here the last "=" also holds for octonions because O is alternative.

10.1.2 Over-extension of Φr

To any finite root system Λ of rank n one may associate an indefinite root system

of rank n + 2 in the following way. The first step is to construct the non-twisted

affine extension, thereby increasing the rank by one. Then one adds an additional

node with a single line to the affine node in the Coxeter diagram. Explicitly, we first

91
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notice that the root space of the affine extension is Rn+1, which can be embedded

into the (n+ 1, 1)-Minkowski space Rn+1 ⊕R via the natural embedding x 7→ (x, 0).

Let {α}16i6n be the set of simple roots of Λ and α0 be the affine root. Especially,

We write the image of αi in Rn+1 ⊕R as Ai for all i = 0, 1, . . . ,n. Denote by A−1 the

over-extension node. Then A−1 can be obtained from solving the following equations

〈A−1,A0〉 = −
1
2

, and 〈A−1,Ak〉 = 0 for all 1 6 k 6 n.

This results in a root system which is called the over-extension of Λ and denoted

Λ++. Λ++ has a root basis {A−1,A0,A1, . . . ,An} and in many cases turns out to be

hyperbolic.

As an example, consider the finite root systemΦr in K. Recall that the Minkowski

space Rr+1⊕R can be identified as
(
h2(K), 〈·, ·〉

)
, where the bilinear form 〈·, ·〉 arises

from the quadratic form M:

〈X, Y〉 = 1
2
[M(X+ Y) − M(X) − M(Y)]

with

M : h2(K)→ R,

s x

x̄ t

 7→ x̄x − st.

Let θr be the highest root of Φr. It follows from Corollary 9.1.6 that αi, 1 6 i 6 r,

together with α0 = (−θr, 1) ∈ Rr+1 form a root basis of the affine extension of Φr.

When considered in the context of h2(K), we obtain

A0 :=

 1 −θ

−θ̄ 0

 and Ai =

 0 αi

ᾱi 0

 , 1 6 i 6 r.

The over-extension node A−1 can be specified via solving

〈A−1,A0〉 = −
1
2

, 〈A−1,Ak〉 = 0 for 1 6 k 6 r.

It is easy to see that A−1 =

−1 0

0 1

 is one solution to the above series of equations.

Therefore, we obtain a root basis for the over-extension Φ++
r :

A−1 =

−1 0

0 1

 ,A0 =

 1 −θ

−θ̄ 0

 ,Ai =

 0 αi

ᾱi 0

 , 1 6 i 6 r. (10.2)

Note that for simply-laced finite root systems, we may normalize the simple roots

such that they all have unit norm and that the highest root θr equals 1. In this
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case, we have 〈Ai,Ai〉 = M(Ai) = 1 for all i = −1, 0, 1, . . . , r. After the normalization,

the norm in the root space of Φ++
r would coincide with the standard norm ‖ · ‖ in

the normed division algebra K, as soon as we restrict the root lattice to the finite

subalgebra. (For some twisted cases we may instead choose θr to be the lowest root,

but we still assume that θrθ̄r = 1 [KNP+12].)

Next we consider the simple reflection associated with Ai. When i = 1, . . . , r, it

follows from Equation 10.1 that, given X =

s x

x̄ t

 ∈ h2(K),

sAi(X) =

 s −
αix̄αi
‖αi‖2

−
ᾱixᾱi
‖ᾱi‖2 t



=


αi
‖αi‖

0

0 −
ᾱi
‖ᾱi‖


s x̄

x t



ᾱi
‖ᾱi‖

0

0
−αi
‖αi‖

 .

Meanwhile, for sA−1 we have

M(A−1 +X) = M
(s− 1 x

x̄ t+ 1

) = xx̄ − (s− 1)(t+ 1),

thus,

M(A−1 +X) − M(A−1) − M(X) = −s+ t,

which implies

sA−1(X) = X−
2〈A−1,X〉
〈A−1,A−1〉

A−1

= X− (t− s)A−1

=

t x̄

x s


=

0 1

1 0

s x̄

x t

0 1

1 0

 .

Similarly, we have

sA0(X) = X−
2〈A0,X〉
〈A0,A0〉

A0

=

−
θ

‖θ‖
1

0
θ̄

‖θ̄‖


s x̄

x t


−

θ̄

‖θ̄‖
0

1
θ

‖θ‖

 .
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Therefore, the simple reflections in W(Φ++
n ) can be expressed as

sI : X 7→MIX̄M
†
I

with

M−1 =

0 1

1 0

 , M0 =

−
θ

‖θ‖
1

0
θ̄

‖θ̄‖

 , MI =


αI
‖αI‖

0

0 −
ᾱI
‖ᾱI‖

 , 1 6 I 6 n.

Obviously, (−MI)X̄(−MI)
† =MIX̄M

†
I. So we do not have to distinguish between MI

and −MI. Therefore, it is sufficient to consider

sI : X 7→MIX̄M
†
I (10.3)

with

M−1 =

0 1

1 0

 , M0 =

−
θ

‖θ‖
1

0
θ̄

‖θ̄‖

 , MI =


αI
‖αI‖

0

0 −
ᾱI
‖ᾱI‖

 , 1 6 I 6 n.

Note that the products of matrices MI ∈ PSL2(K) are well-defined and associative

for all the four normed division algebras over R.

The formula 10.3 involves complex conjugation of X. Clearly, if we consider the

even part of the Weyl group W(Φ++
n ), which is denoted W+(Φ++

n ) and called direct

subgroup of W(Φ++
n ), the generators can be represented without complex conjuga-

tion. Specifically, W+(Φ++
n ) is an index 2 normal subgroup of W(Φ++

n ) and consists

of those elements which can be expressed as the product of an even number of sim-

ple reflections. There are more than one sets of generating elements. We will use the

following list of generators:

s−1si, i = 0, 1, . . . ,n.

Especially, we have

s−1si(X) = s−1
(
si(X)

)
= s−1

(
MiX̄M

†
i

)
= M−1MiX̄M

†
iM
†
−1

= M−1(M
>
i XMi)M

†
−1

= (M−1M
>
i )X(M−1M

>
i )
†
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Let SI =M−1M
>
I for I = 0, 1, . . . ,n. Then we get

S0 =

 1
θ̄

‖θ̄‖
−
θ

‖θ‖
0

 , SI =

 0 −
ᾱI
‖ᾱI‖

αI
‖αI‖

0

 , 1 6 I 6 n.

Theorem 10.1.1 ([FKN09]).

W+(Φ++
n ) ∼= 〈SI | I = 0, . . . ,n〉 6 PSL2(K).

10.2 K = R and the A1 root system

The finite root system A1 has root lattice ΛA1 = Z. The over-extension of A1 is

the hyperbolic root system A++
1 , which is commonly denoted AE3 and characterized

by the following Coxeter diagram

A−1

∞
A0 A1

Figure 10.1: Coxeter diagram of AE3

Inside ΛA1 = Z the only simple root and the highest root are both equal to one,

i.e., α = θ = 1. Hence, as a result in Equation 10.2, the simple roots of AE3 are

A−1 =

−1 0

0 1

 , A0 =

−1 −1

−1 0

 , and A1 =

0 1

1 0

 .

In addition, we have

S0 =

 1 1

−1 0

 , and S1 =

0 −1

1 0

 .

Thus, as a consequence of Theorem 10.1.1, the direct subgroup of W(AE3)

W+(AE3) ∼= 〈

 1 1

−1 0

 ,

0 −1

1 0

〉.
Note that  1 1

−1 0

0 −1

1 0

 =

1 −1

0 1

 =

1 1

0 1

−1

.

It follows that

W+(AE3) ∼= 〈

0 −1

1 0

 ,

1 1

0 1

〉 = PSL2(Z). (10.4)
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Especially, we have

W(AE3) ∼= 〈

0 1

1 0

 ,

0 −1

1 0

 ,

1 1

0 1

〉 = PGL2(Z).

Furthermore, consider the action of PGL2(Z) on the upper half plane H(R) as defined

in Equation 6.2. Clearly, the group PGL2(Z) can then be identified as a discrete sub-

group of Isom
(
H(R)

)
. In particular, H(R)/PGL2(Z) is a cusped complete hyperbolic

2-orbifold and its volume is minimal among all such cusped hyperbolic 2-orbifolds.

Actually, this is a direct consequence of [Main Theorem; [Hil07]], which says that

H2/W(AE3) is a cusped complete hyperbolic 2-orbifold whose volume is minimal

among all such cusped hyperbolic 2-orbifolds.

10.3 K = C

For K = C there are different choices of simple finite root systems which will be

discussed separately.

10.3.1 Type A2

The simple root system of type A2 is simply-laced and has simple roots

α1 = 1, α2 =
−1 + i

√
3

2
= ω.

The root lattice of A2 is then ΛA2 = Z[ω] = E and the highest root in ΛA2 is θ = −ω̄.

Over-extending the A2 root system results in the hyperbolic root system A++
2 ,

whose simple roots in the root space h2(C) are given by

A−1 =

−1 0

0 1

 , A0 =

 1 ω̄

ω 0

 , A1 =

0 1

1 0

 , A2 =

 0 ω

ω̄ 0

 .

Moreover, as a result of Theorem 10.1.1, the direct subgroup

W+(A++
2 ) ∼= 〈S0 =

 1 −ω

ω̄ 0

 ,S1 =

0 −1

1 0

 ,S2 =

 0 −ω̄

ω 0

〉. (10.5)

Proposition 10.3.1.

W+(A++
2 ) ∼= PSL2(E).
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A−1
A0

A1

A2

Figure 10.2: Coxeter diagram of A++
2 with numbering of nodes

Proof. As illustrated in Proposition 5.2, PSL2(E) is generated by

S =

0 −1

1 0

 , T =

1 1

0 1

 , and Uω =

1 ω

0 1

 .

Applying Equation 8.8 to x = ω gives rise to 0 −ω̄

ω 0

 =

1 ω̄

0 1

0 −1

1 0

1 ω

0 1

0 −1

1 0

1 ω̄

0 1

 .

As

1 ω̄

0 1

 =

1 −1 −ω

0 1

 =

1 1

0 1

−1 1 ω

0 1

−1

= T−1U−1
ω , we then get

S2 = T−1U−1
ω SUωST

−1U−1
ω ∈ PSL2(E).

Moreover, from  1 −ω

ω̄ 0

0 −1

1 0

 0 −ω̄

ω 0

0 −1

1 0

 =

1 ω

0 1


we observe that

S0 = UωSS
−1
2 S ∈ PSL2(E).

Therefore, we obtain 〈S0,S1,S2〉 6 PSL2(E).

Conversely, from S0 = UωSS
−1
2 S, which has been shown above, we get

Uω = S0S1S2S1.

Meanwhile, we have 0 −ω̄

ω 0

0 −1

1 0

 1 −ω

ω̄ 0

0 −1

1 0

 =

1 ω̄

0 1


and 1 1

0 1

 =

1 −ω− ω̄

0 1

 =

1 ω

0 1

−1 1 ω̄

0 1

−1

.
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Thus,

T = U−1
ω S1S

−1
0 S1S

−1
2 .

Therefore, we see that PSL2(E) 6 〈S0,S1,S2〉, which leads to

PSL2(E) = 〈S0,S1,Sω〉 ∼=W+(A++
2 ).

10.3.2 Type C2

The C2 root system is not simply laced; it has simple roots

α1 =
1√
2

, and α2 =
−1 + i√

2
.

Note that ‖α1‖ =
1√
2

while ‖α2‖ = 1. The highest root in the root lattice ΛC2 is

θ =
1 + i√

2
. As a result of Equation 10.2, the associated hyperbolic over-extension C++

2

has simple roots

A−1 =

−1 0

0 1

 , A0 =

 1
−1 − i√

2
−1 + i√

2
0

 ,

A1 =

 0
1√
2

1√
2

0

 , A2 =

 0
−1 + i√

2
−1 − i√

2
0

 ,

which are labeled as follows

A−1 A0

4
A1

4
A2

Figure 10.3: Coxeter diagram of C++
2

As a consequence of Theorem 10.1.1, W+(C++
2 ), the direct subgroup of W(C++

2 ),

is isomorphic to a discrete subgroup of PSL2(C) generated by

S0 =

 1
1 − i√

2
−1 − i√

2
0

 , S1 =

0 −1

1 0

 , and S2 =

 0
1 + i√

2
−1 + i√

2
0

 .

The following proposition reveals the relation between W+(C++
2 ) and the Gaussian

modular group.
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Proposition 10.3.2 (Prop. 6;[FKN09]).

W+(C++
2 ) ∼= PSL2(G)o 2.

Proof. Let P =

θ̄1/2 0

0 θ1/2

 whose inverse is P−1 =

θ1/2 0

0 θ̄1/2

 , where θ =
1 + i√

2

is the highest root of C2. Set S̃i = PSiP−1, i = 0, 1, 2. Then

S̃0 =

θ̄1/2 0

0 θ1/2

 1 θ̄

−θ 0

θ1/2 0

0 θ̄1/2

 =

 1 θ̄2

−θ2 0

 =

 1 −i

−i 0

 ,

S̃1 =

θ̄1/2 0

0 θ1/2

0 −1

1 0

θ1/2 0

0 θ̄1/2

 =

0 −θ̄

θ 0

 ,

S̃2 =

θ̄1/2 0

0 θ1/2

 0 θ

−θ̄ 0

θ1/2 0

0 θ̄1/2

 =

0 −1

1 0

 .

Obviously, W+(C++
2 ) ' 〈S̃0, S̃1, S̃2〉. On the other hand, recall that

PSL2(G) = 〈S =

0 −1

1 0

 , T =

1 1

0 1

 ,Ui =

1 i

0 1

〉.

Let D =

θ 0

0 θ̄

 . We have


S̃0 = D−1T−1D−1S, S̃1 = SD, S̃2 = S,

S = S̃2, D = S̃2S̃1, T = S̃−1
1 S̃−1

0 S̃−1
1 S̃2, Ui = S̃2S̃1S̃0S̃1S̃2S̃

−1
0 S̃−1

1 S̃2S̃
−1
1 S̃2,

which imply

〈S̃0, S̃1, S̃2〉 = 〈S, T ,Ui,D〉.

We claim that 〈S, T ,Ui,D〉 is an index 2 extension of 〈S, T ,Ui〉, which would indicate

that W+(C++
2 ) ∼= PSL2(G)o 2.

In fact, note that

1 0

0 i

 ∈ PSL2(G) = 〈S, T ,Ui〉, which implies

i 0

0 1

 ,

1 0

0 −i

 ∈
〈S, T ,Ui〉. Thus, we obtain

D2 =

θ2 0

0 θ̄2

 =

i 0

0 −i

 =

i 0

0 1

1 0

0 −i

 ∈ 〈S, T ,Ui〉.
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We know that the B2 root system is the same as the C2 root system. However,

the over-extension constructed from B2 ' C2 is C++
2 rather than B++

2 . In fact, we can

over-extend the B2 root system and obtain the twisted affine root system D
(2)+
2 , as

explained in Appendix A.1 in [FKN09]. In particular, we have

W+(D
(2)+
2 ) ∼=W+(B++

2 ) ∼= PSL2(G)o 2.

10.3.3 Type G2

The G2 root system is not simply laced; it has simple roots:

α1 = 1, α2 =
−
√

3 + i
2
√

3
.

The highest root in ΛG2 is

θ =
1 +
√

3i
2

= −ω̄.

By over-extending G2 we obtain the hyperbolic root system of G++
2 .

A−1 A0 A1

6
A2

Figure 10.4: Coxeter diagram of G++
2 with numbering of nodes

G++
2 has the following simple roots in the root space h2(C) :

A−1 =

−1 0

0 1

 , A0 =

 1 ω̄

ω 0

 , A1 =

0 1

1 0

 , A2 =

 0 −iω̄

iω 0

 .

Moreover, the direct subgroup

W+(G++
2 ) ∼= 〈S0 =

 1 −ω

ω̄ 0

 ,S1 =

0 −1

1 0

 ,S2 =

 0 iω

iω̄ 0

〉.
Proposition 10.3.3.

W+(G++
2 ) ∼= PSL2(E)o 2.

Proof. It is easy to see that (S1S2)
2S1 =

 0 −ω

ω̄ 0

 , which, together with Equation

10.5, implies that

W+(A++
2 ) ∼= 〈S0,S1, (S1S2)

2S1〉.
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In addition, since we have proved that W+(A++
2 ) ∼= PSL2(E), we obtain

PSL2(E) = 〈S0,S1, (S1S2)
2S1〉.

Since S2 is a reflection obeying S2
2 = 1, in order to prove thatW+(G++

2 ) ∼= PSL2(E)o2,

it suffices to show that

〈S0,S1,S2〉 = 〈S0,S1, (S1S2)
2S1〉o 〈S2〉.

This is true because of the exchange condition of Coxeter groups and the fact that the

conjugation action of S2 on 〈S0,S1, (S1S2)
2S1〉 is a group automorphism.

Furthermore, under the action given in Equation 6.2, the group PSL2(E) can

be identified as a discrete subgroup of Isom
(
H(C)

)
. Then following from the iso-

morphism in Proposition 10.3.3, the Weyl group W(G++
2 ) can also be viewed as a

subgroup of Isom
(
H(C)

)
. In particular, as illustrated in [Main Theorem; [Hil07]],

H(C)/W(G++
2 ) is a cusped complete hyperbolic 3-orbifold whose volume is minimal

among all such cusped hyperbolic 3-orbifolds.

10.4 K = H

Within the normed division algebra of quaternions one can find the root systems

of types A4, B4, C4, D4 and F4. However, since the hyperbolic Weyl group of A++
4

cannot be characterized by any of the previously defined modular groups, we will

only focus on the other four finite root systems. The quaternionic case is more subtle

than the commutative cases because the criterion for selecting the matrix group to

which the even Weyl group belongs cannot be so easily done via a determinant.

10.4.1 Type D4

The D4 root system is simply-laced and has simple roots [FKN09]
α1 = 1, α2 =

1
2
(−1 + i − j − k) = i − h,

α3 =
1
2
(−1 − i + j − k) = j − h, α4 =

1
2
(−1 − i − j + k) = k − h,

where h =
1
2
(1 + i + j + k). The highest root in the root lattice ΛD4 is

θ = 2α1 +α2 +α3 +α4 = 1 − h = h̄.

The over-extension of D4 is D++
4 , which is hyperbolic and has Coxeter diagram
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A−1 A0 A1 A3

A2

A4

Figure 10.5: Coxeter diagram of D4 with numbering of nodes

The simple roots of D++
4 are given by

A−1 =

−1 0

0 1

 , A0 =

 1 −h̄

−h 0

 , A1 =

0 1

1 0

 ,

A2 =

 0 i − h

−i − h̄ 0

 , A3 =

 0 j − h

−j − h̄ 0

 , A4 =

 0 k − h

−k − h̄ 0

 .

The even hyperbolic Weyl group W+(D++
4 ) is isomorphic to a discrete subgroup of

PSL2(H) generated by the following matrices

S0 =

 1 h

−h̄ 0

 ,S1 =

0 −1

1 0

 ,

S2 =

 0 i + h̄

i − h 0

 ,S3 =

 0 j + h̄

j − h 0

 ,S4 =

 0 k + h̄

k − h 0

 .

(10.6)

Proposition 10.4.1.

W+(D++
4 ) ∼= PSL∗2(H).

Proof. Recall from Equation 5.4 that the Hurwitzian modular group PSL∗2(H) is gen-

erated by 

S =

0 −1

1 0

 , T =

1 1

0 1

 ,

Ui =

1 i

0 1

 , Uj =

1 j

0 1

 , Uk =

1 h

0 1

 .

Applying Equation 8.8 to h gives rise toh 0

0 h̄

 =

1 h

0 1

0 −1

1 0

1 1

0 1

1 −h

0 1

0 −1

1 0

1 h

0 1

0 −1

1 0

 ,
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which implies h 0

0 h̄

 ∈ PSL∗2(H).

Thus,

S0 =

 1 h

−h̄ 0

 =

1 −h

0 1

0 −1

1 0

h̄ 0

0 h


=

1 h

0 1

−1 0 −1

1 0

h 0

0 h̄

−1

∈ PSL∗2(H).

Similarly, by applying Equation 8.8 to i − h we obtain

i − h 0

0 −i − h̄

 ∈ PSL∗2(H).

Then

S2 =

 0 i + h̄

i − h 0

 =

0 −1

1 0

i − h 0

0 −i − h̄

 ∈ PSL∗2(H).

Analogously, we can show that S3,S4 ∈ PSL∗2(H). Consequently, we get

〈SI〉 , 〈Si | i = 0, 1, . . . , 4〉 6 PSL∗2(H).

Conversely, one may explicitly calculate that

S2S3 =

j 0

0 i

 , S3S4 =

k 0

0 j

 , S4S2 =

i 0

0 k

 ,

which indicates that

Di :=

1 0

0 i

 =

i 0

0 k

i 0

0 j

 = (S4S2)(S1S2S3S1) ∈ 〈SI〉.

Similarly, we have Dj :=

1 0

0 j

 ,Dk :=

1 0

0 k

 ∈ 〈SI〉.
Moreover, from

S0S2 =

 1 h

−h̄ 0

 0 i + h̄

i − h 0

 =

hi − h2 i + h̄

0 −h̄i − h̄2

 =

−k i + h̄

0 j


we get 1 i + h̄

0 1

 =

1 0

0 −j

S0S2

k 0

0 1

 = D−1
j S0S2S1DkS1 ∈ 〈SI〉.
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Note that (i + h̄)3 = −1. One may explicitly compute that

T =

1 1

0 1

 = S2S1

1 −(i + h̄)

0 1

S1S2 ∈ 〈SI〉.

Additionally, Ui = D−1
i TDi, Uj = D−1

j TDj, and Uk = D−1
k TDk all belong to 〈SI〉.

Meanwhile, we have Uh =

1 i + h̄

0 1

UjUk ∈ 〈SI〉. Thus,

PSL∗2(H) 6 〈SI〉,

which completes the proof.

It is worth mentioning that the even Weyl group W+(D++
4 ) is isomorphic to

PSL∗2(H) rather than PSL2(H). Since the even cyclic permutation of (e1, e2, e3) is real-

ized by conjugation by the Hurwitzian unit θ, the associated diagonal matrix

θ 0

0 θ

 ∈
PSL2(H) solves the necessary symmetry requirements, but itself is not part of the Weyl

group, and therefore has to be removed from PSL2(H) [FKN09].

10.4.2 Type B4

The B4 root lattice is isomorphic to L, the hypercubic lattice of the Lipschitzian

integers. The simple roots can be chosen as follows:
α1 = 1, α2 =

1
2
(−1 + i − j − k) = i − h,

α3 =
1
2
(−1 − i + j − k) = j − h, α4 =

−j + k
2

.

Note that ‖α4‖ =
1√
2

. The highest root of B4 is

θ = 2α1 +α2 + 2α3 + 2α4 =
1
2
(1 − i − j − k) = h̄.

The hyperbolic over-extension B++
4 has the following simple roots:

A−1 =

−1 0

0 1

 , A0 =

 1 −h̄

−h 0

 , A1 =

0 1

1 0

 ,

A2 =

 0 i − h

−i − h̄ 0

 , A3 =

 0 j − h

−j − h̄ 0

 , A4 =

 0
−j + k√

2
j − k√

2
0

 ,

which are labeled as in the following graph.
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A−1 A0

A1

A2

A3

4 A4

Figure 10.6: Coxeter diagram of B++
4

The even Weyl groupW+(B++
4 ) is isomorphic to the discrete subgroup of PSL2(H)

generated by

S0 =

 1 h

−h̄ 0

 , S1 =

0 −1

1 0

 ,

S2 =

 0 i + h̄

i − h 0

 , S3 =

 0 j + h̄

j − h 0

 , S4 =

 0
−j + k√

2
−j + k√

2
0

 .

Proposition 10.4.2 (Proposition 10;[FKN09]).

W+(B++
4 ) ∼= PSL∗2(H)o 2.

10.4.3 Type C4

Even though the Weyl groups of B4 and C4 are isomorphic, the hyperbolic Weyl

groups of B++
4 and C++

4 are nevertheless different. As explained in [FKN09], this

difference is reflected only in the difference between the highest roots; for C4 we

have an octahedral unit of order four whereas for B4 the highest root is a Hurwitz

number of order six. Explicitly, the simple roots of C4 are

α1 =
1√
2

, α2 =
−1 + i − j − k

2
√

2
, α3 =

−1 − i + j − k
2
√

2
, α4 =

−j + k√
2

.

Note that ‖α1‖ = ‖α2‖ = ‖α3‖ =
1√
2

while ‖α4‖ = 1. The highest root in ΛC4 is given

as

θ = 2α1 + 2α2 + 2α3 +α4 =
−j − k√

2
.

The over-extension C++
4 is hyperbolic and has the following Coxeter diagram.
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A−1 A0

4
A1 A2 A3

4
A4

Figure 10.7: Coxeter diagram of C++
4

where the simple roots are given by

A−1 =

−1 0

0 1

 , A0 =

 1
j + k√

2
−j − k√

2
0

 , A1 =

0 1

1 0

 ,

A2 =

 0 i − h

−i − h̄ 0

 , A3 =

 0 j − h

−j − h̄ 0

 , A4 =

 0
−j + k√

2
j − k√

2
0

 .

The even Weyl group W+(C++
4 ) is then isomorphic to the discrete subgroup of

PSL2(H) generated by

S0 =

 1
j + k√

2
−j − k√

2
0

 , S1 =

0 −1

1 0

 ,

S2 =

 0 i + h̄

i − h 0

 , S3 =

 0 j + h̄

j − h 0

 , S4 =

 0
−j + k√

2
−j + k√

2
0

 .

Obviously, the generators SI, I = 1, . . . , 4, are identical to those of B++
4 . In fact, we

have

Proposition 10.4.3 (Proposition 11; [FKN09]).

W+(C++
4 ) ∼= P̃SL

∗
2(H)o 2.

where

P̃SL
∗
2(H) = {

θ 0

0 1

X
θ̄ 0

0 1

 | X ∈ PSL∗2(H)}

is the unitary transformation of PSL∗2(H) determined by the highest root θ of C4.

10.4.4 Type F4

The root system of F4 consists of two copies of the D4, one of which is rescaled. It

has the following simple roots:

α1 = 1, α2 =
1
2
(−1 + i − j − k), α3 =

−i + j
2

, α4 =
−j + k

2
,
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where ‖α1‖ = ‖α2‖ = 1 while ‖α3‖ = ‖α4‖ =
1√
2

. The highest root of F4 is

θ = 2α1 + 3α2 + 4α3 + 2α4 =
1
2
(1 − i − j − k) = h̄.

The Coxeter diagram for the over-extension F++
4 is

A−1 A0 A1 A2

4
A3 A4

Figure 10.8: Coxeter diagram of F++
4

Following from Theorem 10.1.1, the even Weyl group W+(F++
4 ) ∼= 〈SI | I = 0, 1, . . . , 4〉

with

S0 =

 1 h

−h̄ 0

 , S1 =

0 −1

1 0

 ,

S2 =

 0 i + h̄

i − h 0

 , S3 =

 0
−i + j√

2
−i + j√

2
0

 , S4 =

 0
−j + k√

2
−j + k√

2
0

 .

Proposition 10.4.4 (Prop. 12;[FKN09]).

W+(F++
4 ) ∼= PSL∗2(H)o S3 ∼= PSL2(H)o 2,

where S3 is the symmetric group on three letters.

Proof. First, we explicitly compute that

S3S2S3 =

 0 j + h̄

j − h 0

 , S4S3S2S3S4 =

 0 k + h̄

k − h 0

 .

Obviously, it results from Equation 10.6 that

W+(D++
4 ) ∼= 〈S0,S1,S2,S3S2S3,S4S3S2S3S4〉.

Recall that W+(D++
4 ) ∼= PSL∗2(H), thus,

PSL∗2(H) ∼= 〈S0,S1,S2,S3S2S3,S4S3S2S3S4〉.

On the other hand, it is clear that

W+(F++
4 ) ∼= 〈S0,S1,S2,S3S2S3,S4S3S2S3S4,S3,S4〉.
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Notice that 〈S3,S4〉 ∼= S3. Thus, it suffices to prove that

〈S0,S1,S2,S3S2S3,S4S3S2S3S4,S3,S4〉 ∼= 〈S0,S1,S2,S3S2S3,S4S3S2S3S4〉o 〈S3,S4〉,

which can be verified directly.

Furthermore, considering the action given in Equation 6.2 we may view W(F++
4 )

as a discrete subgroup of Isom
(
H(H)

)
. Especially, the quotient H(H)/W(F++

4 ) is

a cusped complete hyperbolic 5-orbifold whose volume is minimal among all such

cusped hyperbolic 5-orbifolds [Hil07].

10.5 K = O

10.5.1 Type E8

The root system of type E8 is simply-laced, whose root lattice is the only non-

trivial positive-definite, even, unimodular lattice of rank 8. Specifically, ΛE8 consists

of point in R8 that satisfies

• the coordinates are either all integers or all half-integers;

• the sum of the eight coordinates is an even integer.

Direct calculations show that ΛE8 is isometric to O, the integral lattice of octaves.

Recall that O =
8
⊕
i=1

Zεi with

ε1 =
1
2
(1 − e1 − e5 − e6), ε2 = e1,

ε3 =
1
2
(−e1 − e2 + e6 + e7), ε4 = e2,

ε5 =
1
2
(−e2 − e3 − e4 − e7), ε6 = e3,

ε7 =
1
2
(−e3 + e5 − e6 + e7), ε8 = e4.

Hence, the vectors {εi}
8
i=1 can be viewed as simple roots of E8, which are labeled

below in the same way as in [KMW].

With respect to the root basis {εi}
8
i=1, the highest root is then equal to

θ = 2ε1 + 3ε2 + 4ε3 + 5ε4 + 6ε5 + 4ε6 + 2ε7 + 3ε8 = 1.
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ε1 ε2 ε3 ε4 ε5 ε6

ε8

ε7

Figure 10.9: Coxeter diagram of E8 with numbering of nodes

The over-extension of E8 root system is the hyperbolic root system E10, whose root

lattice is also even and unimodular. E10 has the following root basis:

A−1 =

−1 0

0 1

 , A0 =

 1 −1

−1 0

 , Ai =

 0 εi

ε̄i 0

 , i = 1, . . . , 8,

which are labeled as in the graph below.

A−1 A0 A1 A2 A3 A4 A5 A6

A8

A7

Figure 10.10: Coxeter diagram of E10 with numbering of nodes

Moreover, from Theorem 10.1.1 we obtain

W+(E10) ∼= 〈SI : I = 0, 1, . . . , 8〉,

where

S0 =

 1 1

−1 0

 , SI =

 0 −ε̄I

εI 0

 for I = 1, . . . , 8.

Regarding the even Weyl group of E10, we have the following theorem.

Theorem 10.5.1.

W+(E10) ∼= PSL∗2(O)

Proof. Write K := 〈SI : I = 0, 1, . . . , 8〉 6 PSL2(O). Then it suffices to prove K ∼=

PSL∗2(O). We have already shown in Equation 5.6 that the Octavian modular group

PSL∗2(O) = 〈S =

0 −1

1 0

 ,UεI =

1 εI

0 1

 , I = 1, . . . , 8〉.

First, the fact θ = 2ε1 + 3ε2 + 4ε3 + 5ε4 + 6ε5 + 4ε6 + 2ε7 + 3ε8 = 1 implies1 1

0 1

 =

1 θ

0 1

 = U2
ε1
U3
ε2
U4
ε3
U5
ε4
U6
ε5
U4
ε6
U2
ε7
U2
ε8
∈ PSL∗2(O).
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Then 

1 ε̄1

0 1

 =

1 1 − ε1

0 1

 =

1 1

0 1


1 ε1

0 1


−1

∈ PSL∗2(O)

1 ε̄I

0 1

 =

1 −εI

0 1

 =

S1 εI

0 1


−1

∈ PSL∗2(O) for I > 2.

Thus, applying Equation 8.8 to εI shows that for all I = 1, . . . , 8, 0 −εI

ε̄I 0

 =

1 εI

0 1

0 −1

1 0

1 ε̄I

0 1

0 −1

1 0

1 εI

0 1

 ∈ PSL∗2(O).

Hence, we obtain

S0 =

1 −1

0 1


0 −1

1 0

 =

1 1

0 1


−1 0 −1

1 0

 ∈ PSL∗2(O),

SI =

0 −1

1 0


 0 −εI

ε̄I 0


0 −1

1 0

 ∈ PSL∗2(O),

and thus, K 6 PSL∗2(O).

Conversely, let sθ ∈ W(E8) denote the reflection on the hyperplane Hθ that is

orthogonal to the highest root θ. It follows from Equation 10.1 that sθ(z) = −z̄. Then

in the over-extension E10, as displayed in Equation 10.3, it corresponds to the matrix1 0

0 −1

 . Especially, the element s−1sθ ∈W+(E10) corresponds to the matrix

Sθ =

0 1

1 0

1 0

0 −1

 =

0 −1

1 0

 ,

which implies that S = Sθ ∈ K.

It is known that E9 is the affine extension of the E8 root system. Following from

Corollary 9.1.6 we get

W(E9) = Γ oW(E8)

with

Γ = 〈tα | α ∈ ΛE8〉 ≡ 〈tεi | i = 1, . . . , 8〉 ∼= Z8.

In particular, it is clear that

W+(E9) = Γ oW+(E8).
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Note that 〈UεI | I = 1, . . . , 8〉 is a free abelian group of rank 8. Thus, 〈UεI〉 ∼= Γ can be

considered as a normal subgroup of W+(E9), and hence a subgroup of K ∼=W+(E10).

As we have already shown that S ∈ K, we thus obtain

PSL∗2(O) = 〈UεI , S〉 6 K,

which completes the proof.

Consider the action of PSL∗2(O) on H(O) given in Equation 6.2. It is clear that

PSL∗2(O) 6 Isom
(
H(O)

)
. Then as a result of Theorem 10.5.1, the group W+(E10) can

also be viewed as a subgroup of Isom
(
H(O)

)
. Moreover, we define

PGL∗2(O) = 〈

0 1

1 0

 ,

0 −1

1 0

 ,

1 εI

0 1

 , I = 1, . . . , 8〉.

Then it is clear that W(E10) ∼= PGL∗2(O) 6 Isom
(
H(O)

)
. In particular, it has been

shown in [Main Theorem; [Hil07]] that H(O)/W(E10) ∼= H9/PGL∗2(O) is a cusped

complete hyperbolic 9-orbifold whose volume is minimal among all such cusped

hyperbolic 9-orbifolds.

10.5.2 Type D8 and B8

The simple roots of D8 are given by

ε1 = e3, ε2 =
1
2
(−e1 − e2 − e3 + e4),

ε3 = e1, ε4 =
1
2
(−1 − e1 − e4 + e5),

ε5 = 1, ε6 =
1
2
(−1 − e5 − e6 − e7),

ε7 =
1
2
(e2 − e3 + e6 − e7), ε8 =

1
2
(−1 + e2 + e4 + e7).

The highest root of D8 is

θD = 2ε1 + 2ε2 + 2ε3 + 2ε4 + 2ε5 + ε6 + ε7 + ε8 =
1
2
(e3 + e4 + e5 − e7).

The simple roots of B8 are

ε1 = e3, ε2 =
1
2
(−e1 − e2 − e3 + e4),

ε3 = e1, ε4 =
1
2
(−1 − e1 − e4 + e5),
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ε5 = 1, ε6 =
1
2
(−1 − e5 − e6 − e7),

ε7 =
1
2
(e2 − e3 + e6 − e7), ε8 =

1
4
(e2 + e4 + e5 + e6 + 2e7).

Note that ε8 is no longer an octave, in agreement with the fact that B8 is not a

subalgebra of E8. The highest root of B8 is

θB = 2ε1 + 2ε2 + 2ε3 + 2ε4 + 2ε5 + 2ε6 + ε7 + 2ε8 =
1
2
(e3 + e4 + e5 − e7).

It follows [FKN09] that W+(D++
8 ) is an index 135 subgroup of PSL2(O) and

W+(B++
8 ) ' W+(D++

8 )o 2. Besides this, we know very little about the hyperbolic

Weyl groups of D++
8 and B++

8 .
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