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1 INTRODUCTION 

Animal health is an important part of all scientifically recognized definitions of animal 

welfare. “Freedom from pain, injury or disease”, is one of the Five Freedoms, postulated 

by the Farm Animal Welfare Council in 1979. The World Organization for Animal 

Health (OIE) writes in its “Terrestrial Animal Health Code” that “an animal is in a good 

state of welfare if it is healthy [...]” (OIE, 2013). Early diagnosis and adequate 

therapeutics are crucial in improving animal health, and thus in making a contribution 

to animal welfare. 

In cattle, enteric infectious diseases, such as neonatal calf diarrhea, still cause significant 

economic losses and pose a marked threat to animal welfare (Waltner-Toews et al., 

1986; Warnick et al., 1995; Mohd Nor et al., 2012). The main pathogens responsible for 

neonatal calf diarrhea are Bovine Coronavirus (BCV), Bovine Rotavirus (BRV), 

enterotoxic E. coli equipped with F5 fimbriae (F5-ETEC) and Cryptosporidium parvum 

(C. parvum) (Kaske, 1993; Al Mawly et al., 2015a).  

The diagnosis in the early stages of inflammation, already before clinical signs occur, 

can help to prevent a fatal course of the disease. Furthermore, an estimation of the 

prognosis enables the veterinarian to monitor critical patients more intensively. In 

several disorders, interleukins, and especially interleukin-6 (IL-6), appear to be such 

markers of early inflammation and prognosis (Hisaeda et al., 2011; Neumann et al., 

2012; Schüttler et al., 2015; Mat-Nor et al., 2016). Interleukin-6 is a representative for 

the pro-inflammatory interleukins with a pleiotropic mode of action (Ataie-Kachoie et 

al., 2014). The role of IL-6 in inflammation includes induction of the acute phase 

response, triggering T-cell proliferation and stimulating the differentiation of B-cells 

(Banks et al., 1995; Yoshida et al., 2010; Rosser et al., 2014). In this dissertation, IL-6 

will be proven as a prognostic marker in neonatal calf diarrhea. As very little 

information concerning IL-6 in newborn calves exists, the first study investigates the 

physiological development of IL-6 gene-expression and serum titers during the first four 

weeks of life. In a second study, IL-6 will be investigated in calves suffering from 

diarrhea to determine the prognostic reliability of this parameter in predicting the course 

of the disease.  

Beside the early diagnosis, an effective therapeutic strategy is essential for animal 

health. Treatment of livestock becomes more and more critical due to the growing 

negative image of antibiotic use, the resistance situation in many bacterial pathogens 
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and the lack of adequate antiviral therapeutics (Bosman et al., 2014; Liu et al., 2016). 

To prevent viral and bacterial infections in the case of neonatal calf diarrhea, two main 

strategies are currently pursued. The first is dam vaccination with compounds 

containing antigen preparations of common diarrheagenic pathogens. The second is 

passive immunization of calves with concentrated immune sera, obtained by colostrum 

purification. However, these two options are tainted with several disadvantages. 

Effective dam vaccination requires significant logistical effort during immunization and 

colostrum management. Furthermore, colostrum quality is limited to the cow’s 

individual immunological competence (Kuegler et al., 2015). The elaborate production 

of orthologous and homologous immune sera results in expensive compounds, whose 

application is limited to individual cases. It can be stated that species-specific 

immunoglobulins are important for prophylaxis and therapy. Unfortunately, no 

standardized economic solutions are available. One possibility to overcome this 

therapeutic shortfall, is the generation of species-specific high affine single-chain 

fragment (scFv) antibodies in immunized antibody libraries and their production by 

recombinant expression systems. In a scFv molecule, a peptide linker connects the 

variable domain of an antibody-heavy chain to the variable domain of an antibody-light 

chain (Farajnia et al., 2014). The limitation of the scFv antibody on structures crucial 

for antigen binding results in a very small but functional molecule (Sandhu, 1992). 

Regarding tissue penetration, this is particularly advantageous, especially for future 

clinical applications (Ahmad et al., 2012). Therefore, the third study of this dissertation 

aims at the generation of a bovine scFv antibody against BCV. Initially, a primer will 

be established for the amplification of the whole genomic antibody repertoire in cattle. 

This will be used to amplify antibody encoding mRNA from B-cells of a donor animal. 

The antibody sequences will be cloned and transformed into E. coli cells with the aim 

of generating a highly diverse bovine antibody library. Phage display will be used to 

screen the library for specific antibodies against BCV. Isolated antibodies will be further 

characterized concerning their specificity and affinity.  

The present dissertation aims to improve the prognostic and therapeutic potential in 

neonatal calf diarrhea by establishing a reliable prognostic marker and by developing 

innovative antiviral drugs. This will contribute to an improvement of farm animal 

welfare. The development of a recombinant species-specific antibody library will 
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further promote the therapeutic application of recombinant antibodies in veterinary 

medicine, as they are already frequently used in human medicine (Reichert, 2015).
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2 LITERATURE 

2.1 Neonatal Calf Diarrhea 

Neonatal calf diarrhea is described as being one of the most devastating diseases in 

rearing calves (Lorenz et al., 2011a). The disease has an important impact on the 

economic calculation in dairy farming as well as on the welfare of the affected animals 

(Donovan et al., 1998; Mohd Nor et al., 2012; Windeyer et al., 2014). Usually, mixed 

infections with one of the four most important pathogens (enterotoxic E. coli equipped 

with F5 fimbriae (F5-ETEC), Bovine Rotavirus (BRV), Bovine Coronavirus (BCV), 

Cryptosporidium parvum (C. parvum)) are detected (de la Fuente et al., 1999; Foster et 

al., 2009). Despite these infectious agents, several environmental factors, such as 

housing conditions and colostrum quality, impair the risk and outcome of diarrhea 

(Quigley et al., 1995; Al Mawly et al., 2015b). Neonatal calf diarrhea primarily affects 

calves in their first two weeks of life (Lorenz et al., 2011a). The animals suffer from 

secretory malabsorptive diarrhea (Foster et al., 2009). Depending on the respective 

pathogen responsible for the diarrhea, specific treatment options are either available or 

missing. In E. coli infections, the use of antibiotics is indicated, but the growing negative 

image of antibiotics and bacterial resistances require careful consideration of the 

application (Bosman et al., 2014; Liu et al., 2016). For C. parvum infections, drugs 

containing the active component Halofuginon are licensed in Germany, but bear the 

disadvantage of having a very small therapeutic interval with a high risk of intoxications 

(Silverlas et al., 2009). Regarding the viral pathogens (BCV, BRV), no specific anti-

viral therapy is available. However, the most important therapeutic intervention is a 

rapid and sufficient fluid substitution (Meganck et al., 2014). In order to avoid outbreaks 

of neonatal calf diarrhea, several preventive strategies, such as dam vaccination, 

cautious colostrum management and effective disinfection strategies are recommended 

(Meganck et al., 2015). 

 

2.2 Bovine Coronavirus 

2.2.1 Taxonomy and Structure 

Bovine Coronavirus (BCV) was first described in 1972 (Stair et al., 1972; Mebus et al., 

1973a). Until 2008 the virus was taxonomically grouped in the order Nidovirales, family 

Coronaviridae, genus Coronavirus, species Bovine Coronavirus by the International 

Committee on Taxonomy of Viruses (ICTV; www.ictvonline.org).
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In 2008, the committee assigned Bovine Coronavirus together with other coronaviruses, 

such as Human Coronavirus OC43, to a new species Betacoronavirus 1, due to the high 

percentage of sequence identity. Today, the correct taxonomic classification of Bovine 

Coronavirus is: order Nidovirales, family Coronaviridae, subfamiliy Coronoavirinae, 

genus Betacoronavirus, species Betacoronavirus 1. 

The virus is composed of five major structural proteins, the spike (S) protein, the 

hemagglutinin-esterase (HE) protein, the transmembrane (M) protein, the small 

envelope (E) protein and the nucleocapsid (N) protein (Chouljenko et al., 2001). A 

structural model of a BCV is shown in figure 1. The S protein (190 kD) consists of two 

subunits S1 (105 kD) and S2 (90 kD) (Abraham et al., 1990a). The S1 subunit forms the 

characteristic outer projection of this viral surface protein and contains a highly 

polymorphic domain, which is assumed to contribute to pathogenicity (Yoo et al., 

1991b; Rekik et al., 1994). Host-cell receptor binding is the main function of the S1 

subunit (Kubo et al., 1994; Peng et al., 2012). Additionally, it agglutinates mouse, rat 

and chicken red blood cells (Schultze et al., 1991a). The S2 subunit is located in the 

virus membrane and is important for the fusion of virus and host cell membrane (Yoo 

et al., 1991a; Luo et al., 1998). The second surface protein with hemagglutination 

capability, is the like-named HE protein. This protein is as a 120-140 kD dimer, which 

is assembled by two 65 kD monomers connected by disulphide bridges (Hogue et al., 

1989). In comparison to the S1 subunit of the S protein, it is less potent in 

hemagglutination, as it only agglutinates rat and mice red blood cells, but not chicken 

red blood cells (Schultze et al., 1991a). Despite that, the HE protein shows 

hemadsorbtion, receptor-binding and receptor-destroying functions (Kienzle et al., 

1990; Schultze et al., 1991b). Another smaller surface protein is the so-called small 

envelope (E) protein (8.4-12 kD) (Abraham et al., 1990b; Ko et al., 2006; Liu et al., 

2007a). It bears important functions for sufficient assembly and morphogenesis of virus 

particles (Fischer et al., 1998; Raamsman et al., 2000). 

The M protein (24-26 kD) consists of three different domains (King et al., 1982; Lapps 

et al., 1987): the N-terminal domain, which lies on the outside of the virus, the 

membrane spanning domain and the carboxy-terminal domain, which lies in the inside 

of the virus particle and interacts with the nucleocapsid (Clark, 1993). The fifth major 

structural protein, is the N protein (50-52 kD), which is associated with the genome 

forming a helical nucleocapsid (King et al., 1982; Lapps et al., 1987).
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All these proteins are encoded in the positive-sense single stranded RNA genome (27-

30kb), in the 5’-3’- order HE, S, E, M, N (Guy et al., 1979; Spaan et al., 1988). At the 

5’-end additional non-structural proteins, such as the RNA polymerase are encoded 

(Spaan et al., 1988).  

Concerning the antigenicity, for long time, only one serotype had been suggested for 

BCV (Tsunemitsu et al., 1995; Bok et al., 2015). More recent studies, showed the 

existence of at least two clades of BCV, when strain comparison is based on the amino 

acid sequence of the S protein (Fulton et al., 2013; Kanno et al., 2013). Despite these 

observations of the overall antigenicity for virus strain comparisons, antigenic structures 

were studied in more detail by using monoclonal antibodies to investigate specific 

epitopes on the major structural proteins of BCV. Most neutralizing epitopes were found 

on the S1 subunit of the S protein (Deregt et al., 1987; Vautherot et al., 1990; Michaud 

et al., 1993). These investigations determined four antigenic domains (A-D) using 

monoclonal antibodies in competition ELISA tests (Vautherot et al., 1990). Domain A 

and C also contain non-neutralizing epitopes, which seemed to be highly conserved 

between BCV isolates (Michaud et al., 1993). In the S2 subunit two different antigenic 

domains (A, B) were shown (Vautherot et al., 1992b). In domain A a highly conserved 

linear epitope was found (Vautherot et al., 1992a). In western blotting, antibodies 

binding to the S2 subunit showed additional reactivity on a 200 kD glycoprotein (gp200) 

(Vautherot et al., 1992b). This gp200 was supposed to be an oligomer of some S2 

subunits. Neutralizing epitopes were also found on the HE protein (Deregt et al., 1987; 

Parker et al., 1989; Parker et al., 1990; Vautherot et al., 1992b). Antibodies against the 

HE protein bound to conformational dependent epitopes on the HE dimer, as they did 

not react on the denatured protein (Vautherot et al., 1990; Vautherot et al., 1992b). 

Antibodies binding to the M protein were only able to neutralize the virus when 

complement was added (Saif, 1993). Epitopes found on

the nucleoprotein were shown to be continuous and non-neutralizing (Hussain et al., 

1991).
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Fig. 1. Bovine Coronavirus. Structure of a BCV virus particle with the main structural proteins. S, 

spike-protein; E, small envelope protein; HE, hemagglutinin-esterase protein; N, nucleo-

protein, M, membrane protein
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2.2.2 Epidemiology and Pathogenesis of Diarrhea caused by BCV 

Bovine Coronavirus is distributed worldwide and serum antibodies against BCV can be 

detected in most adult cattle (Abraham et al., 1992; Kapil et al., 1999; Park et al., 2006; 

Coura et al., 2015; Gunn et al., 2015; Moore et al., 2015). Adult cattle are the main 

reservoir for this virus and a consecutive occurrence on the same farm is common 

(Crouch et al., 1985; Clark, 1993). Virus excretion increases at birth and during the 

winter months, making calves born during winter seasons more prone to an infection 

(Bulgin et al., 1989; Gulliksen et al., 2009a). But carrier animals can also be found 

among healthy calves, where up to 24% carry the virus (Heckert et al., 1991).  

Pathologic changes and clinical outcome has been intensively studied in the years after 

the first description of BCV in 1972 (Mebus et al., 1973b; Mebus et al., 1975; Lewis 

and Phillips, 1978; Langpap et al., 1979). 

The infection of calves occurs via the oronasal route and initially affects the small 

intestine, where it leads to the stunting of the villi. It spreads to the large intestine, where 

an atrophy of colonic rides occurs. The virus replication in surface epithelia cells 

catalyzes cell death and the replacement of these cells with immature cells. These cells 

have a deficient absorptive and digestive capacity, whereas the secretory activity is 

functional. Therefore, these cell replacement causes severe loss of water and electrolytes 

in the intestine of infected calves. The infection is resolved by self-limitation, as the new 

immature cells are more resistant to an infection.  

Despite the clinical picture of neonatal calf diarrhea, which mainly affects 1-2 week old 

calves, two other clinical pictures were related to BCV (Boileau et al., 2010; Cho et al., 

2013; Ammar et al., 2014). The first is a respiratory tract infection, where the virus 

infects epithelia cells of the nasal cavity and tracheas, causing respiratory symptoms, 

such as rhinitis, sneezing and coughing (Saif, 2010). The second is winter dysentery, a 

bloody diarrheic disease in adult cattle (Saif, 1990). No reliable genetic marker was 

found to differentiate BCV strains, isolated from these three clinical 

syndromes (Zhang et al., 1994; Tsunemitsu et al., 1995; Traven et al., 2001). 
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2.3 Bovine Interleukin 6 

2.3.1 Cytokines and the Immune System 

Following the recommendations of the Nomenclature Committee of the International 

Union of Immunological Societies (IUIS), cytokines are defined as molecules which 

originate in immune cells and mediate important steps in an immune response (Paul et 

al., 1992). The main characteristics of cytokines are redundancy, ambiguity, pleiotropy 

and the biological activity in a nano- to picomolar range (Lunney, 1998). In the 

organism, cytokines form a complex network for intercellular communication 

(Subramanian et al., 2015). Three communication networks can be distinguished: one 

between immune cells, one between body cells and one at the interface of immune and 

body cells (Frankenstein et al., 2006). Focusing on the network between immune cells, 

cytokines connect the different levels of immune cells (Figure 2) (Iwasaki et al., 2015). 

A sensor cell (e.g. macrophages, dendritic cells) recognizes an antigen and starts to 

produce level 1 cytokines, which activate specific immune cells (e.g. lymphocytes). 

These immune cells then activate other immune effector cells, such as B-cells or 

macrophages, via the secretion of level 2 cytokines. During this pathway, the type (e.g. 

Th1, Th2) and the duration of an immune response is controlled by the secreted cytokine 

pattern (Lunney, 1998). In several medical contexts, the detailed understanding of 

cytokine pathways is important. Especially in autoimmune diseases and chronic 

inflammation, cytokines were supposed to play a major role in the pathogenesis (Barnes, 

2009; Liu et al., 2013b; Landskron et al., 2014; Raphael et al., 2015). Furthermore, in 

animal genetic research, efforts were made to breed for disease resistance by focusing 

on markers which are related to specific cytokines (Maryam et 

al., 2012; Sato et al., 2015). 
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Fig. 2. Role of Level 1 and Level 2 cytokines in Type 1 and Type 2 immunity. Adapted by  

permission from Macmillan Publishers Ltd. [Nature Immunology] (Iwasaki A., Medzhitov R.; 

Control of adaptive immunity by the innate immune system.), copyright © (2015)  

 

 

2.3.2 Interleukin-6 

2.3.2.1 Protein 

The first descriptions of Interleukin-6 (IL-6) were based on its biological function 

(Hirano, 2014). Before the cDNA of IL-6 was described in 1986, it was found in 

literature as T-cell replacing factor (TRF), B-cell growth factor II (BCGF II), B-cell 

stimulating factor (BSF2), TRF-like factor, B-cell differentiation factor II (BCDF II), 

Interferon beta 2 (IFNß2), plasmacytoma/ hybridoma/ myeloma growth factor or 

hepatocyte-stimulating factor (Schimpl et al., 1972; Howard et al., 1982; Swain et al., 

1982; Teranishi et al., 1982; Hirano et al., 1986; Zilberstein et al., 1986; Gauldie et al., 

1987; Van Damme et al., 1987; Kawano et al., 1988). In 1988 the molecule was finally 

renamed as Interleukin-6 by the New York Academy of Science (Hirano, 2014). The 

human IL-6 is a 212 amino acid protein with two potential N-glycosylation sites (Hirano 

et al., 1986; Droogmans et al., 1992). In comparison, the bovine IL-6 is a 208 amino 

acid protein with only one potential N-glycosylation site. It shows 76 % 

http://cshperspectives.cshlp.org/site/misc/terms.xhtml
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similarity on the nucleotide and 53% similarity on the protein level to the human protein 

(Droogmans et al., 1992). In both species, the protein shows a relatively conserved 

middle part with four invariant cysteines, which is considered important for biological 

activity (Tanabe et al., 1988; Droogmans et al., 1992). 

 

2.3.2.2 Receptor 

The effect of IL-6 is transmitted via two different pathways. One pathway uses a 

membrane-bound form of the IL-6 receptor (classical pathway) and another pathway 

uses a soluble from of the IL-6 receptor (trans-signaling pathway).  

The membrane-bound form of the IL-6 receptor (IL-6R) is mainly located on 

hepatocytes, leukocytes and megakaryocytes (Rose-John et al., 2006). It is a 80 kD 

protein, which is also known as Typ 1 cytokine α-receptor subunit or CD126 (Yamasaki 

et al., 1988). For successful signal transmission, the IL-6 receptor forms a heterodimer 

unit with the gp130 (Skiniotis et al., 2005). This 130 kD glycoprotein is also known as 

a signal transducing β-receptor unit or CD130 (Taga et al., 1989). It is universally 

expressed on cell surfaces and is not specific for the IL-6 signaling pathway (Xu et al., 

2013). Neither the binding of IL-6 to the IL-6R nor to the gp130 alone leads to signal 

transmission; only the complex of IL-6, IL-6R and the gp130 is functional (Taga et al., 

1997). The subsequent signal transmission in the cell either leads to the activation of a 

Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling 

pathway, mainly regulating cell development and homeostasis, or to the activation of a 

Src homology-2 protein tyrosine phosphatase (SHP)-2 driven Ras-Raf (rat sarcoma 

protein; rapidly accelerated fibrosarcoma protein) mitogen-activated protein kinase 

(MAPK) pathway, mainly regulating cell growth and differentiation (Rawlings et al., 

2004; McCubrey et al., 2007; Rose-John, 2012).  

The trans-signaling pathway of IL-6 is mediated by a soluble form of the IL-6 receptor 

(sIL-6R) (Novick et al., 1989). The sIL-6R is generated by alternative splicing of the 

IL-6R mRNA or by proteolytic cleavage of the membrane bound IL-6R (Wolf et al., 

2014). The complex of IL-6 and the sIL-6R has a significant higher affinity towards the 

gp130 than its counterpart, the complex of IL-6 and IL-6R (Rose-John et al., 1990; 

Rose-John, 2012). Therefore, the IL-6 effect differs between the classical and the trans-

signaling pathway. The quality of cell response mediated by the trans-signaling 
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pathway is found to be stronger and prolonged (Peters et al., 1998). Aside from the sIL-

6R, a soluble form of the gp130, called sgp130RAPS also exists (Narazaki et al., 1993). 

The sgp130RAPS is generated by alternative splicing of mRNA (Wolf et al., 2014). In 

a physiological state, the sgp130RAPS neutralizes the complex of IL-6/sIL-6R in the 

circulation, due to a balance of all three compounds (Jostock et al., 2001; Richards et 

al., 2006).  

When taking together these findings and looking at the overall effect of IL-6, it is shown 

that the classical IL-6 pathway leads to anti-inflammatory processes, whereas the trans-

signaling IL-6 pathway leads to pro-inflammatory processes (Grivennikov et al., 2009; 

Scheller et al., 2011). 

 

2.3.2.3 Regulation 

In healthy humans, the IL-6 serum concentrations are in the pg/ml range and IL-6 is 

neutralized by a complex of sIL-6R and sgp130 (Rose-John, 2012; Hou et al., 2016). 

Under septic conditions the serum concentrations increase up to µg/ml and cancel the 

neutralizing effect of sIL-6R and sgp130 (Lin et al., 2015). The regulation of IL-6 

mainly occurs on the transcriptional level. Various microRNAs and transcription factors 

regulate the IL-6 gene expression (Table 1) (Baccam et al., 2003; Terasaka et al., 2010). 

Out of the promoting transcription factors, NF-κB seems to be the most important (Li 

et al., 2002). Besides, secondary messengers such as bacterial lipopolysaccharides, 

viruses, other cytokines and growth factors can enhance the IL-6 gene expression (Ray 

et al., 1988; Isshiki et al., 1990; Park et al., 2003). Additional regulation occurs on the 

post-transcriptional level via stabilization of the 3’UTR region of the IL-6 mRNA. 

Again, several different proteins and microRNAs act in a stabilizing or degrading 

manner on the IL-6 mRNA (Table 1) (Xu et al., 2011; Akira, 2013; Masuda et al., 2013). 

Finally, a genetic polymorphism was found in the IL-6 promotor region, which leads to 

a higher IL-6 transcription rate in the corresponding phenotype (Fishman et al., 

1998; Ataie-Kachoie et al., 2014). 
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Table 1  Proteins and microRNAs regulating the IL-6 gene expression. 

LEVEL Upregulation/Stabilization Suppression/Degradation 

Genomic 174 G/C genotype 

→ high producer 

174 C/C genotype 

→ low producer 

 Protein miRNA Protein miRNA 

Transcription  Primary messengers 

NF-κB  

SP-1  

NF-IL-6  

AP-1  

IRF1  

Mutantp53  

CREB 

Secondary messengers 

bacterial LPS viruses  

IL-1 

TNF-α  

EGF  

PDGF  

TGF-β 

 

 

Ahr 

GR  

ER  

p53  

Rb 

PPARα 

 

miR-155  

miR-146a/b 

miR-223 

Post-

Transcription  

Arid5a 

P38α 

 Regnase-1 

BRF1 

BRF2 

miR-365 

miR-608 

 

Adapted from Tanaka T., Narazaki M., Kishimoto T., 2014. Il-6 in inflammation, immunity, and disease. 

Cold Spring Harb Perspect Biol 6, a016295. Copyright © 2014 Cold Spring Harbor Laboratory Press 

 

 

2.3.2.4 Physiology and Pathophysiology 

The two main functions of IL-6 are the regulation of inflammatory processes and the 

induction of an immune response. During inflammation, IL-6 is produced in the local 

lesion and reaches the liver via blood stream (Heinrich et al., 1990). The hepatocytes 

respond to a IL-6 stimulation with the production of acute phase proteins (Gauldie et 

al., 1987; Banks et al., 1995).  

Despite this systemic pro-inflammatory effect, IL-6 also acts on the local level. Resting 

T-cells are reactivated by an IL-6 mediated increase of IL-2 and prevented from 

apoptosis due to the activation of STAT3 and Bcl-2 by IL-6 (Teague et al., 1997; Atreya 

et al., 2000; Yoshida et al., 2010). Naïve CD4+ cells maturate to Th2 effector 

http://cshperspectives.cshlp.org/site/misc/terms.xhtml
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cells under the influence of IL-6 and TGF-β and CD8+ cells develop into cytotoxic T-

cells (Okada et al., 1988; Rincon et al., 1997; Chen et al., 2003). The combination of 

IL-6 and TGF-β is also responsible for the balance of Treg and Th17 cells at the site of 

inflammation and thereby creates a pro-inflammatory milieu (Bettelli et al., 2006; Korn 

et al., 2009; Kimura et al., 2010). Taken together, these findings demonstrate that the 

local IL-6 concentration is responsible for the change of an acute neutrophil dominated 

to a sustained monocyte-dominated inflammation (Kaplanski et al., 2003). Beside the 

effects on the inflammatory cascade and the innate immune response, IL-6 also affects 

the adaptive immune response. It triggers the development of Breg and plasma cells, and 

therefore leads to an augmented production of immunoglobulins (Hirano et al., 1986; 

Muraguchi et al., 1988; Rosser et al., 2014).  

Furthermore, IL-6 is involved in several other metabolic processes, such as 

haematopoiesis, angiogenesis and cell growth (Hassan et al., 1995; Heike et al., 2002; 

Gopinathan et al., 2015).  

Two different pathophysiological conditions are possible in the IL-6 metabolism, an 

excess or a lack of IL-6. An excessive production of IL-6 is observed in several 

autoimmune and IgG mediated diseases (Yamashita et al., 2011; Zhou et al., 2011; Ho 

et al., 2015). For example, in rheumatoid arthritis, IL-6 is responsible for the local 

inflammatory milieu in the affected joint by inducing chemokine and cell adhesion 

molecule expression (Suzuki et al., 2010). Furthermore, joint destruction is reinforced 

by IL-6, due to the activation of osteoclastogenesis (Kotake et al., 1996). In mice models 

of Crohn’s Disease, IL-6 is proven to provoke the expression of leukocyte adhesion 

molecules and pro-inflammatory cytokines resulting in a chronic inflammation of the 

intestine (Yamamoto et al., 2000).  

Finally, IL-6 is also described as playing a critical role in the activation of oncogenic 

pathways (Grivennikov et al., 2008; Atsumi et al., 2014).  

A lack of IL-6 is linked to an exacerbated inflammation, due to the down-regulation of 

IL-10 production in Breg cells and an increased production of pro-inflammatory proteins 

(Hurst et al., 2001; Rosser et al., 2014). For instance, Interleukin-6-deficient mice 

developed more severe lung damage than the wild-type strain after an infection 

with Influenza virus A strains (Lauder et al., 2013).
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2.3.3 Clinical Relevance 

The crucial influence of IL-6 on the regulation of inflammation and immune response 

make this cytokine an interesting target for diagnostic, prognostic and therapeutic 

questions in medicine.  

 

2.3.3.1 Human Medicine 

In human medicine, IL-6 shows an applicability for the diagnosis of bacterial infection 

in newborns. In newborns admitted to hospital, increased serum IL-6 levels revealed a 

sensitivity of 73% and a specificity of 78% for the detection of a bacterial infection 

directly on admission (Buck et al., 1994). Furthermore, additional studies demonstrated 

the potential of IL-6 as discriminator between viral and bacterial gastroenteritis in 

children. Children suffering from an acute gastroenteritis had significantly higher IL-6 

serum concentrations than those suffering from a viral gastroenteritis (sensitivity 79%, 

specificity 86%) (Lin et al., 2006). Similar was shown in cases of acute gastroenteritis 

due to infections with norovirus, rotavirus and Salmonella spp., where children tested 

positive for Salmonella spp., showed significantly higher IL-6 serum concentrations 

than children tested positive for norovirus or rotavirus (Chen et al., 2012). 

The utility of IL-6 as a prognostic marker is shown on the genomic and the protein level. 

A single-nucleotide-polymorphism (SNP) in the IL-6R gene is associated with a higher 

risk for asthma (Ferreira et al., 2011). The genotype was related to a phenotype, 

displaying higher sIL-6R concentrations in serum and airways, leading to a 

dysregulation of the inflammatory cascade (van Dongen et al., 2014). On the protein 

level, IL-6 serum concentrations could predict the relapse probability in Crohn’s disease 

and the disease activity in ulcerative colitis (Louis et al., 1997; Wine et al., 2013). In a 

mice sepsis model, IL-6 concentrations early after induction of sepsis, were a reliable 

marker for death within five days (sensitivity 82%, specificity 86 %) (Osuchowski et 

al., 2006). A study on 239 systemic inflammatory response syndrome (SIRS) patients, 

confirmed IL-6 as a predictor for mortality in humans, too (Mat-Nor et al., 2016). 

The therapeutic applications concerning the IL-6 pathway mainly focus on the 

generation of recombinant antibodies. Currently, two recombinant antibodies are 

approved for therapeutic use. The first is tocilizumab, a humanized IgG1 antibody 

directed to IL-6R (Venkiteshwaran, 2009). It used for the treatment of rheumatoid 
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arthritis (Nishimoto et al., 2000). In 2013, the global sales for this antibody were 

reported to be 1,119 million US dollars, underlining its clinical relevance (Ecker et al., 

2015). The second is siltuximab, an anti-IL-6 chimeric IgG1, licensed for the treatment 

of multicentric Castelman’s disease, which is a lymphoproliferative disorder, 

characterized by an excessive production of IL-6 (van Rhee et al., 2014; Chen et al., 

2015). Two more antibodies are currently in phase III clinical studies. Sirukumab 

(human anti-IL-6 IgG1) for the treatment of rheumatoid arthritis and giant cell arthritis, 

and SA237 (humanized anti-IL-6R IgG2) for the treatment of neuromyelitis optica and 

neuromyelitis opticaspectrum disorders (Reichert, 2015). 

 

2.3.3.2 Veterinary Medicine 

In veterinary medicine, IL-6 is investigated for use as diagnostic and prognostic marker 

in several species. Concerning therapeutic applications, research primarily focuses on 

IL-6 as an adjuvant in vaccine development.  

The diagnostic potential of IL-6 is proven for several diseases in dogs. Interleukin-6 

plasma or serum levels were increased in cases of congenital portosystemic shunts, 

idiopathic immune mediated polyarthritis and steroid responsive meningitis-arteritis 

(Maiolini et al., 2013; Foster et al., 2014; Kilpatrick et al., 2014). In hepatic diseases, 

IL-6 was able to distinguish between acute and chronic hepatitis, and primary and 

secondary hepatic tumors (Neumann et al., 2012).  

In horses, IL-6 in synovia was used to detect joint diseases even in cases were the 

diagnostic of lameness was insensitive (Bertone et al., 2001). During an infection with 

equine infectious anaemia virus (EIAV), IL-6 values in serum correlated with the RT 

activity of the virus and in foals IL-6 serum concentrations were a useful indicator for 

sepsis (Barton et al., 1998; Sellon et al., 1999; Burton et al., 2009). Furthermore, IL-6 

in serum and peritoneal fluid was shown to differ between colic types (e.g. 

inflammation, strangulation, non-strangulating or non-inflammatory, open, ruptured 

viscus) (Barton et al., 1999).  

In sheep suffering from encephalitis due to an infection with Listeria monocytogenes, 

IL-6 in cerebrospinal fluid (CSF) showed a diagnostic sensitivity of 83% and a 

specificity of 100% (Abdlla et al., 2015). Interleukin-6 measured in serum of camel, 

was successful in detecting animals with urinary tract infections (El-Deeb et al., 2015).
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More frequently, IL-6 is investigated as prognostic marker. In the Chiari malformation 

of the Cavalier King Charles Spaniel, pain caused by the syringomyelia was related to 

IL-6 detection in CSF (Schmidt et al., 2013). Levels of IL-6 in CSF were also shown to 

indicate a short survival time in ischemic stroke in dogs (Jeon et al., 2015). Additionally, 

the prognostic quality of IL-6 in plasma or serum of dogs was shown in idiopathic 

immune mediated polyarthritis, where it was correlated to pain and in pituitary-

dependent hyperadrenocorticism, where it correlated to the risk for vision loss (Cabrera 

Blatter et al., 2012; Foster et al., 2014). The survival of dogs in intensive care units and 

dogs suffering from systemic inflammatory response syndrome, can also be estimated 

by measuring IL-6 in serum (Rau et al., 2007; Schüttler et al., 2015). Similar effects 

were shown in species other than dog. Interleukin-6 as a marker for survival was 

confirmed in cases of acute abdomen in horses and encephalitic listeriosis in sheep 

(Barton et al., 1999; Abdlla et al., 2015). 

Concerning the therapeutic application of IL-6 in veterinary medicine, several studies 

investigated IL-6 as an adjuvant in vaccine development. In most cases, a recombinant 

IL-6 protein and a immunogenic surface protein of the pathogen, against which the 

immunization is directed, are together encoded in a vector used for vaccination. For 

example, a recombinant fowlpox virus (FPV) vector system, bearing the chicken IL-6 

gene and the hemagglutinin (HA) gene of the H5N1 subtype of highly pathogenic avian 

influenza (HPAI), was able to improve the vaccination response in ducks, when 

compared to the vector system without the IL-6 gene (Qian et al., 2012). In other studies, 

IL-6 is not included in the vector but administered separately. This approach, was also 

shown to increase the vaccination response in piglets vaccinated against Hog cholera, 

in mice vaccinated against equine influenza virus hemagglutinin (HA) and in rats 

immunized with dinitrophenylated Pneumococcus (Pockley et al., 1991; Larsen et al., 

1998; Li et al., 2011). Despite the improvement of vaccines, IL-6 was tested in tumor 

treatment. The intratumoral application of a plasmid carrying the human IL-6 and the 

human IL-15 gene sequence was able to inhibit further growth of Canine transmissible 

venereal tumor (CTVT) in beagles (Chou et al., 2009). Other investigations used IL-6 

as a carrier molecule. Multiple myeloma cells, which were shown to overexpress IL-

6R, were attacked by a fusion protein of IL-6 and a truncated mutant form of 

Pseudomonas exotoxin (PE38KDEL) (Guo et al., 2012). Thereby, 

tumor regression and survival time could be increased in mice.
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In cattle research, the diagnostic, prognostic and therapeutic application of IL-6 mainly 

focuses on dairy cattle and in particular on mastitis and uterine diseases. Interleukin-6 

gene expression was found to be elevated in endometrial cells in subclinical 

endometritis (Ghasemi et al., 2012). Serum IL-6 concentrations were also elevated in 

subclinical endometritis as well as in cases of pyometra (Brodzki et al., 2015a; Brodzki 

et al., 2015b). In mastitis, elevated IL-6 levels were found in serum and milk (Nakajima 

et al., 1997; Hagiwara et al., 2001). Subclinical mastitis could be diagnosed by 

measuring the IL-6 concentration in milk, which was even more sensitive than counting 

the number of somatic cells (Osman et al., 2010; Sakemi et al., 2011).  

The prognostic value of IL-6 for the development of postpartum diseases, such as 

metritis, endometritis and retained placenta, was determined by gene expression 

analyses of uterine cells or peripheral blood mononuclear cells (PBMC) and by 

measuring the IL-6 concentration in serum samples. Gene expression levels for IL-6 

were elevated in endometrial cells and PMBCs at calving, when cows develop 

endometritis in the postpartum period (Galvao et al., 2011; Galvao et al., 2012). 

Additionally, increased serum IL-6 levels prepartum, were also proven as a risk factor 

for developing postpartum diseases, such as endometritis (Ishikawa et al., 2004; Trevisi 

et al., 2012). In contrast, cows showing a decreased IL-6 serum concentration prepartum 

were more likely to develop a retained placenta (Ishikawa et al., 2004). Interleukin-6 

was also successful in predicting survival in cases of severe mastitis, when measured 

already at the beginning of symptoms (Hagiwara et al., 2001; Hisaeda et al., 2011). 

Approaches to establish IL-6 as an adjuvant for vaccines, as described for

other species, failed in cattle (Kumar et al., 2014).

 

2.4 Bovine scFv Antibody Library 

2.4.1 Bovine Antibody Structure and Function 

Antibodies are the main functional proteins of the adaptive immune system (Litman et 

al., 2010). They are produced by plasma cells, which develop from activated B-cells 

(Janeway et al., 2001). Five bovine antibodies isotypes are known, immunoglobulin D 

(IgD), immunoglobulin M (IgM), immunoglobulin G (IgG), immunoglobulin E (IgE) 

and immunoglobulin A (IgA) (Walther et al., 2013). The isotypes differ in structure and 

function. Typically, antibodies display a Y-shaped structure with two exceptions (Harris 

et al., 1998). IgM antibodies usually occur as a pentamer, comprising five single Y-
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shaped proteins connected by joining peptides (Müller et al., 2013). The second 

exception is the secretory form of IgA, which occurs as a dimer, also connected by a 

joining peptide (Woof et al., 2011). The single Y-shaped protein is formed by four 

polypeptide chains of two different types: heavy and light chains (Schroeder et al., 

2010). The light chains also appear in two forms: the lambda light chain and the kappa 

light chain. The lambda light chain is predominantly expressed in cattle (98% of 

circulating B-cells) (Butler, 1997). Each of the three different chains (heavy, lambda 

light, kappa light) consists of one variable domain and one to four constant domains 

(Padlan, 1994). Figure 3 displays the schematic conformation of each known antibody 

isotype with the exact number of domains for each chain. Two identical heavy (H) 

chains and two identical light (L) chains form one Y-shaped antibody molecule. The 

molecule can be divided into a constant and a variable domain. The variable domain is 

formed by the two entire light chains and the variable domains and the first constant 

domains of the two heavy chains. This part of the antibody molecule mainly contributes 

to antigen binding. More precisely, there are three specific segments in each variable 

domain of the respective chain, which are mainly responsible for antigen binding. These 

segments are called complementary determining regions 1-3 (CDR1-3). Within the 

CDRs a high amino acid diversity is present to allow for the recognition of a variety of 

different antigens. In cattle, an additional mechanism for diversification exists in the 

CDR3 region of the heavy chain. Exceptionally long CDR3 regions are generated by 

insertion of conserved short nucleotide sequences (CSNS) into the coding region of the 

CDR3 region (Koti et al., 2010b). Through intra-CDR3H disulphide bridges within 

those long CDR3s a unique ‘stalk and knob’ structure is created, which contributes to 

diversity via creation of mini-domains (Wang et al., 2013).  

The remaining segments of the two heavy chains, which are not included in the variable 

antibody domain, form the constant domain of the antibody molecule, where the 

antibody isotype is determined (Padlan, 1994). This molecule part mediates the effector 

function of the antibody including binding to surface receptors of immune 

cells and binding of complement factors (Desjarlais et al., 2011).
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Fig. 3. Antibody Classes. Individual antibody domains are labeled as examples in the 

immunoglobulin G molecule.
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2.4.2 Bovine Antibody Development and Diversification 

The current assembly UMD 3.1 of the bovine genome allows the detailed analysis of 

bovine immunoglobulin genes (Zimin et al., 2009). Immunoglobulins are encoded by a 

set of germline genes. For each of the three different antibody chains (heavy chain, 

lambda light chain, kappa light chain) a separate gene locus exists (Aitken et al., 1999). 

Despite the main gene locus, some genes are localized elsewhere. Within the loci, 

several genes exist for the different parts of the respective antibody chain. A complete 

antibody chain is encoded by the recombination product of a variable (V) gene, a joining 

(J) gene and a constant (C) gene. In the heavy chain, an additional gene exists: the 

diversity (D) gene, which is inserted between the joining and the constant gene. The 

gene rearrangement in a variety of possible combinations leads to antibody diversity. 

Additionally, allotypes are described for the constant genes in all chains.  

Twenty-two κ-light chain variable genes (IGKV) are localized on chromosome 11, with 

eight of them being functional genes (Ekman et al., 2009). They can be grouped into 

four subfamilies (IGKV1-4), from which members of the IGKV2 family are mainly 

expressed (Kaushik et al., 2014). All of the three κ-light chain joining genes (IGKJ) are 

functional. IGKJ1 is preferentially expressed (Stein et al., 2012). Only one κ-light chain 

constant gene (IGKC) exist, for which two allotypes are described (Stein et al., 2012). 

Twenty-five λ-light chain variable genes (IGLV) (17 functional genes) are identified on 

chromosome 17 and can be grouped into three gene families (Kaushik et al., 2014). 

Genes from the IGLV1 family are predominantly expressed (Pasman et al., 2010). This 

gene family is further divided into five subfamilies (IGLVa/b/d/e/x). Genes of IGLV1d, 

IGLV1e and IGLVx code for λ-light chains, found together with heavy chains, 

expressing exceptionally long CDR3 regions (Saini et al., 1999; Saini et al., 2003). λ-

light chain joining genes (IGLJ) and λ-light chain constant genes (IGLC) are organized 

into four cassettes of which two are functional (IGLJ2-IGLC2, IGLJ3-IGLC3) (Chen et 

al., 2008). IGLJ3-IGLC3 is preferentially expressed (Pasman et al., 2010). Five 

allotypes are described for the IGLC3 gene and three for the IGLC2 gene (Diesterbeck 

et al., 2012). 

Thirty-six heavy chain variable genes (IGHV) genes are identified in the current bovine 

genome assembly. The ten functional ones are located on Chromosome 21 and 

8 (Walther et al., 2013). No other mammalian species is known to have two functional 

heavy chain loci (Das et al., 2008). Data about the number of IGHD genes (10-15) differ, 
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probably due to imprecise genome assembly. They are spread over three chromosomes 

(BTA 7/8/21) and can be grouped into four gene families (IGHD-A/-B/-C/-D) (Niku et 

al., 2012; Walther et al., 2013). The heavy chain diversity genes (IGHD) are jointly 

responsible for the three CDR3 size-categories described (Walther et al., 2013).  

The six heavy chain joining genes (IGHJ) are located on chromosome 21 (Zhao et al., 

2003). Two of them are functional. A duplicate of this locus exists on chromosome 8 

(Hosseini et al., 2004; Zimin et al., 2009).  

Heavy chain constant genes (IGHC) are located on chromosomes 7, 8, 20 and 21 (Zhao 

et al., 2003; Walther et al., 2013). Genes for all immunoglobulin classes (IgD, IgM, IgG, 

IgA, IgE), already known in other mammals, also exist in cattle. The single IgD IGHC 

gene shows very low expression rates (Xu et al., 2012). Two functional IgM IGHC 

genes with three different allotypes are described (Saini et al., 2001). For IgG IGHC 

genes three subclasses are described (IgG1/2/3) (Knight et al., 1988). For IgG1 four 

allotypes are known (Symons et al., 1989; Saini et al., 2007), for IgG2 and IgG3 two 

allotypes each (Kacskovics et al., 1996; Rabbani et al., 1997). A single IGHC gene is 

described for IgA and IgE, respectively (Knight et al., 1988; Walther et al., 2013). 

In comparison to other mammals, such as humans and mice, the total number of 

immunoglobulin genes in bovines is small, leading to limited combinatorial diversity 

(0.15x105) (Sun et al., 2013; Kaushik et al., 2014). In cattle other mechanisms have 

evolved to overcome this handicap. 

The diversification of the antibody repertoire already begins in the embryo. Gene 

recombination of V-, D- and J- genes occurs as early as 125 days after gestation (Saini 

et al., 2002). During recombination, random N and P addition to the recombination sites 

as well as junctional flexibility increase antibody diversity (Kaushik et al., 2002). 

Junctional flexibility is defined as nucleotide additions and deletions at the junction sites 

because of imprecise joining (Schatz, 2004). Additionally, the immunoglobulin 

diversity in the neonate is the result of the size heterogeneity in the CDR3 region of the 

heavy chain and somatic hypermutation, without contact of the immune system to 

external antigen (Saini et al., 2002). Somatic hypermutation here means random changes 

in the coding sequence for the variable domain. Also after birth, this is a major 

mechanism in the maturation of the immune system (Verma et al., 2012). 

Newborn calves are exposed to various environmental antigens. When the B-cell 

receptor (BCR) is brought into contact with antigen, the B-cells become activated and 
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undergo somatic hypermutation as well as class switch recombination (Saini et al., 

2015). During class switch recombination, genes of the constant domains of the heavy 

chain ‘switch’, leading to the expression of different antibody isotypes (Estes, 1996). B-

cells with strong antigen interaction will be selected and stimulated. They will replicate 

and survive more efficiently. This process is called affinity maturation (Saini et al., 

2015). As another antigen-dependent feature in adult cattle, diversity of CDR3H regions 

is increased by insertion of conserved short nucleotide sequences (CSNS) into the CDR3 

coding sequence, after contact of the B-cell to an antigen (Koti et al., 2010a). These 

exceptionally long CDR3H occur in 8-10% of circulating bovine B-cells (Kaushik et 

al., 2002). 

The tissues involved in the diversification process differ in the embryo and the newborn. 

B lymphopoesis takes place in the foetal bone marrow and lymph nodes (Ekman et al., 

2010). Additionally, VJλ recombination is detected in the foetal spleen (Lucier et al., 

1998). The jejunal Peyer’s patches (JPP) are important loci for antibody diversification 

in the embryo, but develop into secondary lymphoid tissue throughout life (Yasuda et 

al., 2004). In contrast, the ileal Peyer’s patches (IPP) develop later during gestation, but 

become the important perinatal lymphoid tissue, with high B-cell proliferation around 

birth (Lucier et al., 1998; Yasuda et al., 2004; Yasuda et al., 2006). They involute at 

sexual maturity (Yasuda et al., 2004). Despite the diversification in the gut-associated 

lymphoid-tissue (GALT), diversity in peripheral lymphoid tissue increases 1-2 weeks 

after birth (Zhao et al., 2006). 

 

2.4.3 Recombinant scFv Antibodies and Antibody Libraries 

Various formats of recombinant antibodies exist. Figure 4 gives an overview of the most 

common molecule formats. The scFv molecule, first described in 1991, is reduced on 

the variable domain of a heavy chain (VH) and the variable domain of a light chain (VL) 

(Bird et al., 1991). The two domains are combined by a peptide linker. Several different 

peptide linkers were described (Chen et al., 2013). The length of the linker used in the 

scFv molecule mainly effects the characteristics of the molecule in solution. Linker 

peptides with 3 to 12 amino acids do not allow the correct folding into a functional scFv 

molecule and lead to the formation of multimers (Hudson et al., 1999). A length of 15 

amino acids was reported to be optimal for the
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construction of scFv molecules (Zuhaida et al., 2013). Despite the length, the amino 

acid composition also contributes to optimal linker performance. In scFv molecules a 

flexible linker is needed to ensure the optimal confirmation of the both variable domains 

(Chen et al., 2013). The most commonly used flexible linker peptides consist of a 

sequence of glycine and serine. Glycine as a small non-polar amino acid ensures the 

flexibility. Serine as a small polar amino-acid provides for stability of the linker in 

aqueous solutions (Chen et al., 2013). In scFv antibodies, the (G4S)n linker format is 

widely used (Spahr et al., 2014). Besides the linker composition, the arrangement of the 

V-domains can also differ in scFv molecules (VH-linker-VL vs. VL-linker-VH). Recent 

investigations show that the optimal orientation is individual for each scFv molecule 

(Cheng et al., 2015; Liu et al., 2015).  

ScFv molecules can be isolated from three different forms of antibody libraries (naïve, 

immunized, synthetic). Naïve libraries are formed from B-cells of donors which have 

not been exposed to the antigen of interest before. Therefore, B-cells, which provide the 

DNA for the library construction, have not undergone affinity maturation in the donor 

organism and provide a wide range of different antibody sequences (Rahumatullah et 

al., 2015). In immunized libraries, donors had been immunized with the antigen of 

interest. B-cells undergo affinity maturation in the vaccinated organism and therefore 

mRNA antibody sequences isolated from B-cells for library construction are shifted 

towards a higher specificity and neutralization ability. The probability of isolating a 

specific high affine antibody is higher in immunized libraries compared to naïve 

libraries (Ahmad et al., 2012). Additionally, the effort to isolate a high affine antibody 

is lesser in immunized libraries, because a lower library diversity and a fewer number 

of panning rounds are needed (Miller et al., 2008). 

Synthetic libraries are made by in-silico mutations of antibody molecules (Farajnia et 

al., 2014). In a constant antibody framework, predominantly the CDR regions are 

diversified by the introduction of synthetic oligonucleotide sequences. These libraries 

are independent of a immunized donor and have the advantage of artificially improving 

the antibody molecule structure for favorable attributes such as a good 

expression rate in E. coli and a high stability (Hairul Bahara et al., 2013).
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Fig. 4.  Recombinant antibody formats. The picture shows commonly used recombinant antibody 

formats in comparison to full-size Immunoglobulin G (IgG) 
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2.4.4 Phage Display 

The method of phage display was first described in 1985 as an innovative method of 

cloning (Smith, 1985). A DNA sequence was cloned into the sequence of one of the 

surface proteins of a filamentous bacteriophage, which then displays the protein 

structure as a part of the surface protein on its surface. This construct showed the 

advantage of simultaneously having the genotype and the phenotype of a targeted 

protein in the same organism. Initially, this technique was used for the rapid isolation 

of peptides from huge libraries, using an antibody directed against the specific peptide 

for the screening (panning) process. In 1990, the method of phage display was modified 

and now antibody sequences were cloned into the phage genome and screened against 

specific peptides (McCafferty et al., 1990). Figure 5 shows an example for one cycle 

during the process of phage display. Panning rounds are repeated with specific binders 

of the previous round to increase the specificity and the affinity of the antibody-phage 

construct stepwise, from round to round. Several modifications of the method have been 

described, concerning the specific phage and the surface protein used for expression 

(Ebrahimizadeh et al., 2014). The most common phage display procedure uses a 

phagemid carrying the antibody-surface protein sequence and a helper phage providing 

other proteins necessary for the phage assembly (Ponsel et al., 2011). Antibody DNA 

sequences are cloned into the phagemid vector and transformed into competent bacterial 

cells. The transformed bacteria are infected with the helper phage to accomplish the 

formation of complete

phage particles carrying the antibody DNA sequence and displaying the encoded 

antibody fragment on its surface (Breitling et al., 1991).

 

  



Literature 

27 

 

 

STEP 1 

 

 

 

 

 

Fig. 5a. Phage display procedure according to Fischer et al. “Isolation of a high-affinity single-chain     

              antibody fragment (scFv) from a bovine phage display library neutralizing bovine   

              coronaviruses.” (continued on the next page)

Construction of the scFv library in pCANTAB5E. 

ScFv DNA and vector DNA were digested with SfiI and NotI. For the library generation 

either a VH+VLλ sequence or a VH+VLκ sequence was ligated in a digested vector using 

T4 Ligase.  

 

PLac  lac promotor region 

g3   phage g3 signal (targets expression to the host bacterium periplasm) 

E-Tag  peptide Tag 

Fd gene 3 gene for phage coat protein 3 

M13ori  origin of replication of the M13 genome 

Ampr  ampicillin resistance gene 

CoIE1 ori origin of replication of the E. coli CoIE1 plasmid 
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STEP 2 

  

Fig. 5b.  Phage display procedure according to Fischer et al. “Isolation of a high-affinity single-chain    

 antibody fragment (scFv) from a bovine phage display library neutralizing bovine 

 coronaviruses.”. (continued on the next page)

Genotyp 

supE thi-1 Δ(lac-proAB) 

Δ(mcrB-hsdSM)5, (rK
-mK

-) 

 

Plasmid 

F' [traD36 proAB+ lacIq 

lacZΔM15]  

 

Cloning of ligated library in TG1 cells. 

Electro-competent E. coli TG1 cells were transfected with scFv-vector constructs. 

 

supE  mutant tRNA, suppresses UAG mutation (required for lytic growth of 

some phage mutants) 

thi-1  mutation in thiamine metabolism 

Δ(lac-proAB) deletion from lac operon into the genes for proline synthesis (cannot be 

on lactose, requires proline) 

Δ(mcrB-hsdSM) deletion in mutation of methylcytosine restriction system and   

                                    host specificity gene S and M 

rk
-mk

- restriction and methylation deficient 

F’  F plasmid that picked up chromosomal DNA from E.coli 

traD36 conjugation deficiency 

proAB+  mutations in proline metabolism (requires proline in minimal medium) 

laclQ  overproduction of lac repressor gene 

lacZΔM15 partial deletion in β-D-galactosidase gene (blue/white screening on X-

Gal) 
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STEP 3 

 

 

 

 

 

 

 

 

Fig. 5c.  Phage display procedure according to Fischer et al. “Isolation of a high-affinity single-chain 

 antibody fragment (scFv) from a bovine phage display library neutralizing bovine 

 coronaviruses.” (continued on the next page) 

Infection of TG1 library with M13KO7 helper phages 

Transformed TG1 cells were grown to reach log phase. The culture was supplemented 

with M13KO7 helper phages at MOI 30. The supplemented culture was grown for 16-20 

hours. Phages were harvested from the bacterial culture by precipitation using 20% 

polyethylene glycol (PEG). 

White, black, grey and blue boxes in the helper phage genome indicate genes for coat  

Proteins and other phage proteins important for replication. 

important replication  

 

P15Aori  origin of replication of plasmid p15A 

Kanr kanamycin resistance gene 

 



Literature 

30 

 

 

STEP 4 

 

 

 

 

  

 

 

 

 

Fig. 5d. Phage display procedure according to Fischer et al. “Isolation of a high-affinity single-chain  

 antibody fragment (scFv) from a bovine phage display library neutralizing bovine  

 coronaviruses.” (continued on the next page)

Panning. 

The phages harvested from the TG1 library each carried a recombinant pCANTAB5E 

vector containing a scFv sequence. Simultaneously, the encoded scFv molecule is 

displayed on the phage surface as fusion protein with the phage’s coat protein 3. 

In the first panning round, the phage suspension representing 1000-fold library diversity 

(3*1013 phages) was added to a 96-well plate coated with 10 µg/ml BCV V270.  
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STEP 5 

 

 

 

 

 

 

 

 

Fig. 5e. Phage display procedure according to Fischer et al. “Isolation of a high-affinity single-chain  

antibody fragment (scFv) from a bovine phage display library neutralizing bovine 

coronaviruses.” (continued on the next page)

Panning. 

In the first panning round, phages were incubated for 1 hour on BCV V270 coated ELISA 

plates. Afterwards unbound phages were washed away. Bound phages were eluted with 10 

µg/ml trypsin. Eluted phages were propagated in TG1 cells overnight and harvested the 

next day by precipitation from the bacterial culture. These phages were used in the next 

panning round. Panning conditions were made more stringent from panning round to 

panning round, by decreasing virus coating concentration, by decreasing incubation time 

of phages and by increasing washing steps. 
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STEP 6 

 

 

 

 

 

 

 

Fig. 5f. Phage display procedure according to Fischer et al. “Isolation of a high-affinity single-chain  

antibody fragment (scFv) from a bovine phage display library neutralizing bovine 

coronaviruses”.

Expression of BCV V270 scfv antibodies. 

After a sufficient number of panning rounds. Phages of the last elution were used for 

infection of E.coli HB2151 cells which will pick up the scFv encoding vector from the 

phages. The infected bacteria were grown for 1 hour before they were transferred onto agar 

plates and grown overnight. The next day, single colonies were picked and grown 

individually in liquid medium to reach log phase. Induction of scFv expression occurred by 

replacing the medium with medium containing no glucose but IPTG (2 mM). Expression 

was conducted overnight before soluble scFv proteins could be harvested from the culture 

supernatants. 
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2.4.5 Clinical Relevance 

2.4.5.1 Advantages of scFv Molecules for Clinical Applications 

Recombinant antibodies generated by phage display libraries overcome several 

disadvantages of the hybridoma technology, which was the standard method for 

generating recombinant antibodies for years (Loureiro et al., 2015). The isolation 

process of antibodies derived from phage display is faster, easier and more cost efficient 

(Pandey, 2010; Liu et al., 2013a). Additionally, the immunization of mice, which is 

necessary in hybridoma technology, can be avoided and the number of animal 

experiments can be reduced. These technique also eliminates the main drawback of 

mouse monoclonal antibodies in therapeutic use, which is the formation of human-anti-

mouse-antibodies (HAMA) (Watkins et al., 2000). For the generation of antibody phage 

display libraries, B-cells of the target species for which a therapeutic antibody is 

developed are used. Therefore, the antibody encoding DNA sequences isolated from 

these cells are completely species-specific.  

The scFv as one format of recombinant antibodies has several advantages, due to its 

small full-size. When compared to monoclonal antibodies, it shows a better tissue 

penetration ability and a more rapid blood clearance (Ahmad et al., 2012). The latter 

characteristic is of particular importance when, for therapeutic purposes, radionuclides 

are linked to the scFv (Oriuchi et al., 2005).  

 

2.4.5.2 Human Medicine 

The use of recombinant antibodies in therapy has become an important field in human 

medicine. Currently, more than 50 antibodies are licensed for therapeutic and diagnostic 

applications (http://www.imgt.org/mAb-DB/index#Approval_antibodies). They are 

predominantly developed for cancer therapy to avoid collateral damage in healthy 

tissue, owing to chemotherapy and radiation (Suryadevara et al., 2015). Another 

important field of application is intoxications. A very recent study describes the 

successful isolation of a neutralizing scFv-Fc antibody for use in Botulinum Neurotoxin 

E intoxications (Miethe et al., 2015). And finally, efforts are made to develop antiviral 

antibodies which bear the potential to generate specific antiviral drugs in the future. A 

scFv has been already developed against the Influenza (H1N1) 
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Virus, preventing an H1N1 virus infection in mice after intranasal application (Cho et 

al., 2015). 

 

2.4.5.3 Veterinary Medicine 

Antibody libraries for several species, such as mice, rats, chicken, sheep, swine and 

dogs, have already been published (Charlton et al., 2000; Li et al., 2004; Wieland et al., 

2006; Sepulveda et al., 2008; Braganza et al., 2011; Wang et al., 2014). Despite these 

relatively common species, current immunoglobulin research focuses on two more 

exotic species, camel and shark. They are of special interest because of their unusual 

immunoglobulin structure (Figure 6). Camel antibodies are homodimers of two heavy 

chains. Their functional variable domain consists only of one variable domain (Hamers-

Casterman et al., 1993). Recombinant antibodies, so called nanobodies or variable 

domain of the heavy chain of the heavy chain antibody (VHH), derived from camel 

antibody libraries show both an excellent tissue penetration ability due to their small 

size and a high stability and a high solubility (Harmsen et al., 2007; Fu et al., 2013). 

Shark antibodies display similar characteristics. The shark immunoglobulin isotype 

novel antigen receptor (IgNAR) was first described in 1995 and still is an important 

topic in antibody research (Greenberg et al., 1995; Krah et al., 2015; Zielonka et al., 

2015). However, recombinant antibodies from animal derived libraries are usually 

developed for therapeutic purposes or research questions in human medicine (Ohtani et 

al., 2013; Caljon et al., 2015; Miethe et al., 2015). They are preferred to human 

antibodies because of their pharmacokinetic characteristics, as described for camel and 

shark antibodies, and in cases where animals, such as mice and rats, serve as model 

organisms for pathogenesis studies of human diseases (Sepulveda et al., 2008; Tamura 

et al., 2008). Studies which focus on the development of recombinant antibodies against 

pathogens relevant in veterinary medicine mostly use commercial available naïve 

human libraries (Blazek et al., 2004; Kim et al., 2004; Chang et al., 2006; Dezorzova-

Tomanova et al., 2007; Golchin et al., 2008; Molinkova et al., 2008). Only a few studies 

are available which aim to generate species-specific antibodies for therapeutic 

applications in veterinary medicine. For sheep and swine, naïve antibody libraries were 

developed to show the possibility for species-specific library construction in general 

(Charlton et al., 2000; Li et al., 2004). A IgA-Fab fragment specific for Eimeria 

acervulina was successfully isolated from a chicken antibody library, and a canine scFv 

antibody against a capsid antigen of canine parvovirus was generated for dogs (Wieland 
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et al., 2006; Braganza et al., 2011). Concerning cattle, only one publication described 

the generation of a bovine antibody library (O'Brien et al., 1999; O'Brien et al., 2002). 

In these investigations only a limited number of primers was used for the amplification, 

with only one primer pair for each antibody chain (VH, VL). The authors aimed to 

develop a recombinant bovine antibody binding to the L4 protein of Bovine 

Papillomavirus-4 (BPV-4). However, the study rather focuses on principles of library 

construction than on the isolation and characterization of a recombinant antibody. 

 

 

 
 

Fig. 6. Special antibody forms. Structure of a conventional immunoglobulin G molecule, a shark 

antibody and a camel antibody.
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ABSTRACT 

Mucosal immunoglobulin A (IgA) is an important component of the adaptive first line immune 

defense. Especially in newborn calves, where diarrheal pathogens can cause severe diseases, 

the adaptive mucosal immunity is crucial. Regulating local IgA production is complex. 

Cytokines and in particular, interleukin 6 (IL-6), are described to be main actors in this process. 

In vaccination trails, IL-6 is used to improve the immune response with ambiguous results. 

Therefore, this study investigated the influence of IL-6 on the physiological development of 

salivary IgA production in newborn calves. Ten clinically healthy female Holstein calves were 

sampled over a period of four weeks. Immunoglobulin A and IL-6 were measured in serum, 

colostrum, milk and saliva. In addition, to compare the mucosal immune response with the 

systemic immune response, immunoglobulin G was measured in serum, colostrum and milk, 

too, using a commercial enzyme-linked immunosorbent assay (ELISA). In order to determine 

the ability of newborn calves to produce IL-6 actively by themselves, the relative gene 

expression was analyzed in peripheral blood mononuclear cells (PBMC) using a quantitative 

reverse transcriptase polymerase chain reaction (qPCR). Interleukin 6 gene expression in 

PBMCs was detected directly after birth. A significant positive correlation between serum IL-

6 and salivary IgA was found on day seven (p = 0.043). Furthermore, the IL-6 serum 

concentration peaked on day 14 and coincided with a remarkable IgA increase in saliva (p < 

0.01). Therefore, IL-6 seemed to play a role during the first initialization phase of a local IgA 

response.  

 

Keywords  

time course, adaptive immunity, interleukin 6, immunoglobulin A, qPCR, ELISA  

http://www.dict.cc/englisch-deutsch/immunosorbent.html
http://www.dict.cc/englisch-deutsch/assay.html
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INTRODUCTION 

Immunoglobulin A in saliva acts as a first specific barrier against oronasal infections (Marcotte 

et al., 1998). Especially in newborn calves where most pathogens invade into the body via an 

oronasal route, IgA is of particular importance. For example, neonatal diarrhea is one of the 

most important diseases in calf rearing. It can lead to high mortality and significantly impair 

animal welfare (Waltner-Toews et al., 1986; Hasoksuz et al., 2002).  

In cattle, the ileal Peyer's patches (IPP) were described as the primary lymphoid organ for IgA-

producing cells (Yasuda et al., 2004). The IgA-producing B cells migrate to the lamina propria 

of mucosal surfaces, where IgA production mainly takes place (Husband et al., 1999). In 

contrast, immunoglobulin G (IgG) is the predominant immunoglobulin in the blood and in the 

colostrum of ruminants (Butler, 1983). Synthesis of IgG in cattle occurs mainly in peripheral 

lymph nodes and in the spleen (Saini et al., 2002; Yasuda et al., 2006).  

As calves are agammaglobulinemic at birth, colostrum and thereafter milk serve as an important 

source of both immunoglobulins before the active immunity develops (Hernandez-Castellano 

et al., 2014). The active humoral immune response was shown to be regulated to a large extent 

by various cytokines (Varzaneh et al., 2014). This was described for IgA precursor cell 

retention, proliferation and antibody secretion in detail (Husband et al., 1996). Several in vitro 

studies indicated a strong dependency especially between interleukin 6 (IL-6) and IgA 

production (Beagley et al., 1989; Fujihashi et al., 1991; McGhee et al., 1991). 

Interleukin 6 is produced in both lymphoid and non-lymphoid cells, and the regulating factors 

are diverse (Ataie-Kachoie et al., 2014). The roles of IL-6 in inflammation include induction of 

the acute phase response (APR), triggering T-cell proliferation and stimulating the 

differentiation of B-cells into plasma cells (Barton, 1997). As for the immunoglobulins, 

colostrum is described to be the main source of IL-6 in newborn calves (Yamanaka et al., 

2003b). 

In-vitro, a positive influence of IL-6 on IgA production was proven for humans and mice 

(Beagley et al., 1989; McGhee et al., 1991). For mice and guinea pigs this was also found in-

vivo (Ramsay et al., 1994; Wang et al., 2011). In cattle, the regulation of IgA production is still 

not understood completely. There are very few studies, which investigated the effect of IL-6 on 

bovine cells in vitro (Zhu et al., 1999; Yamanaka et al., 2003a). These investigations lead to the 

hypothesis that the correlation between IL-6 and IgA is evident in cattle, too. However, 

vaccination trials using recombinant IL-6 as adjuvants failed to confirm this assumption in-vivo 

(Kumar et al., 2014). 
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To sum up, a sufficient development of the active humoral immune response in newborn calves 

is crucial. In cattle, current research results show inconsistencies in the verification of in-vitro 

result. To improve the health management in newborn calves, a detailed understanding of the 

immune system is important. 

Therefore, we were keen to investigate the physiological development of bovine IL-6 and IgA 

in clinically healthy calves. The first objective of this study was to observe the development of 

immunoglobulins and IL-6 over a period of four weeks after birth. The second objective was to 

characterize the source of interleukin 6 in detail by a relative gene expression analysis. 

 

MATERIAL AND METHODS 

Animals  

The study was conducted with ten clinically healthy female Holstein calves, housed in a 

commercial dairy farm near Goettingen, Lower Saxony, Germany. Samples were taken during 

October and November 2014.  

The management of newborn calves after birth included a disinfection of the umbilical cord, 

the insertion of ear tags and the administration of four liters colostrum via tube feeder. The 

colostrum was taken from the farm’s own colostrum bank and given to the calves within the 

first hour after birth. Prior to the storage, the quality of colostrum had been determined using a 

colostrometer and colostrum showing a sufficient immunoglobulin content (140 to 50 mg/mL) 

was pooled. The colostrum administered to the calves in this investigation originated from 

different colostrum pools. Newborn calves were separated from their dams’ directly after birth 

and brought to the calf pen. At the pen, calves were sheltered outdoors in igloos (CalfHouse 

PE, Albert Kerbl GmbH, Buchbach, Germany). After the one-time application of colostrum 

(day 0), calves were fed pasteurized waste milk ad libitum. In week two, the milk was replaced 

by a commercial milk replacer (50% skimmed milk). From week three on starter grain was 

offered and calves had free access to water. Calves were weaned completely four weeks after 

birth. All animals were monitored twice a day by the animal caretakers and underwent a 

complete clinical examination on each sampling time point to ensure healthiness. Thereby, heart 

rate, breathing rate, temperature and general condition were examined. Calves showing any 

abnormalities were excluded from the study.  

 

Samples 

All samples were collected with the owner’s consent and the procedure was carried out in 

accordance with the German Protection of Animals Act under the supervision of the 
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Commissioner of Animal Welfare of the Faculty of Agriculture, University of Goettingen, 

Germany. For the purpose of laboratory analysis blood (20 mL) and saliva samples were taken 

from the animals directly after birth before the uptake of colostrum (day 0) as well as on days 

1, 7, 14, 21, and 28 post-partum. Blood samples were collected by puncturing the Jugular vein 

(Strauß needle, 2 x 0.43 mm; Dispomed Witt oHG, Gelnhausen, Germany). Ten milliliters 

blood were collected in a 12 mL K3-EDTA tube (EDTA 95 PP, KABE laboratory technology, 

Nuembrecht-Elsenroth, Germany) and another 10 mL blood were collected in a 12 mL serum 

tube (SE 95 PP, KABE laboratory technology, Nuembrecht-Elsenroth, Germany). Immediately 

after collection, the tubes were placed in a cooling box. Saliva samples were taken using a 

Salivette (Sarstedt, Nuembrecht, Germany). Here, the absorbent cotton was fixed with a clamp 

and the calf was allowed to chew on it for at least one minute. Then, the cotton was placed back 

into the collection tube stored in a cooling box. Colostrum and milk samples of 50 mL each 

were collected in 50 mL centrifugation tubes (Sarstedt, Nuembrecht, Germany) on day 0, 1 and 

7. The commercial milk replacer, fed to the calves after day 7, was not taken into consideration. 

All samples were transported to the laboratory within maximum three hours.  

 

Sample preparation  

Blood serum was collected by centrifugation of serum tubes (2500 xg, 5 min, 4 °C), split into 

200 µL aliquots and stored at -80 °C. Salivettes were centrifuged (2500 xg, 25 min, 4 °C) and 

saliva supernatants were stored as 200 µL aliquots at -80 °C. Colostrum and milk samples were 

centrifuged (2500 xg, 25 min, 4 °C) and the fat layer was removed using a sterile pasteur 

pipette. Milk and colostrum aliquots of 500 µL were stored at -80 °C. 

 

Bovine IgA ELISA 

To determine the IgA concentration in serum, saliva, colostrum and milk, the commercial 

Bovine IgA ELISA Core Kit pink-ONE (KomaBiotech, Seoul, Korea) was used. Samples were 

measured according to the manufacturer's instructions. In brief, plates were coated with a sheep 

anti-bovine IgA. The standard dilutions were measured in duplicates, the sample dilutions in 

triplicates. As detection antibody, an HRP-conjugated sheep anti-bovine IgA was used. The 

optical density (OD) was determined at 450 nm with a Sunrise microplate reader (Tecan, 

Maennedorf, Switzerland). For data analysis, average optical densities (ODs) were calculated 

from duplicates and triplicates and blank reduction was performed. Standard curves were 

generated and IgA concentrations were determined using CurveExpert 1.4 software 

(CurveExpert Copyright © 1995–2007 Daniel Hyams). The detection limit of the test was 

http://www.dict.cc/englisch-deutsch/laboratory.html
http://www.dict.cc/englisch-deutsch/laboratory.html
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15.6 ng/mL and coefficients of variations (CV) were < 5% (intra-assay) and < 14% (inter-assay) 

as specified by the manufacturer.  

 

Bovine IgG ELISA 

For the measurement of IgG in bovine serum, colostrum and milk, the Bovine IgG ELISA Core 

Kit pink-ONE (KomaBiotech, Seoul, Korea) was used. The test procedure was the same as 

described for the Bovine IgA ELISA unless the Detection Antibody was diluted 1: 10,000 in 

Washing Solution. The test’s detection limit was 7.8 ng/mL and CVs were < 7% (intra-assay) 

and < 14% (inter-assay) as specified by the manufacturer.  

 

IL-6 ELISA 

IL-6 concentrations in serum, saliva, colostrum and milk were determined by using the 

commercial High Sensitive ELISA Kit for bovine IL-6 (USCN Life Science, Wuhan, China). 

As stated by the manufacturer the detection range of the assay was 1.56–100 pg/mL and the 

CVs were < 10% (intra-assay) and < 12% (inter-assay), respectively. The assay was performed 

following the manufacturer’s instructions. First, standards and samples were added to the pre-

coated plate. The standard was added in duplicates and the samples in triplicates. The detection 

was carried out using a Biotin-conjugated antibody specific to IL-6 (Detection Reagent A) and 

an Avidin conjugated Horseradish Peroxidase (Detection Reagent B). All wells were measured 

at 450 nm in the Sunrise microplate reader (Tecan, Maennedorf, Switzerland). Results were 

calculated as described for the Bovine IgA ELISA.  

 

PBMC isolation 

Peripheral blood mononuclear cells (PBMCs) were isolated from approximately 10 mL of 

EDTA blood via density gradient centrifugation. The gradient was created using Ficoll Paque 

(GE Healthcare, Chalfont St. Giles, UK). Centrifugation was carried out at 400 xg, for 40 min 

at 18–20 °C. The cells were washed twice with PBS and contamination with red blood cells 

(RBCs) was removed by incubation in red blood lysis buffer (155 mM ammonium chloride 

(NH4Cl), 12 mM sodium hydrogen carbonate (NaHCO3), 0.1 mM EDTA). After isolation, 

viable PBMCs were counted using trypan blue (Sigma-Aldrich, St.Louis, MO, USA). PBMCs 

were stored in 300 µL RNAprotect Cell Reagent (Qiagen, Hilden, Germany) in liquid nitrogen. 

 

 

 

http://www.dict.cc/englisch-deutsch/as.html
http://www.dict.cc/englisch-deutsch/specified.html
http://www.dict.cc/englisch-deutsch/by.html
http://www.dict.cc/englisch-deutsch/the.html
http://www.dict.cc/englisch-deutsch/manufacturer.html
http://www.dict.cc/englisch-deutsch/as.html
http://www.dict.cc/englisch-deutsch/specified.html
http://www.dict.cc/englisch-deutsch/by.html
http://www.dict.cc/englisch-deutsch/the.html
http://www.dict.cc/englisch-deutsch/manufacturer.html
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RNA isolation and cDNA synthesis 

Total RNA was extracted from bovine PBMCs using the RNeasy Mini Kit (Qiagen, Hilden, 

Germany). Quantity and purity of RNA were determined by UV absorbance at 260 and 280 nm 

in a NanoDrop 1000 spectrophotometer (NanoDrop Technologies, Rockland, USA). Reverse 

transcription was performed using the SuperScript III first-strand Synthesis Supermix 

(Invitrogen, Carlsbad, USA) and random hexamer primers. First, isolated RNA was denatured 

at 65 °C for 5 min. Afterward, cDNA was synthesized at 25 °C for 10 min, followed by 55 °C 

for 50 min. The reaction was terminated at 85 °C for 5 min. The cDNA was stored at –80 °C.  

 

qPCR 

Relative quantification of IL-6 gene transcription was performed as described previously 

(Alluwaimi et al., 2002). Messenger RNA of bovine glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) served as a normalizer for the assay. IL-6 and GAPDH primers and 

probe sequences, shown in Table 1, were derived from the RTprimer database (Pattyn et al., 

2003). The 25 µL PCR master mix contained 400 nM primers, 80 nM probe, 12.5 µL TaqMan® 

Universal PCR MM with UNG (Uracil N-glycosylase), 10 ng cDNA and was adjusted to 25 µL 

using Nuclease-free water (Qiagen, Hilden, Germany). qPCR was run in the Mx3005P Cycler 

(Applied Biosystems, ThermoScientific Inc., Waltham, USA ) under the following cycle 

conditions: UNG incubation at 50 °C for 2 min, one cycle at 95 °C for 10 min, followed by 

40 cycles of 95 °C for 15 sec and 60 °C for 1 min. The UNG incubation step, before polymerase 

activation, allowed for the elimination of carry-over contamination by releasing uracil from 

DNA. All samples of a specific calf were run in triplicates in the same assay. For data analysis, 

triplicates were averaged and the efficiency (E) was calculated based on the absolute increase 

of fluorescence in the exponential phase. Therefore, a linear regression analysis was conducted. 

Cycle threshold (Ct) values were corrected for the determined efficiency (E) and the relative 

gene expression was calculated as  
𝐸𝐺𝐴𝑃𝐷𝐻

𝐶𝑇𝐺𝐴𝑃𝐷𝐻

𝐸𝐼𝐿6
𝐶𝑇𝐼𝐿6

. 
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Table 1 

Primers and probes used for qPCR 

Gene Accession no. Designation Function Sequence (5´–3´) 

     

GAPDH  

 

AF022183 GAPDH.489p probe ATACCCTCAAGATTGTCAGCAATG

CCTCCT 

  GAPDH.463pf forward 

primer 

GGCGTGAACCACGAGAAGTATAA 

  GAPDH.58spr reverse 

primer 

CCCTCCACGATGCCAAAGT 

IL-6 

 

X62501 IL-6.192p probe CGTCATTCTTCTCACATATCTCCTT

TCTTATTGCAGAG 

  IL-6.271f forward 

primer 

TCAGCTTATTTTCTGCCAGTCTCT 

  IL-6.167r reverse 

primer 

TCATTAAGCACATCGTCGACAAA 

qPCR, quantitative polymerase chain reaction; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; 

IL-6, interleukin 6 

 

Statistical analysis 

Protein concentrations and gene expression data are displayed as mean values (MV) + 2 

standard errors (2SE). In order to compare the time course of IL-6 and the immunoglobulins, a 

two-way repeated measure analysis of variance (ANOVA) was applied using STATISTICA 12 

software (StatSoft (Europe) GmbH, Hamburg, Germany). Here, IL-6 concentrations were 

correlated with IgA contents in serum and saliva, and IgG in serum over the time period from 

day seven till day 28. In order to minimize the initial influence of colostrum uptake, day 0 and 

1 were excluded from this correlation. Using the same statistic method, the influence of the 

calves’ own IL-6 gene expression on the serum concentrations was proven. Fold-changes of IL-

6 in serum were correlated to the data revealed from the relative gene expression analysis. Fold-

changes between the sampling time points were used for calculation in order to compare the 

relative data from the gene expression with the absolute protein concentrations in serum. In 

addition, correlations were calculated individually for each sampling time point. Here, the 

concentration of IL-6 in serum and IgA in serum, IgA in saliva and IgG in serum, as well as the 
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fold-changes of IL-6 in serum and fold-changes of the relative gene expression, were compared. 

Concerning colostrum, correlations were calculated between the colostrum concentrations of 

each protein (IL-6, IgA, IgG), between the colostrum concentration and the respective serum 

concentration on day one and between the IL-6 colostrum concentration and the concentration 

of IgA in serum, IgA in saliva and IgG in serum on day one. The same procedure applied to the 

milk. A P-value < 0.05 was considered to indicate statistical significance. 

 

RESULTS 

Immunoglobulin A 

The IgA concentrations in colostrum, milk, serum and saliva are shown in Figure 1. The mean 

IgA concentration in colostrum was 10.8 ± 4 mg/mL. In serum collected from the calves, IgA 

showed a peak on day 1 with a mean concentration of 5.4 ± 2.4 mg/mL (p < 0.01). In the calves’ 

saliva, IgA became detectable on day 14 (0.7 ± 0.06 mg/mL, p < 0.01). 
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Fig. 1. Immunoglobulin A concentrations. (A) IgA concentrations in colostrum on day 0 (dark grey) 

and pasteurized waste milk on day 1 and 7 (light grey). (B) IgA concentrations in serum. (C) 

IgA concentrations in saliva. Data are shown as mean values (MV) ± 2 standard errors (n = 10). 

Day of birth is set as day 0. Significant changes are marked by asterisks (*). The significance 

level is set at p < 0.05. 

 

 

Immunoglobulin G 

The IgG concentrations in colostrum, milk, and serum are shown in Figure 2. Similar to IgA, 

the IgG concentration in the administered colostrum (41.9 ± 13.8 mg/mL) was high. In the 

calves’ serum, the mean IgG concentration increased rapidly to a peak concentration of 

3.7 ± 1 mg/mL on day 1. 
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Fig. 2. Immunoglobulin G concentrations. (A) IgG concentrations in colostrum on day 0 (dark grey) 

and milk on day 1 and 7 (light grey). (B) IgG concentrations in serum. Data are shown as mean 

values (MV) ± 2 standard errors (n = 10). Day of birth is set as day 0. Significant changes are 

marked by asterisks (*). The significance level is set at p < 0.05. 

 

 

Interleukin 6 

The time course of mean IL-6 concentrations and the relative IL-6 gene expression is shown in 

Figure 3. The mean concentration in colostrum was 3.9 ± 1.3 mg/mL. The used ELISA system 

failed to detect any IL-6 concentration in saliva collected from the calves (data not shown). 

Serum concentrations of the calves’ IL-6 and gene expression in PBMCs were detected from 

day 0 onwards. The ANOVA (F (1, 36) = 2.73, p = 0.08, η²p = 0.35) revealed no evidence that 

the time course of fold-changes in serum concentration and relative gene expression was not 

similar. The fold-changes day-by-day correlate for each sampling time point, except day one 

(p < 0.05) (Table 2). 
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Fig. 3. Interleukin 6 gene expression in PBMC and interleukin 6 concentrations. (A) IL-6 

concentrations in colostrum on day 0 (dark grey) and milk on day 1 and 7 (light grey). (B) IL-6 

concentrations in serum. (C) IL-6 relative gene expression in PBMCs. Data are shown as mean 

values (MV) ± 2 standard errors (n = 10). Day of birth is set as day 0. Significant changes are 

marked by asterisks (*). The significance level is set at p < 0.05. 
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Table 2 

Correlations between fold-changes of IL-6 gene expression in PBMCs and serum IL-6 concentrations 

from 10 clinically healthy female Holstein calves. The significance level is set at p < 0.05. 

 r P 

fold-changes day 1-7  0.9286 < 0.001 

fold-changes day 7-14 0.7586 0.011 

fold-changes day 14-21 0.7535 0.012 

fold-changes day 21-28  0.9435 < 0.001 

r, R-value (correlation coefficient R); P, P-value 

 

 

Correlations of IL-6, IgA and IgG  

Comparisons between IgA, IgG and IL-6 concentrations in colostrum revealed a positive 

correlation between IgA and IgG concentrations (p < 0.05). When the colostrum concentration 

of IgA, IgG and IL-6 was compared to its respective concentration in serum on day 1, none of 

the three molecules showed a direct relationship between colostrum and serum concentration. 

Likewise, the colostrum IL-6 concentration showed no correlation with the concentrations of 

IgA in serum and saliva, and IgG in serum on day 1. Using a two-way ANOVA for repeated 

measures, the time course of IL-6 in serum was compared to the time courses of IgA 

concentrations in serum and saliva, of IgG concentrations in serum, and of IL-6 gene expression 

in PBMCs. The analysis was applied to data collected in the period from day 7 to day 28 in 

order to minimize the assumed effects of the colostral immunoglobulins. No differences on the 

time courses of IL-6, IgA and IgG were evident, as P-values were > 0.05 (Table 3). Regarding 

the statistical analysis of serum IL-6, serum and salivary IgA, and serum IgG concentrations on 

each individual sampling time point, a significantly positive correlation was shown for the 

concentrations of IL-6 in serum and IgA in saliva on day 7 (p < 0.05). 
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Table 3 

Results for the two-way repeated measures analysis of variance (ANOVA) of TIME*parameter (day 7–

28) 

Parameter 1 Parameter 2  F df, df P η²p 

IL-6 (S) IgA (S)  1.25 1, 54 0.3 0.06 

IL-6 (S) IgA (SA)  1.11 1, 54 0.35 0.06 

IL-6 (S) IgG (S)  1.32 1, 54 0.28 0.07 

IL-6 (S) 

 

IL-6 (GE)  2.73 1, 36 0.08 0.35 

S, serum; SA, saliva; GE (relative gene expression in PBMC); F, F-value; df, degree of freedom; PA, 

parameter; p, P-value; η²p, partial eta squared 

 

 

DISCUSSION 

Beside others, IL-6 is an important cytokine in the regulation of the antibody development in 

mammals (Husband et al., 1996). Focusing on IgA, conflicting research results exist regarding 

the influence of IL-6 (Yamanaka et al., 2003a; Kumar et al., 2014). Therefore, this study 

investigated the natural development of IgA, IgG and IL-6 in newborn calves over a period of 

four weeks, paying special attention to the possible influence of IL-6 on the IgA development.  

As observed in figure 1, from day 14 on, IgA became detectable in saliva, what was probably 

the result of the calves’ adaptive immune responses towards natural exposure to specific 

environmental microbes. This observation suggested that the calves’ own mucosal immunity 

starts to develop considerably earlier than the systemic immunity (e.g. IgG), which is described 

to develop from the fourth week of life (Barrington and Parish, 2001). A descriptive analysis 

of the IgA and the IL-6 time courses revealed a coincidence of an IL-6 increase in serum and 

the occurrence of IgA in saliva on day 14. Regarding the serum and salivary IgA, IgG and IL-

6 concentrations day-by-day, a significant correlation for IgA in saliva and IL-6 in serum was 

found on day 7. Interpreting this data with caution, IL-6 seems to play a role in the induction 

phase of IgA production, but it seems to have no influence on the actual IgA concentration in 

saliva. There are diverse factors, which can make it difficult to demonstrate a linear relation 

between IL-6 and immunoglobulins in vivo. The network of cytokines in a living organism is 

complex and there are plenty of interactions (Seillet et al., 2014). Concerning IL-6 in particular, 
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other cytokines were also discussed and considered to be the main trigger for the 

immunoglobulin production (e.g. IGIP, IL-2, IL-10) (Estes, 1996; Austin et al., 2003). 

Furthermore, IL-6 does not act directly on B-cells, but its effects are mediated by IL-21, 

released from CD4+ T-cells upon their stimulation with IL-6 (Dienz et al., 2009; Gowane et al., 

2014). In addition, the individual immunologic competence for producing antibodies and 

cytokines must be considered.  

This individualism was also rediscovered in the present study, in the form of high standard 

errors (SE). Concerning colostrum and milk, the statistical analysis for each individual calf on 

day one revealed no correlation between colostrum and serum concentrations, neither for IgA 

nor for IgG. These findings show the disparity in any specific colostrum and in the calves’ 

ability for intestinal absorption of immunoglobulins. These findings were confirmed by other 

authors, who could not show a positive correlation when colostrum and serum were individually 

analyzed for each animal of the study (Bender et al., 2009; Secor et al., 2012). However, there 

are also other studies which show significant correlations between colostrum and serum 

immunoglobulin concentrations (Osaka et al., 2014). It was suggested, that a high 

immunoglobulin concentration in colostrum is likely to result in a high immunoglobulin serum 

concentration in the respective calf, although individual factors in the calf can have an influence 

on these general assumption. Besides the individual ability for absorption, the colostrum 

administration plays an important role. Various factors, such as the volume administered, time 

point and application technique were discussed (Kruse, 1983; Besser et al., 1991; Rauprich et 

al., 2000). As the colostrum administration in this study follows a standardized protocol, 

differences between the calves could be neglected here.  

Immunoglobulin A, as a primary mucosal immunoglobulin, rapidly declined in serum after day 

1, whereas for IgG, the colostral immunity lasts at least for 2 to 4 weeks (Chase et al., 2008). 

During this time, the calves’ own IgG production is negligible (Barrington et al., 2001). 

Therefore, in this study, the influence of IL-6 on the serum IgG concentration could not be 

examined, as serum IgG was mainly of colostral origin. In comparison to IgG concentrations 

reported in the literature, the amounts measured in this study were low, in both serum and 

colostrum (Wittum et al., 1995; Dewell et al., 2006; Meganck et al., 2014). Colostrum IgG 

levels are influenced by various factors. The individual immune competence of the dam as well 

as the number of gestations is important (Morrill et al., 2012). Colostrum of primiparous cows 

is shown to contain lower amounts of IgG than colostrum from multiparous cows (Gulliksen et 

al., 2008). There was a high number of heifers on the farm on which the sampling for this study 

was conducted. This might be one possible explanation for the low IgG concentrations in 
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colostrum. Furthermore, the collection of colostrum occurred not always directly after birth and 

a delayed collection is also described to negatively influence the amount of IgG (Moore et al., 

2005).  

The results obtained from the relative gene expression analysis proved that bovine PBMCs 

could produce IL-6 directly after birth. Even so, the serum concentration of IL-6 on day 1 

appeared mainly influenced by the high concentrations of IL-6 in the colostrum. After day 7, a 

commercial milk replacer was fed to the calves so that a further transfer of IL-6 from the milk 

was excluded. From day 7 onwards, the data based on the relative gene expression and the 

serum concentration of IL-6 showed a similar time course. Moreover, correlations of fold-

changes revealed significant coherence for each day. From these findings, we conclude that the 

peak of IL-6 in serum on day 14 was mainly due to the calves’ own production of IL-6. The 

half-life time of IL-6 in serum was reported to be below 10 hours and therefore serum 

concentrations on day 14 were unlikely to result from colostrum uptake on day 1 (Banks et al., 

2000). Our results differ from previous studies, where the IL-6 serum concentration until day 

28 was exclusively represented by maternal IL-6 taken up via the colostrum (Yamanaka et al., 

2003b). This discrepancy may be due to the different methodologies used. Instead of a 

conventional RT-PCR and detection of DNA by agarose gel electrophoresis, a qRT-PCR was 

used in this study. Concerning a reliable quantification of DNA, qPCR was described to be 

more accurate than quantification by agarose gel electrophoresis (VanGuilder et al., 2008). 

In conclusion, it was proven that newborn calves could produce IL-6 by themselves, directly 

after birth. Regarding the influence of the calves’ IL-6 on the physiological salivary IgA 

development, this study affirmed the hypothesis that IL-6 supports IgA production in saliva at 

specific time points during the development of an immune response in newborn calves. Later 

on, no subsequent relationship between IL-6 and IgA was established. The IgA-mediated 

mucosal immunity appeared as early as two weeks after birth and therefore much earlier than it 

is assumed for the systemic IgG.  
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ABSTRACT 

Neonatal calf diarrhea is still one of the most important diseases in calf rearing and severe 

diarrhea has a marked impact on animal welfare. Furthermore, significant economic losses can 

result from this disease due to high mortality rates, high medical costs and low weight gain. In 

order to avoid a fatal outcome of the disease, it is crucial that vulnerable calves are identified 

as early as possible. Interleukin 6 (IL-6) is described as an early and reliable prognostic marker 

in several diseases. In this study, 20 scouring calves were tested by ELISA for their IL-6 serum 

concentrations. Samples were collected twice, at the beginning of diarrhea and 7-10 days later. 

Regarding the clinical outcome after 7-10 days, calves were classified as recovered or non-

recovered. A receiver operating characteristic (ROC) analysis was conducted to determine the 

prognostic value of IL-6 for the progress of clinical symptoms. At the beginning of diarrhea, 

the IL-6 concentration was significantly higher in non-recovering calves compared to those that 

recover 7-10 days after the onset of diarrhea. IL-6 proved to be a useful additional parameter in 

the clinical examination. High initial IL-6 values can support the decision for closer monitoring 

and an adapted therapeutic strategy for the respective calves. This may help to prevent 

unnecessary animal suffering and reduce economic losses.  

 

Keywords 

neonatal calf diarrhea, interleukin 6, ELISA, Bovine Rotavirus, Cryptosporidium parvum 
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INTRODUCTION 

Neonatal calf diarrhea poses a marked threat to animal welfare and causes significant economic 

losses due to high mortality, higher medical costs and low weight gain (Waltner-Toews et al., 

1986, Warnick et al., 1995, Mohd Nor et al., 2012). Infectious and non-infectious causes can 

lead to severe diarrhea in calves. In the first 4 weeks of life, infections with Bovine Coronavirus 

(BCV), Bovine Rotavirus (BRV), Cryptosporidium (C.) parvum and enterotoxic E. coli (ETEC) 

in particular can cause inflammatory and functional damage to the intestine (Kaske, 1993, Al 

Mawly et al., 2015). Insufficient management of the diseased calves can quickly result in a fatal 

outcome (Meganck et al., 2014). A reliable prognostic marker for the progress of diarrhea 

would enable dairy farmers and veterinarians to monitor critical patients more closely. 

In several disorders, interleukins and especially interleukin 6 (IL-6), appear to be such a marker 

of early inflammation and prognosis (Rincon, 2012). The helical 208-AA glycoprotein IL-6 is 

produced by several cell types and mainly operates as an inducer of the acute phase response 

(Barton, 1997, Droogmans et al., 1992). Therefore, it is upregulated in the early stage of an 

inflammatory process and rapidly decreases after 12-24 h (Okabe et al., 1996, Volante et al., 

2004). Thus, IL-6 could serve as an early marker for inflammation since serum titers increase 

before the inflammation becomes clinically apparent.  

Several studies in human medicine investigated IL-6 as a prognostic marker related to a specific 

pathogen. Children displaying hemolytic uremic syndrome (HUS) due to an infection with 

enterohemorrhagic E. coli (EHEC) showed higher levels of IL-6 when the disease became more 

severe in nature (e.g. anuria, extrarenal manifestation, chronic renal sequelae) (Karpman et al., 

1995). Likewise, high IL-6 values were present in children suffering from shigellosis when 

complications arose during illness (de Silva et al., 1993). For humans and pigs, it was shown 

that serum IL-6 values were elevated in individuals displaying diarrhea due to an infection with 

rotavirus (Jiang et al., 2003, Azevedo et al., 2006).  

Despite the direct connection of IL-6 to a specific pathogen, IL-6 has also been established as 

a reliable marker for the clinical outcome of human patients, independent from the type of 

underlying disease. Interleukin 6 was prognostic for sepsis and mortality in adult humans 

suffering from a bacterial infection, regardless of what pathogen was causatively involved 

(Moscovitz et al., 1994). This was confirmed by another study among severely infected humans 

at an emergency department, where non-survivors had higher IL-6 serum concentrations at the 

initial examination than survivors (Wilhelm et al., 2012). In hospitalized human neonates, an 

increased IL-6 serum level was proven 100% sensitive in detecting individuals who developed 

a clinical sepsis at later stages of their disease (Buck et al., 1994). In veterinary medicine, IL-6 
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was also a reliable parameter to monitor dogs in intensive care units (Schüttler et al., 2015). 

The mean IL-6 concentration of these dogs was significantly higher in the non-survivor group 

compared to survivors. 

Only a small number of studies covered the diagnostic and prognostic potential of IL-6 in cattle. 

For instance, IL-6 values in cows suffering from subclinical mastitis were elevated in the early 

stages of the disease, even before the number of somatic cells increased (Sakemi et al., 2011). 

Other investigators focused on the IL-6 serum values in pregnant cows pre-partum (Ishikawa 

et al., 2004). They found high IL-6 serum concentrations in those cows that developed 

endometritis post-partum. In the case of coliform mastitis, serum IL-6 was shown to be 

significantly higher in non-survivors when sampled at day 0-9 of the onset of clinical symptoms 

(Nakajima et al., 1997).  

As investigations of serum IL-6 concentrations in the case of neonatal calf diarrhea are lacking 

and the improvement of therapy would benefit from a reliable prognostic marker, this study 

investigated the prognostic quality of IL-6 for the progress of clinical symptoms in neonatal 

calf diarrhea. Therefore, a controlled cohort study over 10 days was carried out on 20 scouring 

calves. Calves were monitored for clinical changes as well as for changes in the body 

homeostasis (e.g. hematology, clinical chemistry) related to diarrhea. For the determination of 

the prognostic potential, scouring calves were divided into two groups, regarding their 

classification at day 10 as ‘recovered’ or ‘non-recovered’. A ROC analysis with calculation of 

the AUC was carried out to prove the accuracy of IL-6 determination in serum for the estimation 

of the prognosis. 

 

MATERIAL AND METHODS 

Animals 

Calves were housed on a commercial dairy farm near Goettingen, Lower Saxony, Germany. 

The farm is organized in terms of 3 locations. One location is for the 500 milk yielding and late 

pregnant cows, one for the calves and the last one for the offspring, older than 8 weeks. 

Biotechnical measures directly after birth included disinfection of the umbilicus and application 

of earmarks. Four liters colostrum were fed to the calves via tube feeder within the first hour of 

life. The colostrum came from the farm’s colostrum bank and was controlled for sufficient 

quality with a colostrometer. Within 24 hours after birth, newborn calves were brought to a 

special calf location, which was geographically separated from the barn for the milk-yielding 

cows. The newborn calves were sheltered outdoors in igloos individually and were fed 

pasteurized waste milk ad libitum in the first week after birth. Then, a commercial milk replacer 
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(50% skimmed milk) displaced the milk. From week 3 on, starter grain was offered and calves 

had free access to water. Calves were weaned 4 weeks after birth.  

Sampling was conducted during January to July 2014. All Holstein Friesian calves displaying 

diarrhea were included in the study. Calves were excluded when showing any other diseases, 

such as respiratory tract infections or infections of the umbilicus. Finally, the group of scouring 

calves consisted of 20 animals (age 12.9 ± 2.0 days; 89 % female). Scouring calves were 

sampled once at the first day of evident symptoms and again 7-10 days later. At these time 

points, all animals passed a complete clinical examination with information on heart rate, 

breathing rate, temperature, dehydration, and general condition were gathered. Diarrhea scoring 

was undertaken using an already established scoring system, evaluating the fecal consistency 

in a 4-point scale from normal (0) to totally liquid (4) (Hasoksuz et al., 2002). All calves 

received an oral electrolyte solution from the beginning to the end of diarrhea and were initially 

treated with 0.5 mg/kg meloxicam. Throughout the study period, calves were monitored twice 

per day by the animal care takers. 

After the sampling period, the calves were further divided into 2 subgroups; one subgroup (n = 

11; age 15.0 ± 2.8 days) which included calves that clinically recovered 7-10 days after the first 

symptoms appeared and the other subgroup (n = 9; age 10.2 ± 1.7 days), which included calves 

evaluated as non-recovered, because they were still showing diarrhea, still being medically 

treated, or showing other abnormalities in the clinical examination (e.g. reduced general 

condition). All clinical examinations were performed by the same veterinarian to avoid an 

examiner bias.  

 

Samples 

All samples were acquired with the owner’s consent and the procedures were carried out in 

accordance with the German Protection of Animals Act under the supervision of the 

Commissioner for Animal Welfare, Faculty of Agriculture, University of Goettingen. For the 

purpose of laboratory analysis, 5 mL EDTA-treated blood and 10 mL whole blood for serum 

harvest were collected by jugular venipuncture. Stool samples were collected from the rectum 

following digital stimulation. All samples were cooled immediately after collection and brought 

to the laboratory within 6 hours. Blood samples and feces were processed directly. Serum was 

stored at -20°C until further use in the IL-6 ELISA. 
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Hematology and Clinical Chemistry 

The complete blood count and the serum clinical chemistry were analyzed in all calves, to 

ensure the healthiness of the control group and to determine pathological changes due to 

diarrhea. EDTA blood samples were utilized for a complete blood count using a CellDyn 3500 

Analyzer (Abbott GmbH & Co KG, Wiesbaden, Germany). Because differentiation of bovine 

lymphocytes and monocytes can be difficult, the results of the CellDyn 3500 Analyzer were 

verified by a manual blood count. Serum samples were aliquoted to 500-μL aliquots and stored 

at -20°C. One aliquot was used directly for the clinical chemistry analysis with the Konelab 20i 

(Thermo Fisher Scientific Inc., Dreieich, Germany). 

 

Stool Analysis 

Stool samples were analyzed by a commercial lateral immunochromatography test (Bio-X 

Diagnostics, Rochefort, Belgium) to identify the causative pathogen for diarrhea, such as 

Bovine Coronavirus, Bovine Rotavirus, Cryptosporidium parvum and E. coli F5 (K 99).  

 

IL-6 ELISA 

IL-6 serum concentrations were determined using the commercial High Sensitive ELISA Kit 

for bovine IL-6 (USCN Life Science, Wuhan, China). First, standard and samples were added 

in duplicate to the pre-coated plate and incubated for 2 hours at 37°C. Subsequently, all liquid 

was removed and Detection Reagent A (Biotin-conjugated antibody specific to IL-6) was added 

for 1 hour at 37°C. The plate was washed 3 times with wash solution (1x) and Detection 

Reagent B (avidin-conjugated horseradish peroxidase) was added and incubated at 37°C for 

30 min. The plate was washed 5 times with wash solution before substrate solution (TMB 

substrate) was added for 20 min at 37°C. Color development was stopped with stop solution 

(H2SO4) and optical densities were measured in all wells at 450 nm in the Sunrise microplate 

reader (Tecan, Maennedorf, Switzerland). For data analysis, average optical densities (ODs) 

were calculated and blank reduction was performed. Standard curves were generated and 

sample concentrations were determined using the CurveExpert 1.4 software (CurveExpert 

Copyright 1995-2007 Daniel Hyams). A detection limit of 1.56 pg IL-6/mL was reported by 

the kit manufacturer. The coefficient of variation (CV) for the intra-assay test precision was < 

7%.  
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Statistical Analysis 

Results were shown as mean values (MV) ± 2 standard errors (2SE). Data from the clinical 

examination, the hematology and the IL-6 ELISA were tested for normal distribution.  

Data of recovering and non-recovering animals were compared at both sampling time points. 

Regarding the IL-6 values in these groups, further statistical tests were performed. A two-way 

analysis of variance (2-way ANOVA) was calculated to investigate the interaction of group 

(recovering, non-recovering) and sampling time point (first, second). In order to investigate a 

change in the odds of IL-6 concentrations at the onset of diarrhea (first sampling time point), to 

predict a prolonged course of diarrhea (non-recovering) a univariate logistic regression analysis 

was performed. The goodness-of-fit of the model was assessed by performing an Omnibus test 

of model coefficients and a Hosmer-Lemeshow test, as well as calculating the Nagelkerke R2. 

The influence of the variable IL-6 was estimated using the Wald statistic. 

As the age of calves is described to be a risk factor to develop diarrhea, this variable is analyzed 

in the same way regarding the age of calves at the first sampling time point (Pare et al., 1993; 

Gulliksen et al., 2009b). Subsequently, a multivariate logistic regression analysis was 

performed, with both variables (IL-6, age) and a potential interaction effect between these 

variables. The goodness-of-fit for this analysis was conducted as for the univariate analysis. 

Using forward model selection, a P-value of < 0.05 was chosen as the cut-off for the respective 

variable to stay in the model. In order to further evaluate the prognostic quality of IL-6, a 

receiver-operating characteristic (ROC) curve was generated with the IL-6 values of the 

recovering and the non-recovering animals at the first sampling time point. The sensitivity was 

defined as the percentage of samples which were classified correctly as non-recovering. The 

specificity was defined as the percentage of samples which were classified correctly as 

recovering. The area under the curve (AUC) was calculated by trapezoidal summation and its 

statistical significance was estimated. All analyses were carried out using STATISTICA 12 

software (StatSoft (Europe) GmbH, Hamburg, Germany) and IBM SPSS Statistics 20.0 (IBM 

Corp. Released 2011. IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM 

Corp.). The statistical significance level was set at P < 0.05.  

 

RESULTS 

Clinical, Biochemical, and Hematological Findings 

The results of the clinical and laboratory examination are shown in Table 1. Most of the 

recovering calves showed mild symptoms of diarrhea (score 2, n = 9) and none of them 

displayed diarrhea at the second sampling time point. Severe diarrhea was only seen in the non-
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recovering group (score 4, n = 2), in which 5 calves were still displaying diarrhea 7-10 days 

after the onset of symptoms. The clinical chemistry and the hematology revealed no significant 

differences between recovering and non-recovering animals, neither at the first nor at the second 

sampling time point (data not shown). Despite the number of white blood cells at the first 

sampling being within the reference values (5-10*109 cells/L) for recovering (RG) (6.5 ± 

1.3*109 cells/L) and non-recovering calves (NRG) (10.3 ± 2.1*109 cells/L), animals from the 

NRG showed higher values than the RG animals (P < 0.01). This was caused by a higher 

number of neutrophils (RG: 2.6 ± 0.6*109 cells/L, NRG: 6.1 ± 2.4*109 cells/L, reference range: 

1-3.5*109 cells/L). At the second sampling time point, no significant differences were detected. 
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Table 1 Results of the clinical examination and the leukogram of healthy (control) and  

  scouring calves. All scouring calves were sampled a second time 7-10 days after the    

  first sampling. Calves recovered from diarrhea at the 2. Sampling time point were compared   

  to those that did not recover using a T-Test. Data are displayed as means ± 2 SE. 

 

1Diarrhea scoring according to Hasoksuz et al., 2002, 0 = normal, 1 = pasty, 2 = semiliquid, 3 = liquid 

with some solid material, 4 = totally liquid;  

2WBC, white blood cell count; 3NEU, neutrophils; 4LYM, lymphocytes; 5MONO, monocytes; 6EOS, 

eosinophils; 7BASO, basophils; 8BRV, Bovine Rotavirus; 9C.parvum, Cryptosporidium parvum; 10NS, 

not significant (p > 0.05). 

  

Parameter Ref. 

Range 

1. Sampling 2. Sampling 

  Recovering  

(n = 11) 

Non-

Recovering  

 (n = 9) 

P-value Recovering  

(n = 11) 

Non-

Recovering  

(n = 9) 

P-value 

Age (days)  15.0 (± 2.8) 10.2 (± 1.7) 0.01 23.1 (± 3.3) 17.2 (± 1.7) < 0.01 

Diarrhea 

scoring1 

 0 (n = 0) 

1 (n = 0) 

2 (n = 9) 

3 (n = 2) 

4 (n = 0)  

0 (n = 0) 

1 (n = 0) 

2 (n = 4) 

3 (n = 3) 

4 (n = 2) 

 

- 0 (n = 11) 

1 (n = 0) 

2 (n = 0) 

3 (n = 0) 

4 (n = 0) 

 

0 (n = 4) 

1 (n = 0) 

2 (n = 4) 

3 (n = 1) 

4 (n = 0) 

 

- 

Detected 

pathogen 

 BRV8 

(n = 3) 

 

C. parvum9  

(n = 5) 

 

BRV and  

C. parvum 

(n = 3) 

 

BRV  

(n = 0) 

 

C. parvum  

(n = 7) 

 

BRV and  

C. parvum  

(n = 2) 

 

- BRV  

(n = 1) 

 

C. parvum  

(n = 4) 

 

BRV and  

C. parvum  

(n = 0) 

 

BRV  

(n = 2) 

 

C. parvum  

(n = 4) 

 

BRV and  

C. parvum  

(n = 1) 

 

- 

Heart rate 

(min-1) 

90-110  136.4 (± 7.2) 142.2 (± 10.1) NS10 141.8 (± 9.3) 142.2 (± 6.9) NS 

WBC2 

(*109cells/L) 

5-10 6.5 (± 1.3) 10.3 (± 2.1) < 0.01 8.2 (± 1.6) 7.4 (± 1.6) NS 

NEU3 

(*109cells/L) 

1-3.5 2.6 (± 0.6) 6.1 (± 2.4) < 0.01 4.0 (± 1.1) 5.8 (± 5.7) NS 

LYM4 

(*109cells/L) 

0.6-3.4 2.0 (± 0.4) 2.5 (± 1.1) NS 3.3 (± 0.6) 4.0 (± 1.8) NS 

MONO5 

(*109cells/L) 

≤ 0.9 0.4 (± 0.4) 1.5 (± 0.6) < 0.01 0.9 (± 0.4) 2.5 (± 2.6) NS 

EOS6 

(*109cells/L) 

≤ 0.7 0.03 (± 0.05) 0.02 (± 0.03) NS 0.01 (± 0.02) 0.02 (± 0.03) NS 

BASO7 

(*109cells/L) 

≤ 0.2 0.01 (± 0.02) 0.1 (± 0.1) NS 0.07 (± 0.06) 0.04 (± 0.03) NS 
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Detection of Diarrheagenic Pathogens in Fecal Samples 

Bovine Rotavirus (BRV) and Cryptosporidium parvum were identified as the diarrhea-causing 

pathogens in scouring calves (Table 1). Mono-infections with only 1 pathogen, as well as 

double-infections were detected. Pathogens changed from the first to the second sampling time 

points, in both the RG and the NRG. In the RG infections with BRV decreased from 3 to 1 

positive samples, infections with C. parvum decreased from 5 to 4 positive samples and double 

infections were no longer detected at the second sampling. In the NRG infections with C. 

parvum decreased from 7 to 4 positive samples, double infections decreased from 2 to 1 and 2 

new BRV infections were detected at the second sampling time point.  

 

Interleukin 6 in Serum Samples 

Interleukin 6 results are presented as means ± 2 SE (Fig. 1). There was no significant interaction 

between the effects of group (RG, NRG) and sampling time point (1, 2) on serum IL-6 (F = (1, 

36) = 1.776, p = 0.191).  

In terms of disease progression, initially the NRG calves showed a higher (p = 0.02) IL-6 mean 

value (42.3 ± 6 pg/mL) than the RG calves (31.8 ± 5.5 pg/mL).  

A logistic regression was conducted to determine the effects of age and IL-6 at the onset of 

diarrhea (first sampling time point) on the odds for calves to develop a prolonged course of 

diarrhea (Table 2). The univariate logistic regression model for IL-6 (Model 1) was  

statistically significant, as the P-value for the chi-square statistic (Omnibus test of model 

coefficients) was 0.014 and the Hosmer-Lemeshow test showed no statistical significance (p = 

0.640). The model explained 34% (Nagelkerke R2) of variance. The Wald statistic revealed a 

significant influence of IL-6 in the model (p = 0.041). The odds for calves developing a 

prolonged course of the disease increase by 14% for each unit of IL-6 (Odds ratio (OR) 1.14; 

95% CI 1.0-1.3). A T-test revealed the age of the RG and the NRG animals being significantly 

different (p = 0.01). A univariate logistic regression model was conducted to test for a 

significant influence of the variable “age” on the odds for a prolonged course of diarrhea. As 

the analysis revealed significance (p = 0.039) a multivariate logistic regression was performed 

including IL-6 and age (Model 2). In this model, none of the variables showed 

significance. Additionally, no confounding by age was noted as there was less than a 20 % 

change in the coefficient for IL-6 with the addition of age in the model. Furthermore, even the 

interaction term (age*IL-6; Model 3) showed no significance, when included in the model. 

The value of IL-6 as a prognostic marker for the clinical outcome of scouring calves was further 

evaluated in a ROC analysis (Fig. 2). The ROC analysis for IL-6 values of the diarrhea group 
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at the beginning of diarrhea revealed a cut-off of 38.7 pg/mL, with a sensitivity of 77 % and 

specificity of 82 % for identifying calves with a prolonged recovery period. The area under the 

curve (AUC = 0.808, 95% confidence interval: 0.609-1, p = 0.02) showed a good predictive 

ability for IL-6 to discriminate between RG and NRG animals at the onset of diarrhea. 

 

 

 

 

 

 

 

 

 

Fig. 1. Comparison of Interleukin 6 (IL-6) in scouring Holstein Friesian calves with different  

clinical outcome. The scouring calves were grouped by clinical recovery 7-10 days after (2. 

sampling time point) the onset of diarrhea (first sampling time point). IL-6 serum concentrations 

of the recovering group1 (n = 11) and the non-recovering group1 (n = 9) were compared on both 

sampling time points.  

* p < 0.05; 

1Recovering group, calves were clinically recovered 7-10 days after the onset of diarrhea; 

2Non-Recovering group, calves were not clinically recovered 7-10 days after the onset of 

diarrhea 
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Table 2 Results of the logistic regression analysis for model 1. IL-6 values at the onset of  

 diarrhea (first sampling time point) were evaluated for their odds to predict a  

 prolonged course of diarrhea (non-recovering).  

 

 

 

 

 

 

 

 

 

 

 

 

 

1B, Regression coefficient B; 2SE, standard error; 3C.I., confidence interval; * P-value < 0.05 was 

regarded as significant 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Model 1 

  “IL-6” 

(n = 20) 

Variable  IL-6  

B1  0.134 

SE2  0.066 

P-value*  0.041 

Exp(B)  1.143 

95% C.I.3 for Exp(B) 
Lower 1.005 

Upper 1.300 

Omnibus test*  p = 0.014 

Nagelkerke R2  0.346 

Hosmer-Lemeshow 

test* 

 
p = 0.640 
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Fig. 2. ROC1 curve analysis for the evaluation of the prognostic performance of interleukin 6  

(IL-6) in scouring Holstein Friesian calves. Scouring calves (n =20) were grouped by their 

clinical recovery status 7-10 days after the onset of diarrhea (recovering group2, n = 11; non-

recovering group3, n = 9). The IL-6 serum concentrations at the onset of diarrhea were evaluated 

for reliability in identifying calves with a prolonged recovery period.  

1ROC, receiver operating curve;  

2Recovering group, animals which were clinically recovered 7-10 days after the onset of 

diarrhea; 

3Non-Recovering group, animals which were not clinically recovered 7-10 days after the onset 

of diarrhea 
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DISCUSSION 

In this study the prognostic value of the IL-6 serum concentration was investigated over the 

course of neonatal calf diarrhea. The main result was that calves developing a prolonged course 

of the disease showed significantly higher IL-6 values at the onset of symptoms.  

Initially, hematology, clinical chemistry were analyzed. The calves showed elevated levels of 

neutrophils while the total number of white blood cells was within the reference range. The 

neutrophilia was rather related to handling stress during sampling than to diarrhea, as it was 

similar in both groups. An increase of neutrophils due to stress was already described for cattle 

in cases of shipping and heat-stress (Kegley et al., 1997, Mitlohner et al., 2002). The differential 

blood count, measured by the CellDyn 3500 Analyzer, revealed increased numbers of 

monocytes when compared to the reference values. However, manual counting of blood smears 

could not confirm the monocytosis. The CellDyn 3500 Analyzer classifies cells by measuring 

volume and granularity. It is likely that the number of monocytes was overestimated by 

mistaking them for large lymphocytes (Stoeber et al., 1967). 

The detection of diarrhea-causing pathogens revealed differences between the first and the 

second sampling time point in both groups (recovering, non-recovering). In the recovering 

group 5 calves still shed either BRV or C. parvum at the second sampling time point, although 

none of them showed diarrhea. This was described in other studies also, were BRV shedding 

occurred up to 11 days after infection, whereas diarrhea only lasts 7 days (Vega et al., 2015). 

Similarly, C. parvum detection in feces was shown to be not always connected to diarrhea in 

the corresponding animals (Bjorkman et al., 2015). In the non-recovering group 2 animals 

showed a BRV infection at the second sampling time point, which had not been apparent at the 

first sampling time point. It was suggested, that this was due to a secondary infection, which is 

frequently described in neonatal calf diarrhea (Bartels et al., 2010, Silverlas et al., 2010). In the 

classification of calves as recovered or non-recovered the pathogen detection was less important 

than the results of the clinical examination when focusing on the establishment of a prognostic 

marker. 

Serum IL-6 concentrations were greater in the diarrhea group than in controls. This is consistent 

with findings of an increased IL-6 gene expression in peripheral blood mononuclear cells 

(PBMCs) and in intestinal epithelial cells from scouring calves ex vivo due to an infection with 

Bovine Rotavirus (Aich et al., 2007, Qadis et al., 2014).  

Calves further investigated regarding the course of diarrhea and the ability of IL-6 to predict 

the clinical outcome after 7-10 days. Therefore, they were divided into recovering and non-

recovering groups after collection of data. At the onset of diarrhea, IL-6 was significantly 
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greater in recovering and non-recovering animals. Because calf age differed between the two 

groups, age was evaluated additionally. In a multivariate logistic regression model none of the 

variables IL-6 and age and showed significance. A possible interaction between these two 

variables was not observed. However, the univariate logistic regression model for IL-6 showed 

a significance influence of this variable in predicting a prolonged course of diarrhea and was 

therefore regarded as the most reliable model in this investigation. The odds to develop a 

prolonged course of diarrhea increase by 14% for each unit of IL-6 and model could explain 

34% of the variance. In literature, there are several other factors discussed increasing the risk 

for diarrhea (Bendali et al., 1999; Pare et al., 1993; Wiest et al., 1998). Birth weight and calf 

housing (e.g. open barn vs. closed barn) were identified as potential risk factors (Al Mawly et 

al., 2015; Pare et al., 1993), whereas immunoglobulin G serum concentrations seemed to have 

no effect (Meganck et al., 2015; Pare et al., 1993). These parameters were not assessed in the 

study presented here, but could have been different in recovering and non-recovering calves. 

Therefore, these parameters should be taken into consideration in future investigations, 

especially focusing on potential interactions between these parameters and IL-6.  

The value of IL-6 as an initial parameter for the prognosis of scouring calves was further 

evaluated in a ROC analysis. The area under the curve (AUC) was used to measure the accuracy 

of IL-6 in distinguishing recovering from non-recovering animals. A value of 1 was regarded 

as a perfected test, whereas a value of 0.5 corresponds to random chance. The AUC value of 

0.808 confirmed IL-6 as a good test for the estimation of the prognosis. Furthermore, the ROC 

analysis allowed the definition of a cut-off value. For the establishment of IL-6 as a prognostic 

marker, the sensitivity was given priority over the specificity, as a high number of false positive 

classifications are less important than a high number of false negative classifications. In 

practice, this means, that it is better to monitor a calf more closely, which is misclassified as 

non-recovering, as to overlook a calf, which is prone to develop a prolonged course of diarrhea. 

The cut-off was set at 38.7 pg/mL, with a sensitivity of 77% and specificity 82%, as this was 

the concentration with the most appropriate balance between sensitivity and specificity.  

Taken together the results of the ROC analysis and the univariate logistic regression, the 

determination of IL-6 at the onset of diarrhea was a useful tool to identify calves developing a 

prolonged course of the disease. It is recommended that scouring calves displaying IL-6 values 

above 38.7 pg/mL should be given special attention, as they were prone to develop a prolonged 

course of diarrhea. These results underline the prognostic potential of IL-6, which was already 

shown for adult cattle in cases of postpartal endometritis and coliform mastitis (Ishikawa et al., 
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2004, Nakajima et al., 1997). Therefore, IL-6 seems highly valuable to forecast complications 

and possibly life-threatening progression of an infectious disease in cattle. 

In conclusion, this study showed IL-6 to be a useful supplemental parameter for the estimation 

of disease progression in neonatal calf diarrhea. Elevated IL-6 values may lead the veterinarian 

to the decision to monitor scouring calves more closely and to adapt the therapeutic strategy 

accordingly. Thereby animal suffering and economic losses could be avoided. As the animals 

in our study only showed infections with Bovine Rotavirus or Cryptosporidium parvum, further 

investigations are needed into all relevant pathogens for neonatal calf diarrhea (e.g. Bovine 

Coronavirus, enterotoxic E. coli encoding F5 (K99) fimbriae). 
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ABSTRACT 

Bovine Coronavirus (BCV) is one of the main pathogens responsible for causing severe 

diarrhea in neonatal calves. High mortality rates and marked economic losses due to neonatal 

calf diarrhea indicate deficiencies in current preventive and therapeutic strategies. Species-

specific antibodies against BCV were considered to address this therapeutic lack. In order to 

generate single chain antibody fragments (scFv) against BCV a bovine phage display library 

was constructed. Initially, a detailed analysis of bovine immunoglobulin genetics was 

conducted, based on already published data, own investigations and a BLAST analysis. A new 

bovine primer set covering the entire bovine immunoglobulin repertoire was designed. It was 

used to amplify the antibody repertoire of a Holstein Frisian bull immunized against BCV. The 

amplified antibody encoding cDNA from isolated peripheral blood mononuclear cells (PBMCs) 

provided the basis for an immunized single-chain variable fragment (scFv) phage display 

library of a diversity of 3*109 independent clones. A panel of bovine scFv antibodies with 

identical sequence profiles was isolated from the library. The bovine scFv-SF-3E4 showed 

excellent binding kinetics (Km = 595 pM) and neutralization ability (≥ 0.24 µg/ml) against 

BCV-V270. The epitope was investigated using western blotting and a competition ELISA, and 

found to be located in the S1 subunit of the BCV spike protein. The established recombinant 

scFv antibodies are promising new species-specific drug candidates for prevention and therapy 

of neonatal calf diarrhea caused by coronaviruses.  

 

Keywords 

Bovine Coronavirus, immunoglobulin library, phage display, single-chain variable fragment 
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INTRODUCTION 

Neonatal diarrhea is still considered to be one of the most important diseases when rearing 

calves, and animal welfare is markedly affected by severe diarrhea. Furthermore, high mortality 

rates, drug costs and low weight gain may result in significant economic losses (Waltner-Toews 

et al., 1986; Warnick et al., 1995; Hasoksuz et al., 2002). Important etiologic pathogens include 

Bovine Coronavirus, Bovine Rotavirus, enterotoxic E. coli (F5 fimbriae) and Cryptosporidium 

parvum (Uetake, 2013). Effective treatment is essential to ensure animal health and welfare. 

Today, treatment of livestock is a key public and governmental concern. This can be attributed 

to increasing bacterial resistances and the lack of adequate antiviral therapeutics available. 

Currently, two preventive strategies for neonatal calf diarrhea are employed in the field. The 

first is dam vaccination. In Germany, presently four different vaccines are licensed by the Paul-

Ehrlich-Institut (http:\\www.pei.de). The second strategy is the passive immunization of calves 

with orthologous horse serum or concentrated bovine colostral immune serum. Both options 

are subject to a number of disadvantages. Effective dam vaccination requires significant 

logistical effort during immunization and colostrum management. Furthermore, colostrum 

quality is limited to the cow’s individual immunological competence (Kuegler et al., 2015). The 

elaborate production of orthologous and homologous immune sera results in expensive 

compounds, whose application is limited to individual cases. It can be stated that species-

specific immunoglobulins are important for prophylaxis and therapy. Unfortunately, no 

standardized economic solutions are available. Alternatively, species-specific recombinant 

antibodies for passive immunization can be isolated from antibody phage display libraries. 

Currently, no comprehensive bovine antibody library exist. The single-chain variable fragment 

antibody (scFv) is the commonly used recombinant antibody format for these purposes (Ahmad 

et al., 2012; Wang et al., 2015). In an scFv molecule, a peptide linker connects the variable 

domain of an antibody-heavy chain to the variable domain of an antibody-light chain (Farajnia 

et al., 2014). The limitation on the antibody domains, which are crucial for antigen binding, 

results in a very small but functional molecule showing excellent tissue penetration (Sandhu, 

1992). These properties make scFv antibodies advantageous for future clinical applications 

(Ahmad et al., 2012). However, in therapeutic applications, scFv antibodies show lower 

affinities, reduced serum half-life time and less neutralization ability compared to full-size 

antibodies, due to the lacking Fc part of the molecule (Chames et al., 2009; Jorgensen et al., 

2014; Unverdorben et al., 2016). This handicap can be easily overcome by the reformation of 

a full-size antibody from a scFv molecule, which is a simple method due to the development of 

new plasmids containing the requested constant domain (Bujak et al., 2014; Rasetti-Escargueil 
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et al., 2015). Furthermore, compared to the common hybridoma technology for recombinant 

antibody generation, further advantages emerge. The library construction is based on the 

homologous immunoglobulin repertoire. Therefore, antibodies generated are completely 

species-specific and do not exhibit immunogenicity when administered to the respective host 

species (Frenzel et al., 2014). The in-vitro process also enables the generation of antibodies 

against high virulent pathogens, high toxic or endogenous substances (Hairul Bahara et al., 

2013). Phage display technology allows for a rapid and easy library screening by mimicking 

the antibody affinity maturation in-vivo. In the animal, the native B-cell population initially 

produces a highly diverse antibody spectrum. Only those B-cell clones producing the most 

specific antibodies, with the greater affinity, multiply (Murphy, 2009; Paul, 2012). The repeated 

panning rounds during the phage display procedure imitate this process (Winter et al., 1994). 

Antibody specificity and affinity can be easily improved by adapting panning conditions, as 

well as by genetically engineering the selected antibody subsequently (Altshuler et al., 2010; 

Lee et al., 2015). To sum up, the construction of antibody phage display libraries is a straight 

forward and cost-effective method to generate species-specific high-affinity scFv fragments 

(Liu et al., 2013).  

To construct a bovine scFv library, detailed knowledge of the bovine immunoglobulin genes is 

necessary. Currently two bovine genome assemblies are available. They provided the basis for 

recent insights into bovine immunoglobulin genetics. Contrary to humans and mice, 95% of 

antibody light chains in cattle express the lambda isotype (Arun et al., 1996; Chen et al., 2008). 

Furthermore, the number of bovine variable domain (V) genes is modest in comparison to other 

species, such as human and mice (Parng et al., 1996). To still ensure sufficient antibody 

diversity, cattle show individual strategies such as somatic mutation without antigen contact, 

gene conversion and exceptional long CDR3 regions (Meyer et al., 1997; Walther et al., 2013). 

Bovine immunoglobulin genes are organized into several genomic loci. The functional bovine 

heavy chain locus is located on chromosome 21. Additional loci were found on chromosomes 

7, 8 and 20 (Walther et al., 2013). Sequence analysis revealed 36 different VH genes. Thirty of 

them were classified as functional genes. A leader sequence (LH) is connected upstream to each 

VH gene. This sequence is necessary for the transportation of the mRNA to the ribosomes 

during protein translation. Fifteen DH genes and six JH genes (2 functional) were identified 

(Walther et al., 2013; Liljavirta et al., 2014). Each constant region of the three immunoglobulin 

G (IgG) subclasses IgG1, IgG2 and IgG3 is encoded by an individual gene (Gu et al., 1992). 

The two light chain isotypes are located on different chromosomes; kappa on chromosome 11 

and lambda on chromosome 17 (Arun et al., 1996). The lambda locus includes 63 VLλ genes in 
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total and 25 functional genes. As described for the heavy chain, in the light chains each V gene 

is also connected to an upstream leader sequence. The JLλ and CLλ genes were organized in 

four cassettes, each cassette comprising one JLλ and one CLλ gene. Two cassettes were found 

to be functional (Ekman et al., 2009; Diesterbeck et al., 2012). For the kappa locus, 22 VLκ 

genes are described and eight are considered to be functional. Three JLκ genes and only one 

CLκ are known and considered to be functional (Ekman et al., 2009; Stein et al., 2012). As 

usual, the D segment is lacking in the light chain (Paul, 2012). Based on this data, a universal 

primer set was generated to thoroughly amplify the bovine immunoglobulin gene repertoire. 

An immunized bovine immunoglobulin library was generated and screened using phage display 

technology. As proof-of-principle, a bovine anti-BCV scFv was isolated from the library and 

compared to a neutralizing monoclonal antibody (Czerny et al., 1989) concerning specificity, 

affinity and pharmacokinetics. 

 

MATERIAL AND METHODS 

Viruses, bacteria, cell line and antibodies  

The Bovine Coronavirus strains BCV-V270 Munich (Czerny et al., 1989), BCV-L9 (derived 

from Dr. Werner Herbst, Justus Liebig University Giessen) and the human coronavirus strain 

OC43 (Tyrrell et al., 1978; Czerny et al., 1989) were propagated in VERO cells. VERO cells 

were grown in MEM containing 10% fetal calf serum (FCS). For virus propagation the FCS 

concentration was decreased to 5%. After a sufficient development of the cytopathogenic effect 

(CPE), the infected cell culture was freeze-thawed (-80°C/20°C) and centrifuged at 6,000 x g 

for 30 min at 4°C to remove cell debris. The supernatant was centrifuged in a SW 28-rotor 

(Beckman Coulter GmbH, Krefeld, Germany) for one hour (104,000 x g). Virus pellets were 

resuspended in TEN buffer (0.02M Tris-HCl, 0.15M NaCl, 0.001M EDTA, pH 7.6; all from 

Carl Roth GmbH & Co.KG, Karlsruhe, Germany) and layered on a continuous sucrose gradient 

(20-60%, w/w in TEN buffer; Carl Roth GmbH & Co.KG, Karlsruhe, Germany). Centrifugation 

was carried out in a SW 40-rotor (Beckman Coulter GmbH, Krefeld, Germany) for five hours 

at 4°C (114,000 x g). The virus band was collected by lateral puncture, pelleted in the SW 28-

rotor for one hour (104,000 x g) and resuspended in TEN buffer. The purified virus was stored 

at -80°C. For comparison a sucrose gradient purified Vaccinia Virus strain Elstree, the murine 

monoclonal anti-BCV-V270 antibody 1/1 and an anti-BCV-V270 guinea pig immune serum 

were used (Czerny et al., 1989; Czerny et al., 1994). E. coli strains used in this study were 

purchased from commercial suppliers (TG1: Lucigen Corporation, Middelton, USA ; HB2151: 

GE Healthcare, Chalfont St. Giles, UK). 
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Primer design 

The primer design was based on published bovine immunoglobulin gene sequences and 

database entries. Using the BLAST software (Altschul et al., 1990), the genome of Bos taurus 

(GCA_000003055.5 Bos_taurus_UMD_3.1.1) (Zimin et al., 2009) was screened using bovine 

heavy and light chain DNA sequences of the leader, the variable, the joining and the first 

constant region. The Lasergene MegAlign 12 software (DNAStar, Madison, USA) was used to 

align all sequences found by the ClustalW algorithm. Primer sets were generated incorporating 

both functional and pseudogenes. Similar sequences were covered by one single primer using 

wobble bases. The amplification was set up as nested PCR. In the first PCR (PCR 1), cDNA 

encoding the leader, variable, joining and first constant region of the respective chain was 

amplified. The second PCR (PCR 2) amplified a shorter segment, corresponding to the variable 

and joining region. Therefore, primers were generated for each leader, variable, joining and 

first constant region of the respective chains. VLλ, VLκ and JH primers were designed to contain 

an overlapping 30-nucleotide sequence encoding a (G4S)3 glycine-serine linker, connecting VH 

and VL chains in the scFv molecule. 

 

Animal, blood collection and lymphocyte isolation 

A four-year-old Holstein Friesian breeding bull was immunized three times with the dam 

vaccine Scourguard3 (Zoetis, Berlin, Germany), containing live attenuated Bovine 

Coronavirus, live attenuated Bovine Rotavirus and inactivated E. coli (K99). The intervals 

between the vaccinations were two weeks. 250 ml blood were taken from the vena jugularis 

three weeks after the last vaccination. The procedure was carried out in accordance with the 

German Protection of Animals Act under the supervision of the Commissioner for Animal 

Welfare from the Faculty of Agriculture at the University of Goettingen. Peripheral blood 

mononuclear cells (PBMCs) were isolated by density gradient centrifugation using Ficoll Paque 

Plus (GE Healthcare, Chalfont St. Giles, UK). Cells were washed with PBS (137 mM NaCl, 12 

mM Phosphate, 2.7 mM KCl, pH 7.4; all from Carl Roth GmbH&Co.KG, Karlsruhe, Germany). 

Red blood cell (RBC) contamination was removed by incubation in RBC lysis buffer (155 mM 

NH4Cl, 12 mM NaHCO3, 0.1 mM EDTA; all from Carl Roth GmbH&Co.KG, Karlsruhe, 

Germany) for 5 min on ice. Isolated PBMCs were stored in liquid nitrogen until further use. 
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RNA isolation and cDNA synthesis 

All RNA was extracted from PBMCs using the RNeasy Mini Kit (Qiagen, Hilden, Germany). 

RNA quantity and purity were determined by UV absorbance at 260 and 280 nm in a NanoDrop 

1000 spectrophotometer (NanoDrop Technologies, Rockland, USA). Reverse transcription was 

performed using the SuperScript III first-strand Synthesis Supermix (Invitrogen, Carlsbad, 

USA) and random hexamer primers. First, isolated RNA was denatured at 65°C for 5 min. 

Afterwards cDNA was synthesized at 25°C for 10 min, followed by incubation at 55°C for 50 

min. The reaction was terminated at 85°C for 5 min. cDNA was stored at -80°C.  

 

Amplification of cDNA encoding bovine VH and VL immunoglobulin chains 

The amplification was set up as nested PCR. First, all possible primer combinations for PCR 1 

and PCR 2 were tested individually in a 12-temperature-step (50-70°C) gradient PCR using 

different DMSO concentrations (0%, 2.5%, 5%). In PCR 1, the master mix contained 5 µl 10x 

Standard Reaction Buffer with MgCl2 (Biotools B&M Labs S.A., Madrid, Spain), 2 µl forward 

primer (10 µM), 2 µl reverse primer (10 µM), 0-5% DMSO (Carl Roth GmbH&Co.KG, 

Karlsruhe, Germany), 1 µl dNTPs (10 mM) (Carl Roth GmbH&Co.KG, Karlsruhe, Germany), 

0.4 µl DNA Polymerase (1 U/µl; Biotools B&M Labs S.A., Madrid, Spain) and 500 ng cDNA. 

The volume was adjusted to 50 µl with HPLC water (Carl Roth GmbH&Co.KG, Karlsruhe, 

Germany). The PCR reaction was initialized for 10 min at 95°C, followed by 35 cycles of 95°C 

for 1 min, 50-70°C for 1 min and 72°C for 2 min. The final elongation was set at 72°C for 10 

min. As a control for the successful RNA isolation and the reverse transcription into cDNA, the 

bovine glyceraldehyde 3-phosphate dehydrogenase (GAPDH) – a housekeeping gene, 

constantly expressed in all cells – was amplified. The product of PCR 1 was purified by the 

QIAquick PCR Purification Kit (Qiagen, Hilden, Germany) and used as template in PCR 2. The 

master mix for PCR 2 contained 10 µl 5x GC Reaction Buffer (Peqlab, Erlangen, Germany), 2 

µl forward primer (10 µM), 2 µl reverse primer (10 µM), 0-5% DMSO (Carl Roth 

GmbH&Co.KG, Karlsruhe, Germany), 1 µl dNTPs (10 mM) (Carl Roth GmbH&Co.KG, 

Karlsruhe, Germany), 1 µl KAPA Hifi polymerase (1 U/µl; Peqlab, Erlangen, Germany) and 

25 ng DNA (purified product of PCR 1). The final volume was adjusted to 50 µl with HPLC 

water (Carl Roth GmbH&Co.KG, Karlsruhe, Germany). Cycling conditions were set up as 

follows: 95°C for 5 min, 30 cycles at 98°C for 20 sec, 50-70°C for 15 sec and 72°C for 30 sec, 

and 72°C for 5 min. Gradient PCRs were run in a TProfessional Cycler (Biometra, Goettingen, 

Germany). All PCR products were analyzed in a 1% agarose gel and cloned using the Strata 

Clone PCR Cloning Kit (Agilent Technologies, Santa Clara, USA). At least three clones for 
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each primer combination were sequenced and proved to contain an open reading frame (ORF) 

and to display a bovine immunoglobulin DNA sequence. The software used included Lasergene 

SeqMan Pro, MegAlign (DNAStar, Madison, USA), ExPASy translate tool (Gasteiger et al., 

2003) and the IMGT database (Lefranc, 2001). Afterwards the single primers were pooled, 

resulting in one forward and one reverse primer pool for each PCR and immunoglobulin chain. 

The primer amounts in the pools were adjusted, due to the number of genes the individual 

primer covers. Primer pools were tested as described above. The PCR 1 and PCR 2 were 

repeated under the defined optimal conditions in order to gain material for the recombination. 

 

Generation of single chain antibody fragments 

VH, VLλ and VLκ PCR products were purified using the QIAquick PCR Purification Kit 

(Qiagen, Hilden, Germany). For the recombination, 300 ng of the VH PCR product was 

combined with either 300 ng PCR product of VLλ or VLκ. The reaction mix contained 5 µl 10x 

Standard Reaction Buffer with MgCl2 (Biotools B&M Labs S.A., Madrid, Spain), 2.5% DMSO 

(Carl Roth GmbH&Co.KG, Karlsruhe, Germany), 1 µl dNTPs (10 mM) (Carl Roth 

GmbH&Co.KG, Karlsruhe, Germany), 0.4 µl DNA polymerase (1 U/µl; Biotools B&M Labs 

S.A., Madrid, Spain) and the volume was adjusted to 50 µl with HPLC water (Carl Roth 

GmbH&Co.KG, Karlsruhe, Germany). The recombination took place at 95°C for 10 min, 10 

cycles of 95°C for 1 min, 60°C for 1 min, 72°C for 2 min and a final elongation at 72°C for 10 

min. The 800 bp recombination product was purified as described for the single chains and 

further amplified with primers containing the restriction enzyme cleavage sites for SfiI and NotI. 

The amplification was set up with 5 µl 10x Standard Reaction Buffer with MgCl2 (Biotools 

B&M Labs S.A., Madrid, Spain), 2 µl forward primer (10 µM), 2 µl reverse primer (10 µM), 

2.5% DMSO (Carl Roth GmbH&Co.KG, Karlsruhe, Germany), 1 µl dNTPs (10 mM) (Carl 

Roth GmbH&Co.KG, Karlsruhe, Germany), 0.4 µl DNA polymerase (1 U/µl; Biotools B&M 

Labs S.A., Madrid, Spain) and 25 ng of the recombination product. The final volume was 

adjusted to 50 µl with HPLC water (Carl Roth GmbH&Co.KG, Karlsruhe, Germany). Cycling 

conditions were set at 95°C for 10 min, followed by 25 cycles at 95°C for 1 min, 67°C for 1 

min, 72°C for 2 min, and 10 min at 72°C. Both recombination and amplification were run in a 

T3000 cycler (Biometra, Goettingen, Germany). The amplification products were evaluated by 

electrophoresis through a 1% agarose gel and DNA sequencing. Procedure and reagents were 

the same as described for VH and VL gene amplification. 
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Construction of the scFv library in pCANTAB5E 

The phagemid pCANTAB5E was used to construct the immunized bovine IgG scFv library. 

This vector contains an insertion site flanked by the restriction enzyme cleavage sites of SfiI 

and NotI. The insertion site is followed by an E-Tag sequence and an amber stop codon. The 

latter separates the insert-E-Tag sequence from the fd-phage-gene 3, which codes for the minor 

coat protein III of the phage M13. The phagemid was purified from dam-/dcm- E. coli (New 

England Biolabs GmbH, Frankfurt, Germany) using the QIAGEN Plasmid Plus Midi Kit 

(Qiagen, Hilden, Germany). The scFv DNA and the vector DNA were digested with SfiI (New 

England Biolabs GmbH, Frankfurt, Germany) and NotI (New England Biolabs GmbH, 

Frankfurt, Germany). Calf intestine phosphatase (CIP; New England Biolabs GmbH, Frankfurt, 

Germany) was used to dephosphorylate the vector DNA. Both digested scFv DNA and digested 

dephosphorylated vector DNA were purified using the QIAquick PCR purification Kit (Qiagen, 

Hilden, Germany). Ligation was facilitated with T4 Ligase (New England Biolabs GmbH, 

Frankfurt, Germany) overnight at 16°C. Ligated DNA was purified and concentrated using the 

DNA Clean&ConcentratorTM-5 Kit (Zymo Research Europe GmbH, Freiburg, Germany). 100 

ng of the purified ligated DNA were transformed into Phage Display Electrocompetent TG1 

cells (Lucigen Corporation, Middelton, USA), following the manufacturer’s instructions. 

Electroporation was carried out in a BIO-RAD Gene Pulser® (Bio-Rad Laboratories GmbH, 

Munich, Germany). Bacteria were grown for 1 hour at 37°C with 250 rpm in Recovery Medium 

(Lucigen Corporation, Middelton, USA) before they were plated onto 2xTYGA agar plates (20 

g glucose, 16 g tryptone, 10 g yeast extract, 5 g NaCl, 15 g agar-agar, 100 µg/ml ampicillin, ad 

1 L sterile water; all from Carl Roth GmbH & Co.KG, Karlsruhe, Germany) and incubated 

overnight at 37°C. Bacteria were scraped from the plates with 6 ml 2xTYGA medium 

containing 15% glycerol (Carl Roth GmbH&Co.KG, Karlsruhe, Germany). The bacterial 

suspension was aliquoted to 500 µl and stored at -80°C. The transformation efficiency was 

calculated based on a dilution series of the transformed bacteria on 2xTYGA agar plates. Clones 

were analyzed to contain full-length inserts by colony PCR and DNA sequencing of PCR 

products. For the colony PCR, single colonies were picked in a 20 µl master mix containing 2 

µl 10x Standard Reaction Buffer with MgCl2 (Biotools B&M Labs S.A., Madrid, Spain), 0.5 µl 

primer R1 (10 µM), 0.5 µl primer R2 (10 µM), 0.5 µl dNTPs (10 mM) (Carl Roth 

GmbH&Co.KG, Karlsruhe, Germany), 0.2 µl DNA polymerase (1 U/µl; Biotools B&M Labs 

S.A., Madrid, Spain) and adjusted to the final volume with HPLC water (Carl Roth 

GmbH&Co.KG, Karlsruhe, Germany). PCR was run in a T3000 cycler (Biometra, Goettingen, 

Germany) under the following conditions: 94°C for 10 min, 30 cycles at 94°C for 1 min, 55°C 
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for 1 min and 72°C for 2 min, followed by 72°C for 15 min. Ligations and transformations were 

repeated until a sufficient diversity of independent clones was achieved. Library diversity was 

tested in a fingerprint analysis with BstNI (New England Biolabs GmbH, Frankfurt, Germany). 

Digested colony PCR products were analyzed by electrophoresis through a 2% agarose gel. 

Individual clones were proven to contain an ORF and a DNA insert encoding displayed full-

size scFv antibodies by sequencing, as described for the cloning during PCR establishment.  

 

Phage Display 

All library clones were pooled and a dilution series was cultured on 2xTYGA agar plates to 

determine the bacterial cell concentration per ml in the pooled library. Phage display was 

conducted based on current protocols (Shaw and Kane, 2009; Zhang and Dimitrov, 2009). A 

500 µl bacterial library aliquot was thawed on ice and grown in 500 ml 2xTYGA medium at 

37°C with 250 rpm to reach log phase (OD 0.4-0.6). The culture was infected with MOI 30 of 

M13KO7 Helper Phage (New England Biolabs GmbH, Frankfurt, Germany). The incubation 

occurred stationary at 37°C for 30 min, followed by 30 min at 37°C with gentle shaking. The 

infected culture was centrifuged at 1,800 x g for 15 min at 4°C (Dupont Sorvall RC-5B, Rotor 

GSA; London, UK). Cell pellets were resuspended in 2TY medium supplemented with 

ampicillin (100 µg/ml; Carl Roth GmbH & Co.KG, Karlsruhe, Germany) and kanamycin (50 

µg/ml; Carl Roth GmbH & Co.KG, Karlsruhe, Germany), and grown at 30°C for 16-20 hours 

with 250 rpm. Bacteria were pelleted at 1,800 x g for 10 min at 4°C (Dupont Sorvall RC-5B, 

Rotor GSA; London, UK). The phages in the supernatant were precipitated by adding 20% PEG 

with 2.5 M NaCl (both from Carl Roth GmbH & Co.KG, Karlsruhe, Germany) at a volume 

ratio of 1:5. The solution was swayed for 45 min on ice followed by another 45 min stationary 

incubation on ice. Precipitates were pelleted by centrifugation at 1,800 x g for 1 h at 4°C 

(HERAEUSTM MultifugeTM 3 S-R, Rotor 7500 6445; Thermo Fisher Scientific Inc., Waltham, 

USA) and were resuspended subsequently in PBS without Ca2+ and Mg2+ (8 g NaCl, 0.2 g KCl, 

2.89 g Na2PO4x12H2O, 1 g glucose, ad 1 l sterile water; all from Carl Roth GmbH & Co.KG, 

Karlsruhe, Germany). The precipitation was repeated once. After resuspension, the phages were 

centrifuged again at 1,800 x g for 10 min at 4°C. The supernatant was stored short-term at 4°C 

or frozen at -80°C. The phage titer was determined by a dilution series in TG1 cells. TG1 cells 

were grown to log phase (OD 0.4-0.6) in an antibiotic-free 2TYG medium. From this culture a 

900 µl-aliquot was mixed with 100 µl of the diluted phage suspension and grown at 37°C for 

30 min stationary and 30 min at 37°C with 250 rpm. The dilution series was plated on 2xTYGA 

agar and grown at 30°C overnight. By counting the bacterial colonies, the phage titer was 
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calculated. In addition, the phage concentration was determined with the NanoDrop 1000 

spectrophotometer (NanoDrop Technologies, Rockland, USA) at 280 nm, where an absorbance 

of 1 was assumed to display a concentration of 2.3*1012 cfu/ml (Zhang and Dimitrov, 2009). 

For panning, a 96-well NUNC MaxiSorb plate (NUNC, Langenselbold, Germany) was 

coated with 10 µg/ml BCV-V270 (field isolate, Munich, Germany) for 4 h at 37°C. The plate 

was washed three times with PBST (8 g NaCl, 0.2 g KCl, 0.12 g KH2PO4, 0.91 g Na2HPO4, 1 

ml Tween-20, ad 1 l sterile water; all from Carl Roth GmbH & Co.KG, Karlsruhe, Germany) 

and blocked with 2% skimmed milk powder (SMP) (Carl Roth GmbH & Co.KG, Karlsruhe, 

Germany) containing 10% FCS in PBS, for 2 hours at 37°C. The plate was washed three times 

and phage suspensions were added with a titer, representing 1000-fold the library diversity, and 

incubated for 2 hours at room temperature. Added phage suspensions had been preincubated 

for 1 hour in block solution (2% SMP, 10% FCS in PBS). The plate was washed ten times with 

PBST and bound phages were eluted with 10 µg/ml Trypsin (Carl Roth GmbH & Co.KG, 

Karlsruhe, Germany). TG1 and HB2151 cells, grown to log phase (OD 0.4-0.6) in 2TYG, were 

co-incubated with eluted phages for 30 min at 37°C (stationary), followed by 30 min at 37°C 

with 250 rpm. Infected bacteria were plated on 2xTYGA agar and grown at 30°C overnight. 

To determine the titer of eluted phages, a dilution series was performed in TG1 cells. Following, 

overnight incubation, TG1 cells were scraped with 2xTYGA containing 15% glycerol. A 100 

µl aliquot was used in the next panning round and the rest was stored at -80°C. Two additional 

panning rounds were performed with slight modifications. Initially only 100 ml bacterial culture 

was used and only one precipitation step was performed. The panning conditions were made 

more stringent with each panning round. The antigen concentration was reduced to 5 µg/ml 

BCV-V270 in the second round and 2.5 µg/ml in the third round. Additionally, the incubation 

time was reduced to one hour and washing steps were increased to 20 washing steps in the 

second round and 40 washing steps in the third round. The HB2151 cells were used to produce 

soluble scFvs for further tests in ELISA. Individual clones were picked and grown overnight at 

37°C with 250 rpm in 2xTYGA medium. A 20 µl-aliquot of this overnight culture was added 

to fresh 180 µl 2xTYGA medium and grown at 37°C with 250 rpm to reach log phase (OD 0.4-

0.6). The bacteria were pelleted at 1,800 x g for 15 min at 4°C, resuspended in 200 µl 2TYA 

containing 1 mM IPTG (Carl Roth GmbH & Co.KG, Karlsruhe, Germany) and incubated for 

16-20 h at 30°C with 250 rpm. Cultures were centrifuged at 1,800 x g for 15 min at 4°C and the 

supernatants were tested in the ELISA. Therefore, a 96-well NUNC MaxiSorb plate (NUNC, 

Langenselbold, Germany) was coated with 5 µg/ml BCV-V270, washed three times with PBST 

and blocked for 2 hours at 37°C with 2% SMP (Carl Roth GmbH & Co.KG, Karlsruhe, 
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Germany) containing 10% FCS in PBS. Wells were emptied and the culture supernatants of 

induced HB2151 clones were added. The incubation lasted for 2 hours at room temperature. 

After five washes with PBST, the detection antibody (polyclonal goat E-tag (HRP); abcam ®, 

Cambridge, UK) was added at 1: 2,000 dilution in block solution (2% SMP, 10% FCS in PBS), 

and incubated for 1.5 hours at room temperature. The plate was washed ten times with PBST, 

and TMB substrate (IDEXX GmbH, Ludwigsburg, Germany) was applied for 20 min at room 

temperature in the dark. The color reaction was stopped with HCl (IDEXX GmbH, 

Ludwigsburg, Germany) and the optical density was measured with the Sunrise microplate 

reader (Tecan, Maennedorf, Switzerland) at 450 nm. Alternatively, TG1 clones were tested to 

contain a specific anti-BCV-V270 scFv using the same procedure with some modifications. 

Individual TG1 clones were infected with M13KO7 phages, as described above. The 

supernatant of an overnight culture was used in the ELISA as described for the HB2151 cells, 

except that the detection antibody was HRP/Anti-M13 Monoclonal Conjugate (GE Healthcare 

UK Ltd, Buckinghamshire, UK). Clones displaying sufficient binding activity were sequenced. 

The protein structure of the respective anti-BCV-V270 scFv was analyzed and a 3D model was 

calculated based on protein homology using the Phyre2 server (Kelley et al., 2009) and VMD 

1.9.1 software (Humphrey et al., 1996).  

 

Purification of scFvs 

Soluble scFvs, produced in HB2151 cells, were purified by affinity chromatography using an 

ÄKTA start chromatography system (GE Healthcare UK Ltd, Buckinghamshire, UK). The 

scFvs were passed through an anti-E-Tag HiTrap column (GE Healthcare UK Ltd, 

Buckinghamshire, UK) with a flow rate of 1 ml/min. Elution was carried out with 0.1 M glycine 

(pH 3; Carl Roth GmbH & Co.KG, Karlsruhe, Germany). The flow-through was neutralized 

immediately using 1 M TRIS, 0.13 M NaN3 (both from Carl Roth GmbH & Co.KG, Karlsruhe, 

Germany).  

 

Western blotting 

The scFv-SF-3E4 was loaded into a 12% sodium dodecyl sulfate (SDS) polyacrylamide gel. 

Electrophoresis was carried out in a Bio-Rad Mini Trans Blot Cell electrophoresis system (Bio-

Rad Laboratories GmbH, Munich, Germany) for 65 min at 150 V and 400 mA using a Bio-Rad 

Power Pac Basic (Bio-Rad Laboratories GmbH, Munich, Germany). Subsequently, separated 

proteins were transferred to a PROTRAN BA83 nitrocellulose membrane (GE Healthcare, 

Chalfont St. Giles, UK) by western blotting carried out in the same system as the electrophoresis 
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for 75 min at 150 V and 400 mA in transfer buffer (25 mM Tris, 192 mM glycine, 20% methanol 

(w/v); all from Carl Roth GmbH&Co.KG, Karlsruhe, Germany). The membrane was blocked 

for 2 hours at room temperature with 5% SMP containing 10% FCS in PBST (all from Carl 

Roth GmbH&Co.KG, Karlsruhe, Germany). Afterwards, the membrane was washed twice with 

PBST and once with PBS. A polyclonal rabbit anti-E-Tag antibody (Novus Biologicals, 

Littleton, USA) was added in a 1:500 dilution and incubated at 4°C overnight. Next the 

membrane was washed three times with PBST and three times with PBS. Incubation with an 

HRP-conjugated monoclonal goat anti-rabbit antibody (Sigma-Aldrich Chemie GmbH, 

Munich, Germany) in a 1:500 dilution lasted for 2 hours at room temperature. After two washes 

with PBST and two washes with PBS, Bio-Rad HRP-conjugate substrate (Bio-Rad Laboratories 

GmbH, Munich, Germany) was added. The color reaction was stopped with distilled water.  

In order to identify the scFv-SF-3E4 binding site, western blotting was conducted using 10 µg 

BCV-V270. The procedure was the same as described above. The scFv-SF-3E4 was added to 

the membrane at a concentration of 78 ng/ml. As controls, an anti-BCV-V270 guinea pig 

immune serum (1:500) and the anti-BCV-V270 mAb 1/1 (250µg/ml) were used. The 

membranes were incubated at 4°C overnight. Then, the membranes were washed three times 

with PBST and three times with PBS. Incubation with the respective conjugate lasted for one 

hour at room temperature (scFv-SF-3E4: HRP conjugated polyclonal goat anti-E-tag antibody 

(1:250) (abcam ®, Cambridge, UK); guinea pig anti-BCV-V270 immune serum: HRP 

conjugated polyclonal goat anti-guinea pig IgG (1:500) (Sigma-Aldrich Chemie GmbH, 

Munich, Germany); anti-BCV-V270 mAb 1/1: HRP conjugated polyclonal goat anti-mouse 

IgG (1:500) (Sigma-Aldrich Chemie GmbH, Munich, Germany)). After two washes with 

PBST, and two washes with PBS, Bio-Rad HRP conjugate substrate (Bio-Rad Laboratories 

GmbH, Munich, Germany) was added. The color reaction was stopped with distilled water. 

 

 

Indirect and competition ELISAs  

The ELISA procedure was the same as described for the phage display, despite using different 

virus concentrations for coating, and the detection antibody was adapted to the respective 

sample. All assays were run in triplicate. 

Testing serum samples against 5 µg/ml BCV-V270 in triplicates proved the vaccination 

response. An HRP conjugated sheep anti-bovine IgG antibody (KOMA Biotec Inc., Seoul, 

Korea) was used for detection of serum IgG bound to the BCV test antigen. OD values were 

corrected for ELISA background noise and the cut-off was set at 0.07. 
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To evaluate the scFv-SF-3E4s specificity, the antibody was tested against different E. coli 

strains (TG1, HB2151; 106 cells/ml), against vaccinia virus strain Elstree (2 µg/ml) and against 

Bovine Serum Albumin (5 µg/ml; Carl Roth GmbH&Co.KG, Karlsruhe, Germany). Cross 

reactivity was tested against 5 µg/ml BCV-L9 and 5 µg/ml HCoV OC43. The scFv-SF-3E4 

antibody was detected using an HRP conjugated polyclonal goat anti-E-tag antibody (abcam ®, 

Cambridge, UK). 

In a competition, ELISA the anti-BCV-V270 mAb 1/1 and the scFv-SF-3E4, were evaluated 

for binding to the same virus epitope. Therefore, one of the antibodies was titrated on the ELISA 

plate coated with 1 µg/ml BCV-V270 and incubated for one hour at 37°C. The liquid was 

removed and the other antibody was added in a concentration, found in previous assays to give 

a sufficient signal with low background. The incubation lasted for one hour at 37°C. The assay 

proceeded as described above. The detection antibody was chosen according to the second 

antibody (scFv-SF-3E4: HRP conjugated polyclonal goat anti-E-tag antibody (abcam ®, 

Cambridge, UK); anti-BCV-V270 mAb 1/1: HRP conjugated goat anti-mouse IgG (Sigma-

Aldrich Chemie GmbH, Munich, Germany). The test was repeated with the first and the second 

antibody being switched. As a control, each antibody was tested on virus alone, and both were 

titrated in a two-fold serial dilution and incubated in sextuplicate in the second antibody 

concentration.  

 

Affinity measurement 

Both the scFv-SF-3E4 and the mAB 1/1 were titrated on an ELISA plate coated with 5µg/ml 

BCV-V270. Similarly, the affinities of the scFv-SF-3E4 towards BCV-L9 and OC43 were 

determined. The affinity was calculated based on the Michealis-Menten and the Lineweaver-

Burk equation using GraphPad Prism version 6.00 for Windows (GraphPad Software, La Jolla 

California USA).  

 

Neutralization assay 

The purified scFv-SF-3E4 was titrated in triplicate in a two-fold serial dilution on a 96-well 

tissue culture plate (NUNCTM; Thermo Fisher Scientific Inc., Waltham, USA), and 102 TCID50 

of BCV-V270 were added to each well. Antibody and virus were incubated for one hour at 

37°C before 100 µl of VERO cells were added. The inhibition of the CPE was finally read out 

seven days post infection. As controls, an anti-BCV-V270 guinea pig immune serum, an anti-

BCV-V270 mAb 1/1, a virus control on cells alone and a cell control without virus, were used. 
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RESULTS 

Animal immunization 

A Holstein Friesian bull was immunized with three Scourguard3 injections. The immune 

response was evaluated by indirect ELISA on each vaccination time point, as well as two and 

three weeks after the third vaccination (Fig. 1). A small amount of anti-BCV-V270 IgG was 

detected even before the first immunization (titer: 1:2,400). A seroconversion was apparent 

already 14 days after the first immunization. Titers increased after each vaccination with the 

highest titer three weeks after the third vaccination (titer: 1:18,900). 

 

 

 

 

 

 

Fig. 1. Serum titer of anti-BCV-V270 IgG in the Holstein Frisian bull before and after vaccination with 

Scourguard3. The ELISA plate was coated with 1 µg/ml BCV-V270. Sera were diluted 1:100 

and titrated in a two-fold dilution series (triplicates). The cut-off (horizontal black line) was set 

at an OD 450nm of 0.1.  
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Primer design 

For the construction of the bovine antibody phage display library, a detailed analysis of the 

bovine immunoglobulin genetics was conducted. The analysis included current literature and 

database entries (Chen et al., 2008; Ekman et al., 2009; Koti et al., 2010; Pasman et al., 2010), 

data of our own group (Diesterbeck et al., 2012; Stein et al., 2012; Walther et al., 2013; Walther 

et al., 2016) and recent experimental research results. The primer set design aimed to cover the 

whole bovine immunoglobulin spectrum known so far. In order to reduce the total number of 

primers, wobble bases were used to create primers covering several genes simultaneously. All 

primers used were summarized in Table 1 and supplemental Table 1a. Primers for the lambda 

light chain leader sequences (LLλ) were designed based on published sequences first (Pasman 

et al., 2010). Designed primers were proven in a BLAST analysis and additional primers were 

constructed covering the genes not yet covered. In total, nine different LLλ primers were 

designed (BoLLFOR1-9). The U32263 sequence was used as a query in the BLAST analysis 

of the lambda light chain variable genes (VLλ). Thirty-six different sequences were detected. 

They were distributed over chromosome 17, 19 and on a still unplaced contig 

(NW_003100754.1). Ten primers were created to amplify these genes (BoVL_linker_FOR1-

10). Four different lambda light chain joining genes (JLλ) were described in the literature 

available (Chen et al., 2008). A BLAST search with one of these published sequences provided 

confirmation. Hence, four JLλ primers were constructed (BoJLBACK1-4). For both VLλ and 

JLλ primers, special attention was given to the binding site in order to amplify the whole variable 

domain. As for the joining segment, a BLAST analysis of the constant genes (CLλ) (query 

sequence: HQ456943.1) confirmed the published number of four genes (Chen et al., 2008; 

Diesterbeck et al., 2012). Primers were set in a highly conserved region so that only one CLλ 

primer (BoCLBACK) had to be designed. The bIgK_Leader primer (Stein et al., 2012) served 

as a query in the BLAST analysis of the κ light chain leader genes (LLκ). Finally, three different 

primers were designed (BoLKFOR1-3). As no published sequences existed for the bovine 

kappa variable region (VLκ), a human IGKV sequence (AJ512647.1) was used as a query 

sequence. BLAST hits were checked for plausibility with data for the bovine κ light chain locus 

organization (Ekman et al., 2009), leading to the generation of 11 VLκ primers 

(BoVK_linker_FOR1-11). Once again, wobble bases were used to reduce the total number of 

primers. The human JK1 sequence (McBride et al., 1982) was used as a query sequence for 

bovine kappa joining (JLκ) sequences. Obtained BLAST hits were also checked using published 

data (Ekman et al., 2009), as for the variable region. The number of three different κ joining 

genes was confirmed, resulting in an equal number of constructed primers (BoJKBACK1-3). 
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Due to only one κ constant gene being published (Ekman et al., 2009; Stein et al., 2012) and 

confirmed by our own BLAST analysis, one primer (BoCKBACK) was designed for the κ 

constant region (CLκ). Primers for the VH gene amplification were based on the current 

description of the corresponding gene locus (Walther et al., 2013). In addition to the 

BoLHBACK primer used in this publication, three more primers (BoLHFOR1-3) for the leader 

segment were designed to cover even the pseudogenes. Five primers (BoVHFOR1-5) were 

synthesized to amplify all 36 VH genes. Since all six bovine joining gene sequences for the 

heavy chain (JH) differ notably, each gene was considered by its own primer 

(BoJH_linker_BACK1-6). The BoIgG1-3CH1_FOR primer was used to amplify the first 

constant region of IgG1-3 (Walther et al., 2013). VLλ, VLκ and JH primers were designed to 

contain an overlapping nucleotide sequence encoding a 15 amino acid glycine-serine (G4S)3 

peptide linker in the scFv molecule. JLλ-, JLκ- and VH primers, used to amplify the scFv 

sequence, were extended for restriction enzyme cleaving sites for SfiI and NotI.  
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Table 1  Primers used for the construction of the bovine scFv library. 

Primer Name Sequence (5'-3')  

PCR 1 - heavy chain forward primers 

BoLHBACK ACCCACTGTGGACCCTCCTC 

BoLHFOR2 TGGGGTYYTCTCCTCTGCCTGG 

BoLHFOR3 TGCAGTCTTCTCCTCTGCCTKG 

BoLHFOR4 GTCTGGTCCTTCCCCATCCTGC 

PCR 1 - heavy chain reverse primer 

BoIgG1-3Ch1_forb GGCACCCGAGTTCCAGGTCA 

PCR 2 - heavy chain forward primers 

BoVHFOR1 CAGGTGMAGSTGCRGGAGTCG 

BoVHFOR2 AAGGTGCAGCTGCRGGAGTSG 

BoVHFOR3 CAGATGMRCTGCWGCAGTCG 

BoVHFOR4 CAGGTGCTGGGGCGGGAGTCR 

BoVHFOR5 CMGRTGCAGCTGCAGGARTCA 

PCR 2 - heavy chain reverse primers 

BoJH_linker_BACK1 AGAACCACCTCCGCCTGAACCGCCTCCACCCAAGGACACGGTG

ACCGGGGTGC 

BoJH_linker_BACK2 AGAACCACCTCCGCCTGAACCGCCTCCACCTGAGGAGACGGTG

ACCYYGAKCC 

BoJH_linker_BACK3 AGAACCACCTCCGCCTGAACCGCCTCCACCTGAGGAGACGGTG

CCCAGGGCAG 

BoJH_linker_BACK4 AGAACCACCTCCGCCTGAACCGCCTCCACCTGAGGAGATGGAG

AYSGGGGYGC 

 

 

Continued on the next page 
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Table 1 continued from previous page  

BoJH_linker_BACK5 AGAACCACCTCCGCCTGAACCGCCTCCACCTGAGCAGACAGTG

CCCAGGCTTC 

BoJH_linker_BACK6 AGAACCACCTCCGCCTGAACCGCCTCCACCTGAGGAGACGGTG

TTTTGGATTC 

PCR 1 - lambda light chain forward primers 

BoLLFOR1 AR GGC WCA GGT GAG GCC TCC 

BoLLFOR2 TC TWC ACA GGT GAC TCG ATC 

BoLLFOR3 TC TGC ACA GGT GAC TCG ATS 

BoLLFOR4 TC TGC RCA GGT GCG GCC CCC 

BoLLFOR5 CCTCACTTACGGCTCAGGTCA 

BoLLFOR6 YCTCKCTCACTGCWYAGGTAG 

BoLLFOR7 CCTYGCCCACYSCACAGGTCA 

BoLLFOR8 CCTCTCTCWCTRCWCAGGTAG 

BoLLFOR9 GGTCGCTCTSTGCACAGRTGA 

PCR 1 - lambda light chain reverse primer 

BoCLBACK AC GGT CAC GCT ACC CGG GT 

PCR 2 - lambda light chain forward primers 

BoVL_linker_FOR1 GTTCAGGCGGAGGTGGTTCTGGCGGTGGCGGATCGCAGGCTGT

GCTGACYCAGCCR 

BoVL_linker_FOR2 GTTCAGGCGGAGGTGGTTCTGGCGGTGGCGGATCGCAGGCTRT

GCTGACTCAGCYG 

BoVL_linker_FOR3 GTTCAGGCGGAGGTGGTTCTGGCGGTGGCGGATCGCAGGMTG

TGCTGACTCAGCMG 

BoVL_linker_FOR4 GTTCAGGCGGAGGTGGTTCTGGCGGTGGCGGATCGCAGTCTRG

CCTGACTCAGCCT 

Continued on the next page 

 



Studies – Chapter III 

95 

 

 

Table 1 continued from previous page  

BoVL_linker_FOR5 GTTCAGGCGGAGGTGGTTCTGGCGGTGGCGGATCGCAGGCTGG

GCTAACTCAGCCG 

BoVL_linker_FOR6 GTTCAGGCGGAGGTGGTTCTGGCGGTGGCGGATCGTCCTATGA

ACTGACMCAGYYGA 

BoVL_linker_FOR7 GTTCAGGCGGAGGTGGTTCTGGCGGTGGCGGATCGCAGGTGTT

GTGGGCTGCATCC 

BoVL_linker_FOR8 GTTCAGGCGGAGGTGGTTCTGGCGGTGGCGGATCGTCTTCTCA

GCTGACTCAGCCG 

BoVL_linker_FOR9 GTTCAGGCGGAGGTGGTTCTGGCGGTGGCGGATCGCAGCSTGT

GCTGACTCAGYCRG 

BoVL_linker_FOR10 GTTCAGGCGGAGGTGGTTCTGGCGGTGGCGGATCGCAGACTGT

GGTCCAGGAGCCAG 

PCR 2 - lambda light chain reverse primers 

BoJLBACK1 CAGGACGGTCAGTGTGGTCCCGCT 

BoJLBACK2 CAGGACGGTCACTCTGGTCCCGCC 

BoJLBACK3 CAGGACGGTGACCCAGGTCCCGCC 

BoJLBACK4 CAGGACAGTCAGCCTGGTCCTGCC 

PCR 1 - kappa light chain forward primers 

BoLKFOR1 GRGYTCCTCCTGCTCTGGGT 

BoLKFOR2 TTCCTCCTGTTACTGTGGTT 

BoLKFOR3 RGTCTCCTGCTSCTCTGGCT 

PCR 1 - kappa light chain reverse primer 

BoCKBACK TGGTTTGAAGAGAAGACGGATG 

PCR 2 - kappa light chain forward primers 

BoVK_linker_FOR1 GTTCAGGCGGAGGTGGTTCTGGCGGTGGCGGATCGGATGTWG

TGCTGACCCAGACTCC 

Continued on the next page  
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Table 1 continued from previous page  

BoVK_linker_FOR2 GTTCAGGCGGAGGTGGTTCTGGCGGTGGCGGATCGGACATTGT

GCTGACCCAGACTCC 

BoVK_linker_FOR3 GTTCAGGCGGAGGTGGTTCTGGCGGTGGCGGATCGGACATCCA

GGTRACCCAGTCTCC 

BoVK_linker_FOR4 GTTCAGGCGGAGGTGGTTCTGGCGGTGGCGGATCGGACCTCCA

GATGAYYCAGTCTCY 

BoVK_linker_FOR5 GTTCAGGCGGAGGTGGTTCTGGCGGTGGCGGATCGGACCTCCA

GATGACCCAGTCTCC 

BoVK_linker_FOR6 GTTCAGGCGGAGGTGGTTCTGGCGGTGGCGGATCGGACCTCCA

GATGATTCAGTCTCC 

BoVK_linker_FOR7 GTTCAGGCGGAGGTGGTTCTGGCGGTGGCGGATCGGCTATTGT

TCTGACCCAGACTCC 

BoVK_linker_FOR8 GTTCAGGCGGAGGTGGTTCTGGCGGTGGCGGATCGGGCATCCA

GATGACTCAGTCTCC 

BoVK_linker_FOR9 GTTCAGGCGGAGGTGGTTCTGGCGGTGGCGGATCGGCTAYWA

KGCAGACCCAGACTCT 

BoVK_linker_FOR10 GTTCAGGCGGAGGTGGTTCTGGCGGTGGCGGATCGGCTATTAT

GCAGAACCAACTATA 

BoVK_linker_FOR11 GTTCAGGCGGAGGTGGTTCTGGCGGTGGCGGATCGGAAATTAT

GTTAACGCAGTCTCC 

PCR 2 - kappa light chain reverse primers 

BoJKBACK1 ATTGATTTCCACCTTGGTCCCG 

BoJKBACK2 TTTGATCTCTACCTTGGTTCCT 

BoJKBACK3 TTTGACTTCCAGCTTGGTTCCT 

Amplification of the recombined product (VH + Vλ) - forward primers 

BoVH_SfiI_FOR1 GTCCTCGCAACTGCGGCCCAGCCGGCCCAGGTGMAGSTGCR

GGAGTCG 

Continued on the next page  
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Table 1 continued from previous page  

BoVH_SfiI_FOR2 GTCCTCGCAACTGCGGCCCAGCCGGCCAAGGTGCAGCTGCR

GGAGTSG 

BoVH_SfiI_FOR3 GTCCTCGCAACTGCGGCCCAGCCGGCCCAGATGMRCTGCW

GCAGTCG 

BoVH_SfiI_FOR4 GTCCTCGCAACTGCGGCCCAGCCGGCCCAGGTGCTGGGGCG

GGAGTCR 

BoVH_SfiI_FOR5 GTCCTCGCAACTGCGGCCCAGCCGGCCCMGRTGCAGCTGCA

GGARTCA 

Amplification of the recombined product (VH + Vλ) - reverse primers 

BoJL_NotI_BACK1 GAGTCATTCTCGACTTGCGGCCGCCAGGACGGTCAGTGTGG

TCCCGCT 

BoJL_NotI_BACK2 GAGTCATTCTCGACTTGCGGCCGCCAGGACGGTCACTCTGG

TCCCGCC 

BoJL_NotI_BACK3 GAGTCATTCTCGACTTGCGGCCGCCAGGACGGTCACTCTGG

TCCCGCC 

BoJL_NotI_BACK4 GAGTCATTCTCGACTTGCGGCCGCCAGGACAGTCAGCCTGG

TCCTGCC 

Amplification of the recombined product (VH + Vκ) - reverse primers 

BoJK_NotI_BACK1 GAGTCATTCTCGACTTGCGGCCGCATTGATTTCCACCTTGGT

CCCG 

BoJK_NotI_BACK2  GAGTCATTCTCGACTTGCGGCCGCTTTGATCTCTACCTTGGT

TCCT 

BoJK_NotI_BACK3  GAGTCATTCTCGACTTGCGGCCGCTTTGACTTCCAGCTTGGT

TCCT 

Amplification of GAPDH 

GAPDH_for TGGTCACCAGGGCTGCT 

GAPDH_rev GGAGGGGCCATCCACAGTCT 

Continued on the next page 
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Table 1 continued from previous page  

Colony PCR 

R1 CCATGATTACGCCAAGCTTTGGAGCC 

R2 CGATCTAAAGTTTTGTCGTCTTTCCA 

 

Underlined letters show wobble bases. Wobbles are defined as: K – G/T, M – A/C, R – A/G, S 

– G/C, W – A/T, Y – C/T. The italic letters indicate the nucleotide sequence for the peptide 

linker. The bold nucleotides represent the restriction enzyme recognition sites for SfiI and NotI
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Amplification of VH and VL chains genes from cDNA prepared from PBMCs 

In the first PCR (PCR 1) of the designed nested PCR, all lambda light chain primer 

combinations (n = 9) – except the primer pair BoLLFOR2 and BoCLBACK – resulted in 

products detectable in gel electrophoresis. Primer combinations differed in intensity and 

number of bands. A PCR product of 578 bp was proven by sequencing to represent functional 

antibody sequences. PCR products of other sizes displayed antibody sequences containing no 

ORF or truncated ORFs. In the PCR 1 for the kappa light chain, only the BoLKFORk2 and 

BovCKBACK primer pair gave no result, when a total number of three different combinations 

were tested. As for the lambda light chain, band intensity in agarose gels differed notably. 

Products with functional antibody sequences were about 414 bp in size. PCR 1 for the heavy 

chain revealed at least three products ranging between 600 and 800 bp in size with all possible 

primer combinations tested (n = 4). Size distribution was confirmed in sequence analysis and 

was attributed to length differences in the CDR3 regions. Afterwards, primers were pooled 

including all designed primers. The PCRs with the pooled primer sets for all three chains 

yielded products of the expected size, as evaluated in the individual PCRs (Fig. 2). Optimal 

annealing temperature and DMSO concentration were defined as 65°C and 2.5%. Concerning 

PCR 2, 36 of all possible 40 lambda light chain primers combinations yielded reasonable PCR 

products. Sizes ranged from 200 to 800 bp. Sequence analysis revealed functional antibody 

sequences in products with 329 bp. Depending on size, some PCR products displayed sequences 

without a functional ORF or unrelated sequences possibly from miss-priming. For the kappa 

light chain, all possible primer combinations (n = 33) resulted in PCR products. Size distribution 

in agarose gel electrophoresis was similar as with the lambda light chain primer sets. Five of 

the 33 possible primer combinations yielded functional antibody sequences of 337 bp. The PCR 

product size distribution in PCR 1 for the heavy chain was re-discovered in PCR 2 for all 

possible primer combinations (n = 30) tested. Some double bands appeared at 300-500 bp, due 

to the size variances in bovine CDR3 regions as proven by sequencing. As with PCR 1, PCR 2 

was repeated for all three chains with pooled primer sets (Fig. 3). Amplification failures, 

because of primer inhibition, were not detected. An annealing temperature of 67°C and 2.5% 

DMSO were set as optimal conditions for PCR 2. 
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Fig. 2.  Amplifications products from bovine cDNA by PCR 1 using pooled primer sets.  

Lanes 1 and 9: 1 kb ladder. Lanes 2 and 8: 100 bp ladder. Lane 3: bovine GAPDH (positive 

control). Lane 4: lambda light chain. Lane 5: kappa light chain. Lane 6: heavy chain. Lane 7: no 

template negative control (H20). 

 

  

 

Fig. 3.  Amplifications products from bovine cDNA by PCR 2 for lambda light chain (A),  

kappa light chain (B) and heavy chain genes (C) using pooled primer sets. (A): Lane 1: 1 kb 

ladder. Lane 2: 100 bp ladder. Lane 3: lambda light chain. (B): Lane 1: 1 kb ladder. Lane 2: 100 

bp ladder. Lane 3: kappa light chain. (C): Lane 1: heavy chain. Lane 2: no template negative 

control. Lane 3: 100 bp ladder. Lane 4: 1 kb ladder. 
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Generation of scFv sequences 

For the generation of scFv encoding DNA sequences, the PCR 2 products encoding heavy chain 

variable domains (VH) were either recombined to lambda light chain variable domain products 

(VLλ) or to kappa light chain variable domain products (VLκ). Analysis of the recombination 

in a 1% agarose gel revealed a weak band at 800 bp and a more distinct band at 400 bp (Fig. 4). 

Sequence analysis confirmed the 800 bp band to represent complete functional scFv sequences. 

This meant that genes for both chains (VH, VL), recombined to a single ORF, contained typical 

bovine antibody sequence features and conserved nucleotides positions as published recently 

(Lefranc et al., 2003; Walther et al., 2013). The recombination product amplification – with 

primers containing the restriction enzyme cleavage sites for SfiI and NotI – resulted in a distinct 

band at 800 bp (Fig. 5). During the amplification of the VH-VLλ recombination product, an 

additional band appeared at 600 bp, which was found to be a product of miss-priming. Repeated 

sequencing of random 800 bp products showed functional scFvs with the restriction enzyme 

cleavage sites being introduced correctly (data not shown).  

 

 

 

 

Fig. 4.  Recombination of VH and VLκ (A) as well as VH and VLλ (B) encoding DNA sequences  

(recombination control by agarose gel electrophoresis). (A) Lane 1: 100 bp ladder. Lane 2: VH-

VLκ recombination product. (B) Lane 1: 100 bp ladder. Lane 2: VH-VLλ recombination product. 
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Fig. 5. Control of PCR amplification of recombination products. Lane 1: 1 kb ladder. Lane  

2: 100 bp ladder. Lane 3: amplification of the VH-VLλ recombination products. Lane 4: no 

template control of recombination reaction. Lane 5: amplification of the VH-VLκ recombination 

products. Lane 6: no template control of amplification reaction. 

 

 

Construction of the scFv library in pCANTAB5E 

Two sublibraries were constructed. The lambda sublibrary contained scFv sequences 

comprising a VH sequence and a VLλ sequence. Twelve transformations with an average 

transformation efficiency of 1.3*109 cfu/µg were needed to reach a library diversity of 1.5*109 

independent clones. The second (kappa) sublibrary included scFv sequences, where the VH 

sequence was recombined to a VLκ sequence. To achieve a library diversity equal to that of the 

lambda sublibrary, six transformations with an average transformation efficiency of 2.6*109 

cfu/µg, were performed. Eighteen individual clones of each transformation were proven by 

colony PCR to contain a full-size scFv sequence (800 bp) (data not shown). Size estimation of 

colony PCR products in 1% agarose gels proved both sublibraries to contain 98% full-size scFv 

sequences. Fifty clones from each sublibrary were further evaluated in a fingerprint analysis 

using BstNI. Both libraries showed good diversity as multiple repetitions of restriction patterns 

were absent (Fig. 6). For phage display and further characterization of the scFv molecules, it 

was important to confirm functional vector-insert constructs. Functionality was given when the 

construct contained a complete scFv sequence as insert, a correct E-Tag sequence, and an amber 

stop codon. The latter two are part of the vector, lying downstream of the insertion site. 

Therefore, a random clone selection from both sublibraries was sequenced (data not shown).  
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Fig. 6. Fingerprint analysis (BstNI) of colony PCR products from 15 bacterial clones of  

the lambda sublibrary. Lane 1: 100 bp ladder. Lane 2: no template negative control. Lane 3-17: 

products of the BstNI digest of 15 independent clones.  

 

 

Identification of a BCV-specific scFv by phage display 

To control the correct process of the phage display procedure, phage input and output titers 

were determined in each panning round. An interplay of depletion (output titer) and enrichment 

(input titer) was expected to ensure correctness (Fig. 7). For the first panning round, the input 

titer was estimated to be 1.5*1011 cfu/ml, when calculated with the TG1 dilution series, and 

3.4*1014 cfu/ml when measured with the NanoDrop spectrophotometer. To ensure a phage 

concentration representing at least 1,000-fold the library diversity (Kotlan et al., 2009), one 

milliliter of the phage solution was used in the first panning round. This represented 50-fold to 

10,000-fold of the library diversity, according to the calculation method used. The output titer 

was 3.7*103 cfu/ml, based on a TG1 dilution series only. In the second panning round, the input 

phage titer was between 1*1011 cfu/ml (TG1 dilution series) and 1.9*1013 cfu/ml (NanoDrop). 

The concentration of eluted phages was 1.3*102 cfu/ml. In the last panning round, a 

concentration between 3*1011 cfu/ml (TG1 dilution series) and 2.7*1013 cfu/ml (NanoDrop) 

was measured for the input phages. Finally, a total of 26 TG1 clones and seven HB2151 clones 

were obtained after the last panning round.  

The specificity test for BCV-V270 in an ELISA revealed a total of nine well-reacting clones, 

which remained negative when tested on a non-coated ELISA plate. Sequence analysis 

indicated all nine clones contained the same scFv sequence. The sequences encoding the VH 

domain and the VLλ domain of the scFv-SF-3E4 are available from GenBank (submission ID: 
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1895283, final accession numbers will be added once received). The amino-acid sequence and 

the 3D prediction of the scFv-SF-3E4 showed a compact molecule (281aa) with the structures 

crucial for antigen binding (CDR1-3) lying on the surface close to each other (Fig. 8B and C). 

 

 

 

Fig. 7. Phage titers during phage display. Input and output titers were determined in TG1  

dilution series. The left vertical axis shows the phage input titers. The right vertical axis shows 

the phage output titer. 
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Western blotting 

When the scFv-SF-3E4 was analyzed in a western blot using an anti-E-Tag antibody for 

detection, a sharp band at approximately 31 kD was detected, typical for single chain antibody 

fragments (Fig. 8A). The target protein of the scFv-SF-3E4 was investigated with BCV-V270 

under reducing and non-reducing conditions. For comparisons, the murine mAB 1/1 and the 

guinea pig immune serum were used (Fig. 9). The anti-BCV-V270 guinea pig serum, used as a 

positive control, revealed the expected multiple band patterns with obvious differences between 

reducing and non-reducing conditions. The main immunogens were detected with bands at 50 

kD and 100 kD. The scFv-SF-3E4 failed to react under reducing conditions, whereas a sharp 

band at approximately 100 kD was observed under non-reducing conditions. The murine mAb 

1/1 showed no reaction in western blotting, when standard concentrations were used (data not 

shown). Only in very high concentrations, weak bands were observed. A double band at 50 kD 

and single band at 10 kD were apparent under reducing conditions. The 50 kD band could be 

also observed under non-reducing conditions together with a band >250  

kD (data not shown).  

 

 

 

Fig. 9.  Western blot of guinea pig immune serum (A) and scFv-SF-3E4 (B) under reducing and 

non-reducing conditions. 10 µg of BCV-V270 was loaded on a 12% SDS gel and blotted on a 

nitrocellulose membrane. Antibody and serum were incubated on the membrane overnight 

before the respective HRP conjugated detection antibodies were added. Lane 1: Precision Plus 

Protein Standard (Bio-Rad). Lane 2: reducing conditions. Lane 3: non-reducing conditions. 
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Specificity, affinity and competition study 

Specificity of scFv-SF-3E4 was evaluated in an ELISA using different test antigens. As 

presented in Fig. 10, cross reactivity was evident for both bovine coronaviruses tested (BCV-

L9, BCV-V270) as well as for the human coronavirus strain OC43. The scFv-SF-3E4 did not 

bind to BSA, two different E. coli strains (TG1, HB2151) or the Vaccinia virus strain Elstree 

used as negative controls. The kinetic was calculated by preparing a Michaelis-Menten and 

Lineweaver-Burk plot for the scFv-SF-3E4 and the murine mAB 1/1 (Fig. 11). For the scFv-

SF-3E4, a Michealis-Menten constant (Km) of 595.2 pM was calculated for the affinity towards 

BCV-V270. The constants calculated for the other coronaviruses investigated, were Km = 831.4 

pM for the OC43 and Km = 687.9 pM for the BCV-L9, respectively. For the affinity of the 

murine mAb 1/1 towards BCV-V270 a Km of 206.5 pM was calculated. In the competition 

assay, no specific inhibition was observed between both antibodies. The scFv-SF-3E4 did not 

inhibit the mAb 1/1. Vice versa the mAb 1/1 inhibited the scFv-SF-3E4 at an average of only 

20%, which was far below a specific inhibition of 50%. 

 

 

 

Fig. 10. Specificity and cross reactivity of the scFv-SF-3E4. ELISA plates were coated  

with different E.coli strains (TG1, HB2151; 106 cells/ml), Vaccinia Virus strain Elstree (2 

µg/ml), BSA (5 µg/ml), BCV-L9 (5 µg/ml), HCoV OC43 (5 µg/ml) and BCV-V270 (5 µg/ml). 

The scFv-SF-3E4 was titrated in a serial (log2) dilution series and detected using an HRP 

conjugated polyclonal goat anti-E-tag-antibody. 
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Fig. 11. Binding kinetics of the scFv-SF-3E4 and the mAB 1/1. The kinetics were  

 determined by calculating a Michealis-Menten Plot and Lineweaver-Burk Plot. 

 

 

Neutralizing activity against BCV-V270 

The virus-neutralizing capacity of the scFv-SF- 3E4 was tested in VERO cell cultures infected 

with 102 TCID50 of BCV-V270. A distinct CPE with rounded and detached cells was observed 

for the virus control. The cell layer of the cell control remained confluent, until the end of the 

assay. Both positive controls – the guinea pig immune serum (1:3200) and the murine mAb 1/1 

(15.6 mg/ml) – neutralized the BCV-V270 completely. The scFv-SF-3E4 was also sufficient to 

neutralize the virus completely until a concentration of ≥ 0.24 µg/ml. 

 

DISCUSSION 

Here the design of a complex bovine primer set, suitable for amplifying the comprehensive 

bovine antibody gene repertoire, was established. It was used to generate a highly diverse 

bovine IgG scFv phage display library allowing the isolation of a bovine anti-BCV scFv.  

For species other than cattle (e.g. dog, sheep, rat, mice), complex primer sets for the 

immunoglobulin gene repertoire amplification are already available (Charlton et al., 2000; 

Sepulveda and Shoemaker, 2008; Braganza et al., 2011; Yuan et al., 2015). However, only 

limited primer sets, comprising only one primer combination for each antibody chain, were 

published for cattle immunoglobulin gene amplification so far (O'Brien et al., 1999). 

Meanwhile, a deeper understanding of cattle antibodies exists due to intensive research on 

bovine immunoglobulin genetics (Chen et al., 2008; Ekman et al., 2009; Pasman et al., 2010; 

Diesterbeck et al., 2012; Stein et al., 2012; Walther et al., 2013). Therefore, a primer set was 

designed to cover all bovine genes known so far, coding for the antibody variable domains, 
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including pseudogenes. The usage of pseudogenes during a gene conversion is a mechanism to 

diversify the antibody repertoire (Wysocki et al., 1989; Das et al., 2011). It has already been 

described for other species such as chicken (Reynaud et al., 1987; Thompson et al., 1987). The 

decision to include pseudogenes was based on investigations, where gene conservation was also 

suggested for the bovine lambda light chain (Parng et al., 1996). Although this was questioned 

by other authors, there is still no experimental evidence available disproving this (Lucier et al., 

1998). 

Our results from BLAST analysis differed from published data concerning the number and 

location of VLλ and VLκ genes (Ekman et al., 2009). It was assumed that these differences may 

have been generated by using different updated versions of the bovine genome assembly. The 

evaluation of the individual primer combinations for the VH and VL gene amplification 

revealed differences in the amount of PCR products. The preferential usage of specific V, D, J 

and C genes in V(D)J recombination and expression can be a possible explanation (Hosseini et 

al., 2004; Chen et al., 2008; Pasman et al., 2010; Stein et al., 2012). In the light chain gene 

amplification, several primer combinations showed multiple bands in agarose gel 

electrophoresis. Cloning and sequencing of PCR products revealed no functional ORFs in 

products, differing from the expected size of 329 bp for the lambda light chain and 337 bp for 

the kappa light chain. Mutations, resulting in non-functional sequences, may arise during 

somatic hypermutations, which are proven to be one of the main factors to generate antibody 

diversity in cattle (Kaushik et al., 2002). The second important factor for bovine 

immunoglobulin diversity is the occurrence of exceptionally long CDR3H regions (Kaushik et 

al., 2002). These can be categorized into three groups according to the size (Walther et al., 

2013). This offers a plausible explanation for bands of multiple sizes observed during the VH 

gene amplification. The primer set was established to be universal for all cattle breeds. In horse 

breeds, recent investigations revealed differences in VLλ gene transcription for at least two 

breeds (Hara et al., 2012; Walther et al., 2015). Data from other authors indicated the same for 

cattle (Saini et al., 1997). Therefore, primer combinations, which remain negative in one breed, 

can result in a positive amplification in another breed due to differences in gene transcription. 

Hence, it was decided to include all primers in the final primer pools, even those primers which 

gave no PCR results.  

For the scFv construction, a VH sequence was recombined to either a VLλ or a VLκ sequence 

by an overlapping linker sequence. The encoded linker peptide (G4S)3 is widely used in the 

construction of scFv molecules (Hudson et al., 1999; Chen et al., 2013). The small and polar 

amino acids (glycine (G) and serine (S)) ensure flexibility, which is essential for the correct 
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orientation of VH and VL domains in the scFv molecule (Huston et al., 1988). A length of 15 

amino acids guarantees single scFv molecules, whereas linker peptides smaller than 12 amino 

acids, result in multimer formation (Hudson et al., 1999). The recombination reaction resulted 

in an 800 bp scFv sequence and some non-recombined VH and VL chains (400 bp), as proven 

by cloning and sequencing. The following amplification revealed a complete scFv sequence, 

containing the desired restriction enzyme cleavage sites. To generate the scFv library, 

pCANTAB5E was chosen as a phagemid. The restriction enzyme cleavage sites in this vector 

allowed for directed cloning of scFv sequences in the right orientation. An E-tag sequence, 

following the vector insertion site, simplified thorough purification and detection of the soluble 

scFv protein, using an anti-E-Tag antibody. The scFv-E-tag sequence was separated from the 

fd-phage-gene 3 by an amber stop codon. Using suppressor (e.g. TG1) or non-suppressor strains 

(e.g. HB2151) of E. coli, the scFv-E-tag molecule could either be expressed fused or non-fused 

to the phage’s pIII coat protein. As a result, laborious recloning after phage display was 

unnecessary. The library diversity was estimated by a fingerprint analysis using the restriction 

enzyme BstNI for digestion of the colony PCR products (Sotelo et al., 2012). The estimated 

library diversity of 3*109 independent clones was considered to be good, when compared to 

published libraries with diversities ranging from 5*108 (Dooley et al., 2003) to 2.9*109 (Tamura 

et al., 2008). For the phagemid rescue, the M13KO7 helper phage was used. M13KO7 phages 

were constructed to preferentially incorporate single-stranded phagemids. After the phagemid 

intake, a fusion protein of the scFv and the M13 minor coat protein pIII was expressed on the 

phage’s surface. The pIII protein was used for antibody display, as it allowed for the surface 

expression of large peptides. The expression of the fusion protein was controlled by a lacZ 

promotor and could be easily regulated by the glucose concentration in the growth medium. 

Without glucose supplementation, packaged phages were secreted in the cell culture medium, 

ensuring an easy screening procedure towards immobilized antigen (Carmen et al., 2002).  

During the panning rounds, a decreasing phage titer after panning and an increasing titer in the 

following enrichment step was observed, ensuring the method’s correctness. Phage input titers 

were measured using two different methods to guarantee a sufficient phage amount in the 

respective panning round. Titers measured using a NanoDrop spectrophotometer were 3.4*1014 

cfu/ml (1. round), 1.9*1013 cfu/ml (2. round) and 2.7*1013 cfu/ml (3. round). The titers 

determined by a dilution series in E. coli TG1 cells were approximately two decimal powers 

lower. Several factors can affect an efficient phage infection. The bacterial F’ pilus, being 

essential for the infection, is a fragile structure. Its expression depends on temperature and 

careful handling of the bacterial culture (Kotlan et al., 2009). The ratio of bacteria to phages is 
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also critical for the infection. It is assumed that one out of ten phages accomplishes a successful 

infection (Kasman et al., 2002). Therefore, deficiencies in the infection process were thought 

to cause the lower titers determined in the TG1 dilution series. The phage output titers decreased 

from 3.7*103 cfu/ml in the first round to 26 cfu/ml after the last panning round due to 

increasingly stringent panning conditions in each round. In order to generate a high-affinity 

bovine scFv, the antigen concentration used for panning and the binding time for phages were 

reduced, whereas washing steps were increased. All nine clones from the last panning round, 

which reacted positively in the phage ELISA, carried the same scFv DNA sequence. This is not 

unusual in immunized libraries and has also been observed by other authors (Ruelker et al., 

2012). Immunization leads to an enrichment of antigen-specific antibody sequences in the 

vaccinated animal. The ELISA, carried out with phages displaying the scFv on the surface, is 

said to give false positive results, where the scFv-phage-complex binds to the antigen but not 

to the scFv as an individual molecule (Frenzel et al., 2014). Therefore, the scFv-SF-3E4 was 

expressed as a soluble protein in E. coli HB2151 cells and purified from the bacterial culture 

supernatants using affinity chromatography. The purified scFv-SF-3E4 was characterized 

further. A 3D model (Phyre2 server, VMD 1.9.1 software), predicted by a protein homology 

analysis of the amino acid sequence, displayed a compact molecule. Structures relevant to 

antigen binding (CDR1-3) were displayed on the surface, enabling antigen binding according 

to the lock-and-key model. In the Western blotting analysis, the scFv-SF-3E4 showed a sharp 

band at approximately 31 kD. This corresponds to sizes reported for other monomeric scFv 

molecules in literature (Liu et al., 2013; Zuhaida et al., 2013; Wang et al., 2014). Cross 

reactivity was found for both Bovine Coronavirus strains (BCV-L9, BCV-V270) and the HCoV 

OC43. The HCoV OC43 is the prototype for the former group II human coronaviruses, and is 

now grouped into the Betacoronavirus genus by the International Committee for Taxonomy 

Viruses (ICTV) (McIntosh et al., 1967; van der Hoek, 2007; Woo et al., 2009). Therefore, cross 

reactivity appears plausible. BCV-L9 is a cell-culture adapted apathogen variant from BCV 

strain Mebus (Cyr-Coats et al., 1988). Its ability to bind to BCV-L9 makes the scFv-SF-3E4 a 

promising candidate for future diagnostic and therapeutic applications, where a broad cross 

reactivity to all field virus variants is important. No unspecific binding was observed towards 

E. coli (strains TG1, and HB2141), Vaccinia virus strain Elstree or BSA. 

The scFv-SF-3E4 neutralized BCV-V270. Neutralization ability was also described for other 

scFvs derived from immunized libraries (Rasetti-Escargueil et al., 2015). Immunized libraries 

contain antibody sequences, which already have passed natural affinity maturation, and are 
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therefore preselected for their high affinity and neutralizing ability (Miller et al., 2008; Nixon 

et al., 2014).  

The calculation of the dissociation constants revealed an approximately three times higher 

affinity towards BCV-V270 of the murine mAb 1/1 (Km = 206.5 pM) in comparison to the scFv-

SF-3E4 (Km = 595.2 pM). However, it must be taken into account that only one third of the 

mAb 1/1 molecule contributes to antigen binding and that the molecule contains two antigen 

binding sites, whereas the scFv-SF-3E4 only contains a single binding site. When compared to 

the literature, the affinity of the scFv-SF-3E4 is similar to most recently published scFv 

molecules (Lai et al., 2016; Lim et al., 2016; Moradi-Kalbolandi et al., 2016). 

The interference between the bovine scFv-SF-3E4 and the murine anti-BCV-V270 full-size 

mAb 1/1 was tested in a competition ELISA. Criteria for a reliable competition were (I) a 

reciprocal occurrence of competition, (II) the occurrence of competition over a range of several 

dilutions and (III) a percentage of competition > 50% (Michaud et al., 1993; Crawford et al., 

2015). There was no reciprocal competition, as the scFv-SF-3E4 failed to inhibit the binding of 

the mAb 1/1. The inhibition of the scFv-SF-3E4 by the mAb 1/1, was at 18%, far below the 

level of significance. A clear concentration dependency was absent and the inhibition remained 

at the same level over the whole dilution series of the mAb 1/1. The inhibition was considered 

to be an allosteric inhibition caused by the molecule size of the full-size mAb, rather than a 

specific inhibition of an epitope. Western blotting with BCV-V270 confirmed this assumption, 

since a distinct band pattern for both antibodies was observed. By the scFv-SF-3E4 an antigen 

was detected under non-reducing conditions only. Due to its size of approximately 100 kD, the 

detected antigen was considered to represent one of the two spike protein subunits (S1, S2) of 

BCV. The 190 kD spike protein is one of the four surface proteins of BCV and other 

coronaviruses, which is cleaved into two subunits S1 (gp105) and S2 (gp90) (Abraham et al., 

1990; Clark, 1993; Walls et al., 2016). Neutralizing BCV epitopes are mainly located on the S1 

subunit and were usually described to be discontinuous epitopes, which lose antigenicity under 

reducing conditions (Vautherot et al., 1992b; Yoo et al., 2001). As the scFv-SF-3E4 displayed 

a strong neutralizing ability and did not react in western blotting under reducing conditions (100 

kD), the corresponding epitope was assumed to be located within the spike protein subunit S1. 

Alternatively, the 100 kD band could represent the hemagglutinin/esterase protein (HE) of 

BCV. Neutralizing epitopes were described for this surface protein, too (Vautherot et al., 1990; 

Vautherot et al., 1992b). As the HE protein is a dimer of two identical 65 kD monomers, most 

antibodies binding this protein show a two band pattern (Parker et al., 1990; Nguyen et al., 

1998). One band under non-reducing conditions representing the 120 kD dimer and another 
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band under reducing conditions representing the 65 kD monomers. The scFv-SF-3E4 did not 

show this pattern in western botting. Therefore, binding to the S1 subunit was assumed to be 

more likely than binding to the HE protein. The mAb 1/1 remained negative in western blot 

when used in standard concentrations (data not shown). It was considered, that the main epitope 

detected by the mAb 1/1 is conformation-dependent and, therefore, did not react in the western 

blot under denaturating conditions. Only in very high concentration (250 µg/ml) a weak positive 

reaction could be observed, with bands of 50 kD, 100 kD and >250 kD. Therefore, the staining 

of these bands was assumed to be unspecific binding and did not represent the functional 

epitope of the mAB 1/1. This was also obvious against the background that published epitopes 

on the nucleoprotein (50 kD) and the S2 subunit (100 kD and >250 kD) were described to be 

non-neutralizing (Deregt et al., 1987; Hussain et al., 1991; Vautherot et al., 1992a). All these 

hypotheses about the epitopes detected by the scFv-SF-3E4 and the mAb 1/1 must be proven 

in further investigations using defined recombinant proteins and considering even non-

denaturating conditions. 

 

CONCLUSION  

A novel large bovine primer set was developed to amplify the whole bovine antibody repertoire 

known so far. It was used to construct an immunized bovine scFv phage display library showing 

high diversity (3*109 independent clones). A high-affinity neutralizing scFv against BCV, was 

isolated from the library. Based on published research data, this was the first time that a bovine 

scFv has been successfully isolated from a phage display library. The excellent binding and 

neutralization capabilities make scFv-SF-3E4 a promising candidate for further therapeutic use. 
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Supplemental Table 1a 

Primers used for the construction of the bovine scFv library. 

 

Primer Name Sequence (5'-3')  Ref. Seq. Binding Site 

PCR 1 – heavy chain forward primers 

BoLHBACK ACCCACTGTGGACCCTCCTC AC_000164.1 

(Bos taurus breed Hereford chromosome 7, 

Bos_taurus_UMD_3.1, whole genome sequence) 

15655287-15655306 

15679520-15679539 

15692083-15692102 

15709804-15709823 

15721891-15721910 
   

   

  AC_000178.1 

(Bos taurus breed Hereford chromosome 21, 

Bos_taurus_UMD_3.1, whole genome sequence) 

71507550-71507569 

71530064-71530083 

6102453-6102472 

71596318-71596337 
   

  NW_003100762.1 

(Bos taurus breed Hereford unplaced, 

Bos_taurus_UMD_3.1, whole genome sequence) 

1590-1609 

    

BoLHFOR1 TGGGGTYYTCTCCTCTGCCTGG AC_000164.1 

(Bos taurus breed Hereford chromosome 7, 

Bos_taurus_UMD_3.1, whole genome sequence) 

15580592-15580613 

15677729-15677751 
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AC_000178.1 

(Bos taurus breed Hereford chromosome 21, 

Bos_taurus_UMD_3.1, whole genome sequence) 

 

 

6100686-61007071 

71563465-71563486 

71509614-71509635 

    

BoLHFOR2 TGCAGTCTTCTCCTCTGCCTKG AC_000164.1 

(Bos taurus breed Hereford chromosome 7, 

Bos_taurus_UMD_3.1, whole genome sequence) 

15720093-15720095 

    

  AC_000178.1 

(Bos taurus breed Hereford chromosome 21, 

Bos_taurus_UMD_3.1, whole genome sequence) 

71594533-71594554 

    

BoLHFOR3 GTCTGGTCCTTCCCCATCCTGC AC_000178.1 

(Bos taurus breed Hereford chromosome 21, 

Bos_taurus_UMD_3.1, whole genome sequence) 

71511566-71511587 

 

PCR 1 – heavy chain reverse primers 

BoIgG1-3Ch1_forb GGCACCCGAGTTCCAGGTCA AC_000177.1 

(Bos taurus breed Hereford chromosome 20, 

Bos_taurus_UMD_3.1, whole genome sequence) 

71902586-71902605 

    

  NW_003099305.1 

(Bos taurus breed Hereford unplaced, 

Bos_taurus_UMD_3.1, whole genome sequence) 

1218-1237 
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  NW_003100065.1 

(Bos taurus breed Hereford unplaced, 

Bos_taurus_UMD_3.1, whole genome sequence) 

4197-4217 

 

PCR 2 – heavy chain forward primers 

BoVHFOR1 CAGGTGMAGSTGCRGGAGTCG AC_000178.1 

(Bos taurus breed Hereford chromosome 21, 

Bos_taurus_UMD_3.1, whole genome sequence) 

6100575-6100554 

6102337-6102316 

71507685-71507706 

71509746-71509767 

71530199-71530220 

71594423-71594402 

71596202-71596181 

15709688-15709667 

15719983-15719962 

15721775-15721775 

   

   

   

   

   

   

  NW_003100762.1 

(Bos taurus breed Hereford unplaced, 

Bos_taurus_UMD_3.1, whole genome sequence) 

1725-1746 

    

BoVHFOR2 AAGGTGCAGCTGCRGGAGTSG AC_000164.1 

(Bos taurus breed Hereford chromosome 7, 

Bos_taurus_UMD_3.1, whole genome sequence) 

15655422-15655443 

15691967-15691946 

    

BoVHFOR3 CAGATGMRCTGCWGCAGTCG AC_000164.1 

(Bos taurus breed Hereford chromosome 7, 

Bos_taurus_UMD_3.1, whole genome sequence) 

15578331-15578311 

15580721-15580741 



Studies – Chapter III 

125 

 

  AC_000178.1 

(Bos taurus breed Hereford chromosome 21, 

Bos_taurus_UMD_3.1, whole genome sequence) 

71563356-71563336 

    

BoVHFOR4 CAGGTGCTGGGGCGGGAGTCR AC_000178.1 

(Bos taurus breed Hereford chromosome 21, 

Bos_taurus_UMD_3.1, whole genome sequence) 

71592485-71592464 

71511693-71511714 

   

BoVHFOR5 CMGRTGCAGCTGCAGGARTCA AC_000164.1 

(Bos taurus breed Hereford chromosome 7, 

Bos_taurus_UMD_3.1, whole genome sequence) 

15677618-15677597 

15679440-156794382 

   

 

PCR 2 – heavy chain reverse primers 

BoJH_linker_BACK1 AGAACCACCTCCGCCTGAACCGCCTCCA

CCCAAGGACACGGTGACCGGGGTGC 

AC_000165.1 

(Bos taurus breed Hereford chromosome 8, 

Bos_taurus_UMD_3.1, whole genome sequence) 

73095150-73095173 

    

BoJH_linker_BACK2 AGAACCACCTCCGCCTGAACCGCCTCCA

CCTGAGGAGACGGTGACCYYGAKCC 

AC_000165.1 

(Bos taurus breed Hereford chromosome 8, 

Bos_taurus_UMD_3.1, whole genome sequence) 

73093575-73093598 

    

BoJH_linker_BACK3 AGAACCACCTCCGCCTGAACCGCCTCCA

CCTGAGGAGACGGTGCCCAGGGCAG 

AC_000165.1 

(Bos taurus breed Hereford chromosome 8, 

Bos_taurus_UMD_3.1, whole genome sequence) 

73095330-73095353 
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BoJH_linker_BACK4 AGAACCACCTCCGCCTGAACCGCCTCCA

CCTGAGGAGATGGAGAYSGGGGYGC 

AC_000165.1 

(Bos taurus breed Hereford chromosome 8, 

Bos_taurus_UMD_3.1, whole genome sequence) 

73094804-73094827 

    

BoJH_linker_BACK5 AGAACCACCTCCGCCTGAACCGCCTCCA

CCTGAGCAGACAGTGCCCAGGCTTC 

AC_000165.1 

(Bos taurus breed Hereford chromosome 8, 

Bos_taurus_UMD_3.1, whole genome sequence) 

73094124-73094147 

    

BoJH_linker_BACK6 AGAACCACCTCCGCCTGAACCGCCTCCA

CCTGAGGAGACGGTGTTTTGGATTC 

AC_000165.1 

(Bos taurus breed Hereford chromosome 8, 

Bos_taurus_UMD_3.1, whole genome sequence) 

73094494-73094517 

 

PCR 1 – lambda light chain forward primers 

BoLLFOR1 AR GGC WCA GGT GAG GCC TCC 

 

AC_000174.1 

(Bos taurus breed Hereford chromosome 17, 

Bos_taurus_UMD_3.1, whole genome sequence) 

73053239-73053258 

73056105-73056124 

73059158-73059171 

73062412-73062431 

73078894-73078913 
   

   

BoLLFOR2 TC TWC ACA GGT GAC TCG ATC 

 

AC_000174.1 

(Bos taurus breed Hereford chromosome 17, 

Bos_taurus_UMD_3.1, whole genome sequence) 

72823465-72823479 
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BoLLFOR3 TC TGC ACA GGT GAC TCG ATS 

 

AC_000174.1 

(Bos taurus breed Hereford chromosome 17, 

Bos_taurus_UMD_3.1, whole genome sequence) 

72805951-72805965 

72811755-72811769 

72815184-72815198 

72854174-72854189 

72862254-72862269 

72873794-72873809 

72875948-72875963 

72910218-72910232 

72929381-72929395 

72943264-72943278 

72951258-72951272 

72962856-72962870 

72969423-72969437 

75141676-75141690 

75145136-75145148 

   

   

   

   

   

   

   

   

  NW_003100754.1 

(Bos taurus breed Hereford unplaced, 

Bos_taurus_UMD_3.1, whole genome sequence) 

2016-2031 

    

BoLLFOR4 TC TGC RCA GGT GCG GCC CCC 

 

AC_000174.1 

(Bos taurus breed Hereford chromosome 17, 

Bos_taurus_UMD_3.1, whole genome sequence) 

73089701-73089720 

    

  AC_000174.1 

(Bos taurus breed Hereford chromosome 17, 

Bos_taurus_UMD_3.1, whole genome sequence) 

73113594-73113613 
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  AC_000174.1 

(Bos taurus breed Hereford chromosome 17, 

Bos_taurus_UMD_3.1, whole genome sequence) 

73096091-73096110 

    

  AC_000174.1 

(Bos taurus breed Hereford chromosome 17, 

Bos_taurus_UMD_3.1, whole genome sequence) 

73108865-73108884 

    

BoLLFOR5 CCTCACTTACGGCTCAGGTCA AC_000174.1 

(Bos taurus breed Hereford chromosome 17, 

Bos_taurus_UMD_3.1, whole genome sequence) 

72940430-72940451 

72881184-72881205 

   

BoLLFOR6 YCTCKCTCACTGCWYAGGTAG AC_000174.1 

(Bos taurus breed Hereford chromosome 17, 

Bos_taurus_UMD_3.1, whole genome sequence) 

72801103-72801124 

    

  AC_000174.1 

(Bos taurus breed Hereford chromosome 19, 

Bos_taurus_UMD_3.1, whole genome sequence) 

3428200-3428221 

    

BoLLFOR7 CCTYGCCCACYSCACAGGTCA AC_000174.1 

(Bos taurus breed Hereford chromosome 17, 

Bos_taurus_UMD_3.1, whole genome sequence) 

72894854-72894875 
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BoLLFOR8 CCTCTCTCWCTRCWCAGGTAG AC_000174.1 

(Bos taurus breed Hereford chromosome 17, 

Bos_taurus_UMD_3.1, whole genome sequence) 

72808732-72808753 

72967037-72967057 

72772202-72972222 

   

BoLLFOR9 GGTCGCTCTSTGCACAGRTGA AC_000174.1 

(Bos taurus breed Hereford chromosome 17, 

Bos_taurus_UMD_3.1, whole genome sequence) 

72947679-72947700 

72826767-72826788 

72846580-72846601 

72870467-72870488 

72889157-72889178 
   

   

  NW_003100754.1 

(Bos taurus breed Hereford unplaced, 

Bos_taurus_UMD_3.1, whole genome sequence) 

2008-2029 

 

PCR 1 – lambda light chain reverse primer 

BoCLBACK AC GGT CAC GCT ACC CGG GT 

 

AC_000174.1 

(Bos taurus breed Hereford chromosome 17, 

Bos_taurus_UMD_3.1, whole genome sequence) 

73139883-73139901 

73146182-13146200 

73152485-73152503 

73158754-73158772 
   

 

PCR 2 - lambda light chain forward primers 

BoVL_linker_FOR1 GTTCAGGCGGAGGTGGTTCTGGCGGTG

GCGGATCGCAGGCTGTGCTGACYCAGC

CR 

AC_000174.1 

(Bos taurus breed Hereford chromosome 17, 

Bos_taurus_UMD_3.1, whole genome sequence) 

72815313-72815333 

75145211-75145231 

72806080-72806100 

72826903-72826923 

72910347-72910367 
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   72929510-72929530 

72947815-72947835 

72969552-72969572 

72849669-72849690 

72854303-72854324 

72862381-72862402 

72870604-72870625 

72876077-72876098 

   

   

   

   

   

   

BoVL_linker_FOR2 GTTCAGGCGGAGGTGGTTCTGGCGGTG

GCGGATCGCAGGCTRTGCTGACTCAGC

YG 

AC_000174.1 

(Bos taurus breed Hereford chromosome 17, 

Bos_taurus_UMD_3.1, whole genome sequence) 

72823594-72823614 

72806080-72806100 

72811885-72811905 

72826903-72826923 

72910347-72910367 

72929510-72929530 

72943393-72943413 

72969552-72969572 

72849669-72849690 

72854303-72854324 

72862381-72862402 

72870604-72870625 

72876077-72876098 

72846717-72846738 

72873924-72873945 

72889295-72889316 

   

   

   

   

   

   

   

   

   

   

BoVL_linker_FOR3 GTTCAGGCGGAGGTGGTTCTGGCGGTG

GCGGATCGCAGGMTGTGCTGACTCAGC

MG 

AC_000174.1 

(Bos taurus breed Hereford chromosome 17, 

Bos_taurus_UMD_3.1, whole genome sequence) 

72951385-72951405 

72962985-72963005 
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BoVL_linker_FOR4 GTTCAGGCGGAGGTGGTTCTGGCGGTG

GCGGATCGCAGTCTRGCCTGACTCAGC

CT 

AC_000174.1 

(Bos taurus breed Hereford chromosome 17, 

Bos_taurus_UMD_3.1, whole genome sequence) 

73062549-73062569 

73056241-73056261 

73079029-73079049 

73059287-73059307 
   

BoVL_linker_FOR5 GTTCAGGCGGAGGTGGTTCTGGCGGTG

GCGGATCGCAGGCTGGGCTAACTCAGC

CG 

AC_000174.1 

(Bos taurus breed Hereford chromosome 17, 

Bos_taurus_UMD_3.1, whole genome sequence) 

75141805-75141825 

    

BoVL_linker_FOR6 GTTCAGGCGGAGGTGGTTCTGGCGGTG

GCGGATCGTCCTATGAACTGACMCAGY

YGA 

AC_000174.1  

(Bos taurus breed Hereford chromosome 17, 

Bos_taurus_UMD_3.1, whole genome shotgun sequence) 

73096266-73096286 

73109046-73109063 

   

BoVL_linker_FOR7 GTTCAGGCGGAGGTGGTTCTGGCGGTG

GCGGATCGCAGGTGTTGTGGGCTGCAT

CC 

AC_000174.1  

(Bos taurus breed Hereford chromosome 17, 

Bos_taurus_UMD_3.1, whole genome shotgun sequence) 

73201781-73201801 

    

BoVL_linker_FOR8 GTTCAGGCGGAGGTGGTTCTGGCGGTG

GCGGATCGTCTTCTCAGCTGACTCAGC

CG 

AC_000174.1  

(Bos taurus breed Hereford chromosome 17, 

Bos_taurus_UMD_3.1, whole genome shotgun sequence) 

73089860-73089880 

73113752-73113772 

   

BoVL_linker_FOR9 GTTCAGGCGGAGGTGGTTCTGGCGGTG

GCGGATCGCAGCSTGTGCTGACTCAGY

CRG 

AC_000174.1  

(Bos taurus breed Hereford chromosome 17, 

Bos_taurus_UMD_3.1, whole genome shotgun sequence) 

72967178-72967199 

72801244-72801265 

72808875-72808896 

72972346-72972367 
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AC_000174.1  

(Bos taurus breed Hereford chromosome 19, 

Bos_taurus_UMD_3.1, whole genome shotgun sequence) 

3428596-3428617 

    

BoVL_linker_FOR10 GTTCAGGCGGAGGTGGTTCTGGCGGTG

GCGGATCGCAGACTGTGGTCCAGGAGC

CAG 

AC_000174.1  

(Bos taurus breed Hereford chromosome 17, 

Bos_taurus_UMD_3.1, whole genome shotgun sequence) 

72940556-72940577 

72881310-72881331 

   

 

PCR 2 - lambda light chain reverse primers 

BoJLBACK1 CAGGACGGTCAGTGTGGTCCCGCT AC_000174.1  

(Bos taurus breed Hereford chromosome 17, 

Bos_taurus_UMD_3.1, whole genome shotgun sequence) 

73151066-73151088 

    

BoJLBACK2 CAGGACGGTCACTCTGGTCCCGCC AC_000174.1  

(Bos taurus breed Hereford chromosome 17, 

Bos_taurus_UMD_3.1, whole genome shotgun sequence) 

73144755-73144777 

    

BoJLBACK3 CAGGACGGTGACCCAGGTCCCGCC AC_000174.1  

(Bos taurus breed Hereford chromosome 17, 

Bos_taurus_UMD_3.1, whole genome shotgun sequence) 

73138485-73138507 

    

BoJLBACK4 CAGGACAGTCAGCCTGGTCCTGCC AC_000174.1  

(Bos taurus breed Hereford chromosome 17, 

Bos_taurus_UMD_3.1, whole genome shotgun sequence) 

73157343-73157365 

 



Studies – Chapter III 

133 

 

PCR 1 – kappa light chain forward primers 

BoLKFOR1 GRGYTCCTCCTGCTCTGGGT AC_000168.1  

(Bos taurus breed Hereford chromosome 11, 

Bos_taurus_UMD_3.1, whole genome shotgun sequence) 

47008052-47008075 

47027042-47027065 

47041509-47041532 

47052789-47052812 

47059865-47059884 

47071099-47071122 

47077829-47077840 

47089202-47089225 

47097124-47097143 

47104488-47104511 

47011090-470110920 

47121693-47121716 

47148194-47148217 

   

   

   

   

   

    

BoLKFOR2 TTCCTCCTGTTACTGTGGTT AC_000168.1  

(Bos taurus breed Hereford chromosome 11, 

Bos_taurus_UMD_3.1, whole genome shotgun sequence) 

46986812-46986832 

    

BoLKFOR3 RGTCTCCTGCTSCTCTGGCT AC_000168.1  

(Bos taurus breed Hereford chromosome 11, 

Bos_taurus_UMD_3.1, whole genome shotgun sequence) 

46982672-46982692 

47032941-47032960 

47126244-47126263 

47137392-47137411 

47160154-47160173 
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PCR 1 – kappa light chain reverse primer 

BoCKBACK TGGTTTGAAGAGAAGACGGATG AC_000168.1  

(Bos taurus breed Hereford chromosome 11, 

Bos_taurus_UMD_3.1, whole genome shotgun sequence) 

47174110-47174132 

 

PCR 2 – kappa light chain forward primers 

BoVK_linker_FOR1 GTTCAGGCGGAGGTGGTTCTGGCGGTG

GCGGATCGGATGTWGTGCTGACCCAG

ACTCC 

AC_000168.1  

(Bos taurus breed Hereford chromosome 11, 

Bos_taurus_UMD_3.1, whole genome shotgun sequence) 

47027501-4702724 

47053242-47053265 

47071540-4707163 

47089656-47089679 

47104941-47104964 

47122133-47122156 

   

   

   

BoVK_linker_FOR2 GTTCAGGCGGAGGTGGTTCTGGCGGTG

GCGGATCGGACATTGTGCTGACCCAGA

CTCC 

AC_000168.1  

(Bos taurus breed Hereford chromosome 11, 

Bos_taurus_UMD_3.1, whole genome shotgun sequence) 

47008475-47008498 

    

BoVK_linker_FOR3 GTTCAGGCGGAGGTGGTTCTGGCGGTG

GCGGATCGGACATCCAGGTRACCCAGT

CTCC 

AC_000168.1  

(Bos taurus breed Hereford chromosome 11, 

Bos_taurus_UMD_3.1, whole genome shotgun sequence) 

47137554-47137577 

47160315-47160338 

   

BoVK_linker_FOR4 GTTCAGGCGGAGGTGGTTCTGGCGGTG

GCGGATCGGACCTCCAGATGAYYCAGT

CTCY 

AC_000168.1  

(Bos taurus breed Hereford chromosome 11, 

Bos_taurus_UMD_3.1, whole genome shotgun sequence) 

46982832-46982855 

47033102-47033125 
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BoVK_linker_FOR5 GTTCAGGCGGAGGTGGTTCTGGCGGTG

GCGGATCGGACCTCCAGATGACCCAGT

CTCC 

AC_000168.1  

(Bos taurus breed Hereford chromosome 11, 

Bos_taurus_UMD_3.1, whole genome shotgun sequence) 

46982832-46982855 

    

BoVK_linker_FOR6 GTTCAGGCGGAGGTGGTTCTGGCGGTG

GCGGATCGGACCTCCAGATGATTCAGT

CTCC 

AC_000168.1  

(Bos taurus breed Hereford chromosome 11, 

Bos_taurus_UMD_3.1, whole genome shotgun sequence) 

47033102-47033123 

    

BoVK_linker_FOR7 GTTCAGGCGGAGGTGGTTCTGGCGGTG

GCGGATCGGCTATTGTTCTGACCCAGA

CTCC 

AC_000168.1  

(Bos taurus breed Hereford chromosome 11, 

Bos_taurus_UMD_3.1, whole genome shotgun sequence) 

47041937-47041960 

    

BoVK_linker_FOR8 GTTCAGGCGGAGGTGGTTCTGGCGGTG

GCGGATCGGGCATCCAGATGACTCAGT

CTCC 

AC_000168.1  

(Bos taurus breed Hereford chromosome 11, 

Bos_taurus_UMD_3.1, whole genome shotgun sequence) 

47126398-47126421 

    

 

 

BoVK_linker_FOR9 

 

 

GTTCAGGCGGAGGTGGTTCTGGCGGTG

GCGGATCGGCTAYWAKGCAGACCCAG

ACTCT 

 

 

AC_000168.1  

(Bos taurus breed Hereford chromosome 11, 

Bos_taurus_UMD_3.1, whole genome shotgun sequence) 

 

 

47078246-47078268 

    

BoVK_linker_FOR10 GTTCAGGCGGAGGTGGTTCTGGCGGTG

GCGGATCGGCTATTATGCAGAACCAAC

TATA 

AC_000168.1  

(Bos taurus breed Hereford chromosome 11, 

Bos_taurus_UMD_3.1, whole genome shotgun sequence) 

47097548-47097570 
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BoVK_linker_FOR11 GTTCAGGCGGAGGTGGTTCTGGCGGTG

GCGGATCGGAAATTATGTTAACGCAGT

CTCC 

AC_000168.1  

(Bos taurus breed Hereford chromosome 11, 

Bos_taurus_UMD_3.1, whole genome shotgun sequence) 

46987521-46987543 

 

PCR 2 – kappa light chain reverse primers 

BoJKBACK1 ATTGATTTCCACCTTGGTCCCG AC_000168.1  

(Bos taurus breed Hereford chromosome 11, 

Bos_taurus_UMD_3.1, whole genome shotgun sequence) 

47170260-47170283 

    

BoJKBACK2 TTTGATCTCTACCTTGGTTCCT AC_000168.1  

(Bos taurus breed Hereford chromosome 11, 

Bos_taurus_UMD_3.1, whole genome shotgun sequence) 

47169610-47169633 

    

BoJKBACK3 TTTGACTTCCAGCTTGGTTCCT AC_000168.1  

(Bos taurus breed Hereford chromosome 11, 

Bos_taurus_UMD_3.1, whole genome shotgun sequence) 

47169249-4716972 

    

Amplification of the recombination product (VH + Vλ) – forward primers 

BoVH_SfiI_FOR1 GTCCTCGCAACTGCGGCCCAGCCGGC

CCAGGTGMAGSTGCRGGAGTCG 

 

  

BoVH_SfiI_FOR2 GTCCTCGCAACTGCGGCCCAGCCGGC

CAAGGTGCAGCTGCRGGAGTSG 

 

  

BoVH_SfiI_FOR3 GTCCTCGCAACTGCGGCCCAGCCGGC

CCAGATGMRCTGCWGCAGTCG 
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BoVH_SfiI_FOR4 GTCCTCGCAACTGCGGCCCAGCCGGC

CCAGGTGCTGGGGCGGGAGTCR 

 

  

BoVH_SfiI_FOR5 GTCCTCGCAACTGCGGCCCAGCCGGC

CCMGRTGCAGCTGCAGGARTCA 

  

 

Amplification of the recombination product (VH + Vλ) – reverse primers 

BoJL_Not1_BACK1 GAGTCATTCTCGACTTGCGGCCGCCA

GGACGGTCAGTGTGGTCCCGCT 

 

  

BoJL_Not1_BACK2 GAGTCATTCTCGACTTGCGGCCGCCA

GGACGGTCACTCTGGTCCCGCC 

  

BoJL_Not1_BACK3 GAGTCATTCTCGACTTGCGGCCGCCA

GGACGGTCACTCTGGTCCCGCC 

 

  

BoJL_Not1_BACK4 GAGTCATTCTCGACTTGCGGCCGCCA

GGACAGTCAGCCTGGTCCTGCC 

  

 

Amplification of the recombination product (VH + Vκ) – reverse primers 

BoJK_Not1_BACK1 GAGTCATTCTCGACTTGCGGCCGCAT

TGATTTCCACCTTGGTCCCG 

 

  

BoJK_Not1_BACK2 GAGTCATTCTCGACTTGCGGCCGCTTT

GATCTCTACCTTGGTTCCT 

 

  

BoJK_Not1_BACK3 GAGTCATTCTCGACTTGCGGCCGCTTT

GACTTCCAGCTTGGTTCCT 
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Amplification of GAPDH 

GAPDH_for TGGTCACCAGGGCTGCT 

GAPDH_rev 

 

GGAGGGGCCATCCACAGTCT 

Colony PCR    

R1 CCATGATTACGCCAAGCTTTGGAGCC   

R2 CGATCTAAAGTTTTGTCGTCTTTCCA   

 

Underlined letters indicate wobble bases. Wobbles are defined as: K – G/T, M – A/C, R – A/G, S – G/C, W – A/T, Y – C/T. The italic letters indicate the 

nucleotide sequence for the peptide linker. The bold nucleotides represent the restriction enzyme recognition sites for SfiI and NotI. Bold and italic numbers 

functional genes. 
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4      GENERAL DISCUSSION 

The aim of this dissertation was to investigate the relevance of Interleukin-6 as a 

prognostic marker in livestock diseases and to establish a technique of generating 

species-specific single-chain antibody fragments (scFv) in veterinary medicine. 

Therefore, neonatal calf diarrhea was chosen as a model for proof-of-principle. 

Interleukin-6 is already established as a reliable prognostic marker in human medicine 

(Wilhelm et al., 2012; Khanna et al., 2013; Naffaa et al., 2013). Especially in newborns 

suffering from sepsis, this parameter is used to assess the prognosis in earlier stages of 

the infection (Buck et al., 1994; Küster et al., 1998; Meem et al., 2011). A commercial 

test is already available, with the indication to support diagnosis and management of 

patients suffering from sepsis (Elecsys® IL-6, Roche Diagnostics GmbH, Mannheim, 

Germany). In veterinary medicine, the prognostic value of IL-6 is investigated 

especially in laboratory animals, serving as models for humans, and in dogs, as one of 

the most popular companion animals (Rau et al., 2007; Huang et al., 2014; de Oliveira 

et al., 2015; Schüttler et al., 2015). Few investigations concerning IL-6 focus on 

livestock species, such as sheep, swine and camel (Tambuyzer et al., 2014; Abdlla et 

al., 2015; El-Deeb et al., 2015). In cattle, only a few studies looked into the prognostic 

value of IL-6. They concentrate on dairy cattle suffering from mastitis or postpartum 

diseases (Hagiwara et al., 2001; Ishikawa et al., 2004; Hisaeda et al., 2011; Trevisi et 

al., 2012).  

The studies presented in this dissertation aim at transferring the prognostic potential of 

IL-6, found in dairy cattle, to calves suffering from neonatal calf diarrhea, as this is an 

important disease in livestock farming (Lorenz et al., 2011a; Lorenz et al., 2011b). 

Therefore, in the first instance, the physiologic development of IL-6 in newborn calves 

was investigated over a period of four weeks, considering the simultaneous 

development of the local immunity (mucosal IgA). In the second instance, the 

pathophysiology of IL-6 was examined in the course of neonatal calf diarrhea.  

The information concerning the physiologic development of IL-6 in newborn calves in 

vivo is rare and describes that IL-6 in serum of newborn calves is mainly of colostral 

origin (Yamanaka et al., 2003). Furthermore, there are no data available which describe 

the influence of IL-6 on the development of the mucosal immunity, especially IgA, in 

calves, whereas in mice a strong positive influence has already been demonstrated 

(Ramsay et al., 1994). Instead, these findings in mice were transferred without 

evaluation to calves in therapeutic approaches, where IL-6 was tested as an adjuvant in 
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mucosal vaccination (Kumar et al., 2014). In this study, IL-6 failed to improve the 

mucosal IgA response and for this reason the connection of IL-6 and mucosal IgA in 

calves could be questioned. The author’s own investigations showed that IL-6 gene 

expression in PBMCs of newborn calves was apparent directly after birth. The 

disagreement with the study of Yamanaka et al. (1993) is assumed to arise from the 

different methodology used. Quantitative real-time PCR, used in the own investigation, 

is described as being more sensitive when compared to the detection of PCR products 

in agarose gel electrophoresis, as used by Yamanaka et al. (1993) (VanGuilder et al., 

2008). A linear connection of IL-6 and mucosal IgA was not verifiable in the author’s 

own study. A significant correlation (p ≤ 0.05) of IL-6 and IgA was apparent only on 

day 7. It was assumed that IL-6 is important in the initialization of IgA production, but 

is not the main regulator of the IgA concentration on mucosal surfaces. This can explain 

the failure of IL-6 as adjuvant in mucosal vaccination (Kumar et al., 2014). There are 

several factors impeding the demonstration of a linear connection between amounts of 

IL-6 and IgA in vivo. Interleukin-6 does not directly act on B-cells, but its effect is 

mediated via Interleukin-21. In detail, IL-6 from macrophages and dendritic cells 

triggers the IL-21 secretion in CD4+ T-cells (Dienz et al., 2009). Subsequently, IL-21 

induces the maturation of antibody secreting plasma cells (Ettinger et al., 2005). There 

is evidence that the same cascade is apparent in cattle, too (Gowane et al., 2014). Despite 

that, the detailed mechanisms regulating the IgA production seem to be unsolved and 

species-specific differences are confirmed (Pabst, 2012). In order to elucidate the exact 

mechanisms in cattle, further research is needed. The local IL-6 concentration in tissue 

underlying mucosal surfaces should be considered, as the development of IgA 

producing plasma cells is located in the local lymph nodes and the lymphatic sites in 

the lamina propria (e.g. isolated lymphoid follicles) (Kang et al., 2002; Lorenz et al., 

2004; Macpherson et al., 2004). Therefore, more invasive studies are needed using 

bovine oral mucosa for gene expression analyses. The attempt to measure IL-6 gene 

expression in buccal mucosa cells obtained from mucosal swabs failed in the author’s 

own investigations, because isolated RNA amounts were too small for further analysis. 

It was likely, that the aggressive milieu of saliva, containing lots of proteolytic enzymes, 

contributed to a rapid degradation of cells and therefore RNA (de Almeida Pdel et al., 

2008; Chiang et al., 2015). Even, a direct transfer of the cytobrush (servoprax GmbH, 

Wesel, Germany), used for the mucosal swab, into RNAprotect Cell Reagent (QIAGEN, 

Hilden, Germany), did not improve the RNA output. Concluding from these findings, 



Discussion 

141 

 

future investigations ought to use mucosal biopsies rather than mucosal swabs to gain 

material for gene expression analyses.  

Concerning the practical application, IL-6 remains an important key factor in the 

regulation of IgA production, although it seemed to have no linear relation to mucosal 

IgA concentrations. Latest hypotheses regarding the generation of IgA presume that IL-

6 is an important supportive factor for persistence of plasma cells in the mucosal tissue 

(Pabst, 2012). Thus, the use of IL-6 as adjuvant in vaccinations still seems to be an 

interesting approach.  

After the confirmation that newborn calves produce IL-6 by themselves, this parameter 

was investigated under pathophysiologic conditions (e.g. neonatal calves diarrhea) in 

order to prove its prognostic potential. The idea to establish a prognostic marker for calf 

diseases had already been followed in the 1980s (Bielefeldt Ohmann et al., 1985; Naylor 

et al., 1987; Bielefeldt Ohmann et al., 1989). Since then, the research has mainly focused 

on respiratory disease in calves. Clinical and pathologic parameters, such as rectal 

temperature and lung biopsies, failed to be reliable prognostic markers for disease 

outcome (Burgess et al., 2013; Theurer et al., 2014), whereas acute phase proteins (e.g. 

serum amyloid A (SAA), haptoglobulin (Hp)) were useful in predicting surveillance 

and treatment frequency (Godson et al., 1996; Berry et al., 2004; Tothova et al., 2010).  

Studies searching for a prognostic marker in the course of diarrhea in newborn calves 

are rare. Urea serum concentrations were shown to have some prognostic potential, 

when elevated day by day in scouring calves (Wiest and Klee., 1998).  

Based on these findings and considering the aim of this dissertation to establish an early 

prognostic marker in neonatal calf diarrhea, serum interleukin 6 was chosen as a 

parameter of interest. It is described as a main inducer of acute phase proteins (Werling 

et al., 1996; Brock et al., 2011). Therefore, this parameter was assumed to be elevated 

even before the acute phase proteins, which have already been proven to be prognostic 

in respiratory disease in calves (Godson et al., 1996; Berry et al., 2004; Tothova et al., 

2010). Recently, this assumption was confirmed in a lipopolysaccharide inflammation 

model in calves (Plessers et al., 2015).  

The study conducted in the context of this dissertation, found interleukin 6 serum 

concentrations on the onset of diarrhea being significantly higher in calves which 

develop a prolonged course of the disease. Consequently, IL-6 was thought to be a 

helpful parameter in predicting the course of diarrhea in newborn calves. This statement 

has to be restricted to diarrhea, caused by BRV and C. parvum, as calves proved in this 
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study were infected only with these pathogens. These findings support published data, 

which show elevated levels of IL-6 gene expression in peripheral blood mononuclear 

cells (PBMCs) and in intestinal cells of calves suffering from diarrhea, due to an 

infection with BRV or C. parvum (Aich et al., 2007; Qadis et al., 2014). However, 

concerning infections with C. parvum, opposite findings were also described, where no 

elevated IL-6 gene expression in PBMCs was detectable (Takeda et al., 2003). Two 

reasons could explain these different findings. First, a broad range of different cells 

produce IL-6 and therefore gene expression analyses in a certain assortment of cells 

(e.g. PBMCs) may lead to false negative results, when compared with serum IL-6 

concentrations (Nagahata et al., 2002). Second, the method by which the gene 

expression is analyzed determines the sensitivity of the respective investigation. The 

study, which found IL-6 gene expression to be absent in C. parvum infections, used gel 

electrophoresis for the detection of PCR product amounts (Takeda et al., 2003), whereas 

the other working group used real-time PCR for detection of DNA amplification (Qadis 

et al., 2014), which today is considered to be the gold standard for gene expression 

analyses, because of sensitivity and accuracy (Derveaux et al., 2010).  

Neonatal calf diarrhea, is not exclusively caused by BRV and C. parvum, rather other 

pathogens, such as Bovine Coronavirus and enterotoxic E. coli (F5-ETEC), are 

important, too (Meganck et al., 2015). Accordingly, further research is needed to prove 

the prognostic potential of IL-6 in diarrhea caused by these pathogens as well. 

Furthermore, in order to use IL-6 determination as an on-farm prognostic tool, detection 

methods have to be improved. An attempt could be the development of lateral-flow-

based immunoassays, which were already in use for the rapid detection of some diarrhea 

causing pathogens (Trotz-Williams et al., 2005). In human medicine, this technique was 

currently established to measure IL-6 in amniotic fluids, in order to detect intra-amniotic 

inflammation in pregnant women (Chaemsaithong et al., 2016). 

In order to develop innovative drugs in the field of veterinary medicine for disease, such 

as viral infections, where specific therapeutics are still missing, a bovine single-chain 

fragment library was established. As proof-of-principle, a neutralizing bovine anti-BCV 

scFv was isolated from this library. 

In a first step, a bovine primer set was needed to cover the whole bovine 

immunoglobulin spectrum. Until now, only one primer set was described for the 

generation of a bovine immunoglobulin library, consisting of four primer pairs (O'Brien 

et al., 1999). Two primer pairs were described to amplify the variable domain of the 
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heavy chain and two primer pairs were described to cover the variable domain of the 

light chain. In the latter, no difference was made between the lambda and the kappa 

light chain. It was likely, that these primers were not able to cover the whole variable 

domain immunoglobulin spectrum in cattle, with currently 36 VH genes, 63 VLλ genes 

and 22 VLκ genes (Ekman et al., 2009; Pasman et al., 2010; Diesterbeck et al., 2012; 

Stein et al., 2012; Walther et al., 2013). 

Therefore, a new primer set was designed based on current knowledge and the author’s 

own BLAST analyses. These were limited to the immunoglobulin spectrum, which is 

currently known from genetic research in cattle (Elsik et al., 2009; Elsik et al., 2016). 

When the results of the analyses were compared to current literature, differences arose 

concerning the number of different genes found for the respective immunoglobulin 

genes (Ekman et al., 2009; Pasman et al., 2010). It was assumed, that the differences 

originated from different genome assemblies used for the analyses. This finding 

underlines the important fact that a primer set can only be as comprehensive as the actual 

knowledge about the genomic basis. Primer sets have to be carefully adapted as soon as 

new genomic information is available. This is frequently done for antibody primer sets 

in other species (Sblattero et al., 1998; Sun et al., 2012). In the present work, it was 

decided to design a primer set, which also covered pseudogenes. Other species, such as 

chicken and rabbit, intensively use immunoglobulin pseudogenes to increase their 

antibody diversity (Weill et al., 1996; Lanning et al., 2015). In cattle, this mechanism is 

hypothesized for the bovine lambda light chain genes (Parng et al., 1996; Lucier et al., 

1998). Until now, stringent proof neither for nor against the usage of bovine 

pseudogenes in gene conversion exists. As a consequence, pseudogenes were 

incorporated into the author’s own study, in order not to miss any diversity during the 

construction of the antibody library.  

The established primer sets were used for the amplification of bovine immunoglobulin 

cDNA. After the individual evaluation of each possible primer combination, the primers 

were pooled for the subsequent library construction. This means that one primer pool 

for PCR1 and one primer pool for PCR2 were made for each immunoglobulin variable 

domain (VH, VLλ,VLκ). This procedure was successfully used in other studies (Schaefer 

et al., 2010; Meng et al., 2015; Rahumatullah et al., 2015). However, other authors avoid 

the usage of primer pools, because of the possible amplification bias (Gao et al., 2015). 

Meaning some primer combinations within the pool may work more efficient than 

others, and therefore some variable domains may be overrepresented in the generated 
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mixture of PCR products. The decision for or against using a primer pool should be 

based on the particular aim of the investigation. If the frequency of particular gene or 

gene family usage is of interest, than primer pools should be avoided. However, this 

project focused on innovative drug development. Therefore, special attention was given 

to the simplification and standardization of the methods used. The procedure should be 

easily transferred to other diseases and bear potential for production in industrial scales.  

Concerning the format of the recombinant bovine antibodies, the scFv format was 

chosen. Here again, this decision was made focusing on a simple and cost effective 

production, as well as on good pharmacokinetic characteristics. Single-chain antibody 

fragment libraries can be easily screened using phage display technology and the 

selected scFv fragment is suitable for production in simple expression systems like E. 

coli cells (Humphreys et al., 2000; Jurado et al., 2002; Ahmad et al., 2012; Wang et al., 

2014). Additionally, these very small molecules show good pharmacologic properties, 

such as excellent tissue penetration ability (Sandhu, 1992; Xi et al., 2015). A possible 

disadvantage of these molecules is the absent Fc part, which in full-size antibodies 

mediate effector functions, such as complement activation and binding to other immune 

cells (Janda et al., 2016). In therapeutic applications, full-size antibodies or scFv-Fc 

fusion proteins mostly show higher affinities, prolonged serum half-life time and greater 

neutralization ability, due to the Fc part of the molecule (Chames et al., 2009; Jorgensen 

et al., 2014; Unverdorben et al., 2016). This handicap can be easily overcome by the 

reformation of a scFv-Fc or a full-size antibody from a scFv molecule, which is a simple 

method due to the development of new plasmids containing the requested constant 

domain (Bujak et al., 2014; Rasetti-Escargueil et al., 2015).  

After designing the primer set for the construction of the bovine scFv antibody library, 

the initial step to generate the library was the immunization of a Holstein Frisian bull 

and the isolation of peripheral blood mononuclear cells after sufficient seroconversion.  

Immunized antibody libraries show several advantages for the selection of potential 

therapeutic antibodies in comparison to naïve libraries. During the immunization 

process, the B-cell population of the donor animal is preselected for antibodies binding 

to the antigen of interest (Lim et al., 2014). Subsequently, a fewer number of cells was 

suitable for DNA isolation and antibodies selected from the library often show higher 

affinity, when compared to those from naïve libraries (Liu et al., 2007b). However, the 

establishment of immunized libraries is not possible for toxic or highly virulent 

antigens, and in cases where antibodies directed against self-antigens are needed (Hairul 
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Bahara et al., 2013). Furthermore, a new library has to be generated for each antigen of 

interest (Shukra et al., 2014). The latter limitation can be overcome by the huge size of 

the immunized library, which allows for the identification of antibodies directed against 

antigens, other than the one used for immunization (Moon et al., 2011). The library 

constructed in this dissertation project used peripheral blood mononuclear cells for the 

initial RNA isolation step. These cells were isolated from the immunized bull after a 

sufficient seroconversion had been verified in the serum of the vaccinated animal. 

Although this approach worked well, further improvements of this step are possible. 

Instead of monitoring the seroconversion by serum antibody titres, an alternative could 

be the monitoring of antibody mRNA transcription by PCR, in order to determine the 

time-point, where an optimal antigen-specific immune response occurs (Rasetti-

Escargueil et al., 2015). Another improvement for the simplification of antibody 

panning is the possibility of preselecting B-cells, producing the antibody of interest by 

flow-cytometry and cell sorting (Miller et al., 2008; Meng et al., 2015; Cox et al., 2016). 

Because this approach currently suffers from technical challenges, the library in this 

dissertation was screened by the widely-used phage display technique (Nixon et al., 

2014; Cox et al., 2016). The phage display in combination with E. coli cells as 

expression system for selected antibodies is described as being a simple and cost 

effective method for the assembly of scFv fragments (Liu et al., 2013a; Wang et al., 

2014; Lee et al., 2015). The facile and stable storage of phage particles at 4°C offers 

another advantage (Burritt et al., 1996). Limitations of this system were the occurrence 

of false-positive binders during panning, where binding capability is apparent only for 

a scFv molecule displayed on the phage surface but not when it is tested as purified 

protein (Nixon et al., 2014). Therefore, in the author’s own study, for all binding phage-

scFv combinations, the scFv was also tested as a purified molecule before it was 

classified as a specific binder. When thinking about future applications of the generated 

library, the screening against other antigens is of interest. Primarily, the library can be 

screened against the other antigens included in the vaccine used for immunization 

(BRV, E. coli (F5-ETEC), C. parvum). Furthermore, other antigens, not included in the 

vaccine, can also be tested. Therefore, some adaptions of the procedure are advisable, 

because it has to be assumed that these antibodies were underrepresented in the library. 

First, a negative selection can be performed against the antigens used during 

vaccination, which is commonly used in approaches where cross-reactivity should be 

excluded (Pande et al., 2010; Costa et al., 2014). Second, a hyperphage can be used in 
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the first panning round. This phage is made for a multivalent display of scFvs and 

therefore can lead to higher panning efficiencies (Rondot et al., 2001; Hust et al., 2011).  

Further possible improvements of the methods used in the author’s own study concern 

the expression system for the scFv. Although E. coli cells are frequently used for the 

expression of recombinant antibodies, especially scFvs, their application has to be 

carefully considered due to the respective study aim (Ahmad et al., 2012). The most 

important aspects for the widespread usage are the convenient culture conditions and 

the easy handling (Verma et al., 1998). Furthermore, E. coli cells can be adapted to the 

study needs, as they can be genetically modified without much effort (Mahalik et al., 

2014; Tas et al., 2015). However, the characteristics of this expression system in which 

most intensive attempts are made for improvement are simultaneously the most 

important disadvantages of this system. The first one is the limited expression capacity 

of E. coli cells, which can result in the formation of intra-cytoplasmic inclusion bodies, 

from which it is difficult and laborious to recover a soluble antibody (Martineau et al., 

1998). Extensive protein expression can also overburden the metabolic capacity of E. 

coli, leading to decreased protein expression and cell death (Spadiut et al., 2014). In 

current research, several strategies were evaluated to overcome this problem (Mairhofer 

et al., 2010; Striedner et al., 2010). A second limitation of E. coli cells is the size of the 

protein to be expressed. Until now only scFv fragments and Fab fragments can be 

routinely expressed in E. coli cells (Harrison et al., 1996). Although, there are some 

descriptions of successful expression of full-size IgG molecules in E. coli, a large-scale 

production of functional full-size antibodies in this organism remains unlikely (Mazor 

et al., 2007; Frenzel et al., 2013). Other important deficiency of E. coli cells are their 

reducing cytoplasm, which prohibits a proper development of disulfide-bridges, and the 

lack of glycosylation ability (Verma et al., 1998). The problem of proper disulfide-

bridge formation could be solved by directing the expressed proteins into the 

periplasmic compartment, where more oxidizing conditions are apparent (Dow et al., 

2015). However, the glycosylation insufficiency disqualifies the E. coli system for the 

production of recombinant antibody formats containing a functional Fc part in the 

molecule. In this molecule part, glycans are of special importance for various functions 

of the antibody, such as activation of immune cells, extravasation and other 

pharmacokinetic properties (Hodoniczky et al., 2005; Kaneko et al., 2006; Jefferis, 

2009; Venetz et al., 2015). Regarding this deficiency of E. coli, research focuses on 

other expression systems. The alternatives considered were yeast, fungi and plants 
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(Scheller et al., 2006; Decker et al., 2012; Goncalves et al., 2013; Sarkari et al., 2014). 

Unfortunately, these systems do not provide sufficient transformation efficiency needed 

for the construction of large antibody libraries (Verma et al., 1998).  

In the future, two aspects will be important for the implementation of recombinant 

antibodies in the drug market. The first is the possibility for a safe, standardized and 

economical production, which is intensively investigated in current research (Gion et 

al., 2013; Meier et al., 2014). The second is the development of sufficient application 

systems, which ensure easy uptake by the patient (e.g. oral application) and excellent 

pharmaco-chemical stability for a sufficient half-life time in the patient. Although 

reports of a successful oral application of IgG molecules exist, most research approaches 

focus on the stable expression of therapeutic antibodies on the surface of bacterial cells 

(Krüger et al., 2002; Giomarelli et al., 2004; Monedero et al., 2004; Gunaydin et al., 

2014; Jasion et al., 2015). Predominantly, bacterial species known as probiotics such as 

Lactobacillus spp. and Streptococcus spp. were studied. Despite the therapeutic 

potential, recombinant antibody formats were also used for the development for fast and 

simple on farm diagnostics (Wang et al., 2015; Tarasov et al., 2016). By coating them 

on carriers, such as nitrocellulose membranes and immunosensor chips, and using 

detection systems, which can be evaluated by the naked eye (e.g. gold nanoparticle 

labeling), an on-farm diagnosis within 10 min was

demonstrated in these studies. 
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5     SUMMARY 

The aim of the present dissertation was to improve the prognostic possibilities and 

therapeutic strategies in neonatal calf diarrhea. Thereby, new techniques in drug 

development should be established in the field of veterinary medicine. 

Therefore, three individual studies were conducted. Two of them focused on IL-6 as a 

potential prognostic marker in neonatal calf diarrhea. The third study aimed to generate 

a bovine scFv antibody specific for BCV, which would show the pharmacokinetic 

potential for a prospective therapeutic application. 

In the initial investigation, ten healthy Holstein Friesian calves were observed from birth 

until day 28 after birth, regarding their IL-6 gene expression in PBMCs and IL-6 serum 

concentrations. Additionally, IgA concentrations in serum and saliva, as well as IgG 

concentrations in serum were monitored. These immunoglobulins were chosen as 

representatives for the local (IgA in saliva) and the systemic (IgG in serum, IgA in 

serum) adaptive immunity. The milk fed to the calves could have been a possible source 

for all these three molecules and therefore was investigated, too. The aim of this initial 

study was to look into the physiological development of the immune system after birth 

with special emphasis to the development of IL-6. The data showed that calves were 

able to produce IL-6 by themselves directly after birth. However, IL-6, as well as IgA 

and IgG were present in the colostrum and therefore the uptake of colostrum contributed 

to serum concentrations in calves during the first days. Immunoglobulin A 

concentrations in saliva started to increase around day 7 after birth. At this time point 

IL-6 serum concentrations and IgA concentrations in saliva showed a significant 

positive correlation. At the following sampling time points, a positive correlation could 

not be observed between these two parameters. It was assumed that, unlike in mice, IL-

6 does not have a linear influence on IgA concentrations in saliva, but is an important 

factor in the initialization of the IgA development (Ramsay et al., 1994). Further 

investigations under controlled conditions are needed to confirm these preliminary 

findings in the field.  

Referring to these findings, which confirmed IL-6 to be produced by calves even in the 

first days of life, the second study proved IL-6 as a prognostic marker in neonatal calf 

diarrhea. Twenty scouring calves were sampled two times, a first time at the beginning 

of diarrhea and a second time 7-10 days after the occurrence of symptoms. Data 

collected were clinical parameters, hematologic parameters, IL-6 serum concentrations 

and the diarrhea causing pathogen. For comparison, a control group of nine calves was 
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sampled once to determine the IL-6 basis concentration in healthy calves. At the first 

sampling time point, the scouring calves showed significantly higher IL-6 serum 

concentrations than the control calves. Furthermore, calves developing a prolonged 

course of the disease had significantly higher IL-6 serum concentrations compared to 

calves that were clinically recovered after 7-10 days. Interleukin-6 was assumed as a 

useful prognostic tool in neonatal calf diarrhea, which could help to prevent fatal 

courses of the disease by the early detection of critical patients. As BRV and C. parvum 

were the only pathogens detected in these study, the assumption should be proven for 

the other main pathogens in neonatal calf diarrhea (e.g. E. coli (F5-ETEC), BCV). 

The third study of this dissertation aimed at developing a bovine antibody library as an 

innovative drug development strategy in veterinary medicine. As proof-of principle, a 

bovine scFv antibody against BCV should be screened from this library.  

In preparation of the antibody library, a bovine primer set was designed with the 

intention of being able to amplify the whole genomic immunoglobulin diversity in 

cattle. Therefore intensive research was done regarding bovine immunoglobulin 

genetics, including literature research and the author’s own BLAST analyses. The 

designed primers were intensively tested for functionality before they were used in 

library construction. For the library construction, isolated PBMCs from a vaccinated 

Holstein Friesian bull served as basic material. The bull had been immunized with the 

dam vaccine Scourguard3 (Zoetis, Berlin, Germany) containing the antigens BCV, 

BRV and E. coli. The total RNA isolated out of these PBMCs was reverse transcribed 

in cDNA and antibody sequences were amplified by use of the established primer set. 

Antibody sequences were cloned into the phagemid pCANTAB5E and transformed in 

TG1 E. coli cells. Thereby, a library with a diversity of approximately 3x 109 individual 

clones was build. Phage display was used to screen this library for antibodies against 

BCV. After three panning rounds a specific scFv fragment was isolated and further 

tested for specificity and affinity. The scFv-SF-3E4 showed excellent binding kinetics 

(Km = 595 pM) and neutralization ability in cell culture until a concentration of 24 

µg/ml. It was therefore considered to be an interesting candidate for further clinical 

applications. 

The results of the studies conducted in this dissertation contribute to the improvement 

of prognostic measures and therapeutic strategies in neonatal calf diarrhea. The 

successful development of a recombinant bovine scFv antibody from a bovine antibody 

library could be a starting point for the broader establishment of these methods in 
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veterinary drug development. Overall, the advancement of animal health is an important 

factor for animal welfare and the improvement of animal welfare, especially in livestock 

species, will be an important issue during the next decades. 
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6     ZUSAMMENFASSUNG 

Das Ziel der vorliegenden Dissertation war die Verbesserung der prognostischen und 

therapeutischen Möglichkeiten bei der neonatalen Diarrhoe des Kalbes. Dabei sollten 

zusätzlich neue Techniken bezüglich der Entwicklung innovativer Medikamente in der 

Veterinärmedizin etabliert werden. 

Hierfür wurden drei Studien durchgeführt. Zwei der Studien untersuchten die 

prognostische Eignung von IL-6 und eine weitere Studie diente der Entwicklung eines 

rekombinanten bovinen scFv Antikörpers gegen BCV.  

Die erste der IL-6 Studien untersuchte die post-partale Entwicklung der Parameter IL-

6, IgA und IgG in zehn gesunden Holstein Friesian Kälbern. Dabei wurde die 

Genexpression von IL-6 in den peripheren mononuklearen Blutzellen und die IL-6 

Konzentration im Serum der Kälber erfasst. Zusätzlich wurden die Ausbildung der 

lokalen und systemischen adaptiven Immunität in Form von IgA und IgG untersucht. 

Hierfür wurden IgA Konzentration in Speichel und im Serum sowie IgG Konzentration 

im Serum gemessen. Alle Parameter wurden zudem auch in der Milch erhoben, welche 

den Kälber während des Untersuchungszeitraumes verfüttert wurde. Die Studie 

erstreckte sich über einen Zeitraum von vier Wochen, in welchem die Kälber 

wöchentlich beprobt wurden. Das Ziel der Studie war es, die physiologische 

Entwicklung des Immunsystems neugeborener Kälber unter besonderer 

Berücksichtigung von Interleukin-6 zu erfassen. Es konnte gezeigt werden, dass Kälber, 

bereits direkt nach der Geburt, in der Lage sind selbstständig Interleukin-6 zu bilden. In 

den ersten Tagen nach der Geburt ist ein großer Anteil der gemessenen Serum 

Konzentration von IL-6, IgA und IgG jedoch bedingt durch die Aufnahme der Stoffe 

mit dem Kolostrum. Ab Tag 7 konnte ein Anstieg der IgA Konzentrationen im Speichel 

der Kälber beobachtet werden. Die IgA Speichelkonzentration und die IL-6 

Serumkonzentrationen waren an diesem Beprobungstag signifikant positiv korreliert. 

An den nachfolgenden Beprobungstagen konnte keine signifikante Korrelation mehr 

nachgewiesen werden. Anders als in Mäusen scheint es in neugeborenen Kälbern keinen 

linearen Zusammenhang zwischen IL-6 und IgA zu geben (Ramsay et al., 1994). Jedoch 

kann ein entscheidender Einfluss von IL-6 in der Initialisierung der IgA Entwicklung 

angenommen werden. Weitere Untersuchungen unter kontrollierten Bedingungen sind 

notwendig um diesen im Feld gezeigten Zusammenhang zu bestätigen.  
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Aufgrund dieser Studie war davon auszugehen, dass neugeborene Kälber in der Lage 

sind, selbstständig IL-6 zu bilden. Somit war es möglich, IL-6 als potentiellen 

prognostischen Marker in Fällen von neonataler Diarrhoe, detaillierter zu untersuchen. 

Hierfür wurden 20 an Durchfall erkrankte Kälber in einem Abstand von 7-10 Tagen 

zweimalig beprobt. Die erste Beprobung fand beim Auftreten erster Symptome statt. Es 

wurden Daten zur klinischen Untersuchung, zur Hämatologie sowie die IL-6 Serum 

Konzentration erfasst und die Diarrhoe-Erreger bestimmt. Zu Vergleichszwecken 

wurden in einer Kontrollgruppe bestehend aus neun Tieren die basalen IL-6 

Konzentrationen gesunder Kälber bestimmt. Die IL-6 Konzentrationen zu Beginn der 

Diarrhoe waren signifikant höher als in die der gesunden Kontrollgruppe. Des Weiteren, 

zeigten Tiere mit einem protrahierten Krankheitsverlauf signifikant höhere Interleukin-

6 Serum Konzentrationen, als Tiere die nach 7-10 Tagen klinisch genesen waren. Somit 

kann die Bestimmung von Interleukin-6 im Serum von an Durchfall erkrankten Kälbern 

einen wertvollen Hinweis auf den klinischen Verlauf der Erkrankungen geben. Tiere, 

mit kritischen Interleukin-6 Werten, können intensiver beobachtet werden, um einem 

schwerwiegenden Verlauf der Diarrhoe vorzubeugen. Da die Tiere der Studie 

ausschließlich mit BRV und C. parvum infiziert waren, sollte diese Schlussfolgerung in 

weiteren Untersuchung auch für die anderen Haupterreger der neonatalen Diarrhoe des 

Kalbes (E. coli (F5-ETEC), BCV) bestätigt werden. 

Das Ziel der dritten Studie war die Entwicklung einer bovinen Antikörper Bibliothek. 

Diese Technik kann zukünftig als Plattform für die Entwicklung neuartiger 

Medikamente dienen. Als proof-of-principle sollte ein boviner scFv Antikörper gegen 

BCV aus der Bibliothek isoliert werden.  

Im Vorfeld der Bibliothekskonstruktion wurde ein bovines Primer Set entwickelt, mit 

welchem es möglich war, das ganze genetische bovine Antikörper Repertoire zu 

vervielfältigen. Hierfür wurden intensive Literaturrecherchen sowie eigene BLAST 

Analysen durchgeführt. Die erstellten Primer wurden vor dem Einsatz in der 

Bibliothekskonstruktion intensiv bezüglich ihrer Funktionalität evaluiert. Für die 

Bibliothek selbst dienten periphere mononukleare Zellen (PBMCs) eines immunisierten 

Holstein Friesian Bullen als Ausgangsmaterial. Der Bulle war zuvor mit der 

Muttertiervakzine Scourguard3 (Zoetis, Berlin, Deutschland) immunisiert worden. 

Diese enthält als Impfantigene BCV, BRV sowie E. coli (F5-ETEC). Die Gesamt-RNA 

der PBMCs wurde isoliert und mittels reverser Transkription in cDNA umgeschrieben. 
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Mit Hilfe des erstellten Primer Sets wurden die Antikörper Sequenzen aus diesem 

cDNA Pool amplifiziert. Diese Sequenzen wurden in einem nächsten Schritt in das 

Phagemid pCANTAB5E kloniert und in TG1 E. coli Zellen transformiert, bis eine 

Diversität von 3x 109 Klonen erreicht war. Die Phage Display Technik wurde genutzt 

um einen BCV spezifischen scFv Antikörper aus der Bibliothek zu isolieren. Nach 

insgesamt drei Panning Runden wurde ein BCV spezifischer scFv Antikörper aus der 

Bibliothek isoliert und weiter hinsichtlich seiner Spezifität und Affinität charakterisiert. 

Der Antikörper scFv-SF-3E4 zeigte eine exzellente Bindungskinetik (Km = 596 pM) 

und war in der Lage bis zu einer Konzentration von 24 µg/ml das Virus in Zellkultur zu 

neutralisieren. Diese Eigenschaften machen den Antikörper zu einem interessanten 

Kandidaten für eine zukünftige therapeutische Anwendung.  

Die Ergebnisse aller drei Studien, welche im Rahmen der vorliegenden Dissertation 

durchgeführt wurden, tragen zu einer Verbesserung von prognostischen und 

therapeutischen Möglichkeiten in Falle der neonatalen Diarrhoe des Kalbes bei. Die 

erfolgreiche Isolation eines spezies-spezifischen Antikörpers aus einer 

Antikörperbibliothek kann außerdem dazu beitragen, diese Methodik weiter in der 

Veterinärmedizin zu etablieren und zur Entwicklung innovativer Therapeutika zu 

nutzen.  

Insgesamt ist die Verbesserung der Tiergesundheit ein entscheidender Baustein im 

Gesamtkomplex „Tierwohl“, welches auch in den nächsten Jahrzehenten ein wichtiges

Thema in der Veterinärmedizin bleiben wird. 
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8 APPENDIX 

Abbreviations 

Ahr   aryl hydrocarbon receptor 

AP   activator protein 1 

Arid5α   AT rich interactive domain 5A 

BCDF   B-cell differentiation factor 

BCGF   B-cell growth factor 

Bcl   B-cell lymphoma protein 

BCR   B-cell receptor 

BCV   Bovine Coronavirus 

BLAST  Basic Local Alignment Search Tool 

BPV   Bovine Papillomavirus 

Breg   regulatory B-cell 

BRF   Transcription factor IIIB 

BRV   Bovine Rotavirus 

BSF   B-cell stimulating factor 

CD   cluster of differentiation 

cDNA   complementary desoxyribonucleic acid 

CDR   complementary determining region 

CDR3H  complementary determining region 3 of the antibody heavy chain 

CREB cyclic adenosine 3',5'-monophosphate response element binding protein 

CSF   cerebrospinal fluid 

CSNS   conserved short nucleotide sequences 

DNA   desoxyribonucleic acid 

E   small envelope protein 

EGF   epidermal growth factor 

EIAV   Equine Infectious Anemia Virus 

ELISA   Enzyme-Linked Immunosorbent Assay 

ER   estrogen receptor 

Fab   fragment antigen-binding 

Fc   fragment crystallizable 

GALT   gut-associated lymphoid tissue 

gp   glycoprotein  
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GR   glucocorticoid receptor 

HAMA  human-anti-mouse-antibodies 

HE   hemagglutinin-esterase 

Hp   haptoglobulin 

ICTV   International Committee on Taxonomy of Viruses 

IFN   Interferon 

IgA/D/E/G/M  Immunoglobulin A/D/E/G/M 

IGHC   heavy chain constant gene 

IGHD   heavy chain diversity gene 

IGHJ   heavy chain joining gene 

IGHV   heavy chain variable gene 

IGKC   kappa light chain constant gene 

IGKJ   kappa light chain joining gene 

IGKV   kappa light chain variable gene 

IGLC   lambda light chain variable gene 

IGLJ   lambda light chain variable gene 

IGLV   lambda light chain variable gene 

IgNAR   immunoglobulin isotype novel antigen receptor 

IL   interleukin 

IL-6R   interleukin-6 receptor 

IPP   ileal Peyer’s patches  

IRF   interferon regulatory factor  

IUIS   International Union of Immunological Societies 

Jak   Janus kinase 

JPP   jejunal Peyer’s patches 

kD   kilodalton 

M   transmembrane protein 

MAPK   mitogen-activated protein kinase 

miR   micro ribonucleic acid 

mRNA   messenger ribonucleic acid 

N   nucleocapsid protein 

NF-IL-6  nuclear factor for IL-6 expression 

NF-κB   nuclear factor 'kappa-light-chain-enhancer' of activated B-cells 

P38α   mitogen-activated protein kinase p38a 
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p53   cellular tumor antigen p53  

PBMC   peripheral blood mononuclear cell 

PCR   polymerase chain reaction 

PDFG   platelet-derived growth factor 

PPARα  peroxisome proliferator-activated receptor alpha 

Raf   rapidly accelerated fibrosarcoma protein 

Ras   rat sarcoma protein 

Rb   retinoblastoma protein 

RNA   ribonucleic acid 

S   spike protein 

SAA   serum amyloid A 

scFv   single-chain variable fragment 

sgp130RAPS gp130 of the rheumatoid arthritis antigenic peptide-bearing soluble form 

sIL-6R   soluble form of interleukin-6 receptor 

SIRS   systemic inflammatory response syndrome 

SNP   single- nucleotide-polymorphism 

SP-1   specificity protein 1 

STAT   signal transducer and activator of transcription 

TGF-β   transforming growth factor-β 

Th   T helper cell 

TNF-α   tumor necrosis factor alpha 

Treg   regulatory T-cell 

TRF   T-cell replacing factor 

VH   variable domain of the heavy chain 

VHH   variable domain of the heavy chain of the heavy chain antibody 

VLκ   variable domain of the kappa light chain 

VLλ   variable domain of the lambda light chain 
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