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1. Introduction  

1.1. Overview on idiopathic pulmonary fibrosis 

Idiopathic pulmonary fibrosis (IPF) is a chronic, devastating, and lethal fibrotic disorder in 

human lung, known also as cryptogenic fibrosing alveolitis, with a reported median survival 

of 3 to 6 yr, its incidence continues to rise and the prognosis is even worse than in many 

cancers [1-4]. IPF lung specimens show different histological patterns and the usual 

interstitial pneumonia (UIP) is seen in the majority of patients, where this terminology was 

also used as synonym [1] (Fig.3).  IPF is characterized by a worsening of pulmonary function, 

and persistent alterations of the lung parenchyma because of fibrotic foci formation by 

activated fibroblasts and myofibroblasts and excessive production and deposition of 

extracellular matrix components (ECM) [5-8] (Fig.1). In the lung of IPF patients, an increase 

in relative number of myofibroblasts to fibroblasts is present along with the formation of 

fibroblastic foci with progressive deposition of abundant extracellular matrix in the interstitial 

tissue of the alveolar region [2, 8]. Several factors were thought to influence and initiate this 

lung disease, such as free radicals generated in the microenvironment of the alveolar region, 

smoking, pollution, general infections and to some extent also unknown genetic factors, 

leading to the ultimate death of patients (Fig.1). To date not a single factor could be identified 

solely causing this devastating disease [8]. IPF differs from other usual interstitial pneumonias 

in containing low antioxidant levels and having a poor prognosis. The correct diagnosis of IPF 

is difficult, since it exhibits similarities in physiology, clinical and pathological conditions 

with other interstitial lung diseases [9]. However, the histology of IPF in lung samples is 

characterized by the typical interstitial fibrosis and the honey comb like structure in end stage 

IPF samples, distinguishing IPF from other diseases with interstitial pneumonia [9].    
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Fig 1. Mechanism involved in idiopathic pulmonary fibrosis [2]. 

 

Lung fibrosis in IPF begins in subpleural areas with fibroblast proliferation, alveolar epithelial 

atypia and spreads centrally later with time forming  honeycombing structures as a marker of 

advanced lung fibrosis in fibrotic regions of the IPF lung [10](Fig.2).  Inflammation in IPF is 

relatively low if compared to other interstitial lung diseases with high abundance of 

neutrophils and lymphocytes. Moreover, immature fibrotic regions with active 

myofibroblastic foci are more prone to extracellular matrix production in IPF [10] (Fig. 1, 2).  
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Fig 2. High resolution computerized tomography (HRCT), subpleural honeycombing (left), subpleural 

fibroblast proliferation and epithelial atypia right). Alpha-actin positive cells show red staining in 

photomicrographs (200× magnification) [10]. 

 

Furthermore, chronic inflammation is assumed to be the key factor in IPF with inflammatory 

mediators such as chemokines, cytokines, growth factors, and reactive oxygen species being 

discussed as key players in the progression of this disease [3].  In addition, it is shown in this 

thesis that TNF-� seems to play an important role in initiation and perpetuation of the fibrotic 

processes via AP-1�signaling pathway [11]. It is well accepted that TGF-� signaling plays a 

critical role in IPF development. Inhibition of TGF-� signaling by blocking its downstream 

Smad3 gene expression protects against bleomycin induced fibrosis in animal models [12, 

13]. However, the mechanisms by which TGF-� and TNF-� promote the fibrotic response in 

IPF are incompletely understood.  

 

 

 

 

 

 

 

 

Fig. 3. Histopathological appearance: fibrotic foci in idiopathic pulmonary fibrosis [2]. 
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1.2. The pathogenesis of idiopathic pulmonary fibrosis 

The pathogenesis of idiopathic pulmonary fibrosis is a very complex process, there is no 

unifying mechanism that explains the complete lung fibrogenesis and most likely it is a 

multifactorial process [14]. The current hypotheses suggest that two different cellular 

mechanisms exist, 1) the inflammatory pathway and 2) the epithelial pathway, which could 

lead to development of lung fibrosis [2, 15, 16]. As a key process are suggested the multiple 

subclinical injuries to the lung with epithelial damage and subsequent alveolar basement 

membrane destruction [17]. This damage exerts a deteriorating process with fibrogenic cell 

infiltration, generation of myofibroblasts from fibroblasts exhibiting the expression of alpha 

smooth muscle actin (��SMA), and subsequent ECM production [17, 18]. An essential role in 

the pathogenesis of IPF plays the TGF-� signal transduction pathway resulting in increased 

ECM and collagen production [19]. The Smad3 knockout mice, deficient in a downstream 

mediator of TGF-� signaling, were shown to be protected from bleomycin-induced 

pulmonary fibrosis [13]. According to one theory, the increase of oxidants or a toxic event 

might lead to the destruction of the alveolar epithelium and its basement membrane, inducing 

hyperplasia of fibroblasts and a reactive synthesis of extracellular matrix in the underlying 

region of the connective tissue [20]. Several inflammatory mediators such as cytokines, 

chemokines, growth factors and reactive oxygen species (ROS) are implicated in the 

pathogenesis of IPF [20]. Furthermore, the WISP1 protein localized in alveolar type II cells 

(AECII), a downstream molecule of WNT signaling is involved in pulmonary fibrosis. Its 

depletion attenuates the bleomycin induced lung fibrosis in vivo, while WISP1 treatment 

increased ECM production and epithelial mesenchymal transition (EMT) [21, 22]. Moreover, 

the phosphotase and tensin homologue (PTEN) seems to be a crucial protective factor in the 

pathogenesis of many non-malignant diseases such as rheumathoid arthritis, asthma and 

pulmonary fibrosis. The expression of PTEN in patients with IPF was found to be 

downregulated in myofibroblasts with fibroblastic foci [23, 24]. The exact contribution of 

each process in the pathogenesis of IPF is incompletely understood. In the bleomycin lung 

fibrosis mouse model, one third of lung fibroblasts derive from the lung epithelium two weeks 

after bleomycin treatment, and bone marrow accounts for one fifth of fibroblasts, but only a 

minority of cells are ��SMA+ myofibroblasts and just a few of these cells seem to derive 

from EMT [25]. Possibly, bleomycin accelerates the conversion of the AECII into AECI cells, 

and different cell types proliferate in the fibrotic lesions and exclude the epithelial cell 

populations and pericytes as the origin of lung myofibroblasts [26].  
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1.3. Overview on treatment approaches for IPF 

As mentioned above, IPF is characterized by a continuous decline in pulmonary function that 

mainly leads to respiratory failure and death, and to date its therapeutic approaches are very 

limited [2]. The treatment approach for acute exacerbations of IPF used to consist of high 

doses of corticosteroids, even though there are no data from controlled trials to prove their 

efficacy in IPF patients [27, 28]. However, a beneficial effect of anticoagulant therapy on the 

overall survival, but not on clinical condition improvement of IPF patients was demonstrated 

[27]. In addition, there is also no convincing evidence shown to prove cyclosporine A as 

beneficial in treatment of acute exacerbations [28, 29]. Data from randomized clinical trials 

suggest a possible role and benefit of patients with IPF from sildenafil, as secondary outcome 

including relieve of dyspnoea and improving the quality of life, by optimizing the ventilation-

perfusion matching in patients with pulmonary fibrosis [30]. Also, treatment of IPF patients 

with bosentan, an endothelin receptor antagonist, was not superior to placebo and no changes 

from baseline were observed within one year, by measuring the quality of life or dyspnoea 

[2]. Importantly, a study from a randomized phase III clinical trial demonstrated pirfenidone, 

an inhibitor of both production and activity of TGF-�� as a promising agent, with a therapeutic 

potential for treatment of IPF [31]. This drug possesses combined anti-inflammatory, anti-

oxidant and anti-fibrotic properties, which preserves vital capacity (VC) and improves 

progressive free survival (PFS) better than placebo in patients with IPF in Japan [31]. 

Moreover, Nintedanib an intracellular inhibitor that targets multiple tyrosine kinases was 

shown to slow the disease progression and FVC decline in patients with idiopathic pulmonary 

fibrosis [32]. In addition, in a mouse model of bleomycin-induced pulmonary fibrosis in mice, 

TNF-alpha antagonists inhibit inflammation and fibrosis development [33], indicating a 

possible beneficial function in diminishing the fibrotic response in patients with IPF. 

However, etanercept, a TNF-alpha antagonist, used as treatment for IPF in a clinical study 

revealed no differences in the predefined endpoints among patients with IPF who received the 

drug or placebo [34]. A clinical trial from Demedts and colleagues demonstrated that the 

acetylcysteine added to prednisone and azathioprine therapy in patients with IPF maintains 

the vital capacity and Dlco (diffusing capacity of the lung for carbon monoxide) better than 

solely standard therapy [35]. Transplantation of prominin-1/CD133 positive epithelial 

progenitor cells (PEPs) in bleomycin-induced lung fibrosis mice suppressed proinflammatory 

and profibrotic response and protected mice from bleomycin-induced pulmonary fibrosis [36, 

37]. Lung transplantation is considered as final treatment approach in patients with end-stage 
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of IPF. Mostly, a bilateral rather than a single lung transplantation is taken into consideration 

[38].  

 

1.4. TGF-β signaling in the promotion of fibrosis 

TGF-�1 is a growth factor produced by several cell types, and the most studied cytokine 

critical in pathogenesis and development of IPF with variable functions in cell differentiation, 

proliferation, apoptosis and cancerogenesis [39, 40]. Initial microinjuries and cell damage to 

the alveolar epithelium trigger the production of the fibrogenic mediator TGF-�� by 

inflammatory and epithelial cells, which in turn induces the synthesis of extracellular matrix 

proteins and inhibits collagen degradation by activation of protease inhibitors and MMPs [40, 

41].  In mammals, three variant isoforms of the TGF-� family exist: TGF-��, -2, and -3 [42], 

from which TGF-���is most related to the development of IPF [39]. This cytokine is first 

secreted in an inactivated form, in a complex of latent TGF-� bound to the latency associated 

protein (LAP) and latent TGF-�-binding protein (LTBP) (Fig. 4).  
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Fig.4. The  mechanisms of extracellular activation and intracellular signaling of TGF-��� on the expression 

of the TGF-��, proCOL1A1, proCOL1A2, and Smad 7 genes. Synthesis and post translation hydroxylation 

modification of proCOL1A1, proCOL1A2 polypeptides, collagen triple helix formation, and propeptide globular 

extension formation [43]. 

 

The active TGF-� release from the LAP/LTBP complex can be mediated by matrix 

metalloproteinases (e.g. MMP2 and MMP9), tissue stiffness, by reactive oxygen species, 

acidic pH changes, thrombospondin-1 and integrins �V�3, �V�5, �V�8, �V�6, which have 

been demonstrated to play a critical role in TGF-�� activation and the fibrotic response [40, 

44-48]. Active TGF-�� binds to two types of receptor serine/threonine kinases, type I and 

type II [49]. Activation of TGF-�� leads to phosphorylation and activation of the TGF-

��receptor type I by the type II receptor, inducing the activation of the Smad signaling 

pathway by phosphorylating Smad transcription factors such as Smad2 and 3, which shuttle to 

the nucleus and form a complex with Smad4 [49, 50] (Fig. 4).  
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1.5. Extracellular matrix (ECM) components in fibrosis  

1.5.1. Collagen and fibronectin   

Abnormal collagen production/deposition is a major feature of pulmonary fibrosis. In the late 

1980s, it has been suggested that all types of collagen are produced after the TGF-� 

stimulation, and that fibroblasts from both normal and fibrotic human lungs would synthesize 

the same amounts of collagens [51]. Distribution of collagens is variable, type I collagen is 

localized to the interstitium of alveolar septa, type III is more prominent and has irregular 

perivascular and septal localization, while type IV is present in alveolar and capillary 

basement membranes [52]. Superoxide anions are inducing collagen type I degradation via 

activation of neutrophiles and release of collagenases [53]. Furthermore, as mentioned before 

epithelial injury and deterioration of the alveolar basement membrane (comprised of type IV 

collagen) are known to contribute to the pathogenesis of lung fibrosis [10, 54]. Fibronectin is 

a glycoprotein and an abundant compound of the ECM. It is comprised of N-terminal 70 kDa 

domain, the central binding domain 120 kDa, and the heparin-binding domain HepII4 [55]. 

These domains interact with cell-surface receptors and bind to integrin- and heparin sulphate 

proteoglycan (HSPG) cell-surface receptors, which trigger the reorganization of actin 

cytoskeleton [55].  TGF-�1 activity induces the alternative splicing and the increase of the 

fibronectin gene expression [55, 56]. Moreover, fibronectin (Fn) participates in the activation 

of latent TGF-� by �V�6 integrins on epithelial cells,, upon binding to the latent TGF-� 

binding protein (LTBP-1), and deletion of fibronectin fails to activate TGF-�� [55]. TGF-�� 

as key mediator in ECM regulation stimulates the expression and secretion of different ECM 

proteins, such as fibronectin, thrombospondin, tenascin and vitronectin [55, 57]. Fibronectin 

receptors are critical for the induction of TGF-�� and thereby myofibroblast differentiation 

[58].  

 

1.5.2. Fibroblasts and myofibroblasts in IPF 

Fibroblasts are mesenchymal cells, very abundant in the loose connective tissue. They play a 

critical role in ECM production, remodeling and wound repair [59, 60]. Various studies have 

proposed circulating fibrocytes, epithelial derived fibroblasts, resident fibroblasts and 

pericytes as main source of lung myofibroblasts [26, 61]. Proliferation rate is higher in human 

lung fibroblasts derived from fibrotic lung tissue compared with the normal lung, and the 

highest proliferation rate was found in fibroblasts obtained from areas with early fibrosis 
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compared with normal lung areas, whereas proliferation rate is obviously reduced in cells 

obtained from dense fibrotic tissue [51, 62]. Furthermore, fibroblasts are a very heterogeneous 

population, with phenotypic diversity, difference in surface markers, cytoskeletal structure 

and cytokine release [62, 63]. Myofibroblasts as unique subpopulation of fibroblasts are the 

main source of ECM production, express smooth muscle features, and are responsible for 

collagen accumulation [62, 64, 65]. TGF-�� is the key cytokine of fibroblast-myofibroblast 

differentiation provoking such effects via the Smad-dependent signal transduction pathway, 

including proliferation, migration, chemoattraction of inflammatory cells and tissue repair 

[66, 67]. A characteristic difference between the two cell types “fibroblasts versus 

myofibroblasts” is the resistance of myofibroblasts to apoptosis, a property similar to 

malignant cells, which may lead to abnormal wound healing or contractive tissue repair 

processes, leading to fibrogenesis [68]. In addition, myofibroblasts release ROS and are under 

oxidative stress, a major factor contributing to apoptosis [47]. In IPF, the apoptotic process 

seems to be impaired, resulting in over production of ROS, cytokine release and epithelial cell 

injury [19, 47].  

 

1.6. TGF-���role in myofibroblast differentiation and ECM regulation 

Differentiation of fibroblasts into myofibroblasts is another proinvasive feature of TGF���. 

These myofibroblasts secrete excessive TGF-��, which provokes ATII cell apoptosis, hereby 

deteriorating the wound healing process [40, 43] (Fig. 5).  Lung fibroblasts are key cells for 

synthesizing collagen and generation of ECM, and TGF-��� is the “master switch” for the 

pulmonary fibrosis [19, 69]. The collagen type I was the major type synthesized by both 

normal and fibrotic cell types, whereas TGF-beta induces the synthesis of different collagen 

types such as I, III, and V in fibroblasts and myofibroblasts [51, 70]. TGF-�	Smad signaling 

enhances the transcriptional activation of collagens, as consequence myofibroblasts express 

high levels of ECM especially collagens and fibronectin, contributing to the deposition of 

collagens and fibrosis [40, 43]. 
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Fig. 5. Role of TGF��� in idiopathic pulmonary fibrosis (IPF) pathogenesis. Multiple presumed microinjuries 

to the alveolar epithelium induce the apoptosis of alveolar type I (ATI) and alveolar type II (ATII) cells, basal 

membrane disruption, and TGF�� production in macrophages, epithelial cells, or activated myofibroblasts. This 

condition  perpetuates the aberrant wound healing process by inducing extracellular matrix production, 

promoting myofibroblast recruitment and activation from resident lung fibroblasts, epithelial mesenchymal 

transition (EMT) or endothelial mesenchymal transition (EndoMT), bone-marrow derived fibrocytes, or 

pericytes from the surrounding vessels and interstitium [40]. 

 

1.7. TGF-�� in induction of epithelial-mesenchymal transition (EMT) 

Fibroblast heterogeneity isolated from IPF lungs suggests that fibroblasts are derived from 

multiple cell types [71]. Kim and colleagues found that IPF lungs have acquired mesenchymal 

features from epithelial cells, and that this process is triggered by activation of the integrin 

�V�6 and subsequently TGF-�1 activation, suggesting the implication of the EMT process 

during fibrogenesis [71]. The complete mechanism of EMT remains to be explained. TGF-�1 
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signaling through Smad specific proteins, as well as various other downstream kinases, 

including mitogen-activated protein kinase (MAPK), Rho kinase, Rac1, integrin linked 

kinase, etc. Which are Smad-independent pathways [72-74].  

 

1.8. Matrix metalloproteinases in abnormal lung remodelling in IPF 

MMPs are critical in would repair and in tissue remodelling [75]. They can activate growth 

factors such as TGF-�1 and other cytokines and play an important role in various diseases as 

arthritis and fibrosis [75, 76]. Various metalloproteinases such as MMP-1, MMP-2 and MMP-

9 were found to be upregulated in human pulmonary fibrosis and animal models of pulmonary 

fibrosis [22, 77, 78]. In addition, an increased MMP-7 was also reported in usual interstitial 

pneumonia (UIP), a histological description for fibroblastic foci [79]. Consistently, MMP-7 

knockout mice were protected from bleomycin-induced pulmonary fibrosis [79], suggesting 

that inhibition of MMP-7 may be used as therapeutic tool in this chronic deteriorating disease 

[79]. Furthermore, MMP-3 is found to be directly involved in the epithelial-mesenchymal 

transition, a pivotal process in pathogenesis of fibrosis and neoplasia [76], and genetic 

abrogation of MMP-3 protects the mice from bleomycin-induced lung fibrosis [75].  

 

1.9. TGF-��1 and reactive oxygen species in the pathogenesis of IPF 

1.9.1. Role of TGF-�1 and ROS generation  

Human lungs are permanently exposed to higher concentrations of oxygen compared to other 

organs. Therefore, alveolar epithelial cells are more prone to oxidative injury [5, 80]. Reactive 

oxygen species (ROS), such as superoxide anions (O2
-.), hydrogen peroxide (H2O2), and 

hydroxyl radical (OH.) regulate cell signaling in physiological conditions, but an excess of 

reactive oxygen species leads to organ injury [81]. ROS can damage alveolar epithelias cells, 

such as DNA, proteins and lipids. Many studies suggest that the imbalance between oxidants 

and antioxidants could play a major role in development of lung fibrosis [45, 58]. For 

example, TGF-�1 triggers extracellular secretion of H2O2 in lung fibroblasts in humans, by 

activating NADH:flavin:O2 oxidoreductase [82],  while ROS play an important role in 

induction of TGF-�1 signaling, leading in consequence to collagen-I synthesis and 

fibrogenesis in pulmonary fibrosis [45, 83, 84]. ROS are critical components involved in 

fibrotic process, shown in IPF patients and bleomycin-induced pulmonary fibrosis in animal. 

Absence of ROS in mice with deficiency for the p47phox subunit of NADPH-oxidase (Nox) 



12 
 

protects the mice against bleomycin induced lung fibrosis [83, 85]. NOX4-dependent 

generation of H2O2 is also crucial for TGF-β1-induced myofibroblast differentiation and ECM 

production [86]. Upregulation of NOX-4 is found in human idiopathic pulmonary fibrosis and 

in the mouse lungs subjected to non-infectious injury [86]. Moreover, superoxide dismutases 

(SODs), such as SOD1 (CuZnSOD), SOD2 (MnSOD), and SOD3 (ECSOD), are known to 

reduce oxidative stress by catalyzing the dismutation of superoxide into oxygen and hydrogen 

peroxide [58]. Deletion of ECSOD in mice aggravates the pulmonary damage after exposure 

to bleomycin or asbestos [87]. 

 

 1.9.2. Fibrogenesis induced by oxidative stress  

In the literature, it was speculated that direct injury to the alveolar epithelium and the 

inflammation in the alveolar and bronchiolar regions could induce the activation of signaling 

pathways, that lead to the elevated expression of proinflammatory genes in fibroblasts, and to 

the release of profibrotic cytokines (TGF-β1, TNF-alpha, IL-1, IL-6, IL-8), growth factors 

such as PDGF and chemokines [58, 88]. Besides proliferation of myofibroblasts in IPF lungs, 

cytokine-mediated ROS release can lead to apoptosis of type I alveolar epithelial cells, with 

subsequent exposure of the basement membrane and the ECM production leading to the 

activation of alveolar macrophages [45].  Elevation of ROS production via activation of 

immune cells such as macrophages, neutrophils through NADPH oxidase activation is also 

noted in IPF patients [88]. Furthermore, also imbalance of MMPs and TIMPs (tissue inhibitor 

of matrix metalloproteinases) might trigger ROS or RNS alterations, generating the 

overdeposition of secreted extracellular matrix material [88, 89] (Fig.6). TGF-� activation by 

ROS is specific for the TGF-�� isoform and the methionine residue 253 in the TGF-�1/LAP 

complex is important and functions as redox switch center [90]. In addition, the oxidation of 

LAP was always paralleled by increased levels of HO-1, this was implicated later in releasing 

the mature TGF-�1 [91] (Fig.6). Induced activation of TGF-���by increased ROS and 

apoptosis was also demonstrated in peroxiredoxin 6 knockout mice (Prdx6) [92].  
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Fig. 6. Activation of latent TGF-�� complexes  by ROS- MMPs and integrins [90]. 

 

 1.10. AP-1 signaling in idiopathic pulmonary fibrosis 

The transcription factor activator protein 1 (AP-1) is a dimeric molecule composed of 

members of the Jun (c-Jun, JunB, and JunD), Fos (c-Fos, FosB, Fra-1, and Fra-2) and ATF 

families of proteins [93, 94]. C-Jun is involved in regulation of cell proliferation and 

fibroblasts deficient in c-Jun exhibit reduced proliferation due to a cell cycle defect as well as 

an increase of the tumour suppressor genes p53 and p21 [95, 96]. AP-1 family members are 

implicated in different stress signals and control subsequent processes including proliferation, 

apoptosis, wound healing, inflammation, tumourigenesis [97, 98]. In particular, Fra-2 and 

JunD are involved in regulation of ECM synthesis and aberrant activation of fibroblasts [98]. 

These effects have made AP-1 a potential candidate for antifibrotic therapy [97, 98].  

Furthermore, inhibition of AP-1 abrogated the profibrotic effects of TGF�� signaling and in 

consequence prevented the development of skin fibrosis in one mouse model of SSc (systemic 

sclerosis), also called bleomycin-induced dermal fibrosis [97]. Therefore, this approach might 

become a promising therapy for treatment of fibrotic disorders [97]. Similar beneficial effects 

of AP-1 inhibition in preventing ECM generation and TGF-�1 signaling activation were also 

noted in Swiss 3T3 fibroblasts treated with TNF-alpha [99].  
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1.11. Inflammation and implication of cytokines (TNF-alpha and IL-6) in 

pulmonary fibrosis  

Cytokine release has been one of the major critical factors leading to the fibrogenesis 

observed in the bleomycin-induced lung fibrosis mouse model. In particular TNF-alpha plays 

an essential role for the development of the BLM-induced lung injury, partially through 

upregulation of TGF-�� expression [100, 101]. TNF-alpha is produced by many cell types 

upon injury or infection, which may participate in cell proliferation, differentiation or 

apoptosis [102]. The use of TNF-alpha antagonists, was effective not only in abrogating the 

development of lung fibrosis but also reduced an established fibrosis in bleomycin or silica 

instillation-induced mouse lung fibrosis models [33]. An increased expression of �-SMA and 

COL1 protein was also noted in recombinant human TNF-� treatment (rhTNF-�) of palmar 

fibroblasts in Dupuytren´s disease [101]. In addition, TNF-alpha increases TGF-�1 expression 

and enhances ECM synthesis in the Swiss 3T3 fibroblasts [99]. IL-6 cytokine is secreted by 

various cell types (including fibroblasts), and mediates inflammatory processes in the lung in 

a variety of disease situations including interstitial lung diseases [103]. Moreover, the role of 

IL-6 in the lung inflammation was further analyzed by treating wild-type and IL-6-deficient 

mice with bleomycin [104]. In comparison to WT-mice, the IL-6 deficient mice expressed 

lower numbers of macrophages, total cells and neutrophils in the bronchoalveolar lavage 

(BAL) [104]. Taken together, these studies indicate that inhibition of TNF-alpha or IL-6 

release plays an important role in preventing and/or attenuating BLM-induced lung fibrosis, 

which may be a potential therapeutic approach in treating pulmonary fibrosis [103, 104].  

 

1.12. TGF-beta receptor II kockout mice are protected from pulmonary 

fibrosis 

Increased expression and activation of TGF-� have been demonstrated in IPF patients as well 

as in experimental models of pulmonary fibrosis [105, 106]. The activated TGF-� can bind to 

the serine/threonine kinase receptors, TGF-� receptor II and I complex (T�RII and T�RI) and 

lead to phosphorylation of downstream intracellular molecules such as Smad2/3 and 

subsequently gene expression [40, 105]. Recently, it was reported that the abrogation of the 

TGF-� signaling in lung resident mesenchymal cells, using a Tbx4 lung enhancer-driven Tet-

On transgenic system to delete TGF-� receptor II or express dominant-negative TGF-� 

receptor II, has significantly inhibited the BLM-induced fibrotic response [105, 107].  In 
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addition, the blockade of TGF-� receptor type II in epithelium decreases epithelial 

permeability, preserves lung function and thus protects mice from bleomycin induced lung 

injury and pulmonary fibrosis [106]. Furthermore, the peroxisome is downregulated in BLM-

induced wild type mouse lung fibrosis, which can be abrogated in lung mesenchyme-specific 

T�RII knockout mice in which significant reduction of bleomycin-induced lung fibrosis is 

observed [11, 105]. This suggests a critical role of peroxisomes in experimental lung fibrosis. 

 

1.13. Smad3 deficient mice provide effective protection from BLM- induced 

lung fibrosis  

Excessive TGF-�/Smad dependent pathway is well recognized for the fibrotic response in 

IPF, other fibrotic diseases such as dermal fibrosis, as well as in inflammatory processes of 

BLM-induced lung fibrosis [13, 97, 105]. The contribution of Smad3 in development of lung 

fibrosis was identified in vivo, where loss of Smad3 alleviated the bleomycin-induced tissue 

injury and pulmonary fibrosis in mice [13]. Furthermore, lack of Smad3 protected mice from 

BLM induced lung fibrosis, but presented a higher susceptibility for development of 

emphysema by interfering with the physiological role of TGF-� in development of alveolar 

structure [108]. These studies suggest that identification of specific downstream profibrotic 

targets of TGF-� signaling might be pivotal for using as possible therapeutical targets in 

treatment or attenuation of idiopathic pulmonary fibrosis.  

 

1.14. T��R-I constitutively active mice as model to investigate the effect of 

TGF-� signal transduction 

T�R-I is phosphorylated by T�R-II at serines and threonines in the GS domain [109], a 

required step to propagation of signal downstream of TGF-�. Different mutations at GS 

domain create constitutively active receptor forms of T�R-I [110]. In addition, Bartholin and 

colleagues generated a transgenic mouse with a Cre/loxP inducible constitutively active   

T�R-I by using a knock-in strategy into the hypoxanthine phosphoribosyl-transferase locus 

(Hprt) [111]. These transgenic mice are useful tool in addressing the effect of TGF-� 

signaling upregulation in any cell type that expresses cre-recombinase [109, 111].  
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1.15. Peroxisomes as ubiquitous organelles in metabolic functions 

Peroxisomes are single membrane bounded ubiquitous organelles, present in all eukaryotic 

cells except spermatozoa and mature red blood cells (Fig.7) [112]. The lung, especially type II 

alveolar epithelial cells and club cells (Clara) possess a large number of peroxisomes [80]. 

Moreover, peroxisomes could also be identified in the apical region of ciliated bronchiolar 

cells as well as in type I alveolar epithelial cells, however, in the latter with less abundance 

and different enzyme composition [80, 112]. In general, these organelles are highly abundant 

in the major metabolic organs, such as hepatocytes in the liver and in epithelial cells of the 

proximal tubules in the kidney [112]. These organelles are highly heterogeneous and their 

enzyme composition and metabolic pathways vary between cell types, tissues and organs 

[112]. In these cell types, peroxisomes are involved in many metabolic functions, including 

degradation of reactive oxygen species (ROS) and bioactive lipid mediators (prostaglandins 

and leukotriens) and synthesis of antioxidant lipids (polyunsaturated fatty acids, 

plasmalogens, etc.) [112]. Peroxisomes might proliferate in number due to metabolic needs or 

impact of different environmental factors [112]. It is well known that, reactive oxygen species 

and nitrogen species induce lung injury due to direct exposure of the lung epithelia to this 

reagents or secondary due to higher oxygen and different environmental oxidants in the 

inspired air, causing oxidation of cellular DNA, proteins and lipids [113]. In this respect, it is 

of interest that deficiency or dysfunction of peroxisomes results in increased cellular oxidative 

stress, accumulation of lipid derivatives normally metabolized in these organelles, leading to 

severe pathological consequences in many organ systems [114, 115].  Different studies have 

shown that in the most severe phenotype of a peroxisome biogenesis disorder (e.g. Zellweger 

syndrome) also mitochondria are compromised in their respiratory function as a secondary 

phenomenon [115]. Moreover, children with Zellweger syndrome (cerebrohepatorenal 

syndrome) develop progressive liver fibrosis or cirrhosis, leading to early death of the patients 

during childhood [115]. Appropriate knockout mouse models exhibit a similar phenotype 

[116]. Most knockout mice with peroxisomal biogenesis defects die during their first day of 

life [116, 117]. Interestingly, in one of the mouse models (PEX11��knockout) morphological 

alterations of the lungs were described [117]. Whereas peroxisome deficiency leads to a 

profibrotic phenotype, treatment of rats with a peroxisome proliferator-activated receptor 

alpha (PPAR-�) specific agonist evolved a significantly attenuated tubulointerstitial renal 

fibrosis [118]. Many peroxisomal genes contain a PPAR-response element in their promoter 

region by which their transcription can be modified [119].  Independent from the fact that 

peroxisomal metabolism might be affected in other tissue fibrosis, the role of peroxisomes in 



17 
 

pulmonary fibrosis onset and progression of this devastating disease has never been described 

[5, 120].  

 

 

Fig.7. Example for a double immunofluorescence staining of peroxisomal biogenesis protein PEX14p 

(green) and alpha-smooth muscle actin (��-SMA) (red) in human lung fibroblasts of control subjects 

(picture is taken from results of this thesis). 

 

1.16. Biogenesis of peroxisomes  

The peroxisome biogenesis is a complex biological process, comprising three crucial steps a) 

formation of the peroxisomal membrane, b) import of peroxisomal matrix proteins, c) and 

proliferation of peroxisomes [121]. The peroxisomal proteins are first synthesized on free 

ribosomes and posttranslationally imported into the organelle [122, 123]. The targeting of the 

peroxisomal matrix proteins to the organelle is enabled via cytoplasmic shuttling receptors, 

Pex5p and Pex7p, binding nascent proteins with peroxisomal targeting signals (PTS1 or 

Pex14p DO/��-SMA 
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PTS2) [124]. The biogenesis and the import of matrix proteins into peroxisomes is mediated 

by different biogenesis proteins called peroxins, which are divided into three groups: a) 

peroxins involved in the biogenesis of the peroxisomal membrane, Pex3p, Pex16p and 

Pex19p, [121] b) peroxins that are implicated in the matrix protein import, such as Pex5p, 

Pex7p c) and those that are involved in peroxisome proliferation Pex11p (�, �, 
� [125] 

(Fig.8). Moreover, Pex11� is known to play an important role in peroxisome proliferation. A 

PPRE is located upstream in the enhancer region of the Pex11� gene [119]. Both, PPAR-� 

and PPAR-
 can bind to this element and activate the transcription of Pex11� and perilipin 

genes [119]. Furthermore, Pex13p and Pex14p are biogenesis proteins in the docking complex 

of the peroxisomal membrane, which are critical for the import of peroxisomal matrix 

proteins with targeting signals PTS1 and PTS2 [121, 126]. Mutations in the PEX13 gene in 

humans lead to Zellweger Syndrom. Accordingly, Pex13 knockout mice exhibit a similar 

disease phenotype as the Zellweger Syndrom patients [114, 126].  

 

 

Fig. 8. A schematic illustration of peroxisome biogenesis in mammalian cells. All peroxins are illustrated 

with numbers only [125]. 
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1.17. Peroxisome functions in lipid metabolism and scavenging ROS 

Peroxisomal enzymes are implicated in various metabolic pathways, including scavenging of 

reactive oxygen species (ROS) and reactive nitrogen species (RNS), decomposition of various 

toxic bioactive and pro-inflammatory lipid mediators, as well as in the synthesis of  

cholesterol and ether lipids (plasmologens) [127-129].  The peroxisomes harbor a large 

variety of anti-oxidative enzymes essential in scavenging ROS, such as catalase, glutathione 

reductase, peroxiredoxin I and V, Cu/Zn-SOD [129]. Formerly, SOD2 was also described in 

this organelle, however, recently our group showed that this protein is only present in 

mitochondria and not in peroxisomal matrix [130]. Peroxisomes are intimately involved in 

lipid metabolism by catalyzing 1. Fatty acid alpha-oxidation, 2. Fatty acid beta-oxidation, 3. 

Biosynthesis of polyunsaturated fatty acids, 4. Ether-phospholipid synthesis and 5. Synthesis 

of cholesterol precursors and other isoprenoids [131]. In the peroxisomal β-oxidation 

pathways are oxidized lipid derivatives that are poor substrates for mitochondrial β-oxidation; 

e.g. very long (≥C24; VLCFA) chain fatty acids, branched chain fatty acids, dicarboxylic 

acids, eicosanoids (prostaglandins, leukotrienes), (n-3) and (n-6) polyunsaturated fatty acids 

and bile acid precursors [131]. Peroxisomes also oxidize a large amount of long chain fatty 

acids in situations in which the mitochondrial carnitine-palmitoyl transferase 1 system is 

overloaded or mitochondria are dysfunctional [132, 133]. The fatty acids are usually degraded 

in peroxisomes and thereafter transferred to the mitochondria for complete oxidation [131, 

132]. Peroxisomes are involved in the oxidation of polyamines, D-amino acids, uric acid (in 

non-primates) via several H2O2 producing oxidases and in the detoxification of glyoxylate and 

xenobiotics [132]. An interesting feature of peroxisomes is their ability to adapt their number, 

form and enzyme content in response to nutritional and environmental stimuli, which is 

mediated in part by PPARs [134]. Interestingly, expansion of the peroxisomal compartment 

and upregulation of PEX genes was observed in cells exposed to oxidative stress or ultraviolet 

irradiation [135]. In contrast, significant reduction of catalase is observed in inflammatory 

processes including asthma bronchialis, infections, and allograft rejection and seems to be 

related to the suppressive effect of tumor necrosis factor-α on peroxisome function and 

peroxisome proliferator activated receptor-α [136]. It is well known, that pro and 

antioxidative enzymes are localized in specific subcompartments, such as the plasma 

membrane, the endoplasmic reticulum, peroxisomes or mitochondria and the cytoplasm [129]. 

Interestingly, peroxisomes contain the largest amount  of prooxidative (peroxisomal oxidases 

and iNOS) as well as antioxidative (catalase, SOD 1, Prdx I and Prdx V, glutathione 

reductase) enzymes in their matrix [129, 137]. Moreover, the deficiency of peroxisomes in 
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knockout mice with Zellweger syndrome (PEX 5–/– mouse) leads to mitochondrial defects 

induced by generation of ROS release by the disordered mitochondrial respiratory chain in 

these animals [138]. In addition, lung peroxisomes express a variety of β-oxidation enzymes 

involved in the metabolism of fatty acid derivatives and proinflammatory eicosonaoids [80]. 

Unfortunately, there is scarce knowledge available on the perpetuation and chronification of 

inflammatory reactions in the lung [80]. The role of this cell organelle in the lung and its 

enzyme alterations in IPF patients are not investigated so far, and no comprehensive study has 

been performed on the function of different organelles in IPF. However, alterations in 

peroxisomal metabolism and enzyme content could exert a strong impact on the pathogenetic 

mechanisms in IPF. 

 

1.18. Peroxisomal proteins in human lung 

The alveolar epithelium is of particular interest, because the proliferation of alveolar type II 

cells with concurrent induction of antioxidant enzymes (Mn-SOD, glutathione peroxidase) 

makes the lung tissue resistant to high lethal oxygen concentration, normally lethal to other 

cell types e.g. AECI [136]. This phenomenon is apparently an adaptive response against high 

oxygen concentrations [136]. In the human lung, peroxisomes are highly abundant in alveolar 

epithelial type II cells (AEC II), club (Clara) cells, in both of which they exhibit a high 

catalase expression [80]. Moreover, small peroxisomes are mainly localized in high number in 

the apical region in ciliated cells of the respiratory and bronchiolar epithelium, directly 

underlying the tracheal and bronchial surface, suggesting that they might protect these 

epithelia against the high oxygen content and oxidative damage [112]. Peroxisomes in the 

cells of the alveolar and bronchial regions are also involved in the metabolism of ROS and 

various lipid derivatives and contain high amounts of β-oxidation enzymes as well as ether 

lipid and cholesterol synthesizing enzymes [112]. Peroxisomes might play a critical role in 

regulating the biophysical properties of surfactant through plasmalogen and cholesterol 

synthesis and in the breakdown and homeostasis of bioactive lipids (e.g. proinflammatory 

eicosanoids) and PUFAs with their β-oxidation systems as well as in the maintenance of lipid 

ligand levels for nuclear receptors of the PPAR family [80, 132].  
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1.19. Peroxisomal beta oxidation 

The importance of peroxisomes in lipid metabolism and human health is crucial in 

maintaining the cellular functions by participating in different metabolic pathways such as 

enzymes involved in �-oxidation and �-oxidation of acyl-CoAs, ether-phospholipid synthesis, 

cholesterol and isoprenoid metabolism and bile-acid synthesis [139, 140]. Moreover, 

��oxidation of phytanic acid generates pristanic acid, which undergoes three cycles of 

��oxidation in peroxisomes before the chain-shortened fatty acids are exported from the 

peroxisome via the carnitine-dependent route (carnitine O-Octanoyltransferase) or via the free 

acid route through acyl-CoA thioesterases [140, 141] (Fig. 9). Patients suffering from adult 

Refsum´s disease (ARD) are unable to metabolize phytanic acid derived from exogenous 

sources (e.g. cow´s milk), phytanic acid accumulates in tissues and body fluids, due to the 

deficient �-oxidation process of phytanic acid to pristanic acid, whereas the subsequent �-

oxidation of pristanic acid is normal [140, 142, 143]. Refsum´s disease is characterized by 

atypical retinitis pigmentosa, peripheral polyneuropathy, cerebellar ataxia, and high 

concentration of proteins in the cerebrospinal fluid, therefore phytanic acid accumulation in 

Refsum´s disease can be classified as a true peroxisome disorder [142]. In addition, 

peroxisomes contain a variety of enzymes involved in �-oxidation, such as three acyl-CoA 

oxidases (ACOX1, ACOX2, ACOX3), two multifunctional proteins (MFP1, MFP2), and 

several ketoacyl-CoA thiolase (Thiolase A and B, SCPx) [137] (Fig.9). In comparison to the 

peroxisomal �-oxidation pathways, mitochondria contain distinct acyl-CoA dehydrogenases 

[144, 145].  
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Fig.  9. The peroxisomal-inducible classical straight-chain and the non inducible branched-chain fatty acid 

β-oxidation systems in humans [145]. D-bifunctional protein (DBP),  l-bifunctional protein (LBP), acyl-CoA 

oxidases 1 (ACOX1), Thiolase A, B (ThioA, ThioB), Peroxisomal Sterol Carrier Protein X (SCPx) 

 

1.20. PPARs in the lung and idiopathic pulmonary fibrosis 

Peroxisome proliferator-activated receptors (PPARs) are a family of ligand-activated 

transcription factors that belong to the nuclear hormone receptor family. They are important 

modulators of the immune system and in cell differentiation and proliferation [146, 147]. 

Three different subtypes of PPARs exist: PPARα, PPARβ/δ and PPARγ. PPARγ has got two 

isoforms, PPAR
1 which is expressed mainly in adipose tissue, while PPAR
2 is more widely 

expressed but is most abundant also in adipocytes [146]. Both are also expressed in different 

cell types in the lung, such as fibroblasts, ciliated airway epithelial cells and AEC II, alveolar 

macrophages, endothelial cells, airway smooth muscle cells, eosinophils, dendritic cells, T-

cells and B-cells [146, 148]. Several other cell types express in addition also PPAR-α and 

PPAR-β/δ such as ciliated bronchial epithelial cells, alveolar macrophages, endothelial cells, 

T-cells and B-cells [146]. PPAR-� and PPAR-
 exhibit immunomodulatory properties and 

might play also a role in inflammation and wound healing processes, as well as may function 

as antifibrotic agents [11, 146, 149, 150]. In addition, many recent in vivo studies support the 
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antifibrotic properties of PPAR-γ agonists, who might promote differentiation of lung 

fibroblasts into fat storing lipofibroblasts and inhibit the critical differentiation of fibroblasts 

into myofibroblasts [147]. Furthermore, PPAR-γ ligands, like rosiglitazone and 15d-PGJ2 

induce a lower mortality, reduced histological fibrosis, decreased inflammation with reduced 

α–SMA expression and reduced collagen content in the mouse model of bleomycin-induced 

lung fibrosis [147]. PPAR-γ ligands upregulate the expression of the “phosphatase and tensin 

homologue deleted on chromosome 10“ (PTEN), whose promoter contains a peroxisome 

proliferator response element (PPRE). Moreover, in vitro studies have shown the inhibitory 

effects of PTEN on fibroblast differentiation into myofibroblasts as well as on the reduced 

expression of α-SMA in human and mouse fibroblasts [23, 147]. Thus PPARs might be 

protective therapeutic agents against the progression of IPF. 

 

1.21. Role of PPARs in the prevention of fibrosis  

PPAR-� was known to mediate the action of some drugs, mostly hypolipidemic agents that 

proliferate peroxisomes in rodent liver [119]. In addition, PPAR-� activates different 

peroxisomal and mitochondrial �-oxidation enzymes such as peroxisomal acyl-CoA oxidase 

and peroxisomal 3-ketoacyl-CoA thiolase [151]. In addition, PPAR-� is implicated in lipid 

metabolism and was shown to posses important anti-inflammantory properties especially in 

protection and control of airway inflammation [146, 152]. PPAR-� resulted also in boosting 

dexamethasone-mediated anti-inflammatory properties [153]. The combination of a PPAR-� 

agonist with dexamethasone had significantly increased the anti-inflammatory activity of 

corticoids in mice [153]. In contrast, inflammation was increased in PPAR-��knockout mice 

compared to wild-type controls [153]. Furthermore, fenofibrate was shown to reduce the LPS-

induced inflammation in the mouse lung, demonstrated by reduced neutrophil and 

macrophage infiltration [154]. In accordance with the findings above, treatment of PPAR-� 

knockout mice with bleomycin resulted in a more severe inflammation and fibrosis 

development than in wild-type mice [155]. These bleomycin-treated PPAR-� knockout mice 

exhibited higher levels of cytokines such as TNF-�, whereas treatment of mice with PPAR-

��agonist WY-14643 significantly reduced inflammation and fibrosis progression [155, 156]. 

Even though several studies have shown beneficial effects of PPARs in the development of 

fibrosis in different organ systems, nobody has studied whether the effect is mediated by 

peroxisomal proliferation and their metabolic activation.    
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1.22. Work hypothesis and aims  

We hypothesized that during idiopathic pulmonary fibrosis, different cytokines, such as 

TNF��and TGF-� would induce the downregulation of peroxisomal biogenesis- and lipid 

metabolic proteins and that stimulation of the peroxisomal compartment would improve the 

disease progression or alleviate the fibrotic response in patients with IPF.  

 

In detail our specific aims were:  

- To analyze peroxisomal biogenesis proteins (e.g. PEX13p, PEX14p), peroxisomal lipid 

metabolism (e.g. ABCD3, ACOX1), as well as peroxisomal antioxidative enzymes such as 

catalase and others in IPF patients in comparison to control subjects.  

- To study the fibrotic response and TGF-� signaling in RNAi-mediated knockdown of 

peroxisomal biogenesis (PEX13) in control and IPF lung fibroblasts.  

- To determine the possible impact of TGF-� and other cytokines (TNF-�, IL-6) on the 

regulation of peroxisomal biogenesis and metabolism in pulmonary fibrosis.  

- To assess the mechanisms at cellular and molecular level for the regulation of peroxisomal 

gene expression by TGF-� signaling.  

- To assess peroxisomal alterations in a bleomycin-induced pulmonary fibrosis mouse model.  

- To analyze the eventual peroxisomal response to bleomycin treatment in T�RII KO mice in 

comparison to control littermates.  

- To determine the regulation of peroxisomes by TGF-� signaling in T�RII and Smad3 

knockout mice, as well as in TGF-��receptor I constitutively active mice (T�RICA).  

- To study the effects of PPAR-�-induction and peroxisome proliferation on the fibrotic 

response.  

 

Understanding the mechanisms by which peroxisomes support the cellular protection from 

external toxic agents such as reactive oxygen species or proinflammatory mediators may open 

new treatment strategies for pulmonary fibrosis. By using human IPF and control fibroblast 

cultures as well as the bleomycin-induced mouse lung fibrosis model, this study enhances the 

knowledge on the role of peroxisomes in IPF and provides novel insights into TGF-��and 

TNF-� induced dysfunction of peroxisomes, as well as in understanding the molecular 

pathogenesis of IPF.  
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2. Material and methods 

2.1. Materials 

2.1.1. General instruments, materials and reagents  

All chemicals used in the thesis were of analytical grade purity. Detailed chemicals, reagents 

and consumables are specified along the methodology below.  

All instruments, general materials as well as chemicals and enzymes are listed in table I.  

General materials  Company name  
Cell culture 6 well plate  Becton Dickinson GmbH, Heidelberg, Germany  
Cell culture 12 well plate  Becton Dickinson GmbH, Heidelberg, Germany  
Cover slips  R. Langenbrinck, Emmendingen, Germany  
Gibco´s Dulbecco´s Modified Eagle 
Medium, (DMEM), High glucose  

Sigma, Steinheim, Germany  

Dimethyl sulfoxide (DMSO)  Invitrogen Life Technologies GmbH, Karlsruhe, 
Germany  

Eppendorf tubes  Eppendorf AG, Hamburg, Germany  
Falcon tubes  Becton Dickinson, Heidelberg, Germany  
Filter tips  Braun, Melsungen, Germany  
Microscope slides  R. Langenbrinck, Emmendingen, Germany  
Nitrile gloves  Kimberly-Clark Professional, Koblenz-

Rheinhafen, Germany  
Pasteur pipettes  VWR International GmbH, Darmstadt, Germany  
Petri dishes  Becton Dickinson GmbH, Heidelberg, Germany  
Plastic pipettes, for cell culture (sterile)  Becton Dickinson GmbH, Heidelberg, Germany  
Phosphate-buffer saline (PBS)  PAA laboratories GmbH, Pasching, Austria  
Syringe filters 0.22 microns  Millipore GmbH, Schwalbach, Germany  
Chemicals and enzymes  Company name  
Agarose  Roche, Grenzach-Wyhlen, Germany  
Bovine serum albumin (BSA)  Carl-Roth GmbH & Co, Karlsruhe, Germany  
Disodium hydrogen phosphate 
(Na2HPO4)  

Merck, Darmstadt, Germany  

Ethanol  Riedel-de-Haën, Seelze, Germany  
Ethidium bromide  Fluka, Neu-Ulm, Germany  
Ethylene diamine tetraacetic acid 
(EDTA)  

Fluka, Neu-Ulm, Germany  

Fetal calf serum (FCS)  PAA laboratories GmbH, Pasching, Austria  
Gibco´s 0.25% Trypsin/EDTA  Invitrogen Life Technologies GmbH, Karlsruhe, 

Germany  
Glycine  USB Europe GmbH, Staufen, Germany  
L Glutamate  Cambrex BioScience, MD, USA  
N-propyl-gallate  Sigma, Steinheim, Germany  
Mowiol 4-88  Polysciences Europe GmbH, Eppelheim, Germany  
Paraformaldehyde (PFA)  Sigma, Steinheim, Germany  
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Pencillin/ streptomycin  PAA laboratories GmbH, Pasching, Austria  
Potassium dihydrogen phosphate 
(KH2PO4)  

Carl-Roth GmbH & Co, Karlsruhe, Germany  

Sodium chloride (NaCl)  Carl-Roth GmbH & Co, Karlsruhe, Germany  
Taq DNA polymerase  Invitrogen, Heidelberg  
Triton X-100  Sigma, Steinheim, Germany  
Trypan blue  Sigma, Steinheim, Germany  
Trypsin  Sigma, Steinheim, Germany  
Tween 20  Fluka, Steinheim, Germany  
1 kb Ladder  Promega, Germany  
Potassium chloride (KCl)  Sigma, Steinheim, Germany  
Tris (trishydroxymethylaminomethane)  Sigma, Steinheim, Germany  
Instruments used  Company name  
Bio-Rad electrophoresis apparatus  Bio-Rad, Heidelberg, Germany  
Dish washing machine  Miele, Gütersloh, Germany  
Cary 50 Bio-UV-visible 
spectrophotometer  

Varian, Darmstadt, Germany  

Gel-Doc 2000 gel documentation system  Bio-Rad, Heidelberg, Germany  
Hera cell 240 incubator  Thermo Scientific Corporation, MA, USA  
Hera safe, clean bench  Thermo Scientific Corporation, MA, USA  
Ice machine  Manitowoc Ice UY-0140A, USA  
iCycler PCR machine  Bio-Rad, Heidelberg, Germany  
Leica DMRD fluorescence microscope  Leica Microsystems GmbH, Wetzlar, Germany  
Leica TCS SP5 confocal laser scanning 
microscope  

Leica Microsystems GmbH, Wetzlar, Germany  

Magnetic stirrer, MR3001  Heidolph Instruments GmbH & Co.KG, 
Schwalbach,Germany  

Microwave oven  LG Electronics GmbH, Austria  
Mini centrifuge  Carl-Roth GmbH & Co, Karlsruhe, Germany  
pH Meter  IKA® Werke GmbH & Co. KG, Staufen, Germany  
Pipettes  Eppendorf AG, Hamburg, Germany  
Pipette tips  Eppendorf AG, Hamburg, Germany  
Power supply -200, 300 and 3000 Xi 
Bio-Rad, Heidelberg, Germany  

Bio-Rad, Heidelberg, Germany  

Pressure/ Vacuum Autoclave FVA/3  Fedegari, Albuzzano, Italy  
SmartspecTM 3000 spectrophotometer  Bio-Rad Laboratories GmbH, München, Germany  
T25 basic homogenizer  IKA, Staufen, Germany  
Vortex M10  VWR International GmbH, Darmstadt, Germany  
Water bath GFL 1083  GFL Gesellschaft für Labortechnik mbH, 

Burgwedel, Germany  

Table I. General materials, chemicals, enzymes and instruments used in experiments  
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2.1.2.  Buffers and solutions 

All buffers and solutions used in this thesis are listed in table II.  

Name of solution  Composition  
Solutions for cell culture & morphology  
Perfusion fixative solution (PFA)  4% PFA in 1X PBS (150 mM NaCl, 13.1 mM 

K2HPO4, 5 mM KH2PO4), pH 7.4  
10 X PBS  1.5 M NaCl, 131 mM K2HPO4, 50 mM 

KH2PO4, pH 7.4  
Trypsin (0.01%)  Fresh 0.01 g trypsin in 100 ml of 1X PBS 

buffer  
Blocking buffer-4% PBSA +  
0.05% Tween 20  

8 g BSA in 200 ml of 1X PBS and  
Tween 20  

Dilution buffer- 1% PBSA +  
0.05% Tween 20  

2 g BSA in 200 ml of 1X PBS and 
Tween 20  

Mowiol 4 88 solution  16.7 % Mowiol 4 88 (w/v) in 80 ml of 1X 
PBS, 40 ml of glycerol will be added, and 
centrifuged at 15,000U/min for 1 h, the 
supernatant was stored at 20°C prior use.  

Anti fading agent 2.5 % N propyl gallate in 1X PBS and add 50 
% of glycerol  

Mounting medium for immunofluorescence 3 parts of Mowiol 4 88 + 1 part of anti fading 
agent  

Solutions for biochemistry  
Homogenization buffer (HMB)  To 50 ml of 0.25 M sucrose and 5 mM MOPS 

(pH 7.4) add only before use 500 μl 100 mM 
EDTA + 50 μl 100% ethanol + 5 μl 2 M DTT 
+ 50 μl 1 M aminocaproic acid and 100 μl 
cocktail of protease inhibitors  

Cell lysis buffer (1X) 
 

50mM Tris +150mM Nacl +1% Triton-X-100 
(pH 7.4). Before use 10% protease inhibitor 
cocktail was added. 

Resolving gel buffer A  1.5 M Tris-HCl, pH 8.8 + 0.4% SDS  
Stacking gel buffer B  0.5 M Tris-HCl, pH 6.8 + 0.4% SDS  
12 % resolving gel (for 4 SDS-PAGE gels)  8 ml of 30% acrylamide + 10 ml of buffer A 

+ 2 ml of ddH2O + 15 μl of TEMED + 130 μl 
of 10% APS  

Stacking gel (for 4 SDS-PAGE gels)  1.25 ml of 30% acrylamide + 5 ml of buffer B 
+ 5 ml of distilled H2O + 15 μl of TEMED + 
130 μl of 10% APS  

10X Sample buffer  3.55 ml ddH2O + 1.25 ml 0.5 M Tris-HCl, pH 
6.8 + 2.5 ml 50% (w/v) glycerol + 2.0 ml 
10% (w/v) SDS + a pinch of 0.05% 
bromophenol blue. Before use add 50 ml 
β-mercaptoethanol  

10% Blocking buffer  10 g fat free milk powder in 100 ml of ddH2O  
10X Electrophoresis buffer  250 mM Tris + 2 M glycin + 1% SDS  
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20X Transfer buffer  Bis-Tris-HCl buffered (pH 6.4) 
polyacrylamide gel; NuPAGE transfer buffer, 
Invitrogen, Heidelberg, Germany  

10X TBS  0.1 M Tris in 0.15 M NaCl in, pH 8.0  
1X Washing buffer (TBST)  10 mM Tris/HCl, 0.15 M NaCl, 0.05% Tween 

20, pH 8.0  
Stripping buffer 62.5 mM Tris, 0.2 % SDS, 42°C in a water 

bath for 40 min pH 6.8  

Table II. Chemical reagents and buffers employed in experimental setup 

 
2.1.3. Recombinant cytokines and drugs 

Recombinant cytokines and drugs used in this thesis are summarized in table III.  

 
Cytokines, drugs Application Concentration Vehicle Company 
Ciprofibrate PPAR-� agonist 200 mM DMSO Sigma-Aldrich, 

Missouri-USA 
GW6471 PPAR-� 

antagonist 
10 mM DMSO Tocris, United 

Kingdom  
Luteolin Inhibitor of Nrf2  100 mM Ethanol Sigma-Aldrich, 

Missouri-USA 
LY364947 Inhibition of  

TGF-�1 signaling 
5 mM DMSO Tocris, United 

Kingdom 
rHuIL-6 Activation of 

Interleukin 6 
200 μg  4 ml pyrogen 

free ddH2O 
Biomol, Germany  

rhTGF-�1 Activation of 
TGF-�1 signaling  

20 μg/ml  4 mM HCl +  
1 mg/ml BSA 

R&D, USA 

rHuTNF-� Activation of 
TNF-� signaling 

100 μg/ml 18 MΩ-cm H2O Biomol, Germany 

SR11302 Inhibitor of 
activator protein-1 
(AP-1) 

10 mM DMSO Tocris, United 
Kingdom 

WY14643 PPAR-� agonist 100 mM DMSO Tocris, United 
Kingdom 

Table III. Recombinant cytokines and drugs 
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2.1.4. siRNA 

The following siRNAs were used to knockdown peroxisomal biogenesis and as controls in 

table IV.  

siRNA pmol/transfection Provider 
PEX13 siRNA 150 Ambion AM16708, Darmstadt, 

Germany 
PEX13 siRNA 150 Ambion AM16773, Darmstadt, 

Germany 
silencer select negative 
RNA 

150 Ambion, Cat#4390843,  Darmstadt, 
Germany 

Table IV. siRNAs applied for cell transfection 

 
2.1.5. Luciferase reporter and expression plasmids  

The following luciferase reporter and expression plasmids are shown in table V.  

Plasmid Description Institute /Company name 
COL1A2-luc Collagen 1A2 Dr. Eunsum Jung (BioSpectrum LifeScience 

Institute, Korea) 
pARE-luc Antioxidant response 

element reporter plasmid 
Dr. William E. Fahl (University of 
Wisconsin, Madison, WI, USA) 

pAP-1-luc Activator protein 1 reporter 
plasmid 

Dr. Craig A. Hauser (The Burnham Institute, 
La Jolla, CA) 

pGL2 basic Empty vector negative 
Control 

Promega, Madison, WI, USA 

pGL3 basic Empty vector negative 
Control 

Promega, Madison, WI, USA 

pGL4 basic Empty vector negative 
Control 

Promega, Madison, WI, USA 

PPAR reporter 
luciferase Kit 

PPAR reporter  Qiagen Cignal PPAR Reporter,  
Kit: CCS-3026L 

pRL-SV40 
Vector 

pRL Renilla luciferase 
control reporter vector 

Promega, Madison, WI, USA 

SBE-luc Smad binding element 
reporter plasmid  

Dr. Bert Vogelstein (Johns Hopkins Kimmel 
Cancer Center Baltimore, MD, USA) 

pSG5 PPAR 
alpha 

PPAR-� expression plasmid Addgene plasmid # 22751 

Table V. Luciferase reporter and expression plasmids  

 



30 
 

2.1.6. Transfection reagents 

The following transfection reagents were used for siRNA and plasmid transfection in table 

VI.  

Reagent Application Company 

Interferin siRNA transfection Reagent Peqlab, Erlangen, Germany 

TransIT-LT1 plasmid transfection reagent Mirus Bio LLC, WI, USA 

Attractene plasmid transfection reagent Qiagen, Hilden, Germany 

Table VI. Transfection reagents  

 
2.1.7. Kits  

The list of kits used in this thesis with corresponding suppliers in table VII.  

Kits Company name 

Dual luciferase kit Promega, Madison, WI, USA 

Human IL-6 Quantikine ELISA Kit R&D, Systems Inc. Minneapolis, USA 

Human TGF-�1 immunoassay R&D, Systems Inc. Minneapolis, USA 

qPCR kit Qiagen, Hilden, Germany 

QIAGEN Plasmid midi kits Qiagen, Hilden, Germany 

Rneasy kit Qiagen, Hilden, Germany 

RT-PCR kit Invitrogen, Karlsruhe, Germany 

Sircol Soluble Collagen Assay  Biocolor, Northern Ireland, UK 

Table VII. Molecular and cellular biology kits  
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2.1.8. Antibodies 

The list of antibodies used for immunofluorescence, Immunohistochemistry and Western 

blots are summarized in table VIII.  

Antigens  Species AB raised in Dilution Supplier 

�-SMA Mouse, monoclonal  (IF) 1:2,000 
(WB) 1:2,000 

Sigma, Missouri, USA Cat. A2547 

ABC-transporter D3 
(abcd3), mouse  

Rabbit, polyclonal (IF) 1:100  Gift from Alfred Völkl, University of 
Heidelberg, Germany 

Acyl-CoA oxidase 1 
(ACOX1), mouse 

Rabbit, polyclonal (IF) 1:1000  Gift from Paul P. van Veldhoven, Dept. of 
Molecular Cell Biology, Pharmacology, 
Catholic 

Catalase (CAT), mouse  
 

Rabbit, polyclonal (IF) 1:2,000  
(WB)1:10,000 

Gift from Denis I. Crane, School of 
Biomol. Biophys. Sci., Griffith Univ., 
Nathan, Brisbane, Australia 

Catalase (CAT), human Rabbit, polyclonal  (IF) 1:250 Polyscience (Cat:23728) 
Collagen I, mouse Rabbit, polyclonal (IF) 1:500  

(WB) 1:500  
Novus Biologicals, Cat. No: NB600-408 

Collagen III, mouse Rabbit, polyclonal (IF) 1:500  Novus Biologicals, Cat. No: 
Glutathione  reductase  
(GR), mouse 

Rabbit, polyclonal (IF) 1:500  Abcam/Biozol (Cat:ab16801) 

Glyceraldehyde 3-
phosphate 
dehydrogenase 
(GAPDH), rabbit  

Mouse, monoclonal  (WB) 
1:10,000  

HyTest Ltd, Turku, Finland, Cat. No: 5G4 

Heme oxygenase 1 
(HO-1), rat  

Rabbit, polyclonal  (IF) 1:1,000  Assay Designs, Inc. Michigan, 
USA,Cat.no:SPA-895 

Ki67, mouse  
 

Rat, monoclonal  (IF) 1:600 Dakocytomation, Denmark, Cat, no: 
M7249 

c-Myc, human Mouse, monoclonal (IHC) 1:250 Santa Cruz Biotechnology, Oregon, USA 
(9E10): sc-40 

Nuclear factor erythroid 
2-related factor 2 
(Nrf2), human  

Rabbit, polyclonal (IF) 1:250  Santa Cruz Biotechnology Inc. Heidelberg, 
Germany, Cat. No:sc-13032 

Peroxisomal biogenesis 
factor 13 (Pex13p), 
mouse  

Rabbit, polyclonal  (IF) 1:2,000  
(WB) 1:6,000 

Gift from Denis I. Crane 

Peroxisomal biogenesis 
factor 14 (Pex14p), 
mouse  

Rabbit, polyclonal  (IF) 1:4,000 
(IHC) 1:4000 
(WB)1:10,000  

Gift from Denis I. Crane 

Prolyl 4-hydroxylase 
(PDI), mouse 

Rabbit, polyclonal  (IF) 1:100  Acris (AP08767PU-N) 

Smad3, mouse Rabbit, polyclonal  (IF) 1:50  Cell signalling (Cat:9523) 
Superoxide dismutase 2 
(SOD2), rat  
 

Rabbit, polyclonal  (IF) 1:5,000 Research Diagnostics, Inc., NJ, USA, Cat. 
No: RDI-RTSODMabR 

Table VIII. Antibodies for Western blotting (WB), Immunohistochemistry (IHC) and 

immunofluorescence (IF) 

 



32 
 

2.1.9. Secondary antibodies and counterstaining of nuclei 

The list of secondary antibodies and counterstaining of nuclei used in this thesis are presented 

below in table IX.  

Secondary detection system Host Method Dilution   Supplier 

Anti Rabbit-IgG Alexa Fluor 
488 

Donkey IF 1:600 Molecular Probes/Invitrogen, Cat. No: 
A21206 

Anti-Mouse-IgG 
AlexaFluor555  

Donkey  IF  1:1,000  Molecular Probes/Invitrogen, Cat. No: 
A31570 

Rabbit biotinylated IgG  Goat IHC 1:250 Rabbit Extravidin kit, Sigma, Steinheim, 
Germany, Cat. No: B6648 

Extravidin  Rabbit IHC 1:250 Rabbit Extravidin kit, Sigma, Steinheim, 
Germany, Cat. No: E8386 

Anti mouse IgG alkaline 
phosphatase  

Goat WB 1:20,000 Sigma, Steinheim, Germany. Cat. No: 
A3562 

Anti rabbit IgG alkaline 
 phosphatase  

Goat WB 1:20,000 Sigma, Steinheim, Germany. Cat. No: 
A3562 

Counterstaining of nuclei for 
IF 

    

Hoechst 33342 (1 μg/ml) 

nucleic acid staining 
- - - Molecular Probes/Invitrogen, Cat. No: 

33342 
TOTO-3 nucleic acid staining, 
1:1,000 

- - - Molecular Probes/Invitrogen, Cat. No: 
T-3604 

Table IX. Secondary antibodies and nuclear stains  

 

2.1.10. Primers 

Human and mouse primers used for RT-PCR and qRT-PCR are summarized in table X-XII.  

Gene  Primer Annealing (°C) Length (bp) 
PEX13 For: TCAGCAAGCTGAAGAAAGCA 

Rev: CTGCAGGCAAACATGAAAGA 
61,5 434  

TGF-�1 For:GGATAACACACTGCAAGTGGAC 
Rev: GGGTTATGCTGGTTGTACAGG 

58,7 330 

COL1A2 For:TCAGAACATCACCTACCACTGC 
Rev:GTCCAGAGGTGCAATGTCAAG 

61,5 300 

IL-6 For: AGGAGACTTGCCTGGTGAAA 
Rev: CAGGTTTCTGACCAGAAGAAGG 

61,5 370 

MMP2 For: TACTGGATCTACTCAGCCAGCA 
Rev: CTTCAGGTAATAGGCACCCTTG 

61,5 300 

28S rRNA For: AAACTCTGGTGGAGGTCCGT 
Rev: CTTACCAAAAGTGGCCCACTA 

63 250 

HPRT For: AAGCTTGCTGGTGAAAAGGA 
Rev: AAGCAGATGGCCACAGAACT 

61,5 260 

Table X. Human primers for RT-PCR 
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Gene  Primer Annealing (°C) Length (bp) 
PEX13 For: CCATGTAGTTGCCAGAGCAG 

Rev: CATCAAGGCTAGCCAGAAGC 
61,5 140 

PEX14 For: CTGCCTTTGGCTTTGATCTC 
Rev: CGTGGTGTCACGGTAGTCAA 

61,5 137 

TGF-�1 For: GGATAACACACTGCAAGTGGAC  
Rev: GGGTTATGCTGGTTGTACAGG 

61,5 330 

COL1A2 GGTATAGGAGCTCCAAGGACAA 
GCAGCCATCTACAAGAACAGTG 

61,5 305 

TNF-� For: TCTACTCCCAGGTCCTCTTCAA  
Rev: AGACTCGGCAAAGTCGAGATAG 

61,5 269 

IL-6 For: AGGAGACTTGCCTGGTGAAA  
Rev: CAGGTTTCTGACCAGAAGAAGG  

61,5 370 

28S 
rRNA 

For: AAACTCTGGTGGAGGTCCGT  
Rev: CTTACCAAAAGTGGCCCACTA 

63 250 

Table XI. Human primers for qRT-PCR 

 
Gene  Primer Annealing (°C) Length (bp) 
mPEX14 For: CACTGGCCTCTGTCCAAGAGCTA 

Rev: CTGACAGGGGAGATGTCACTGCT 
 

61,5 298 

mCatalase For: GCAGATACCTGTGAACTGTC 
Rev: GTAGAATGTCCGCACCTGAG 
 

58,7 103 

Table XII. Mouse primers for qRT-PCR 

 

2.2. Methods 

2.2.1. Cell culture and tissue sections  

In this thesis work, human lung tissue (cryosamples and paraffin embedded tissue) and 

fibroblasts from patients with IPF or control organ donors were used, obtained from the 

Giessen DZL-biobank (Deutsches Zentrum für Lungenforschung) at UGMLC (University of 

Giessen and Marburg Lung Center). Directly after lung transplantation tissue samples were 

snap frozen in liquid nitrogen or placed in 4% (w/v) paraformaldehyde in PBS buffer, pH 7,4. 

Control and IPF fibroblasts were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) 

with  low glucose supplemented with 2 mM L-glutamine, 10 U of penicillin/ml, 100 μg of 

streptomycin/ml, 10% FBS and maintained at 37°C with 5% CO2 for different time-points as 

described below.  
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Medium composition  

The compositions of the medium and corresponding suppliers are listed in table XIII.  

Product Uses Company  

10 % Fetal Bovine Serum Growth promoting and 
survival  

PAA laboratories, United 
Kingom 

1% Penicillin Streptomycin  Antibacterial agent Gibco, USA 

  L-Glutamine  additive component       Merck-Millipore, Germany 

Table XIII. Cell culture medium supplements 

 

2.2.2. Isolation of control/IPF fibroblasts  

Primary human control (n=10) and IPF fibroblasts (n=10) were isolated from human lung 

tissue biopsies obtained from patients undergoing lobectomy or pneumectomy. Tissues were 

cut in small slices, placed in cell culture flasks and cells regularly grown out from the tissue 

slices after 1 week and passaged thereafter by standard trypsinization. Isolated human lung 

fibroblasts were frozen in passage 3 or 4 until use. Fibroblasts were plated onto 10-cm2 cell 

culture dishes and grown until confluency. They were passaged or plated for the respective 

experiments described below. For all experiments, fibroblasts cells were used before until the 

eighth passage.  After passaging, cells were grown for 24 hours before undergoing any 

treatment with above mentioned reagents or siRNA transfection.  

 

2.2.3. Freezing of cells  

Human control and IPF lung fibroblasts were cultivated at 5% CO2 until confluency and 37°C 

and passaged by trypsinization with Gibco´s 0.25% Trypsin/EDTA for 3 minutes at 37°C. 

After trypsinization, the cells were detached using 6 ml of fresh medium and centrifuged at 

200 g for 5 min. Meanwhile the freezing solution was prepared in a ratio of 70% fresh 

DMEM medium, 20% of FBS and 10% of dimethyl sulfoxide (DMSO). The freezing solution 

was kept at 4°C for 20 minutes prior to use. The cell pellets were resuspended in the freezing 

solution and frozen in Nalgene cryobox filled with isopropanol at -80°C overnight. The next 

day, the cryotubes were transferred to liquid nitrogen for long-term storage. 
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2.2.4. Poly –L-lysine coating  

Coverslips were placed in 12 well or 24 well Petri dishes. 10 mg of poly-L-lysine 

hydrobromide was dissolved in 100 ml of 0.1 M borate buffer and filtered with Millipore 

syringe filters of 0.22 μm. Thereafter 2 ml of the solution was added to the sterile coverslips. 

The incubation of Petri dishes with cover slips was done overnight under a laminar flow. 

After 24 h the dishes were washed twice with dd H2O, left in ddH2O for 5 h and thereafter 

washed again 2 x 5 min with dd H2O, followed by aspiration of water drops and air drying 

prior to storage.  

 

2.2.5. Mice  

(The experimental work in transgenic mice and bleomycin induced pulmonary fibrosis was 

performed during my laboratory rotation at Saban Research Institute of Children’s Hospital 

Los Angeles, California, USA).  

 

C57BL/6J wild type mice, 8 wk of age, were kept under specific pathogen-free conditions at 

the animal facility of Children’s Hospital Los Angeles. Floxed-TGF-β receptor II (T�RII) 

mice were provided by Dr. Harold Moses at Vanderbilt University [157], in which Exon 2 and 

Exon 3 of the T�RII gene were floxed [157, 158]. The mice were crossed with Tbx4-

rtTA/TetO-Cre driver line [107], and lung mesenchyme-specific deletion of T�RII Exon 2/3 

was achieved upon doxycycline administration [105]. Smad3 null mutant (-/-) mice were bred 

from C57BL/6 heterozygous mice with deletion of exon 1 in the Smad3 gene [13]. Transgenic 

mouse strain containing constitutively active TGF-� I receptor (T�RICA) were provided by Dr. 

Laurent Bartholin at University of Lyon [111]. LoxP-STOP-loxP-T�RICA mice were 

generated by using a knock-in strategy into the X chromosome-linked hypoxanthine 

phosphoribosyl-transferase locus (Hprt). By crossing with Tbx4-rtTA/TetO-Cre driver line, 

the STOP cassette was excised specifically in lung resident mesenchymal cells upon 

doxycycline-induced Cre expression, which resulted in T�RICA transgene expression under 

control of CAG (human cytomegalovirus enhancer and chicken �-actin) promoter [111]. Mice 

were monitored regularly and received food and water ad libitum (n=3 for each strain). Mice 

were anesthetized with isoflurane inhalation, were administered with 4 U/kg bleomycin 

(Sigma, St. Louis, MO) diluted in 120 μl of saline, or saline alone by intratracheal instillation 

using an intratracheal aerosolizer (MicroSprayer® Aerosolizer – Model IA, Penn-Century, 

Wyndmoor, PA on day 0 [105]. Lungs were removed for protein and mRNA isolation or 
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immersion fixed overnight in 4% paraformaldehyde fixative in PBS (pH 7.4) and embedded 

in paraffin (Paraplast Plus, St. Louis, MO) for histological analysis. Animal protocols used in 

the experiments were approved by the Institutional Animal Care and Use Committee at 

Children’s Hospital Los Angeles.  

 

2.2.6. Bleomycin-induced pulmonary fibrosis  

Three female C57BL/6J control and TGF-� receptor II (T�RII) knockout mice (8-week-old), 

anesthetized with isoflurane inhalation, were administered with 4 U/kg bleomycin (Sigma, St. 

Louis, MO) diluted in 120 μl of saline, or saline alone by intratracheal instillation using an 

intratracheal aerosolizer (MicroSprayer® Aerosolizer – Model IA, Penn-Century, Wyndmoor, 

PA) on day 0 [105]. The mouse lungs were then harvested 7, 14 and 28 days post bleomycin 

treatment. The bleomycin dose used in the experiment was shown to produce pulmonary 

fibrosis consistently with a low mortality rate of the animals (10%) [13]. Lungs were 

immersion-fixed in 4% PFA in PBS (pH 7.4) at 4°C overnight, then dehydrated and 

embedded in paraffin. Paraffin sections of 5 �m thickness were cut on a sliding microtome 

and used for immunofluorescence staining [105]. 

 

2.2.7. Isolation of mouse fibroblasts 

C57BL/6J mouse primary lung fibroblasts from T�RII, Smad3 wild-type and knockout as well 

as from T�RI wild-type and T�RICA were isolated from lung tissues of pathogen-free 

laboratory mice. Lungs were perfused with PBS from right ventricle, and transferred the 

deblooded lung to a sterile dish. The minced tissue to 1 mm3 was washed with ice-cold PBS 

and centrifuged at 1600 rpm for 6 min. The supernatant was discarded. Then, the minced 

tissue was digested with digestion solution at 37 °C for 60 min (shaking in water bath, by 

pipetting every 10 min). The digestion solution was prepared in Ca/Mg-free PBS, containing 

Dispase II 2 mg/ml (Roche), Collagenase I 1 mg/ml (Sigma), Dnase Type I 0,16 mg/mg 

(Sigma). The digested tissue was filtered with 70 μm cell strainer, and washed with 10 ml of 

DMEM/F12 medium containing 10 % FBS. Cells were centrifuged at 1600 rpm for 6 min, 

then washed in DMEM/F12 medium containing 10 % FBS, and  centrifuged again at 1600 

rpm for 6 min. Cells were resuspended in DMEM/F12 medium containing 10 % FBS, plated 

at the density 105/cm2 in plastic culture flask T75 for 1 h at 37 °C. The unattached cells were 

removed by aspirating off the medium, the plate was washed again with fresh medium and 
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aspirated off again. Finally DMEM/F12 containing 10 % FBS was added and cell were 

incubated in culture at 37 °C, 5% CO2 for 3-5 days. Primary lung fibroblasts were used in 

assays of standard biochemical procedures performed with cell cultures including qRT-PCR, 

Western blotting and immunofluorescence staining. Epithelial and endothelial cell 

contamination was checked be cytokeratin staining.  

 

2.2.8. PEX13 siRNA transfection of control and IPF fibroblasts for Western blot- 

and qRT-PCR-analyses and cytokine measurements   

Human control and IPF lung fibroblasts were cultured in 12-well or 24-well plates (BD 

Falcon #353043), at 8x104 cells/well or 4x104 for 24 hours in normal media (DMEM 1x, 

Gibco) low glucose medium supplemented with 2 mM L-glutamine, 10 U of penicillin/ml, 

100 μg of streptomycin/ml, 10% FBS) and maintained until 70-80 % confluency at 37 °C with 

5% CO2. Briefly, siRNA pools for PEX13 knockdown (same amount of PEX13 siRNA 1 and 

2) were incubated with the Interferin siRNA Transfection Reagent (Peqlab, Cat; 13-409-10) in 

basal media with no serum or antibiotics and allowed to form complexes for 15 min at room 

temperature. The complexes were then added to the cell suspension for each well (final 

siRNA concentration of 15 nM). After 24 h, cells were transfected for the second time with 

the same pool of PEX13 siRNA. After 72 h from the first transfection, cells were collected by 

centrifugation (200 g for 5 min at RT) and the pellet processed further for RNA- or protein 

isolation. The supernatants were used for cytokine and collagen assays. For 

immunofluorescence and DHE staining, cells were grown on poly-L-lysine coated coverslips. 

After siRNA treatment they were fixed with the above mentioned 4% PFA-fixative and 

processed as described in IF.       

 

2.2.9. rhTGF-��1 treatment  

The human control and IPF pulmonary fibroblasts were cultured in the same manner as 

described above for the rhTGF-�� treatment studies. After 24 h, cells were challenged with 5 

ng/ml rhTGF-�1 for an additional 24 h. 1 h prior to TGF-�� treatment cells were treated with 

specific inhibitors: 5μM LY364947 (Tocris Cat: 2718) TGF-�� inhibitor, 10 μM SR11302 

(Tocris, Cat.No.2476) an inhibitor of activator protein-1 (AP-1) transcription factor activity, 

or 25 μM Luteolin (Sigma, L9283), an Nrf2 inhibitor. Cells were further processed for 

immunofluorescence, RNA and protein isolation and supernatants were collected for cytokine 

ELISA according to manufacturers´ instructions. For TGF-�1-induced ROS production 
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studies, cells were treated for 30-60 minutes with TGF-�1, after which they were undergoing 

staining with (DHE) in a final concentration of 5 μM (see below). 

 

2.2.10. TNF-�� treatment  

Cells were seeded as described previously at a density of 8 x 104 cells/well in 12-well plates. 

After 24 h, they were challenged with 10 ng/ml human rHuTNF-� (Biomol Cat: 50435) for 

different time points: 0 h, 1 h, 4 h and 6 h duration [99]. At the end of the incubation period, 

the cells were processed for RNA isolation, protein analysis with Western blotting and 

luciferase reporter assays.  

 

2.2.11. IL-6 treatment  

IPF fibroblasts were seeded as described previously at a density of 8 x 104 cells/well in 12-

well plates. After 24 h, they were challenged with 20 ng/ml recombinant human IL-6 

(Biomol, Cat: 50435) for 6 h duration. At the end of incubation period, the cells were 

processed for protein analysis with Western blotting.  

  

2.2.12. PPAR-� agonist (ciprofibrate, WY14643) and PPAR-� antagonist 

(GW6471) treatment 

The experiments were performed on control and IPF fibroblasts from the 2nd-8th passages. 

Cells were seeded for 24 h in 12-well and 24-well plates as described above. Cells were then 

treated with ciprofibrate (Sigma-Aldrich Chemie GmbH) for 48 h with the indicated 

concentrations: 0 μM, 150 μM, 300 μM, 600 μM, WY14643 (Tocris, Cat.No.1312) for 48 

hours with the indicated concentrations: 0 μM, 50 μM, 100 μM, 200 μM, or with GW6471 

(Tocris Cat: 4618) for 24 h with the indicated concentrations: 0 μM, 5 μM, 10 μM. After 

respective treatments, cells were processed for immunofluorescence and protein isolation. For 

the experiments of TGF-�� treatment with combined PPAR-��agonists or antagonist 

pretreatment, IPF cells were either pretreated with ciprofibrate (200 μM) or WY14643 (100 

μM) for 48 h after which the medium was replaced with serum free medium alone or serum 

free medium containing the PPAR-� antagonist GW6471 (10 μM) for an additional 1 h. 

Fibroblasts were treated for 2 h with ciprofibrate (200 μM), WY14643 (100 μM) in serum 

free medium, which was followed by the addition of TGF-β1 (5ng/ml) for 24 h.  
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2.2.13. Immunohistochemistry  

Mouse lungs from T�RI WT and T�RICA were fixed by perfusion via the right ventricle of the 

heart with 4% paraformaldehyde in PBS (pH 7.4) and embedded into paraffin. Tissue sections 

of 5 μM thick were used for immunohistochemistry staining. Paraffin tissue sections were 

deparaffinized followed by blocking of the endogenous peroxidase (3% H2O2 for 10 min). 

Sections to be stained for PEX14 and c-Myc were treated with blocking goat serum for 1 h 

and incubated overnight with primary antibody dissolved in PBS/BSA at 4°C. The rabbit 

polyclonal antibody against PEX14 and the mouse monoclonal antibody against c-Myc were 

used accordingly (see table VIII). The next day, sections were washed with PBS to remove 

unbound primary antibody, followed by incubation of sections for 1 h with biotinylated anti-

mouse or anti-rabbit secondary antibody. After careful washing with PBS, the sections were 

incubated with Extravidin peroxidase at RT. The peroxidase activity was visualized by using 

diaminobenzidine for peroxidase. Nuclei were counterstained with hematoxylin. Normal 

rabbit IgG, bovine serum albumin, and water were used in parallel slides as negative controls.  

 

2.2.14. Immunofluorescence  

Control and IPF fibroblasts were plated on poly-L-lysine (Sigma Aldrich GmbH, Steinheim 

Germany) coated coverslips in 24 well plates for 24 h and thereafter treated with rhTGF-�1 

(R&D Cat: 240-B), LY364947 (Tocris Cat:2718), rHuTNF-a (Biomol Cat: 50435), 

ciprofibrate (Sigma), WY14643 (Tocris, Cat.No.1312), GW6471 (Tocris Cat:4618) for the 

indicated time points as described above. Thereafter, they were subjected to an indirect 

immunofluorescence staining protocol as previously described [80, 159]. Briefly, cells were 

washed with PBS, fixed in 4% paraformaldehyde and 2% sucrose in PBS buffer pH 7.4, after 

which they were permeabilized using 1% glycine containing 0.02% Triton X-100 for 10 min 

at RT. Nonspecific binding sites were blocked with 1% BSA in PBS containing 0.05% Tween 

20 for 1 h at room temperature. Then, coverslips were incubated overnight at 4 °C with the 

primary antibodies for single or double staining (antibody concentration see table VIII). 

Coverslips were then washed and incubated with appropriate secondary antibodies (see table 

IX). Nuclei were visualized with 1μM Hoechst 333424 and TOTO-3-iodide 1:1,000 at RT 

embedded in Mowiol 4-88 with N-propyl gallate as an anti-fading agent. Images were 

captured using a confocal laser scanning microscope (Leica TCS SP2, Leica, Germany). 

Pictures were processed with Adobe Photoshop version 9.  
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2.2.15. Isolation of total RNA from fibroblasts  

The total RNA was isolated from control and IPF human lung fibroblasts as well as from 

transgenic mice T�RII WT/KO, Smad3 WT/KO and T�RI WT/CA fibroblasts by using the 

commercial RNAasy Minikit (QIAGEN, Hilden, Germany) and QIAshredder columns 

(QIAGEN, Hilden, Germany). Briefly, fibroblasts were plated in 12 mm cell culture dishes 

until they reached   70-80% confluency. Cells were rinsed with 1xPBS twice and lysed 

directly with RLT lysis buffer containing 1% β-mercaptoethanol. The homogenization was 

done by loading the cell lysate into a QIAshredder column. The homogenate was collected 

from the column by 2 min of centrifugation at 14,000x g and mixed with the same volume of 

70% ethanol in order to provide appropriate binding conditions prior to loading into the 

Rneasy Mini spin column. In the column, the total RNA was preferentially bound to the silica 

column. Contaminating DNA and proteins were removed by repeated sequential washes with 

appropriate buffers from the kit. Finally RNA was eluted from the column with RNAse free 

water. Samples were quantified with the Nanodrop spectrophotometer (Thermo Fisher 

Scientific, Waltham, Massachusetts, USA) and approximately 30 μg of RNA per sample was 

recovered and stored at -80°C until use. 

 

2.2.16. cDNA synthesis  

Total RNA was isolated using the Rneasy kit (Qiagen), and cDNA was synthesized by reverse 

transcription using the high-capacity iScript cDNA reverse transcription kit (Bio-Rad, 

Hercules, California, USA). To conduct the cDNA synthesis a reaction mix was prepared as 

shown in Table XIV. 

 
Components  Volume per 20 μl Reaction  

5x iScript reaction mix  4 μl  

iScript reverse transcriptase  1 μl  

Nuclease-free water  14 μl  

RNA template (1 μg/μl total RNA)  1 μl  

Table XIV. Reverse transcription reaction mix 

 
The reverse transcription reaction was conducted in a thermocycler (Thermo Fisher Scientific, 

Waltham, Massachusetts, USA), by employing the following program: 5 minutes incubation 
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at 25°C, 30 minutes at 42°C and 5 minutes at 74°C. The transcribed cDNA was stored at        

-20°C prior to further use. 

 

2.2.17. qRT-PCR 

Total RNA isolation of drug and cytokine treated fibroblasts and cDNA synthesis was done as 

described above. Quantitative RT-PCR analysis was carried out using the SYBR green premix 

on a qPCR machine (Bio-Rad iCycler) according to the manufacturer´s instructions. 

Normalization was done by using HPRT and 28S rRNA control primers for each template. 

Primers for quantitative RT-PCR analysis were designed by using Primer 3 Software. Each 

primer pair was tested for specificity and amplification efficiency by using gradient PCR, 

agarose gel electrophoresis and melting curve analysis. The relative expression, fold change 

of a defined gene was calculated using the ddCT method. PCR amplification of the cDNA 

was done with the above primers mentioned in the table X-XII. The exclusive amplification of 

the expected PCR product was confirmed by melting curve analysis.  

 

DNA amplification and the reaction mix is shown in Table XV. 

Content Amount  

Template, cDNA 0.15 μg (2 μl)  

SYBR Green  10 μl  

Primer(forward& reverse)  2 μl  

Water  6 μl  

Total  20 μl  

Table XV. qRT-PCR reaction mixture 

 
2.2.18. Semi-quantitative RT-PCR analysis  

For semi-quantitative analysis, specific primers for respective genes were designed using the 

PRIMER3 program (http://www.ncbi.nlm.nih.gov/tools/primer-blast) and synthesized by 

Eurofins, MWG or Operon (Ebersberg, Germany). Total RNA isolation of fibroblasts and 

cDNA synthesis was done as described above. Amplified PCR products were analyzed by gel 

electrophoresis using 1-2 % agarose gels. The PCR reaction was performed using 50 ng 

cDNA, 100 nmol forward and reverse primers and 1 μl 5PRIME TaqDNA polymerase 5 U/μl 

in a final volume of 25 μl.  
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2.2.19. Protein isolation from human control/IPF and mouse fibroblasts 

Proteins were extracted from human control and IPF fibroblasts as well as from T�RII 

WT/KO, Smad3 WT/KO and T�RI WT/CA (constitutively active) mouse fibroblasts with cell 

lysis buffer (1x) as described below with CompleteTM Protease inhibitor (Roche) added 

shortly before use (see table II). After mixing, 100 μl of cell lysis buffer was added to each 

well of the 12 well/plate. Fibroblasts were scraped thoroughly from the culture plate using a 

cell scraper and the lysate was pipetted into a 1.5 ml Eppendorf tube on ice. Cells were 

incubated for 20-min on ice with intermittent vortexing, cell debris and insoluble proteins 

were removed by centrifuging the cell lysate for 20 min at 10,000 g at 4 ºC. The supernatant 

was then transferred into a new 1.5 ml Eppendorf tube on ice and stored at -20 °C prior to 

further use. 

 

2.2.20. Protein isolation from mouse lung tissue 

Two g of tissue samples from T�RII WT/KO, Smad3 WT/KO and T�RI WT/CA mouse lungs 

were homogenized with a Potter Elvehjem homogenizer at 1,000 rpm (1 stroke, 60 s) in 2 ml 

ice cold homogenization buffer (HMB) (see table II). The quality of the homogenization 

process was controlled by Trypan blue staining of the lung homogenates with a light 

microscope. Clumps of connective tissue, nuclei and large heavy mitochondria were 

sedimented by centrifugation of the homogenates at 2,500 × g for 20 min at 4°C. The total 

homogenate was processed for protein measurement. The protein concentrations of all 

fractions mentioned were assayed using a Bradford assay with Bio Rad solutions according to 

the manufacturer’s instructions. 

 

2.2.21. Measurement of protein concentration 

Briefly, the isolated protein solution was diluted 1:125 with water. To each sample and an 

additional blank control, 200 μl of Bio-Rad Bradford solution was added. Then, 4 μl of the 

protein sample or the buffer (same dilution) was added to each sample duplicates. This was 

followed by 15 min incubation period at RT. The absorption was read in a plate reader at 570 

nm. The concentration of the protein in each sample was calculated by using a newly prepared 

protein standard curve.  
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2.2.22. SDS-PAGE and Western blotting  

Control and IPF fibroblasts were washed with 1x PBS, lysed and the protein quantification 

done with the Bradford protein assay (Bio-Rad, Munich, Germany) as described above [159].  

Thirty μg of protein samples were separated by SDS-PAGE (12% gel) for ca. 2 h at 110 mV 

until the bromophenol blue marker reached the bottom of the gel. The gels with separated 

protein samples were further processed to blotting onto polyvinylidene difluoride membranes 

(PVDF, Millipore). Membranes were blocked with 5% skim milk or 5% BSA (depending on 

the following antibody steps), 50 mM Tris HCl (pH 7.6), 150 mM NaCl, and 0.05% Tween 

20 for 1 hr at RT or at 4 °C overnight. The primary antibodies were diluted in the appropriate 

blocking buffer, using dilutions described in table VIII, and incubated overnight at 4°C 

overnight.  On the following day, the membrane was washed three times 15 min in PBST. For 

secondary antibody detection, alkaline phosphatise-labelled goat anti-rabbit IgG or anti-

mouse IgG alkaline phosphatase (DPC Bierman) were used accordingly (see table IX).  

Antigen-antibody complexes were visualized with chemiluminescence detection using the 

Immun-Star alkaline phosphatase substrate from Bio-Rad according to the manufacturer’s 

instructions. The bands were visualized by exposing the blots to Kodak Biomax Films and 

quantified with a Bio-Rad Gel Doc 2000 system (Bio-Rad, Germany).  

 

2.2.23. Transfection and dual luciferase assay  

Control and IPF fibroblasts were cultured overnight. Transfection of plasmid DNA into the 

cells was performed by lipofection with TransIT-LT1 (Mirus Bio) as described previously 

[160] or Attractene transfection reagent as described in the manufacturer´s instructions 

(Qiagen). Cells were transfected with 1 μg of the firefly luciferase reporter plasmids in co-

transfection with 1μg of the indicated renilla luciferase expression vectors. Empty vector 

controls were run in parallel by using the appropriate empty vector plasmid in co-transfection 

experiments with the renilla luciferase expression vectors. Cells were transfected with 

plasmids and after 24 h treated with respective drugs and cytokines for indicated time-points. 

For the PPAR reporter assay, cells were cotransfected with PPAR-��expression plasmid and 

the CIGNAL PPAR reporter construct and after 24 h treated with the respective cytokines and 

drugs for the indicated times as mentioned above. Cells were lysed with the luciferase lysis 

reagent (Promega), and firefly or renilla luciferase activities were determined with the 

appropriate substrates of the dual luciferase reporter assay system (Promega) as described in 

the manufacturer’s instructions.  
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2.2.24. Measurement of reactive oxygen species  

Generation of reactive oxygen species (ROS) was performed with dihydroethidine (DHE) at a 

final concentration of 5 μM. DHE is oxidized by superoxide to its fluorescent product 

ethidine. Ethidine is trapped intracellularly after it is oxidized, thus allowing quantitative 

estimations of the intracellular ROS level [161]. Control and IPF fibroblasts were grown on 

coverslips and transfected with PEX13 siRNA, control siRNA, or treated respectively with the 

above mentioned drugs and cytokines (see table III). DHE was added to the cells and 

incubated for 20 minutes. Thereafter cells were washed with 1x PBS and fixed with 4% 

paraformaldehyde in PBS, pH 7.4 for 20 minutes at RT. The coverslips were mounted for 

measuring cellular ethidine fluorescence under a confocal laser scanning microscope (Leica 

TCS SP2, Leica, Germany) (40X objective). Ethidine fluorescence intensity was quantified 

individually in all cells using the Leica Confocal Software program (Leica, Bensheim, 

Germany). One hundred cells per sample were evaluated. The measured values represent the 

mean fluorescence intensity (MFI) of ethidine per cell.  

 

2.2.25. Sircol Collagen Assay  

To examine the release of collagens into the cell culture medium, control and IPF fibroblasts 

were grown in 12 well plates for 24 hours, followed by PEX13 siRNA or control siRNA 

transfections using Interferin (4 μl or 2 μl). After 72 hours, the supernatants were collected 

and collagen production was analyzed by using the Sircol Assay protocol according to the 

manufacturer´s instructions (Biocolor).  

 

2.2.26. Cytokine ELISAs  

Control and IPF fibroblasts were transfected with PEX13 or control siRNA and 72 hours after 

transfection the supernatants were collected and levels of secreted cytokines were analysed 

using the human TGF-�� immunoassay, or the human IL-6 Quantikine ELISA Kit. In 

addition, cells were also treated with rHuTGF-��, LY364947, ciprofibrate, GW6471 as 

mentioned above for 24 hours and the secreted levels of IL-6 were analyzed in the collected 

supernatants at the respective time-points with the Quantikine ELISA kit according to the 

manufacturer’s instructions. 
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2.2.27. Statistics 

All values are expressed as means ± SEM where n = 3 or 4. An unpaired Student’s t-test or 

ANOVA test using SPSS Software were used to assess the difference between two groups. 

Image J was used for quantification of RT-PCR expression. Differences were considered 

statistically significant when P<0.05.  
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3. Results 

The results of this thesis have been published in part in the Proceedings of the National 

Academy of Sciences of the United States of America (PNAS) and the pubmed ID of the 

following paper is: PMID: 25848047 

 

Oruqaj G, Karnati S, Vijayan V, Kotarkonda LK, Boateng E, Zhang W, Ruppert C, Günther 

A, Shi W, Baumgart-Vogt E. (2015). Compromised peroxisomes in idiopathic pulmonary 

fibrosis, a vicious cycle inducing a higher fibrotic response via TGF-β signaling. Proc Natl 

Acad Sci U S A. 2015 Apr 21;112(16):E2048-57. Doi: 10.1073/pnas.1415111112.  

 

3.1. General function of peroxisomes in maintaining oxidant/antioxidant 

balance and their implication in lung inflammatory conditions  

Oxidant and antioxidant imbalance in the lung is associated with various respiratory 

inflammatory diseases such as asthma, idiopathic pulmonary fibrosis, adult respiratory 

distress syndrome, COPD, pneumonia, lung transplantation and lung cancer [162-164]. 

Interestingly, peroxisomes are organelles that are intimately involved in ROS metabolism, 

since they contain various antioxidative enzymes such as catalase, and they are involved in 

the synthesis of polyunsaturated fatty acids and plasmalogens, which were suggest to trap 

ROS release [80, 112]. This thesis, was therefore based on the hypothesis that peroxisomal 

metabolism might be altered in the lung of IPF patients, and peroxisome induction would 

attenuate the fibrotic response, thus affecting the molecular pathogenesis of this devastating 

disease.  

 

3.2. Peroxisome biogenesis, lipid metabolism and redox balance are 

compromised in IPF patients 

First, lung samples of control subjects and IPF patients were analyzed for peroxisomal 

alterations. As mentioned above, catalase is the major peroxisomal antioxidative enzyme, 

therefore the first experiments were performed with anti-catalase antibodies on paraffin-

embedded lung tissue slices. Moreover, an anti-PEX14p antibody was used since this protein 

was described as the optimal marker to visualize peroxisomes [165]. Stainings of paraffin-

embedded tissue sections of human lung biopsies of controls and IPF patients revealed that 
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the peroxisomal number-as shown by PEX14p staining was reduced in fibroblasts in tissue 

sections of IPF lungs (Fig. 10). Moreover, catalase was strongly downregulated in fibroblasts 

of fibrotic areas of IPF lung samples (Fig. 10).   

 

 

Fig. 10. Peroxisomal proteins PEX14p and catalase were compromised in human lung biopsies of control 

and IPF tissues. Immunofluorescence for PEX14p and catalase (CAT) in control and IPF lung tissue. Negative 

control for the secondary antibody reaction with donkey anti-rabbit Alexa488 and donkey anti-mouse Alexa555. 

Co: control, IPF: idiopathic pulmonary fibrosis. RE (Respiratory epithelium), LP (Lamina propria), Arrows: 

fibroblasts in the lamina propria. Scale bar: 10 μm. 

 

Next, we analyzed whether isolated lung fibroblasts from these human IPF patients would 

retain the phenotype in cell culture. Indeed, these cells expressed higher levels of �-SMA 

(Fig. 11A) and exhibited increased mRNA levels of the pro-fibrotic markers TGF-��, 

COL1A2 and IL-6 (Fig. 11B) compared to the fibroblasts isolated from controls. The pro-

fibrotic phenotype was also confirmed by increased TGF-β signaling in IPF cells via 

luciferase reporter assay studies using an SBE-luciferase reporter plasmid (Fig. 11C).  
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Fig. 11. IPF fibroblasts retain their fibrotic phenotype in cell culture. (A) Single immunofluorescence of the 

fibrotic marker �-SMA in control and IPF fibroblasts. (B) Expression of TGF-β1, Col1A2 and IL-6 mRNAs in 

control and IPF fibroblasts. (C) Luciferase reporter activity of SBE (Smad binding element) in control and IPF 

fibroblasts. The activity of firefly luciferase was measured in cell lysates and normalized to the activity of renilla

luciferase. E.V-empty vector. Co: control, IPF: idiopathic pulmonary fibrosis. Data represent means ± SD of 

three independent experiments. P value was calculated by unpaired Student t-test. Scale bar: 10 μm.

Analysis of protein abundance by immunofluorescence revealed that the peroxisomal 

biogenesis protein PEX13p and the metabolic proteins catalase, ACOX1 and ABCD3 were 

strongly reduced in IPF fibroblasts with retained pro-fibrotic phenotype, suggesting that 

peroxisomal functions in maintaining “redox balance and lipid metabolism” in IPF fibroblasts 

are disturbed (Fig. 12A-B). The downregulation of the peroxisomal biogenesis protein 

PEX13p was confirmed by Western blot (Fig. 12A). Similarly, a reduced expression of the 

PEX13 gene was observed at the mRNA level between control and IPF fibroblasts by qRT-

PCR analysis (Fig. 12A). Since, catalase (Fig. 12B) was downregulated, we hypothesized that 

IPF fibroblasts might have an impaired anti-oxidant response. DHE staining revealed that IPF 

fibroblasts exhibited a higher ROS production in comparison to control fibroblasts (Fig. 12D).

Downregulation of catalase and ACOX1 in IPF fibroblasts were also demonstrated at mRNA 

level (Fig. 12C). Interestingly, a series of anti-oxidative enzymes such as SOD1, heme 
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Downregulation of catalase and ACOX1 in IPF fibroblasts were also demonstrated at mRNA 

level (Fig. 12C). Interestingly, a series of anti-oxidative enzymes such as SOD1, heme 

oxygenase (HO-1), glutathione reductase (GR), and the redox sensitive transcription factor 

Nrf2 were also decreased in IPF fibroblasts (Fig. 13A-D). Moreover, reporter gene analyses 

showed that Nrf2 binding element (ARE)-driven luciferase activity was significantly 

decreased in IPF fibroblasts (5-fold reduction) (p<0.05) (Fig. 13E), whereas the luciferase 

activity of the AP1 reporter construct was not significantly changed in IPF fibroblasts in basal 

unstimulated conditions (Fig. 13E). Taken together, these results indicate that in IPF tissues as 

well as in IPF fibroblasts peroxisomal proteins were significantly downregulated and IPF 

fibroblast exhibit a disturbed antioxidant response.  

 

 

Fig. 12. Affected peroxisomal biogenesis, lipid metabolism and antioxidative response in IPF fibroblasts. 

(A) Expression of PEX13 at mRNA and protein level by immunofluorescence staining and Western blotting in 

both control and IPF fibroblasts. (B) Immunofluorescence staining of the peroxisomal proteins catalase, ACOX1 

and ABCD3 in control and IPF fibroblasts. (C) Expression of catalase and ACOX1 mRNAs in both control and 

IPF fibroblasts. (D) Generation of reactive oxygen species (ROS) detection with dihydroethidine (DHE) in 
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Fig. 13. Diminished antioxidative response in IPF fibroblasts. (A-D) Double immunofluorescence of the 

antioxidative enzymes SOD1, HO-1, GR and the redox-sensitive transcription factor Nrf2 together with the 

fibrotic marker �-SMA in donor and IPF fibroblasts. (E) Luciferase reporter activity of ARE and AP1 promoter 

elements in control and IPF fibroblasts. The activity of firefly luciferase was measured in cell lysates and 

normalized to the activity of renilla luciferase. E.V-luciferase empty vector. SOD1: superoxide dismutase, HO-1: 

heme oxygenase-1, GR: glutathione reductase, Nrf2: nuclear factor erythroid 2–related factor 2. CO: Control, 

IPF: idiopathic pulmonary fibrosis. Data represent means ± SD of three independent experiments. P value 

calculated by unpaired Student t-test. Scale bar (A-D): 10 μm. 
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3.3. PEX13p knockdown activates Smad-dependent TGF-��� pathway and 

increases COL1 production 

Abrogation of peroxisomal proteins in IPF subjects may be a collateral effect due to persistent 

fibrosis or could also be a crucial factor that contributes to the pathogenesis of this devastating 

condition. To address this question, PEX13p, one of the peroxin proteins involved in 

peroxisomal biogenesis, was knocked down using a siRNA mediated approach. The strong 

knockdown of PEX13 expression in both control and IPF fibroblasts was verified by 

quantitative RT-PCR and Western blot analysis (Fig. 14A and B), and disruption of 

peroxisomal biogenesis, leading in consequence to mistargeting of catalase into the cytoplasm 

(Fig. 14C). Interestingly, disruption of the peroxisomal biogenesis triggered the production of 

the pro-fibrotic markers COL1A2 and TGF-���at mRNA level and of the COL1 protein in 

Western blot analysis (Fig. 14A and B).  
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Fig. 14. Increased fibrotic response in PEX13 siRNA treated control and IPF fibroblasts. (A) RT-qPCR 

analysis of peroxisome biogenesis PEX13 and fibrotic markers TGF-β� and COL1A2 in PEX13 siRNA 

transfected fibroblasts. The expressions of 28S rRNA and of the HPRT1 gene were used as controls for 

normalization, *p<0.005. (B) Western blots depicting the abundance of the peroxisomal biogenesis protein 

PEX13p and collagen I in PEX13 knockdown. The abundance of GAPDH was used as control. Sc (scrambled 

siRNA control), si-1 (siRNA PEX13-1), si-2 (siRNA PEX13-2), si-3 (siRNA PEX13 1 plus 2). (C) Mistargeting 

of the peroxisomal matrix enzyme catalase into the cytoplasm in control and IPF fibroblast due to the PEX13 

knockdown. Scale bar: 10 μm. Data represent means ± SD of three independent experiments. P value was 

calculated by unpaired Student t-test. 

 

The peroxisome deficiency was associated with increased TGF-���in the culture medium and 

activation of TGF-�� signaling in fibroblasts shown by SBE luciferase reporter activation 

(Fig. 15A and B). Moreover, increased collagen levels were produced in the medium and the 

COL1A2 promoter activity was increased in the fibroblasts with PEX13 knockdown (Fig. 15C 

and D). It is noteworthy that also control fibroblasts exhibit an increased fibrotic phenotype 

after peroxisomal knockdown, even though to a lesser extent in comparison to the transfected 

IPF fibroblasts (Fig. 15A-D).  
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Fig. 15. Activation of TGF-β1 Smad pathway in PEX13 siRNA treated control and IPF fibroblasts.         

(A) TGF-�� release in supernatant measured by TGF-β1 ELISA. (B) SBE luciferase reporter assay in siRNA 

treated control and IPF fibroblasts. (C) Collagen Sircol assay, measuring the production of collagen released in 

the medium by control and IPF fibroblasts. (D) COL1A2 luciferase reporter assay in siRNA treated control and 

IPF fibroblasts. The activity of firefly luciferase was measured in cell lysates and normalized to the activity of 

renilla. E.V-empty vector. Sc (scrambled siRNA control), si-1 (siRNA PEX13-1), si-2 (siRNA PEX13-2), si-3 

(siRNA PEX13 1, 2). Data represent means ± SD of three independent experiments. P value was calculated by 

unpaired Student t-test. 

 

Additionally, PEX13 knockdown also led to the intracellular elevation of pro-fibrotic 

markers/proteins such as collagen I, collagen 3A1 (COL3A1) and prolyl 4-hydroxylase beta 

polypeptide (PDI) as revealed by immunofluorescence studies (Fig. 16A and B). Moreover, 

increased mRNA levels of matrix metalloproteinase 2 (MMP2) were detected in PEX13 

knockdown, an enzyme that has been implicated in excessive TGF-�� activation (Fig. 17A 

and E). The increased fibrotic response of TGF-�� and COL1A2 was also observed with semi-
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quantitative RT-PCR with a PEX13 knockdown in IPF fibroblasts (Fig. 17A-D). PEX13 

knockdown studies in control fibroblasts exhibited the same patterns as the ones of IPF (data 

not shown). To summarize, these results indicate that the downregulation of peroxisomes in 

both control and IPF fibroblasts leads to an increased fibrotic phenotype in these cells 

associated with an increased production of collagen and TGF-�� as well as an activation of 

TGF-β signaling. 

 

 

Fig. 16. Higher abundance of fibrotic marker proteins COL1, COL3A1 and PDI induced by the PEX13 

knockdown. (A-B) Depiction of the fibrotic marker proteins collagen I (COL1), collagen III (COL3A1) and 

prolyl 4-hydroxylase (PDI) by immunofluorescence staining in PEX13 knockdown control and IPF fibroblast 

cultures. Nuclei were stained with 1 μM Hoechst 33342. Scale bar: 10 μm. 
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Fig. 17. Increased fibrotic response and elevated MMP2 mRNA in PEX13 knockdown of IPF fibroblasts. 

(A) Expression of PEX13, TGF-�1, COL1A2 and MMP2 at mRNA level shown by RT-PCR in IPF fibroblasts. 

Expression of 28S rRNA gene was used as control. (B-E) Quantification of mRNA expression from depicted 

genes in (A). BC: basal control, IC: interferin control, Sc: scrambled control, si-1: siRNA-1, si-2: siRNA-2. Data 

represent means ± SD of three independent experiments. P value was calculated by unpaired Student t-test.  
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3.4. Knockdown of peroxisomes leads to elevated ROS, increased ARE/AP1 

transcriptional activity and pro-inflammatory cytokines in fibroblasts 

As shown above in Fig. 12, IPF fibroblasts exhibit an increased production of ROS. Since 

peroxisomes are able to produce and scavenge ROS [80] and are downregulated in IPF 

fibroblasts, we questioned whether they are involved in the cellular ROS production observed. 

Indeed, the knockdown of PEX13 led to an increase in the production of ROS as measured by 

dihydroethidine staining both in control as well as IPF fibroblasts (Fig. 18A). However, 

unlike in the basal conditions of IPF fibroblasts (Fig. 13E), the acute downregulation of 

PEX13 increased ROS production, and was paralleled with increased ARE and AP-1 

promoter activity (Fig. 18B). Moreover, a high antioxidative response was induced leading to 

the upregulation of antioxidative enzymes such as HO-1, GR and abundance of the redox-

sensitive transcription factor Nrf2 (Fig. 19A and B). 
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Fig. 18. Induction of ROS and activation of ARE, AP1 transcriptional elements  in PEX13 knockdown 

control and IPF fibroblasts. (A) Detection of generated reactive oxygen species (ROS) with dihydroethidine 

(DHE) and quantification of the DHE staining in PEX13 siRNA-treated control and IPF fibroblasts, (N-number 

of cells for quantification). (B) ARE and AP-1 element luciferase reporter assays in PEX13 knockdown control 

and IPF fibroblasts, (si vs. Sc). (E.V-empty vector). The activity of firefly luciferase was measured in cell lysates 

and normalized to the activity of renilla. Sc (scrambled siRNA control), si-1 (siRNA PEX13-1), si-2 (siRNA 

PEX13-2). Data represent means ± SD of three independent experiments. P value was calculated by unpaired 

Student t-test. 
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Fig. 19. Antioxidative response in PEX13 siRNA treated fibroblasts. (A and B) Antioxidative response in 

PEX13 knockdown control and IPF fibroblasts, depicted by immunofluorescence staining for heme oxygenase-1 

(HO-1), glutathione reductase (GR) and Nrf2. BC: basal control, Sc: scrambled control, si: siRNA. Scale bar: 10 

μm.  

 

Next, we analyzed the effect of the PEX13 knockdown on the production of pro-inflammatory 

cytokines such as TNF-� and IL-6, which have been proposed to play an important role in the 

pathogenesis of fibrosis. At the mRNA level both TNF-� and IL-6 were significantly induced 

in PEX13 knockdown control and IPF fibroblasts in comparison to the respective cells 

transfected with the negative control siRNA (Fig. 20A). IL-6 was readily detectable and also 

significantly increased in the culture supernatants of PEX13 knockdown fibroblasts (Fig. 

20B). In contrast, by using the same supernatants under similar experimental conditions for a 

TNF-α ELISA, the concentration of this cytokine was too low for reliable detection (data not 

shown). In summary, knockdown of peroxisomes leads to increased ROS production and IL-6 

release in both control and IPF fibroblasts.  
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Fig. 20. Induction of cytokine production in PEX13 knockdown control and IPF fibroblasts. (A) qRT-PCR 

analysis of mRNA expression for cytokines (TNF-α and IL-6) in PEX13 knockdown of control and IPF 

fibroblasts. (B) Human IL-6 secretory levels measured by the Quantikine ELISA in PEX13 siRNA treated 

control and IPF fibroblasts. Sc (scrambled siRNA control), si-1 (PEX13-1 siRNA), si-2 (PEX13-2 siRNA), Data 

represent means ± SD of three independent experiments. P value was calculated by unpaired Student t-test. 

 

3.5. TGF-����signaling downregulates peroxisomal biogenesis proteins in 

IPF fibroblasts 

By considering the pivotal role of TGF-��� in the pathogenesis of lung fibrosis, we thought to 

examine the possibility that it might modulate the expression of the PEX13 gene, and that 

activated TGF-��signaling could account for impaired peroxisome biogenesis and metabolism 

in IPF. The fibrotic response of TGF-���treatment was demonstrated by the upregulation of 

COL1A2 and IL-6 mRNAs, which were blocked specifically with the TGF-�� receptor 

inhibitor LY364947 (Fig. 21A). Elevated levels of IL-6 in culture supernatants of lung 

fibroblasts treated with TGF-���and inhibition of the same cytokine with the TGF-���receptor 

inhibitor LY364947 were confirmed by ELISA (Fig. 22A). Similarly, the activation of the 

TGF-��-Smad pathway in these cells was also confirmed by increased SBE luciferase reporter 

activity, increased TGF-�� mRNA (Fig. 22B and D, Fig. 21A) and by increased Smad3 

translocation into nucleus (Fig. 22C). We then analyzed whether the expression of the PEX13 

gene would be affected by TGF-���stimulation. Interestingly, TGF-�� treatment indeed 

resulted in the downregulation of the PEX13 mRNA and protein, suggesting that TGF-�� 

inhibits peroxisomal biogenesis (Fig. 21B-C and 22D-E). This effect was reversed when 
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TGF-� signaling was specifically blocked using the TGF-�1 receptor inhibitor LY364947 

(Fig. 21B-C and 22D-E). TGF-�1 treatment also increased ROS production in these 

fibroblasts (Fig. 21D).  

 

 

 

 

  

Fig. 21. TGF-β1 signaling suppresses the PEX13 mRNA expression and protein abundance in control/IPF 

fibroblasts. Confluent control and IPF fibroblasts were pretreated  with 5 μM LY364947 (TGF-�� inhibitor) for 

1 h,  followed by a stimulation with 5 ng/ml TGF-��, or combined for 24 h. RNA expression of TGF-β1, 

COL1A2, IL-6 and PEX13 was examined by real-time qRT-PCR (A and B). The results were normalized with 

28S rRNA and HPRT mRNA.  (C) Total protein was isolated following 24 h incubation with TGF-β�, LY364947 

or combinations and subjected to Western blotting for PEX13p. GAPDH was used as loading control. (D) 

Detection of TGF-β� induced reactive oxygen species (ROS) with dihydroethidine (DHE) in control and IPF 

fibroblasts. C: control, T: TGF-β1, LY: LY364947, T + LY: TGF-β-1 + LY364947. Data represent means ± SD 

of three independent experiments. P value was calculated by unpaired Student t-test. 

D 



61 
 

 

Fig. 22. TGF-�� induction affects PEX13 in control and IPF fibroblasts. (A) IL-6 secretory levels measured 

by ELISA after treatment with TGF-�1 (5 ng/ml) and LY364947 (5 μm) in control and IPF fibroblasts.             

C: control, T: TGF-β1, LY: LY364947, T+LY: TGF-β1 + LY364947 (B) SBE dual-luciferase reporter gene 

assay. The activity of firefly luciferase was measured in cell lysates and normalized to the one of renilla 

luciferase. Data represent the results of at least three experiments performed in triplicates. (C) Total Smad3 

protein staining of TGF-�1 treated control and IPF fibroblasts. (D) Depiction of PEX13, TGF-�� and IL-6 

mRNA levels with RT-PCR, followed by quantification. Data represent means ± SD of three independent 

experiments. P value was calculated by unpaired Student t-test. Scale bar: 10 μm.  
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3.6. Downregulation of peroxisomal proteins in bleomycin-induced 

pulmonary fibrosis is abrogated in T��RII bleomycin-treated knockout mice 

To extend and confirm these findings to the in vivo situation, lung mesenchyme-specific TGF-

β receptor II knockout mice were used. Since the anti-PEX13p antibody does not work 

properly for the staining of PFA-fixed paraffin-embedded tissue [165], an antibody against 

PEX14p, a binding partner of PEX13p in the docking complex of the peroxisomal membrane 

that was also reduced in IPF lungs (Fig. 1), was used. Indeed, bleomycin treatment in control 

mice downregulated peroxisomes (PEX14p) on day 7 after treatment, followed by a recovery 

on day 14 and 28 in comparison to day 7, however, upto a lower protein abundance than in 

appropriate control animals (Fig. 23). Strikingly, bleomycin treatment in TGF-β receptor II 

knockout mice did not induce the downregulation of peroxisomes as detected by staining with 

PEX14p, indicating a direct relation for TGF-β-induced signaling in the downregulation of 

peroxisomes (Fig. 23). Accordingly, also the downregulation of other peroxisomal enzymes 

such as ACOX1 and the antioxidative enzyme catalase on day 7 after bleomycin treatement 

were abrogated in T�RII knockout mice, suggesting a possible link between TGF-� signaling 

and regulation of peroxisomal metabolism (Fig. 24, 25). In summary, these findings indicate 

that TGF-�1 signaling downregulates peroxisomes in bleomycin-induced pulmonary fibrosis, 

whereas abrogation of the T�RII prevents the reduction of peroxisome abundance on the peak 

of inflammation on day 7 after bleomycin treatment, and so prevents the development of 

fibrosis. 
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Fig. 23. The reduction of PEX14p in the bleomycin-induced mouse model of lung fibrosis is abrogated by 

T��RII knockout. Double immunofluorescence of PEX14p and �-SMA in the bleomycin-induced mouse model 

of pulmonary fibrosis. Ctrl: Control, WT: wild-type, RII-KO: TGF-β receptor II knockout, Bleo: Bleomycin.  

Data represent the results of at least three reproducible experiments. Scale bar: 10 μm. 
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Fig. 24. The downregulation of ACOX1, a peroxisomal lipid metabolic enzyme in the bleomycin-induced 

mouse model of lung fibrosis is abrogated by the T��RII knockout. Double immunofluorescence of Acyl-CoA 

oxidase 1 (ACOX1) and �-SMA in bleomycin induced mouse model of pulmonary fibrosis. Ctrl: Control, WT: 

wild-type, RII-KO: TGF-β receptor II knockout (T�RII), Bleo: Bleomycin. Data represent the results of at least 

three reproducible experiments. Scale bar: 10 μm. 
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Fig. 25. The downregulation of the peroxisomal antioxidative enzyme catalase in the bleomycin-induced 

mouse model of lung fibrosis is abrogated by the T��RII knockout. Double immunofluorescence of catalase 

and �-SMA in the bleomycin-induced mouse model of pulmonary fibrosis. Ctrl: Control, WT: wild-type, RII-

KO: TGF-β receptor II knockout (T�RII), Bleo: Bleomycin. Data represent the results of at least three 

reproducible experiments. Scale bar: 10 μm. 
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3.7. AP-1 signaling is involved in TGF-��1-mediated downregulation of 

PEX13 in human IPF fibroblasts 

Reports from literature indicate a cross-talk between TGF-β1 signaling and the transcriptional 

factor AP-1 [166]. In this study was also demonstrated an upregulation of AP-1 in PEX13 

knockdown fibroblasts [11]. Hence, we questioned if the transcriptional factor AP-1, normally 

activated during pro-fibrotic and pro-inflammatory responses, would also play a role in the 

observed TGF-�1 mediated PEX13 downregulation. For a comparison, we also used the 

luciferase reporter vector (ARE) to test the activity of the ROS-activated transcriptional factor 

Nrf2. Indeed, stimulation with TGF-�1 induced the activity of the AP-1 luciferase reporter 

construct (Fig. 26A) but the activity of the ARE-luciferase construct remained unchanged 

(Fig. 26B). Further, the AP-1 specific inhibitor SR11302 partially blocked the TGF-�1 

stimulated activity of both the AP-1-luciferase construct and the ARE-luciferase construct 

(Fig. 26A, B). This was explainable, as the AP-1 binding element shares the consensus 

sequence of the Nrf2 binding element but not vice versa. The luciferase reporter assays 

revealed that the inhibitor luteolin used generally as Nrf2 inhibitor is not specific since it also 

inhibits the TGF-��-induced activation of AP-1 (Fig. 26A) in addition to the inhibition of 

ARE luciferase (Fig. 26B). Interestingly, pretreatment of cells with an AP-1 specific inhibitor 

SR11302 or the Nrf2/AP-1 inhibitor luteolin blocked the TGF-��-mediated SBE activation, 

indicating a role for AP-1 in the TGF-�1-mediated Smad-dependent pathway (Fig. 26C). 

Moreover, pretreatment with SR11302 and luteolin also reversed the TGF-�1-mediated 

downregulation of the PEX13p protein (Fig. 26D). To summarize, these findings suggest that 

the pro-fibrotic cytokine TGF-�1 might downregulate PEX13 through the transcriptional 

factor AP-1. 
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Fig. 26. AP-1 signaling is activated in TGF-β1-mediated downregulation of PEX13 in human IPF 

fibroblasts. Confluent IPF fibroblasts were pretreated for 1 h with 25 μM luteolin or 10 μM SR11302 (SR). 

Then, cells were challenged with 5 ng/ml TGF-β� for 24 h as indicated in the figure. (A-C) AP1, ARE and SBE 

luciferase reporter assays in IPF fibroblasts. The activity of firefly luciferase was measured in cell lysates and 

normalized to the activity of renilla luciferase. E.V-empty vector. (D) Protein analysis of PEX13p in IPF 

fibroblasts treated with TGF-β�, luteolin or SR11302. GAPDH was used as loading control. Luteolin: Nrf2 

inhibitor, SR11302: AP-1 inhibitor. Data represent means ± SD of three independent experiments. P value was 

calculated by unpaired Student t-test.  
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3.8. Pro-inflammatory cytokines TNF-���and IL-6 also suppress the 

peroxisome biogenesis protein PEX13p in human IPF fibroblasts 

In a complex disease condition such as IPF, factors other than TGF-�1 may also contribute to 

the downregulation of peroxisomal genes in vivo. Macrophage-mediated TNF-� production 

might play an important paracrine role in this process. To determine whether TNF-� affects 

peroxisome biogenesis, IPF fibroblasts were treated with 10 ng/ml TNF-� for the indicated 

time points (Fig. 27A and B). TNF-� induced a significant downregulation of the PEX13 

mRNA as early as 1 h (Fig. 27A), as well as the protein abundance of PEX13p after 6 h (Fig. 

27B). Similar to TGF-β1, TNF-α also induced the activity of the AP-1 luciferase construct 

and increased the luciferase activity of the ARE-luciferase construct (Fig. 27C). Interestingly, 

the AP-1 inhibitor SR11302 reversed the TNF-�-mediated downregulation of PEX13p (Fig. 

27D). Finally, treatment with the pro-inflammatory cytokine IL-6 also induced the 

downregulation of PEX13p (Fig. 27E). In summary, pro-inflammatory cytokines (TNF-α and 

IL-6) downregulate PEX13p in IPF fibroblasts. Moreover, TNF-α-mediated downregulation 

of PEX13p is partially mediated through AP-1 signaling. 
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Fig. 27. TNF-α downregulates peroxisome biogenesis by induction of AP1 in human IPF fibroblasts.       

(A) IPF fibroblasts were treated with 10 ng/ml TNF-� for the indicated time points, and the expression of PEX13 

mRNA was determined by using qRT-PCR. (B) IPF fibroblasts were treated with 10 ng/ml TNF-α for 6 h, and 

cells were lysed for Western blot analysis. As loading control GAPDH was used (C) ARE and AP-1 dual 

luciferase reporter assays of IPF fibroblasts treated with 10 ng/ml TNF-α for indicated times. The activity of 

firefly luciferase was measured in cell lysates and normalized to the activity of renilla luciferase. (D) IPF 

fibroblasts were treated with 10 ng/ml TNF-α for 6 h; cells were pretreated 1 h before with Nrf2 inhibitor 

Luteolin and AP-1 inhibitor SR11302 (SR), PEX13p abundance was analyzed with Western blotting. GAPDH 

was used as loading control (E) IPF fibroblasts were treated with 20 ng/ml IL-6 and PEX13p abundance was 

analyzed with Western blotting. GAPDH was used as loading control. E.V-empty vector. Data represent means  

± SD of three independent experiments.  P value was calculated by unpaired Student t-test.  
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3.9. PPAR-���agonists proliferate peroxisomes and inhibit the TGF-��-

induced pro-fibrotic response in IPF fibroblasts 

As demonstrated above, reduced peroxisome biogenesis is associated with an increased pro-

fibrotic response as shown by the activation of TGF-�1 signaling and collagen production. 

This raises the possibility that increasing the peroxisomal biogenesis may be beneficial as a 

treatment strategy in IPF. To evaluate the hypothesis we used two structurally distinct PPAR-

α agonists (ciprofibrate and WY14643), classical peroxisome proliferators, and investigated 

the relationship between peroxisome proliferation and TGF-��-induced myofibroblast 

differentiation (as shown by α-SMA abundance) and upregulation of the collagen I protein. 

Treatment with either ciprofibrate or WY14643 for 48 h resulted in proliferation of 

peroxisomes as detected by PEX14p staining (Fig. 28A). The peroxisomal biogenesis protein 

PEX13p was also induced after treatment of IPF cells with ciprofibrate or WY14643 (Fig. 

28B). PPAR-α has been shown to exert multiple effects on cellular targets which are 

independent of peroxisome proliferation, wherefore it is important to distinguish the 

peroxisome-dependent anti-fibrotic effects of PPAR-α agonists. To do this, the experimental 

setup (mentioned in detail in the methods) contained two different controls 1) IPF cells which 

were pretreated with PPAR-α agonists for 48 h after which the medium was replaced with the 

PPAR-α antagonist to block endogenous PPAR- α activation. Ideally, these cells then contain 

proliferated peroxisomes but further PPAR-α activation is blocked. 2) IPF cells which were 

pretreated with PPAR-α agonists only for 2 h prior to TGF-�1 stimulation and hence will 

exhibit an activation of PPAR-α but no peroxisome proliferation due to the insufficiently 

short time period of drug treatment. The concentrations of PPAR-α agonists and antagonists 

that were used for this approach activated and inhibited the PPAR-response-element (PPRE)-

luciferase reporter construct respectively (Fig. 29A). Interestingly, IPF cells pretreated with 

ciprofibrate or WY14643 for 48 h showed a significant reduction in the TGF-β1-induced 

myofibroblast differentiation represented by the abundance of the �-SMA protein. The 

strongest reduction was observed in the cells pretreated with PPAR-α agonist for 48 h 

followed by pretreatment with PPAR-α antagonist for 1 h prior to the addition of TGF-β1 

(Fig. 29B and 29C). Whereas, pretreatment with PPAR-α agonist for 2 h prior to TGF-β1 

stimulation did not block the TGF-�1-induced �-SMA protein. Similarly, the TGF-β1- 

induced COL1 protein was also blocked by the addition of the PPAR-α agonists (treated for 

48 h) followed by 1 h antagonist, but not in IPF cells solely pretreated with PPAR-α agonists 

for 2 h or 48 h (Fig. 29B, C). In summary, these findings suggest that in IPF cells with 
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proliferated peroxisomes the TGF-β1-induced upregulation of myofibroblast differentiation 

and the COL1 protein is blocked.  

 

 

 

 

 

 

 

 

 

 
Fig. 28. Peroxisome proliferation by PPAR-α agonists ciprofibrate and WY14643 in IPF fibroblasts.      

(A) Staining of IPF fibroblasts treated with ciprofibrate or WY14643 for 48h at the indicated concentrations with 

the peroxisomal marker PEX14p. (B) Western blot analysis of PEX13p in IPF cells treated with ciprofibrate or 

WY14643 for 48 h. CTRL: control, GW: GW6471, CIP: ciprofibrate, WY: WY14643. Data represent the results 

of at least three reproducible experiments. Scale bar: 10 μm. 
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Fig. 29. Peroxisome proliferation by PPAR-α agonists ciprofibrate and WY14643 blocks the TGF-β1-

induced pro-fibrotic response in IPF fibroblasts. (A) IPF cells co-transfected with PPAR-α expression 

plasmid (PPAR-α E.P.) and PPRE-luciferase-reporter vector (PPRE)/or empty vector (E.V) were treated with 

ciprofibrate (200 μM) or WY14643 (100 μM) or GW6471 (10 μM) for the indicated times after which the firefly 

luciferase activity was measured in cell lysates and normalized to the activity of renilla luciferase.                    

(B, C) Western blot analysis of IPF cells pretreated with WY14643 (100 μM) or ciprofibrate (200 μM) and/or 

GW6471 (10 μM) for the indicated times followed by treatment with TGF-β1 (5 ng/ml) for another 24 h. Note: 

After 48 h treatment of WY14643 or ciprofibrate, the medium was replaced with fresh serum free medium 

before stimulation with TGF-β1. Whereas, the medium was not replaced before the addition of TGF-β1 in cells 

pretreated with WY14643 or ciprofibrate for 2 h or GW6471 for 1 h. CTRL: control, GW: GW6471, CIP: 

ciprofibrate, WY: WY14643. Data represent the results of at least three reproducible experiments. Statistical 

analysis for luciferase assays were performed by ANOVA.  
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3.10. Peroxisome proliferation by a PPAR-���activator exerts a protective 

effect against the fibrotic response through suppression of ROS production 

and the inhibition of the IL-6 release 

As mentioned in the studies above, reduced peroxisome biogenesis is associated with 

increased TGF-�� activation and subsequently to ROS generation. Therefore, we investigated 

the relationship between ciprofibrate treatment, ROS and cytokine release and collagen 

production. Indeed, proliferation of peroxisomes and increase of PEX14p staining was 

observed after ciprofibrate treatment (Fig. 30A-B). Ciprofibrate also increased PEX13 mRNA 

expression (Fig. 30E). In contrast, COL1A2 expression was significantly reduced at the 

mRNA level upon ciprofibrate treatment (Fig. 30E). Consistent reduced ROS production (Fig. 

30A-C) and decreased IL-6 secretion were also detected upon ciprofibrate treatment (Fig. 

30D). Taken together, peroxisome proliferation by the PPAR-� agonist exerts protective 

effects through diminishing ROS and reducing the IL-6 release.  
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Fig. 30. PPAR-���agonist ciprofibrate induces peroxisome proliferation, decreases fibrotic markers COL1 

and reduces ROS and IL-6 levels in control and IPF fibroblasts. (A-B) Immunofluorescence for PEX14p of 

control and IPF fibroblasts treated with ciprofibrate at indicated concentrations and times. (A-C) ROS generation 

detected by DHE staining and its quantification.  (D) IL-6 production measured by ELISA as described above. 

(E) RT-PCR analysis for PEX13, COL1A2 mRNAs in ciprofibrate-treated control and IPF fibroblasts. Data 

represent means ± SD of three independent experiments.  P value was calculated by unpaired Student t-test. 

Scale bar: 10 μm. 

 

3.11. Peroxisome proliferation by a PPAR-��activator inhibits cell 

proliferation in control and IPF fibroblasts 
 
Activation of PPAR-� is reported to inhibit cardiac fibrosis through suppression of the ET-1 

pathway in vivo [167]. This inhibitory effects of fenofibrate may be caused by upregulation of  

p27Kip1 via suppression of c-jun expression and may be related to the cell cycle of cardiac 

fibroblasts [167]. Also in our study, we showed that ciprofibrate treatment significantly 

decreased the number of proliferating cells in both control and IPF fibroblasts (Fig. 31A-B). 
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Therefore, we speculated that this inhibition of proliferation might contribute to the 

alleviation of fibrosis progression by blocking fibroblast/myofibroblast differentiation.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 31. Peroxisome proliferation by PPAR-�� agonist ciprofibrate inhibits cell proliferation in control and 

IPF fibroblasts. Confluent control and IPF fibroblasts were treated with ciprofibrate with indicated 

concentrations and times. (A-B) Identification and quantification of fibroblast proliferation by Ki67 staining in 

control and IPF subjects. Data represent means ± SD of three independent experiments.  P value was calculated 

by unpaired Student t-test. Scale bar: 25 μm.  
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3.12. PPAR-�� inhibitor GW6471 blocks peroxisome proliferation and 

promotes myofibroblast differentiation as well as ROS release in control 

and IPF fibroblasts 

In order to further investigate whether the effects of ciprofibrate on reduction of the fibrotic 

response would be dependent on the PPAR-��mediated proliferation of peroxisomes, the 

PPAR-��antagonist GW6471 was applied in our study. Treatment of control and IPF 

fibroblasts with GW6471 for 24 h with two different concentrations (5 and 10 μM) increased 

the fibrotic response, shown by increased �-SMA expression in control and IPF fibroblasts 

(Fig. 32A and B). Inhibition of peroxisome proliferation by GW6471 resulted in the increase 

of ROS production in both control and IPF fibroblasts (Fig. 32C). These results suggest that 

inhibition of the peroxisome proliferation and PPAR-��by GW6471 would aggravate the 

fibrogenesis process in control and IPF fibroblasts.  

 

Fig. 32. PPAR-��inhibitor GW6471 blocks peroxisome proliferation and increases profibrotic response. 

(A-B) Single immunofluorescence staining for PEX13 and �-SMA in 24 h GW6471-treated control and IPF 

fibroblasts. Data represent the results of at least three experiments performed in triplicates. Scale bar: 10 μm 
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Fig. 33. PPAR-�� inhibitor GW6471 increases ROS generation in control and IPF fibroblasts. ROS 

quantification by DHE staining in 24 h GW6471-treated control and IPF fibroblasts. Data represent means ± SD 

of three independent experiments.  P value was calculated by unpaired Student t-test.  

  

 3.13. Upregulation of peroxisomal proteins in wild-type and T�RII 

knockout mice  

In order to further investigate the role of TGF-� signaling on peroxisome regulation, 

fibroblast cultures and lung tissue of T�RII knockout mice were used to compare the 

peroxisomal compartment to corresponding wild-type littermates.  Consistent with the in vitro 

findings, the peroxisome biogenesis protein PEX13 as well as the peroxisomal lipid metabolic 

enzyme ACOX1 and antioxidative enzyme catalase were enormously upregulated in T�RII 

knockout mice, in bronchial epithelium as well as in alveolar region of lung tissue as well as 

in lung fibroblasts isolated from mentioned subjects, suggesting a suppressing effect of    

TGF-��signaling on peroxisomal proteins (Fig. 34A-B and 36A-B). The upregulation of 

peroxisomal proteins PEX13p and PEX14p were also shown by Western blot analysis      

(Fig. 35). 
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Fig. 34. Increased abundance of peroxisomal proteins in T��RII knockout mice. (A-B) Double 

immunofluorescence staining for PEX13, ACOX1 and Catalase with �-SMA in wild-type and T�RII knockout 

lung tissue sections. Data is a representative of at least three reproducible experiments. Scale bar: 10 μm. 
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Fig. 35. Increased abundance of peroxisomal proteins in T��RII knockout mice. Western blot analysis of 

PEX13p, PEX14p in wild-type and T�RII knockout lung tissue. GAPDH was used as loading control. Data is a 

representative of at least three reproducible experiments. 

 

Similar alterations of peroxisomal proteins were also observed at the cellular level in cultures 

of isolated fibroblasts from wild-type and T�RII knockout mice. A tremendous increase in the 

abundance of peroxisomal biogenesis proteins PEX13p and PEX14p was observed in T�RII 

knockout fibroblasts (Fig. 36, Fig. 37). The T�RII knockout was demonstrated by T�RII 

staining and by Western blott in fibroblast culture (Fig. 36). The similar changes of increase 

in abundance of peroxisomal proteins were observed at mRNA level and by Western blot 

analysis in fibroblast cultures (Fig. 37). Since the T�RII-KO is a mesenchymal specific 

knockout, the knockout of this receptor includes the majority of mesenchyme derived cells 

(Fig. 36). These findings strongly suggest that TGF-� signaling might be involved in 

regulation of peroxisomal proteins, possibly by interacting with downstream transcription 

factors of TGF-� Smad dependent and independent signaling.      
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Fig. 36. Upregulation of peroxisomal proteins in T��RII knockout mice. (A) Double immunofluorescence 

staining of T�RII with �-SMA in wild-type and T�RII knockout lung fibroblasts. (B) Western blot analysis for 

T�RII, PEX13p and PEX14p in wild-type and T�RII knockout lung fibroblasts. GAPDH was used as loading 

control. Data is a representative of at least three reproducible experiments. Scale bar: 10 μm. 
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Fig. 37. Upregulation of peroxisomal proteins in T��RII knockout mice. (A) Double immunofluorescence 

staining of PEX14p with �-SMA in wild-type and T�RII knockout lung fibroblasts. (B) mRNA expression of 

PEX14 in T�RII knockout mice was analysed with real time qRT-PCR. The results were normalized with 28S 

rRNA and HPRT mRNA.  Data is a representative of at least three reproducible experiments. Data represent 

means ± SD of three independent experiments.  P value was calculated by unpaired Student t-test. Scale bar: 10 

μm. 

 

3.14. Upregulation of peroxisomal proteins in wild-type and Smad3 

knockout mice  

In order to investigate the possible regulation of peroxisomal proteins by TGF-� signaling, 

and in particular by TGF-� Smad-dependent pathway, general Smad3 knockout mice were 

used. Similar to mice with completely disturbed T�RII signaling, Smad3 knockout mice 

exhibited an increased abundance of the peroxisomal proteins involved in organelle 
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biogenesis (PEX14p), peroxisomal lipid metabolism (ABCD3, ACOX1) as well as 

peroxisomal antioxidative response (catalase) (Fig. 38A and 39A-B). Similar changes of the 

peroxisomal biogenesis protein PEX13p and the antioxidative enzyme catalase were observed 

with Western blot analysis (Fig. 38B). The Smad3-KO was verified by using an anti-Smad3 

antibody (Fig. 38B).  

 

 

Fig. 38. Upregulation of peroxisomal proteins in Smad3 knockout mice. (A) Double immunofluorescence 

staining of PEX14p with �-SMA in wild-type and Smad3 knockout lung tissue sections. (B) Western blot 

analysis of Smad3, PEX13p and catalase in wild-type and Smad3 knockout lung tissue. GAPDH was used as 

loading control. Data is a representative of at least three reproducible experiments. Scale bar: 10 μm 
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Fig. 39. Upregulation of peroxisomal proteins in Smad3 knockout mice. (A-B) Double immunofluorescence 

staining of ABCD3, ACOX1 and Catalase with �-SMA in wild-type and Smad3 knockout lung tissue sections. 

Data is a representative of at least three reproducible experiments. Scale bar: 10 μm. 

 

To confirm, that the TGF-� regulation of peroxisomal proteins also occurs in primary cell 

culture, fibroblasts were isolated from wild-type and Smad3 knockout mice mouse lungs. 

Indeed, the expression of peroxisomal biogenesis protein PEX13p was similarly upregulated 

in Smad3 knockout fibroblasts as shown by Western blot analysis (Fig. 40). Moreover, the 

mRNA levels for PEX14 and catalase were upregulated in Smad3 knockout fibroblasts (Fig. 

40). The increase of PEX13p abundance in the Western blots corroborates the morphological 

results obtained in Smad3-KO lungs and coincides with the downregulation of collagen I (Fig. 

40).  
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Fig. 40. Upregulation of the peroxisomal biogenesis protein PEX13p in Smad3 knockout mouse lung 

fibroblasts. (A) mRNA expression of PEX14 and catalase in Smad3  knockout mice was analysed with real time 

qRT-PCR. The results normalized with 28S rRNA and HPRT mRNA. (B) Western blot analysis of PEX13p and 

collagen I in wild-type and Smad3 knockout mice lung fibroblasts. GAPDH was used as loading control. Data 

represent means of ± SD of three independent experiments. P value was calculated with unpaired Student t-test. 

 

3.15. Upregulation of TGF-�� signaling via constitutively active T�R-I 

activation leads to reduction of peroxisomal biogenesis in the lung of one 

month old mice  

The TGF-beta receptor I (T�RI) is crucial in activation of Smad-dependent regulation of gene 

transcription. Therefore, a transgenic mouse expressing a constitutively active TGF-� type I 

receptor (T�RI/ALK5) was used to investigate the Smad-dependent regulation of the 

peroxisomal biogenesis protein PEX14p. T�RICA is c-myc tagged at the C-terminal end to be 

able to assess the TGF-� receptor I overexpression. The peroxisomal biogenesis protein 

PEX14p was strongly downregulated in the lung of one-month-old mice in cells 
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overexpressing the T�RICA as shown by immunocytochemistry staining (Fig. 41). The 

downregulation of PEX14p was also observed by Western blot analysis in lung homogenates 

of one-month-old T�RICA mice, whereas in lung homogenates of 3-month-old animals T�R-I 

activation upregulated the peroxisomal biogenesis protein PEX14p (Fig. 42). Taken together, 

TGF-� participates in regulation of peroxisomal biogenesis proteins possibly via Smad-

dependent signaling.  

 

 

Fig. 41. Downregulation of peroxisomal biogenesis protein PEX14p in T��RI constitutively active mice. 

Immunochemistry staining of lung tissue paraffin sections from one-month-old wild-type and T�RICA mice.    

(A-B) IHC staining for the c-myc-tagged T�RI revealed the higher abundance of this receptor in the T�RICA 

mice. (C-F) PEX14p staining was strongly downregulated in lung tissue of mice with TGF-� receptor I 

overexpression in bronchioli and the alveolar region in comparison to wild-type animals. T�RI WT: TGF-� 

receptor 1 wild-type, T�RICA: TGF-� receptor I constitutively active. Data is a representative of at least three 

reproducible experiments. Scale bar: 10 μm. 
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Fig. 42. Alterations of peroxisomal biogenesis protein PEX14p in T��RICA mice. Western blot analysis of 

PEX13p and collagen 1 in wild-type and T�RICA mouse lung tissue homogenates of 1- month and 3-month-old 

animals. GAPDH was used as loading control. T�RI WT: TGF-� receptor 1 wild-type, T�RICA: TGF-� receptor 

1 constitutively active, 1M: 1-month, 3M: 3-month. Data is a representative of at least three reproducible 

experiments. 
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4. Discussion  

The findings demonstrated in this thesis revealed a novel mechansism and provide compelling 

evidence that peroxisomes are protective organelles against the development or progression of 

lung fibrosis by scavenging ROS and participating in metabolism of lipid mediators, thus 

inhibiting the release of cytokines that trigger TGF-� signaling. Importantly, it was 

demonstrated that in lung tissue samples of IPF patients as well as in IPF fibroblast cultures 

peroxisomal proteins are downregulated. Furthermore, siRNA-mediated downregulation of 

the peroxisomal biogenesis protein PEX13p elicits a pro-fibrotic response, via activation of 

TGF-� signaling. Accordingly, treatment of IPF fibroblasts with PPAR-α agonists such as 

ciprofibrate or WY1463 increased the peroxisomal abundance and decreased the TGF-β1- 

induced myofibroblast differentiation. The findings also indicate that dysfunctional 

peroxisomes lead to increased cellular ROS production in IPF cells. Most importantly, in vivo 

findings in our bleomycin-induced TβRII knockout mouse model studies, loss of TGF-β 

signaling prevented the bleomycin-induced downregulation of peroxisomal proteins such as 

PEX14p, ACOX1 and catalase. As demonstrated in this thesis, downregulation of 

peroxisomes is mediated via TGF-� signaling, a pivotal cytokine important in pathogenesis of 

IPF and a crucial regulator of peroxisome biogenesis and metabolism.  

 

4.1. Role of peroxisomes in maintaining oxidant/antioxidant balance and 

their implication in lung inflammatory conditions and idiopathic 

pulmonary fibrosis 

It is well known that the lung is one of the organs most exposed to the various forms of 

reactive oxygen species due to its high oxygen environment [113]. Oxidant and antioxidant 

imbalance in the lung is associated with various respiratory inflammatory diseases such as 

asthma, idiopathic pulmonary fibrosis, adult respiratory distress syndrome, COPD, 

pneumonia, lung transplantation and lung cancer [162-164]. Especially, lung inflammatory 

diseases such as asthma and COPD as well as IPF as restrictive pulmonary disease are 

characterized by elevated reactive oxygen species (ROS) released from inflammatory cells, 

and oxidative stress plays an important role in the pathogenesis of these diseases [11, 164]. 

Moreover, scavenging or diminishing ROS was demonstrated also to protect mice from 

bleomycin-induced lung fibrosis [83]. Peroxisomes are present in different pulmonary cell 

types and exhibit strong heterogeneity in their abundance and enzyme composition [80]. 
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Peroxisomes produce high amounts of hydrogen peroxide, but also possess the most efficient 

antioxidative enzyme catalase, which scavenges hydrogen peroxide, thus helping to maintain 

the cellular oxidant/antioxidant balance [168]. Catalase as an important peroxisomal 

antioxidative enzyme was diminished in idiopathic pulmonary fibrosis as well as inhibited in 

bleomycin-induced pulmonary fibrosis, suggesting a protective role against inflammation and 

the development of lung fibrosis [11, 169]. Interestingly, ROS production is enormously 

increased in cases of downregulation of the antioxidative enzymes such as catalase and 

MnSOD in airway smooth muscle (ASM) [170]. In this respect, the protective role of 

peroxisomes in pulmonary fibrosis is closely associated with their functions in scavenging 

ROS species thus preventing excessive ROS generation and subsequent inflammatory 

reactions [5, 80, 120]. Accordingly, our findings also indicate that dysfunctional peroxisomes 

lead to increased cellular ROS production in IPF cells. This is in concordance with previous 

studies showing that the deficiency of peroxisomal proteins leads to increased ROS 

production and oxidative stress [114, 171].  
 

4.2. TGF-��1 is a crucial pathogenic factor in development of IPF and ROS 

induction, and an important regulator of peroxisome biogenesis and 

metabolism 

In this respect, TGF-�1 is thought to be a crucial pathogenic factor for the development of IPF 

by inducing epithelial cell death, ROS production and consequently deposition of 

extracellular matrix production and foci formation [82, 83, 85, 172]. Moreover, TGF-��� a 

key cytokine in proinflammatory and fibrotic processes is found to be upregulated in airway 

smooth muscle (ASM) in patients with asthma and COPD, as well as in lung fibroblasts of 

patients with idiopathic pulmonary fibrosis [11, 170]. In addition, TGF-�� also triggers ROS 

release through NADPH oxidases or direct activation of NADPH oxidase 4 (Nox4) by other 

mechanisms, induces enormous ROS generation in airway smooth muscle of asthma patients 

as well as in myofibroblasts of IPF patients [5, 170]. In this thesis is demonstrated the role of 

peroxisomal proteins in attenuating the fibrotic response, and in particular the impact of TGF-

� signaling on regulation of peroxisome biogenesis and metabolim. It is of particular interest 

to emphasize that in the observed findings lung tissue samples as well as fibroblasts of IPF 

patients exhibit reduced peroxisomal protein abundance, mimicking some molecular 

pathogenic mechanisms of Zellweger syndrome, a peroxisomal disorder with complete 

absence or reduced number of peroxisomes, and progressive development of hepatic fibrosis 
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[115]. We hypothesized that a continuous trigger would be necessary to induce this consistent 

downregulation of peroxisomes in IPF fibroblast cultures since peroxisomal biogenesis would 

complement for this downregulation over time. Based on our findings that the SBE-luciferase 

activity was higher in IPF cells in their basal state and contained increased concentrations of 

TGF-β1 in the cell culture medium (Fig. 11C and 15A), we propose that the persistent 

activation of TGF-β signaling in these cells might be responsible for the downregulation of 

peroxisomal proteins in IPF subjects. This hypothesis is also supported by the in vivo findings 

in our bleomycin-induced TβRII knockout mouse model studies, in which loss of TGF-β 

signaling prevented the bleomycin-induced downregulation of peroxisomal proteins such as 

PEX14p, ACOX1 and catalase (Fig. 23, 24, 25). In addition, peroxisomal proteins were 

strongly upregulated in T�RII knockout mice and Smad3 knockout mice, indicating a 

suppressive effect of TGF-� signaling on peroxisomal metabolism. Since the T�RII knockout 

mice are mesenchymal specific knockout and no general KO mice, the majority of 

mesenchyme-derived cells contain the knockout such as fibroblasts, therefore few other cell 

types exhibit a slight expression of T�RII in the knockout animals.  Consistent with these 

findings, T�RI constitutively active mice (T�RICA) inducing continuous TGF-��signaling 

activation exhibit a reduced abundance of the peroxisomal biogenesis protein PEX14p in 1-

month-old mice. The upregulation of peroxisomes in lung samples of 3-month-old mice in 

T�RICA suggests the involvement of compensatory mechanisms regulating the peroxisome-

related gene expression, under continuous stress conditions to escape from the acute 

suppressive effect of TGF-� signaling. To our knowledge, this is the first study to show a 

direct role of TGF-β signaling in the regulation of peroxisome-related genes, possibly by 

interacting with downstream transcription factors of TGF-��signaling (e.g. Smad3, Smad4).  

 

4.3. Pro-inflammatory cytokines TNF-���and IL-6 inhibit the peroxisome 

biogenesis protein PEX13p via AP-1 signaling  

Furthermore, downregulation of the peroxisomal genes by the pro-inflammatory cytokine 

TNF-� has been shown previously in the liver [133]. In this thesis, we extended our 

knowledge on the molecular mechanisms leading to the TNF-� mediated downregulation of 

peroxisomes by showing that TNF-� mediates this effect through activation of AP-1 (Fig. 

27C-D). It is known that TNF-�-/- mice develop less liver fibrosis in comparison to littermate 

controls, exhibit reduced levels of �-SMA, a marker for activated myofibroblasts, and 



90 
 

reduced TGF-�1 mRNA [173]. Consistent with our findings are the existing evidences from 

the literature that TNF-� is crucial in initiation and progression of the fibrotic processes via 

AP-1 in Swiss 3T3 fibroblasts [99, 101]. Similarly, the interplay between Smad-dependent 

TGF-β signaling and AP-1 that we observed in our study [11] has also been reported in 

numerous studies and are still contradictory. In one study, the transcriptional factor AP-1 was 

reported to be essential for ROS-mediated TGF-β1 activation and TGF-β1-induced IL-6 

production [174] which is in line with our finding that AP-1 signaling activates Smad-

dependent SBE activation (Fig. 26C) [11]. In contrast to this, Verrecchia and colleagues 

reported that the Jun family of AP-1 factors acts as inhibitor of Smad-dependent signaling 

[166]. The AP-1 family of transcriptional factors is a broad class of transcriptional factors that 

can form hetero and homo dimmers and were shown to be both pro-fibrotic and anti-fibrotic, 

based on the specific factors activated in different conditions [175, 176]. Further studies to 

specifically identify the AP-1 factors activated due to peroxisomal dysfunction are required to 

understand this observed pro-fibrotic nature in our experimental conditions. In addition to 

TNF-� also other proinflammatory cytokines were reported to play a role in the molecular 

pathogenesis of lung fibrosis [5, 177]. In agreement with this notion are the findings of this 

thesis that PEX13 knockdown in fibroblasts induces activation of TGF-β signaling, increased 

ROS, collagen and IL-6 production. Several studies have reported that ROS and the release of 

pro-inflammatory cytokines are the main triggers of TGF-� signaling pathway, shown also in 

bleomycin-induced lung fibrosis mouse model at the peak of inflammation on day 7 [5, 177]. 

Interestingly, in our bleomycin model the strongest downregulation of peroxisomes was also 

observed at day 7 (Fig. 23), which is consistent with our in vitro findings that pro-

inflammatory cytokines TNF-α and IL-6 downregulate peroxisomes in IPF fibroblasts (Fig. 

27D-E).  IL-6 is known to mediate many inflammatory processes in the lung and has been 

implicated in the pathogenesis of a variety of respiratory disorders and the possible 

association between IL-6 and development of fibrosis was described [178, 179]. In addition, 

IL-6 plays an important role in development of BLM-induced lung inflammation and 

subsequent fibrotic changes through the activation of TGF�� signaling [104]. ROS interferes 

with many cellular functions and results in activation of the master regulators of the cellular 

response to oxidative stress such as Nrf2 and NF-
B and the induction of the anti-oxidative 

machinery [180]. Although we were able to identify the activation of Nrf2 in our PEX13 

knockdown fibroblasts based on the ARE-luciferase activity, luteolin which is commonly used 

in studies as an Nrf2 inhibitor was also found to inhibit the transcriptional factor AP-1. Hence 
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at present we cannot conclude that the observed effect of luteolin on SBE activation is solely 

dependent on its ability as an Nrf2 inhibitor.  

 

4.4. Proliferation of peroxisomes by PPAR-���agonists inhibit the TGF-��-

induced pro-fibrotic response, myofibroblast differentiation and fibroblast 

proliferation 

Finally, we also show that pretreatment of IPF cells with PPAR-��agonists for longer time-

points reduced the TGF-β1-induced collagen and myofibroblast differentiation, provided that 

the endogenous PPAR-α activation during TGF-β1 stimulation is blocked. This is particularly 

interesting because several independent studies that reported anti-fibrotic effects of PPAR-α 

agonists have not considered peroxisome proliferation by these agonists. This is largely due to 

the vast amount of accumulating evidence in the literature describing the broad anti-fibrotic 

and anti-inflammatory properties of PPAR-�. In particular are the studies which report that 

PPAR�� agonists i) prevent cardiac fibrosis by inhibiting the proliferation of cardiac 

fibroblasts through suppression of ET-1 pathway [167], ii) reduced the lung injury induced by 

bleomycin [155] and�iii) inhibit TGF-� induced transcription of �5 integrin in vascular 

smooth muscle cells [181]. The inhibiting effects of fenofibrate on cardiac fibroblast 

proliferation may be caused by upregulation of  p27Kip1 by suppression of c-jun expression 

and may be related to the cell cycle of cardiac fibroblasts [167]. Consistent with this study 

above, ciprofibrate inhibits fibroblast proliferation in control and IPF fibroblasts. 

Furthermore, PPAR-� as a transcription factor mediates peroxisome proliferation in rodent 

liver, and a functional PPRE is found about 8.4 kb downstream of the PEX11� promoter 

[119], encoding a protein involved in peroxisome proliferation [119, 132]. Lack of specific 

and potent peroxisome proliferators that are independent of specific PPAR-activation is one 

of the main technical limitations in distinguishing the beneficial effects of peroxisome 

proliferation. Although the findings presented here suggest that peroxisome proliferation 

rather than the endogenous PPAR-α activation mediates the anti-fibrotic effects observed, we 

cannot rule out the possibility of other molecular targets being altered during this 48 h 

pretreatment with PPAR-α agonists. Similarly, it should also be taken into consideration that 

the PPAR-α antagonist, GW6471 used in this study might also interfere in the 

activation/regulation of other PPAR family members, leading to secondary effects, which 

could result in the inhibitory effect observed on TGF-��-induced α-SMA and collagen. Future 
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studies have to be carried out to confirm the specificity of this PPAR-α antagonist and to get 

more insights into the complex interactions of distinct PPARs on the PPREs of dependent 

genes, e.g. genes for peroxisomal proteins. Our study also highlights the necessity to design 

and synthesize new drugs with selective peroxisome proliferation activity, independent of 

PPARs, to resolve the technical difficulties in studying the beneficial effects of peroxisome 

proliferation in disease models. 

 

4.5. Concluding remarks 

Taken together, activation of TGF-� signaling during lung injury and subsequent induction 

and release of pro-inflammatory mediators such as TNF-α, ROS and IL-6 in IPF, leads to the 

downregulation of peroxisomes (e.g. PEX13) via AP-1 transcription factor, thus enabling the 

persistence of a fibrotic phenotype, which in turn generates more ROS and elevates secretion 

of proinflammatory cytokines (e.g. IL-6) (Fig. 43). Moreover, the activation of TGF-β 

signaling (Smad-dependent pathway) in peroxisome downregulation through PEX13 

knockdown promotes the increase of extracellular matrix production and generation of a 

fibrotic phenotype (Fig. 43).  In summary, this study identifies a functionally relevant and 

potentially possible target for future development of new viable therapeutic approaches “the 

peroxisome”, and significantly extends the role of this organelle in the maintenance of normal 

cellular function by scavenging ROS, metabolizing lipid mediators, and by protecting against 

inflammatory processes, leading eventually to exacerbations in patients with pulmonary 

fibrosis. 
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Fig. 43. Mechanism: Schematic illustration of TGF-β1 effects on peroxisome function, described as 

proposed model in this study. In idiopathic pulmonary fibrosis, lung injury leads to the production of pro-

inflammatory mediators such as TNF-α, IL-6 and ROS and the activation of pro-fibrogenic TGF-β-�and AP-1 

signaling. This leads to downregulation of peroxisomes (e.g. PEX13p), which in turn induces more ROS, 

promotes secretion of cytokines such as IL-6 and triggers the activation of TGF-β��and AP-1 signaling in a 

vicious cycle thus enabling the persistence of a fibrotic phenotype and inflammatory exacerbation phases in IPF 

patients. In addition, this vicious cycle also leads to increased production of collagen. In contrast, treatment with 

PPAR-α agonists induce the proliferation of peroxisomes and inhibit the pro-fibrogenic mechanisms such as 

myofibroblast differentiation (α-SMA) and collagen release [11]. 
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5. Summary 

Idiopathic pulmonary fibrosis (IPF) is a chronic devastating disease, and its pathogenic 

mechanisms remain incompletely understood. In this disease, the lung undergoes dramatic 

pathological remodelling and myofibroblasts with high α-smooth muscle actin (α-SMA) 

content secrete huge amounts of extracellular matrix. However, altered peroxisome functions 

in IPF pathogenesis have never been investigated. Proinflammatory mediators and reactive 

oxygen species (ROS) accumulation were shown as pathogenetic mechanisms of this yet 

incurable disease. Since peroxisomes are involoved in both the degradation of 

proinflammatory lipid mediators (eicosanoids) as well as ROS metabolism, alterations in the 

protective capacity of this organelle might contribute to the pathogenesis of IPF. In addition, 

children with Zellweger Syndrome, the most severe peroxisomal biogenesis defect, develop 

chronic liver fibrosis and cirrhosis, suggesting that the peroxisomal metabolism is essential 

for the protection against fibrotic organ degeneration. In the experimental part of this thesis 

the hypothesis was tested, 1) whether the peroxisomal compartment and corresponding gene 

expression is altered in IPF, 2) whether the downregulation of peroxisomal biogenesis and 

metabolism in IPF promotes further excessive secretion of extracellular matrix proteins and 

proinflammatory mediators and 3) whether proinflammatory and profibrotic cytokines 

influence peroxisomal abundance and metabolism. Moreover, the molecular mechanisms 

leading to the alterations of the peroxisomal compartment were investigated. In addition, a 

bleomycin induced lung fibrosis mouse model was used to analyze peroxisomal biogenesis, 

antioxidative and lipid metabolic proteins at various time-points after bleomycin treatment. 

The molecular mechanisms and specific involvement of peroxisomal proteins in TGF-�� 

induced ECM production were investigated. Finally the effect of TGF-�1 on the peroxisomal 

compartment in TGF-beta receptor II knockout (T�RII) and Smad3 knockout mice as well in 

transgenic constitutively active T�RICA overexpressing mice was studied. In this thesis, the 

peroxisomal compartment as well as peroxisomal metabolic proteins were analyzed in parallel 

to several cell type-specific markers in paraffin sections of different lung tissue samples of 

human controls in comparison to IPF patients. In addition, primary cultures of lung fibroblasts 

of the same individuals were used for morphological, biochemical and molecular biological 

analysis of peroxisomal protein alterations. Moreover, control and IPF fibroblast were 

challenged with TGF-����TNF-�, IL�� and PEX13 siRNA to analyze the impact of 

peroxisomes on the molecular pathogenesis of IPF. To confirm this in vitro findings the 

bleomycin induced lung fibrosis mouse model and T�RII mice were used to study peroxisome 



95 
 

biogenesis and metabolism in situ in these animal models. By comparing peroxisome-related 

protein and gene expression in lung tissue and isolated lung fibroblasts between human 

control and IPF patients, we found that IPF lungs exhibited a significant down-regulation of 

peroxisomal biogenesis and metabolism (e.g. PEX13p, catalase, ABCD3 and acyl-CoA 

oxidase 1). Moreover, in vivo the bleomycin-induced downregulation of peroxisomes was 

abrogated in T�RII mice indicating a role for TGF-β�signaling in the regulation of 

peroxisomes. Furthermore, in vitro treatment of IPF fibroblasts with the pro-fibrotic factors 

TGF-β1 or TNF-α was found to downregulate peroxisomes via the AP-1 signaling pathway. 

Therefore, the molecular mechanisms by which reduced peroxisomal functions contribute to 

enhanced fibrosis were further studied. Direct down-regulation of PEX13 mRNA by RNAi   

1) induced the activation of Smad-dependent TGF-β signaling, accompanied by increased 

ROS production, 2) resulted in the release of cytokines (e.g. IL-6, TGF-β) and excessive 

production of collagen I and III. In contrast, treatment of fibroblasts with ciprofibrate or 

WY14643, PPAR-α activators, induced peroxisome proliferation and reduced the TGF-β-

induced myofibroblast differentiation and collagen protein in IPF cells. 

Overall in this thesis it could be proven that the peroxisomal compartment is severely affected 

and compromised in IPF, mediated by TGF-�1 signaling and the action of proinflammatory 

cytokines (TNF-� and IL-6) via AP-1 signal transduction. TGF-�� downregulates 

peroxisomes via the Smad-dependent pathway, which results in reduced ability of cells to 

scavenge ROS, degrade proinflammatory lipid mediators (eicosanoids) and subsequently 

inducing a vicious cycle, leading to the aggravation of IPF. Thus, TGF-�� and TNF-� may 

exacerbate the clinical conditions and intensify the fibrotic response in patients with IPF upon 

inflammation and lung injury by the downregulation of peroxisomal biogenesis and 

metabolism (e.g. PEX13, ACOX1).  
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6. Zusammenfassung  

Die Ideopathische Lungenfibrose (IPF) ist eine schwerwiegende chronische 

Lungenerkrankung, deren Pathomechanismus bis heute noch nicht vollständig aufgeklärt 

wurde. Im Verlauf dieser Erkrankung wird die Lungenstruktur dramatisch pathologisch 

umgebaut und Myofibroblasten mit einem hohen Gehalt an �-glatten Muskelzellaktin          

(α-SMA) sezernieren riesige Mengen extrazelluläre Matrix. Die Ansammlung von 

proinflammatorischen Mediatoren und reaktiven Sauerstoffspezies (ROS) ist bisher als 

pathogener Faktor dieser nach wie vor unheilbaren Krankheit, nachgewiesen worden. Da 

Peroxisomen sowohl in den Abbau von proinflammatorischen Lipidmediatoren (Eicosanoide) 

als auch in den ROS-Stoffwechsel eingebunden sind, könnten Veränderungen der 

peroxisomalen Schutzfunktion zur molekularen Pathogenese der IPF beitragen. Weiterhin 

entwickeln Kinder mit Zellweger Syndrom, den schwersten Phänotyps der peroxisomalen 

Biogenese Defekte (PBD), chronische Leberfibrose bzw. Zirrhose, was für die essentielle 

Bedeutung des peroxisomalen Stoffwechsels zum Schutz vor fibrotischen 

Organveränderungen spricht. Im experimentalen Teil dieser Dissertation wurde geprüft, 1) ob 

das peroxisomale Kompartiment und die dazugehörige Genexpression bei IPF verändert ist, 

2) ob die Herrunterregulierung der peroxisomalen Biogenese und des peroxisomalen 

Stoffwechsels die Sekretion extrazellulärer Matrixproteine und inflammatorische Mediatoren 

steigert und 3) ob proinflammatorische und profibrotische Zytokine die Anzahl Peroxisomen 

und deren Stoffwechsel beeinflussen. Außerdem wurden die molekularen Mechanismen, die 

zur Veränderungen des peroxisomalen Kompartiments führen, untersucht. Zusätzlich wurde 

ein Bleomycin-induziertes Lungenfibrose-Mausmodell benutzt, um die peroxisomale 

Biogenese sowie Proteine des antioxidativen Stoffwechsels des Lipidmetabolismus zu 

verschiedenen Zeitpunkten nach der  Bleomycinbehandlung zu analysieren. Weiterhin wurden 

die Mechanismen und die spezifische Beteiligung peroxisomaler Proteine bei der  TGF-�� 

induzierten Produktion extrazellulärer Matrixkomponenten untersucht. Zuletzt wurde der 

Effekt von TGF-�1 auf das peroxisomale Kompartment in T�RII-, und SMAD3-

Knockoutmäusen, sowie in transgenen T�R-I überexprimierenden produzierenden Mäusen 

(T�RICA), beobachtet. In dieser Dissertation wurden das peroxisomale Kompartment und 

peroxisomale Stoffwechselproteine parallel zu zelltyp-spezifischen Markern in 

Paraffinschnitten von verschiedenen Lungengewebsproben von gesunden Kontrollen und IPF 

Patienten analysiert. Zusätzlich wurden Primärkulturen von Lungenfibroblasten von 

Kontrollen und IPF Patienten benutzt, um sie morphologisch, biochemisch und 
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molekularbiologisch auf peroxisomale Veränderungen zu untersuchen. Weiterhin wurden 

Primärkulturen von gesunden und IPF Patienten mit TGF-����TNF-�, IL�� und PEX13 

siRNA behandelt, um den Einfluss von Peroxisomen auf die molekulare Pathogenese der IPF 

besser zu verstehen. Um die in vitro Ergebnisse zu bestätigen, wurden die Biogenese und der 

Stoffwechsel in der Peroxisomen in situ in Wildtyp Mäusen mit Bleomycin induzierten 

Lungenfibrose im Vergleich zu TGF-beta Rezeptor II Knockoutmäuse (T�RII) untersucht. 

Beim Vergleich peroxisomen-assoziierter Protein-und Genexpression in Lungengewebe und 

isolierten Fibroblasten gesunder Kontrollen und IPF Patienten fiel auf dass die Biogenese und 

der Stoffwechsel der Peroxisomen signifikant herunterreguliert wurden (z.B. PEX13p, 

Katalase, ABCD3 und Acyl-CoA-Oxidase 1). Ferner wurde die Bleomycin-induzierte 

Herunterregulierung der Peroxisomen in T�RII Knockoutmäusen aufgehoben, was auf eine 

wichtige Rolle von TGF-beta auf die Regulierung der Peroxisomen hinweist. Zusätzlich 

wurde nach Behandlung mit den profibrotischen Faktoren, TGF-β1 oder TNF-α in IPF 

Fibroblasten eine Herunterregulierung der Peroxisomen durch den AP-1 Signalweg 

beobachtet. Deswegen wurden die Mechanismen, duch die eine Verringerung der 

Peroxsiomen zu vermehrten Fibrose beitragen, im Detail untersucht. Eine direkte 

Herunterregulierung der PEX13 mRNA via RNAi 1) induzierte die Aktivierung  des Smad-

abhängigen TGF-β Signalwegs und wurde begleitet von einer gesteigerten ROS-Produktion, 

2) resultierte in der Freisetzung von Zytokinen (z.B. IL-6, TGF-β1) und der übermäßigen 

Produktion von Kollagen I und III.  Im Gegensatz dazu führte eine Behandlung mit 

Ciprofibrat oder WY14643, beides PPAR-α-Aktivatoren, zu einer Proliferation der 

Peroxisomen und der reduzierten TGF-β-induzierten Myofibroblastendifferentiation, sowie zu 

verringerten Kollagenmengen in IPF-Zellen. 

Zusammenfassend konnte in dieser Dissertation nachgewiesen werden, dass Peroxisomen bei 

der ideopathischen Lungenfibrose stark verändert und beeinträchtigt sind, und dieser Prozess 

durch TGF-�1 und dem Einfluss von proinflammatorischen Zytokinen (TNF-� und IL-6) 

mittels der AP-1 Signaltransduktion ausgelöst wird.  TGF-�� reguliert Peroxisomen mittels 

des Smad-abhängigen Signalwegs herunter, was in einer verminderten Fähigkeit, zu 

intrazellulären ROS-Abwehr mündet. Zusätzlich werden proinflammatorische Mediatoren 

(Eicosanoide) nicht mehr abgebaut, was in einen Teufelskreis mündet und zur 

Verschlechterung der ideopathischen Lungenfibrose führt. Somit scheinen TGF-�� and    

TNF-� zur Exazerbation der klinischen Symptome und der verstärkten Fibrose von IPF 

Patienten durch die Herunterregulierung der peroxisomalen Biogenese und des peroxisomalen 

Stoffwechsels (z.B. PEX13, ACOX1) beizutragen. 
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