
Combinatory Microarray and SuperSAGE Analyses
Identify Pairing-Dependently Transcribed Genes in
Schistosoma mansoni Males, Including Follistatin
Silke Leutner1, Katia C. Oliveira2, Björn Rotter3, Svenja Beckmann1, Christin Buro1, Steffen Hahnel1,

Joao P. Kitajima4, Sergio Verjovski-Almeida2, Peter Winter3, Christoph G. Grevelding1*

1 Institute of Parasitology, Justus-Liebig-University Giessen, Giessen, Germany, 2 Departamento de Bioquı́mica, Instituto de Quı́mica, Universidade de São Paulo, São

Paulo, Brasil, 3 GenXPro GmbH, Frankfurt Main, Germany, 4 Hospital Israelita Albert Einstein, São Paulo, Brasil

Abstract

Background: Schistosomiasis is a disease of world-wide importance and is caused by parasitic flatworms of the genus
Schistosoma. These parasites exhibit a unique reproduction biology as the female’s sexual maturation depends on a
constant pairing-contact to the male. Pairing leads to gonad differentiation in the female, and even gene expression of
some gonad-associated genes is controlled by pairing. In contrast, no morphological changes have been observed in males,
although first data indicated an effect of pairing also on gene transcription in males.

Methodology/Principal Findings: To investigate the influence of pairing on males, we performed a combinatory approach
applying SuperSAGE and microarray hybridization, generating the most comprehensive data-set on differential transcription
available to date. Of 6,326 sense transcripts detected by both analyses, 29 were significantly differentially transcribed.
Besides mutual confirmation, the two methods complemented each other as shown by data comparison and real-time PCR,
which revealed a number of genes with consistent regulation across all methods. One of the candidate genes, follistatin of S.
mansoni (SmFst) was characterized in more detail by in situ hybridization and yeast two-hybrid (Y2H) interaction analyses
with potential binding partners.

Conclusions/Significance: Beyond confirming previously hypothesized differences in metabolic processes between pairing-
experienced (EM) and pairing-unexperienced males (UM), our data indicate that neuronal processes are involved in male-
female interaction but also TGFb-signaling. One candidate revealing significant down-regulation in EM was the TGFb-
pathway controlling molecule follistatin (SmFst). First functional analyses demonstrated SmFst interaction with the S.
mansoni TGFb-receptor agonists inhibin/activin (SmInAct) and bone morphogenic protein (SmBMP), and all molecules
colocalized in the testes. This indicates a yet unknown role of the TGFb-pathway for schistosome biology leading to male
competence and a possible influence of pairing on the male gonad.
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Introduction

Schistosoma mansoni is a species of parasitic flatworms causing

schistosomiasis, an infectious disease of worldwide importance for

man and animals. Besides vertebrates as final hosts, the parasites’

life cycle includes a snail intermediate host, and both are infected

by aquatic larval stages. Schistosomiasis occurs in 78, mainly

tropical and sub-tropical countries with about 600 million people

at risk, of which 243 million required regular treatment in 2011.

Thus it is one of the most prevalent parasitemias in the world,

second only to malaria [1–4]. Pathology is induced by eggs

deposited in the bloodstream by paired females, each producing

up to 300 eggs per day [5]. A necessity for egg production is the

completion and maintenance of the full development of female

gonads. For this, the female depends on a constant pairing-contact

to a male partner, an exceptional phenomenon in nature. Thus

male worms have a key-role in the reproduction biology of

schistosomes. Besides causing morphologic alterations comprising

a significant increase of the body size of a paired female, which

originates from mitogenic processes and differentiation of the

reproductive organs ovary and vitellarium, the male even controls

gene expression in its partner [6,7]. While these effects on females
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have been a strong focus for research throughout the last decades
[8–11], only few studies concentrated on pairing-dependent
processes in the male. Authors of early studies presumed that

different factors are transmitted from male to female controlling

female body length as well as sexual maturation [12,13].

Stimulation of the latter was reported to act locally [14,15], also

a tactile impulse was proposed, while sperm or seminal fluid were

excluded [12,14]. Vague evidence was found for a male-secreted

hormone or protein to act on the female, however, none of these

leads resulted in the identification of a concrete male stimulus [16–

20]. Since glucose and other substances like cholesterol were

shown to be transferred from the male to the female, also the

supply of nutrients by the male was suggested to be the basis for

female development [21–24].

So far only one glycoprotein (GCP = gynecophoral canal

protein) was identified [25] and even described to be essential

for pairing in S. japonicum [26]. Localization to the male

gynecophoral canal as well as on the female surface further

indicated the putative importance of GCP for the male-female

interaction [27]. Although its function has not been clearly

identified yet, evidence was obtained for the regulation of GCP by

a TGFb-dependent pathway in S. mansoni [28]. Other studies

indicated that pairing may have an effect on the male as well, by

influencing its capacity to stimulate mitosis in the female [29]. This

led to the hypothesis that males have to reach a kind of

competence before being able to induce developmental processes

in the female.

Along with the progress of the genome [30–33] and large-scale

transcriptome sequencing [34,35] projects, additional analysis

methods became available, which were used among others to

compare pairing-experienced (EM) and pairing-unexperienced

(UM) males. While the majority of these studies applied micro-

arrays, several groups used serial analysis of gene expression (SAGE)

alternatively. One of these studies [36] compared paired adult males

and females and their pairing-unexperienced counterparts. For EM

and UM the authors found differential regulation for transcripts

contributing to developmental processes, metabolism and the

redox-system. Already before the genome project was finished, an

early microarray-based study compared EM and UM identifying 30

highly expressed genes to be exclusively transcribed in EM and 66 in

UM [37]. Their identities indicated RNA metabolic processes to be

differentially regulated between EM and UM, which was supported

by a subsequent study [38].

Addressing the still unsolved question of male competence, here

we investigated the influence of pairing on gene transcription in

males. To this end we used two well established transcriptome

analysis methods, SuperSAGE and microarray. The combination

of both methods aimed at the production of corresponding data

sets confirming, but also complementing each other to generate a

comprehensive set of differentially transcribed genes in EM and

UM that provides new insights into the male-female interaction.

Among the most interesting genes identified here was a S. mansoni

follistatin homolog (SmFst), a potential inhibitor of TGFb
pathways [39,40]. Besides its pairing-dependent transcriptional

regulation in males, our first functional analyses demonstrated not

only gonad-preferential transcription of SmFst, but also its

potential to interact with the TGFb-receptor agonists SmInAct

and SmBMP, which colocalized in the gonads. Thus, first evidence

was obtained that TGFb signaling plays an additional role for

schistosome biology being one of probably several elements

guiding male competence.

Materials and Methods

Parasite stock
The parasite life cycle was maintained using a Liberian isolate of

Schistosoma mansoni [41], Biomphalaria glabrata as intermediate snail

host, and Syrian hamsters (Mesocricetus auratus) as final host. To

produce EM/EF (pairing-experienced males/females) or UM/UF

(pairing-unexperienced males/females) snails were infected with

either several miracidia (poly-miracidial infection), or only one

miracidium (mono-miracidial infection). Poly-miracidial snail

infections led to populations of male and female cercariae, which

were used for bisex hamster infections resulting in EM and EF.

Mono-miracidial snail infections led to unisexual populations of

cercariae, which upon final-host infection developed into UM or

UF. After 42 days (EM) or 67 days (UM) post infection adult

worms were obtained by hepatoportal perfusion. This difference is

due to our experience with experimental hamster infections that

revealed a positive effect on perfusion efficiency and quality of

unisexual worms, when the infection period is elongated to 67

days. This elongation had no influence on further experimental

procedures, which concentrated on the comparison of the pairing

status of male worms. For EM enrichment, paired males from

bisex hamster infections were carefully separated from their

partners by feather-weight tweezers, immediately frozen, and

stored at 280uC until further use.

Ethics statement
All experiments with hamsters have been done in accordance

with the European Convention for the Protection of Vertebrate

Animals used for Experimental and other Scientific Purposes (ETS

No 123; revised Appendix A) and have been approved by the

Regional Council (Regierungspraesidium) Giessen (V54-19 c 20/

15 c GI 18/10).

Isolation of RNA, cDNA-synthesis and standard PCRs
Total RNA from adult worms was extracted using TriFast

(PeqLab) following the manufacturer’s instructions. Subsequently

Author Summary

Schistosomiasis is an important infectious disease caused
by worm parasites of the genus Schistosoma and directly
affects more than 240 million people in 78 tropical and
sub-tropical countries but also animals. Pathogenesis is
triggered by eggs that are produced by paired females and
get trapped in liver and gut causing severe inflammation.
While studies have concentrated on the reproductive
biology of schistosome females in the past, not much is
known about males even though they are indispensable
for female sexual development and egg production.
Therefore, we studied pairing-dependent processes in S.
mansoni males using two independent transcriptomics
approaches providing a congruent and most comprehen-
sive data-set on genes being differentially transcribed
between pairing-experienced, competent males and pair-
ing-unexperienced, naive males. Besides confirming for-
mer studies concerning changes in metabolic processes,
our results give new insights into processes leading to
male competence indicating among others a potential role
of neurotransmitters and TGFb signal-transduction pro-
cesses. We especially highlight the follistatin gene SmFst,
which codes for an inhibitor of the TGFb-pathway. SmFst
transcription was localized in the testes and found to be
down-regulated in pairing-experienced males. This indi-
cates a yet unknown function of pairing on the male
gonad and a further role of TGFb-signaling for schistosome
biology.

Pairing-Dependent Transcripts in S. mansoni Males
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extracted RNAs were quality-checked on denaturing formalde-

hyde gels.

Following total RNA extraction, cDNA synthesis was performed

with the Quantitect Reverse Transcription Kit (Qiagen) following

the manufacturer’s protocol with 1 mg total RNA from EM or UM

as template. Standard PCR reactions were performed in a final

volume of 25 ml using primer end concentrations of 800 nM, an

annealing temperature of 60uC, elongation at 72uC, and FirePol-

Taq (Solis biodyne).

Microarray-analyses
Following hamster perfusion, 50 EM or UM were collected,

incubated over-night in RNAlater (Ambion) and stored at 280uC.

For total-RNA isolation approximately 25 worms from each batch

were washed twice in 500 ml H2ODEPC, followed by addition of

1 ml TRIzol reagent (Invitrogen). Subsequently, the worms were

homogenized mechanically and incubated for 5 min at room

temperature (RT) before 200 ml chloroform was added, mixed for

15 s and incubated for 2–3 min. Following centrifugation for

15 min at 12,000 g and 4uC the upper phase was transferred to a

new tube and mixed with 500 ml Isopropanol. After incubation for

10 min at RT the RNA was centrifuged for 10 min at 12,000 g

and 4uC. The pellet was washed with 1 ml ethanol (75%) and

centrifugation repeated for 5 min at 4uC and 7,500 g. The

supernatant was discarded, the pellet dried and resuspended in

25 ml H2ODEPC. Before determination of the concentration on a

spectrophotometer (Nanodrop) the RNA was shortly heated to

65uC. RNA purification was done following the animal tissue

protocol (Qiagen RNeasy Mini kit) with the following modifica-

tions: samples were supplemented to a volume of 100 ml, and

350 ml RLT buffer and 250 ml ethanol (70%) were added before

the suspension was transferred onto a column (Qiagen RNeasy

Mini kit). RNA was eluted with 30 ml H2ODEPC, and the flow-

through put on the column for a second elution step. The

concentration of RNA was determined again (see above), and its

quality checked on a Bioanalyzer (Agilent 2100 Bioanalyzer,

Agilent Technologies).

RNA was reverse transcribed, in vitro amplified, labeled with Cy3

or Cy5, and hybridized according to the Agilent technology

protocol for ‘‘two color microarray based gene expression analysis’’.

The samples were hybridized on a 4644 k oligoarray containing

60 mer oligonucleotides that was custom-designed by us [42], and

manufactured by Agilent Technologies; the platform probe

sequences are available on Gene Expression Omnibus (GEO)

under the accession number GPL8606. This platform was recently

re-annotated [43] according to the first draft of the genome project

[30]. Three independent biological replicas for EM and UM

populations each were used for microarray analyses, each with four

technical replicas including dye swaps. Data were extracted using

Agilent feature extraction software and raw data are available in

NCBI’s Gene Expression Omnibus (GEO) [44] under the accession

number GSE45696 (subseries number GSE44193). Log2ratios were

calculated using LOWESS normalized intensity values of UM and

EM (log2 UM/EM) with R [45]. Subsequently, a manual filtering

process was applied before statistical analysis, keeping only those

oligonucleotides that were defined as representative (unique) for

each gene (criteria ‘‘to be used in analysis’’) according to the

information provided together with the re-annotation of the array

[43]. Remaining transcripts were submitted to a manual filtering

process keeping only those transcripts that were present in all

biological replicas, in at least three technical replicas of one

biological replica in at least one condition (EM or UM). With these

pre-selected data a statistical analysis for microarrays (SAM) [46]

was performed using a one-class analysis. Significance cutoff was

chosen at a FDR (false discovery rate) of 0.01, and only average

log2ratios ,20.585 or .0.585 (which corresponds to a 1.5- fold

difference in transcript levels) were defined as relevant. Genes

fulfilling these requirements are described in the text as significantly

differentially transcribed. The final analysis focused on oligonucle-

otides representing sense transcripts (although the array also

contained oligonucleotides representing putative antisense RNAs

for each corresponding gene locus).

SuperSAGE
Sample collection for SuperSAGE equaled that for the

microarray approach. Total RNA was extracted from whole

worm batches of 50 males (EM or UM). RNA was quality-

controlled on a denaturing formaldehyde gel as well as with a

bioanalyzer (Agilent 2100 Bioanalyzer, Agilent Technologies). The

following experimental procedure to perform SuperSAGE was

done as described previously [47] with minor changes [48]. Raw

data were deposited at GEO [44] under the accession number

GSE45696 (subseries number GSE45628).

Tags were annotated applying the same procedure as for the re-

annotation of the microarray [43] and separated or added up

according to their annotation to the predicted exon or intron parts

of a CDS in either sense or antisense orientation. Counts were

normalized to a library size of 1,000,000, and a filtering process

was applied keeping only those transcripts that were detected in

two out of three biological replicas in EM or UM. A program

implementing the statistical method of Audic and Claverie [49]

using a Bio_Sage script (pearl) (http://search.cpan.org/,scottzed/

Bio-SAGE-Comparison1.00/lib/Bio/SAGE/Comparison.pm) was

used for significance analysis of the data. The statistical cutoff was

p,1210. As with the array, only transcripts with average log2ratios

,20.585 or .0.585 were selected for further analysis. For data

comparison only annotated sense transcripts were used, while 7,124

transcripts annotated as antisense as well as 19,610 tags without

annotation were excluded from analysis.

SuperSAGE and microarray data comparison
Data for sense transcripts from SuperSAGE and microarray

were comparatively analyzed using Spotfire [50] and Microsoft-

Excel. Smp_numbers without a match in both analyses were

manually checked again. The same approach was used for

comparative-analysis to other data. An intersection data-set was

created, which contained only transcripts detected by both

analyses.

Real-time PCR
These were performed on a Rotor Gene Q (Qiagen) using

SYBR-Green MasterMixes (PerfeCTa SYBR Green SuperMix

(Quanta) or RotorGene SYBR Green PCR Kit (Qiagen)). PCRs

were performed in a total volume of 20 ml, with a three-step

thermo-profile and a final melting-curve analysis. Primers, their

concentrations, annealing temperatures and efficiencies are listed

in Supplementary Table S1. All primers were synthesized by

Biolegio (Netherlands). Primer-efficiencies were determined with a

standard-curve on diluted gel-eluate with 1:10 dilution steps [51].

Efficiencies were considered to be optimal between 85–100%.

RNAs from EM and UM were evaluated for similar quality on

denaturing formaldehyde-agarose (1.2%) gels. cDNAs were diluted

80-fold for usage and added 1:4 to the final reaction. Absolute

quantification was achieved by including the standard curve in

each run [52]. Fold changes (EM/UM) were calculated using UM

as calibrators [52]. To facilitate comparisons to microarray and

SuperSAGE data log2-values of the fold changes were determined

as previously described [53,54]. Standard-curves were performed

Pairing-Dependent Transcripts in S. mansoni Males
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in duplicate after initial tests for primer concentrations, and

reactions on cDNA-samples were performed in triplicates. The

significance of individual experiments was checked applying the

‘‘Exact Wilcoxon rank sum test’’ using the exactRankTests

package for R [45;53–57]. Correlation of real-time PCR and

transcriptome data was checked with the Spearman’s correlation

coefficient [53].

Stage- and organ-specific RT-PCRs
For stage-specific detection of SmFst transcripts, cDNAs from

EM, UM, EF, UF, miracidia, and cercariae were generated and

tested in standard PCR-reactions with primers for SmFst (fwd-59-

TGTTGTAAACGTGGTGGATTC-39 and rev-59-CGACATT-

fTGCATTTTGGTTC-39) and primers for actin (fwd-59-GGAA-

GTTCAAGCCCTTGTTG-39 and rev-59-TCATCACCGACG-

TAGCTGTC-39) as positive control. PCR-products were sepa-

rated on a 2% agarose gel.

To obtain organ-specific RNA a recently established protocol was

used [58]. In short, adult schistosomes (about 50 individuals)

maintained in M199-medium at RT were transferred to reaction

vessels containing 500 ml of tegument solubilisation (TS)-buffer

(0.5 g Brij35 (Roth), 0.5 g Nonidet P40-Substrate (Fluka), 0.5 g

Tween80 (Sigma), and 0.5 g TritonX-405 (Sigma) per 100 ml PBS

(137 mM NaCl, 2.6 mM KCl, 10 mM Na2HPO4, 1.5 mM

KH2PO4 in DEPC-H2O, pH 7.2–7.4)). Following incubation at

37uC in a thermal shaker (TS-100, Biosan) at 1,200 rpm for 5 min

to solubilise the tegument, the musculature was digested by protease

treatment. To this end 500 ml elastase-containing medium (Sigma,

#E0258; freshly dissolved in non-supplemented M199-medium, 5

units/ml) were used and the worms slightly agitated (600 rpm) in

the thermal shaker at 37uC for 30–40 min. Progress of digestion was

monitored by microscopic inspections using 20 ml aliquots. Upon

the start of tissue fragmentation, reproductive organs such as ovary

and testes were liberated. 1 ml non-supplemented M199-medium

was added and the content of the vessel decanted to Petri dishes for

manual collection of testes and ovaries, which were identified by

their characteristic morphologies. If necessary, purification of the

gonad tissue from residual parenchyma tissue was achieved by

repeatedly collecting and transferring the organs to further Petri

dishes containing 2 ml of non-supplemented M199-medium.

Finally, the organs were collected using a 10 ml-pipette, transferred

to 1.5 ml-tubes, and concentrated by centrifugation for 5 min at

1,000 g, and 1 min at 8,000 g. Following removal of the

supernatant, the gonads were immediately frozen in liquid nitrogen

and stored at 280uC for further use.

Total RNA was extracted from the organs as described before

[58] using the PeqGOLD TriFast reagent (Peqlab; 500 ml TriFast-

solution per extraction of 50 testes or 50 ovaries), and the resulting

RNA pellet was resuspended in 10 ml DEPC-H2O each. RNA

quality and quantity were checked by electropherogram analysis

(Bioanalyzer 2100; Agilent Technologies). RT-PCRs were basi-

cally performed as described above (standard PCRs) using the

following primer combinations to amplify gene transcripts of

SmFST (fwd-59-GAACCAAAATGCAAATGTCG-39; rev-59-

GCCATGATTGTTCATTCCA-39), SmBMP (q51- fwd-59- GT-

CAAAATGAACAAAATCA-39; q51- rev-59- GTTACGTCGAA-

CACTTTG-39), and SmInAct (q1b-fwd-59- CACAATTTGG-

TAATGTTCAACG-39; q1b-rev-59- AACTACAAGCACATCC-

TAAAACAA-39).

In situ-hybridization
Localization experiments were performed as previously de-

scribed [59] with the following modifications: hybridization

temperature was 42uC, and slides were washed up to 16 SSC.

Two different probes were used for detection of SmFst transcripts:

probe 1 was 571 bp long (position 208–778), while probe 2 was

306 bp long (position 914–1219). The probe for SmInAct was

440 bp long (position 206–646). Two probes were designed for

SmBMP detection: probe 1 had a length of 455 bp (position 2240–

2694) and probe 2 was 565 bp long (position 1041–1605).

Yeast two-hybrid experiments
For SmFst–SmInAct/SmBMP interaction studies, yeast two-

hybrid (Y2H) assays were performed. To this end full-length

SmFst was cloned into the Gal4-BD vector pBridge using the

following primers, which were designed according to the sequence

information available at SchistoDB 2.0 [60] for Smp_123300: fwd-

59-GAATTCATGGAAGAGAGTATATCACAATTAG-39 (italics:

cleavage site for EcoRI), rev - 59-GTCGACTTAGAATAAATTT-

GAATATTTTCC-39 (italics: cleavage site for SalI). Full-length

SmInAct was cloned into the Gal4-AD vector pACT2, using the

following primers: fwd-59-CCCGGGGATGAATAGAATGTT-

TAAATTAATAAAAC-39 (italics: cleavage site for SmaI), rev-59-

CTCGAGTTAACTACAAGCACATCCTAAA-39 (italics: cleav-

age site for XhoI). Due to its large size, the sequence for SmBMP

was split into four sub-fragments, which were separately cloned into

pACT2. The following primers were used: SmBMP-Y2H-Cterm-

59- 59-CCCGGGGAAACCAAGATCAATTAATTATCCTAAC-

39, SmBMP-Y2H-ncbi-59– 59-CCCGGGGATGAACTCAAATAT-

TTTAACAAAATCAG-39, SmBMP-Y2H-ncbi-Nterm-59 – 59-CC-

CGGGGATGGAAACAGAAAAGACAAAAC-39, SmBMP-Y2H-

overlap-59 – 59-CCCGGGTGAAATAAATAGTACATCATTCT-

ACTGG-39 (italics: cleavage site for SmaI); SmBMP-Y2H-Cterm-39

– 59-CTCGAGTTAACGACAAGCACAACTTTC-39, SmBMP-

Y2H-db-Nterm-39 – 59-CTCGAGAATTGCTTACATTATTAT-

TATTCAGAGG-39, SmBMP-Y2H-ncbi-Nterm-39 – 59-CTCGA-

GGTTCTTTAGATGGTTTTCGTATATTATC-39, SmBMP-

Y2H-overlap-39 – 59-CTCGAGGATGATTATTTGTTTGTAA-

TACATTTG-39 (italics: cleavage site for XhoI). PCR products

were separated on 1.0% agarose gels. The amplicons were cut out

from the gel, and the DNA extracted using the PeqGold Gel

Extraction Kit (Peqlab) following the manufacturer’s protocol.

Extracted fragments were cloned into pDrive (Qiagen) and later

regained by restriction-digestion to be again checked for correct size

on a 1.0% agarose gel and extracted. Finally, fragments were ligated

into pBridge and pACT2, respectively, using T4 Ligase (Promega).

Sequences were checked for integrity and a correct ORF by

commercial sequencing (LGC Genomics, Berlin).

The SmFst-containing plasmid was transformed in to yeast cells

(AH109) together with either one of the other plasmids prepared

for the interaction studies. To control successful transformation

yeast clones were grown on selection plates (SD-Trp/-Leu/-His/-

Ade). b-galactosidase (b-gal) liquid- and filter- assays were

performed to confirm interactions (Yeast protocols handbook,

Clontech).

In silico analyses
The following public domain tools were used: SchistoDB

(http://www.schistodb.net/schisto/; [60]), BLASTx (http://

www.ncbi.nlm.nih.gov/BLAST), restriction mapper version 3

(http://www.restrictionmapper.org/). Data were analyzed for

enriched genes of the ontology categories with Ontologizer [61]

using contig annotations, which were the basis for the microarray

design [41,42]. Furthermore, only sense-orientated genes/tran-

scripts were used for this analysis. Network enrichment analyses

were done with the Ingenuity Pathway Analysis (IPA) tool (http://

www.ingenuity.com; [62]). Only those transcripts with homology

to a human molecule .60% and an e-value,10210 were used, as

Pairing-Dependent Transcripts in S. mansoni Males
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defined during the re-annotation of the microarray [43]. For

SuperSAGE-detected transcripts the according information was

obtained from the same source as far as available. For allocation of

transcripts to predicted S. mansoni metabolic pathways the function

‘‘omics viewer’’ of the software tool SchistoCyc was used (available

at SchistoDB 2.0; [59]. The online-tool SMART (http://smart.

embl-heidelberg.de/; [63,64]) was used to predict protein

domains.

List of S. mansoni genes mentioned in the text
Smp_135230 - dopa decarboxylase; Smp_145140 - wnt5A;

Smp_155340 – frizzled; Smp_036470 - oxalate-formate antiporter;

Smp_135020 - oxalate-formate antiporter; Smp_169190 -

tegument protein; Smp_161500 - rhodopsin-like orphan GPCR;

Smp_131110 - p14; Smp_000270 - fs800-like; Smp_000430 -

‘eggshell precursor protein’; Smp_00280 - fs800-like transcript;

Smp_123300 (KC165687) – S. mansoni follistatin; Smp_090140.2

- Ftz-F1 interacting protein; Smp_090520 - purin nucleoside

phosphorylase; Smp_123010 – cationic amino acid transporter;

Smp_095360.x – fatty acid binding protein; Smp_065580.x –

heterogeneous nuclear ribonucleoprotein k; Smp_033950 -

Smad4; Smp_144390 - S. mansoni activin receptor; Smp_

049760 – TGFbRI; Smp_093540.3 – ActRI; Smp_124450 -

ActRI/BMPRIa; Smp_080120.2 – ActRIIa; Smp_144390 -

ActRIIb.

Results

Generation and comparative analyses of pairing-
dependent transcription profiles of S. mansoni males

To produce a comprehensive data set of genes differentially

transcribed between EM and UM, two methods were chosen.

Because both methods have successfully demonstrated their capac-

ities in the past, microarray and SuperSAGE analyses were applied in

parallel to generate complementary data sets of genes differentially

transcribed between EM and UM. For microarray analyses a S.

mansoni-specific 60-mer oligonucleotide microarray platform was

used, which represents nearly the complete genome of S. mansoni

[42,43]. The platform-independent SuperSAGE represents a tech-

nically improved modification of ‘serial analysis of gene expression’

(SAGE) by generating 26 bp sequence tags of all sample mRNAs

containing a NlaIII restriction site by a high-throughput sequencing

approach [47]. Combining both methods, we expected to produce

data sets complementing each other and providing independent

indications for the importance of particular transcripts. To confirm

differential transcription of genes from an expected overlap, or from

individual data sets outside this overlap, we additionally performed

real-time PCR experiments for selected candidates.

In order to facilitate the interpretation of the large scale

transcriptome data and selection of molecules for first character-

ization studies, gene ontology (GO) analysis as well as two further

analyses tools, Ingenuity Pathway Analysis (IPA) [62] and the

metabolomics tool SchistoCyc [60] were applied. IPA operates with

a curated biological knowledge base from the literature to generate

molecular networks enriched for proteins encoded by significantly

regulated genes from large-scale data sets. Similarly it searches for

canonical pathways and predicts the activation of transcription

factors. The SchistoCyc function ‘omics viewer’ allocates an

uploaded set of genes to predicted S. mansoni metabolic pathways.

Microarray-analyses revealed 526 genes to be
differentially transcribed

The results of the microarray analysis were extracted and

evaluated with Agilent feature extraction software. Subsequent

data-processing included calculation of log2ratios [53,65],

data-filtering for consistency of transcript detection, and anno-

tation of detected transcripts. After re-annotation of the 44 k

oligo array in 2011 [43], 19,197 oligonucleotides were selected as

gene representatives: 11,132 detecting RNA in orientation of the

predicted transcript, 8,065 detecting RNA complementary to the

predicted transcript. Following hybridization and data processing,

10,115 of these representatives were detected as transcribed,

1,966 representing putative antisense and 7,494 representing

sense messages. Significance analysis of microarrays (SAM) [46]

was performed for all transcripts, and only sense transcripts were

analyzed further. Of these, 526 transcripts were significantly

differentially transcribed; 229 were up-regulated in EM and 297

up-regulated in UM. Gene ontology (GO) analyses were

performed in order to get an overview about the categories these

genes could be assigned to. Interestingly, enriched categories

were only found for genes up-regulated in UM (Fig. 1).

SuperSAGE revealed 253 transcripts to be differentially
transcribed

Again, three samples of EM and UM were collected each,

independently from each other as well as from the microarray

samples. RNA was extracted from 50 worms per sample and

quality-checked. The further procedure was executed by Gen-

XPro according to an internal protocol [47,48]. SuperSAGE-tags

were annotated in the same way as the revised version of the 44 k

oligo array [43], and counts for different tags were summed up if

they had shown the same annotation. Similar to the microarray

data-analysis, transcripts were classified into sense- and antisense

orientation relative to the protein-coding gene in a given locus.

Additionally, SuperSAGE-transcripts were further distinguished

between predicted intron- or exon-sequences. Thus four categories

Figure 1. GO for genes differentially regulated according to the
microarray analysis. This analysis was performed for genes
significantly and differentially transcribed between EM and UM. For
transcripts up-regulated in EM, no significantly enriched GO-categories
were found. Shown are those categories significantly enriched (% study
count) within the data set of genes up-regulated in UM. Light grey:
biological process; Dark grey: cellular component; p-values for the GO-
analysis: *p,0.05, ** p,0.005, *** p,0.0001.
doi:10.1371/journal.pntd.0002532.g001
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of SuperSAGE-detected tags were defined, and accordingly up to

four transcripts could represent one gene. This explains the large

number of 25,597 gene-specific transcripts detected with Super-

SAGE, which exceeds the assumed number of S. mansoni genes

more than twice [33]. Statistics were performed according to the

method of Audic & Claverie [49]. Subsequent to this significance

analysis, 5,987 transcripts without annotation and 7,124 tran-

scripts classified as antisense were excluded from further analyses.

Of the remaining 12,486 sense transcripts, 8,969 were classified as

exon and 3,517 as intron sequences. Taking out redundancy for

genes represented by an exon as well as an intron sequence, sense

transcripts were found for a number of 9,344 unique genes. Of

these, 5,601 genes had representatives in both groups exons as well

as introns. For 2,581 genes only exon-representing sense

transcripts were detected, and for 219 genes only intron-

representing sense transcripts were detected.

Selected from these were candidates showing a normalized

detection value of at least 10 tags in at least one library and

significantly differential regulation between EM and UM. These

criteria were met by 253 transcripts. Of these 218 were up-

regulated in EM and 35 in UM. GO analyses showed enriched

categories neither for the transcripts up-regulated in EM nor for

those up-regulated in UM.

Data-comparison
Comparing sense transcripts detected by microarray and

SuperSAGE, 6,326 transcripts were found by both methods,

while additional 3,018 and 1,168 were exclusively detected by

SuperSAGE or microarray, respectively (Fig. 2). The number of

counts representing genes being differentially transcribed between

EM and UM varied between the methods used. This was

influenced by the underlying, method-specific statistics leading to

subsets of counts that were significant for only one of the two data

sets although the same transcripts were also present in the other

data set (Fig. 2). The stringent analysis criteria for differential

regulation were met according to both approaches by 29

transcripts. Among these were genes with various biological

functions such as metabolism (NAD-dependent epimerase/dehy-

dratase, sodium dicarboxylate cotransporter, fatty acid acyl

transferase-related, oxalate-formate antiporter), neurotransmitter

synthesis (aromatic amino acid decarboxylase), enzyme activity

(kunitz-type protease inhibitor), microfilament organization (villin,

nebulin), membrane dynamics/vesicle formation (endophilin b1,

snf7-related), molecular interaction/communication (surface pro-

tein PspC, cadherin), calcium metabolism (sarcoplasmic calcium-

binding protein), chromatin organization (histone h1/h5), signal

transduction (pinch, dock, follistatin), and others less well defined

(cancer-associated protein gene, loss heterozygosity 11 chromo-

somal region 2 gene) (Table 1).

Differentially transcribed genes from either microarray or Super-

SAGE were assigned to predicted S. mansoni metabolic pathways

using the ‘‘omics viewer’’ function of SchistoCyc [60] (Supplementary

Table S2). Comparing the results of these analyses, transcripts coding

for enzymes involved in carbohydrate metabolic processes, citrate

cycle, aerobic respiration and amino acids metabolic processes were

mostly down-regulated in EM compared to UM. For base metabolic

processes, transcripts for enzymes involved in synthesis were rather

down-regulated in EM, while transcripts for enzymes involved in

degradation and salvage pathways were up-regulated in EM. Several

transcripts with different directions of regulation were found for

enzymes participating in lipid and fatty acid metabolic processes.

Interestingly, data sets for differentially transcribed genes contained

none coding for enzymes related to pentose-phosphate cycle or

glycolysis. Only one enzyme within the SuperSAGE/microarray-

intersection of differentially transcribed genes was allocated to

metabolic pathways, aromatic amino acid decarboxylase (dopa

decarboxylase, DDC, Smp_135230/NP_001076440.1). DDC was

up-regulated in EM and allocated to phenylethanol and catechol-

amine biosynthesis. This indicates a pairing-dependent adaptation for

usage of neurotransmitters like dopamine can be assumed.

IPA was performed for the data-overlap of transcripts differen-

tially regulated according to both transcriptome analyses. While

no significantly enriched canonical pathways were detected, one

significantly enriched network was found, namely ‘embryonic

development, hair and skin development and function, organ

development’. It contained nine differentially transcribed genes,

seven up-regulated in EM and two up-regulated in UM, including

SmFst (Supplementary Table S2, Supplementary Figure S1). Thus

IPA additionally highlighted SmFst and a putative differential

regulation of neurotransmitter synthesis through DDC.

Looking for explanations why transcripts were detected by one

method only without complementary counterpart, these specific

transcript groups were selectively analyzed in more detail. Out of

the 47 transcripts differentially regulated in the SuperSAGE-only

group, oligonucleotides existed on the microarray for 25 out of 47,

thus 22 transcripts were newly detected by SuperSAGE (Table 2).

Next, transcripts within the microarray-only group (110) were

analyzed for the presence of NlaIII restriction-enzyme recognition

sites. cDNA synthesis and NlaIII restriction are the first two steps

Figure 2. Venn diagram of SuperSAGE and microarray data
analyses. For final analyses we selected 9344 and 7494 genes for
which sense transcripts were detected by SuperSAGE and microarray,
respectively. The upper diagram (detected) presents numbers of genes,
whose transcripts were identified by either one (light grey, left:
SuperSAGE, 3018; dark grey, right: Microarray, 1168) or both methods
(intersection; grey, middle part, 6326). The lower diagram (significantly
differentially) presents genes, whose transcripts were significantly
differentially (Super SAGE, p,1210; Microarray, q,0.01; log2ratios
,20.585 or .0.585) regulated between EM and UM according to at
least one analysis (outside the intersection: light grey, left: SuperSAGE,
47; dark grey, right: microarray, 110; within the intersection: grey, left:
144 found as differentially transcribed according to SuperSAGE only;
grey, right: 365 found as differentially transcribed according to
microarray data analysis only; light orange, left, 33: found as
significantly regulated by both analyses but differentially transcribed
only according to SuperSAGE; light orange, right, 22: found as
significantly regulated by both analyses but differentially transcribed
according to microarray data analysis only). Finally, a number of 29
transcripts (dark orange, middle) were found representing genes being
differentially transcribed according to the analyses of the data sets
obtained by both methods.
doi:10.1371/journal.pntd.0002532.g002
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during the SuperSAGE procedure. Transcripts lacking the

restriction site or with an NlaIII restriction too close to the

polyA-tail will not be detected. As a snap sample of 110 candidates

of the microarray-only group, we selected 10 which not only had a

Smp_number but also a functional annotation other than

‘hypothetical protein’. Of these 8 had NlaIII restriction sites

within their predicted CDS (Table 3). Thus indeed, the existence

of NlaIII restriction may have influenced the detection of

transcripts by SuperSAGE. Also other methodological differences

may have contributed to the resulting number of transcripts

detected by both methods, although not as differentially

transcribed in both analyses. While in microarray experiments

light intensities are measured, during SuperSAGE the number of

transcripts is counted, resulting in different log2ratios (some below

the selected threshold of log2ratio = 0.585). Also the number of

technical replicas differed. While three biological replicas without

technical replicas were used for SuperSAGE, four technical

replicas for each biological one were done in case of the

microarrays, which is part of the methodological procedure.

Furthermore, different statistics had to be used for the analyses of

the results from both methods, which influenced the outcome with

regard to the significance of the differences detected between EM

and UM.

Real-time PCR experiments confirmed differential
transcription of selected genes

For a sub-set of 21 transcripts we performed real-time PCR

experiments (i) to confirm the results obtained in the combinatory

analysis, and (ii) to confirm those microarray or SuperSAGE data, for

which no complementary results existed. With respect to their

putative biological relevance, transcripts for signal transduction

molecules, surface molecules, metabolism-associated proteins and

transcription factors were chosen for verification (Supplementary

Table S1). Additionally, the regulation of three transcripts for egg-

shell precursor proteins was analyzed. A Wilcoxon rank sum test for

real-time PCR data detected significant differences between EM and

UM transcript levels for most of the differentially transcribed genes

present within the overlap of microarray and SuperSAGE data

(Supplementary Table S1). The test also confirmed significant

differences between the two male stages for two genes detected by

only one of the transcriptome studies. Using the Spearman’s rank

correlation coefficient, overall results from real-time PCR were

compared to those from either one of the two transcriptome

approaches. Data correlated significantly (p,0.01) between real-time

PCR and microarray (r = 0.676) or SuperSAGE (r = 0.621) each.

Representatives for signal transduction-associated transcripts

were SmFst, dock, and pinch (Figure 3; Supplementary Table

S1). For all three genes transcription regulation was confirmed

by real-time PCR. Comparing the results of all approaches, dock

and pinch showed a slight biological variation within only one of

the three analyses. In contrast, the transcriptional activity of

SmFst was found to be consistently down-regulated without

exception in EM (Figure 3), which substantiated the results of

the transcriptome approaches. Since follistatins (FSTs) have

regulatory function for TGFb-signaling [39,40], we additionally

tested the transcriptional activities of further genes coding for

Table 1. Selected genes significantly differentially transcribed according to both analyses.

Gene Gene annotation M-log2(EM/UM) S-log2(EM/UM) S-tag

Smp_135230 aromatic-L-amino-acid decarboxylase 2.58 2.08 Exon

Smp_168940 NAD-dependent epimerase/dehydratase 2.66 1.49 Exon

Smp_052230 kunitz-type protease inhibitor 1.83 1.78 Exon

Smp_008660.x villin 0.94 1.43 Exon

Smp_163720 endophilin B1 0.83 1.40 Exon

Smp_055220.x surface protein PspC 0.83 1.19 Exon

Smp_020540.x pinch 0.61 1.10 Exon

Smp_040560 cancer-associated protein gene 0.85 1.02 Exon

Smp_073130.x loss of heterozygosity 11 chromosomal region 2 gene, a
protein homolog (mast cell surface antigen 1) of masa-1

0.74 1.00 Exon

Smp_170080 sodium/dicarboxylate cotransporter-related 1.18 0.92 Exon

Smp_080210 lipid-binding protein 0.65 0.89 Exon

Smp_151490 nebulin 0.80 0.89 Exon

Smp_070030 snf7-related 0.71 0.79 Exon

Smp_003770 histone h1/h5 0.86 0.68 Exon

Smp_010770.x fatty acid acyl transferase-related 21.71 20.89 Exon

Smp_123080 sarcoplasmic calcium-binding protein (SCP) 20.86 21.00 Exon

Smp_123300 follistatin (SmFst) 22.15 21.23 Exon

Smp_036470 oxalate-formate antiporter 22.91 21.76 Exon

Smp_158480 AMP-dependent ligase 2.82 3.55 Intron

Smp_151620 cadherin-related 0.63 1.41 Intron

Smp_135520 dock 21.31 20.65 Intron

Of all transcripts detected in the SuperSAGE and microarray analyses, 29 were differentially transcribed according to both methods. Of these, 21 with functional
annotations are presented here, excluding those, which were annotated as ’hypothetical protein’. Follistatin (Smp_123300) is highlighted (see also text). Genes, gene
annotations, log2(EM/UM) ratios of microarray analyses (M- log2) and SuperSAGE (S-log2) as well as exon/intron presence of the SuperSAGE tags (S-tag) are given.
doi:10.1371/journal.pntd.0002532.t001
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members of TGFb-pathways (Supplementary Table S1). In

those cases where microarray or SuperSAGE indicated signif-

icant regulation for a TGFb-pathways member, this finding was

not confirmed by the complementary method or real time PCR.

Furthermore, we included wnt5A (Smp_145140) and one of its

potential receptors, the seven transmembrane receptor frizzled

(Smp_155340) into this analysis, since wnt-pathways are linked to

developmental processes [66]. According to the microarray data

Table 2. Selection of transcripts detected by SuperSAGE only.

Gene Gene annotation S-tag Log2(EM/UM) p-value Probe

Smp_130690 zinc-finger protein, putative Exon 8.54 1.59 e220 Q2_P01072

JAP09507.C dynein, axonemal, heavy chain 10 [Homo sapiens] Exon 5.57 1.98 e2246 Q2_P39947

Smp_011100 M16 familypeptidase, putative Exon 4.30 5.49 e238 n.o.

Smp_157750 RNA-binding protein, musashi-related Exon 3.31 8.37 e211 Q2_P20135

Smp_173350.x egg protein, CP391S-like Exon 2.70 6.52 e223 Q2_P18640

Smp_008660.1 gelsolin isoform precursor [Homo sapiens] Exon 0.91 0 Q2_P18327

Smp_160360 putative sodium/chloride-dependent
neurotransmitter transporter

Exon 0.89 2.08 e226 Q2_P00318

Smp_097020.4 fbxl20, putative Exon 0.74 2.76 e211 Q2_P24759

Smp_186050 heat-shock protein, putative Exon 0.73 2.02 e2141 Q2_P34228

Smp_163320.x ank repeat-containing, putative Exon 0.68 3.28 e228 Q2_P10446

Smp_013860 glutamate-cysteine ligase Exon 0.63 2.63 e229 Q2_P05616

Smp_140450.1 cleavage and polyadenylation specificity factor,
putative

Exon 0.60 5.33 e212 Q2_P30180

Smp_012380 potassium channel beta, putative Exon 20.76 4.42 e212 Q2_P10250

Smp_164480 tubulin beta chain, putative Exon 20.83 1.05 e243 n.o.

Smp_124570 leucine zipper protein, putative Exon 20.92 2.92 e216 Q2_P05434

Smp_170020 neuropeptide receptor, putative Intron 20.93 3.21 e218 n.o.

Smp_152630 MEG-12 Exon 20.96 1.79 e2178 Q2_P14896

Smp_068240 zinc-fingerprotein, putative Exon 21.05 7.70 e230 n.o.

Smp_105730 CAI-2 protein, putative Exon 21.07 1.88 e239 n.o.

Smp_000170 neurocalcin homolog (drosnca), putative Exon 21.15 4.11 e229 Q2_P32680

Smp_159950 neuropeptide Y precursor, putative Exon 21.80 2.68 e211 n.o.

Smp_098780 forkhead protein domain Exon 24.85 0 n.o.

JAP10881.C mucolipin 2 [Homo sapiens] Exon 25.21 6.26 e2294 Q2_P41336

Of the 47 genes differentially transcribed between EM and UM within the SuperSAGE-only group, 23 had Smp_numbers and functional annotations other than
‘hypothetical protein’. Respective oligonucleotide representatives on the microarray are noted. n.o.: no oligo representing this gene is included on the microarray.
Genes, gene annotations, exon/intron presence of the SuperSAGE tags (S-tag), log2(EM/UM) ratios, p-values, and microarray probe numbers are given.
doi:10.1371/journal.pntd.0002532.t002

Table 3. Selection of transcripts detected by microarray only.

Gene Gene annotation Log2(EM/UM) q-value NlaIII

Smp_169190 tegumental protein, putative 1.80 0.000 yes

Smp_033000 calcium-binding protein, putative 1.28 0.000 no

Smp_135020 oxalate-formate antiporter, putative 1.18 0.000 yes

Smp_133660 lin-9, putative 1.07 0.002 yes

Smp_173240 cement precursor protein 3B variant 3, putative 0.85 0.001 yes

Smp_081140 dbl-related 0.79 0.002 yes

Smp_195010 HMG-CoA synthase 20.64 0.000 yes

Smp_053120 S-adenosyl-methyltransferase mraW, putative 20.69 0.000 no

Smp_024290 MAP kinase kinase protein DdMEK1, putative 20.70 0.002 yes

Smp_103360 protein kinase 0.78 0.002 yes

Shown are 10 of 110 genes, which were detected only in the microarrays and found to be significantly and differentially transcribed. Smp_numbers and annotations
other than ‘hypothetical protein’ existed for these 10 genes only. Genes, gene annotations, log2(EM/UM) ratios, q-values and presence or absence (yes/no) of NlaIII
restriction enzyme recognition sites are indicated.
doi:10.1371/journal.pntd.0002532.t003
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Wnt5A and frizzled transcripts were significantly down-regulated

in EM. The direction of regulation of both transcripts detected by

SuperSAGE varied strongly between the biological replicates, and

differences between EM and UM were not significant. This was

confirmed by real-time PCR experiments (Figure 3, Supplemen-

tary Table S1), indicating that the wnt-pathway and/or associated

members may not be essential with respect to EM/UM differences

and are presumably influenced by additional biological parameters

beyond pairing.

The AMP-dependent ligase attracted attention due to its

uniform differential transcriptional regulation in both approaches

and its putative function in DNA synthesis processes. Besides

SmFst, it was one of the transcripts for which real-time PCR

supported the previous findings, but in contrast to SmFst,

transcription of the AMP-dependent ligase was strongly up-

regulated in EM (Figure 3). A similar consistent result was

obtained for one of the oxalate-formate antiporters (OxlT)

(Smp_036470), whose transcript amount was lower in EM. In

contrast, a second OxlT (Smp_135020) was detected as signifi-

cantly up-regulated in EM by the microarrays only, which was

confirmed by real-time PCRs. Further transcripts for membrane

proteins analyzed in real-time PCR experiments were a tegument

protein (Smp_169190), significantly up-regulated in EM according

to the microarray analysis (Supplementary Table S1) and a

rhodopsin-like orphan GPCR (Smp_161500) up-regulate in EM

according to the SuperSAGE analysis (Figure 3). Both transcripts

were not detected by the respective other transcriptome analysis.

Real-time PCRs confirmed the presence and direction of

regulation for both transcripts substantiating that microarray

and SuperSAGE experiments can complement each other.

Enhanced transcript levels of the rhodopsin-like orphan GPCR

in EM were also confirmed by semi-quantitative real-time PCR

[data not shown]. With respect to the fact that the physical contact

between the genders stimulates differentiation processes in the

female, tegumental proteins as such are potentially important for

male-female interaction. Since GPCRs represent the biggest

receptor class in schistosomes [66], and since they are known to

be involved among others in regulating differentiation processes in

diverse organisms [67–70], there may be candidates with roles in

male-female interaction as well.

Surprisingly, transcript amounts for the egg-shell precursor

protein p14 (Smp_131110) were significantly elevated in EM

according to the microarray analysis. Our real-time PCR

experiments, however, demonstrated strong variations between

biological replicas, previously also indicated by SuperSAGE

results. Analogous results were obtained for two other egg-shell

precursor transcripts, fs800-like (Smp_000270), and ‘eggshell

precursor protein’ (Smp_000430) (data not shown). Thus it seems

obvious that egg-shell precursor protein transcripts can be strongly

up-regulated in EM compared to UM, but this depends on the

worm batch. Indirect support for this interpretation comes from a

previous study, which provided evidence for another fs800-like

transcript (Smp_00280) to be up-regulated in testicular lobes of

paired males [71]. Other transcriptome studies, comparing EM

and UM, also found transcripts of supposedly female-specifically

expressed genes in males [37]. These findings can be explained by

leaky expression control of such gender-associated genes, a

phenomenon that can even lead to the development of female

reproductive tissue in males as previously observed [11,72–74].

Sequence analyses of SmFst
The follistatin homolog SmFst appeared as one of the most

interesting candidates for first functional characterization because

of its consistent down-regulation in EM in all analyses, and its

putative participation in schistosome TGFb signaling processes.

Based on the gene prediction (Smp_123300) obtained from the

Schistosoma genome project, primers were designed to amplify its

full-length cDNA. Following cloning and sequencing, minor

differences were detected between SmFst (KC165687) and

Smp_123300, revealing parts of predicted intron sequences as

exon stretches (Supplementary Figure S2).

While other typical Fsts contain three follistatin-domains (FstDs)

[75], SmFst encodes an open reading frame containing two,

according to a SMART-domain analysis. FstDs are further

subdivided into an EGF (epidermal growth factor)- and a Kazal

(a protease inhibitor)-domain, which according to SMART do not

follow each other directly in SmFst (amino acid positions: EGF-

domains: 52–74, 312–337; Kazal-domains: 264–307, 398–434), as

is the case for other Fsts [75]. The first EGF-domain of SmFst is

located upstream of the first EGF-domain of other Fsts, and the

second EGF-domain of SmFst is homologous to the third one of

other Fsts. The first and second Kazal-domains of SmFst are

homologous to the second and third Kazal-domains of other Fsts.

SmFst is transcribed in miracidia and in adults with a
preference for gonads

To confirm the presence of SmFst in different life cycle stages of

S. mansoni RT-PCR reactions were performed with RNAs from EF

(pairing-experienced females), UF (pairing-unexperienced fe-

males), EM, UM and the free-living larval stages. SmFst

transcripts were detected in all adult stages and miracidia, but

not in cercariae. As positive control actin was amplified from all

tested life cycle stages (Supplementary Figure S3). Localization

studies by in situ-hybridization with couples as well as UM detected

SmFst transcripts within the testicular lobes of both male groups

and also in the vitellarium and ovary of female worms (Figure 4).

Results concerning the detection of sense or antisense transcripts

varied with probe sequence and probe batch. Organ-specific RT-

PCR [58] confirmed the presence of transcripts for SmFst within

ovary and testes (Supplementary Figure S4).

SmInAct and SmBMP both localize in the reproductive
organs and interact with SmFst

Fst was shown before to bind activin, which itself is an agonist of

TGFb-pathways [76,77]. Although with lower affinity it also binds

to a bone morphogenic protein (BMP), another agonist of TGFb-

pathways [78–81]. SmInAct, a Schistosoma activin-inhibin, was

previously characterized [82] as well as SmBMP [83]. In our

study, SmInAct transcripts were detected only by SuperSAGE but

without differential regulation between EM and UM, which was

also confirmed by real-time PCR results. SmBMP was down-

regulated according to the microarray data, however, this was

neither confirmed by SuperSAGE nor by real-time PCR. To

obtain evidence on possible interactions between SmFst and

Figure 3. Exemplary results from real-time PCR analyses. Represented results are sorted according to technical categories. Log2ratios (EM/UM)
are given for all biological replicas tested in either microarray, SuperSAGE or real-time PCR. grey: microarray; black: SuperSAGE; light gray: real-time
PCR. Stars in graphs indicate significance in the according analysis. nd: no transcripts for this gene detected in this analysis; no: this gene is not
represented by an oligo on the microarray; i: detected transcripts were aligned to a predicted intron. To ease comparison between graphs all y-axis
intervals were set to 0.5.
doi:10.1371/journal.pntd.0002532.g003
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SmInAct and/or SmBMP, co-localization and Y2H interaction

studies were performed.

Previous studies had localized SmInAct transcripts in the ovary

and vitellarium of EF, without providing information on their

presence in testicular lobes [82]. The results obtained in our study

using two replicas with a hybridization probe based on the same

sequence as used previously [82] showed sense and also antisense

transcripts exclusively in the ovary of EF. No signal was detected

within the vitellarium or testes of EM or UM (Figure 5). However,

organ-specific RT-PCR on ovary and EM testes detected

transcripts not only in the ovary but also in testes of EM

(Supplementary Figure S4). For the localization of SmBMP two

different probes were used. Transcripts were detected in all

reproductive organs of couples as well as UM, but especially for

probe 2 in the area around the ootype (Figure 6). Again, sense and

antisense transcripts were detected, and results for EM-testes and

ovary were confirmed by organ-specific RT-PCR (Supplementary

Figure S4).

Even though the major interaction partner of Fsts is activin, it

can also bind to BMP [79]. For males our in situ-hybridization

experiments rather indicated physical proximity of SmFst

transcripts to those for SmBMP, as both transcripts were detected

within testicular lobes. In females, transcripts for all three

molecules were detected within the ovary by in situ-hybridization,

though organ-specific RT-PCRs also indicated the presence of

SmInAct in male testes.

To provide evidence for protein interaction between SmFst and

SmBMP or SmInAct, Y2H interaction studies were performed. To

this end full-length SmFst was cloned into the Gal4-BD vector

pBridge, while full-length SmInAct and four different sequence

stretches of SmBMP were cloned into the Gal4-AD vector

pACT2. The SmFst-containing plasmid was transformed into

yeast cells (AH109) together with SmInAct or one of the BMP

variants each. Following growth on selection plates (SD-Trp/-

Leu/-His), b-gal liquid- and filter-assays were performed to

relatively quantify interactions. These were shown between SmFst

and SmInAct as well as between SmFst and SmBMP. The result of

the b-gal liquid assay indicated a stronger binding of SmFst to

SmInAct, while no evidence was obtained for an interaction with

SmBMP-C-term or negative controls (Figure 7). This is surprising

since this part of SmBMP is most conserved in comparison to

human BMPs and contains several residues essential for receptor

Figure 4. SmFst in situ-hybridization. In situ-hybridization experiments with sense and antisense probes resulted in variable SmFst signals, but
always in the reproductive organs of couples and UM. A: UM, B: EM, C: EF, D: EF. t: testicular lobes, o: ovary, p: parenchyma, v: vitellarium, vs: ventral
sucker. Scale bar: 50 mM.
doi:10.1371/journal.pntd.0002532.g004

Figure 5. SmInAct in situ-hybridization. In situ-hybridization experiments detected sense and antisense transcripts in the ovary (o) of EF (C). No
signals were obtained with either sense or antisense detecting probes for testicular lobes (t) of EM (A) or UM (B), or the vitellarium (v) (C). g: gut, p:
parenchyma, vs: ventral sucker. Scale bar: 50 mM. Depicted results are representative for sense and antisense detecting probes.
doi:10.1371/journal.pntd.0002532.g005
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binding, which are supposedly blocked by FST [76,84–87].

However, it is possible that within its quaternary structure FST

binds to other residues, besides those at the C-terminus, thereby

prohibiting the receptor binding of BMP. Together with the results

from the localization experiments, evidence is provided that SmFst

interacts with SmInAct and/or SmBMP in the testes of EM and

Figure 6. SmBMP in situ-hybridization. Both probes detected transcripts in the reproductive organs of couples and UM. Sense and antisense
transcripts were detected. The pictures are representative examples for the detection of SmBMP transcripts, independent of probes and strand. A: EM,
B: UM, C: EF, D: EF. t: testicular lobes, g: gut, o: ovary, ot: ootype, p: parenchyma, v: vitellarium, vs: ventral sucker. Scale bar: 50 mM.
doi:10.1371/journal.pntd.0002532.g006

Figure 7. Yeast two-hybrid experiments with SmFst. Y2H b-galactosidase liquid- and filter-assays were performed with the full length
sequences of SmFst and SmInAct, as well as full length SmFst and four different sequence parts of SmBMP (bottom part of diagram). The upper part
shows results from b-gal liquid-assay, with interaction-values normalized to that of AH109, the lower part those from a representative b-gal filter
assay. SmFst interacts with all tested interaction partners except the one containing the C-terminal part of SmBMP.
doi:10.1371/journal.pntd.0002532.g007
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UM but also in the female ovary, and in case of SmBMP in the

vitellarium.

Discussion

The results of our study provided conclusive evidence for

pairing-influenced transcriptional processes in males. Together

with previous findings about pairing-dependent gene transcrip-

tion in females and first transcriptome analyses for males, all data

clearly demonstrate a bidirectional transcriptional influence

during male-female interaction [6,7,36,37,88,89]. Our expecta-

tion to find a comprehensive data set of genes differentially

transcribed in males upon pairing was met, just as obtaining

congruent and complementing results using two independent

techniques. Since both are basically different, each generated

additional data that were not obtained by the other method.

From our point of view, both methods have their advantages and

disadvantages, and none seemed superior over the other. Both

methods required the application of different statistics since on

the one hand signal intensities were determined (microarray)

including technical replicas and on the other hand transcript

counts, both resulting in different log2-ratios. Finally, also

biological variability, a well-known phenomenon even within

schistosome strains used for such kind of analyses [54], may have

had an influence on the data obtained. Although different

methodological and analytical approaches were applied, an

overlap of interesting genes was obtained on the basis of stringent

analysis criteria. Taking into account that we made use of a

second-generation microarray, which contained the majority of

genes known from S. mansoni [42,43], as well as SuperSAGE,

which can theoretically detect all genes transcribed [47] the most

complete data set of genes differentially transcribed between EM

and UM was obtained. The credibility of the data was confirmed

by the intersection of differentially transcribed genes identified by

both techniques, but also by additional real-time PCR experi-

ments. Furthermore, a comparison to data previously generated

in other studies [36,37,90,91] supported the reliability of our

results. Waisberg et al. [90] found a number of genes for which

transcription in males was influenced by final-host sex. Analyzing

the transcription of the top 30 of these genes with our data sets

revealed no significant differences between EM and UM. Thus

an influence of the host sex within our experimental setup can be

excluded. Of the transcripts differentially regulated between male

stages or strongly up-regulated in at least one male stage found by

Fitzpatrick et al. [37], we found 7 to be differentially regulated by

SuperSAGE, including a Ftz-F1 interacting protein (Smp_

090140.2), and 14 were differentially regulated according to

microarray analysis, including several genes encoding metabo-

lism-associated proteins. From the overlap of differentially

transcribed genes between SuperSAGE and microarray only

two genes, the AMP-dependent ligase and dock, were found

within the data-set obtained by Fitzpatrick et al. [37]. Here,

transcriptional regulation showed the same direction as in our

study. Our data also confirmed results of one study previously

applying SAGE to reveal differences between EM and UM [36].

As far as comparison was possible, a purin nucleoside phosphor-

ylase (Smp_090520) was up-regulated in our microarray analysis

as well as in the dataset of Williams et al. [36]. Also a cationic

amino acid transporter (Smp_123010) (down-regulated in EM), a

fatty acid binding protein (Smp_095360.x) (down-regulated in

EM), and a heterogeneous nuclear ribonucleoprotein k

(Smp_065580.x) (up-regulated in EM) showed the same direction

of regulation in our study and were significant within our

SuperSAGE data set.

Among the transcripts identified in our study to be regulated

between EM and UM were also putative antisense RNAs. Some of

these may have yet unknown protein-coding function, however,

the majority of these RNAs are probably non-coding RNAs

(ncRNAs). Their discovery in eukaryotic genomes has significantly

influenced research recently, and first evidence for regulatory

functions of ncRNAs has been obtained [91]. Also for S. mansoni

the existence of antisense RNAs was reported [42], and it was

estimated recently that $10% of the transcriptome may represent

ncRNAs [43]. Life-stage analyses indicated alterations in the

occurrence of specific ncRNAs pointing to diversified functions in

biological processes [43], and we observed antisense RNAs

(microarray: 211; SAGE-exon: 261; SAGE-intron: 107) that are

differentially transcribed between EM and UM. Their analysis will

be subject of future studies, when more knowledge about this class

of molecules will be available for schistosomes. This applies also

for the number of ‘‘hypothetical proteins’’ identified as being

differentially transcribed (Supplementary Table S4), which could

add up to the list of interesting candidates for further analyses of

their potential function during pairing-associated processes in

males.

Applying stringent analysis criteria and focusing on sense-

transcripts only, a number of candidate genes were identified,

which may be responsible for male competence and/or inducing

female maturation. Data interpretation based on a combination of

bioinformatics tools permitted first important conclusions (i–iv).

According to GO-analyses (i) EM seem to loose complexity with

regard to functional categories. This interpretation is supported by

a previous study, in which less enriched GO categories were found

in EM applying a first-generation microarray containing a lower

number of gene-representing oligonucleotides [37]. In the same

study the authors concluded that worms from mixed-sex

populations are transcriptionally less complex than those from

unisexual populations. Because in females paired to UM the

induction of mitotic activity was found to be delayed compared to

the situation in females paired to EM [29], it was hypothesized

that EM and UM differ with respect to their mitosis-inducing

capacity, what we like to define as competence that has to be

reached before males have the full capacity to govern develop-

mental processes in their pairing partners. The biological variety of

transcripts belonging to distinct functional categories found to be

differentially regulated indicated that (ii) gaining male competence

is a process in which different systems are involved. This may also

apply to male factors inducing female maturation. Although the

involvement of neuronal processes [15] as well as sperm or seminal

fluid [12,14] as players during male-female interaction was

dismissed in the past, (iii) we obtained first evidence that neuronal

and testes-associated factors nevertheless may be involved. IPA

analysis for genes of the intersection highlighted among others

DDC, which was further accentuated through the metabolomic

data-analysis with DDC as one of two molecules identified. Thus,

together with the enhanced DDC transcript level in EM, our data

suggest the possibility that neurotransmitters such as dopamine

could play a role during male-female interaction. With regard to

testes-associated genes, (72 genes were found in our study to be

differentially transcribed according to microarray or SuperSAGE,

which were previously detected as transcriptionally up-regulated in

EM testes compared to whole worms [55]. These included dock

and the OxlT (Smp_135020). Our in situ-hybridization experi-

ments for two members of TGFb-pathways as well as the OxlT

(Smp_036470) (data not shown) localized transcripts for these

molecules to the testicular lobes of EM and UM. The differential

regulation of molecules like OxlTs, known for their participation

in the indirect proton pump of Oxalobacter formigenes [92], (iv) may
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indicate their pairing-dependent function in metabolism processes.

Previous studies already suggested that EM support females by

supplementing their partner with nutrients [21–24], for which they

might need a wider functional assembly of molecular processes

than UM. In this context it is noteworthy that base metabolic

processes seem to differ between the two male stages for anabolic

and catabolic pathways, indicating higher nucleic acid synthesis

rates in UM. Also, transcription of enzymes involved in

carbohydrate metabolic processes, citrate cycle, aerobic respira-

tion, and amino acids metabolic processes was rather up-regulated

in UM. Metabolic differences between EM and UM were also

found by Williams et al. [36].

The GCP protein was previously reported to be up-regulated in

EM as a result of the male-female interaction [25,27,93] and

proposed to be essential for pairing in S. japonicum [26]. However,

transcriptional differences between EM and UM for GCP were

neither confirmed by our data, nor by previous transcriptome

analyses [36,37,88,89]. This discrepancy could be explained by

post transcriptional and/or post translational regulations. Inter-

estingly, GCP was proposed to be a downstream target of TGFb-

pathways in schistosome couples [28]. This pathway is well known

in schistosomes and was previously pointed out for its possible

importance in the female reproductive biology being involved in

regulating mitosis and egg production [9,10]. Here we provide first

evidence for an additional role of TGFb-pathways during

schistosome development as shown by the discovery of SmFst, a

potential inhibitor of the TGFb-pathway. Besides its down-

regulation in EM, confirmed by all analyses, SmFst stood out in

the IPA network identified for genes within the intersection of

microarray and SuperSAGE data. Besides SmFst and its two

potential interaction partners SmInAct and SmBMP, two other

members of TGFb-pathways were tested in real-time PCR

experiments, Smad4 (Smp_033950) and one S. mansoni activin

receptor (Smp_144390). Apart from SmFst none of the transcripts

was differentially transcribed between EM and UM.

First functional studies demonstrated that SmFst transcripts were

present in male testes and female reproductive organs. Further-

more, Y2H experiments confirmed its potential to interact with

SmInAct and SmBMP. In in situ-hybridization experiments SmFst

and SmInAct both localized in the female ovary, while SmFst and

SmBMP each localized in male testes and the female reproductive

organs. In addition, organ-specific RT-PCRs indicated the presence

of all three transcripts in EM-testes and the ovary. A previously

described transcriptome study [37] did not detect SmFst to be

differentially regulated between EM and UM. This may be due to

the absence of the corresponding oligonucleotide on the first-

generation microarray used (the respective annotation was not

found in the data-set [37]), which represented about 50% of the S.

mansoni transcriptome. Within the S. mansoni organ-specific tran-

scriptome data [71] SmFst was not found to be up-regulated in EM-

testes compared to whole worms using a cutoff for 2-times higher

transcription. Compared to our results, this seems not surprising

since the EM transcript-level of SmFst was generally low, about two

times weaker than in UM according to the calculated log2ratios.

With respect to transcript detection in the ovary, results of a

previous report on SmInAct [82] corresponded to our localization

data. While similar SmInAct transcript levels between EM and UM

were detected in the earlier study and our analysis, SmInAct protein

was only detected in EM and EF but not in UM or UF before,

which suggested that SmInAct expression is linked to the

reproductive capacity of the worm [82]. Assuming that SmInAct

is the preferential binding partner of SmFst as shown in other

organisms [78,79,94] two possible scenarios exist. First, transcript

levels detected for SmFst in this study may not be representative for

translation, and thus SmFst interactions would not occur in UM.

Secondly, SmFst is translated and may influence TGFb-pathways in

the male testes, however, through other TGFb-agonists such as

SmBMP. Indeed, besides our Y2H results interactions between

SmFst-SmBMP have been shown also in other organisms, where

they are among others involved in gonad-specific developmental

and physiological processes [64,65,95–100]. However, although the

presence of SmBMP protein was demonstrated, it was not detected

within the testes yet [83], which may have been caused by protein

amounts below the detection limit.

From all results available today, we hypothesize a tissue- and stage-

dependent interplay of TGFb-family proteins in schistosomes that

also affect the gonads. This view is supported by the presence of

various type I and II receptors in the S. mansoni genome [30,33]. Most

type I receptors belong to the sub-group of activin-like receptors.

Among these is an alternatively spliced variant of the S. mansoni

TGFbRII [28], previously described as ActRII [98]. Other members

are TGFbRI [100] (Smp_049760), ActRI (Smp_093540.3), ActRI/

BMPRIa (Smp_124450), ActRIIa (Smp_080120.2) or ActRIIb

(Smp_144390). Since multiple receptor-combinations are possible

as well as their activation by promiscuously acting agonists [101],

numerous interactions are imaginable with the potential to govern

tissue-specific activities. In this scenario, SmFst may regulate TGFb
signaling by binding agonist such as SmBMP in testes of UM, which

may impede processes not needed or not intended to occur before

pairing. Whether the role of SmFst in schistosomes covers modulating

agonist activities in the extracellular environment, or whether it is

involved in processing SmInAct or SmBMP pre-pro-peptides to

become pro-peptides, a normal part of the activation of these agonists

[102], remains unclear at this stage of its analysis but will be subject of

further studies. Although typical furin cleavage sites, being necessary

for processing BMP or activin proteins in vertebrates [103], are

present in the schistosome homologs, a role of SmFst in SmInAct or

SmBMP protein processing appears unlikely since the main function

of FSTs known today is its antagonist activity in the extracellular

environment. Here it was shown that FSTs among others play

prominent roles in the gonads controlling different testicular and

ovarian functions including cell proliferation, apoptosis, folliculogen-

esis, luteogenesis, hormone release and fertility [104,105].

In summary, the presented results demonstrate that processes

leading to male competence may be far more complex than

hypothesized before by reports suggesting that single molecules

from the male and/or nutritional support could be in charge of the

fundamental consequences of pairing on female development.

From our results we conclude that besides metabolic processes,

neuronal processes may be involved in the initial phase of male-

female interaction but also TGFb-signaling, which has been

described before to be involved in differentiation processes in fully

developed females [9,10] and embryogenesis [82]. The meaning of

this pathway for schistosome biology appears to go beyond that,

since SmFst has leaped into view emerging as a regulatory

molecule for TGFb signal-transduction pathways that is pairing-

dependently transcribed in the male gonad probably contributing

to processes leading to male competence.

Supporting Information

Figure S1 Depicts the molecular network suggested by IPA.

(TIF)

Figure S2 Depicts the sequence of SmFst, indicating differences

between KC165687 and Smp_123300, as well as in situ-

hybridization probes.

(TIF)
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Figure S3 Shows stage-specific RT-PCRs for SmFst.

(TIF)

Figure S4 Gonad-specific RT-PCRs. Total RNA of isolated

testes (Te), ovaries (Ov) and adult schistosome couples (SC) as

control was isolated by Trizol and reverse transcribed [58]. RT-

PCRs were performed using gene-specific primers targeting

SmInAct, SmFst, and SmBMP. Marker (M) = Hyperladder II

(Bioline).

(TIF)

Table S1 Shows results from the assignment of differentially

regulated genes from either microarray or SuperSAGE to

predicted S. mansoni metabolic pathways.

(XLSX)

Table S2 Lists members of the network generated by IPA, based

on the genes found to be significantly differentially transcribed by

both methods.

(TIF)

Table S3 Gives information on real-time PCR experiments. All

primers used are listed, their concentration, annealing temperature

and efficiency given. A second data-sheet shows the functional

grouping of selected genes and summarizes results from micro-

array, SuperSAGE and real-time PCR.

(XLSX)

Table S4 Overview of individual data sets. Sheet1: 29 genes

differentially transcribed between EM and UM according to both

methods. log2ratios are given. Sheet2: Sense transcripts detected

by the microarrays. Given are oligo_IDs, significances, log2ratios

(highlighted by background coloring), Gene_IDs, annotations and

detection for each stage in each microarray as 1/0. Sheet 3: Sense

transcripts detected by SuperSAGE. Given are Gene_IDs, log2-

ratios, significances and transcript counts for each stage and

experiment. Sheet 4: Genes differentially transcribed between

EM and UM according to the microarrays only. Given are

oligo_IDs, significances, log2ratios, Gene IDs, annotations and

presence of NlaIII sites, as far as tested. Sheet 5: Genes

differentially transcribed between EM and UM according to

SuperSAGE only. Given are Gene_IDs, significances, log2ratios,

according microarray probes and annotations.

(XLSX)
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