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1 Introduction 

1.1 Peroxisomal morphology, biogenesis, and metabolic function 

1.1.1 Morphology of peroxisomes 

Peroxisomes are ubiquitous cell organelles, which participate in many important 

metabolic functions in different organisms and are widely distributed in variety of 

tissues and organs. They contain enzymes that are involved in oxidative metabolic 

reactions and lipid metabolism, but their size, number, proteome and metabolic 

function vary in different cell types. 

Peroxisomes were first discovered in the 1950s by Rhodin as spherical structures 

with a diameter of 0.3-1.0 μm using routine transmission electron microscopy [2]. 

Morphological studies of the mouse kidney by Rhodin revealed that peroxisomes 

contain a fine granular matrix and are surrounded by a single membrane. 

Peroxisomes were first named ‘microbodies’ and only later in 1966, acquired the 

name peroxisomes when Christian de Duve and Pierre Baudhuin demonstrated that 

this organelle could produce and degrade hydrogen peroxide (H2O2) [3]. They also 

showed that in rat hepatocytes, peroxisomes typically contain a crystalloid core 

consisting of xanthine oxidase and urate oxidase, which is absent in humans [4-6]. 

In 1973, scientists discovered that the cells isolated from patients suffering from 

Zellweger syndrome lacked peroxisomes [7]. In spite of this, the significance of 

peroxisomes as important organelles involved in many biochemical reactions was not 

elucidated until the mid-1980s. For the past two decades, scientists have been 

intensively studying peroxisomes with the goal to understand its function in the 

context of human metabolism. Studies are underway on the analysis of inherited 

peroxisomal diseases such as Zellweger's syndrome, adrenoleukodystrophy, 

rhizomelic chondrodysplasia punctate, and Refsum disease as well as the analysis of 

peroxisomal deficiency in model organisms and cell culture researchers were 

producing increasing evidence relating peroxisomal deficiency with different diseases 

such as metabolic syndrome, diabetes or neurodegeneration due to their central role 

in lipid metabolism and oxidative stress management [8-10].  
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1.1.2 Biogenesis of peroxisomes 

1.1.2.1 Peroxins 

Conceptually, the biogenesis of peroxisomes takes place in three steps: (1) 

Formation of the peroxisomal membrane; (2) Import of peroxisomal matrix proteins; 

(3) Peroxisome fission and proliferation. For peroxisome biogenesis, inheritance and 

proliferation different proteins belonging to the peroxin family are required. Nowadays 

more than 30 PEX genes numbered according to their date of discovery have been 

identified by genetic and biochemical methods [11, 12]. 

Peroxins can be divided into different groups according to their functions in 

peroxisomal biosynthesis. For example, PEX3, PEX16 and PEX19 are involved in 

peroxisome membrane formation; PEX5, PEX7 are involved in matrix protein import, 

PEX13, PEX14, PEX17 serves as docking complex for the import of peroxisomal 

matrix proteins [11-13]. 

 

1.1.2.2 The origin of peroxisomes 

Two hypotheses concerning the origin of the organelle have been proposed and 

controversially debated. The first one suggests peroxisomes arise by growth and 

division from pre-existing peroxisomes by posttranslational import of additional 

membrane and matrix proteins [14]. This hypothesis has been further supported by 

both in vivo and in vitro studies (Figure 1) [15-18]. Recently, this model has been 

challenged by many researchers suggesting that peroxisomes might arise de novo. 

In this case, peroxisomes have been suggested to arise from the endoplasmic 

reticulum (ER) or other endomembrane systems in which early peroxisomal 

biogenesis peroxins such as PEX3p or PEX19p accumulate. From here pre-

peroxisomal vesicles bud off and peroxisomal membrane proteins (PMPs) are first 

integrated with the help of PEX3p or PEX19p, followed by the import of the matrix 

proteins and maturation of the peroxisomes (Figure 1) [19, 20].  

These two-way models might happen simultaneously, but the contribution of each 

model to the establishment and maintenance of the peroxisome pool is still not fully 

clarified to date. 
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Figure 1. Two-way model for the origin of peroxisomes. Figure 1A. Classic model. New 
peroxisomes are generated by fusion and fission of mature peroxisomes or preperoxisomes. 
Figure 1B. De novo model. Pre-peroxisomal vesicles originate from the endomembrane 
system such as the ER. 

 

1.1.2.3 Import of peroxisomal membrane proteins  

The import of peroxisomal membrane protein follows other routes than the one of 

matrix proteins. A set of evidences proved that the targeting of most PMPs occurs 

directly and posttranslationally from the cytosol to the peroxisomes aided by PEX19p 

[21-24]. 

According to the review from Eckert and Erdmann in 2003 [19], PMPs are sorted into 

three groups:  

(1) Type I PMPs (e.g., PMP34) are recognized and targeted by PEX19p to a docking 

site on the peroxisomal membrane where PEX3p is located and aids the insertion of 

the membrane proteins. 

(2) In this case, PEX19p acts as a chaperone for the translocation targeting 

sequence. Type II PMPs bound to PEX19p form a complex and are then delivered to 

the peroxisomal membrane under the help of PEX19p. PEX3p may contribute to 

target this complex to the peroxisomal membrane and then the PMPs can be 
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released from the complex and inserted [19]. After insertion of the PMPs, PEX19p is 

recycled back to the cytosol. 

(3) The third type of PMPs is proposed to be targeted to peroxisomes completely 

independent of PEX19p. 

 

1.1.2.4 Import of peroxisomal matrix proteins 

Peroxisomal matrix proteins are synthesized on free ribosomes in the cytosol and 

then post-translationally translocated into the matrix of the organelle [14].  

Peroxisomal targeting signals (PTS1 and PTS2) are directing peroxisomal proteins 

from the cytosol to the peroxisomes. The sequence PTS1 is located at the carboxyl-

terminus of proteins while the PTS2 is located at the amino-terminus. PTS1 contains 

the consensus sequence (S/C/A)(K/R/H)(L/M) and PTS2 has the consensus 

sequence (R/K)(L/V/I)(X)5(H/Q)(L/A) [25-28]. PEX5p and PEX7p are cytosolic PTS 

receptors that recognize PTS1 and PTS2 respectively [29-32]. They recognize and 

bind to their cargo proteins in the cytosol and deliver them to a docking complex on 

the peroxisome membrane, which then translocate the proteins to the matrix. After 

the cargo is released, the receptors are shuttled back to the cytosol. Figure 2 depicts 

the peroxins involved in the translocation of peroxisomal matrix proteins into the 

organelle. 
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Figure 2. Schematic representation of peroxisomal matrix protein import [33]. The 
import of peroxisomal matrix proteins can be considered to take place in three steps [34-36]: 
(1) Step 1. Recognition and Translocation. PEX5p and PEX7p bind to the cargo protein, 
which contains PTS1 and PTS2 respectively, to form a complex in the cytosol. This complex 
will be transported to the peroxisomal membrane. (2) Step 2. Docking. Three peroxins 
PEX13p, PEX14p and PEX17p, which are located in the peroxisomal membrane are 
involved in the docking systems and contain PEX5p and PEX7p docking sites. PEX13p is a 
transmembrane protein and its N-terminal domain was shown to have the ability for binding 
PEX7p. Both termini of PEX13p are located in the cytosol and are capable of directing both 
PTS1 and PTS2 protein import. The C-terminal domain of PEX13p can bind to PEX5p and 
PEX14p. (3) Step 3. Release. After the receptor-cargo complexes have docked to the 
peroxisomal membrane, the receptor is released from the cargo and recycled to the cytosol 
for the next translocation process. 

 

1.1.2.5 Peroxisome proliferation 

Plenty of genes were investigated and proposed to be involved in peroxisome 

proliferation, among all the genes and proteins which were investigated, PEX11p as 

a member of the PEX family are widely accepted to coordinate the peroxisome 

proliferation and to contribute to control their size and abundance (Figure 1) [37-42]. 

1.1.3 Peroxisomal metabolic functions  

The morphology of peroxisomes and their metabolic functions significantly vary 

among different tissues and species [43]. They usually participate in lipid metabolism, 

reactive oxygen species (ROS) metabolism, biosynthesis of ether phospholipids 
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(plasmalogens), cholesterol and bile acids. Furthermore, they are involved in amino 

acid and retinoid metabolism.  

 

1.1.3.1 Peroxisomal fatty acid β-oxidation 

Through β-oxidation, peroxisomes can degrade many kinds of fatty acids, some of 

which is unable to be degraded in mitochondria. These include long-chain and very-

long-chain fatty acyl-coenzyme (CoAs), 2-methyl-branched fatty acyl-CoAs, long-

chain dicarboxylyl-CoAs and the CoA esters of the bile acid intermediates di- and 

trihydroxycoprostanoic acids. A large amount of H2O2 is generated during the 

degradation process of these fatty acids [44, 45]. 

Fatty acids must be activated to their CoA derivatives before they can be β-oxidized 

by peroxisomes or mitochondria. Long chain and very long chain fatty acids are 

activated by long-chain and very-long-chain acyl-CoA synthetases separately [46], 

long-chain acyl-CoA synthetases can also activate isoprenoid-derived branched-

chain fatty acids [47]. These two enzymes are located on the peroxisome membrane 

[46]. 

Dicarboxylic acids, prostaglandins, and the C27 bile acid intermediates are activated 

in the ER [48, 49]. The import of fatty acids into the peroxisomal membrane is 

catalyzed by peroxisomal ATP-binding cassette transporters (ABCD). The ABCD 

protein family contains a transmembrane domain and a conserved ATP binding site. 

To date, four ABCD proteins have been described in mammals: the 

adrenoleukodystrophy protein (ALDP) / (ABCD1), the adrenoleukodystrophy-related 

protein (ALDRP) / (ABCD2), the peroxisomal membrane protein (PMP70) / (ABCD3) 

and the PMP70-related protein (P70R) / (ABCD4) [50-53].  

After that, peroxisomal fatty acid β-oxidation takes place in four steps: (1) Oxidation. 

Acyl-CoA is first desaturated to 2-trans-enoyl-CoA. (2) Hydration. In this step enoyl-

CoA is converted to 3-hydroxyacyl-CoA. (3) Dehydrogenation. The hydroxyacyl 

intermediate is dehydrogenated to a 3-ketoacyl-CoA. (4) Thiolytic cleavage. An 

acetyl-CoA will be released together with an acyl-CoA, which is two carbon atoms 

shorter than the original acyl-CoA and then enter the next round of β-oxidation [44, 

45, 54]. The detailed peroxisomal fatty acid β-oxidation process is described as 

follows: 
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➢ First Step: Oxidation, catalyzed by Acyl-CoA oxidases (ACOX enzyme) 

During the first reaction of peroxisomal β-oxidation, three different types of ACOX 

genes (ACOX1, ACOX2 and ACOX3) were described in mammals with different 

substrates. VLCFA is degraded by Palmitoyl-CoA oxidase (ACOX1) specifically. In 

humans, ACOX2 participates in the degradation of branched fatty acids, pristanic 

acid and bile acid intermediates [55]. In rodents, bile acid intermediates are catalyzed 

by trihydroxycoprostanoyl-CoA oxidase (ACOX2) and branched-chain fatty acids are 

catalyzed by pristanoyl-CoA oxidase (ACOX3) respectively [48, 56, 57]. During this 

process, H2O2 is generated by donating electrons directly to molecular oxygen under 

catalysis by FAD-containing oxidases [45, 54]. 

➢ Second and third step: Hydration and dehydrogenation, catalyzed by two 

different multifunctional proteins (MFPs) 

The first oxidation step is followed by the hydration of the enoyl-CoAs to 3-

hydroxyacyl-CoAs, which is then dehydrogenated to generate 3-ketoacyl-CoAs [44, 

45, 48, 54]. A protein called multifunctional protein (MFPs) contains both enoyl-CoA 

hydratase and 3 hydroxyacyl-CoA dehydrogenase activities and catalyzes both 

hydration and dehydrogenation [45, 58, 59]. There are two types of MFPs: MFP1 and 

MFP2. Substrates for MFP2 include bile acid intermediates and pristanic acid, which 

contain the 2-methyl branch in the carbon chain. Substrates with a straight carbon 

chain can be degraded by either MFP1 or MFP2 [60]. 

➢ Last step: Thiolytic cleavage, catalyzed by thiolase and sterol carrier 

proteins (SCPx) 

During the last step, 3-ketoacyl-CoAs are cleaved into chain-shortened acyl-CoAs 

and acetyl-CoA or propionyl-CoA [45, 48, 61, 62] by 3-ketoacyl-CoA thiolase and the 

SCPx as recently discovered. Thiolase contributes to the classic straight-chain β-

oxidation spiral, while SCPx is involved in the non-inducible branched-chain β-

oxidation system [45, 61-63]. SCPx is a recently discovered protein, its N-terminal 

domain has 3-ketoacyl-CoA thiolase activity while its C-terminal domain, functions as 

a lipid carrier or transfer protein [45]. Compared with thiolase, SCPx has much 

broader substrate spectrum degrading not only branched-chain fatty acids and bile 

acid intermediates, but also 3-ketoacyl-CoAs of straight-chain fatty acids [45, 48, 53]. 
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1.1.3.2 Peroxisomes and ether phospholipid synthesis 

The etherphospholipid biosynthesis takes place in three steps: the first two steps 

occur inside the peroxisomes and the last step is present in both peroxisomes and 

ER [64, 65]. The first step is catalyzed by glycerone phosphate acyl transferase 

(GNPAT). This enzyme is involved in the conversion from glycerone phosphate to 

acyl-glycerone phosphate (acyl-GNP). The formed acyl-GNP will be then converted 

to alkyl-glycerone phosphate (alkyl-GNP) by alkylglycerone phosphate synthase 

(AGPS) [65]. The last step of ether phospholipid synthesis is catalyzed by the 

enzyme alkyl/acyl-GNP NAD(P)H oxidoreductase to produce alkylglycerol-3-

phosphate (alkyl-G-3P), which is then transported to ER to for plasmalogen synthesis 

[66]. Patients who lack either GNPAT or AGPs have display a deficiency in ether 

phospholipid synthesis and possess a therefore reduced plasmalogen content [66]. 

Plasmalogens are important ether phospholipids that play a role not only in cells 

membrane dynamics but also in ROS trapping to protect the cells against the 

damage resulted from lipid peroxidation [66, 67].  

 

1.1.3.3 Peroxisome and cholesterol synthesis 

The rate-limiting step for cholesterol synthesis is catalyzed by 3-hydroxy-3-

methylglutaryl coenzyme A (HMG-CoA) reductase. Firstly, it was believed that HMG-

CoA is solely expressed in the ER but later this enzyme was discovered also in 

peroxisomes [68]. Further experiments provided more evidences that the 

peroxisomes is associated with cholesterol biosynthesis [69]. Accumulating evidence 

has shown that all of the enzymes required for the generation of  farnesyl 

diphosphate (FPP) from acetyl-CoA are localized in peroxisomes [70]. For instance, 

enzymes like isopentenyl diphosphate delta isomerase (IDI1), mevalonate kinase 

(MVK), phosphomevalonate kinase (PMVK) and mevalonate pyrophosphate 

decarboxylase (MPD), which convert mevalonate to farnesyl diphosphate (FPP) are 

all located inside the peroxisomal matrix [70, 71]. Moreover, Kovacs et al proved that 

peroxisomes contribute to the maintenance of the homeostasis of cholesterol [72]. 
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1.1.3.4 Peroxisome and oxidative stress 

Peroxisomes were first proposed to participate in the metabolism of oxygen 

metabolites after discovering catalase and H2O2-generating oxidases inside their 

matrix [3, 73-75]. In the past decade, peroxisomes have been proven to be a major 

source of ROS and at the same time a major site for degradation of ROS [76]. 

Reactive oxygen species (ROS) include several radical species, e.g., the hydroxyl 

radical (·OH) or the superoxide anion (O2·−). The hydroxyl radical (·OH) is reported to 

be the most highly reactive and toxic form of oxygen. Hydrogen peroxide (H2O2) 

despite it does not possess unpaired electrons is also considered as ROS. Besides 

ROS, Reactive nitrogen species (RNS) have similar effects on cells and it includes 

radical species such as primary nitric oxide (·NO).  

A significant increase in the intracellular concentration of ROS and RNS will lead to 

oxidative stress. ROS and RNS exert a particularly toxic effect on DNA, proteins, and 

lipids, which can induce the accumulation of oxidative damage in distinct cellular 

locations, redox-sensitive signaling pathways and metabolic reactions. However, in 

addition to their detrimental effects, ROS and RNS play a mediator role in a variety of 

important cellular processes and cell signaling pathways, such as their pivotal role in 

apoptosis [77, 78].  

Catalase is the classical marker enzyme of peroxisomes that degrades not only H2O2 

but at the same time metabolites also a large variety of substrates such as methanol, 

ethanol, phenol and nitrites due to its peroxidatic activity [79]. This enzyme is 

targeted to peroxisomes via a modified PTS1 [80]. It is the main detoxifying enzyme 

that prevents an accumulation of H2O2 in peroxisomes [81]. The inhibition of catalase 

activity in rat liver suppressed peroxisomal β-oxidation activity [82] while the 

overexpression of catalase in transgenic mice led to an extension of their life span 

[83]. In tumors of liver and other organs, the amount of catalase was found 

significantly reduced [84, 85]. Under some pathological conditions such as ischemia–

reperfusion injury, catalase activity was also reported to be decreased [86]. In 

addition to catalase, peroxisomes harbor a variety of other defense mechanisms and 

antioxidant enzymes to against ROS. Peroxiredoxin I and V, SOD1, epoxide 

hydrolase and glutathione S-transferase are all able to degrade ROS [76, 87]. 
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1.2 Peroxisome biogenesis disorder 

1.2.1 Peroxisome related human disease 

Peroxisomes are crucial to normal cellular function and therefore peroxisomal 

deficiency leads to serious biochemical abnormalities resulting in various clinical 

symptoms and even death. Until now, twenty five peroxisomal disorders have been 

described, which can be categorized into two types: (1) peroxisome biogenesis 

disorder (PBD); (2) single peroxisomal metabolic enzymes related disorder [88]. As 

mentioned in the sections above, peroxin (Pex) genes are responsible for 

peroxisomal membrane protein and matrix protein biogenesis. Mutations in any of 

these genes can lead to PBDs [9, 11]. According to the clinical manifestations, PBDs 

were divided into two groups: (a) the Zellweger spectrum disorders, (b) rhizomelic 

chondrodysplasia punctate (RCDP) [70]. The Zellweger spectrum includes the severe 

Zellweger cerebro-hepato-renal syndrome (ZS), the less severe phenotypes neonatal 

adrenoleukodystrophy (NALD), and infantile Refsum disease (IRD) [9, 89]. Table 1 

lists known peroxisomal disorders [70]. The most famous and severe disease caused 

by peroxisomal deficiency, called Zellweger syndrome (ZS), manifests itself with 

severe hypotonia of the body, embryological malformations in the central nervous 

system and in the kidney as well as adrenal deficiency caused by adrenal cortex 

degeneration. Children who suffer from ZS usually cannot survive more than one 

year after birth. Until now, no effective clinical treatment has been available [9, 65, 

89-92]. Compared with ZS, NALD and IRD patients display less severe clinical 

phenotypes. Patients with NALD can survive more than ten years and many IRD 

patients are expected to survive up to their third decade [93]. RCDP patients usually 

demonstrate skeletal abnormalities, and the reason for RCDP is either mutations of 

enzymes involved in plasmalogen biosynthesis or PTS-2-specific protein import 

problems [91, 93]. The variety of clinical symptoms caused by peroxisomal disorder 

is summarized in Table 2 [70].  
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Table 1. Peroxisomal disorders. Modified from Kovacs et.al [70]. 
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Table 2. Features of disorders of peroxisome assembly. Modified from Kovacs et.al 

[70]. 

 

1.2.2 Mouse model with peroxisomal deficiency 

In order to investigate the pathological consequences and the mechanisms for PBDs, 

scientists established Pex gene knock-out animal models. Pex5 [94] and Pex2 [95] 

knock-out models were first created in 1997 by different groups. Both Pex2 and Pex5 

knock-out mice have incomplete peroxisomal structures and exhibit biochemical 

abnormalities and pathological defects of ZS patients [94, 95]. Moreover, Pex11β [96] 

and the Pex13 [97] gene knock-out mouse models were also established and 

exhibited organ abnormalities of typical ZS, including intrauterine growth retardation, 

hypotonia and neonatal lethality. A Pex13 knock-out mouse model was generated by 

the deletion of exon2 in embryonic stem cells (ES) via the Cre/LoxP system. These 

animal models provide new prospects to study the pathogenesis of organ 
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malformations, and dysfunctions related to peroxisome dysfunction and improve the 

search for new therapeutic strategies.  

 

1.2.3 Peroxisomal disorders and human fertility 

Zellweger syndrome patients exhibiting either cryptorchism in boys or clitoromegaly 

in girls suggest a problem in the development of genital organs and dysfunction in 

regulation of the androgen-estrogen balance. Peroxisomal metabolism is essential for 

normal functions of steroid synthesizing organs and peroxisomal biogenesis defects 

can lead to adreno cortical insufficiency and spermatogenesis defects or even 

complete testicular degeneration [98]. Patients with peroxisomal single enzyme 

deficiencies, such as X-linked adrenoleukodystrophy (X-ALD) or 

adrenomyeloneuropathy (a milder phenotype of X-ALD) exhibit an adreno-testiculo-

leukomyelo-neuropathic complex of symptoms [98, 99].  

Several mouse models for peroxisomal knock-out proteins show the critical role of 

this organelle in male reproductive health. For example, a GNPAT knock-out mouse 

exhibited atrophic testis and arrest of spermatogenesis [100]. The ACOX1-deficient 

mice exhibited reduced amount of spermatids and Leydig cells [101]. Moreover, 

Huyghe and colleagues have shown that MFP2 knock-out mice develop male 

infertility [102]. The knock-out of MFP2 caused fatty acids accumulation in the 

seminiferous tubules and sertoli cells, a reduction of elongated spermatids and an 

incomplete germinal epithelium. In our laboratory, a sertoli cell specific Pex13 knock-

out mouse model was used to investigate peroxisomal functions in the testis [103], 

exhibiting “Sertoli cell only” syndrome (SCO). Additionally, strong accumulation of 

neutral lipids and peroxisome-metabolized fatty acids (VLCFA, pristanic and phytanic 

acid) were observed in the testis and sertoli cells in seminiferous tubules contained 

large intratubular vacuoles [103].  

In contrast to the peroxisomal insufficiency associated pathologies known from male 

patients, almost no reports are available in the literature on associated pathological 

alterations in the ovary of female patients. Whether peroxisomal defects might lead to 

failure in steroid biosynthesis has also not been elucidated yet. There are only two 

evidences can be found which described the impacts of peroxisomal deficiency in 

female reproduction. In the GNPAT knock-out mice a reduced ovary size could be 

observed displaying intact follicles in all stages. Nevertheless, the number of 
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secondary and tertiary follicles and of the corpora lutea was reduced, indicating 

female subfertility [100]. Another evidence showed that female ACOX knock-out mice 

were sterile with smaller ovaries [104]. 

 

1.3 Mouse ovary 

The inner female reproductive system consists of the ovary, fallopian tubes, uterus, 

cervix, and vagina. Within this system, the ovary is the place where: (1) the 

differentiation and release of a mature oocyte for fertilization take place; (2) 

hormones, which are necessary for follicular development, menstrual cycle (estrous 

cycle) and keeping up of the function of the reproductive tract are synthesized and 

secreted [105, 106]. 

The ovary contains ovarian cortex in the outer layer and medulla in the innermost 

layer with blood vessels and lymphatics. In the ovarian cortex, there are ovarian 

follicles as well as the stroma in between them. A mature ovarian follicle is composed 

of an oocyte in the middle, surrounded by multiple layers of granulosa cells and 

enclosed by theca cells in the outer layer. Corpus luteum derived from the follicles 

can also be found in the cortex. The histology of mouse ovary from [1] is shown in 

Figure 3. 

 

 

Figure 3. Histology of mouse 
ovary [1].  
 
(1) Ovarian capsule. 
(2) Epithelial layers  
(3) Primary follicle. 
(4) Primordial follicle.  
(5) Theca layers.  
(6) (7) granulosa layers.  
(8) Oocyte.  
(9) Chromosome. 
  

(8) Oocyte.  

(9) Chromosome. 
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1.3.1 Follicular development of mouse ovary 

The process of the ovarian follicular development includes 5 stages in the mouse: 

primordial follicles, primary follicles, pre-antral follicles (secondary follicles), antral 

follicles (tertiary follicles), and pre-ovulatory follicles. 

First, oogonia cease multiplication in the embryonic period around 13.5 days and 

enter meiosis to form oocytes. Theses oocytes are called germ cell nets due to that 

they are closely connected with each other [107, 108]. Shortly after birth, the germ 

cells break down and the surviving cells are separated by the somatic cells and 

primordial follicles are formed. The typical characteristic of this stage is a very small 

oocyte enclosed by an incomplete and fattened layer of epithelium cells [108]. After 

that the size of the oocyte increases and the epithelium cells continue to grow to 

cuboidal granulosa cells. This stage is named primary follicles [106]. One typical 

change in this stage is the appearance of zona pellucida, which surrounds the oocyte 

and exist until ovulation [109]. Following this, the granulosa cells start to proliferate to 

multiple layers to form pre-antral follicles and the outer layer of theca cells is building 

up. Extensive network of gap junctions are formed amongst granulosa cells in the 

end of this stage [106]. Then the follicles are developing to antral follicles with the 

formation of the antral cavity, a fluid-filled space. This cavity contains water, 

electrolytes, serum proteins and large amounts of steroid hormones secreted from 

the granulosa cells. During this stage, most of the antral follicles will undergo atresia 

and the remaining antral follicles will continue to grow to pre-ovulatory follicles under 

stimulation of FSH [106]. Pre-ovulatory stage is the last follicular stage. At this stage, 

oocyte is released for fertilization under the stimulation of luteinizing hormone (LH) 

[105]. During ovulation, the basement membrane of the follicles ruptures and the 

mature oocyte is released. The whole ovulation process is considered  similar with an 

inflammatory response, since several inflammatory factors are up-regulated during 

ovulation [110]. After the oocyte is released for fertilization, the remaining granulosa 

and theca cells will differentiate to the corpus luteum (CL) [105, 106, 111]. CL is 

capable of producing large amounts of hormones for the maintenance of the early 

stage of pregnancy. The follicular development progress is shown in Figure 4. 
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Figure 4. Schematic representation of the follicular development in mouse ovary [112]. 
Folliculogenesis starts with primordial follicles containing a small oocyte, enclosed by a 
flattened layer of epithelial cells. Primary follicles possess one cuboidal layer of granulosa 
cells. In early secondary follicles the zona pellucida is formed and the granulosa cells start to 
proliferate to multiple layers. In this stage follicles also acquire an outer layer of theca cells. 
Tertiary follicles are also called antral follicles, because a fluid-filled antral cavity appears, 
which contains water, electrolytes and steroids. After this stage, only a few antral follicles will 
develop into pre-ovulatory and ovulatory follicles. After stimulation with LH, the oocyte will be 
released for fertilization and the remaining parts of the ovulatory follicle will form the corpus 
luteum. The rest of the less developed follicles in the ovarian cycle will then enter apoptosis. 

 

1.3.2 Estrous cycle in the mouse ovary 

The mouse estrous cycle can be divided into four phases: proestrus, estrus, 

metestrus and diestrus. On average, one estrus cycle lasts for about 4-6 days. And 

the time period in different phases last normally, 18 h, 42 h, 12 h and 48-72 h 

respectively.  

In the proestrus phase (Figure 5A), the follicles grow very rapidly and many 

developing follicles with cavity can be observed. CL are often degenerated, with 

central fibrous tissue formation, and the ovarian cells commonly contain cytoplasmic 

vacuoles. In estrus phase (Figure 5B), ovulation is spontaneous and occurs about 10 

hours after the beginning of estrus. "Heat" lasts about 13 hours. Usually 10-20 eggs 

ovulate each time. Follicles with big cavities are visible and they are located in the 

superficial margin of the ovarian cortex.  Degenerated ovarian CL are often present in 

the estrus phase. When entering the metestrus phase (Figure 5C), many CL are 

present in the ovary and the follicles with cavity are barely seen in this stage. During 
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diestrus phase (Figure 5D), small follicles and large CL from the previous ovulation in 

the ovary are present, which have attained their maximal size. Vacuoles are 

commonly present, particularly at the center of these large CL, indicative of active 

steroidogenesis. Early fibrous tissue formation may be seen in which place was 

previously the central, fluid-filled cavity.  

 

 

Figure 5. Histological sections of ovaries in different stages of the estrus cycle [113]. A) 
Proestrus; B) Estrus; C) Metestrus; D) Diestrus. 

 

1.3.3 Steroid biosynthesis in the ovary 

Steroids are synthesized from cholesterol in the adrenal gland and gonads in 

response to tissue-specific tropic hormones. For steroidogenesis, it is necessary to 

translocate cholesterol from the cytosol to mitochondria, where the cholesterol is 

converted to pregnenolone. Cholesterol can be obtained from at least four potential 

sources: 1) from plasma low-density lipoprotein (LDL) or high-density lipoprotein 

(HDL); 2) synthesized de novo from acetate; 3) derived from the hydrolysis of stored 
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cholesterol esters in the form of lipid droplets or; 4) interiorized from the plasma 

membrane. 

 

1.3.3.1 Transport of mobilized cholesterol to the mitochondria 

For the production of progesterone, cholesterol is first transported to the outer 

mitochondrial membrane (OMM). This transportation could either be done via the 

vesicular transport mechanism or through a non-vesicular transport process involving 

high-affinity cholesterol binding proteins [114-117]. Sterol carrier protein 2 (SCP2), a 

protein which was reported to mediate cholesterol transport to mitochondria for 

steroid synthesis [118] will be further discussed in section 1.5. 

The second crucial step for steroid synthesis is the delivery of cholesterol from the 

outer mitochondrial membrane (OMM) to the inner mitochondrial membrane (IMM), 

where the cholesterol cytochrome P450 side chain cleavage (CYP450scc) enzyme is 

located. The conversion of cholesterol to pregnenolone is catalyzed by this enzyme 

[119-121]. Cholesterol transportation is considered as the rate limiting step for 

steroidogenesis and this step is conducted by a protein called steroidogenic acute 

regulatory protein (StAR) [122, 123]. The regulation of StAR protein will be further 

discussed in the following sections. 

 

1.3.3.2 Steroidogenic pathway in the ovary 

The steroidogenic pathway in the ovary is based on the “two cells theory”, because 

estrogen production occurs in two different cell types, the theca interna cells and the 

granulosa cells. LH stimulates the theca interna cells to produce androgen, which is 

then converted to estrogen in granulosa cells under the stimulation of FSH [124]. The 

steroidogenic pathway in the ovary is shown in Figure 6. 
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Figure 6. Steroidogenic pathway in the ovary before ovulation. Modified from Craig 
et.al [125].  

 

Several different enzymes that are located in the theca cells are required for the 

steroidogenic pathway: cytochrome P450 side chain cleavage (CYP450scc)/ 

cytochrome P450C11 (CYP11A1), 3-beta-hydroxysteroid dehydrogenase (3β-HSD) 

and cytochrome P450C17 (CYP17A1). Both CYP11A1 and 3β-HSD can be detected 

in granulosa cells while CYP17A1 is exclusively expressed in theca cells. These 

enzymes are expressed in theca cells when the follicles start to develop an antrum 

cavity. At this stage, theca cells start to produce androgen, mainly in the form of 

androstenedione. The first enzymatic reaction is the conversion of cholesterol to 

pregnenolone by CYP11A1 [126-128]. Thereafter, pregnenolone is further converted 

to progesterone by the enzyme 3β-HSD. 3β-HSD catalyzes the dehydrogenation and 

isomeration of pregnonelone to progesterone, which converts a Δ5-3β-hydroxysteroid 

to another form of steroid hormones Δ4-ketosteroid. Due to this reaction, the 

steroidogenic pathway is bifurcated into two pathways: 1) Δ5-3β-hydroxysteroid 

pathway that starts with pregnenolone and 2) the Δ4-ketosteroid pathway that starts 

with progesterone. The final product of both pathways in the ovary is androgen. For 

the Δ5-3β-hydroxysteroid pathway, CYP17A1 initially catalyzes the conversion of 

pregnenolone to 17-hydroxypregnenolone, which is then converted to 
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dehydroepiandrosterone (DHEA) [128]. Thereafter, DHEA is converted to Δ4-

androstenedione by 3β-HSD. In the Δ4-ketosteroid pathway, CYP17A1 converts 

progesterone to 17-hydroxyprogesterone, which is then converted to Δ4-

androstenedione. During the above processes, 3β-HSD converts 17-

hydroxypregnenolone to 17-hydroxyprogesterone and DHEA to Δ4-androstenedione 

respectively. Next, Δ4-androstenedione is transported to granulosa cells and 

aromatized to estrone by aromatase/CYP19A1 and further converted to estradiol by 

the 17β hydroxysteroid dehydrogenase (17β-HSD) [128]. 17β-HSD is constitutively 

expressed in granulosa cells from primary stage to pre-ovulatory Graafian follicles, 

whereas the expression of aromatase is stimulated by FSH until the dominant follicle 

stages. 

CYP17A1 is expressed exclusively in theca interna cells while aromatase/CYP19A1 

is specifically located in granulosa cells [129-132]. Thus, androgens can only be 

synthesized from theca interna cells and estrogen production in granulosa cells is 

dependent on androgen precursors supplied from theca interna. During follicular 

development, CYP11A1 expression is significantly enhanced in theca cells upon 

gonadotropin stimulation while in granulosa cells it can only be detected until the LH 

surge before ovulation. Moreover, the expression level of CYP11A1 in granulosa 

cells is much lower than that in theca cells during follicular development [133-135]. 

After ovulation, in the luteinized granulosa cells, CYP11A1 is greatly stimulated by 

FSH to produce large amounts of progesterone while CYP11A1 expression is 

reduced in luteinized theca cells [136]. Regarding to the 3β-HSD, it is unable to be 

detected in granulosa cells at any stage during follicular development while in corpus 

luteum, the 3β-HSD was detected in both luteinized theca and granulosa cells with 

equal intensity in both cell types [137]. The significant up-regulation of both CYP11A1 

and 3β-HSD in the corpus luteum are responsible for the elevated demand for 

progesterone synthesis [130].  

 

1.3.3.3 Regulation of the steroidogenic acute regulatory (StAR) protein  

The steroidogenic acute regulatory (StAR) protein regulates the rate-limiting step in 

steroidogenesis by transferring cholesterol from the outer mitochondrial membrane to 

the inner membrane [138]. Although the StAR protein plays an indispensable role in 
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steroid metabolism, its function and regulation still remain unclear. The schematic 

representation of the regulation of StAR protein is illustrated in Figure 7. 

 

Figure 7. A schematic model describing cAMP-PKA signaling pathways in regulating 
transcription and translation of StAR. 

 

In the gonads, StAR protein is regulated predominantly via cAMP-dependent 

mechanisms. It is widely acknowledge that LH binding to its G-protein-coupled 

receptor leads to the activation of the adenylate cyclase/cyclic-AMP (cAMP)/protein 

kinase A (PKA) signaling pathway [139-142]. LH stimulates progesterone synthesis 

primarily by enhancing intracellular cAMP levels, which leads to the activation of PKA, 

influencing the expression and activity of components in the steroidogenic pathway 

[143-145]. The PKA holoenzyme exists as a tetramer composed of two regulatory (R) 

and two catalytic (C) subunits. After cAMP stimulation, two binding sites on the R 

subunits are occupied by cAMP, and a conformational change occurs to lower their 

affinity to the C subunits. This results in the dissociation of the holoenzyme complex 

and renders the enzyme active [146]. Until now, four different regulatory subunits 

(RIα, RIβ, RIIα and RIIβ) and three potential catalytic subunits (Cα, Cβ and Cγ) have 
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been identified in mammalian tissues [146, 147]. PKA active catalytic subunits are 

able to phosphorylate specific target proteins as well  as transcriptional factors 

including steroidogenic factor 1 (SF-1), GATA binding protein 4 (GATA-4), and cAMP 

response-element binding protein (CREB) that function to activate genes involved in 

steroidogenesis, including StAR [138, 148, 149]. 

As mentioned above, the hypothalamic-pituitary-ovary axis is regulated by 

gonadotropic hormones FSH and LH to maintain the normal ovarian function. 

Interestingly, cAMP-PKA-dependent signaling cascades initiated by FSH or LH are 

assumed to be regulated by “A-Kinase Anchoring Proteins” (AKAPs) due to their 

ability to bind PKA [150]. Specific AKAPs recruit PKA to discrete subcellular 

compartments that coordinate and focus PKA action with respect to its substrates, 

making PKA signaling more effective. A kinase anchoring protein 1 is also known as 

AKAP121 in mice or AKAP149 in human, as widely expressed in testis, ovary, heart, 

liver, kidney, skeletal muscle, and brain. AKAP1 binds to RI and RII of PKA and 

anchors them to the cytoplasmic face of the mitochondria. AKAP121, as the most 

prevalent isoform, is of particular interest since it is known to enhance cAMP 

signaling to the mitochondria as well as to target mRNAs to the mitochondria through 

its RNA-binding domain [151-157]. Studies have shown AKAP1 has a positive effect 

on StAR signaling pathways by recruiting StAR mRNA to the mitochondria [158]. 

 

1.4 Peroxisomes in the ovary 

Peroxisomes in the ovary were first discovered in 1972. Catalase is an enzyme 

localized within the peroxisomal matrix that degrades H2O2, it was discovered in the 

mouse ovary with 3, 3’-diaminobenzidine (DAB) labelling and electron microscopic 

analysis [159]. Peroxisomes in the ovary are named microperoxisomes for their 

smaller size and lack of nucleoid in comparison with classical peroxisomes in the liver 

[160]. Compared to the liver, which is terminally differentiated, part of the cells in the 

ovary undergoes constant differentiation with each estrous cycle. Singh et al found 

the highest catalase activity in the metestrous and declined enzyme activity in the 

estrous and proestrous then was lowest in the diestrous cycle [161]. In 1992 

Peterson and Stevenson demonstrated an increase in the specific activity of ovarian 

catalase during the development and differentiation of ovarian follicles [162]. Besides 

this, they found that after treatment with gonadotropins, a substantial increase of 
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catalase activity could be observed. Elevated catalase activity was also observed 

during the ovarian development and luteinization in rat granulosa and theca cells 

[163, 164]. In vitro study of goat ovary, Behl and Pandey found a three-fold increase 

of catalase activity in granulosa cells from large follicles compared with small and 

medium follicles [165]. Similar to in vivo studies by Peterson and Stevenson, they 

also found increased catalase activity after FSH treatment in vitro. These results 

indicate that catalase and most likely the entire peroxisome may play a central role in 

follicular maturation. 

 

1.5 Up to date evidences for the involvement of peroxisomes in steroid 

hormone metabolism 

On the basis of structural and biological differences, steroid hormones are classified 

into seven families in mammalian species: androgens (male sex steroids), estrogens 

(female sex steroids), progestins, mineralcorticoids, glucocorticoids, bile acids and 

vitamin D [166]. Compared with the peptide hormones, the synthesis of steroid 

hormones requires specific enzymes that convert cholesterol into the appropriate 

steroid. Cholesterol is a critical component of cell membranes and also an obligatory 

precursor for steroid biosynthesis that is obtained either from the diet or synthesized 

de novo from acetate in a complicated process involving almost 30 different enzymes. 

Interestingly, the pre-squalene segment of the cholesterol biosynthesis pathway is 

localized in peroxisomes. However, whether acetyl-CoA derived from peroxisomal β-

oxidation is channeled to cholesterol synthesis inside the peroxisomes is still under 

debate [71, 167, 168]. According to this, the role of peroxisomes in cholesterol 

synthesis for further steroid production needs to be more clarified. Also, in PEX2 

knock-out mice the cholesterol synthesis pathway and the overall cholesterol 

regulation is disturbed in the liver [70]. 

Apart from that, there are evidences that some peroxisomal enzymes are linked with 

steroid biosynthesis. A protein called sterol carrier protein 2 (SCP2) with a 

peroxisomal targeting signal sequence at the C-terminus [169], plays roles in bile 

acid formation from cholesterol and peroxisomal β-oxidation of branched-chain fatty 

acids [90]. Interestingly, this non-specific lipid transfer protein was indicated to be 

involved in steroid metabolism via conducting cholesterol to steroidogenic 

mitochondria [117, 118, 170]. Another enzyme connecting peroxisomes with 
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steroidogenesis is the peroxisomal 17β-hydroxysteroid dehydrogenase type 4 (17β-

HSD4), called by the peroxisomal community MPF2 (gene name Hsd17b4) that 

participates not only in peroxisomal β-oxidation but also in steroid conversion, and is 

involved in the oxidation process of estradiol to estrone. 17β-HSD 4 is an 80 KDa 

protein with an N-terminally cleaved enzymatically active fragment of 32 kDa. Both 

the 80 kDa and the N-terminal 32 kDa protein are capable of conducting the 

dehydrogenase reaction not only with D-3-hydroxyacyl-coenzyme A (CoA) but also 

with steroids at the C17 position. This was the first observation of an enzyme, which 

contains dehydrogenase activity not only with 3-hydroxyacyl-CoA derivates of fatty 

acids but also with steroids [171-174]. MFP2/17βHSD4 therefore has been cloned 

also by groups coming from the two different directions [174]. Apart from these two 

evidences, changes of steroid levels were observed in testis homogenates of sertoli 

cell specific Pex13 knock-out mice (scsPex13KO). The concentration of DHEA 

showed a dramatic increase in Pex13 KO mice while the levels of other steroid 

precursors such as 17OH-Pregnenolone, 17OH-Progesterone and D4-

Androstenedione were decreased in scsPex13KO testis homogenates [103]. 
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2 Aims of the study 

Until now, the role of peroxisomal metabolism and biogenesis in normal ovarian 

physiology as well as the influences of peroxisomal metabolism on overall ovarian 

function in granulosa cells remain unclear. Therefore, this study was aimed to 

analyze the correlation of granulosa peroxisomal metabolism in follicular 

development and steroidogenesis, and to determine the pathological consequences 

of granulocytic steroid metabolism in peroxisomal dysfunction. 

On the basis of this purpose, we first analyzed the distribution and regulation of 

peroxisome marker enzymes during mouse ovarian follicular development to explore 

whether peroxisomes have a function during follicular development. After that, the 

granular tumor cell line, KK-1, was used in our experiments. Peroxisomal 

compartments were analyzed after human chorionic gonadotropin (hCG) treatment in 

KK-1 cells to examine whether peroxisomes are involved in steroidogenesis. After 

this confirmation, peroxisomal biosynthesis gene Pex13 was knocked down in KK-1 

cells to detect the results of peroxisome dysfunction on steroid synthesis as well as 

steroidogenic enzymes. Finally, we investigated the possible mechanism of effects 

on steroidogenesis in the deficiency of peroxisomes. This study, for the first time, 

provides insights into the role of peroxisomes in the context of steroid biosynthesis 

and corresponding mechanisms. 
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3 Materials and methods 

3.1 Materials 

3.1.1 Chemicals for the general experiments 

Chemicals for the general experiments are listed in Table 3. 

Table 3. List of chemicals and drugs used in this project with corresponding suppliers. 

Chemicals Company  

Acrylamide Roth, Karlsruhe, Germany 

Agarose LE Roche, Grenzach-Wyhlen, Germany 

Ascorbic acid Sigma, Steinheim, Germany 

Bradford reagent Sigma, Steinheim, Germany 

Dimethylsulfoxide (DMSO) Sigma, Steinheim, Germany 

Ethanol Riedel-de-Haën, Seelze, Germany 

Glycine Roth, Karlsruhe, Germany 

Glycerol Sigma, Steinheim, Germany 

β-Glycerolphosphate Sigma, Steinheim, Germany 

Mowiol 4-88 Polysciences, Eppelheim, Germany 

N-Propyl-gallate Sigma, Steinheim, Germany 

Paraformaldehyde (PFA) Sigma, Steinheim, Germany 

Penicillin/Streptomycin PAN Biotech, Aidenbach, Germany 

Ponceau S Serva, Heidelberg, Germany 

Potassium dihydrogen phosphate Merck, Darmstadt, Germany 

Potassium hydroxide Fluka, Neu-Ulm, Germany 

Sodium chloride Roth, Karlsruhe, Germany 

Sodium hydroxide Merck, Darmstadt, Germany 

Sucrose Merck, Darmstadt, Germany 

Sodium dodecyl sulphate (SDS) Sigma, Steinheim, Germany 

Tetramethylethylenediamine (TEMED) Roth, Karlsruhe, Germany 

Trishydroxymethylaminomethane (Tris) Merck, Darmstadt, Germany 

Triton X-100 Sigma, Steinheim, Germany 

Trypan blue Sigma, Steinheim, Germany 

Tween 20 Fluka, Steinheim, Germany 

Xylene Merck, Darmstadt, Germany 

 

 

 

 

3.1.2 General Instruments used in the laboratory 
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Table 4. All general Instruments used in this project are listed in Table 4. 

Instruments Company  

Biocell A10 water system Milli Q-Millipore, Schwalbach, Germany 

Bio-Rad electrophoresis apparatus 
(Sub Cell GT) system 

Bio-Rad, Heidelberg, Germany 

Dish washing machine (G 78 83 CD) Miele, Gütersloh, Germany 

Gel-Doc 2000 gel documentation system Bio-Rad, Heidelberg, Germany 

Hera cell 240 incubator Heraeus, Hanau, Germany 

Hera safe, clean bench KS-12 Heraeus, Hanau, Germany 

Ice machine, Scotsman AF-100 Scotsman Ice Systems, Vernon Hills, IL,USA 

i Cycler PCR machine MiQ2 optical 
module 

Bio-Rad, Heidelberg, Germany 

Leica DMRD fluorescence microscope Leica, Bensheim, Germany 

Leica DC 480 camera Leica, Bensheim, Germany 

Leica TP1020 embedding machine Leica, Nussloch, Germany 

Leica TCS SP2 confocal laser scanning 
microscope 

Leica, Nussloch, Germany 

Leica SM 2000R rotation microtome Leica, Nussloch, Germany 

Microwave oven MB-392445 LG, Willich, Germany 

Microtome stretching water bathType 1003 Vieth Enno, Wiesmoor, Germany 

Multifuge 3 SR centrifuge Heraeus, Hanau, Germany 

Oven HERAEUS T 5050 EKP Heraeus, Hanau, Germany 

pH meter E163649 IKA, Weilheim, Germany 

Pipettes (2,20,200,1000µl) Eppendorf, Hamburg, Germany 

Potter-Elvehjem homogenizer 8533024 B.Braun, Melsungen, Germany 

Power supply - 200, 300 and 3000 Xi Bio-Rad, Heidelberg, Germany 

Pressure/Vacuum Autoclave FVA/3 Fedegari, Albuzzano, Italy 

Pump Drive PD 5001 Heidolph Instruments, Schwabach, Germany 

Sorvall Evolution RC centrifuge Kendro, NC, USA 

SmartspecTM 3000 spectrophotometer Bio-Rad, Heidelberg, Germany 

T25 basic homogenizer IKA, Staufen, Germany 

Thermo plate HBT 130 Medax, Kiel, Germany 

Thermo mixer HBT 130 HLC, BioTech, Bovenden, Germany 

Trans-Blot SD semi dry transfer cell Bio-Rad, Heidelberg, Germany 

Vortex M10 VWR International, Darmstadt, Germany 

Water bath shaker GFL 1083 GFL, Burgwedel, Germany 

 

3.1.3 General materials used for cell culture 

General materials and cell culture media used for KK-1 cell cultivation are listed in 

Table 5. 
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Table 5. General materials for cell culture listed with corresponding suppliers. 

Materials for cell culture and treatment Company name 

Cover slips Menzel-Gläser, Braunschweig, Germany 

Culture dish (35 mm) BD Biosciences, Heidelberg, Germany 

Culture dish (60 mm) BD Biosciences, Heidelberg, Germany 

Fetal bovine serum (FBS) Thermo Fisher Scientific, Schwerte, Germany 

Filter tips and canules Braun, Melsungen, Germany 

Multi-well cell culture plates (6 wells) BD Biosciences, Heidelberg, Germany 

Multi-well cell culture plates (12 wells) BD Biosciences, Heidelberg, Germany 

Penicillin-Streptomycin Life technology, Darmstadt, Germany 

 

3.2 Methods 

3.2.1 Morphological experiments 

3.2.1.1 Animal experiments 

Female C57Bl/6J mice (Charles River Laboratories, Sulzfeld, Germany) at the age of 

4-6 months were used for experiments in order to characterize peroxisomes in the 

ovary. The animals were delivered two days before the experiments. The mice were 

housed under standard conditions with free access to standard laboratory food and 

water and a 12 h dark-/light-cycle. All experiments with laboratory mice were 

approved by the Government Commission of Animal Care Germany. 

 

3.2.1.2 Hematoxylin and Eosin (H&E) staining 

Paraffin sections of mouse ovaries (2 μm thick) were stained with Hematoxylin and 

Eosin. Paraffin sections were deparaffinized and rehydrated using the following steps: 

Xylene 3 times for 10 min, 100% ethanol 2 times for 5 min and then 96% ethanol, 80% 

ethanol, 70% ethanol, and aqua dest, each step for 5 min. The sections were then 

stained for 7 min in 10% Mayer's hematoxylin. The cytoplasm was stained for 5 min 

in 1% Eosin, containing 0.2% glacial acetic acid after washing 10 min under the tap 

water for revealing the nuclei. After that the slides were shortly washed with tap water 

and dehydrated in 70% ethanol, 80% ethanol, 2 times 96% ethanol, 3 times 100% 

ethanol, each time for 2 min, followed by 3 x 10 min in Xylene. The sections were 

analyzed by using a LEICA CMRD microscope equipped with a LEICA CD 480 

camera.  
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3.2.1.3 Indirect immunofluorescence staining on paraformaldehyde-fixed, 

paraffin-embedded mouse ovaries 

Sections containing mouse ovaries were deparaffinized and rehydrated as follows: 

Xylene 3 times for 10 min, 100% ethanol 2 times for 5 min, then 96% ethanol, 80% 

ethanol, 70% ethanol, and aqua dest, each step for 5 min at RT. Thereafter 

deparaffinized and rehydrated ovarian sections were subjected to digestion with 

trypsin in TBS for 9 min at 37°C in order to improve the retrieval of peroxisomal 

antigens and to increase the accessibility of epitopes. The silds were put thereafter in 

a microwave at 900 W in 10 mM citrate buffer at pH 6.0 for 15 min [175]. After 

incubation with 4% TBSA for 2 h at RT, the sections were incubated with primary 

antibodies in 1% BSA in TBST in a moist chamber overnight. In parallel, negative 

controls were incubated with PBS buffer only instead of the first antibodies. On the 

following day, the silds were washed with PBS 5 min for 3 times. Thereafter they 

were incubated with fluorochrome-conjugated secondary antibody for 2 h at RT. After 

incubation with the secondary antibody, nuclei were visualized with 1 μM TOTO-3 

iodide (Molecular Probes/Invitrogen, Carlsbad, USA) together with Hoechst 33342 (1 

µg/ml) (Molecular Probes/Invitrogen, Cat. no: 33342) for 10 min at RT . Finally all the 

samples were examined with a LEICA fluorescence microscope and the best 

preparations were used for confocal laser scanning microscopy (CLSM) using a 

LEICA TCS SP2.  The solutions used in these experiments are described in Table 6. 

All the antibodies which were applied in the experiment are listed in Table 7. 
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Table 6. Solutions for immunofluorescence staining. 

10X PBS 
1.5 M NaCl, 131 mM K2HPO4, 50 mM KH2PO4, prior to use 
adjust to pH 7.4 

Trypsin (0.1%) 0.1 g trypsin in 100 ml of 1x PBS buffer, freshly prepared 

Glycine (1%) 1 g glycine in 100 ml of 1X PBS buffer 

Glycin (1%) + Triton X-100 
(0.1%) 

1 g glycine in 100 ml of 1X PBS buffer + 0.1 ml Triton X-100 

Blocking buffer-4% PBSA + 
0,05% Tween 20 

To 8 g BSA add 200 ml of 1x PBS and 100 μl of Tween 20 

Dilution buffer- 1% PBSA + 
0,05% Tween 20 

To 2 g BSA add 200 ml of 1x PBS and 100 μl of Tween 20 

Mowiol 4-88 solution 

Overnight stirring of 16.7% Mowiol 4-88 (w/v) + 80 ml of 1x 
PBS, add 40 ml of glycerol, stirred overnight; centrifuge at 
15,000 rpm/min for 1 h. The supernatant was collected and 
store at -20° C 

Anti-fading agent (2.5%) 2.5 g N-propyl-gallate in 50 ml of PBS and 50 ml of glycerol 

Mounting medium Mowiol 4-88 mixed with anti-fading agent in a ratio of 3:1 
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Table 7. Antibodies used for immunofluorescence or Western blots. 
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3.2.1.4 Indirect immunofluorescence staining of KK-1 cells 

The coverslips with growing KK-1 cells were rinsed 2 times with PBS (pH 7.4) and 

fixed with 4% paraformaldehyde (PFA) at RT for 20 min. After removal of the PFA, 

KK-1 cells were washed 3 times with PBS. The coverslips containing the cells were 

incubated in PBS containing 1% glycine for 10 min, followed by another 10 min 

incubation with PBS containing 1% glycine and 0.1% Triton X-100 for 

permeabilization. Subsequently, the cells were washed 3 times with PBS and 

incubated in PBS containing 1% BSA and 0.05% Tween 20 for 30 min to block 

nonspecific protein binding sites. Thereafter, the coverslips were incubated with 

primary antibodies at 4°C in a moist chamber overnight. The next day, the silds were 

washed with PBS 3 times for 5 min and then incubated with the secondary antibody 

for 1 h 30 min at RT. Nuclei were counterstained with Hoechst 33342 (1 µg/ml) 

(Molecular Probes/Invitrogen, Cat. no: 33342). The solutions used in these 

experiments are described in Table 6. All the antibodies which were applied in the 

experiment are listed in Table 7. 

 

3.2.1.5 Dihydroethidium (DHE) staining for ROS detection 

Dihydroethidium (DHE) staining was used to evaluate intracellular ROS levels. 

Dihydroethidium (DHE) is an oxidizable fluorescent dye. Growing KK-1 cells were 

treated according to the necessary experiment and grown for different time points. 

The DHE stock solution (Invitrogen, Cat. no: D-23107) was diluted to 10 μmol with 

normal KK-1 cell culture medium (the composition of KK-1 cell culture medium is 

described in section 3.2.2.1) and the medium was added to KK-1 cells growing on 

coverslips for 30 min incubation at 37°C. Thereafter, the cells were washed three 

times with PBS and fixed with 4% PFA for 20 min at RT. Nuclei were counterstained 

with Hoechst 33342 (1 µg/ml) (Molecular Probes/Invitrogen, Cat. no: 33342) for 10 

min at RT. Images were taken with a LEICA TSC SP5 confocal microscope (CLSM) 

and the average values of fluorescence intensity were measured with the Image J 

software program. 
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3.2.2 Cell culture experiments 

3.2.2.1 The granulosa tumor cell line---KK-1 

KK-1 cells are immortalized murine granulosa tumor cells. They were established by 

Prof. Huhtaniemi and his colleagues by using transgenic mice expressing the SV40 

T-antigen, driven by fragments of the inhibin-α subunit promoter (Hammersmith 

Campus, Imperial College, London,UK) [176]. KK-1 cells were reported to display LH 

and FSH receptor responsiveness and to express steroidogenic enzymes. Apart from 

that, this cell line exhibits a dose-dependent steroidogenic response when stimulated 

with hCG or FSH. The KK-1 cell line which was used in this study was kindly 

provided by Prof. Rahman (Department of Physiology, University of Turku, Turku, 

Finland). KK-1 cells were cultured in DMEM/F12 1:1 medium (life technologies, 

Germany, Cat. no: 31330-038), supplemented with 10% (heat inactivated) fetal 

bovine serum (FBS), containing 50 mIU/ml penicilin and 0.5 mg/ml streptomycin at 37° 

C in a humidified atmosphere of 95% air and 5% CO2. KK-1 cells are luteinized 

granulosa cells, thus they possess LH receptors but lose their FSH receptors 

gradually after passage 10 [176]. Therefore, cell passages used in this study for 

checking estrogen synthesis were all earlier than passage 10 and for detecting 

progesterone and pregnenolone synthesis, passages before 13 were used. 

 

3.2.2.2 Freezing and thawing of KK-1 cells 

KK-1 cells were rinsed with PBS (Sigma, Steinheim, Germany, Cat. no: D8537) first 

followed by trypsinizing action. The trypsin-EDTA buffer (0.25%) (Life technologies, 

Cat. no: 25200-056) was warmed up to 37°C before use. For a 10 cm plate 1 ml 

trypsin buffer was added to the cells and the plate was moved back into the incubator 

for 3 min. Thereafter the reaction was stopped by re-suspending the cells in 2 ml 

DMEM/F12 medium and centrifuged at RT with 900 g for 5 min. The supernatant was 

sucked away and the precipitate was re-suspended in freezing medium (70% KK-1 

cell culture medium, 20%FBS, 10%DMSO). 1ml of re-suspended cells was added to 

each tube used for CRYO preservation. The number of cells was at least 5x106  

cells/ml. The tubes were frozen for 2 h in -20°C and moved to -80°C for 24 h, 

thereafter the cell stocks were transferred to liquid nitrogen container. 

When new cells need to be thawed, CryoPure tubes were quickly removed from the 

liquid nitrogen container and placed into a 37°C water bath. The CryoPure tubes 
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were immediately disinfected with 70% ethanol after thawing. The cells suspension 

was transferred into a 15 ml falcon tube and the same amount of pre-warmed culture 

medium was added to the tube with the thawed cells. The diluted cell suspension 

was centrifuged at 350 g for 5 min at RT. After the centrifugation, KK-1 cells were 

gently resuspended in culture medium, and transferred into the appropriate culture 

vessel and placed into the recommended culture environment. 

 

3.2.2.3 Passaging of KK-1 cell cultures 

The splitting conditions for KK-1 cells were: 70% confluent bottle to 2X 9.6 cm Petri 

dishes. The doubling time for KK-1 cells are 18-22 h. The cell passaging protocol was 

the same as for KK-1 cell freezing until the step “resuspend the cells after trypsinizing 

action”. After centrifugation, the cells were resuspended with suitable culture medium 

thoroughly and the cell solution with medium was mixed up and down for 10-15 times. 

Thereafter, KK-1 cells were plated to a new petri dish plates. 

 

3.2.2.4 Hydrogen peroxide (H2O2) treatment 

KK-1 cells were grown in culture medium to around 80% confluency and were 

preincubated in serum-free medium for 1 h. After that, KK-1 cells were treated for 3 h 

in DMEM/F12 medium that contain 1,5 IE hCG plus increasing concentrations of 

H2O2 (0,100,150,250 and 350 µmol) (Merck Millipore,Darmstadt, Germany, Cat. no: 

108597). 30% stock solution of H2O2 was used, and appropriate volumes were added 

to DMEM/F12 just before cells treatment. In the end of the time point, medium were 

collected for steroid measurement and proteins were collected for further examination. 

  

3.2.3.5 MTT assay 

The effect of H2O2 treatment on the viability of KK-1 cells was evaluated by the MTT 

assay (Sigma, Steinheim, Germany ,Cat. no: M5655) after treatment with H2O2 at 

different concentrations (0,100,150,250 and 350 µmol) for 3h. KK-1 cells were then 

washed and incubated with 0.5 mg/ml MTT in DMEM medium (without phenol red) 

for 1 to 2 h. The formazan crystals which were formed from the tetrazolium dye in 

viable cells were dissolved in dimethyl sulfoxide (DMSO) and the absorbance read at 

570 nm using a spectrophotometer. The percentage of cell viability was calculated by 
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using the following formula: A570 of treated cells/A570 of non-treated cells X 100 

[177]. 

 

3.2.3.6 Trypan Blue test 

Cell viability of KK-1 cells after H2O2 treatment was also determined by the Trypan 

Blue test, which is the most common dye exclusion method for assessing cell viability. 

Firstly, the cell suspension was prepared at approximately 1x106 cells/ml by 

trypsinizing and resuspending the cells in fresh warm KK-1 cell culture medium. The 

cells were gently pipetted up and down several times in order to break up cells 

clumps. Thereafter, 200 µl of the cell suspension was mixed with an equal volume of 

0,4% filtrated Trpyan blue (Fluka Chemika) in 1xPBS. The mixture was gently mixed 

and incubated for 5 min at RT. A haemocytometer chamber was filled with 10 µl cell 

suspension and the number of cells was counted under an inverted phase contrast 

microscope. Both viable (unstained) and nonviable (stained) cells in each of the four 

corner quadrants were counted.The final calculation steps were shown as follows:  

Number of cells (viable or nonviable) = (Average cell number of four corner 

quadrants counted) x104 x 2 x sample dilution.  

Finally the percentage of viability was calculated by using the next equation: 

%Viable cells = Number of viable cells/total cell number. 

 

3.2.3.7 Tocopherol treatment 

Pex13 siRNA transfected KK-1 cells were first treated with different concentrations of 

α-tocopherol (Sigma, Steinheim, Germany, Cat.no:T3251) to determine the best 

working concentration. 0 µmol, 5 µmol and 10 µmol α-tocopherol were added to 

Pex13 knock-down (KD) cells as well as control group (scramble siRNA), ROS 

intensity were calculated to determine the best working concentration (10 µmol). After 

this, Scr siRNA groups with and without α-tocopherol as well as Pex13 siRNA groups 

with and without α-tocopherol were incubated to determine the effects of tocopherol 

on steroid synthesis after the Pex13 KD, α-Tocopherol was immediatly added to the 

cells at the same time as the transfection was done. The detalied transfection 

procedure is discribed in section 3.2.4.2.1. After 48 h, cells were treated with 1,5 IE 
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hCG for 8 h. At the end of the treatment period, protein and medium were collected 

for further investigations. 

 

3.2.3 Biochemical experiments 

3.2.3.1 Western bloting 

All the solutions for proteins isolation, SDS-PAGE and Western blotting are listed in 

Table 8. 

Table 8. Solutions for protein isolation, SDS-PAGE and Western blotting. 

Cell lysis buffer (1X) 
50 mM Tris +150 mM NaCl +1% Triton-X-100 (pH 7.4). Before 
use 10% protease inhibitor cocktail was added 

Resolving gel buffer A 1.5 M Tris-HCl, pH 8.8 + 0.4% SDS 

Stacking gel buffer B 0.5 M Tris-HCl, pH 6.8 + 0.4% SDS 

Resolving gel (12%) 
(for 4 SDS-PAGE gels) 

8 ml of 30% acrylamide + 10 ml of buffer A + 2 ml of ddH2O + 
15 μl of tetramethylethylendiamin (TEMED) + 130 μl of 10% 
ammonium persulfate (APS) 

Stacking gel 
(for 4 SDS-PAGE gels) 

1.25 ml of 30% acrylamide + 5 ml of buffer B + 5 ml of ddH2O + 
15 μl of TEMED + 130 μl of 10% APS 

10X Sample buffer 
3.55 ml ddH2O + 1.25 ml 0.5M Tris-HCl, pH 6.8 + 2.5 ml 50% 
(w/v) glycerol + 2.0 ml 10% (w/v) SDS + 0.05% Bromophenol 
Blue. Before use, add 50 ml β-mercaptoethanol 

10X Electrophoresis buffer 250 mM Tris + 2 M glycine + 1% SDS 

20X Transfer buffer 
Bis-Tris-HCl buffer (pH 6.4) for transfer of proteins from 
polyacrylamide gel to PVDF membranes; NuPAGE transfer 
buffer, Invitrogen, Heidelberg, Germany 

10X TBS 0.1 M Tris + 0.15 M NaCl in 1000 ml of ddH2O, adjust to pH 8.0 

10% Blocking buffer 10 g fat free milk powder in 100 ml of ddH2O 

5% BSA solution 5 g BSA in 100 ml 1X TBST +0.05% Tween 20, pH 8.0 

1X Washing buffer (TBST) 10 mM Tris/HCl, 0.15M NaCl, 0.05% Tween 20, pH 8.0 

Stripping buffer (500 ml) 
62.5 mM Tris (pH 6.8), 0.2% SDS, 500 ml ddH2O – 
42°C water bath for 35 min with additional 500 μl 
β-mercaptoethanol 

Ponceau S solution 0.1% (w/v) Ponceau S in 5% (v/v) acetic acid 
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3.2.3.1.1 Isolation of whole cell lysates 

One hundred μl cell lysis buffer was added to each 6-well plate after washing the cell 

cultures with 1x PBS, after that the cells were scraped thoroughly with a rubber 

policeman and transferred to Eppendorff tubes. Thereafter, the tubes were incubated 

on ice for 30min with vortexing at intervals. The tubes were then centrifuged at 2500 

g for 10 min at 4°C. Thereafter, the supernatant was collected to a new tube and 

stored at -20°C for further application. 

 

3.2.3.1.2 Western blotting 

Protein concentration measurement of each sample was done by the Bradford Assay 

using bovine serum albumin (BSA) (Roth, Karlsruhe, Germany) as a standard [178]. 

20-40 μg protein of each sample as well as 5 μl dual color precision plus protein 

Standards® (Nippon Genetics Europe GmbH, Dueren, Germany, Cat no: MWP02) 

were loaded into the slots of 8-12% SDS polyacrylamide gels.  

Electrophoresis was done at stable voltage of 2.4 V/cm2 and the finished gel was 

blotted onto polyvinylidene fluoride (PVDF) membranes (Millipore, Schwalbach, 

Germany) after the sample proteins were separated by SDS-PAGE. Blotting 

conditions were set at 90 mA constant current for 60 min for one gel with a Bio-Rad 

Trans-Blot® SD semidry transfer cell (Bio-Rad München, Germany). After blotting, 

PVDF membranes were blocked with Tris-buffered saline (TBS) containing 10% non-

fat milk powder (Roth, Karlsruhe, Germany) and 0.05% Tween-20 (TBST) to block 

the non-specific protein binding sites for 1 h at RT. After blocking, the membrane was 

incubated with the specific primary antibody at 4°C overnight. The next morning, the 

membrane was washed 10 min for 3 times with 1X TBST solution in order to remove 

the primary antibody. Subsequently, the membrane was incubated with alkaline 

phosphatase-conjugated secondary antibodies at RT for 1 h 30min. All the primary 

and secondary antibodies used in Western blotting are listed in Table 7. Thereafter, 

Immun-StarTM AP substrate (Bio-Rad, Munchen, Germany) was used to detect the 

alkaline phosphatase activity. The blots were exposed to Kodak Biomax MR Films. 

To detect different target proteins, the membranes were reused several times by 

stripping and reincubation. The stripping condition is listed in Table 8. After stripping, 

the membrane was washed 3 times with TBST for 5min and re-blocked for 1 hour at 
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RT for another antibody detection. All the western blots were carried out 3 times to 

obtain reliable results. 

 

3.2.3.2 Steroid measurements in KK-1 cell cultures 

3.2.3.2.1 Cell treatment for stimulating steroid synthesis  

For progesterone measurement, hCG (BREVACTID® 5000 I.E., Ferring, Kiel, 

Germany) was used as stimulus. hCG is a LH analogue and widely applied in clinical 

therapy. Before treatment, the serum-containing culture medium was removed from 

growing cells and washed with serum free DMEM/F12 medium. Thereafter KK-1 cells 

were treated with 1.5 IE hCG (diluted in serum-free medium) and incubated at 37°C 

for 8 h. Finally, the conditioned medium was collected and stored at −20°C for 

progesterone Enzyme Linked Immunosorbent Assay (ELISA). The cells were 

collected for protein analysis.  

For pregnenolone measurements, the enzymes converting pregnenolone to 

progesterone and 17OH-pregnenolone need to be inhibited. Trilostane was used as 

inhibitor of 3β-Hsd and abiraterone acetate as an inhibitor of Cyp17a1. During the 

experiment, KK-1 cells were treated thereafter with 5 µmol trilostane (Sigma, 

Steinheim, Germany, Cat. no: SML0141) plus 17 nmol abiraterone acetate (Cayman 

Chemical, USA, Cat. no: 15148) for 30 min. Thereafter, the medium was removed 

and the cells were incubated with serum-free KK-1 cell culture medium containing 1.5 

IE hCG plus trilostane and abiraterone acetate for 8 h.  

Since KK-1 cells almost lack the enzyme Cyp17a1, in order to detect estrone and 

estradiol, Δ4-androstenedione was added as a precursor and FSH was used as 

stimulus. Before treatment, the serum-containing KK-1 cell culture medium was 

removed from growing cells, followed by washing with serum free medium. 

Thereafter the growing KK-1 cells were treated with 10µmol ∆4-Androstene-3,17-

dione (Sigma, Steinheim, Germany, Cat. no: 46033) for 15 min. Thereafter, this 

medium was removed and the cells were treated together with 10 µmol ∆4-

Androstene-3,17-dione plus 50ng/ml FSH (Sigma, Steinheim, Germany, Cat. no: 

F8174) in serum-free KK-1 cell culture medium for 24 h. At last the medium was 

collected for steroid measurement and proteins were measured prior to further 

application. 
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For determining whether the reduction of hormone production was StAR mediated or 

not, KK-1 cells were treated with 22(R)-hydroxy cholesterol (Santa Cruz, Cat. no: sc-

205106) at 40 µmol for 8 h with/without hCG treatment.  

 

3.2.3.2.2 Enzyme Linked Immunosorbent Assay (ELISA) for different steroids 

measurements 

The cultured media was frozen at −20°C until assayed. Steroid concentrations were 

measured by using ELISA kits (DRG, Marburg, Germany) following the 

manufacturer's protocol (http://www.drg-diagnostics.de/44-1-DRG+ELISAs.html). In 

this study, five different ELISA kits were used for the following steroids: progesterone 

(Cat. no: EIA1561), pregnenolone (Cat. no: EIA4170), estrone (Cat. no: EIA4174), 

estradiol (Cat. no: EIA2693) and testosterone (Cat. no: EIA1559). The absorbance 

(OD) value of each sample was determined at 450±10 nm with a microtiter plate 

reader (LB941 Tris, Berthold Technologies, Germany). Before progesterone and 

pregnenolone measures, the collected media need to be diluted to 1:80 first. The 

final concentration of each sample was calculated corresponding to the standard 

curves. The values were calculated with an online ELISA analysis software (© 

Copyright 2012 Elisakit.com Pty Ltd). All steroids concentrations were normalized to 

appropriate protein concentrations. 

 

3.2.4 Molecular biological experiments 

3.2.4.1 Polymerase chain reaction (PCR) 

3.2.4.1.1 RNA isolation from KK-1 cells and first strand cDNA synthesis by 

reverse transcription 

After removing the culture medium, at least 1 ml of RNAzol® RT (Sigma-Aldrich, 

Germany, Cat. no: R4533) was added to KK-1 cells per 10 cm2 of culture plate 

surface area. The resulting cell lysate was passed several times through a 1000 μl 

pipette tip to form a homogenous lysate. The lysate mixture was moved to a new 

Eppendorf tube where after 0.4 ml of RNase-free water was added per mL of 

RNAzol® RT used for homogenization. The sample was covered tightly and 

vigorously shook for 15 s. The sample was allowed to stand for 15 min at RT. 

Thereafter, the resulting mixture was centrifuged at 12,000 g for 15 min at 4°C. 

Subsequently, the supernatant was transferred to a new tube and 1x volume of 100% 

http://www.drg-diagnostics.de/44-1-DRG+ELISAs.html
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isopropanol was added, mixed gently and the sample was allowed to stand for 10 

min at RT. Thereafter, the mixture was centrifuged at 12,000 g for 10 minutes at 4°C 

and the RNA precipitated to a white pellet onto the bottom of the tube. The 

supernatant was carefully removed and the RNA pellets were washed twice with 0.4-

0.6 ml 75% ethanol to remove contaminants. Thereafter, the RNA pellets were 

solubilized in 0.1% DEPC water (Sigma-Aldrich, Germany, Cat. no: D5758) at a 

concentration of 1-2 μg/μl. The quantity and integrity of the isolated RNA was 

analyzed with the NanoDrop™ 8000 Spectro-photometer and RNA 6000 Nano 

LabChips (Caliper Life Sciences GmbH, Mainz, Germany).  

High quality isolated total RNA from KK-1 cells was reversely transcribed to cDNA 

using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, 

Germany) according to the manufacturer’s protocol. 1 μg total RNA was diluted in 

nuclease-free water to a volume of 10 μl and was added into 10 μl reverse 

transcriptase mix. The composition of 10μl reverse transcriptase mix is listed in Table 

9. The mixture was then incubated in a Trio-Thermoblock at following conditions: 

25°C for 10 min, 37°C for 2 h and 85°C for 5 min. 

Table 9. The composition of 10 μl reverse transcriptase mix. 

25xdNTP (100mM) 0,8 μl 

10xRT buffer 2,0 μl 

10xRT random primers 2,0 μl 

MultiScribeTM  reverse transcriptase 1,0 μl 

Rnase inhibitor 1,0 μl 

Nuclease-free H2O 3,2 μl 

 

3.2.4.1.2 Semi-quantitative polymerase chain reaction and agarose gel 

electrophoresis. 

The PCR reaction mix (Eppendorf, Hamburg, Germany) is listed in Table 10. The 

PCR reaction was performed with a Bio-Rad iCycler C1000 (Bio-Rad Laboratories, 

München, Germany) using the following parameters: denaturation at 95°C for 2 min, 

followed by 35-45 cycles of: 1) denaturation at 95°C for 30 s, 2) annealing at 50-65°C 

for 1 min and 3) extension at 72°C for 1 min. A final extension step at 72°C for 7 min 

was added to complete the cDNA extension. 
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Table 10. The PCR reaction mix. 

cDNA template 1,0 μl 

10xRT buffer 2,5 μl 

10Mm dNTPs 0,2 μl 

Forward Primer 1,0 μl 

Reverse Primer 1,0 μl 

Tag DAN polymerase 0,2 μl 

Sterile H2O 19,1 μl 

Totol volume 25 μl 

 

The amplification of specific target genes was analyzed by agarose gel 

electrophoresis analysis of the RT-PCR products. A 2% agarose gel, containing 0.5 

μg/ml ethidium bromide was prepared and electrophoresis was performed in 1 x TAE 

buffer. For RT-PCR reaction, 10 μl of the product was mixed with SYBR® Gold (Bio-

Rad, Germany). In parallel, a DNA Ladder GeneRuler (100 bp) or 1000 bp ladder 

(Fermentas) was also added on the gel as a size marker. The gel was run at constant 

voltage of 90 V for 60 min at RT to separate the DNA bands. Following the 

electrophoresis, the gel was photographed under UV light by using the Gel-Doc 2000 

documentation system (Bio-Rad Laboratories, München, Germany). The sizes of the 

RT-PCR products were estimated by comparing them to the bands of the DNA 

standers. The relative alterations of gene expression were analyzed by comparing 

thickness and intensity of the target gene to the 28S rRNA values which from the 

same samples processed in parallel on the same agarose gel. All sequences of 

specific primer sets of the genes analyzed with annealing temperature and size of 

amplified PCR products are listed in Table 11. 
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Table 11. Primers for Semi-quantitative polymerase chain reaction. 

Gene 
Names 

Forward primer(5’-3’) Reverse primer(5’-3’) 
Tm 
(°C) 

Product 
(bp) 

Abcd1 GAGGGAGGTTGGGAGGCAGT GGTGGGAGCTGGGGATAAGG 65 465 

Abcd2 TGCAAAATTCTGGGGAAGA TGACATCAGTCCTCCTGGTG 58 405 

Abcd3 CTGGGCGTGAAATGACTAGATTGG AGCTGCACATTGTCCAAGTACTCC 64 523 

Acox1 CTGAACAAGACAGAGGTCCACGAA TGTAAGGGCCACACACTCACATCT 60 565 

Acox2 CTCTTGCACGTATGAGGGTGAGAA CTGAGTATTGGCTGGGGACTTCTG 58 688 

Acox3 GCCAAAGCTGATGGTGAGCTCTAT AGGGGTGGCATCTATGTCTTTCAG 55 813 

Thiolase TCAGGTGAGTGATGGAGCAG CACACAGTAGACGGCCTGAC 60 241 

Cat ATGGTCTGGGACTTCTGGAGTCTTC GTTTCCTCTCCTCCTCATTCAACAC 64 833 

Cyp11a1 GCTGGAAGGTGTAGCTCAGG TTCTTGAAGGGCAGCTTGTT 58 432 

Gnpat CCGTCTCCTTGAGACCTCTG AGGTGTGGGAATCTGAGTGG 60 198 

Gsr CACTTGCGTGAATGTTGGATG CCACAGTAGGGATGTTGTCATAG 58 944 

Hsd17b4 
(Mfp2) 

GAGCAGGATGGATTGGAAAA TGACTGGTACGGTTTGGTGA 60 223 

Ehhadh  
(Mfp1) 

ATGGCCAGATTTCAGGAATG TGCCACTTTTGTTGATTTGC 56 211 

Lh-r ATGGATCCCTCTCACCTATCTCCCTGT AGTCTAGATCTTTCTTCGGCAAATTCCTG 58 702 

Sod1 AGCGGTGAACCAGTTGTGTTGT CCACACAGGGAATGTTTACTGC 65 405 

Sod2 AAGTAGGTAGGGCCTGTCCGATG CTAAGGGACCCAGACCCAACAAG 58 624 

Star GTTCCTCGCTACGTTCAAGC TTCCTTCTTCCAGCCTTCCT 58 292 

3β-Hsd TCAATGTGAAAGGTACCC ATCATAGCTTTGGTGAGG 55 499 

28S rRna CCTTCGATGTCGGCTCTTCCTAT GGCGTTCAGTCATAATCCCACAG 65 254 

 Tm = Annealing temperature; bp = base pairs. 

 

3.2.4.1.3 Quantitative real time-polymerase chain reaction 

Quantitative real time-polymerase chain reaction (qRT-PCR) was performed with the 

IQ5® I cycler (Bio-Rad, Müchen, Germany). A SYBR Green PCR Master Mix 

(Applied Biosystems) was used according to the standard protocol provided by the 

manufacturer. Thermal cycling was carried out at 95°C for 3 min followed by 45 

cycles with 1) denaturation at 95°C for 30 sec, 2) annealing at 60 °C for 45 s and 3) 

extension at 72°C for 1 min. The resulting cDNA levels were normalized to the ones 

of the stable references gene Gapdh. All sequences of specific primer sets of the 

genes analyzed are listed in Table 12. 
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Table 12. Primers for Quantitative real time-polymerase chain reaction 

Gene Name Sense 5’-3’ Antisense 5’-3’ 

Abcd1 ACAGTGCCATCCGCTACCTA ATGAGCTACTAGACGGCTTCG 

Abcd2 ATACACATGCTAAATGCAGCAGC GCCAATGATGGGATAGAGGGT 

Abcd3 TCAGAATGGGACGCTCATTGA TGGCAGCGATGAAGTTGAATAA 

Acox1 CCGCCACCTTCAATCCAGAG CAAGTTCTCGATTTCTCGACGG 

Acox2 ACGGTCCTGAACGCATTTATG TTGGCCCCATTTAGCAATCTG 

Acox3 TTCTAGTGCTGATTAACTGCCTG AGAAACGAAAACTGTGGTTCCAA 

Agps TGTCCTCCGTGTCTGTTCCT CATGGTACAACCTGCCCTTC 

Akap1 GAAGGAGGAGCTGTCAGACTTA CGTCAGAACCTCCTGAGTGAT 

Catalase TGGCACACTTTGACAGAGAGC CCTTTGCCTTGGAGTATCTGG 

Cyp11a1 GGCTAAACCTGTACCACTTCT CCCAGCTTCTCCCTGTAAAT 

Ehhadh  
(Mfp1) 

AATACAGCGATACCAGAAGCCA CCAGCTCTAGTCCTCCTCCA 

Gapdh AACTTTGGCATTGTGGAAGG GGAGACAACCTGGTCCTCAG 

Gnpat GTGTTACGATGCGCTGTCTT GCAGGCCCGTTCACATAATA 

Hsd3b1 CTCAGTTCTTAGGCTTCAGCAATTAC CCAAAGGCAGGATATGATTTAGGA 

Hsd17b4 
(Mfp2) 

TTAGGAGGGGACTTCAAGGGA TCGCCTGCTTCAACTGAATCG   

Pex13 TGGATATGGAGCCTACGGAAA CGGTTAAAGCCCAAACCATTG 

Star ATCATTGTGCCGACTTCC CTAC ACCAGGTTAGCCTCAGTA TTAGA 

Scp2 TGGGTGGTGGATGTGAAGAA TGAAAGAAGGCCGACTGAGG 

Sod1 AAAATGAGGTCCTGCACTGG AACCATCCACTTCGAGCAGA 

Sod2 GGGAGCACGCTTACTACCTTC GAGCCTGGCACTCAATGTG 

Thiolase TCTCCAGGACGTGAGGCTAAA CGCTCAGAAATTGGGCGATG 

 

3.2.4.2 Transfection of KK-1 cells with siRNA 

3.2.4.2.1 Pex13 knock down in KK-1 cells by RNAi 

Pex13 siRNA with the (sense: GCUAUAGCCCUUAUAGUUATT; antisense: 

UAACUAUAAGGGCUAUAGCTT, Cat. no: GEHC1-000790 (SO-24886576), 

Dharmacon, Germany) was used in this study to knockdown the Pex13 gene in KK-1 

cells, scrambled siRNA (Qiagen, Germany, Cat. no: 1027280, the sequence of it is 

proprietary to the company) was used as the negative control for the siRNA reaction 

in parallel. To knock down the Pex13 gene expression KK-1 cells were transfected 

with ScreenFect®A transfection reagent purchased from InCella (Eggenstein-

Leopoldshafen, Germany. Cat. no: S-3001) according to the manufacturer’s protocol. 

1,25x105 KK-1 cells were seeded onto each 6-well plate and grown for 24 h before 

transfection. For the transfection, 4,5 μl of ScreenFect®A was first diluted to a final 

volume of 120 μl in dilution buffer and mixed thoroughly. Thereafter 4,5 μl of 10 μmol 
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siRNA was diluted to a final volume in 120 μl supplied dilution buffer. Subsequently, 

the diluted ScreenFect®A and Pex13 siRNA mixture were combined and immediately 

mixed by using several pipette strokes. Complex formation was allowed to proceed at 

RT for 20 min. In the meantime, the cell culture medium was exchanged to 1250 μl 

fresh standard DMEM/F12 medium containing 10% FBS without antibiotics in a 6-

well plate. After 20 min, the final pre-incubated solution with the Pex13 siRNA mixture 

complex was added to one well drop wise. The final working concentration for the 

Pex13 siRNA was 30 nmol. Transfected KK-1 cells were incubated for 48 h at 37 °C 

in the cell culture incubator before any further application. 

 

3.2.4.2.2 Akap1 protein overexpression in KK-1 cells 

3.2.4.2.2.1 Transformation of E.coli DH5α with an AKAP1-overexpression 

plasmid  

One μl PCMV sport plasmid with the full open reading frame of Akap1 was added to 

50 μl E. coli DH5α and mixed by gently tapping the tube and thereafter incubated 15 

min on ice. Following the incubation, cells in the tube were heat-shocked at 42°C for 

90 s with subsequent immediate cooling on ice for 2 min. Thereafter, 500 μl of SOC 

medium were added to the tube and incubated at 37°C for 30 min at 300 rpm on a 

rotary shaker. The grown transfected E.coli cells were spread on LB-Ampicillin plates 

prepared in advance and the plates were incubated upside-down at 37°C overnight. 

The next morning, to 3 ml of LB medium, 100 µl of Neomycin (50 mg/ml) were added 

and mixed. The incubated plates with bacteria colonies were taken out of the 

incubator and a single colony was picked up with a pipet tip and then added into the 

Neomycin containing medium. The bacteria were grown in the LB/Neomycin medium 

overnight at 37°C in the Aquatron shaking bacterial incubator. All solutions and 

materials which were used for the plasmid transformation are listed in table 13. 
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Table 13. Media for bacterial growth and transfection. 

LB medium 0.17 M sodium chloride, 1% Trypton, 0.5% Yeast extract, pH 7.0 

LB-Agar LB medium, 1g/50 ml Agar, 100 μg/ml Ampicillin or 50 μg/ml Neomycin 

SOC 
Tryptone 2% (w/v), yeast extract 0.5% (w/v), NaCl 10 mM, KCl 2.5 mM, pH 
7.0, the solution was autoclaved, then 20mM of glucose was added 

 

3.2.4.2.2.2 Midi prep plasmid preparation 

On the third morning, the cultured medium was centrifuged at 6,000 rpm for 10 min at 

4°C according to ‘High-copy plasmid purification protocol’ from EF-Midi plasmid 

isolation kit (NucleoBond® Xtra Midi EF, Macherey-Nagel, Cat. no:  REF740420.50). 

After removal of the supernatant, the bacterial pellet was resuspended in 8 ml of Res-

EF buffer, followed by the addition of 8 ml of lysis buffer. The mixture was gently 

inverted for around 5 times and incubated at RT for 5 min. In parallel, the 

NucleoBond® Xtra column together with the inserted filter was equilibrated with 15 ml 

EQU-EF Buffer. Thereafter, 8 ml of the neutralization buffer NEU-EF was added to 

the lysate. The tubes were gently inverted until the blue sample became colorless 

and incubated on ice for 5 min. Thereafter, the solution was loaded onto the column. 

The column and the filter which contained the sample were washed with 5 ml of 

buffer FIL-EF. After removing the filter, the column was washed with 15 ml of Wash-

EF buffer followed by a two times wash with 35 ml ENDO-EF buffer. The DNA was 

eluted by adding 5ml of ELU-EF buffer. The eluted plasmid was precipitated with 3.5 

ml isopropanol and then centrifuged at 8,500 rpm for 1h at 4°C. The pellet was 

washed 2 times with 2 ml of 70% Ethanol-EF. At the end, the plasmid was dissolved 

in an appropriate volume of TE-EF buffer.  

 

3.2.4.2.2.3 Overexpression of Myc-tagged Akap1  

To overexpress the Akap1 gene in KK-1 cells, Akap1 was cloned in a myc-tag vector. 

Two types of recombinant Akap1-plasmids were used for the protein overexpression 

analysis, leading to a myc tag at the amino terminus (Akap1-3b plasmid) or a myc-tag 

at the carboxyl terminus (Akap1-5b plasmid) of the fusion protein. Myc-tagged GFP 

was used as a control in this experiment. Both myc-tagged Akap1 plasmid and the 

myc-tagged GFP were constructed by Wenwen Wang, a former doctoral student of 
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Prof. Baumgart-Vogt [179]. Similar to the protocol for Pex13 siRNA transfection, 

1,25x105 cells in one well were seeded onto each 6-well plate 24 hours before 

transfection. First 6 μl of ScreenFect®A were diluted to a final volume of 120 μl in 

dilution buffer and mixed thoroughly. Then 1000 ng plasmid DNA was diluted in a 

final volume of 120 μl supplied dilution buffer. Subsequently, the diluted 

ScreenFect®A and the plasmid solution were combined and immediately mixed by 

using several pipette strokes. Complex formation was induced at RT for 20 min. In 

the meantime, the cell culture medium was exchanged to 1250 μl fresh standard 

DMEM/F12 medium containing 10% FBS without antibiotics in a 6-well plate. After 20 

min, the final incubated solution with the plasmid mixture complex was added drop 

wise to one well. Transfected KK-1 cell cultures were incubated for 24 h at 37 °C in 

the cell culture incubator before any further application.  

 

3.2.4.2.3 Pex13 siRNA and Akap1 plasmid double transfection 

KK-1 cells were first transfected with Pex13 siRNA followed after 24 h by plasmid 

transfection with the distinct myc-tagged Akap1 and GFP plasmid. The exact 

transfection procedures are described above. After the second transfection with the 

Akap1 plasmids, the KK-1 cells were incubated for another 24 h at 37 °C in the cell 

culture incubator before any further application. 

 

3.3 Statistical Analysis 

All results presented in this thesis were collected from at least 3 independent 

experiments. The Graph pad 6.0 software was used for statistical analysis and bar 

chart drawings. Each column of bar charts represents the mean value for each 

experimental group. Standard errors (SE) of all groups are represented by error bars 

on each column. For paired data, the student t-test was chosen and for multi-paired 

data the ANOVA test was used to examine the statistical difference between 

experimental groups. p≤0.05 * , p≤0.01**, p ≤0.001*** and **** p ≤ 0.0001 were 

considered as statistically significant.  
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4 Results 

The results of this thesis are partitioned into two different parts. The first one 

described the distribution of peroxisomes in different cell types of the mouse ovary 

and the regulation of peroxisomes during folliculogensis. The second part focusses 

on peroxisomal functions on steroid metabolisms. 

 

4.1 Part 1: Investigation of peroxisomal functions during mouse ovarian 

folliculogenesis 

4.1.1 Regulation of peroxisomal enzymes during follicular maturation 

Figure 8 shows the H&E staining of mouse ovarian follicles during their development 

process. The different stages in order of occurrence are named: primordial follicle, 

primary follicle, pre-antral follicle (secondary follicle), antral follicle (tertiary follicle), 

and pre-ovulatory follicle. In the ovary, oocytes are covered on their surface with 

epithelial cells, named granulosa cells, building up follicles that are growing and 

expanding their numbers. A typical pre-antral follicle is composed of a central oocyte 

surrounded by multiple layers of granulosa cells and bulding up theca cells in the 

outer layer. During antral follicular phase, the oocyte will be released from the ovary 

into the fallopian tube for fertilization under LH stimulation. The remainder of the 

follicle will develop into a corpus luteum. 
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Figure 8. HE staining for adult mouse ovary. The different stages of follicle development 
are presented in this picture. “O” represents oocyte, ”Gc” represents granulosa cells,  “Tc”  
represents theca cells and “CL” represents corpus lutuem. Scale bar = 20 µm for A, B and C; 
Scale bar = 40 µm for D, Scale bar = 80 µm for E and F. 

 

In the past, people believed that peroxisomes are scarce in oocytes because in these 

cells their typical marker enzyme, catalase, is only very low abundant as shown in 

Figure 9 A-C. At higher magnification and with higher exposure time we could 

however, prove the presence of catalase within the oocyte (Figure 9B, inset). In 

which besides some intensively stained organelles at the surface, many weakly 

stained peroxisomes are visible (Figure 9B, inset). In comparison to oocyte, calatase 

is highly abundant in granulosa cells as well as interstitial cells in the ovary. Because 

of the low expression of catalase in the peroxisomal matrix in oocytes we decided to 

use the peroxisomal marker PEX14p to identify peroxisomes in mouse oocytes 

(Figure 9D-F), a peroxisomal biogenesis protein in the membrane of all peroxisomes. 

The IF results showed that PEX14p is highly abundant and that peroxisomes are 

indeed very numerous in oocytes of antral follicles. After careful observation, we also 

found that PEX14p was more strongly labelled in the peroxisomes of oocytes than 
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the neighboring granulocytes, as opposed to the observation of catalase. Moreover, 

peroxisomes were more numerous in oocytes of antral  follicles compared with the 

ones in oocytes of primary follicles, suggesting the proliferation of these organelles 

during folliculogenesis and oocyte maturation. We also investigated the distribution of 

another important peroxisomal matrix protein, namely GNPAT (glyceronephosphate 

acyltransferase) in distinct follicular stages. Interestingly, GNPAT , which is involved 

in plasmalogen synthesis, lipids responsible for trapping ROS, was strongly induced 

within the oocyte during folliculogenesis (Figure 9 G-I). We further observed that 

PEX14p, catalase as well as GNPAT were all particularly abundant in the inner layer 

of the granulosa cells directly facing the oocyte in late primary and early pre-antral 

follicles (Figure 9 A,B,D,E,H arrow labled), but not in antral follicles (Figure 9 C,F,I). 
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Figure 9. PEX14p and GNPAT expression in oocytes were up-regulated during 
follicular development while catalase was barely stained in the oocyte. (A-C) Catalase. 
(D-F) PEX14p: Peroxin 14. (G-I) GNPAT: glyceronephosphate acyltransferase. Scale bar = 
40 µm for all images. 

 

During follicular maturation, only few follicles mature into pre-ovulatory follicles under 

the stimulation of FSH while the rest of them degenerate. As shown in Figure 10 

(arrow), in the degenerating oocytes the antibody against peroxisomal membrane 

protein PEX14p and the matrix enzyme GNPAT labelled “cluster” structures in the 

oocyte. 
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Figure 10. IF staining of PEX14p and GNPAT in degenerating oocytes. (A) PEX14p: 
Peroxin 14.  (B) GNPAT: glyceronephosphate acyltransferase. Scale bar = 40 µm for both 
images. 

 

After the mature ovum is released from the follicle by the ovulation process for 

fertilization, in the second half of the ovarian cycle a corpus luteum (CL) is formed 

[180]. Induced by the luteinization hormone, granulosa cells differentiate into 

granulosa lutein cells and theca interna cells develop into theca lutein cells, both 

constituting the parenchyma of the corpus luteum. In granulosa lutein cells, a high 

number of peroxisomes with strong PEX14p protein abundance were detected 

(Figure 11 A and B). However, already in the PEX14p staining, heterogeneity in the 

peroxisome content of individual granulosa lutein cells were noted, with many of them 

showing a very high number of the organelles, while others exhibiting less 

peroxisomes. Similarly, also PEX5p was higher abundant in large granulosa lutein 

cells, apparently also being attached to the peroxisomal surface, suggesting a high 

matrix protein import into theses organelles (Figure 11 C and D). Indeed, also 

catalase was heterogeneously present in distinct granulosa lutein cells, with larger 

cells showing high amount of this protein in numerous peroxisomes (Figure 11 E and 

F). In addition, also the lipid transporter ABCD3 showed a complete heterogeneous 

staining pattern of granulosa lutein cells (Figure 11 G and H). By comparing the 

staining intensities between neighboring interstitial cells with an organelle stained 

granulosa cells, it was seen that except for the PEX5p abundance, interstitial cells 

were more intensively labelled with peroxisomal markers.    
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Figure 11. IF staining of peroxisomal enzymes in corpus luteum of mouse ovary. (A) (B) 

PEX14p: Peroxin 14. (C) (D) PEX5p: Peroxin 5. (E) (F) Catalase. (G) (H) ABCD3: ATP-

binding cassette transporter 3. Nuclei were counterstained with TOTO-3 iodide (blue). Scale 

bar = 40 µm for all figures.                                 
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4.1.2 SOD2 and glutathione reductase regulation during follicular maturation 

Since it is known that peroxisomes cooperate with mitochondria for fatty acid 

degradation and oxidative stress management, we were interested to examine also 

the distribution of mitochondria during follicular development by using antibody 

against specific marker enzyme SOD2 involved in ROS metabolism. In addition, 

glutathione reductase, which is located in the cytoplasm and is involved in ROS 

degradation, was also investigated using immunofluorescence staining. As shown in 

Figure 12, SOD2 was highly abundant in interstitial cells as well as in granulosa cells. 

In comparison to what we observed for catalase, PEX14 and GNPAT, the SOD2 

content in the oocyte remained stable during folliculogenesis (Figure 12 A and B), 

Interestingly, glutathione reductase (GR) was very abundant in the oocyte of 

primordial and primary follicles, while it was reduced in pre-antral follicles (Figure 12 

C and D). In contrast to the oocyte, GR was much less abundant in granulosa cells 

and interstitial cells in the ovary (Figure 12C and D). 

 

Figure 12. IF staining of mitochondrial SOD2 and cytoplasmic glutathione reductase in 
mouse ovary. (A) (B) IF staining for SOD2: superoxide dismutase 2.  (C) (D) IF staining for 
GR: glutathione reductase. Scale bar = 40 µm for all figures.    
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4.2 Part 2 Investigation of peroxisomal functions on steroidogenesis in mouse 

granulosa tumor cell lines— KK-1 cells 

To analyze peroxisomal function in steroid synthesis, we used the murine ovarian 

granulosa tumor cell line KK-1, which has been developed using a transgenic mouse 

model [176]. This cell line displayed a dose-dependent increase in cAMP production 

in response to hCG as well as FSH. The cells express the LH and FSH receptors at 

early passages and contain most of the granulosa cell´s steroidogenic enzymes [181].  

We first characterized peroxisome expression in the KK-1 cell line and then used LH 

analogue human chorionic gonadotropin (hCG), a hormone that is also clinically used 

to trigger ovarian steroidogenesis. 

4.2.1 Peroxisome abundance in KK-1 granulosa cells 

The IF results showed that peroxisomal proteins PEX14p and catalase are highly 

abundant in KK-1 cells. Moreover, peroxisomes were very numerous (Figure 13), 

similarly to what we observed for mouse ovary granulosa cells in situ, suggesting that 

the KK-1 cells are a suitable model to investigate the role of peroxisomes in 

steroidogenesis in this cell type.  

 

Figure 13. IF staining for 
the peroxisomal markers 
Peroxin 14 (PEX14p) and 
catalase in KK-1 
granulosa cells. (A) (B) 
PEX14p: Peroxin 14. (C) (D) 
Catalase. Scale bars = 15 
µm. 
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4.2.2 KK-1 granulosa cells respond to hCG and FSH treatment and produce 

higher amount of steroids 

To stimulate steroidogenesis, the KK-1 cells were treated with hCG for 8h. After that, 

we measured the expression of steroidogenic genes (Lh-r, Star, Cyp11a1 and 3β-

Hsd were measured) at the mRNA level using semi-quantitative PCR. The results 

showed that all genes involved in steroidogenesis were up-regulated after hCG 

treatment and the Star mRNA exhibited the highest upregulation (Figure 14A). In 

accordance with the mRNA levels, Western blots showed that the protein levels of 

StAR and CYP11A1 were both strongly increased after hCG stimulation (Figure 14B). 

To determine the capability of KK-1 cells to secrete steroid hormones, ELISA 

measurements following the hCG treatment were carried out. The highest 

pregnenolone levels were measured after hCG stimulation in combination with the 

inhibitions of the activities of 3β-Hsd and Cyp17a1 using trilostane and abiraterone 

acetate respectively (Figure 14C). Also, the synthesis of progesterone was strongly 

stimulated after hCG (1,5 IE) treatment (Figure 14D). To measure estradiol, 10µmol 

∆4-Androstene-3,17-dione was added as precursor and then KK-1 cells were treated 

with different concentrations (10 ng/ml to100 ng/ml) of FSH plus ∆4-Androstene-3,17-

dione for 24h. The results indicated that 50 ng/ml FSH was the optimal concentration 

for stimulating estradiol synthesis (Figure 14E). According to our results, KK-1 cells 

are responsive to hCG and to FSH treatment as suggested also in the literature, 

making the cell a qualified model to study peroxisomal functions in steroidogenesis. 

The determined optimal conditions for the stimulation of steroidogenesis in KK-1 cells 

were employed for further experiments on the role of peroxisomes on 

steroidogenesis.  
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Figure 14. Steroid synthesis is stimulated after treatment with human chorionic 
gonadotropin (hCG) and follicle-stimulating hormone (FSH). (A) Semi-quantitative PCR 
results for detecting mRNAs of steroidogenic genes after hCG treatment. 28S-rRna was 
used as internal control. Lhr: luteinizing hormone receptor; Star: steroidogenic acute 
regulatory protein; Cyp11a1: cytochrome P450 side-chain cleavage enzyme; 3β-Hsd: 3-beta-
hydroxysteroid dehydrogenase. (B) Western blot results for detecting steroidogenic enzymes 
after hCG treatment. β-actin was used as loading control. (C) Pregnenolone determination in 
the culture medium of KK-1 cells using ELISA. (D) Progesterone determination in the culture 
medium of KK-1 cells using ELISA. (E) Estradiol determination in the culture medium of KK-1 
cells using ELISA. (*p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001) (N=3). All data are 
means ± SD. 

 

4.2.3 Regulation of the peroxisomal compartment involved in fatty acid 

transport and β-oxidation under hCG treatment 

To study peroxisomal regulation in steroid biosynthesis, we investigated the 

expression of peroxisome-related genes and the abundance of peroxisomal proteins 

involved in fatty acid transport and -oxidation. Both semi-quantitive (Figure 15A) and 

real time PCR results (Figure 15B) revealed that many of the investigated mRNAs 

are up-regulated after hCG treatment. These mRNAs encode the ABCD3 transporter 

(possibly involved in steroid transport), the acyl-CoA oxidase 3 (ACOX3), the 17beta 
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hydroxysteroid dehydrogenase 4 (17bHSD4 / MFP2), the peroxisomal 3-keto-acyl-

CoA thiolase, and sterol carrier protein x (SCPx). In accordance with the PCR results, 

also Western blots confirmed the upregulation of peroxisomal enzymes involved in 

beta-oxidation after hCG treatment (Figure 15C), suggesting that the peroxisomal 

compartment is strongly activated by the action of this hormone through gonadotropin 

receptors. 

 

Figure 15. PCR and Western blot results revealed that peroxisomal fatty acid transport 
and β-oxidation are up-regulated after treatment with hCG. (A) Total RNA derived from 
hCG-stimulated (hCG+) and not-hCG-stimulated (control) KK-1 cells was analyzed by semi-
quantitive PCR to determine the expression levels of genes coding for peroxisomal β-
oxidation enzyme. 28S rRna was used as internal control (B) Total RNA from hCG-
stimulated (hCG+) and not-hCG-stimulated (control) KK-1 cells was analyzed by q-RT PCR 
to determine the expression levels of genes coding for peroxisomal β-oxidation enzymes. 
Gapdh was used as internal control. (C) Comparative Western blot analyses to examine the 
peroxisomal β-oxidation enzymes 17β-HSD4 (MFP2) and Thiolase in KK-1 cells after hCG 
treatment. (*p ≤ 0.05) (N=3). All data are means ± SD. 

 

4.2.4 Regulation of peroxisomal metabolism involved in ROS degradation 

under hCG treatment 

We further examined the genes and proteins linked to the peroxisomal metabolic 

pathways involved in ROS degradation. The mRNA levels of catalase and the mRNA 

levels of Gnpat and Apgs, which two enzymes are involved in the synthesis of ROS-
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trapping ether lipids (plasmalogens) were measured. Their mRNA levels were 

significantly elevated after hCG treatment, which was further confirmed by qRT-PCR 

(Figure 16 A and B). In accordance with the mRNA levels, the protein abundance of 

catalase and GNPAT were also increased (Figure 16C). 

 

Figure 16. PCR and Western blot results indicated that peroxisomal antioxidative 
metabolism is activated after hCG stimulation. (A) Total RNA derived from hCG-
stimulated (hCG+) and not-hCG-stimulated (control) KK-1 cells was analyzed by semi-
quantitive PCR to determine the expression levels of genes coding for peroxisomal anti-
oxidative genes by semi-quantitive PCR. 28S rRna was used as internal control. (B) Total 
RNA derived from hCG-stimulated (hCG+) and not-hCG-stimulated (control) KK-1 cells was 
analyzed by qRT-PCR to determine the expression levels of genes coding for peroxisomal 
anti-oxidative enzymes. Gapdh was used as internal control. (C) Western blot analyses to 
examine the peroxisomal anti-oxidative enzyme catalase and the GNPAT protein contents in 
KK-1 cells after hCG treatment. (*p ≤ 0.05) (N=3). All data are means ± SD. 

 

4.2.5 Establishment of a siRNA- mediated Pex13 knock-down in KK-1 cells to 

induce peroxisome deficiency 

Since we have demonstrated that the peroxisomal metabolism was induced after 

hCG stimulation, we speculated that peroxisomes may be involved in the synthesis of 

steroids in granulosa cells. To further investigate the putative involvement of these 

organelles in steroidogenesis we established a KK-1 cell peroxisome deficiency 

model. For this purpose, the Pex13 gene was knocked down in KK-1 cells. PEX13p 

is a peroxisomal membrane protein of the peroxin family which functions as 

membrane docking factor and is responsible for matrix protein import into the 

organelle. As demonstrated by Western blotting (Figure 17A), a strong down 
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regulation of the PEX13 protein was observed after 48 h of transfection induced by 

the Pex13-siRNA (75% knock-down as shown in Figure 17B). 

 

Figure 17. The abundance of the PEX13 protein was significantly diminished in Pex13-
siRNA transfected KK-1 cells. (A) Protein expression of PEX13p was analyzed by Western 
blotting. Three experimental groups were analyzed: the blank group was incubated with 
transfection reagent only; the control group was transfected with scrambled siRNA (Scr 
siRNA); the knock-down group was transfected with Pex13 siRNA. (B) The PEX13p band 
intensities of all different groups were analyzed with the Image J software (“gels” program). 
Three independent experiments were performed. (*** p ≤ 0.001). All data are means ± SD. 

 

Since peroxisomal matrix protein import is blocked by the depletion of PEX13p, 

catalase was not correctly imported into the peroxisomal matrix and was mis-targeted 

to the cytoplasm as shown by IF (Figure 18). This demonstrates that a real deficiency 

of the peroxisomal matrix protein import was induced in KK-1 cells. This deficiency in 

matrix protein import is typically observed in fibroblasts of Zellweger syndrome 

patients with the most severe peroxisomal disorders.  
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Figure 18. Peroxisomal catalase is mistagerted to the cytoplasm due to the matrix 
protein import defect induced by the Pex13 KD in KK-1 cells. Immunofluorescence 
staining of catalase was performed to examine the consequence of Pex13 KD on the 
peroxisomal compartment. (A) - (C) Catalase in control cells is localized inside of 
peroxisomes. (D) - (F) Catalase was mis-localized to the cytoplasm (arrow) as comparison 
with the punctuate pattern in a non-transfected cell shows (asterisk). Nuclei were 
counterstained with DAPI (blue). Scale bars represent: 20 μm. 

 

4.2.6 Impact of Pex13 knock-down on steroid synthesis under hCG treatment 

Using the optimal conditions which have determined before, the effect of the Pex13 

KD on the synthesis of pregnenolone and progesterone was analyzed. ELISA 

measurement revealed that the secretion of pregnenolone and progesterone was 49% 

and 47% down-regulated when peroxisomes were dysfunctional (Figure 19 A and B). 

No significant effect was noted on estrone synthesis under ∆4-androstendione 

supplementation conditions. ∆4-androstendione is a direct precursor of estrone, 

suggesting that the aromatase activity was not influenced by the Pex13 KD (p= 

0,4451) (Figure 19C). In contrast to the values for estrone, FSH induced estradiol 

levels were 45% downregulated after Pex13 KD, indicating an alteration in the activity 

of a 17beta hydroxysteroid dehydrogenase (Figure 19D). Whether this is due to the 

dysfunction of peroxisomal 17bHSD4 has to be analyzed in the future. 
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Figure 19. ELISA was performed to analyze the hormone secretion of KK-1 cells after 
Pex13 KD. Progesterone and pregnenolone were measured in the presence or absence of 
hCG (hCG+ and Control) whereas estrone and estradiol were measured after FSH treatment. 
(A) Pregnenolone ELISA. (B) Progesterone ELISA. (C) Estrone ELISA. (D) Estradiol ELISA. 
Three independent experiments were performed. (*p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p 

≤ 0.0001, “ns” means no significant difference). All data are means ± SD. 

 

As progesterone, pregnenolone and estradiol were all decreased, we further 

investigated the effect of the Pex13 KD on the abundance of steroidogenic enzymes 

by Western blotting to figure out which component of the steroidogenic pathway was 

affected (Figure 20A). The results show that after the Pex13 KD the abundance of 

StAR, a protein that is induced by hCG, was much lower (by 57%, *** p ≤ 0.001) in 

comparison to the control group (Figure 20D). The reduction of the StAR abundance 

was only induced in Pex13 KD cells that were stimulated with hCG. Moreover, PKAc-
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α, which phosphorylates and activates StAR also exhibited a slight down-regulation 

(p= 0,0713) (Figure 20C). In contrast, the abundance of CYP11A1 (Cyp450scc), 

which converts cholesterol to pregnenolone showed no alterations (Figure 20E). In 

contrast to the protein values, the Star mRNA expression levels showed no alteration 

after Pex13 KD, suggesting a post-translational mechanism of StAR (Figure 20F). 

These results strongly suggest that the hCG induced StAR dysfunction in 

mitochondria is responsible for the lower progesterone, pregnenolone and estrone 

values.  
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Figure 20. Steroidogenic enzyme regulation after Pex13 KD. (A) Western blot analysis to 
examine the steroidogenic protein abundance. The Pex13 siRNA transfected group and the 
Scr siRNA group were both analyzed without and with hCG treatment (control and hCG+ 
groups). (B-E) Band intensities were analyzed by ImageJ software. Protein abundance was 
normalized to β-actin. Quantification of protein abundances for: (B) PEX13p: Peroxin 13. (C) 
PKAc-α: catalytic subunit of protein kinase A (D) StAR: steroidogenic acute regulatory protein. 
(E) CYP11A1: cytochrome P450 side chain cleavage enzyme. (F) qRT-PCR results to reveal 
steroidogenic gene expression after Pex13 KD. Three independent experiments were 
performed. (*p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001). All data are means ± SD. 

 

StAR mediated cholesterol transport from outer mitochondrial to inner mitochondrial 

membrane is the rate-limiting step for steroid synthesis. After that, cholesterol is 

converted to pregnenolone inside the mitochondria under the stimulation of 

CYP11A1, which is the initial step for steroid biogenesis. Based on our results, the 

reduction in StAR following hCG stimulation is particularly likely the cause of 

hormone suppression under Pex13 KD conditions. To further confirm our hypothesis, 

after Pex13 siRNA transfection the cells were treated with 22R-cholesterol instead of 

using hCG for the stimulation of steroidogenesis. This induced a pathway that is 

StAR independent since 22R-cholesterol can pass the mitochondrial membrane 

without StAR mediation. Using these StAR-independent conditions, no changes in 

progesterone levels were observed (Figure 21A). The same results were obtained 

when we treated KK-1 cells with a combination of hCG and 22R-cholesterol (Figure 

21B). Our results strongly suggest that the StAR mediated cholesterol transport 

inhibition is the main reason for the reduction of the synthesis of progesterone, 

pregnenolone and estrone after Pex13 KD in KK-1 cells. 
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Figure 21. Pex13 KD has no effect on progesterone synthesis after 22R-cholesterol 
treatment. ELISAs were performed to detect progesterone secretion of KK-1 cells after 
Pex13 KD. (A) Progesterone levels without and with 22R-cholesterol treatment (control and 
+22R-cholesterol). (B) Progesterone levels without and with 22R-cholesterol and +hCG 
treatment (control and +hCG +22R). Three independent experiments were performed.  All 
data are means ± SD. 

 

4.2.7 AKAP1 overexpression in KK-1 cells 

To further prove that mitochondrial bound StAR is responsible for the alterations in 

steroidogenesis after Pex13 KD, we overexpressed the A-kinase anchoring protein 1 

(AKAP1 = AKAP121), which normally recruits PKA onto the surface of the 

mitochondria to phosphorylate and activate StAR, thereby increasing its translocation 

from the cytoplasm into mitochondria. We expected that the overexpression of 

AKAP1 could counteract the reduced StAR expression that was detected after Pex13 

KD, through the activation of PKA. For this purpose, two different overexpression 

vectors were used, which were generated previously in our groups by the doctoral 

student Wenwen Wang [179]: pCMV-3B adds an N-terminal myc-tag to AKAP1 while 

pCMV-5B adds a C-terminal myc-tag to AKAP1 [182]. Immunofluorescence was 

performed with either of t 

he two plasmids by Wenwen Wang, the data showing that C-terminally tagged 

AKAP1 (AKAP1-5B) co-localized with the mitochondrial marker SOD2 whereas the 

N-terminally tagged AKAP1 (AKAP1-3B) demonstrated a cytoplasmic localization 

pattern [179]. The co-localization of AKAP1-5B with SOD2 was further confirmed by 

our IF (Figure 21 A-C). To compare the localization of peroxisomes with the one of 

AKAP1, the AKAP-5B plasmid was transfected with KK-1 cells and IF staining 

against the myc-tag and PEX14p was performed, revealing that AKAP1-myc did not 

bind to the peroxisomal surface (Figure 22 D-F). Since it is known that the addition of 

the C-terminal tag interfered with the subcellular localization of AKAP1, AKAP1-5B 

plasmid was used for further investigation. Thereafter western blot analysis was 

performed and proved that the AKAP1 bearing the myc-tag was successfully 

expressed (Figure 23A). As indicated by the qRT-PCR results, the Akap1 

(endogenous + recombinant) was 120 times up-regulated compared with GFP control 

plasmid transfected group (Figure 23B).  
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Figure 22. Double immunofluorescence staining for AKAP1-myc with SOD2 and 
PEX14p. (A) - (C) AKAP1-myc co-localized with mitochondrial SOD2. (D) - (F) AKAP1-myc is 
not localized on peroxisomes. Scale bar = 20 µm. 
 

To examine how the overexpression of AKAP1 impacts on steroid synthesis, AKAP1-

5B-transfected KK-1 cells were treated with hCG. Western blot and qRT-PCR 

analyses revealed that the steroidogenic enzyme CYP11A1 was induced in both 

mRNA and protein levels while StAR was up-regulated only at the protein levels after 

AKAP1 overexpression (Figure 23 A and B). Not surprisingly, as indicated by ELISA, 

both pregnenolone and progesterone secretion were increased after Akap1 

overexpression (Figure 23 C and D).  
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Figure 23. Steroid biosynthesis was induced by Akap1-myc overexpression. KK-1 cells 
were transfected with GFP control plasmid and Akap1 plasmid respectively and treated with 
hCG. (A) Western blots were carried out to determine the effects of Akap1-myc on StAR and 

CYP11A1 protein abundances. -Actin was used as loading control. (B) mRNA levels of 
genes encoding for proteins involved in steroidogenesis were analyzed by qRT-PCR. (C) 
Pregnenolone analysis using ELISA after Akap1-myc transfection and hCG treatment. (D) 
Progesterone analysis using ELISA after Akap1-myc transfection and hCG treatment. 
 

4.2.8 The mitochondrial steroidogenesis defect was rescued by AKAP1-myc 

overexpression in peroxisome deficient KK-1 cells   

To explore whether Akap1-myc overexpression could rescue the StAR deficiency and 

hormone reduction induced by the Pex13 KD, we double transfected KK-1 cells first 

with Pex13 siRNA to induce the Pex13 KD, and after 24 h with the AKAP1-5B 

plasmid. Indeed, progesterone levels were increased by the overexpression of 

Akap1-myc in both Scr and Pex13 KD groups. As shown in Figure 24, progesterone 

synthesis was 39% augmented in the Scr siRNA group while in the Pex13 siRNA 

transfected group the degree of increase number was 32% (Figure 24). Likewise 

(Figure 25), Western blot demonstrated that AKAP1-myc overexpression induced 
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StAR expression levels by 36% in the Scr siRNA group and by 34% in the Pex13 

siRNA group (Figure 25D). The protein expression of CYP11A1 was also up-

regulated after AKAP1 overexpression in both Scr and Pex13 siRNA transfected 

groups showing increase of 39% and 34% respectively (Figure 25E). 

 

Figure 24. Progesterone synthesis 
was increased by Akap1 
overexpression. Progesterone 
measurement after Pex13 siRNA and 
Akap1-5B double transfection and 
hCG treatment. Three independent 
experiments were performed. (*p ≤ 
0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p 

≤ 0.0001).  All data are means ± SD. 
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Figure 25. AKAP1-myc overexpression can compensate the reduction of steroidogenic 
enzymes when PEX13p is deficient. KK-1 cells were transfected with Scr siRNA or Pex13 
siRNA respectively. After 24 h each group was further transfected with either the control 
plasmid or the AKAP1-5B plasmid. Following the double transfection, all groups were treated 
with hCG for 8h. (A) Western blotting was performed to determine the abundance of proteins 
involved in steroidogenesis after Pex13 siRNA and Akap1-5B double transfection. (B-E) 
Band intensities were analyzed using the ImageJ software. Protein abundance was 
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normalized to β-actin abundance. (B) PEX13p: Peroxin 13. (C) AKAP1: A kinase anchoring 
protein 1.  (D) StAR: steroidogenic acute regulatory protein. (E) CYP11A1: cytochrome P450 
side chain cleavage enzyme. Three independent experiments were performed. (*p ≤ 0.05, ** 

p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001).  All data are means ± SD. 

 

4.2.9 Peroxisomal enzyme regulation after Akap1-5B overexpression in KK-1 

cells 

Since Akap1 was able to compensate the reduced steroidogenesis observed under 

peroxisome deficient conditions, we investigated how peroxisomal genes are altered 

after Akap1 overexpression in KK-1 cells. For that purpose, we analyzed mRNA 

expression and protein abundance of the peroxisomal enzymes catalase and 

PEX13p after Akap1 plasmid transfection by qRT-PCR and Western blotting. 

Catalase was up-regulated at both mRNA and protein levels while Pex13p was 

unaffected (Figure 26). 

 

Figure 26. Catalase was induced after Akap1-5B overexpression. (A) mRNA levels of 
Pex13 and catalase were analyzed by qRT-PCR. (B) Western blotting was carried out to 
determine the effects of Akap1 overexpression on peroxisomal proteins PEX13p and 
catalase. 

 

4.2.10 ROS production was increased in KK-1 cells with Pex13 knock-down 

As shown by the Western blot in Figure 27, catalase, a major peroxisomal anti-

oxidative enzyme was upregulated in KK-1 cells after the PEX13 KD. Similarly, the 

mitochondrial SOD2 and the cytosolic glutathione reductase (GR) and SOD1 were 

induced. 
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Since antioxidant enzymes were up-regulated after the PEX13 KD we have further 

examined the ovarall cellular ROS production using dihydroethidium (DHE) staining 

in KK-1 cells with Pex13 siRNA KD. The fluorensence intensity was quantified in 100 

cells using the Image J software. In comparison with the value of Scr siRNA 

transfected cells, Pex13 siRNA KD led to a 25% (p ≤ 0.01) increase in ROS 

production suggesting that oxidative stress is induced when peroxisomes are 

deficient (Figure 28C). The increase was clearly visible in the fluorescence pictures of 

DHE stained cells as shown in Figure 28 A and B. 

 

Figure 28. Quantification of ROS production after DHE staining of KK-1 cells with a 
PEX13 KD. The cells were transfected with Scr siRNA and Pex13 siRNA. Following the 

Figure 27. Increased antioxidant enzymes in KK-1 
cells with Pex13 gene KD. Comparison of the 
protein abundance of antioxidant enzymes in Scr 
siRNA and Pex13 siRNA transfected KK1-cells 
treated with hCG after transfection. PEX13p: Peroxin 
13; SOD1: superoxide dismutase 1; SOD2: 
superoxide dismutase 2; GR: glutathione reductase. 
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transfection, the cells were stained with DHE for 30min. (A) DHE staining of the Scr siRNA 
group. (B) DHE staining of the Pex13 siRNA group. (C) Quantification of ROS production. 

Scale bar = 20 µm. (** p ≤ 0.01). All data are means ± SD. 

 

Elevated ROS are known to be involved in a variety of pathophysiological conditions 

and oxidative stress can also inhibit ovarian and testicular steroidogenesis [183]. 

According to our results, reduced steroidogenesis and increased oxidative stress 

were both induced after Pex13 KD. To check whether the decreased StAR protein 

and hormone synthesis resulted at least part from the increased ROS production 

caused by the peroxisomal dysfunction, we treated KK-1 cells with H2O2 to determine 

the effects of excessive ROS on the regulation of steroidogenic pathways. H2O2 is 

one of the major forms of ROS generated after O2·− dismutation by SODs, and can 

be neutralized by catalase [184]. 

In a first set of experiments, we treated KK-1 cells with different H2O2 concentrations 

(0 µmol, 100 µmol and 250 µmol) and DHE staining was performed to determine the 

alterations of ROS production related to increasing H2O2 concentration. The relative 

fluorescence intensity was examined by analysis of 100 cells using image J software. 

The results displayed in Figure 29 A-D demonstrated that the level of ROS 

production was directly proportional to the H2O2 concentration. ROS production was 

induced by 20% with 100 µmol H2O2 and further increased by 40% under 250 µmol 

H2O2 concentration. The effect of H2O2 treatment on the viability of KK-1 cells was 

evaluated by the MTT assay and Trypan blue test. In a second set of experiments an 

additional group of 350 µmol H2O2 was added to the experimental set up to test the 

cell viability. The cell viability was stable until H2O2 concentration reached 350 µmol 

(Figure 29 E and F). We therefore used this H2O2 concentration for the next 

experiments to ensure that the results obtained after the H2O2 treatment reflected the 

effects of the oxidative stress and not the ones derived from apoptosis. 
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Figure 29. ROS production and cell viability in KK-1 cells after H2O2 treatment. (A) DHE 
staining of KK-1 cells without H2O2 treatment. (B) DHE staining of KK-1 cells after 100 µmol 
H2O2 treatment. (C) DHE staining of KK-1 cells after 250 µmol H2O2 treatment. (D) 
Quantification of ROS production among three groups. (E) MTT assay. KK-1 cells were 
treated with different concentrations of H2O2 for 3h and then incubated with 0.5 mg/ml MTT, 
results were read at 570 nm using a spectrophotometer. (F) Trypan blue test. Number of 
viable and non-viable (blue stained cells) KK-1 cells were counted to compare the cell 
viability in dependence of the H2O2 concentrations. (*p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** 
p ≤ 0.0001, “ns” means no significant difference). Scale bar = 20 µm. One-way ANOVA and 
Tukey's multiple comparisons test were used as statistical methods (Graph pad 6.0 software). 

All data are means ± SD. 

 

4.2.11 Effects of H2O2 on steroid biogenesis and steroidogenic enzymes 

To determine the effects of oxidative stress on steroidogenesis, KK1- cells were 

treated with different amounts of H2O2 and the secretion of progesterone was 

measured by ELISA. Treatment of hCG-stimulated KK-1 cells with 100 µmol, 250 

µmol and 350 µmol H2O2 caused a dose-dependent decrease in the progesterone 

secretion by 19%, 51% and 70% respectively (Figure 30).   
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Figure 30. Effect of H2O2 on hCG-stimulated progesterone production in KK-1 cells.  
KK-1 cells were grown in culture to 75% confluency and preincubated in DMEM/F12 for 1 h 
and treated in DMEM/F12 containing 1,5 IE hCG plus increasing concentrations of H2O2 for 3 
h. Media were collected and subjected to progesterone ELISA and the final results were 
normalized to protein concentrations of each group. (*p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** 

p ≤ 0.0001). All data are means ± SD. 

 

To examine which components of the steroidogenic pathway were influenced by the 

ROS treatment, proteins involved in steroidogenesis were analyzed by Western 

blotting after the treatment with H2O2 (Figure 31). Exposure of KK-1 cells to H2O2 

induced a significant reduction in hCG-stimulated StAR protein induction: treatment 

with 100 µmol and 250 µmol H2O2 reduced StAR protein by 39% and 90% 

respectively (Figure 31B). In contrast to the protein levels of StAR, the mRNA levels 

of Star showed no alterations. This suggests that StAR protein but not mRNA was 

decreased under oxidative stress, indicating that ROS might act at a post-

transcriptional stage (Figure 31D). In contrast to StAR, treatment of KK-1 cells with 

hCG plus increasing concentrations of H2O2 for 3h had no effect on CYP11A1 protein 

levels (Figure 31C). 



 

77 
 

 

Figure 31. Effect of H2O2 on StAR and CYP11A1. KK-1 cells were treated with hCG plus 
increasing concentrations of H2O2 for 3 h. After treatment, cells were either subjected to 
Western blotting or qRT-PCR. (A) Western blot of StAR and CYP11A1 proteins. (B) and (C) 
Quantification of StAR and CYP11A1 levels by analyzing band intensities with the ImageJ 
software. Protein abundance was normalized using β-actin. (D) Relative mRNA levels of the 
Star gene. Three independent experiments were performed. (*p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 
0.001, **** p ≤ 0.0001, “ns” means no significant difference). One-way ANOVA and Tukey's 
multiple comparisons test were used as statistical methods (Graph pad 6.0 software). All 
data are means ± SD. 
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4.2.12 Effects of H2O2 on peroxisomal and mitochondrial compartments 

To determine the impact of H2O2 on peroxisomes and mitochondrial components of 

ovarian granulosa cells, KK-1 cells were treated with H2O2 and cells were subjected 

to Western blotting using antibodies against PEX14p, Catalase and SOD2. According 

to the results, the peroxisomal protein PEX14p and Catalase were up-regulated in a 

dose-dependent manner after H2O2 treatment. In contrast, mitochondrial SOD2 levels 

were reduced in a dose dependent manner (Figure 32).  

 

Figure 32. The abundances of the peroxisomal proteins PEX14p and Catalase were 
increased under oxidative stress while mitochondrial enzyme SOD2 was reduced in 
hCG stimulated cells. KK-1 cells were treated without and with hCG for 3h, the hCG+ group 
were treated together with increasing concentrations of H2O2 for 3h. After H2O2 and hCG 
treatment, cells were lysed and subjected to Western blotting. (A) Western blot analysis of 
peroxisomal PEX14p, catalase and mitochondrial SOD2. (B) - (D) Quantification of PEX14p, 
catalase and SOD2 abundance by analyzing band intensities using the ImageJ software. 
Protein abundance was normalized to β-actin levels. Three independent experiments were 
performed. (*p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001).  One-way ANOVA and 
Tukey's multiple comparisons test were used as statistical methods (Graph pad 6.0 software). 
All data are means ± SD.  
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4.2.13 The reduced mitochondrial steroidogenesis observed in KK-1 cells after 

Pex13 knock-down was rescued by the addition of the antioxidant α-tocopherol  

Several cellular antioxidants exist to maintain the redox balance by scavenging 

excessive ROS. Molecular α-tocopherol (Vitamin E) is considered one of the most 

important antioxidants [185]. Our results strongly indicate that in KK-1 cells oxidative 

stress caused by the peroxisomal deficiency lead to an inhibition of StAR with 

concomitant decrease of hormone synthesis. To confirm this hypothesis, peroxisome 

deficient KK-1 cells were treated with α-tocopherol. To establish the best 

concentration to induce a protection against ROS we have tested several 

concentrations of α-tocopherol treatment on peroxisome deficient (Pex13 KD) KK1-

cells as shown by DHE staining (Figure 33). Quantification of ROS staining as shown 

in Figure 33E exhibited that ROS production after the Pex13 KD was attenuated by 

23% with 5 µmol tocopherol and further reduced to almost the normal levels obtained 

using Pex13 siRNA with 10 µmol tocopherol.  

 

 

Figure 33. Measurement of ROS production by relative fluorescence intensity 
quantification of DHE - stained peroxisome-deficient KK-1 cells using different α-
tocopherol concentrations. KK-1 cells were transfected with Scr siRNA and Pex13 siRNA 
and the Pex13 siRNA transfected cells were simultaneously treated with α-tocopherol (0 
µmol, 5 µmol and 10 µmol). Cells were stained with DHE 48h after transfection. For each 
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group, 100 cells were analyzed by measuring the fluorescence intensity using the image J 
software. (A) DHE staining of the Scr siRNA group. (B) - (D) DHE staining of the Pex13 
siRNA group. (E) Quantification of ROS production. Scale bar = 20 µm. Three independent 
experiments were performed. (*** p ≤ 0.001, **** p ≤ 0.0001). One-way ANOVA and Tukey's 
multiple comparisons test were used as statistical methods (Graph pad 6.0 software). All 
data are means ± SD. 

 

According to these results, we selected 10 µmol as the working concentration for the 

α-tocopherol experiments. Four groups were set up as follows: Scr siRNA and Pex13 

siRNA transfected KK-1 cells both either treated with or not with 10 µmol α-

tocopherol for 48 h, after which all four groups were treated with hCG for 8 h. Finally, 

the KK-1 cells were subjected to Western blotting and the culture medium was 

collected for progesterone ELISA. As shown in Figure 34A, progesterone secretion 

was inhibited after Pex13 KD compared with the Scr siRNA groups. Very interestingly, 

the level of progesterone after the α-tocopherol treatment was slightly higher in the 

Pex13 siRNA transfected group but could not be rescued to normal progesterone 

levels as compared to the Scr group. Additionally, Western blot results showed that 

the StAR protein abundance was also partially recovered (44%) after the α-

tocopherol treatment (Figure 34 B). 
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Figure 34. Effect of α-tocopherol on steroidogenesis after Pex13 KD. (A) Progesterone 
ELISA. (B) Western blot of PEX13p and StAR. (C) (D) Quantification of PEX13p and StAR 
levels by analyzing band intensities using the ImageJ software. Protein abundance was 
normalized using β-actin. Three independent experiments were performed. (*p ≤ 0.05, ** p ≤ 
0.01, *** p ≤ 0.001, **** p ≤ 0.0001). Two-way ANOVA and Sidak's multiple comparisons test 
were used as statistical methods (Graph pad 6.0 software). All data are means ± SD. 
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5 Discussion 

Patients with Zellweger syndrome, the most severe peroxisomal biogenesis disorder 

leading to a general peroxisomal deficiency exhibit pathological alterations in the 

reproductive systems. To date, however, only very limited evidences exist in the 

literature from peroxisomal gene knock-out mice with peroxisomal gene deficiencies, 

indicating that peroxisome is involved in folliculogenesis and steroid metabolism in 

the ovary. In the experimental work of this thesis it was proved that the peroxisomal 

distribution pattern and regulation in distinct ovarian cell types during follicular 

development is altered and that peroxisomes are highly enriched in granulosa lutein 

cells. Also the role of peroxisomes during steroidogenesis and the potential 

mechanism behind the pathological alterations of steroid synthesis induced by 

peroxisomal deficiency have been elucidated. 

 

5.1 Part 1 Peroxisomal functions on mouse ovarian folliculogenesis 

5.1.1 The history of peroxisomes in the mouse ovary 

Peroxisomes were first studied in the ovary of mice in 1972 by Böck and colleagues 

by detecting the activity of the peroxisomal marker enzyme catalase using electron 

microscopic cytochemistry with the 3, 3’-diaminobenzidine (DAB) method [159]. 

According to this report, peroxisomes in the ovary differ in size and morphology to the 

“classical” peroxisomes detected in hepatocytes of the liver, they are much smaller 

and less numerous than the peroxisomes in hepatocytes of the liver [159, 160]. 

According to their results, peroxisomes are heterogeneously distributed in different 

cell types in the mouse ovary [159]. In early times, catalase and peroxisomes are 

reported absent in the oocytes of different species [186, 187]. But later, it was 

reported that catalase was present in oocytes in a lower amount compared to other 

cell types in the follicles [188]. In 2000, Figueroa et al. showed by using 

immunocytochemistry that catalase-stained peroxisomes were only localized to the 

periphery of the oocyte in rats. A similar peroxisomal distribution pattern was 

obtained by the same group using an antiserum against total peroxisomal proteins 

[189].  
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5.1.2 Peroxisomes detected with PEX14p as optimal marker protein in mouse 

ovarian follicular maturation  

During the follicular maturation process from primordial follicles to pre-ovulatory 

follicles which then released oocytes during ovulation for fertilization, the 

morphological appearance and protein composition changes for adapting to the 

follicular maturation process. As an important organelle involved in ROS trapping and 

lipid metabolism, peroxisomes were strong candidates involved in this process. 

However, in the literature existed there is no comprehensive study of peroxisomal 

distribution and regulation during folliculogenesis. In my thesis, PEX14p was chosen 

to analyze peroxisomal distribution in mouse ovary since it was proved from our 

group that PEX14p is a perfect marker to detect peroxisomes in morphological 

studies in many different cell types and organs [190]. According to my results, 

PEX14p-positive peroxisomes are present in all the cell types of the mouse ovary 

and they are also numerous in oocytes and distributed all over the oocyte cytoplasm 

(Figure 9 D, E and F). The highest abundance of PEX14p was detected in the 

hormone producing interstitial cells, followed by granulosa cells, and exhibited a low 

abundance in theca cells. These results are different from previous study which 

reported that peroxisomes are more abundant in granulosa cells than interstitial cells 

by detecting catalase activity with the DAB procedure via electronmicroscopic 

analysis [159]. High amount of peroxisomes in interstitial cells suggest that 

peroxisomes are required for the initial steps for steroidogenesis in these cell types. 

Interestingly, PEX14p labelled peroxisomes were increased in numbers in oocytes 

during their maturation process exhibiting their strongest proliferation from secondary 

to tertiary follicles, which was proved by Distler in 2015 in our group by morphometric 

analysis of peroxisomal density in oocytes using a PEX14p antibody [191]. 

Peroxisomal proliferation in oocytes during folliculogenesis indicates that especially in 

the mature oocyte of a tertiary follicle peroxisomal metabolism is probably necessary 

for keeping the redox balance and protecting the oocytes against lipotoxicity. 

 

5.1.3 Antioxidative enzymes catalase, SOD2 and glutathione reductase (GR) in 

mouse ovarian follicular maturation  

The normal progression of the follicular development is crucial to sustain proper 

ovarian functions and female fertility. During the regulation of these ovarian 
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processes also reactive oxygen species (ROS) play a significant role, e.g. during the 

preparation of follicle in the preovulatory phase. ROS are generated as by-products 

of normal ovarian physiological metabolism, and cellular defense mechanisms in 

form of antioxidative enzymes (e.g. SOD, catalase or other peroxidases) and 

molecular antioxidants (e.g. glutathione or Vitamin C and E) maintain the balance 

between ROS production and clearance. However, a disturbed balance between 

ROS production and antioxidant defense mechanisms can cause pathological 

changes in follicular growth, ovarian cycle, oocyte maturation, steroidogenesis, 

ovulation, fertilization, and implantation that ultimately affect fertility [192, 193].  

Therefore, catalase, a peroxisomal enzyme with high potency to degrade H2O2 at 

lower concentration should play a role during the follicular maturation process and 

steroidogenesis in the ovary. The experiments of this thesis revealed that catalase 

could be visualized very clearly in oocytes at higher magnification by using very long 

exposure times and higher antibody concentrations (Figure 9B). Especially in the 

periphery of oocytes large peroxisomes or peroxisomal clusters are present, which 

might explain the results attained by using immunocytochemical analysis of catalase, 

depicting catalase positive particles only in the periphery of oocytes [189]. Similar to 

PEX14p, catalase was highest abundant in interstitial cells, but it was also highly 

detectable in other ovarian cell types, such as granulosa cells and theca cells. 

Interestingly, in primary and secondary follicles, catalase was specifically abundant in 

the layer of granulosa cells facing the oocyte. In this respect, it is of interest that gap 

junctions start to form in primary follicles [194, 195] and nutrients and molecules from 

granulosa cell are transferred to oocytes through gap junctions for supporting oocyte 

maturation and differentiation [196]. From the literature it is known that in 

hematopoietic stem cells, ROS are transported through gap junctions to bone marrow 

for protection against the oxidative stress [197]. Therefore, according to our results 

the probabilities exists that H2O2 generated from oocytes are transferred to granulosa 

cells where it can be further degraded by catalase through gap junctions.  Moreover, 

ROS produced on the surface of oocytes could also be degraded easily by the 

peroxisomes laying at the periphery in the oocyte cytoplasm. Vice versa, it is possible 

that peroxisomes in these inner layers of the granulosa cells underneath of the apical 

surface trap ROS before entering into oocytes through gap junctions. This is very 

likely, since granulosa cells produce steroids and provide nutrients for neighboring 
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oocytes. Moreover, the catalase activity in granulosa cells was shown to be higher in 

large follicles compared to small follicles in different animals (pigs, goats and rats) 

[162, 165, 198]. Gonadotropins like FSH regulate follicular maturation, differentiation 

and steroidogenesis [199]. Interestingly, catalase activity has been reported to be up-

regulated after gonadotropin stimulation in different mammals [165, 200, 201]. 

According to all these reports, catalase was suggested to participate in the follicular 

maturation process. The increased catalase activities in large tertiary follicles 

certainly contribute to the maintenance of the ROS balance and protect the oocyte 

from excessive ROS production before ovulation or even during the ovulation 

process. Additionally, the abundance of catalase in the ovary has been shown to 

correlate to the content of cytochrome P450scc that converts cholesterol to 

pregnenolone during steroidogenesis [202]. Indeed, the conversion from cholesterol 

to pregnenolone was reported to produce a very large amount of ROS released from 

mitochondria during the steroidogenic pathway, requiring the presence of 

antioxidative enzymes [203, 204]. In this thesis, it was shown that the amount of 

catalase was increased under oxidative stress conditions in KK-1 cells. Accordingly, 

catalase might function as a protective factor to reduce excessive ROS to maintain 

the redox balance to maintain the normal production of steroids.  

In addition to catalase, we have examined the regulation of two other anti-oxidative 

enzymes (SOD2 and GR) in the mouse ovary. The mitochondrial marker SOD2 

removes harmful superoxide radicals that are produced during mitochondrial 

respiration. Superoxide is dismutated to H2O2 by SOD2 in the mitochondrial matrix 

which is then degraded further by the mitochondrial isoform of the glutathione 

peroxidases (GPX) to H2O and O2 [205, 206]. GR catalyzes the reduction of GSSH 

(oxidized glutathione) to GSH (reduced glutathione) in the cytosol to maintain 

constant GSH-levels within cells [207]. Immunofluorescence analysis of mouse ovary 

in this thesis showed that similar to catalase SOD2 is most highly abundant in 

ovarian interstitial cells and granulosa cells (Figure 12 A and B). However, in 

comparison with catalase, the activity of SOD2 was reported to be constant during 

follicular maturation [208]. But in the follicular fluid, SOD2 activity was reported to be 

lower in large follicles [209, 210]. Interestingly, high SOD activity was proven to have 

negative effects on fertility in humans [211] and the inhibition of ROS lead to impaired 

ovulation process [212, 213]. The reason is that a certain amount of ROS is important 
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for the regulation of ovulation and embryonic development [214]. Decreased SOD 

activity in large follicular fluid is necessary to ensure that ROS levels reach a 

threshold value that is required for ovulation and it is therefore not surprising that also 

the abundance of GR in the oocytes was reduced in the large antral follicles 

compared to the primary and primordial follicles (Figure 12D). However, excessive 

ROS are detrimental for correct follicular development, so compared with SOD2 and 

GR, catalase is augmented in large follicles in order to keep the balance of ROS 

production.  

Conclusively, the intracellular levels of ROS are tightly controlled by different 

antioxidants in distinct types of follicles during follicular maturation to guarantee 

normal ovarian functions and female fertility. 

 

5.1.4 Lipid metabolism in mouse ovarian follicular maturation 

GNPAT catalyzes the first step of plasmalogen synthesis [66]. Similar to PEX14p, our 

results revealed that the amount of GNPAT was also induced in oocytes during 

follicular growth (Figure 9 G, H and I). Plasmalogens are critical cell membrane 

constituents of oocytes that function in ROS trapping as well as in the regulation of 

membrane dynamics, which might especially be important during fertilization [215-

217]. The up-regulation of GNPAT during oocyte maturation in tertiary follicles 

strongly suggests that oocyte membranes are protected against ROS by these lipid 

species. Apart from that, it has been proven that the phospholipid composition of 

oocyte varies during oocyte maturation dependent on the size of the follicles and 

their maturity [215, 216, 218]. Phospholipids are not only an important source of 

energy for the oocyte development but are also signaling molecules for the oocyte´s 

competence acquisition [219]. Indeed, degenerating oocytes have been described in 

a GNPAT-knockout mouse, suggesting that plasmalogen phospholipids play an 

important role for protection of oocytes during follicular maturation [100].  

Like GNPAT, also MFP2, a peroxisomal fatty acid β-oxidation enzyme [60], and 

ABCD3 [62], a lipid transporter involved in the transport of peroxisomal β-oxidation 

substrates, displayed higher abundance in tertiary follicles according to Distler’s 

results from our group [191]. In the oocyte nutritional lipids are stored as lipid droplets 

and they undergo changes in number, composition, size and aggregation during 
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follicular maturation process [220-222]. How the metabolism of lipids is regulated and 

influences the oocyte development is still not fully clarified to date [223]. Experimental 

evidences have shown that in the mouse, mature and competent oocytes display a 

different lipid spectrum to immature ones [224]. Moreover, in cows the amount of 

lipids is elevated in mature oocyte [220]. The increased abundance of peroxisomal 

proteins involved in lipid metabolism in tertiary follicles [191] and the close proximity 

of peroxisomes to lipid droplets and mitochondria in granulosa and luteal cells [118, 

159] suggest an involvement of the peroxisomal lipid metabolism in the oocyte during 

the follicular development process. Functional relationships of lipid droplets and 

mitochondria have been previously postulated due to their close proximity [221]. In 

the oocyte fatty acids stored within lipid droplets are transferred to mitochondria for 

energy generation through β-oxidation and it has been proven that β-oxidation is 

increased during oocyte maturation and in the preovulatory phase [225]. Most of the 

information concerning β-oxidation in the literature is derived from mitochondrial β-

oxidation while the function of peroxisomal β-oxidation in the ovary remains to be 

clarified. Despite the fact that peroxisomal β-oxidation is not directly involved in 

cellular ATP-provision, it shortens long-chain and very-long-chain fatty acids for 

further metabolisation within the mitochondria [33]. Further, peroxisomal β-oxidation 

degrades a broad spectrum of bioactive proinflammatory and toxic lipid intermediates 

that cannot be processed by the mitochondrial β-oxidation, such as n-3 fatty acids, 

polyunsaturated fatty acids, retinoic acid and bile acid intermediates [33]. It also has 

been proposed from our group that peroxisomes might be responsible for the 

regulation of the homeostasis of fatty acid species that are ligands of peroxisome 

proliferator activated receptors [33]. In this respect it is of interest that the long chain 

fatty acids linoleic, oleic, stearic and palmitic acid that are detrimental for the oocyte´s 

development [226-228].  

In addition, female mice with a deletion in the enzyme that catalyses the first step of 

the peroxisomal β-oxidation (ACOX1) developed sterility within 6-12 weeks after birth 

[104]. Missense mutation in MFP2 in women leads to ovarian dysgenesis [229] and 

its disruption in male mice caused the accumulation of lipids in sertoli cells, testis 

atrophy and infertility [102, 230, 231].   
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5.1.5 Peroxisomes in the corpus luteum (CL)  

Corpus luteum is a very important endocrine structure in female ovaries, since they 

can produce a large amount of progesterone, moderate amount of estrogen and 

inhibin A. Moreover, corpus luteum contributes to maintaining the early period of 

pregnancy. When the ovum is not fertilized, the corpus luteum degenerates into a 

fibrous scar tissue, called corpus albicans. In contrast to granulosa cells in the 

developing follicles, peroxisomes are very heterogeneously distributed in luteinized 

granulosa cells (Figure 11). As we know, granulosa cells are the specific cell type for 

estrogen synthesis because aromatase is only localized in this cell type [132]. 

Interestingly, also aromatase is very heterogeneously located in the Macaque corpus 

luteum, the strongly stained cells were interspersed among other weakly stained cells 

[232]. Accordingly, the heterogeneous peroxisomal distribution pattern may indicate 

very active steroidogenesis in those cells. In addition, a large amount of ROS is 

generated during steroid synthesis, so it’s not surprising that the peroxisomal 

antioxidative enzyme catalase is intensively labelled in these cells to protect against 

oxidative stress. 

 

5.2 Part 2 Peroxisomal functions on steroidogenesis in mouse granulosa tumor 

cell lines—KK-1 cells 

5.2.1 Peroxisomal involvement in steroidogenesis 

Very often peroxisomal biogenesis disorders are accompanied by gonadal 

dysfunction. The most severe disease caused by a peroxisomal deficiency is called 

Zellweger syndrome (ZS), which is accompanied either by cryptorchism in males or 

clitoromegaly in females [98]. Additionally, patients with peroxisomal single enzyme 

deficiencies, such as X-linked adrenoleukodystrophy (X-ALD) or 

adrenomyeloneuropathy (AMN, a milder phenotype of XALD) exhibit an adreno-

testiculo-leukomyelo-neuropathic complex of symptoms that affect fertility [98, 99]. 

These symptoms indicate that peroxisomal disorders can cause pathological 

changes in genital organs, and disrupt the balance of androgen and estrogen 

synthesis. 
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5.2.2 The link between peroxisomal β-oxidation and steroid synthesis 

A first hint that peroxisomes and steroid biosynthesis might be linked is indicated by 

the peroxisomal localization of some of the enzymes that might be involved in this 

process. Cholesterol is a component of cellular membranes and the obligatory 

precursor for steroid synthesis. Cholesterol can be synthesized de novo from acetate 

in gonads in a process that involves around 30 enzymes. Peroxisomes contain all 

enzymes involved in the synthesis of cholesterol precursors prior to squalene [233]. 

Apart from that, HMG-CoA reductase, a key rate-limiting enzyme for cholesterol 

synthesis, is an enzymatic component of the peroxisomes [68, 234]. Moreover, 

experiments suggest that acetyl-CoA derived from peroxisomal β-oxidation might be 

channeled to cholesterol synthesis inside the peroxisomes and that the pre-squalene 

segment of cholesterol biosynthesis is localized to peroxisomes [71, 168].  

In this thesis, we have shown that the abundance of peroxisomal SCPx and MFP2 

were increased upon hCG stimulation in the granulosa cell-line KK-1. SCPx is a 

peroxisomal 58-kDa β-oxidation protein with 3-ketoacyl-CoA thiolase activity in the N-

terminal domain and with SCP2 (a lipid carrier or transfer protein) function in the C-

terminal domain [45]. A substantial amount of SCP2 is located in peroxisomes of 

Leydig cells, liver and adrenal gonads [235-237]. SCP2 exists in a separate form as 

cytoplasmic cholesterol transport protein. Cytoplasmic SCP2 is involved in the 

movement of cholesterol to the outer membrane of mitochondria after which it is 

imported into mitochondria by StAR for further steroidogenesis [238-242]. SCP2 can 

enhance the pregnenolone synthesis in isolated mitochondria [243] and is highly 

expressed in steroidogenic compartments of the rat ovary [244]. However, in these 

papers, whether SCP was mainly present or induced in the cytoplasm or in the 

peroxisomal compartment has not been analyzed. In addition, hormones, which 

stimulate steroid synthesis, can induce SCP2 up-regulation at both mRNA and 

protein levels [244, 245]. Furthermore, the β-oxidation enzyme MFP2, which 

participates in hydration and dehydrogenation processes during peroxisomal β-

oxidation was also called 17-β-hydroxysteroid dehydrogenase 4 (HSD17B4) [44, 45]. 

This enzyme was reported to be involved in converting estradiol to estrone [172]. 

Further, we show here that also other peroxisomal β-oxidation enzymes, including 

ABCD3, ACOX3, and 3-ketoacyl-CoA thiolase, that were not reported to be directly 
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involved in steroidogenesis, were up-regulated after hCG treatment in the KK-1 cells 

(Figure 15).   

The peroxisomal subcellular localization of enzymes involved in steroidogenesis and 

the hCG dependent regulation of many peroxisomal enzymes and transporters, 

which were demonstrated in this thesis, indicate that peroxisomes are directly linked 

to the metabolism of steroid hormones. Until now, only very few evidence proving 

that peroxisome is indeed involved in steroidogenesis in the ovary is available in the 

literature. However, the relationship of peroxisomes to endocrine regulation has been 

documented in the adrenals and testis of male animals. For example after inhibiting 

the conversion from cholesterol to pregnenolone and in addition also 11-

hydroxylation with drugs, the number of peroxisomes increased in male rat adrenal 

cortex [246]. Also after lowering the levels of cholesterol, the major precursor for 

steroid synthesis, in serum using nafenopin, or by blocking HMG-CoA reductase with 

mevilonin peroxisomes proliferation was observed in male rat adrenal gonads [247, 

248]. Furthermore, during inactive stages of spermatogenesis, the absolute volume 

of peroxisomes as well as the testicular testosterone concentrations were decreased 

[249]. In 1988 Mendis-Handagama and colleagues demonstrated that the 

testosterone secretion in Leydig cells was directly proportional to peroxisome 

proliferation in rat, hamster, and guinea pig [250]. These data strongly suggested that 

peroxisomes are metabolically linked to steroidogenesis in males and, as our data 

show, also in females. 

5.2.3 ROS production and anti-oxidants regulation during steroid synthesis 

A large amount of ROS are produced during the steroidogenic process especially in 

the mitochondrial cytochrome P450scc reaction that converts cholesterol to 

pregnenolone [251], an effect that is counteracted by anti-oxidants and increased 

catalase activity after gonadotropin stimulation [165, 200, 201, 252]. We found that 

after hCG stimulation of the KK-1 cells ROS were elevated and anti-oxidative 

enzymes such as catalase, SOD, GR as well as GNPAT were up-regulated (Figure 

16). We have also shown that an exposure to oxidative stress decreased the 

progesterone synthesis and induced the translation of catalase. During the 

steroidogenic process not only H2O2 but also oxygen free radicals like superoxide 

radicals are produced [203, 204, 253, 254]. SODs are scavenging these radicals and 
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dismutate them to H2O2 for further detoxification by glutathione peroxidase or 

catalase. Sugino, N. et al. have found that SOD1 expression was largely enhanced 

after hCG stimulation in the corpus luteum in mid-luteal phase [255]. Since SOD1 is 

localized in the cytoplasm as well as in peroxisomes [256], it remains unclear that to 

which extent peroxisomal SOD1 contribute to the increase of this enzyme after hCG 

stimulation. Moreover, we found that in the granulosa cell line KK-1 also 

mitochondrial SOD2 was elevated after hCG stimulation. Formerly, this enzyme has 

also been suggested to be associated with peroxisomes [257]. However, our group 

has shown that SOD2 is only present in mitochondria but not in peroxisomes [258]. 

To conclude, our results suggest that anti-oxidants such as catalase and SODs 

protect the granulosa cells against excessive superoxide and H2O2 production to 

maintain the redox balance during the steroid biosynthesis under highly oxidative 

process of steroid biosynthesis. Given the relationship of catalase to this process we 

speculated that functional peroxisomes are required to guarantee the intactness of 

steroidogenesis in granulosa cells, which we then investigated using a KK-1 

peroxisomal deficiency model. 

 

5.2.4 Pex13 knock-down in vitro and its influence on steroidogenesis 

Girls suffering from Zellweger syndrome often exhibit clitoromegaly, suggesting a 

problem in the development of the genital organs [98]. How this malformation arises 

is still unclear. Several peroxisome-deficient mouse models have been employed to 

study the effect of peroxisome deficiency in males in vivo: i) The Pex7 knockout mice, 

which were infertile and displayed disorganized seminiferous epithelium [259]; ii) The 

Acox1 knockout mice, which were also infertile and manifested hypospermatogenesis 

and decreased Leydig cell numbers [104]; and iii) The Mfp2 knockout that displayed 

gradual degeneration of the seminiferous epithelium but retained Leydig cell function 

[102]. Next to the general knockout mouse models also Sertoli cell-specific 

peroxisome knockout mice were established using the Cre-loxP technique i) The 

Sertoli cell-specific knockout of the Pex5 gene resulted in the arrest of 

spermatogenesis and lipid accumulation [102] and ii) The Sertoli cell-specific 

knockout of Pex13 resulted in testicular disorders with the proliferation of Leydig cells 

and elevated VLCFA in Sertoli cells [103]. All these findings are in agreement with 

testicular disorders often found in ZS and/or X-ALD/AMN patients. Alterations in the 
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ovary were only analyzed in the ACOX1 knockout mice, which had smaller ovaries 

[104] and in the GNPAT general knockout mice, which displayed a numerical 

reduction of secondary and tertiary follicles as well as of corpora lutea [100]. 

In the previous chapter, we discussed that hCG stimulation increased the amount of 

several peroxisomal proteins. To investigate the functional effects of peroxisomal 

dysfunction on ovarian granulosa cells and their possible effect on female fertility, we 

established an in vitro model by knocking down the Pex13 in the granulosa tumor cell 

line KK-1. Compared to the animal models, the in vitro KD model offers the possibility 

to apply different treatments to cells, in order to analyze biological processes in a 

relatively efficient way. We have found that the Pex13 deletion results in a disruption 

of the peroxisomal matrix protein import resulting in a general failure of the 

peroxisomal metabolism [36]. Indeed, our experiments showed that in granulosa cells 

the antioxidant enzyme catalase was mis-targeted to the cytoplasm after the 

knockdown of PEX13, suggesting a malfunction of the import of proteins into the 

peroxisomal matrix. Catalase mis-targeting has been previously observed in patients 

with peroxisomal deficiency and in corresponding mouse models [260, 261]. We also 

showed that hCG-induced pregnenolone and progesterone secretion was strongly 

reduced when peroxisomes were dysfunctional in granulosa cells. Similarly, the 

estradiol levels after FSH treatment were also reduced (Figure 19). This indicates 

that the steroid hormone synthesis in the granulosa cell line KK-1 is affected when 

peroxisomes are disrupted. As the consequence of peroxisomal deficiency, 

frequently mitochondrial pathological alterations are observed [262]. In this respect, it 

is of interest that StAR mediated cholesterol transport from the outer to the inner 

mitochondrial membrane is the rate-limiting step for steroidogenesis. After the Pex13 

knockdown we found that the abundance of the StAR protein was strongly reduced 

(Figure 20). The abundance of CYP11A1, the enzyme that initially converts 

cholesterol to pregnenolone, remained unchanged. This suggested that the inhibition 

of StAR caused by the peroxisomal dysfunction (either the peroxisomal metabolic 

failure or the mistargeting of peroxisomal proteins to the cytoplasm), might account 

for the decreased hormone production. Compared with the StAR protein levels, the 

mRNA of Star showed no alterations after Pex13 KD, indicating that the decreased 

protein abundance of StAR was probably regulated post-translationally, e.g. through 

proteasomal degradation. Unlike cholesterol, 22R-cholesterol is able to pass the 
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mitochondrial membrane freely without StAR mediation. When KK-1 cells were 

treated with 22R-cholesterol, no changes of the progesterone levels were observed. 

This supported our hypothesis that mitochondrial enzymatic reactions involved late 

steps of steroidogenesis were unaffected by the peroxisome deficiency, but that the 

StAR-mediated cholesterol transport into mitochondria was inhibited after the Pex13 

knockdown. 

StAR mediated inhibition of hormone secretion after Pex13 knockdown was further 

confirmed by the overexpression of Akap1 in the Pex13 knockdown background in 

KK-1 cells. AKAPs are scaffolding proteins that are attached to the mitochondrial 

surface [263]. The AKAP family consists of more than 50 proteins that all share the 

ability of binding the R subunits of PKA [264] through an amphipathic helix structure 

[265]. AKAPs are able to target the PKA holoenzyme to different subcellular 

compartments to activate different cellular signaling pathways [266]. Recently, with 

electron microscopy and three-dimensional reconstruction techniques, researchers 

have found that AKAP–PKA complex enabled PKA to adopt its optimal conformation 

for subsequent substrate phosphorylation [267]. AKAP1, as the most prevalent 

somatic isoform encoded by the Akap1 gene, is of particular interest since it is known 

to promote cAMP signaling to mitochondria as well as to target mRNAs to the 

mitochondria through its RNA-binding domain [151-157]. AKAP1 was able to recruit 

both PKA and StAR to the mitochondria to promote effective phosphorylation of StAR 

[158, 268]. StAR is translated as a 37KDa precursor in the cytoplasm, and is then 

transferred to mitochondria and activated by PKA phosphorylation (Stocco, DM 2001). 

After cleavage of the N-terminal mitochondrial import sequence, the 30KDa mature 

form of StAR is produced that mediates the mitochondrial import of cholesterol [269]. 

In our experimental setup, the overexpression of Akap1-myc induced the up-

regulation of StAR protein in Pex13-deficient KK-1 cells. Accordingly, the StAR 

protein abundance and the progesterone levels, which were reduced with the 

peroxisome deficiency, were partially reconstituted after the Akap1 overexpression 

(Figure 24, 25). To our knowledge, Dyson and colleagues are the only ones who 

have shown in the literature that StAR expression and steroidogenesis are linked to 

the abundance of AKAP1 [158]. Here we suggest a relationship between peroxisomal 

metabolism, AKAP1 abundance, phosphorylation state of the StAR protein and 

steroidogenesis. It would be interesting for us to investigate the phosphorylation 
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status of StAR in response to the peroxisomal deficiency and AKAP1 overexpression. 

However, unfortunately, there is no commercially antibody against phosphorylated 

StAR protein available at the moment.  

 

5.2.5 Underlying mechanisms for StAR inhibition under Pex13 knock-down 

conditions  

Reactive oxygen species (ROS) are formed as by-products of aerobic metabolism. 

Superoxide radicals (O2
-), hydrogen peroxide (H2O2) and hydroxyl radical (·OH) are 

commonly defined ROS species. Like in other organs also, within the ovary a basal 

amount of ROS is important for cell signaling and in addition also for ovulation [270-

272]. However, excessive ROS production can induce toxic effects on ovarian cells 

and reduce fertility [192, 193]. Catalase, SODs and glutathione peroxidase (GPX) are 

described as the three most common antioxidative enzymes that play roles in 

scavenging ROS [273]. We have found that catalase, SOD1, SOD2 and GR 

abundance were increased after the knockdown of Pex13 in KK-1 cells, indicating 

that due to peroxisomal deficiency, increased oxidative stress leads to the activation 

of the antioxidative response, which was proven also in macrophages. We further 

confirmed this by DHE staining, which is a direct indicator for ROS production. 

Moreover, a similar reaction was shown in the testis in sertoli cells specific Pex13 KO 

mice in which catalase, SOD2 and GPX1 abundance were increased [103]. Other 

studies have demonstrated the great impact of a deregulated redox balance in 

follicular development, ovulation, fertilization, implantation and embryogenesis [274]. 

When this balance is disturbed in reproductive organs due to a decreased 

scavenging capability or increased ROS generation, negative cellular effects or even 

pathological symptoms can be induced, for example the polycystic ovarian syndrome 

(PCOS), endometriosis, age-related fertility decline, and defects in early 

embryogenesis [275-278].  

Researchers have demonstrated that ROS exert negative effects on steroidogenesis. 

H2O2 was shown to inhibit steroid synthesis by blocking cholesterol transportation 

into mitochondria in both luteal cells [279] and Leydig cells [183]. In rat granulosa 

lutein cells, H2O2 decreased the basal and evoked progesterone production by 

inhibiting adenylyl cyclase activity [280, 281]. Moreover, Diemer et al. reported the 

reduction of progesterone and StAR protein after H2O2 treatment in mouse Leydig 
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cells due to the dissipation of mitochondria membrane potential [185]. Another group 

has demonstrated a decreased testosterone secretion due to inhibition of P450scc 

activity and StAR protein expression after H2O2 treatment in cultured Leydig cells 

[282]. According to these reports and to the results we presented here, StAR and 

progesterone inhibition were, at least partially, exerted by the increased ROS 

generation after peroxisome deficiency. To confirm this hypothesis, we treated KK-1 

cells with H2O2. We found in consistence with our expectation that a H2O2 dose-

dependent reduction of StAR and progesterone secretion with no changes of 

P450scc, indicating that mitochondrial steroidogenic enzymes were unaffected, 

similar to the Pex13 KD results. Analysis of the StAR mRNAs after H2O2 treatment 

showed that the StAR protein abundance regulation is controlled post-translationally, 

similar to what we observed in case of knockdown of PEX13. The StAR protein is 

particularly susceptible to ROS exposure and therefore the StAR-mediated 

translocation of cholesterol responds critically to a disrupted redox balance [185]. 

Also, an intact mitochondrial membrane potential is critical for StAR mediated 

cholesterol translocation [283-285]. Excessive ROS can cause mitochondrial 

membrane potential dissipation leading to StAR protein inhibition [185]. Indeed, 

peroxisome deficiency can also cause mitochondrial dysfunction, e.g., the Pex5 

knock-out mice exhibited very severe mitochondrial abnormalities in various different 

organs, including steroid producing adrenal cortex [262]. In Sertoli cell- specific 

Pex13 knockout mice, complex III of the mitochondrial respiratory chain was strongly 

reduced and a mislocalisation of mitochondrial SOD2 to the cytosol was observed, 

indicating mitochondrial fragility [103]. The underlying mechanisms for mitochondrial 

dysfunction due to peroxisome deficiency is most probably the accumulation of ROS 

together with the accumulation of toxic fatty acids that are usually degraded by intact 

peroxisomes and are unable to be metabolized by mitochondria.  

 

5.2.6 Protective role of tocopherol on steroidogenic enzymes and steroid 

biosynthesis 

To further confirm that the disturbance of steroid synthesis after the knock-down of 

Pex13 may be due to increased ROS accumulation, we have investigated whether  

tocopherol treatment would reestablish hormone secretion. Tocopherol (Vitamin E) is 

one of the major non-enzymatic antioxidants in mammalian cells, which mainly 



 

96 
 

derives from diet [286]. Vitamine E is located within the cellular membrane and 

protects the cells against DNA damage and toxic effects by directly scanvenging free 

radicals and/or down-regulating mitochondrial superoxide generation [287, 288]. 

Tocopherol is shown to have a positive impact on fertility [289]. Chen et al. in 2005 

have investigated testosterone secretion from isolated Leydig cells cultured with or 

without vitamin E, and showed that the testosterone production was enhanced [290]. 

In rat testis, cadmium was reported to induce ROS damage and to exert negative 

effects on StAR and steroid synthesis and that these effects were counteracted by 

Vitamin E supplementation [291]. In addition, in rat Leydig and Sertoli cells, 

administration of vitamin E was reported to ameliorate ROS induced testicular toxicity 

from polychlorinated biphenyls (PCBs), which are ubiquitous environmental 

contaminants. [292, 293]. Therefore, Vitamin E significantly contributes to protect 

steroidogenic cells and tissues against ROS. Our results show that in KK-1 granulosa 

lutein cells, the decrease of StAR protein abundance and of progesterone secretion 

observed due to the peroxisomal dysfunction, was also partially counteracted after 

tocopherol treatment (Figure 34). Our study is the first one to demonstrate the 

protective role of vitamin E on StAR protein and progesterone synthesis under 

oxidative stress induced by peroxisomal deficiency in luteinized granulosa cells. 
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6 Summary 

Human disorders with peroxisomal deficiency show a range of pathologies in the 

reproductive system leading to human infertility. In recent years, the relationship 

between peroxisomes and male infertility has been examined in different groups. 

However, until now nobody has focused on the pathological consequences 

happening in the ovary in case of peroxisomal deficiency. Peroxisomes are cell 

organelles involved in fatty acid β-oxidation, plasmalogen synthesis and cholesterol 

synthesis on which steroidogenesis depends. Besides this, peroxisomes are able to 

maintain the equilibrium between production and scavenging of ROS, which are 

involved in the regulation of follicular development. The aim of this thesis was 

therefore to study the role of peroxisomes in granulosa cells, follicular development 

and steroid synthesis in the ovary. 

Paraformaldehyde-fixed paraffin-embedded (FFPE) sections of adult mouse ovaries 

were stained to analyze peroxisome distribution and regulation during follicular 

development. A highly differentiated mouse granulosa tumor cell line (KK-1 cells) was 

established as cell culture model to study peroxisomal function in granulosa cells. 

Peroxisome related gene expression and protein abundance were compared before 

and after hCG treatment in KK-1 cells. Moreover, the Pex13 gene, encodes a 

peroxisomal biogenesis protein, was knocked down in KK-1 cells by Pex13 RNAi. 

Moreover, the effects of the peroxisomal deficiency on mitochondrial cholesterol 

transport (StAR protein) as well as steroidogenesis were analyzed. As trial to 

stimulate StAR cholesterol transportation, the cloned A kinase anchoring protein 

Akap1 was overexpressed in KK-1 cells. Thereafter, H2O2 treatment and α-

Tocopherol treatment were used to figure out the influence of ROS and antioxidants 

on steroidogenesis respectively.  

The results of this thesis provide clear evidence that peroxisomal proteins are highly 

abundant in the mouse ovary and exhibit a distinct heterogeneous location pattern 

during folliculogenesis. Generally, the abundance of peroxisomal proteins is 

increasing in oocytes during follicular development, suggesting that peroxisomes are 

protecting mature oocytes against ROS and lipotoxicity. The in vitro studies showed 

with KK-1 cells that hCG induced the upregulation of peroxisomal proteins and their 

corresponding mRNAs, suggesting a strong regulatory effect of gonadotropic 
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hormones on the peroxisomal compartment in granulosa cells. Under peroxisome 

deficiency conditions, induced by the Pex13 KD, the steroidogenic pathway in 

granulosa cells was disturbed and the peroxisome deficiency-exerted reduction of the 

steroid hormone secretion is at least partially mediated via StAR inhibition. The 

underlying mechanisms for this may at least partly result from increased oxidative 

stress after the Pex13 KD. In this thesis it was indeed shown that ROS were 

increased after the Pex13 KD and it is well known that excessive ROS leads to the 

inhibition of steroidogenesis. This hypothesis is further confirmed by the protective 

effect of tocopherol on StAR protein and progesterone synthesis under oxidative 

stress induced by the peroxisomal deficiency. Moreover, the results of this thesis 

provide also evidence that an increase of AKAP1 can also partly compensate the 

peroxisomal deficiency- induced mitochondrial alteration. In addition, it was shown in 

the literature that the lipid structure and the lipid composition of cell membrane are 

related to the activity of adenylyl cyclase (AC) and G protein-coupled receptor 

signaling, but the direct relationship between peroxisomal deficiency with adenylyl 

cyclase needs to be clarified in the future. According to my results and related 

international literatures, the possible mechanism of peroxisome-deficiency exerted 

defects on mitochondrial steroidogenesis is summarized in Figure 34.  

 

Figure 34. Schematic illustration of the mechanism of peroxisome regulation on 

steroidogenesis. 
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7 Zusammenfassung 

Menschliche Erkrankungen, die auf peroxisomale Dysfunktion zurückzuführen sind, 

verursachen pathologische Veränderungen in den Geschlechtsorganen, die zu 

Infertilität führen können. In den letzten Jahren wurde der Zusammenhang zwischen 

männlicher Infertilität und peroxisomalen Defekten bereits in der Fachliteratur 

diskutiert, jedoch wurde im Gegensatz hierzu der Einfluss peroxisomaler 

Erkrankungen auf die weiblichen Geschlechtsorgane kaum untersucht. 

Peroxisomen sind Zellorganellen, die in der -Oxidation von Fettsäuren, 

Plasmalogenbiosynthese, und in die für die Steroidogenese wichtige Cholesterin-

Biosynthese involviert sind. Peroxisomen spielen auch eine wichtige Rolle für die 

Aufrechterhaltung des Redox Gleichgewichtes. Da Studien gezeigt haben, dass eine 

Zuname oxidativen Stresses negative Auswirkungen auf die Follikulogenese  haben 

kann, war unsere Hypothese, dass Peroxisomen eine protektive Rolle für die Zellen 

im Ovar haben könnten. Ziel dieser Arbeit war daher, die Funktion von Peroxisomen 

in den Granulosa Zellen des Ovars und während der Steroid-Biosynthese zu 

analysieren.  

Die stark differenzierte Granulosa Tumor Zelllinie (KK-1 Zellen) wurde als Zellkultur 

Modell für die Untersuchungen der peroxisomalen Funktion etabliert. Die Expression 

von Genen, die für peroxisomale Proteine kodieren wurde vor und nach Behandlung 

der KK-1 Zellen mit humanen Choriongonatropin gemessen. Als Modell für die 

peroxisomale Dysfunktion, wurde Pex13, ein Gen, welches für ein peroxisomales 

Biogenese Protein kodiert, über RNA Interferenz runterreguliert und die darauf 

folgenden Auswirkungen auf Steroidogenese und mitochondrialen Cholesterin 

Transport analysiert. Weiterhin wurde der Effekt von oxidativen Stress, Antioxidantien 

und überaktivierung des mitochondrialen Cholesterin Imports auf die Steroidogenese 

in KK-1 Zellen untersucht. Peroxisomale Veränderungen die während der 

Follikulogenese stattfinnden wurden anhand von Immunofluoreszenzen an Paraffin 

eingebetteten Ovarien untersucht. 

Die Ergebnisse dieser Arbeit zeigen, dass peroxisomale Proteine hoch abundant in 

Maus Ovarien sind und dass sie eine heterogene Verteilung in den unterschiedlichen 

Zellen des Ovars aufweisen. Während der Follikulogenese kommt es zu einer 

deutlichen, Stadium-spezifische Regulation der peroxisomalen Protein Mengen: Es 



 

100 
 

zeigt sich, dass speziell in Oocyten, die Menge an peroxisomalen Proteine während 

der Follikulogenese zunimmt. Dies deutet darauf hin, dass Peroxisomen eine 

Schutzfunktion während der Reifung der Eizelle im Hinblick auf oxidative Stress und 

Lipid-Toxizität haben könnten. 

Die in vitro Studie an KK-1 Zellen zeigt, dass hCG eine Erhöhung der peroxisomalen 

Protein Menge bewirkt. Unsere Ergebnisse zeigen auch, dass wenn eine 

peroxisomale Dysfunktion besteht die Stereoidogenese negativ beeinflusst wird 

indem die Sekretion von Steroid Hormone und der mitochondriale Cholesterin 

Transport herabgesetzt wurde. Eine mögliche Ursache dieser Beobachtungen ist auf 

erhöhten oxidativen Stress zurückzuführen. Auch konnten wir zeigen, dass die durch 

die RNA Interferenz induzierte peroxisomale Dysfunktion zu einer nennenswerten 

Zuname oxidativen Stresses führte, welche durch die Zugabe von Antioxidantien 

kompensiert werden konnte. Auch konnten wir zeigen, dass eine Zuname des 

mitochondrialen Cholesterin-Transports durch Stimulation von StAR über 

Überexpression von AKAP1 den negativen Effekt des peroxisomalen Defizits 

teilweise kompensieren konnte. 

Zusammenfassend, wurden die Ergebnisse dieser Arbeit mit Hinzuname bereits 

publizierten Informationen für die Anfertigung der in Figur 34 gezeigten Schemas 

verwendet.  

 

Figur 34. Schematische Abbildung der peroxisomalen Regulierung der 

Steroidogenesis 
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9 Index of abbreviation 
 

ABCD                    ATP-binding cassette 

ACOX                   Acyl-CoA oxidases 

ALDP                     Adrenoleukodystrophy protein 

AGPS                     Aalkyldihydroxyacetone phosphate synthase 

AKAP                     A-kinase anchoring protein 

BMP                     Bone morphogenetic protein 

CREB                    cAMP response-element binding protein 

CL                          Corpus luteum 

cAMP                     Adenylate cyclase/cyclic-AMP 

CoA                       coenzyme A 

°C                          Degree Celcius 

DHPAT                 Dihydroxyacetone phosphate acyltransferase 

DHAP                     Dihydroxyacetonephosphate 

DHEA                     Dehydroepiandrosterone  

ER                          Endoplasmic reticulum 

EGF                       Epidermal growth factor 

FSH                       Follicle-stimulating hormone 

FPP                       Farnesyl diphosphate 

FBS                       Fetal bovine serum 

GDF-9                    Growth differentiation factor-9  

GNPAT                  Glyceronephosphate O-acyltransferase 

GR                         Glutathione reductase 

g                            gram 

hCG                       Human chorionic gonadotropin  

H2O2                     Hydrogen peroxide 

HMG-CoA              3-hydroxy-3-methylglutaryl coenzyme A reductase 

HGF                       Hepatocyte growth factor   

HDL                       High-density lipoprotein 

HSD                       hydroxysteroid dehydrogenase 

h                            Hour 

IDI1                        Isopentenyl diphosphate delta isomerase 
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IRD                         Infantile Refsum disease  

IGF-I                      Insulin-like growth factor-I 

IMM                        Inner mitochondrial membrane 

IF                          immunofluorescence 

KL                          Kit ligand 

KGF                      Keratinocyte growth factor 

LH                         Luteinizing hormone 

LDL                      Low-density lipoprotein 

MFPs                    Multifunctional proteins  

MVK                     Mevalonate kinase   

MPD                     Mevalonate pyrophosphate decarboxylase 

min                      minute 

NALD                   Neonatal adrenoleukodystrophy   

·NO                       Nitric oxide  

OMM                   Outer mitochondrial membrane 

O2·−                      Superoxide anion 

·OH                       Hydroxyl radical  

PMPs                   Peroxisome membrane proteins 

PTS                       Peroxisomal targeting signals  

PBD                    Peroxisome biogenesis disorder 

PFA                      Paraformaldehyde  

PKA                      Protein kinase A 

PMVK                  Phosphomevalonate kinase 

P450scc               cytochrome P450 side chain cleavage 

qPCR                   Quantitative real time polymerase chain reaction 

RNS                      Reactive nitrogen species  

RCDP                   Rhizomelic chondrodysplasia punctate 

ROS                      Reactive oxygen species 

RT                          Room temperature 

RT-PCR                 Semi-quantitative polymerase chain reaction 

SCPx                     Sterol carrier protein x 

SOD                        Superoxide dismutase  

StAR                     Steroidogenic acute regulatory protein 
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TGF                        Transforming growth factor  

VLCFAs                 Very long chain fatty acids 

ZS                          Zellweger syndrome 
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